This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\epstopdfDeclareGraphicsRule

.pspdf.pdfps2pdf -dEPSCrop -dNOSAFER #1 \OutputFile \contourlength1.3pt

Measuring fNLf_{\mathrm{NL}} with the SPHEREx Multi-tracer Redshift Space Bispectrum

Chen Heinrich [email protected] California Institute of Technology, Pasadena, California 91125,USA    Olivier Doré Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA California Institute of Technology, Pasadena, California 91125,USA    Elisabeth Krause Department of Astronomy and Steward Observatory, University of Arizona, Tucson, Arizona 85721, USA
Abstract

The bispectrum is an important statistics helpful for measuring the primordial non-Gaussianity parameter fNLf_{\mathrm{NL}} to less than order unity in error, which would allow us to distinguish between single and multi-field inflation models. The Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx) mission is particularly well-suited for making this measurement with its \sim100-band all-sky observations in the near-infrared. Consequently, the SPHEREx data will contain galaxies with spectroscopic-like redshift measurements as well as those with much larger errors. In this paper, we evaluate the impact of photometric redshift errors on fNLf_{\mathrm{NL}} constraints in the context of an updated multi-tracer forecast for SPHEREx, finding that the azimuthal averages of the first three even bispectrum multipoles are no longer sufficient for capturing most of the information (as opposed to the case of spectroscopic surveys shown in the literature). The final SPHEREx result with all five galaxy samples and six redshift bins is however not severely impacted because the total result is dominated by the samples with the best redshift errors, while the worse samples serve to reduce cosmic variance. Our fiducial result of σfNL=0.7\sigma_{f_{\mathrm{NL}}}=0.7 from bispectrum alone is increased by 18%18\% and 3%3\% when using lmax=0l_{\rm max}=0 and 22 respectively. We also explore the impact on parameter constraints when varying the fiducial redshift errors, as well as using subsets of multi-tracer combinations or triangles with different squeezing factors. Note that the fiducial result here is not the final SPHEREx capability, which is still on target for being σfNL=0.5\sigma_{f_{\mathrm{NL}}}=0.5 once the power spectrum will be included.

I Introduction

Single-field slow-roll inflation models predict that the primordial perturbations in the Universe are mostly Gaussian, with non-Gaussian deviations on the order of O(102)O(10^{-2}) Maldacena (2003); Creminelli and Zaldarriaga (2004); Acquaviva et al. (2003), while multi-field inflation models can yield local non-Gaussianities of order fNLloc1f_{\mathrm{NL}}^{\rm loc}\gtrsim 1 Bartolo et al. (2004). Detecting or constraining the amount of primordial non-Gaussianity (PNG) at this level can help us distinguish between single and multi-field inflation models, and shed light into the process by which inflation proceeded.

The best current limits on PNG come from observations of the cosmic microwave background (CMB) temperature and polarization by the Planck satellite: fNL=0.9±5.1f_{\mathrm{NL}}=-0.9\pm 5.1 (68% CL) Akrami et al. (2020) (We will now drop the superscript “loc” for the rest of our paper as it pertains to local non-Gaussianities only.). While the CMB is a two-dimensional map at the surface of last scattering, the large-scale-structure (LSS) of the Universe provides a three-dimensional map that gives access to more measurable modes, and therefore the ability to improve upon fNLf_{\mathrm{NL}} constraints from the CMB.

The best measurements from LSS so far have σ(fNL)\sigma(f_{\mathrm{NL}})\sim 203020-30: The most robust measurements are coming from the three-dimensional power spectrum of quasars or galaxies Mueller et al. (2022); Castorina et al. (2019); Cabass et al. (2022); D’Amico et al. (2022); Cagliari et al. (2023), while the photometric galaxy clustering observations achieve similar precisions although with more challenging systematics errors (e.g. Rezaie et al. (2023)). Future spectroscopic surveys with increasing sky coverage such as Euclid Amendola et al. (2018), DESI DESI Collaboration et al. (2016), and SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) Doré et al. (2014) would improve on Planck constraints to σ(fNL)\sigma(f_{\mathrm{NL}}) of a few. Various techniques may also be employed to tighten constraints, for example cross-correlating with the CMB lensing, using higher-order statistics such as the bispectrum and the trispectrum, cross-correlating with the kinetic Sunyaev-Zel’dovich signal or even using a field-level inference (see e.g. Krolewski et al. (2023); Giri et al. (2023); Gualdi et al. (2021); Andrews et al. (2023)).

Among the upcoming surveys, SPHEREx Doré et al. (2014) is a unique survey specifically designed to measure fNLf_{\mathrm{NL}} to σ(fNL)0.5\sigma(f_{\mathrm{NL}})\sim 0.5 in just its nominal mission. Being a spectral survey without a spectrometer, it uses the Linear Variable Filter (LVF) technology to capture 102 spectral channels as it steps across the entire sky. This results in an all-sky spectral survey in the near-infrared (NIR) that enables us to measure galaxy redshifts in a large volume and infer the impacts of PNG on the distribution of matter. The 102-band observation lands itself somewhere between a traditional photometric and spectroscopic observation, thereby inheriting advantages as well as some challenges from both sides.

Recent studies suggest that for spectroscopic surveys, most of the constraining power on cosmological parameters can be captured with just the even \ell and m=0m=0 modes of the bispectrum spherical harmonics decomposition Gagrani and Samushia (2017); Byun and Krause (2023). Here, we re-evaluate this claim for the photometric redshift surveys in the context of the SPHEREx bispectrum forecast, and find that this claim does not hold in general in the presence of large enough photometric redshift errors. We show however that the impact is minimal on the final SPHEREx forecast because of the multi-tracer approach in SPHEREx where samples with small redshift errors dominate the results.

Our forecast represents an improved update to the original SPHEREx forecast from Ref. Doré et al. (2014): We include redshift space distortions (RSD) in the linear regime as well as a more complete bias modeling to second-order, and perform a full multi-tracer analysis, while binning not only in triangle shapes but also in triangle orientations, allowing for a more precise modeling of the photometric redshift errors as Gaussian damping rather than a hard cut-off in kk_{\parallel} for modes along the line-of-sight. We also show how results could be impacted if the photometric redshift errors were to vary from their current fiducial values.

Finally, we study the trade-off between the data vector size reduction and the fNLf_{\mathrm{NL}} constraining power from selecting subsets of the galaxy samples or triangle shapes. Compared to the original forecast, our results were conducted with a more conservative kmax=0.2(1+z)hMpc1k_{\rm max}=0.2(1+z)\ h\text{Mpc}^{-1} to keep the modeling to the linear regime only, while using a similar galaxy sample specification with 5 samples and 11 redshift bins (although in practice we use the first six redshift bins where most of the bispectrum constraining power comes from). Our result does not yet include the modeling of the window function effects, as well as the wide-angle and general relativity (GR) effects which are important on the large scales we are probing. We leave these studies for future work.

The paper is structured as follows. In Section II, we describe the background related to PNG and the multi-tracer galaxy bispectrum in redshift space. In Section III, we describe the Fisher formalism used to forecast parameter errors for both the Fourier bispectrum and the bispectrum multipoles. We specify the SPHEREx forecast setup in Section IV and show results in Section V. Finally, we conclude in Section VI.

II Background

We now present the background on the bispectrum signal modeling. We start by describing the modeling of the galaxy density in the presence of primordial non-Gaussianity, then the multi-tracer galaxy bispectrum in redshift space, and finally the definition and parametrization for the bispectrum multipoles.

II.1 Galaxy density in the presence of primordial non-Gaussianty

We consider here the local type primordial non-Gaussianity parameterized by fNLf_{\mathrm{NL}}

Φ(𝒙)=φ(𝒙)+fNL(φ2(𝒙)φ2),\Phi(\bm{x})=\varphi(\bm{x})+f_{\mathrm{NL}}\left(\varphi^{2}(\bm{x})-\left\langle\varphi^{2}\right\rangle\right), (1)

where φ\varphi is an auxiliary primordial Gaussian potential. Using the Poisson equation, we can relate the primordial potential to the linearly evolved primordial matter density perturbation δm,p\delta_{\rm m,p} as (valid on subhorizon scales in the Newtonian limit)

Φ(𝒌)=δm,p(𝒌,z)α(k,z),\Phi(\bm{k})=\frac{\delta_{\text{m,p}}(\bm{k},z)}{\alpha(k,z)}, (2)

where

α(k,z)=2k2c2D(z)T(k)3H02Ωm,\alpha(k,z)=\frac{2k^{2}c^{2}D(z)T(k)}{3H_{0}^{2}\Omega_{\text{m}}}, (3)

and where D(z)D(z) is the linear growth factor normalized at z=0z=0, T(k)T(k) the transfer function, Ωm\Omega_{m} the matter density and H0H_{0} the Hubble constant. On large scales where T(k)=1T(k)=1, α\alpha scales as k2/H2k^{2}/H^{2}.

Working in perturbation theory, we expand the linear matter density contrast δm(𝒌)\delta_{\text{m}}(\bm{k}) as

δm(𝒌)=δm(1)(𝒌)+δm(2)(𝒌)+δm(3)(𝒌)+.\delta_{\text{m}}(\bm{k})=\delta_{\text{m}}^{(1)}(\bm{k})+\delta_{\text{m}}^{(2)}(\bm{k})+\delta_{\text{m}}^{(3)}(\bm{k})+\ldots\;. (4)

Given Eq. 2 the linearly evolved primordial matter density field up to second order is then given by

δm,p(𝒌,z)\displaystyle\delta_{\text{m,p}}(\bm{k},z) =\displaystyle= α(k,z)Φ(𝒌)=δm,p(1)(𝒌,z)+fNLδm,p(2)(𝒌,z),\displaystyle\alpha(k,z)\,\Phi(\bm{k})=\delta_{\text{m,p}}^{(1)}(\bm{k},z)+f_{\mathrm{NL}}\,\delta_{\text{m,p}}^{(2)}(\bm{k},z),

where

δm,p(1)(𝒌,z)=α(k,z)φ(𝒌),\delta_{\text{m,p}}^{(1)}(\bm{k},z)=\alpha(k,z)\varphi(\bm{k}), (6)

and

δm,p(2)(𝒌,z)=α(k,z)d3q(2π)3φ(𝒒)φ(𝒌𝒒).\delta_{\text{m,p}}^{(2)}(\bm{k},z)=\alpha(k,z)\,\int\frac{\,\mathrm{d}^{3}q}{(2\pi)^{3}}\varphi(\bm{q})\varphi(\bm{k}-\bm{q}). (7)

Gravitational evolution also contributes to nonlinear coupling starting at second order, so that the non-linearly evolved matter density field receives an additional term proportional to F2F_{2}:

δm(1)(𝒌,z)\displaystyle\delta^{(1)}_{\text{m}}(\bm{k},z) =\displaystyle= δm,p(1)(𝒌,z),\displaystyle\delta_{\text{m,p}}^{(1)}(\bm{k},z), (8)
δm(2)(𝒌,z)\displaystyle\delta^{(2)}_{\text{m}}(\bm{k},z) =\displaystyle= d3q(2π)3δm,p(1)(𝒒)δm,p(1)(𝒌𝒒)F2(𝒒,𝒌𝒒)\displaystyle\int\frac{\,\mathrm{d}^{3}q}{(2\pi)^{3}}\delta^{(1)}_{\text{m,p}}(\bm{q})\delta^{(1)}_{\text{m,p}}(\bm{k}-\bm{q})F_{2}(\bm{q},\bm{k}-\bm{q}) (9)
+\displaystyle+ fNLδm,p(2)(𝒌,z),\displaystyle f_{\mathrm{NL}}\,\delta_{\text{m,p}}^{(2)}(\bm{k},z),

where F2F_{2} is the second-order mode coupling kernel

F2(𝒌1,𝒌2)=57+12𝒌1𝒌2k1k2(k1k2+k2k1)+27(𝒌1𝒌2)2k12k22.F_{2}(\bm{k}_{1},\bm{k}_{2})=\frac{5}{7}+\frac{1}{2}\frac{\bm{k}_{1}\cdot\bm{k}_{2}}{k_{1}k_{2}}\left(\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}\right)+\frac{2}{7}\frac{(\bm{k}_{1}\cdot\bm{k}_{2})^{2}}{k_{1}^{2}k_{2}^{2}}. (10)

Galaxy surveys observe the density of galaxies, which are biased tracers of the underlying dark matter density. We follow Ref. Tellarini et al. (2016) in our modeling for the galaxy density and the galaxy bispectrum in the section to follow. We consider the following bivariate bias model for the Eulerian galaxy density constrast, where the dependence on φ\varphi arises in the presence of non-Gaussianities:

δg(𝒙)\displaystyle\delta_{\mathrm{g}}(\bm{x}) =\displaystyle= b10δm(𝒙)+b01φ(𝒙)\displaystyle b_{10}\delta_{\rm m}(\bm{x})+b_{01}\varphi(\bm{x}) (11)
+\displaystyle+ 12b20(δm(𝒙))2+b11δm(𝒙)φ(𝒙)\displaystyle\frac{1}{2}b_{20}\left(\delta_{\rm m}(\bm{x})\right)^{2}+b_{11}\delta_{\rm m}(\bm{x})\varphi(\bm{x})
+\displaystyle+ 12b02(φ(𝒙))2+12bs2(s2s2)b01n2.\displaystyle\frac{1}{2}b_{02}\left(\varphi(\bm{x})\right)^{2}+\frac{1}{2}b_{s_{2}}(s^{2}-\langle s^{2}\rangle)-b_{01}n^{2}.

Here we have the tidal term Catelan et al. (2000); Baldauf et al. (2012)

s2(𝒌)=d𝒒(2π)3𝒮2(𝒒,𝒌𝒒)δm(1)(𝒒)δm(1)(𝒌𝒒),s^{2}(\bm{k})=\int\frac{d\bm{q}}{(2\pi)^{3}}\mathcal{S}_{2}(\bm{q},\bm{k}-\bm{q})\delta_{\rm m}^{(1)}(\bm{q})\delta_{\rm m}^{(1)}(\bm{k}-\bm{q}), (12)

and the non-Gaussian shift term due to the displacement of galaxies with respect to their initial positions 𝒒\bm{q} in Lagrangian coordinates

n2(𝒌)=2d𝒒(2π)3𝒩2(𝒒,𝒌𝒒)δm(1)(𝒒)δm(1)(𝒌𝒒)α(|𝒌𝒒|),n^{2}(\bm{k})=2\int\frac{d\bm{q}}{(2\pi)^{3}}\mathcal{N}_{2}(\bm{q},\bm{k}-\bm{q})\frac{\delta_{\rm m}^{(1)}(\bm{q})\delta_{\rm m}^{(1)}(\bm{k}-\bm{q})}{\alpha(|\bm{k}-\bm{q}|)}, (13)

where

𝒮(𝒌1,𝒌2)=(𝒌1𝒌2)2k12k2213,\mathcal{S}(\bm{k}_{1},\bm{k}_{2})=\frac{(\bm{k}_{1}\cdot\bm{k}_{2})^{2}}{k_{1}^{2}k_{2}^{2}}-\frac{1}{3}, (14)

and

𝒩(𝒌1,𝒌2)=𝒌1𝒌22k12.\mathcal{N}(\bm{k}_{1},\bm{k}_{2})=\frac{\bm{k}_{1}\cdot\bm{k}_{2}}{2k_{1}^{2}}. (15)

We note that we have ignored the stochastic contributions to δg\delta_{\mathrm{g}} in Eq. 11, and also do not marginalize over any potential deviations of the shot noise from Poisson predictions (see Ref. Rizzo et al. (2023) for example for the full stochastic contributions to the tree-level bispectrum).

Taking only the first order terms in Eq. 11 we have

δg(𝒌)=(b10+b01α(k))δm,p(𝒌).\delta_{\mathrm{g}}(\bm{k})=\left(b_{10}+\frac{b_{01}}{\alpha(k)}\right)\delta_{\text{m,p}}(\bm{k}). (16)

We will expound on the specific modeling and values we take for each bias parameter in Section IV, where we will assume an universal mass function, for which the relationship between b10b_{10} and b01b_{01} becomes

b01=2fNLδc(b101),b_{01}=2f_{\mathrm{NL}}\delta_{c}(b_{10}-1), (17)

and we recover the well-known linear order result Dalal et al. (2008)

δg(𝒌)=(b10+2fNLδc(b101)α(k))δm,p(𝒌),\delta_{\mathrm{g}}(\bm{k})=\left(b_{10}+\frac{2f_{\mathrm{NL}}\delta_{\text{c}}(b_{10}-1)}{\alpha(k)}\right)\delta_{\text{m,p}}(\bm{k}), (18)

where δc=1.686\delta_{c}=1.686 is the threshold for spherical collapse.

We note that recent studies have shown how the universal mass function assumption for obtaining the relation Eq. 17 for b01b_{01} (also known as bϕfNLb_{\phi}f_{\mathrm{NL}}) could be inaccurate and could bias constraints on fNLf_{\mathrm{NL}} (e.g. Barreira (2020)). So in a realistic analysis, one could marginalize over theoretically-informed priors for bϕb_{\phi} or choose to constrain the combination bϕfNLb_{\phi}f_{\mathrm{NL}} instead Barreira (2020, 2022). Multi-tracer analysis can also help to improve the fNLf_{\mathrm{NL}} constraints for suitably chosen galaxy samples (e.g. by maximizing the combination |b10Bb01Ab10Ab01B||b_{10}^{B}b_{01}^{A}-b_{10}^{A}b_{01}^{B}| in a two-tracer analysis) Barreira and Krause (2023).

II.2 Multi-tracer galaxy bispectrum in redshift space

Let us define the multi-tracer bispectrum BgggABCB_{\rm ggg}^{ABC} as

δgA(𝒌1)δgB(𝒌2)δgC(𝒌3)=(2π)3δD(𝒌1+𝒌2+𝒌3)BgggABC(𝒌1,𝒌2),\langle\delta_{g}^{A}(\bm{k}_{1})\delta_{g}^{B}(\bm{k}_{2})\delta_{g}^{C}(\bm{k}_{3})\rangle=(2\pi)^{3}\,\delta_{D}(\bm{k}_{1}+\bm{k}_{2}+\bm{k}_{3})B_{ggg}^{ABC}(\bm{k}_{1},\bm{k}_{2}), (19)

where A,B,CA,B,C denote the galaxy samples. Now the wavevectors 𝒌1,𝒌2,𝒌3\bm{k}_{1},\bm{k}_{2},\bm{k}_{3} will be associated with samples A,B,CA,B,C respectively. We only use the galaxy bispectrum with samples from the same redshift bin ii centered at ziz_{i}. Note that A,B,C=1..nbA,B,C=1..n_{b}, so that there are nb=ntracer3n_{b}=n_{\rm tracer}^{3} multitracer combinations for each redshift bin.

To model the bispectrum in redshift space, we include the linear Kaiser effects on large scales, and the damping of small scales due to redshift errors, ignoring for now the Alcock-Pazynski effects.

The redshift errors σz,iA=σ~zA(1+zi)\sigma_{z,i}^{A}=\tilde{\sigma}_{z}^{A}(1+z_{i}) decreases our ability to measure modes parallel to the line-of-sight. We choose to model this effect with a Gaussian suppression using

FiABC(𝒌1,𝒌2)=e12[k12μ12(σp,iA)2+k22μ22(σp,iB)2+k32μ32(σp,iC)2],F^{ABC}_{i}(\bm{k}_{1},\bm{k}_{2})=e^{-\frac{1}{2}\left[k_{1}^{2}\mu_{1}^{2}(\sigma_{p,i}^{A})^{2}+k_{2}^{2}\mu_{2}^{2}(\sigma_{p,i}^{B})^{2}+k_{3}^{2}\mu_{3}^{2}(\sigma_{p,i}^{C})^{2}\right]}, (20)

and

σp,iA(z)=σ~zA(1+zi)2πcH(z).\sigma_{p,i}^{A}(z)=\tilde{\sigma}_{z}^{A}(1+z_{i})\frac{2\pi c}{H(z)}. (21)

Note that here σp,i(z)\sigma_{p,i}(z) can no longer be factored out for the multi-tracer bispectrum for which each galaxy sample may have a different redshift error.

The multi-tracer bispectrum in redshift space is then modeled as

BgggABC(𝒌1,𝒌2|zi)=FiABC(𝒌1,𝒌2)[2Z1A(𝒌1)Z1B(𝒌2)Z2C(𝒌1,𝒌2)P(k1)P(k2)+2cycl.perm.],B^{ABC}_{ggg}(\bm{k}_{1},\bm{k}_{2}|z_{i})=F^{ABC}_{i}(\bm{k}_{1},\bm{k}_{2})\,\left[2Z_{1}^{A}(\bm{k}_{1})Z_{1}^{B}(\bm{k}_{2})Z_{2}^{C}(\bm{k}_{1},\bm{k}_{2})\,P(k_{1})P(k_{2})+2\mathrm{\ cycl.\ perm.}\right], (22)

where

Z1X(𝒌1)=\displaystyle Z_{1}^{X}(\bm{k}_{1})=\; b10X\displaystyle b_{10}^{X} (1+βμ12)+b01Xα(k1)\displaystyle(1+\beta\mu_{1}^{2})+\frac{b_{01}^{X}}{\alpha(k_{1})} (23)
Z2X(𝒌1,𝒌2)=\displaystyle Z_{2}^{X}(\bm{k}_{1},\bm{k}_{2})=\; b10X\displaystyle b_{10}^{X} [F2(𝒌1,𝒌2)+fNLα(k)α(k1)α(k2)]+b20X2+12bs2XS2(𝒌1,𝒌2)\displaystyle\left[F_{2}(\bm{k}_{1},\bm{k}_{2})+f_{\mathrm{NL}}\frac{\alpha(k)}{\alpha(k_{1})\alpha(k_{2})}\right]+\frac{b_{20}^{X}}{2}+\frac{1}{2}b_{s_{2}}^{X}S_{2}(\bm{k}_{1},\bm{k}_{2}) (24)
+\displaystyle+ b11X2[1α(k1)+1α(k2)]+b02X21α(k1)α(k2)b01X[N2(𝒌1,𝒌2)α(k2)+N2(𝒌2,𝒌1)α(k1)]\displaystyle\frac{b_{11}^{X}}{2}\left[\frac{1}{\alpha(k_{1})}+\frac{1}{\alpha(k_{2})}\right]+\frac{b_{02}^{X}}{2}\frac{1}{\alpha(k_{1})\alpha(k_{2})}-b_{01}^{X}\left[\frac{N_{2}(\bm{k}_{1},\bm{k}_{2})}{\alpha(k_{2})}+\frac{N_{2}(\bm{k}_{2},\bm{k}_{1})}{\alpha(k_{1})}\right]
+\displaystyle+ fμ2[G2(𝒌1,𝒌2)+fNLα(k)α(k1)α(k2)]+12fμk(μ1k1Z1X(𝒌2)+μ2k2Z1X(𝒌1)),\displaystyle f\mu^{2}\left[G_{2}(\bm{k}_{1},\bm{k}_{2})+f_{\mathrm{NL}}\frac{\alpha(k)}{\alpha(k_{1})\alpha(k_{2})}\right]+\frac{1}{2}f\mu k\left(\frac{\mu_{1}}{k_{1}}Z_{1}^{X}(\bm{k}_{2})+\frac{\mu_{2}}{k_{2}}Z_{1}^{X}(\bm{k}_{1})\right),

where μi=𝒌^i𝒏^\mu_{i}=\hat{\bm{k}}_{i}\cdot\hat{\bm{n}}, where 𝒏^\hat{\bm{n}} is the line-of-sight, k=k3k=k_{3} and μ=μ3\mu=-\mu_{3}, and G2G_{2} is the second-order velocity kernel

G2(𝒌1,𝒌2)=37+12𝒌1𝒌2k1k2(k1k2+k2k1)+47(𝒌1𝒌2)2k12k22.G_{2}(\bm{k}_{1},\bm{k}_{2})=\frac{3}{7}+\frac{1}{2}\frac{\bm{k}_{1}\cdot\bm{k}_{2}}{k_{1}k_{2}}\left(\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}\right)+\frac{4}{7}\frac{(\bm{k}_{1}\cdot\bm{k}_{2})^{2}}{k_{1}^{2}k_{2}^{2}}. (25)

The last term in Eq. 24 is often also written as

12fμk(μ1k1Z1X(𝒌2)+μ2k2Z1X(𝒌1))=f2μ2k2μ1μ22k1k2+b10Xfμk2(μ1k1+μ2k2)+b01Xfμk2[μ1k1α(k2)+μ2k2α(k1)].\displaystyle\frac{1}{2}f\mu k\left(\frac{\mu_{1}}{k_{1}}Z_{1}^{X}(\bm{k}_{2})+\frac{\mu_{2}}{k_{2}}Z_{1}^{X}(\bm{k}_{1})\right)=f^{2}\mu^{2}k^{2}\frac{\mu_{1}\mu_{2}}{2k_{1}k_{2}}+b_{10}^{X}\frac{f\mu k}{2}\left(\frac{\mu_{1}}{k_{1}}+\frac{\mu_{2}}{k_{2}}\right)+b_{01}^{X}\frac{f\mu k}{2}\left[\frac{\mu_{1}}{k_{1}\alpha(k_{2})}+\frac{\mu_{2}}{k_{2}\alpha(k_{1})}\right]. (26)

II.3 Fourier space and multipole space bispectrum

II.3.1 Fourier space bispectrum

Given the shape of a triangle specified by (k1,k2,k3k_{1},k_{2},k_{3}), only two more parameters are needed to describe the orientation of the triangle due to the symmetry of the problem: Three degrees of freedom are taken away from the 9 coordinates that describe 𝒌1,𝒌2,𝒌3\bm{k}_{1},\bm{k}_{2},\bm{k}_{3}, by virtue of the triangle condition 𝒌1+𝒌2+𝒌3=0\bm{k}_{1}+\bm{k}_{2}+\bm{k}_{3}=0; one more is taken away because of the azimuthal symmetry of the signal around the line-of-sight vector.

While many choices exist for parametrizing the orientation of a triangle, we follow Ref. Scoccimarro (2015) using the following two angles: (1) θ1\theta_{1}, the polar angle of 𝒌1\bm{k}_{1} where 𝒛^=𝒏^\hat{\bm{z}}=\hat{\bm{n}}, and (2) ϕ12\phi_{12}, the azimuthal angle of 𝒌2\bm{k}_{2} in a coordinate system (𝒙^,𝒚^,𝒛^)(\hat{\bm{x}}^{\prime},\hat{\bm{y}}^{\prime},\hat{\bm{z}}^{\prime}) where 𝒛^=𝒌^1\hat{\bm{z}}^{\prime}=\hat{\bm{k}}_{1}. See Fig. 1 for an illustration.

In this parametrization we have

μ2=cos(θ1)cos(θ12)sin(θ1)sin(θ12)cos(ϕ12),\mu_{2}=\mathrm{cos}(\theta_{1})\,\mathrm{cos}(\theta_{12})-\mathrm{sin}(\theta_{1})\,\mathrm{sin}(\theta_{12})\,\mathrm{cos}(\phi_{12}), (27)

and

μ3=k1μ1+k2μ2k3,\mu_{3}=-\frac{k_{1}\mu_{1}+k_{2}\mu_{2}}{k_{3}}, (28)

where

θ12=arccos(k12k22+k322k1k2).\theta_{12}=\mathrm{arccos}\left(\frac{-k_{1}^{2}-k_{2}^{2}+k_{3}^{2}}{2k_{1}k_{2}}\right). (29)

is the polar angle of 𝒌2\bm{k}_{2} in the primed coordinates, which is the angle between 𝒌1\bm{k}_{1} and 𝒌2\bm{k}_{2} and is always restricted to be between [0,π][0,\pi].

When using this parametrization, we use orientation bins that are the linearly spaced in the variables μ1=cos(θ1)\mu_{1}=\mathrm{cos}(\theta_{1}) and ϕ12\phi_{12} since these angles are uniformly distributed.

𝒙^\hat{\bm{x}}𝒚^\hat{\bm{y}}𝒛^=n^\hat{\bm{z}}=\hat{n}𝒌1\bm{k}_{1}ϕ1\phi_{1}θ1\theta_{1}
𝒙^\hat{\bm{x}}^{\prime}𝒚^\hat{\bm{y}}^{\prime}𝒛^=𝒌^1\hat{\bm{z}}^{\prime}=\hat{\bm{k}}_{1}𝒌2\bm{k}_{2}ϕ12\phi_{12}θ12\theta_{12}
Figure 1: The coordinate systems we choose for parametrizing the triangle orientation for the Fourier space bispectrum. The two parameters that are used for determining the triangle orientation uniquely are θ1\theta_{1} and ϕ12\phi_{12}. Note that ϕ1\phi_{1} is averaged over, as the bispectrum signal is invariant under changes in ϕ1\phi_{1}.

II.3.2 Bispectrum Multipoles

Instead of parametrizing the orientation of the triangle, we can also expand the angle dependence in spherical harmonics:

Blm(k1,k2,k3)\displaystyle B_{lm}(k_{1},k_{2},k_{3}) =\displaystyle= 14π(12π02πdϕ1)(11dcos(θ1))(02πdϕ12)B(k1,k2,k3,θ1,ϕ12,ϕ1)Ylm(θ1,ϕ12)\displaystyle\frac{1}{4\pi}\,\left(\frac{1}{2\pi}\int_{0}^{2\pi}\mathrm{d\,\phi_{1}}\right)\left(\int_{-1}^{1}\mathrm{d\,cos}(\theta_{1})\right)\left(\int_{0}^{2\pi}\mathrm{d\,\phi_{12}}\right)\,B(k_{1},k_{2},k_{3},\theta_{1},\phi_{12},\phi_{1})\,Y_{lm}^{*}(\theta_{1},\phi_{12})
=\displaystyle= 14π(11dcos(θ1))(02πdϕ12)B(k1,k2,k3,θ1,ϕ12)Ylm(θ1,ϕ12),\displaystyle\frac{1}{4\pi}\left(\int_{-1}^{1}\mathrm{d\,cos}(\theta_{1})\right)\left(\int_{0}^{2\pi}\mathrm{d\,\phi_{12}}\right)\,B(k_{1},k_{2},k_{3},\theta_{1},\phi_{12})\,Y_{lm}^{*}(\theta_{1},\phi_{12}),

where we have averaged the signal over ϕ1\phi_{1}, the azimuthal angle of 𝒌1\bm{k}_{1} around the line-of-sight n^\hat{n} for which the signal is symmetric. The factor of 1/(4π)1/(4\pi) is a normalization convention. The inverse relation is:

B(k1,k2,k3,θ1,ϕ12,ϕ1)=lm=llBlm(k1,k2,k3)Ylm(θ1,ϕ12).B(k_{1},k_{2},k_{3},\theta_{1},\phi_{12},\phi_{1})\\ =\sum_{l}\sum_{m=-l}^{l}B_{lm}(k_{1},k_{2},k_{3})Y_{lm}(\theta_{1},\phi_{12}).

Here the spherical harmonics are normalized such that

Y00=1andd2𝒏^4πYlm(𝒏^)Ylm(𝒏^)=δllδmm.Y_{00}=1\;\;\;\;\mathrm{and}\;\;\;\int\frac{d^{2}\hat{\bm{n}}}{4\pi}Y_{lm}(\hat{\bm{n}})Y_{l^{\prime}m^{\prime}}^{*}(\hat{\bm{n}})=\delta_{ll^{\prime}}\delta_{mm^{\prime}}. (31)

The BlmB_{lm} with m=0m=0 are usually called the bispectrum multipoles. In our study, we will refer to all the lmlm modes loosely as bispectrum multipoles. We investigate the effects effect of truncating the sum at various lmaxl_{\mathrm{max}} and investigate the effect of omitting the odd ll and m0m\neq 0 modes.

III Fisher Formalism

III.1 Fisher matrix for the Fourier bispectrum

Let B~ABC(k1,k2,k3)\tilde{B}^{ABC}(k_{1},k_{2},k_{3}) represent the binned bispectrum over triangle shapes and orientations with bin centers denoted by (k1,k2,k3)(k_{1},k_{2},k_{3}) and (θ,ϕ)(\theta,\phi) respectively. If we approximate the binned bispectrum by the value at the bin center, then the Fisher matrix for the multi-tracer bispectrum in a single redshift bin can be written as

Fij\displaystyle F_{ij} =\displaystyle= (k1,k2,k3)(θ,ϕ)(ABC)(ABC)B~ABC(k1,k2,k3,θ,ϕ)pi[Cov~]1B~ABC(k1,k2,k3,θ,ϕ)pj,\displaystyle\sum_{(k_{1},k_{2},k_{3})}\sum_{(\theta,\phi)}\sum_{(ABC)}\sum_{(A^{\prime}B^{\prime}C^{\prime})}\frac{\partial\tilde{B}^{ABC}(k_{1},k_{2},k_{3},\theta,\phi)}{\partial p_{i}}\left[\mathrm{\tilde{Cov}}\right]^{-1}\frac{\partial\tilde{B}^{A^{\prime}B^{\prime}C^{\prime}}(k_{1},k_{2},k_{3},\theta,\phi)}{\partial p_{j}}, (32)

where the sum is over nshapen_{\rm shape} allowed triangle shape bins with centers denoted by (k1,k2,k3)(k_{1},k_{2},k_{3}) and norin_{\rm ori} orientation bins with centers denoted by (θ,ϕ)(\theta,\phi), and there is no correlation between different triangle shapes and orientations in the Gaussian approximation for the covariance matrix. There is however a correlation between the different multi-tracer combinations, so the covariance Cov~\tilde{\mathrm{Cov}} is a nb×nbn_{b}\times n_{b} matrix where nb=ntracers3n_{b}=n_{\rm tracers}^{3} is the number of multi-tracer combinations. It can be written as

Cov~=CovVNmodes,\mathrm{\tilde{Cov}}=\mathrm{Cov}\,\frac{V}{N_{\rm modes}}, (33)

where in the Gaussian approximation we have for a single mode

δgA(𝒌1)δgB(𝒌2)δgC(𝒌3)δgA(𝒌1)δgB(𝒌2)δgC(𝒌3)\displaystyle\langle\delta_{g}^{A}(\bm{k}_{1})\,\delta_{g}^{B}(\bm{k}_{2})\,\delta_{g}^{C}(\bm{k}_{3})\,\delta_{g}^{A^{\prime}}(\bm{k}^{\prime}_{1})\,\delta_{g}^{B^{\prime}}(\bm{k}^{\prime}_{2})\,\delta_{g}^{C^{\prime}}(\bm{k}^{\prime}_{3})\,\rangle (34)
\displaystyle\approx (PggAA(𝒌1)+δAAn¯gA)(PggBB(𝒌2)+δBBn¯gB)(PggCC(𝒌3)+δCCn¯gC)δD(𝒌1+𝒌1)δD(𝒌2+𝒌2)δD(𝒌3+𝒌3)\displaystyle\left(P_{gg}^{AA^{\prime}}(\bm{k}_{1})+\frac{\delta_{AA^{\prime}}}{\bar{n}_{g}^{A}}\right)\left(P_{gg}^{BB^{\prime}}(\bm{k}_{2})+\frac{\delta_{BB^{\prime}}}{\bar{n}_{g}^{B}}\right)\left(P_{gg}^{CC^{\prime}}(\bm{k}_{3})+\frac{\delta_{CC^{\prime}}}{\bar{n}_{g}^{C}}\right)\delta_{D}(\bm{k}_{1}+\bm{k}^{\prime}_{1})\delta_{D}(\bm{k}_{2}+\bm{k}^{\prime}_{2})\delta_{D}(\bm{k}_{3}+\bm{k}^{\prime}_{3}) (35)
\displaystyle\equiv Cov[BgggABC(𝒌1,𝒌2),BgggABC(𝒌1,𝒌2)]δD(𝒌1+𝒌1)δD(𝒌2+𝒌2)δD(𝒌3+𝒌3),\displaystyle\mathrm{Cov}\left[B_{ggg}^{ABC}(\bm{k}_{1},\bm{k}_{2}),B_{ggg}^{A^{\prime}B^{\prime}C^{\prime}}(\bm{k}^{\prime}_{1},\bm{k}^{\prime}_{2})\right]\;\delta_{D}(\bm{k}_{1}+\bm{k}^{\prime}_{1})\delta_{D}(\bm{k}_{2}+\bm{k}^{\prime}_{2})\delta_{D}(\bm{k}_{3}+\bm{k}^{\prime}_{3}), (36)

and where

VNmodes=(2π)5V(dk1dk2dk3k1k2k3)(dμdϕ)β.\frac{V}{N_{\rm modes}}\,=\frac{(2\pi)^{5}}{V(\mathrm{d}k_{1}\,\mathrm{d}k_{2}\,\mathrm{d}k_{3}\,k_{1}k_{2}k_{3})\,(d\mu d\phi)\,\beta}. (37)

Here the number of modes is the number of closed triangles NmodesN_{\rm modes} within a triangle shape and orientation bin given a survey volume which sets the fundamental frequency kF(2π)V1/3k_{F}\equiv(2\pi)V^{-1/3}, where V1/3V^{-1/3} is the volume of the survey in the given redshift bin. In the limit that the bin width ΔkikF\Delta k_{i}\gg k_{F}, the following expression is a good approximation

Nmodes=KΔkF6\displaystyle N_{\rm modes}=\frac{K_{\Delta}}{k_{F}^{6}}
=\displaystyle= V2(2π)6[8π2k1k2k3Δk1Δk2Δk3β(14πΔμ1Δϕ12)],\displaystyle\frac{V^{2}}{(2\pi)^{6}}\left[8\pi^{2}k_{1}k_{2}k_{3}\Delta k_{1}\Delta k_{2}\Delta k_{3}\beta\left(\frac{1}{4\pi}\Delta\mu_{1}\Delta\phi_{12}\right)\right],

where 8π2k1k2k3Δk1Δk2Δk3β8\pi^{2}k_{1}k_{2}k_{3}\Delta k_{1}\Delta k_{2}\Delta k_{3}\beta is the number of closed triangles in a triangle shape bin denoted by the bin centers (k1,k2,k3k_{1},k_{2},k_{3}) with bin widths Δk1,Δk2\Delta k_{1},\Delta k_{2} and Δk3\Delta k_{3}, and β=0.5\beta=0.5 for degenerate triangles and 1 otherwise. The factor 14πΔμ1Δϕ12\frac{1}{4\pi}\Delta\mu_{1}\Delta\phi_{12} corresponds to the fraction of triangles in a fixed triangle shape bin that falls into the orientation bin with centers (μ,ϕ12)(\mu,\phi_{12}).

Note that we do not include the factor sBs_{B} = 6, 2, 1 for equilateral, isoceles and scalene triangles respectively, often used in the orientation-averaged case. Since here we have triangle orientation bins, we instead have that triangles of the same equilateral or isoceles shape but different orientations can be correlated. These would appear as off-diagonal elements of the nori×norin_{\rm ori}\times n_{\rm ori} covariance matrix block for a fixed triangle shape. Furthermore, the sBs_{B} factor is not valid for multi-tracers, since the other possible contractions in Eq. 34 are not necessarily equal to the first contraction we wrote down in Eq. 36 in the multi-tracer case. For our calculations however, we ignore the effects from those off-diagonal terms because a bin with an equilateral or isoceles triangle as its representative center contains many triangles that are not equilateral or isoceles.

Finally, the length of our multi-tracer bispectrum data vector for each redshift bin is n=nb×nshape×nori=125×104×25107n=n_{b}\times n_{\rm shape}\times n_{\rm ori}=125\times 10^{4}\times 25\approx 10^{7} for nk=50n_{k}=50, nθ=5n_{\theta}=5, nϕ=5n_{\phi}=5. The exact number of triangle shapes nshapen_{\rm shape} varies for different redshift bins, since the values of kmin=2πV1/3k_{\rm min}=2\pi V^{-1/3} and kmax=0.2hMpc1(1+z)k_{\rm max}=0.2\ h\text{Mpc}^{-1}(1+z) are dependent on the redshift bin. We note also that we have used an approximate kmink_{\rm min} value corresponding to a cubic volume, whereas in reality, the redshift bins are shaped as spherical shells in the full sky limit, or part of a spherical shell when the survey window function is applied. A precise mode counting treatment with the exact window function will be evaluated in a future work.

III.2 Fisher matrix for the bispectrum multipoles

For the bispectrum multipoles, we have the following Fisher matrix

Fij=𝑑k1𝑑k2𝑑k3k1k2k3(l,m)(l,m)(ABC)(ABC)\displaystyle F_{ij}=\int dk_{1}dk_{2}dk_{3}k_{1}k_{2}k_{3}\sum_{(l,m)}\sum_{(l^{\prime},m^{\prime})}\sum_{(ABC)}\sum_{(A^{\prime}B^{\prime}C^{\prime})}
BlmABC(k1,k2,k3)pi[(2π)5VCov]1BlmABC(k1,k2,k3)pj.\displaystyle\frac{\partial B_{lm}^{ABC*}(k_{1},k_{2},k_{3})}{\partial p_{i}}\left[\frac{(2\pi)^{5}}{V}\mathrm{Cov}\right]^{-1}\frac{\partial B_{l^{\prime}m^{\prime}}^{A^{\prime}B^{\prime}C^{\prime}}(k_{1},k_{2},k_{3})}{\partial p_{j}}.

Let B~lmABC(k1,k2,k3)\tilde{B}_{lm}^{ABC}(k_{1},k_{2},k_{3}) represent the bispectrum binned over triangle shapes that fall into the bin specified by the centers (k1,k2,k3)(k_{1},k_{2},k_{3}). Let this binned value be approximated by the bispectrum value at this center configuration, and we have that the Fisher matrix can be approximated as

Fij=\displaystyle F_{ij}= (k1,k2,k3)(l,m)(l,m)(ABC)(ABC)\displaystyle\sum_{(k_{1},k_{2},k_{3})}\sum_{(l,m)}\sum_{(l^{\prime},m^{\prime})}\sum_{(ABC)}\sum_{(A^{\prime}B^{\prime}C^{\prime})}
B~lmABC(k1,k2,k3)pi[Cov~]1B~lmABC(k1,k2,k3)pj.\displaystyle\frac{\partial\tilde{B}_{lm}^{ABC*}(k_{1},k_{2},k_{3})}{\partial p_{i}}\left[\mathrm{\tilde{Cov}}\right]^{-1}\frac{\partial\tilde{B}_{l^{\prime}m^{\prime}}^{A^{\prime}B^{\prime}C^{\prime}}(k_{1},k_{2},k_{3})}{\partial p_{j}}.

The outer sum is taken over nshapen_{\rm shape} unique triangle shapes (k1,k2,k3)(k_{1},k_{2},k_{3}), where k1,k2k_{1},k_{2} and k3k_{3} are values of the kk-bin centers that satisfy the triangle inequality (0<k1k2k3k1+k20<k_{1}\leq k_{2}\leq k_{3}\leq k_{1}+k_{2}). There is also a sum over nlmn_{lm} pairs of (l,m)(l,m) values, where ll and mm are integers satisfying 0llmax0\leq l\leq l_{\rm max} and lml-l\leq m\leq l (and similarly for the (l,m)(l^{\prime},m^{\prime}) pairs), as well as a sum over nb=ntracers3n_{b}=n_{\rm tracers}^{3} multi-tracer combinations (ABCABC) where A,B,C=1..ntracersA,B,C=1..n_{\rm tracers} (and similarly for (ABCA^{\prime}B^{\prime}C^{\prime})).

Because there is no correlation between different triangle shapes (in the Gaussian covariance), whereas there is a correlation between different (l,m)(l,m) pairs and multi-tracer combinations, the covariance Cov~\tilde{\mathrm{Cov}} of the binned bispectrum is a N×NN\times N matrix, where N=nbnlmN=n_{b}n_{lm}. It can be calculated using

Cov~=Cov(2π)5sBVdk1dk2dk3k1k2k3β,\mathrm{\tilde{Cov}}=\mathrm{Cov}\,\frac{(2\pi)^{5}s_{B}}{V\mathrm{d}k_{1}\mathrm{d}k_{2}\mathrm{d}k_{3}k_{1}k_{2}k_{3}\beta}, (41)

where

Cov[BlmABC\displaystyle\mathrm{Cov}[B_{lm}^{ABC*} , BlmABC]=1(4π)2d(cosθ)dϕ\displaystyle B_{l^{\prime}m^{\prime}}^{A^{\prime}B^{\prime}C^{\prime}}]=\frac{1}{(4\pi)^{2}}\int\mathrm{d(cos}\theta)\mathrm{d}\phi\,
×\displaystyle\times Ylm(θ,ϕ)Ylm(θ,ϕ)(PAA(𝒌1)+1n¯gA)\displaystyle Y_{lm}^{*}(\theta,\phi)Y_{l^{\prime}m^{\prime}}(\theta,\phi)\left(P^{AA^{\prime}}(\bm{k}_{1})+\frac{1}{\bar{n}^{A}_{g}}\right)
×\displaystyle\times (PBB(𝒌2)+1n¯gB)(PCC(𝒌3)+1n¯gC),\displaystyle\left(P^{BB^{\prime}}(\bm{k}_{2})+\frac{1}{\bar{n}^{B}_{g}}\right)\left(P^{CC^{\prime}}(\bm{k}_{3})+\frac{1}{\bar{n}^{C}_{g}}\right),

and β=0.5\beta=0.5 for degenerate triangles and 1 otherwise. The factor of 1/(4π)21/(4\pi)^{2} comes from the normalization of the bispectrum multipoles in Eq. LABEL:eq:blm_definition.

The marginalized error on parameter pip_{i} is obtained using

σpi=[F1/2]ii.\sigma_{p_{i}}=\left[F^{-1/2}\right]_{ii}. (43)

The length of the data vector is slightly reduced here, with n=nb×nshape×nlmn=n_{b}\times n_{\rm shape}\times n_{\rm lm} for a single redshift bin, where nlm=25n_{\rm lm}=25 when all (l,m)(l,m) pairs are used up to lmax=4l_{\rm max}=4, which can be reduced nlm=2n_{\rm lm}=2 without much loss of information if only the even ll and m=0m=0 modes are used up to lmax=2l_{\rm max}=2, as we will show later in Section V.

IV Forecast Setup

We now present the setup for our Fisher forecast: The galaxy bias modeling choices and the survey parameters. The fiducial cosmology here is consistent the Planck 2018 cosmology Aghanim et al. (2020): The primordial spectral amplitude As=2.100×109A_{s}=2.100\times 10^{-9} with the tilt ns=0.9659n_{s}=0.9659 and the running of the tilt nrun=0n_{\rm run}=0, the baryon density Ωbh2=0.02238\Omega_{b}h^{2}=0.02238, the dark matter density Ωch2=0.1201\Omega_{c}h^{2}=0.1201, and the acoustic scale 100θMC=1.0409100\theta_{\mathrm{MC}}=1.0409. For a given redshift bin, we marginalize over the following set of parameters: {As,ns,nrun,fNL,Ωbh2,Ωch2,100θMC,b10X|X=1..5}A_{s},n_{s},n_{\rm run},f_{\mathrm{NL}},\Omega_{b}h^{2},\Omega_{c}h^{2},100\theta_{\rm MC},b_{10}^{X}|X=1..5\}. For the joint Fisher forecast from all redshift bins, the constraining power on the cosmological parameters from each redshift bin is combined, while the individual nz×nsample=55n_{z}\times n_{\rm sample}=55 linear galaxy bias parameters are constrained by their corresponding redshift bin only.

IV.1 Bias modeling

We briefly summarize the galaxy bias modeling we chose and refer the readers to Ref. Tellarini et al. (2016) for more details. Recall that the galaxy density field up to second order is described by

δg(𝒙)\displaystyle\delta_{\mathrm{g}}(\bm{x}) =\displaystyle= b10δm(𝒙)+b01φ(𝒙)\displaystyle b_{10}\delta_{\rm m}(\bm{x})+b_{01}\varphi(\bm{x}) (44)
+\displaystyle+ b20(δm(𝒙))2+b11δm(𝒙)φ(𝒙)\displaystyle b_{20}\left(\delta_{\rm m}(\bm{x})\right)^{2}+b_{11}\delta_{\rm m}(\bm{x})\varphi(\bm{x})
+\displaystyle+ b02(φ(𝒙))2+bs2(s2s2)b01n2,\displaystyle b_{02}\left(\varphi(\bm{x})\right)^{2}+b_{s_{2}}(s^{2}-\langle s^{2}\rangle)-b_{01}n^{2},

where we have now absorbed the factors of 1/2 into b20b_{20}, b02b_{02} and bs2b_{s_{2}}. There are a total of 6 different kind of bias parameters to model: b10b_{10}, b01b_{01}, b20b_{20}, b11b_{11}, b02b_{02} and bs2b_{s_{2}}, each having 55 distinct values for the 5 galaxy samples and 11 redshift bins.

As previously noted, we assume an universal mass function and use the following relation for b01b_{01}:

b01=2fNLδc(b101).b_{01}=2f_{\mathrm{NL}}\delta_{c}(b_{10}-1). (45)

For b20b_{20}, we treat it as a function of b10b_{10} using a fit from simulations in Ref. Lazeyras et al. (2016),

b20Lezeyras(b10)=12(0.4122.143b10+0.929b102+0.008b103).b_{20}^{\rm Lezeyras}(b_{10})=\frac{1}{2}(0.412-2.143\,b_{10}+0.929\,b_{10}^{2}+0.008\,b_{10}^{3}). (46)

Similarly for bs2b_{s_{2}}, we use a relation to b10b_{10} obtained from a fit to simulation results from Ref. Baldauf et al. (2012),

bs2Saito(b10)=27(b101).b_{s_{2}}^{\rm Saito}(b_{10})=-\frac{2}{7}\,(b_{10}-1). (47)

For b11b_{11} and b02b_{02}, we can relate them to any given values of b10,b20b_{10},b_{20} and fNLf_{\mathrm{NL}} using,

b11=b11L+b01L,b_{11}=b_{11}^{L}+b_{01}^{L}, (48)

and

b02=fNL24δc(δcb20L2b10L),b_{02}=f_{\mathrm{NL}}^{2}4\delta_{c}(\delta_{c}b_{20}^{L}-2b_{10}^{L}), (49)

where the LL superscript denotes Lagrangian bias, and we suppressed the EE superscript for the Eulerian biases, and the Lagrangian quantities may be related to the Eulerian ones as follows:

b11L=2fNL(δcb20Lb10L),b_{11}^{L}=2f_{\mathrm{NL}}(\delta_{c}b_{20}^{L}-b_{10}^{L}), (50)
b20L=b20821(b101),b_{20}^{L}=b_{20}-\frac{8}{21}(b_{10}-1), (51)
b10L=b101,b_{10}^{L}=b_{10}-1, (52)

and

b01L=b01,b_{01}^{L}=b_{01}, (53)

The above results were obtained under the assumption of the universal mass function, conservation of the galaxy number density in a given volume, spherical collapse and no velocity bias between galaxies and matter.

In the Fisher forecast, we vary the parameters b10b_{10} for each sample and redshift bin when taking the derivative with respect to b10b_{10}, and let all other bias values vary according to the relations described above.

IV.2 Survey parameters

The survey parameters have not changed significantly since the original SPHEREx forecast. There are eleven redshift bins ranging from z=0z=0 to 4.64.6 (see definitions in Table 2 in Appendix A), with the galaxies in each redshift bin divided by their redshift uncertainties falling in the bins σ~z=σz/(1+z)=00.0030.010.030.10.2\tilde{\sigma}_{z}=\sigma_{z}/(1+z)=0-0.003-0.01-0.03-0.1-0.2. We use the maximum value of the redshift bin in our forecast for more conservative results: σ~zA=0.003,0.01,0.03,0.1\tilde{\sigma}_{z}^{A}=0.003,0.01,0.03,0.1 and 0.20.2 for A=1A=1 to 5 respectively. So a lower sample number means better redshift uncertainties. Note that in the original bispectrum forecast, it was the mean value of σ~zA\tilde{\sigma}_{z}^{A} that was used, leading to slightly more optimistic but also more realistic results.

The details of the procedure for obtaining the fiducial galaxy number densities and biases are found in Ref. Doré et al. (2014), which we briefly summarize here. First, the simulated SPHEREx galaxy catalog (based on COSMOS Scoville et al. (2007); Ilbert et al. (2009)) was piped through a template-fitting based photometric redshift measurement pipeline in order to produce a redshift and a redshift error estimate for each galaxy. These estimates were used to derive the galaxy number density for the galaxy sample in each redshift bin and σ~z\tilde{\sigma}_{z} bin.

The method of abundance matching was then used to obtain an estimate of the linear galaxy bias for each galaxy sample: The galaxies with the best redshift errors are matched to the host halos with the largest total mass. More specifically, the mass function in Ref. Tinker et al. (2008) was used to find the minimum halo mass, for which the halo bias is found using the fitting formula in Ref. Tinker et al. (2010) and set to the linear galaxy bias. The fiducial values for the linear biases and number densities are available at the SPHEREx public Github repository111SPHEREx public github repository: https://github.com/SPHEREx/Public-products/blob/master/galaxy_density_v28_base_cbe.txt, and also reproduced in Appendix A for convenience in Tables 3 and 4 respectively.

V Results

Refer to caption
Figure 2: Plot of the improvement ratio for σfNL\sigma_{f_{\mathrm{NL}}} of bispectrum multipoles against the full bispectrum result, for a single tracer with good redshift error: redshift bin 6, sample 1, for which zmid=1.3z_{\rm mid}=1.3 and σz/(1+z)=0.003\sigma_{z}/(1+z)=0.003.
Refer to caption
Refer to caption
Figure 3: Plot of the improvement ratio for σfNL\sigma_{f_{\mathrm{NL}}} of bispectrum multipoles against the full bispectrum result, for a single tracer with medium and worst redshift error. Left: A representative galaxy sample that contributes well to the total constraint: redshift bin 3, sample 3 (zmid=0.5z_{\rm mid}=0.5, σz/(1+z)=0.03\sigma_{z}/(1+z)=0.03). Right: The galaxy sample with the worst redshift error: redshift bin 6, sample 5 (zmid=1.3z_{\rm mid}=1.3, σz/(1+z)=0.2\sigma_{z}/(1+z)=0.2).

We now show the Fisher forecast results for the first six redshift bins (0<z<1.60<z<1.6) (as we verified that higher redshift bins contribute negligibly to the bispectrum constraint on fNLf_{\mathrm{NL}} for SPHEREx). We begin by looking at how photometric redshift errors affect the claim that the first three even ll and m=0m=0 modes are sufficient for capturing most of the constraining power. Then we investigate how constraints would be impacted if the redshift errors were to change from their fiducial values. Finally, we study how the constraints vary when using different subsets of multi-tracers, as well as different subsets of triangle shapes for various squeezing factors.

V.1 The impact of photometric error on bispectrum multipoles

To illustrate how much of the total constraint is captured by a set of bispectrum multipoles, we look at the improvement ratio defined as

Improvementratio=σfNL(Bfull)σfNL(Blm),\mathrm{Improvement\ ratio}=\frac{\sigma_{f_{\mathrm{NL}}}(B_{\rm full})}{\sigma_{f_{\mathrm{NL}}}(B_{lm})}, (54)

where BfullB_{\rm full} stands for the full constraint obtained by using the Fourier space bispectrum with all the triangle shape and orientation bins, whereas BlmB_{lm} stands for bispectrum multipoles with a specific set of l,ml,m values. In this notation, the improvement ratio will always be less than one for the bispectrum multipoles, and higher means better constraints.

We show this improvement ratio for the unmarginalized fNLf_{\mathrm{NL}} uncertainty as a function of lmaxl_{\mathrm{max}} in Figs. 2 and 3 for individual galaxy samples. Various subsets of multipoles are selected: “all l,ml,m” for all multipoles up to lmaxl_{\mathrm{max}} (blue solid), “all ll; m=0m=0” for all multipoles up to lmaxl_{\mathrm{max}} but without the nonzero-mm modes (orange dashed); “even ll; m=0m=0” for all even ll up to lmaxl_{\mathrm{max}} without the nonzero-mm modes (green dotted). For a spectroscopic survey, we expect that only l=0,2l=0,2 and 4 and m=0m=0 will contribute to the signal, when the RSD modeling only includes the linear Kaiser effects and no window function effects are accounted for.

This behavior is indeed observed for tracers with the least redshift uncertainty. An example is shown in Fig. 2 for the tracer in redshift bin 6 sample 1 (with zmid=1.3z_{\rm mid}=1.3 and σz/(1+z)=0.003\sigma_{z}/(1+z)=0.003, so giving sub-percent σz\sigma_{z}). This tracer behaves like a spectroscopic sample Gagrani and Samushia (2017): lmax=4l_{\mathrm{max}}=4 is enough to capture all constraining power; using only m=0m=0 modes affects the error by less than 2%; and removing odd multipoles have no impact on the constraints.

The story is however different when we look at tracers with larger redshift errors. In Fig. 3, we show the same plot for two tracers: One with medium redshift uncertainty, redshift bin 3 sample 3 (with zmid=0.5z_{\rm mid}=0.5, σz/(1+z)=0.03\sigma_{z}/(1+z)=0.03), which is also a representative sample that contributes well to the combined fNLf_{\mathrm{NL}} constraint from all tracers and redshift bins, and the sample with the worst redshift error, redshift bin 6 sample 5 (zmid=1.3z_{\rm mid}=1.3, σz/(1+z)=0.2\sigma_{z}/(1+z)=0.2).

The first observation is that lmax=4l_{\mathrm{max}}=4 no longer captures all the constraining power there is – higher multipoles contain information too, because of the way the redshift error modeling is a Gaussian function in kμk\mu which has non-zero multipole decomposition in all the multipoles. Another impact is that the odd multipoles also contribute slightly to the total constraints. Finally, removing m0m\neq 0 modes has a bigger impact on the fNLf_{\mathrm{NL}} constraint than in the nearly-spectroscopic case: An additional 4% (10%) on top of the 1% (10%) increase in fNLf_{\mathrm{NL}} uncertainty from truncating at lmax=4l_{\mathrm{max}}=4, for the representative (worst) galaxy sample. An overall consequence is that the monopole alone no longer contains most of the information: The uncertainty is degraded by roughly 8% (23%) for the representative (worst) sample (as opposed to 2% in the case of the spectroscopic-like sample).

While the findings of Ref. Gagrani and Samushia (2017) no longer hold for a photometric redshift sample where errors are naturally bigger than in spectroscopic surveys, this is however not a problem for SPHEREx. When combining all five samples and six redshift bins in the multi-tracer analysis, we find that the marginalized constraint is σfNL=0.86\sigma_{f_{\mathrm{NL}}}=0.86 (0.75) respectively for lmax=0l_{\mathrm{max}}=0 (lmax=2l_{\mathrm{max}}=2) where all the ll and mm modes have been included up to that lmaxl_{\mathrm{max}}. This represents a 18% (3%) increase from the full constraint σfNL=0.73\sigma_{f_{\mathrm{NL}}}=0.73.

This behavior closely parallels that of the representative sample with medium redshift uncertainty – redshift bin 3 sample 3. The reason is that the samples with the worst redshift errors are also the ones that contribute the least to the total constraint in a multi-tracer analysis. Consequently, we can measure fNLf_{\mathrm{NL}} with lmax=2l_{\mathrm{max}}=2 with marginal loss in the total constraining power. Note that we do not quote the lmax=4l_{\mathrm{max}}=4 case for the the full result because it is computationally expensive to compute in the multi-tracer case as it requires a larger sampling rate in the θ1\theta_{1} and ϕ12\phi_{12} parameters for accurate results.

We note also that there are compelling reasons for measuring the odd multipoles, even if they may not contribute significantly to the final fNLf_{\mathrm{NL}} constraints. Because SPHEREx will reach larger scales than in previous surveys, it will start to probe a variety of effects that will become important on these scales. These include general relativistic effects which would be the main cosmological signal in the odd multipoles Clarkson et al. (2019); Jeong and Schmidt (2020); Maartens et al. (2020); Jolicoeur et al. (2021), as well as wide-angle effects coming from the breakdown of the plane-parallel approximation on large angular separations Noorikuhani and Scoccimarro (2023); Foglieni et al. (2023). The wide-angle effects, together with the window function convolution Pardede et al. (2023) would also induce odd multipoles on top of the GR signal. In this regard, measuring the odd ll’s in the bispectrum as a unique signature for GR effects as well as for cross-checking wide-angle and window function effects in the even multipoles. Of course, the modeling of the bispectrum involving all these large scale effects could become quite involved, and one might choose to do the measurement in the power spectrum instead. We leave the more precise forecast involving all these large scale effects to future work.

V.2 Varying the redshift errors

Besides spreading the signal into more than just the l=0,2,4l=0,2,4 and m=0m=0 modes, the presence of photometric redshift error also poses the problem that the fNLf_{\mathrm{NL}} constraint depends sensitively on the precise redshift error modeling (since the bispectrum signal is Gaussian damped where σz2\sigma_{z}^{2} is exponentiated).

To quantify how sensitive σfNL\sigma_{f_{\mathrm{NL}}} is to the redshift error, we vary σz\sigma_{z} by ±\pm20% for all samples. This variation is at the level of the difference between choosing to use the maximum or the mean of the measured distribution for Δzzmeasuredztrue\Delta z\equiv z_{\rm measured}-z_{\rm true} of a given sample. We find that the marginalized constraint σfNL\sigma_{f_{\mathrm{NL}}} from the multi-tracer analysis of the first six redshift bins varied by ±8%\pm 8\% when the redshift error was changed by ±\pm20%, giving σfNL=0.79\sigma_{f_{\mathrm{NL}}}=0.79 and 0.67 respectively.

Looking at individual redshift bins, we find that varying σz\sigma_{z} by ±\pm20% gives a ±5%\pm 5\% change in σfNL\sigma_{f_{\mathrm{NL}}} for redshift bin 3, whereas for the higher redshift bins the induced change in σfNL\sigma_{f_{\mathrm{NL}}} was larger (about 1213%12-13\% for example for redshift bin 6) because the larger variation in the redshift error σz=σ~z(1+z)\sigma_{z}=\tilde{\sigma}_{z}(1+z).

V.3 Varying multi-tracer combination

Refer to caption
Figure 4: Plot of the marginalized σfNL\sigma_{f_{\mathrm{NL}}} for the full bispectrum in a single redshift bin (redhsift bin 3) vs various multi-tracer combinations. The shaded band contains constraints that are within 10% of the best constraint from the 5-tracer combination. The worst constraints are outside the plot.

Another interesting question to ask is whether we really need all five galaxy samples. The more galaxy samples we use, the higher the number of multi-tracer bispectrum combinations nb=nsamples3n_{b}=n_{\rm samples}^{3}. Because the number of mocks for accurately evaluating the covariance matrix using simulations needs to be much larger than the data vector size Hartlap et al. (2007); Taylor and Joachimi (2014), a smaller data vector is more desirable. In Fig. 4, we plot the marginalized σfNL\sigma_{f_{\mathrm{NL}}} from the Fourier bispectrum as a function of various multi-tracer combinations for the first six redshift bins combined. The plot is zoomed so that for some combinations the marginalized error is too high to be seen on the plot.

We first notice the single-tracer results on the left of the plot, as well as the auto-bispectrum only result using all five tracers. We note that the samples 4 and 5 from all redshift bins combined are the least constraining by themselves, because of the large redshift error they have. The first samples are the most constraining ones, as expected.

Next, we note that the following combinations are similar in fNLf_{\mathrm{NL}} constraining power: The auto-only result from all five redshift bins (auto [1,2,3,4,5]), and the full multi-tracer result [1,2]. The latter includes the cross-bispectra (e.g. 112, 121, etc.) and already shows the power of the multi-tracer analysis to cancel cosmic variance.

As we go further to the right side of the plot, we see that adding samples 3, 4 and 5 gradually gets down to the final result of σfNL=0.73\sigma_{f_{\mathrm{NL}}}=0.73. Even if the samples 4 and 5 by themselves are not very constraining, they contribute to the cancellation of cosmic variance, with their large number densities – it is easier to find a larger number of galaxies where the redshift error is measured with worse uncertainties.

Finally, we show in a grey band 10% degradation from the best fNLf_{\mathrm{NL}} error from all five tracers. The closest combinations slightly above the 10% line would be [1,2,3,4] and [1,2,4,5], both of which are four-tracer results, showing the importance of using the multi-tracer analysis to achieve the finest constraints.

Because the redshift measurement pipeline is still under research and development, it is also interesting to ask ourselves how important it is for the best galaxy sample to reach the required redshift uncertainty of σ~z0.003\tilde{\sigma}_{z}\leq 0.003 in order to measured σfNL\sigma_{f_{\mathrm{NL}}} to its desired accuracy. We see from Fig. 4 that removing the best sample completely ([2,3,4,5]) would lead to a \sim20% degradation in the fNLf_{\mathrm{NL}} error.

Finally, we report that using the first 2, 3 or 4 best tracers, we obtain σfNL=1.4,1.0\sigma_{f_{\mathrm{NL}}}=1.4,1.0 and 0.8 respectively, representing a 91%, 37% and 12% degradation respectively from the five-tracer version. Note however that the best set of multi-tracer combinations for the power spectrum may not be the same as that for the bispectrum, so in a combined analysis with both the power spectrum and the bispectrum, one may choose to select different subsets of tracers, as long as the covariance between the resulting multi-tracer combinations are properly accounted for.

V.4 Squeezed triangles only result

Finally, we explore how the fNLf_{\mathrm{NL}} constraints are impacted if we choose to use only a subset of the available triangle shapes, namely triangles with squeezing factors k2/k1k_{2}/k_{1} and k3/k1k_{3}/k_{1} above a threshold SminS_{\rm min}, and we recall that we order k1k2k3k_{1}\leq k_{2}\leq k_{3} for unique triangle shapes.

As an example, we report results for the redshift bin 3 with all its five tracers in Table 1. For the kk-binning we’ve adopted, we find that the marginalized σ(fNL)\sigma(f_{\mathrm{NL}}) only degrades by 17% for Smin=4S_{\rm min}=4, while the number of triangles are dramatically reduced by a factor of 9 from 12000 to 1294. For a more intermediate case with Smin=2S_{\rm min}=2, the marginalized σ(fNL)\sigma(f_{\mathrm{NL}}) only degrades by 11% while the number of triangles is reduced by a factor of 3.

The trade-off here is that the marginalized uncertainty for the linear galaxy biases takes a hit: About a factor of 1.6\sim 1.6 (2.8\sim 2.8) worse for Smin=2S_{\rm min}=2 (Smin=4S_{\rm min}=4). This degradation in the galaxy bias uncertainties is roughly independent of the redshift error of the sample, since the linear galaxy bias for all five samples have a similar factor of degradation. It would be interesting to see whether the joint PS-Bis constraints on the galaxy biases would suffer less from excluding triangles, as the total constraint may rely more on the degeneracy breaking between the power spectrum and the bispectrum instead of the total number of triangles available.

Smin=2S_{\rm min}=2 Smin=3S_{\rm min}=3 Smin=4S_{\rm min}=4
σ(fNL)\sigma(f_{\mathrm{NL}}) 1.06 1.11 1.17
σ(As)\sigma(A_{s}) 1.4 1.8 2.2
σ(ns)\sigma(n_{s}) 1.4 1.8 2.4
σ(nrun)\sigma(n_{\rm run}) 1.4 1.9 2.2
σ(b101)\sigma(b_{10}^{1}) 1.6 2.2 2.8
NtrianglesN_{\rm triangles} 3964 2072 1294
Table 1: Ratio of the marginalized parameter constraints for a subset of the triangle shapes with squeezing factor threshold SminS_{\rm min} compared to all triangles. Constraints are for the 5-tracer analysis in the redshift bin 3, and are marginalized over the parameter set {As,ns,fNL,nrun,Ωbh2,Ωch2,100θMC,b10X|X=1..5A_{s},n_{s},f_{\mathrm{NL}},n_{\rm run},\Omega_{b}h^{2},\Omega_{c}h^{2},100\theta_{\rm MC},b_{10}^{X}\,|\,X=1..5}. We find that the number of triangles is reduced by a factor of 3, 6 and 9 respectively compared to using all triangles for the subsets with Smin=2,3S_{\rm min}=2,3 and 4, while the fractional increase in the marginalized fNLf_{\mathrm{NL}} error is only 6%,11%6\%,11\% and 17%17\% respectively. The linear bias parameters are however more strongly impacted (we show only for the bias for the first tracer as the other ones are similar).

VI Summary and discussion

In this paper, we explored how the presence of photometric redshift errors alter the well-known claim that bispectrum multipoles with l=0,2,4l=0,2,4 and m=0m=0 capture most of the constraint on cosmological parameters, which was shown to be valid for spectroscopic surveys in Refs. Gagrani and Samushia (2017) and Byun and Krause (2023). We showed, in the context of our updated bispectrum forecast for SPHEREx, that individual galaxy samples with sufficient redshift errors suffer from information leaking into the higher multipoles, the m0m\neq 0 modes, and the odd multipoles. We expect this to also hold true for the power spectrum multipoles, though we did not demonstrate this explicitly.

Future photometric redshift surveys would need to account for this effect when measuring the bispectrum or power spectrum multipoles. In particular, we found that restricting to the monopole alone affect the unmarginalized fNLf_{\mathrm{NL}} error by about 2% for a nearly spectroscopic sample (σz/(1+z)=0.003\sigma_{z}/(1+z)=0.003), whereas it is about 30% for the SPHEREx sample with the worst redshift error (σz/(1+z)=0.2\sigma_{z}/(1+z)=0.2). For reference, LSST has the requirement that σz/(1+z)<0.05\sigma_{z}/(1+z)<0.05 with the goal being 0.02. LSST Science Collaboration et al. (2009), similar to the SPHEREx sample 3.

The behavior of the total result from combining all five samples and the first six redshift bins is dominated by the best redshift accuracy samples and does not suffer as severely. More precisely, using l=0l=0 alone gave a marginalized error of σfNL=0.86\sigma_{f_{\mathrm{NL}}}=0.86, which is 18%18\% degradation compared to the full result using the Fourier bispectrum σfNL=0.73\sigma_{f_{\mathrm{NL}}}=0.73, whereas using lmax=2l_{\rm max}=2 with all l,ml,m modes gave σfNL=0.75\sigma_{f_{\mathrm{NL}}}=0.75, within 3% of the full error.

Beside the above effects, the photo-zz error is also important to control carefully because of how sensitively it can affect the constraining power: Varying the redshift errors of all samples by ±20%\pm 20\% led to a ±8%\pm 8\% change on the final σfNL\sigma_{f_{\mathrm{NL}}} for the SPHEREx bispectrum . This variation is at the level of the difference between the mean and the maximum of the redshift error distribution for a given sample. This finding motivates future work in which we would need to characterize the precise shape of the photo-z error distribution from simulations and investigate the impact of its associated uncertainties on parameter constraints.

Finally, we also explored the trade-off in constraining power that comes with reducing the data vector size by selecting subsets of the multi-tracer combinations and subsets of triangle shapes. We found that although samples 4 and 5 have large redshift errors and are not constraining by themselves, their larger number densities do help with reducing cosmic variance when used in combination with the other samples in a multi-tracer setting. We found that the first two, three and four tracers would raise the fNLf_{\mathrm{NL}} error by 91%,37%91\%,37\% and 12%12\% respectively from the five-tracer result. Correspondingly, the data vector size reduction would be a factor of 16, 5, and 2 for using two, three and four tracers respectively, which does not seem to be compelling enough given the large amount of fNLf_{\mathrm{NL}} constraint it would sacrifice.

For the triangle shapes, we looked at subsets of triangles with squeezing factor thresholds Smin=2,3S_{\rm min}=2,3 and 4, and found in the case of a representative redshift bin (redshift bin 3), the marginalized fNLf_{\mathrm{NL}} error went up by 6%, 11% and 17% while the data vector size reduced by a factor of 3, 6 and 9 respectively. The bias parameters errors were the most impacted, going up by a factor 2 to 3 depending on the SminS_{\rm min} chosen and in a fashion mostly independent of the redshift uncertainty of the sample. This is because the fNLf_{\mathrm{NL}} constraint is dominated by squeezed triangles, whereas the galaxy bias parameter constraints receive contributions from all triangles. Since the power spectrum would also be constraining the bias parameters and the other cosmological parameters, singling out highly squeezed triangles might be an interesting option to reduce the data vector size in a combined analysis.

Our fiducial analysis here can be extended in various ways. We have only explored a linear regime bispectrum forecast, staying within kmax=0.2(1+z)hMpc1k_{\rm max}=0.2(1+z)\ h\text{Mpc}^{-1}. An accurate modeling of the bispectrum in the nonlinear regime would extend the kk-range to higher values, and could increase the constraining power on fNLf_{\mathrm{NL}} as the squeezing factor would also increase. There are a variety of redshift space effects that can be improved in our modeling, for example including AP effects and using a more precise redshift error distribution from simulations instead of assuming a Gaussian distribution. Moreover, we have omitted the modeling of wide-angle and GR effects which appear on large scales, as well as window function effects. The presence of wide-angle and window function effects would lead to the mixing the signal between different multipoles.

Additionally, it would also be highly desirable to explore compression methods for the bispectrum. Examples include the modal bispectrum (which has been recently extended to include RSD and fNLf_{\mathrm{NL}} effects Byun and Krause (2023)), the Massively Optimized Parameter Estimation and Data compression technique (MOPED) Heavens et al. (2000) (which uses the score function – the gradient of the log likelihood – to achieve a compression where the data vector size is the same as the number of parameters of interest) and its generalized versions leading to likelihood-free inference Alsing and Wandelt (2018) (for an application to the galaxy bispectrum, see e.g. Gualdi et al. (2018)).

In comparison with the previous SPHEREx forecast in Ref. Doré et al. (2014), our assumptions and modeling differed in the following ways. We used a slightly more conservative kmax=0.2(1+z)hMpc1k_{\rm max}=0.2(1+z)\ h\text{Mpc}^{-1} and used only a linear modeling whereas the previous forecast had kmax=0.25(1+z)hMpc1k_{\rm max}=0.25(1+z)\ h\text{Mpc}^{-1} using a simple nonlinear modeling. We treated the signal dependence on the triangle orientations in order to model the impact of RSD and photometric redshift errors more accurately instead of using a cutoff in kk_{\parallel}. We employed a slightly different bias prescription – while we still only varied the linear galaxy biases, we modeled the signal with a few more second-order effects in addition to the b20b_{20} term, namely the bs2b_{s_{2}}, b11b_{11}, b02b_{02} and n2n^{2} terms which depended on the values of b10b_{10}.

Finally, we performed a bispectrum-only forecast for SPHEREx, whereas adding the power spectrum should be helpful in breaking various parameter degeneracies (e.g. Gualdi et al. (2021)). In particular, we expect that the combined power spectrum and bispectrum forecast would improve significantly on the nrunn_{\rm run} constraint than that from the power spectrum or bispectrum alone Doré et al. (2014). We also expect that there would be more degeneracy breaking for galaxy bias parameters. Adding the bispectrum should also help to mildly break the complete degeneracy between bϕfNLb_{\phi}f_{\mathrm{NL}} and fNLf_{\mathrm{NL}} in the power spectrum, should one choose to use these parameter combinations Barreira (2020). To do so accurately, we would need to take into account the covariance between the power spectrum and the bispectrum. Moreover, we have assumed a Gaussian covariance throughout our forecast, whereas including the non-Gaussian covariance could affect the constraints on fNLf_{\mathrm{NL}} Biagetti et al. (2022); Flöss et al. (2023). We leave these considerations for future work.

In sum, the bispectrum multipoles are an important statistics that current and future surveys will measure in order to best constrain the primordial non-Gaussianity and study its implications for inflation. Being specifically optimized for this goal, the SPHEREx mission will achieve an all-sky observation in 102 NIR bands, making available multiple galaxy samples with redshift measurements ranging from spectrocopic-like to photometric-like. We presented a refined forecast that is able to account for the redshift space effects more accurately than before, and studied their impact on fNLf_{\mathrm{NL}} constraints. Characterizing the constraining power of SPHEREx will be important as we seek to understand and make use of this dataset to shed light on the details of how inflation proceeded.

Acknowledgement

CH: I acknowledge my Maker for providing an amazing team of SPHEREx members who were supportive throughout the work, for the ability to do this work, and for the wisdom needed to navigate the project. I thank in particular Joyce Byun who provided a code comparison for the bispectrum multipoles, Yi-Kuan Chiang for useful feedback on the redshift error results, and Jamie Bock and the rest of the SPHEREx cosmology team who provided useful discussions and helped shaping the project. We thank Chris Hirata for careful feedback on the manuscript. We are grateful to the Texas Advanced Computing Center for the computing resources that enabled this work. All the authors thank the SPHEREx mission for providing the funding needed to accomplish this work. Part of this work was done at Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Appendix A Survey Parameters

We now list the redshift bins and the fiducial values for the galaxy linear biases and number densities used in this work in Tables 2,  3 and 4 respectively.

Redshift bin zminz_{\rm min} zminz_{\rm min}
1 0 0.2
2 0.2 0.4
3 0.4 0.6
4 0.6 0.8
5 0.8 1.0
6 1.0 1.6
7 1.6 2.2
8 2.2 2.8
9 2.8 3.4
10 3.4 4.0
11 4.0 4.6
Table 2: Redshift bin definition for the 11 redshift bins for SPHEREx.
Redshift bin Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
1 1.3 1.2 1.0 0.98 0.83
2 1.5 1.4 1.3 1.3 1.2
3 1.8 1.6 1.5 1.4 1.3
4 2.3 1.9 1.7 1.5 1.4
5 2.1 2.3 1.9 1.7 1.6
6 2.7 2.6 2.6 2.2 2.1
7 3.6 3.4 3.0 3.6 3.2
8 2.3 4.2 3.2 3.7 4.2
9 3.2 4.3 3.5 2.7 4.1
10 2.7 3.7 4.1 2.9 4.5
11 3.8 4.6 5.0 5.0 5.0
Table 3: Fiducial linear galaxy bias b10b_{10} for SPHEREx’s 5 galaxy samples and 11 redshift bins.
Redshift bin Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
1 9.97×1039.97\times 10^{-3} 1.23×1021.23\times 10^{-2} 1.34×1021.34\times 10^{-2} 2.29×1022.29\times 10^{-2} 1.49×1021.49\times 10^{-2}
2 4.11×1034.11\times 10^{-3} 8.56×1038.56\times 10^{-3} 8.57×1038.57\times 10^{-3} 1.29×1021.29\times 10^{-2} 7.52×1037.52\times 10^{-3}
3 5.01×1045.01\times 10^{-4} 2.82×1032.82\times 10^{-3} 3.62×1033.62\times 10^{-3} 5.35×1035.35\times 10^{-3} 3.27×1033.27\times 10^{-3}
4 7.05×1057.05\times 10^{-5} 9.37×1049.37\times 10^{-4} 2.94×1032.94\times 10^{-3} 4.95×1034.95\times 10^{-3} 2.50×1032.50\times 10^{-3}
5 3.16×1053.16\times 10^{-5} 4.30×1044.30\times 10^{-4} 2.04×1032.04\times 10^{-3} 4.15×1034.15\times 10^{-3} 1.83×1031.83\times 10^{-3}
6 1.64×1051.64\times 10^{-5} 5.00×1055.00\times 10^{-5} 2.12×1042.12\times 10^{-4} 7.96×1047.96\times 10^{-4} 7.34×1047.34\times 10^{-4}
7 3.59×1063.59\times 10^{-6} 8.03×1068.03\times 10^{-6} 6.97×1066.97\times 10^{-6} 7.75×1057.75\times 10^{-5} 2.53×1042.53\times 10^{-4}
8 8.07×1078.07\times 10^{-7} 3.83×1063.83\times 10^{-6} 2.02×1062.02\times 10^{-6} 7.87×1067.87\times 10^{-6} 5.41×1055.41\times 10^{-5}
9 1.84×1061.84\times 10^{-6} 3.28×1063.28\times 10^{-6} 1.43×1061.43\times 10^{-6} 2.46×1062.46\times 10^{-6} 2.99×1052.99\times 10^{-5}
10 1.50×1061.50\times 10^{-6} 1.07×1061.07\times 10^{-6} 1.93×1061.93\times 10^{-6} 1.93×1061.93\times 10^{-6} 9.41×1069.41\times 10^{-6}
11 1.13×1061.13\times 10^{-6} 6.79×1076.79\times 10^{-7} 6.79×1076.79\times 10^{-7} 1.36×1061.36\times 10^{-6} 2.04×1062.04\times 10^{-6}
Table 4: Galaxy number density in (hh/Mpc)3 for SPHEREx’s 5 galaxy samples and 11 redshift bins.

References

  • Maldacena (2003) J. M. Maldacena, JHEP 05, 013 (2003)arXiv:astro-ph/0210603 .
  • Creminelli and Zaldarriaga (2004) P. Creminelli and M. Zaldarriaga, JCAP 10, 006 (2004)arXiv:astro-ph/0407059 .
  • Acquaviva et al. (2003) V. Acquaviva, N. Bartolo, S. Matarrese,  and A. Riotto, Nucl. Phys. B 667, 119 (2003)arXiv:astro-ph/0209156 .
  • Bartolo et al. (2004) N. Bartolo, E. Komatsu, S. Matarrese,  and A. Riotto, Phys. Rept. 402, 103 (2004)arXiv:astro-ph/0406398 .
  • Akrami et al. (2020) Y. Akrami et al. (Planck), Astron. Astrophys. 641, A9 (2020)arXiv:1905.05697 [astro-ph.CO] .
  • Mueller et al. (2022) E.-M. Mueller, M. Rezaie, W. J. Percival, A. J. Ross, R. Ruggeri, H.-J. Seo, H. Gil-Marín, J. Bautista, J. R. Brownstein, K. Dawson, A. de la Macorra, N. Palanque-Delabrouille, G. Rossi, D. P. Schneider,  and C. Yéche, Mon. Not. R. Astron. Soc.  514, 3396 (2022).
  • Castorina et al. (2019) E. Castorina et al.JCAP 09, 010 (2019)arXiv:1904.08859 [astro-ph.CO] .
  • Cabass et al. (2022) G. Cabass, M. M. Ivanov, O. H. E. Philcox, M. Simonović,  and M. Zaldarriaga, Phys. Rev. D 106, 043506 (2022)arXiv:2204.01781 [astro-ph.CO] .
  • D’Amico et al. (2022) G. D’Amico, M. Lewandowski, L. Senatore,  and P. Zhang,   (2022), arXiv:2201.11518 [astro-ph.CO] .
  • Cagliari et al. (2023) M. S. Cagliari, E. Castorina, M. Bonici,  and D. Bianchi,  (2023), arXiv:2309.15814 [astro-ph.CO] .
  • Rezaie et al. (2023) M. Rezaie et al.,   (2023), arXiv:2307.01753 [astro-ph.CO] .
  • Amendola et al. (2018) L. Amendola et al.Living Rev. Rel. 21, 2 (2018)arXiv:1606.00180 [astro-ph.CO] .
  • DESI Collaboration et al. (2016) DESI Collaboration, A. Aghamousa, J. Aguilar, S. Ahlen, S. Alam, L. E. Allen, C. Allende Prieto, J. Annis, S. Bailey, C. Balland, O. Ballester, C. Baltay, L. Beaufore, C. Bebek, T. C. Beers, E. F. Bell, J. L. Bernal, R. Besuner, F. Beutler, C. Blake, H. Bleuler, M. Blomqvist, R. Blum, A. S. Bolton, C. Briceno, D. Brooks, J. R. Brownstein, E. Buckley-Geer, A. Burden, E. Burtin, N. G. Busca, R. N. Cahn, Y.-C. Cai, L. Cardiel-Sas, R. G. Carlberg, P.-H. Carton, R. Casas, F. J. Castander, J. L. Cervantes-Cota, T. M. Claybaugh, M. Close, C. T. Coker, S. Cole, J. Comparat, A. P. Cooper, M. C. Cousinou, M. Crocce, J.-G. Cuby, D. P. Cunningham, T. M. Davis, K. S. Dawson, A. de la Macorra, J. De Vicente, T. Delubac, M. Derwent, A. Dey, G. Dhungana, Z. Ding, P. Doel, Y. T. Duan, A. Ealet, J. Edelstein, S. Eftekharzadeh, D. J. Eisenstein, A. Elliott, S. Escoffier, M. Evatt, P. Fagrelius, X. Fan, K. Fanning, A. Farahi, J. Farihi, G. Favole, Y. Feng, E. Fernandez, J. R. Findlay, D. P. Finkbeiner, M. J. Fitzpatrick, B. Flaugher, S. Flender, A. Font-Ribera, J. E. Forero-Romero, P. Fosalba, C. S. Frenk, M. Fumagalli, B. T. Gaensicke, G. Gallo, J. Garcia-Bellido, E. Gaztanaga, N. Pietro Gentile Fusillo, T. Gerard, I. Gershkovich, T. Giannantonio, D. Gillet, G. Gonzalez-de-Rivera, V. Gonzalez-Perez, S. Gott, O. Graur, G. Gutierrez, J. Guy, S. Habib, H. Heetderks, I. Heetderks, K. Heitmann, W. A. Hellwing, D. A. Herrera, S. Ho, S. Holland, K. Honscheid, E. Huff, T. A. Hutchinson, D. Huterer, H. S. Hwang, J. M. Illa Laguna, Y. Ishikawa, D. Jacobs, N. Jeffrey, P. Jelinsky, E. Jennings, L. Jiang, J. Jimenez, J. Johnson, R. Joyce, E. Jullo, S. Juneau, S. Kama, A. Karcher, S. Karkar, R. Kehoe, N. Kennamer, S. Kent, M. Kilbinger, A. G. Kim, D. Kirkby, T. Kisner, E. Kitanidis, J.-P. Kneib, S. Koposov, E. Kovacs, K. Koyama, A. Kremin, R. Kron, L. Kronig, A. Kueter-Young, C. G. Lacey, R. Lafever, O. Lahav, A. Lambert, M. Lampton, M. Landriau, D. Lang, T. R. Lauer, J.-M. Le Goff, L. Le Guillou, A. Le Van Suu, J. H. Lee, S.-J. Lee, D. Leitner, M. Lesser, M. E. Levi, B. L’Huillier, B. Li, M. Liang, H. Lin, E. Linder, S. R. Loebman, Z. Lukić, J. Ma, N. MacCrann, C. Magneville, L. Makarem, M. Manera, C. J. Manser, R. Marshall, P. Martini, R. Massey, T. Matheson, J. McCauley, P. McDonald, I. D. McGreer, A. Meisner, N. Metcalfe, T. N. Miller, R. Miquel, J. Moustakas, A. Myers, M. Naik, J. A. Newman, R. C. Nichol, A. Nicola, L. Nicolati da Costa, J. Nie, G. Niz, P. Norberg, B. Nord, D. Norman, P. Nugent, T. O’Brien, M. Oh, K. A. G. Olsen, C. Padilla, H. Padmanabhan, N. Padmanabhan, N. Palanque-Delabrouille, A. Palmese, D. Pappalardo, I. Pâris, C. Park, A. Patej, J. A. Peacock, H. V. Peiris, X. Peng, W. J. Percival, S. Perruchot, M. M. Pieri, R. Pogge, J. E. Pollack, C. Poppett, F. Prada, A. Prakash, R. G. Probst, D. Rabinowitz, A. Raichoor, C. H. Ree, A. Refregier, X. Regal, B. Reid, K. Reil, M. Rezaie, C. M. Rockosi, N. Roe, S. Ronayette, A. Roodman, A. J. Ross, N. P. Ross, G. Rossi, E. Rozo, V. Ruhlmann-Kleider, E. S. Rykoff, C. Sabiu, L. Samushia, E. Sanchez, J. Sanchez, D. J. Schlegel, M. Schneider, M. Schubnell, A. Secroun, U. Seljak, H.-J. Seo, S. Serrano, A. Shafieloo, H. Shan, R. Sharples, M. J. Sholl, W. V. Shourt, J. H. Silber, D. R. Silva, M. M. Sirk, A. Slosar, A. Smith, G. F. Smoot, D. Som, Y.-S. Song, D. Sprayberry, R. Staten, A. Stefanik, G. Tarle, S. Sien Tie, J. L. Tinker, R. Tojeiro, F. Valdes, O. Valenzuela, M. Valluri, M. Vargas-Magana, L. Verde, A. R. Walker, J. Wang, Y. Wang, B. A. Weaver, C. Weaverdyck, R. H. Wechsler, D. H. Weinberg, M. White, Q. Yang, C. Yeche, T. Zhang, G.-B. Zhao, Y. Zheng, X. Zhou, Z. Zhou, Y. Zhu, H. Zou,  and Y. Zu, arXiv e-prints , arXiv:1611.00036 (2016)arXiv:1611.00036 [astro-ph.IM] .
  • Doré et al. (2014) O. Doré et al.,   (2014), arXiv:1412.4872 [astro-ph.CO] .
  • Krolewski et al. (2023) A. Krolewski et al. (DESI),   (2023), arXiv:2305.07650 [astro-ph.CO] .
  • Giri et al. (2023) U. Giri, M. Münchmeyer,  and K. M. Smith, arXiv e-prints , arXiv:2305.03070 (2023)arXiv:2305.03070 [astro-ph.CO] .
  • Gualdi et al. (2021) D. Gualdi, H. e. Gil-Marín,  and L. Verde, JCAP 07, 008 (2021)arXiv:2104.03976 [astro-ph.CO] .
  • Andrews et al. (2023) A. Andrews, J. Jasche, G. Lavaux,  and F. Schmidt, Mon. Not. Roy. Astron. Soc. 520, 5746 (2023)arXiv:2203.08838 [astro-ph.CO] .
  • Gagrani and Samushia (2017) P. Gagrani and L. Samushia, Mon. Not. Roy. Astron. Soc. 467, 928 (2017)arXiv:1610.03488 [astro-ph.CO] .
  • Byun and Krause (2023) J. Byun and E. Krause, Mon. Not. Roy. Astron. Soc. 525, 4854 (2023)arXiv:2205.04579 [astro-ph.CO] .
  • Tellarini et al. (2016) M. Tellarini, A. J. Ross, G. Tasinato,  and D. Wands, JCAP 06, 014 (2016)arXiv:1603.06814 [astro-ph.CO] .
  • Catelan et al. (2000) P. Catelan, C. Porciani,  and M. Kamionkowski, Mon. Not. Roy. Astron. Soc. 318, 39 (2000)arXiv:astro-ph/0005544 .
  • Baldauf et al. (2012) T. Baldauf, U. Seljak, V. Desjacques,  and P. McDonald, Phys. Rev. D 86, 083540 (2012)arXiv:1201.4827 [astro-ph.CO] .
  • Rizzo et al. (2023) F. Rizzo, C. Moretti, K. Pardede, A. Eggemeier, A. Oddo, E. Sefusatti, C. Porciani,  and P. Monaco, JCAP 01, 031 (2023)arXiv:2204.13628 [astro-ph.CO] .
  • Dalal et al. (2008) N. Dalal, O. Doré, D. Huterer,  and A. Shirokov, Phys. Rev. D 77, 123514 (2008)arXiv:0710.4560 [astro-ph] .
  • Barreira (2020) A. Barreira, JCAP 12, 031 (2020)arXiv:2009.06622 [astro-ph.CO] .
  • Barreira (2022) A. Barreira, JCAP 11, 013 (2022)arXiv:2205.05673 [astro-ph.CO] .
  • Barreira and Krause (2023) A. Barreira and E. Krause,   (2023), arXiv:2302.09066 [astro-ph.CO] .
  • Scoccimarro (2015) R. Scoccimarro, Phys. Rev. D 92, 083532 (2015)arXiv:1506.02729 [astro-ph.CO] .
  • Aghanim et al. (2020) N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  • Lazeyras et al. (2016) T. Lazeyras, C. Wagner, T. Baldauf,  and F. Schmidt, JCAP 02, 018 (2016)arXiv:1511.01096 [astro-ph.CO] .
  • Scoville et al. (2007) N. Scoville et al.Astrophys. J. Suppl. 172, 1 (2007)arXiv:astro-ph/0612305 .
  • Ilbert et al. (2009) O. Ilbert et al.Astrophys. J. 690, 1236 (2009)arXiv:0809.2101 [astro-ph] .
  • Tinker et al. (2008) J. L. Tinker, A. V. Kravtsov, A. Klypin, K. Abazajian, M. S. Warren, G. Yepes, S. Gottlober,  and D. E. Holz, Astrophys. J. 688, 709 (2008)arXiv:0803.2706 [astro-ph] .
  • Tinker et al. (2010) J. L. Tinker, B. E. Robertson, A. V. Kravtsov, A. Klypin, M. S. Warren, G. Yepes,  and S. Gottlöber, Astrophys. J.  724, 878 (2010)arXiv:1001.3162 [astro-ph.CO] .
  • Clarkson et al. (2019) C. Clarkson, E. M. de Weerd, S. Jolicoeur, R. Maartens,  and O. Umeh, Mon. Not. Roy. Astron. Soc. 486, L101 (2019)arXiv:1812.09512 [astro-ph.CO] .
  • Jeong and Schmidt (2020) D. Jeong and F. Schmidt, Phys. Rev. D 102, 023530 (2020)arXiv:1906.05198 [astro-ph.CO] .
  • Maartens et al. (2020) R. Maartens, S. Jolicoeur, O. Umeh, E. M. De Weerd, C. Clarkson,  and S. Camera, JCAP 03, 065 (2020)arXiv:1911.02398 [astro-ph.CO] .
  • Jolicoeur et al. (2021) S. Jolicoeur, R. Maartens, E. M. De Weerd, O. Umeh, C. Clarkson,  and S. Camera, JCAP 06, 039 (2021)arXiv:2009.06197 [astro-ph.CO] .
  • Noorikuhani and Scoccimarro (2023) M. Noorikuhani and R. Scoccimarro, Phys. Rev. D 107, 083528 (2023)arXiv:2207.12383 [astro-ph.CO] .
  • Foglieni et al. (2023) M. Foglieni, M. Pantiri, E. Di Dio,  and E. Castorina, Phys. Rev. Lett. 131, 111201 (2023)arXiv:2303.03142 [astro-ph.CO] .
  • Pardede et al. (2023) K. Pardede, E. Di Dio,  and E. Castorina, JCAP 09, 030 (2023)arXiv:2302.12789 [astro-ph.CO] .
  • Hartlap et al. (2007) J. Hartlap, P. Simon,  and P. Schneider, Astron. Astrophys. 464, 399 (2007)arXiv:astro-ph/0608064 .
  • Taylor and Joachimi (2014) A. Taylor and B. Joachimi, Mon. Not. Roy. Astron. Soc. 442, 2728 (2014)arXiv:1402.6983 [astro-ph.CO] .
  • LSST Science Collaboration et al. (2009) LSST Science Collaboration, P. A. Abell, J. Allison, S. F. Anderson, J. R. Andrew, J. R. P. Angel, L. Armus, D. Arnett, S. J. Asztalos, T. S. Axelrod, S. Bailey, D. R. Ballantyne, J. R. Bankert, W. A. Barkhouse, J. D. Barr, L. F. Barrientos, A. J. Barth, J. G. Bartlett, A. C. Becker, J. Becla, T. C. Beers, J. P. Bernstein, R. Biswas, M. R. Blanton, J. S. Bloom, J. J. Bochanski, P. Boeshaar, K. D. Borne, M. Bradac, W. N. Brandt, C. R. Bridge, M. E. Brown, R. J. Brunner, J. S. Bullock, A. J. Burgasser, J. H. Burge, D. L. Burke, P. A. Cargile, S. Chandrasekharan, G. Chartas, S. R. Chesley, Y.-H. Chu, D. Cinabro, M. W. Claire, C. F. Claver, D. Clowe, A. J. Connolly, K. H. Cook, J. Cooke, A. Cooray, K. R. Covey, C. S. Culliton, R. de Jong, W. H. de Vries, V. P. Debattista, F. Delgado, I. P. Dell’Antonio, S. Dhital, R. Di Stefano, M. Dickinson, B. Dilday, S. G. Djorgovski, G. Dobler, C. Donalek, G. Dubois-Felsmann, J. Durech, A. Eliasdottir, M. Eracleous, L. Eyer, E. E. Falco, X. Fan, C. D. Fassnacht, H. C. Ferguson, Y. R. Fernandez, B. D. Fields, D. Finkbeiner, E. E. Figueroa, D. B. Fox, H. Francke, J. S. Frank, J. Frieman, S. Fromenteau, M. Furqan, G. Galaz, A. Gal-Yam, P. Garnavich, E. Gawiser, J. Geary, P. Gee, R. R. Gibson, K. Gilmore, E. A. Grace, R. F. Green, W. J. Gressler, C. J. Grillmair, S. Habib, J. S. Haggerty, M. Hamuy, A. W. Harris, S. L. Hawley, A. F. Heavens, L. Hebb, T. J. Henry, E. Hileman, E. J. Hilton, K. Hoadley, J. B. Holberg, M. J. Holman, S. B. Howell, L. Infante, Z. Ivezic, S. H. Jacoby, B. Jain, R, Jedicke, M. J. Jee, J. Garrett Jernigan, S. W. Jha, K. V. Johnston, R. L. Jones, M. Juric, M. Kaasalainen, Styliani, Kafka, S. M. Kahn, N. A. Kaib, J. Kalirai, J. Kantor, M. M. Kasliwal, C. R. Keeton, R. Kessler, Z. Knezevic, A. Kowalski, V. L. Krabbendam, K. S. Krughoff, S. Kulkarni, S. Kuhlman, M. Lacy, S. Lepine, M. Liang, A. Lien, P. Lira, K. S. Long, S. Lorenz, J. M. Lotz, R. H. Lupton, J. Lutz, L. M. Macri, A. A. Mahabal, R. Mandelbaum, P. Marshall, M. May, P. M. McGehee, B. T. Meadows, A. Meert, A. Milani, C. J. Miller, M. Miller, D. Mills, D. Minniti, D. Monet, A. S. Mukadam, E. Nakar, D. R. Neill, J. A. Newman, S. Nikolaev, M. Nordby, P. O’Connor, M. Oguri, J. Oliver, S. S. Olivier, J. K. Olsen, K. Olsen, E. W. Olszewski, H. Oluseyi, N. D. Padilla, A. Parker, J. Pepper, J. R. Peterson, C. Petry, P. A. Pinto, J. L. Pizagno, B. Popescu, A. Prsa, V. Radcka, M. J. Raddick, A. Rasmussen, A. Rau, J. Rho, J. E. Rhoads, G. T. Richards, S. T. Ridgway, B. E. Robertson, R. Roskar, A. Saha, A. Sarajedini, E. Scannapieco, T. Schalk, R. Schindler, S. Schmidt, S. Schmidt, D. P. Schneider, G. Schumacher, R. Scranton, J. Sebag, L. G. Seppala, O. Shemmer, J. D. Simon, M. Sivertz, H. A. Smith, J. Allyn Smith, N. Smith, A. H. Spitz, A. Stanford, K. G. Stassun, J. Strader, M. A. Strauss, C. W. Stubbs, D. W. Sweeney, A. Szalay, P. Szkody, M. Takada, P. Thorman, D. E. Trilling, V. Trimble, A. Tyson, R. Van Berg, D. Vanden Berk, J. VanderPlas, L. Verde, B. Vrsnak, L. M. Walkowicz, B. D. Wandelt, S. Wang, Y. Wang, M. Warner, R. H. Wechsler, A. A. West, O. Wiecha, B. F. Williams, B. Willman, D. Wittman, S. C. Wolff, W. M. Wood-Vasey, P. Wozniak, P. Young, A. Zentner,  and H. Zhan, arXiv e-prints , arXiv:0912.0201 (2009)arXiv:0912.0201 [astro-ph.IM] .
  • Heavens et al. (2000) A. Heavens, R. Jimenez,  and O. Lahav, Mon. Not. Roy. Astron. Soc. 317, 965 (2000)arXiv:astro-ph/9911102 .
  • Alsing and Wandelt (2018) J. Alsing and B. Wandelt, Mon. Not. Roy. Astron. Soc. 476, L60 (2018)arXiv:1712.00012 [astro-ph.CO] .
  • Gualdi et al. (2018) D. Gualdi, M. Manera, B. Joachimi,  and O. Lahav, Mon. Not. Roy. Astron. Soc. 476, 4045 (2018)arXiv:1709.03600 [astro-ph.CO] .
  • Biagetti et al. (2022) M. Biagetti, L. Castiblanco, J. Noreña,  and E. Sefusatti, JCAP 09, 009 (2022)arXiv:2111.05887 [astro-ph.CO] .
  • Flöss et al. (2023) T. Flöss, M. Biagetti,  and P. D. Meerburg, Phys. Rev. D 107, 023528 (2023)arXiv:2206.10458 [astro-ph.CO] .