This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Measurements of the absolute branching fractions of D𝟎(+)KK¯ππD^{0(+)}\to K\bar{K}\pi\pi decays

M. Ablikim1, M. N. Achasov10,c, P. Adlarson64, S.  Ahmed15, M. Albrecht4, R. Aliberti28, A. Amoroso63A,63C, Q. An60,48,  Anita21, X. H. Bai54, Y. Bai47, O. Bakina29, R. Baldini Ferroli23A, I. Balossino24A, Y. Ban38,k, K. Begzsuren26, J. V. Bennett5, N. Berger28, M. Bertani23A, D. Bettoni24A, F. Bianchi63A,63C, J Biernat64, J. Bloms57, A. Bortone63A,63C, I. Boyko29, R. A. Briere5, H. Cai65, X. Cai1,48, A. Calcaterra23A, G. F. Cao1,52, N. Cao1,52, S. A. Cetin51B, J. F. Chang1,48, W. L. Chang1,52, G. Chelkov29,b, D. Y. Chen6, G. Chen1, H. S. Chen1,52, M. L. Chen1,48, S. J. Chen36, X. R. Chen25, Y. B. Chen1,48, Z. J Chen20,l, W. S. Cheng63C, G. Cibinetto24A, F. Cossio63C, X. F. Cui37, H. L. Dai1,48, J. P. Dai42,g, X. C. Dai1,52, A. Dbeyssi15, R.  B. de Boer4, D. Dedovich29, Z. Y. Deng1, A. Denig28, I. Denysenko29, M. Destefanis63A,63C, F. De Mori63A,63C, Y. Ding34, C. Dong37, J. Dong1,48, L. Y. Dong1,52, M. Y. Dong1,48,52, S. X. Du68, J. Fang1,48, S. S. Fang1,52, Y. Fang1, R. Farinelli24A, L. Fava63B,63C, F. Feldbauer4, G. Felici23A, C. Q. Feng60,48, M. Fritsch4, C. D. Fu1, Y. Fu1, X. L. Gao60,48, Y. Gao61, Y. Gao38,k, Y. G. Gao6, I. Garzia24A,24B, E. M. Gersabeck55, A. Gilman56, K. Goetzen11, L. Gong37, W. X. Gong1,48, W. Gradl28, M. Greco63A,63C, L. M. Gu36, M. H. Gu1,48, S. Gu2, Y. T. Gu13, C. Y. Guan1,52, A. Q. Guo22, L. B. Guo35, R. P. Guo40, Y. P. Guo9,h, Y. P. Guo28, A. Guskov29, S. Han65, T. T. Han41, T. Z. Han9,h, X. Q. Hao16, F. A. Harris53, K. L. He1,52, F. H. Heinsius4, C. H. Heinz28, T. Held4, Y. K. Heng1,48,52, M. Himmelreich11,f, T. Holtmann4, Y. R. Hou52, Z. L. Hou1, H. M. Hu1,52, J. F. Hu42,g, T. Hu1,48,52, Y. Hu1, G. S. Huang60,48, L. Q. Huang61, X. T. Huang41, Y. P. Huang1, Z. Huang38,k, N. Huesken57, T. Hussain62, W. Ikegami Andersson64, W. Imoehl22, M. Irshad60,48, S. Jaeger4, S. Janchiv26,j, Q. Ji1, Q. P. Ji16, X. B. Ji1,52, X. L. Ji1,48, H. B. Jiang41, X. S. Jiang1,48,52, X. Y. Jiang37, J. B. Jiao41, Z. Jiao18, S. Jin36, Y. Jin54, T. Johansson64, N. Kalantar-Nayestanaki31, X. S. Kang34, R. Kappert31, M. Kavatsyuk31, B. C. Ke43,1, I. K. Keshk4, A. Khoukaz57, P.  Kiese28, R. Kiuchi1, R. Kliemt11, L. Koch30, O. B. Kolcu51B,e, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc64, M.  G. Kurth1,52, W. Kühn30, J. J. Lane55, J. S. Lange30, P.  Larin15, L. Lavezzi63A,63C, H. Leithoff28, M. Lellmann28, T. Lenz28, C. Li39, C. H. Li33, Cheng Li60,48, D. M. Li68, F. Li1,48, G. Li1, H. B. Li1,52, H. J. Li9,h, J. L. Li41, J. Q. Li4, Ke Li1, L. K. Li1, Lei Li3, P. L. Li60,48, P. R. Li32, S. Y. Li50, W. D. Li1,52, W. G. Li1, X. H. Li60,48, X. L. Li41, Z. B. Li49, Z. Y. Li49, H. Liang60,48, H. Liang1,52, Y. F. Liang45, Y. T. Liang25, L. Z. Liao1,52, J. Libby21, C. X. Lin49, B. Liu42,g, B. J. Liu1, C. X. Liu1, D. Liu60,48, D. Y. Liu42,g, F. H. Liu44, Fang Liu1, Feng Liu6, H. B. Liu13, H. M. Liu1,52, Huanhuan Liu1, Huihui Liu17, J. B. Liu60,48, J. Y. Liu1,52, K. Liu1, K. Y. Liu34, Ke Liu6, L. Liu60,48, Q. Liu52, S. B. Liu60,48, Shuai Liu46, T. Liu1,52, X. Liu32, Y. B. Liu37, Z. A. Liu1,48,52, Z. Q. Liu41, Y.  F. Long38,k, X. C. Lou1,48,52, F. X. Lu16, H. J. Lu18, J. D. Lu1,52, J. G. Lu1,48, X. L. Lu1, Y. Lu1, Y. P. Lu1,48, C. L. Luo35, M. X. Luo67, P. W. Luo49, T. Luo9,h, X. L. Luo1,48, S. Lusso63C, X. R. Lyu52, F. C. Ma34, H. L. Ma1, L. L.  Ma41, M. M. Ma1,52, Q. M. Ma1, R. Q. Ma1,52, R. T. Ma52, X. N. Ma37, X. X. Ma1,52, X. Y. Ma1,48, Y. M. Ma41, F. E. Maas15, M. Maggiora63A,63C, S. Maldaner28, S. Malde58, Q. A. Malik62, A. Mangoni23B, Y. J. Mao38,k, Z. P. Mao1, S. Marcello63A,63C, Z. X. Meng54, J. G. Messchendorp31, G. Mezzadri24A, T. J. Min36, R. E. Mitchell22, X. H. Mo1,48,52, Y. J. Mo6, N. Yu. Muchnoi10,c, H. Muramatsu56, S. Nakhoul11,f, Y. Nefedov29, F. Nerling11,f, I. B. Nikolaev10,c, Z. Ning1,48, S. Nisar8,i, S. L. Olsen52, Q. Ouyang1,48,52, S. Pacetti23B,23C, X. Pan9,h, Y. Pan55, A. Pathak1, P. Patteri23A, M. Pelizaeus4, H. P. Peng60,48, K. Peters11,f, J. Pettersson64, J. L. Ping35, R. G. Ping1,52, A. Pitka4, R. Poling56, V. Prasad60,48, H. Qi60,48, H. R. Qi50, M. Qi36, T. Y. Qi9, T. Y. Qi2, S. Qian1,48, W.-B. Qian52, Z. Qian49, C. F. Qiao52, L. Q. Qin12, X. S. Qin4, Z. H. Qin1,48, J. F. Qiu1, S. Q. Qu37, K. H. Rashid62, K. Ravindran21, C. F. Redmer28, A. Rivetti63C, V. Rodin31, M. Rolo63C, G. Rong1,52, Ch. Rosner15, M. Rump57, A. Sarantsev29,d, Y. Schelhaas28, C. Schnier4, K. Schoenning64, M. Scodeggio24A, D. C. Shan46, W. Shan19, X. Y. Shan60,48, M. Shao60,48, C. P. Shen9, P. X. Shen37, X. Y. Shen1,52, H. C. Shi60,48, R. S. Shi1,52, X. Shi1,48, X. D Shi60,48, J. J. Song41, Q. Q. Song60,48, W. M. Song27,1, Y. X. Song38,k, S. Sosio63A,63C, S. Spataro63A,63C, F. F.  Sui41, G. X. Sun1, J. F. Sun16, L. Sun65, S. S. Sun1,52, T. Sun1,52, W. Y. Sun35, X Sun20,l, Y. J. Sun60,48, Y. K. Sun60,48, Y. Z. Sun1, Z. T. Sun1, Y. H. Tan65, Y. X. Tan60,48, C. J. Tang45, G. Y. Tang1, J. Tang49, V. Thoren64, B. Tsednee26, I. Uman51D, B. Wang1, B. L. Wang52, C. W. Wang36, D. Y. Wang38,k, H. P. Wang1,52, K. Wang1,48, L. L. Wang1, M. Wang41, M. Z. Wang38,k, Meng Wang1,52, W. H. Wang65, W. P. Wang60,48, X. Wang38,k, X. F. Wang32, X. L. Wang9,h, Y. Wang49, Y. Wang60,48, Y. D. Wang15, Y. F. Wang1,48,52, Y. Q. Wang1, Z. Wang1,48, Z. Y. Wang1, Ziyi Wang52, Zongyuan Wang1,52, D. H. Wei12, P. Weidenkaff28, F. Weidner57, S. P. Wen1, D. J. White55, U. Wiedner4, G. Wilkinson58, M. Wolke64, L. Wollenberg4, J. F. Wu1,52, L. H. Wu1, L. J. Wu1,52, X. Wu9,h, Z. Wu1,48, L. Xia60,48, H. Xiao9,h, S. Y. Xiao1, Y. J. Xiao1,52, Z. J. Xiao35, X. H. Xie38,k, Y. G. Xie1,48, Y. H. Xie6, T. Y. Xing1,52, X. A. Xiong1,52, G. F. Xu1, J. J. Xu36, Q. J. Xu14, W. Xu1,52, X. P. Xu46, F. Yan9,h, L. Yan63A,63C, L. Yan9,h, W. B. Yan60,48, W. C. Yan68, Xu Yan46, H. J. Yang42,g, H. X. Yang1, L. Yang65, R. X. Yang60,48, S. L. Yang1,52, Y. H. Yang36, Y. X. Yang12, Yifan Yang1,52, Zhi Yang25, M. Ye1,48, M. H. Ye7, J. H. Yin1, Z. Y. You49, B. X. Yu1,48,52, C. X. Yu37, G. Yu1,52, J. S. Yu20,l, T. Yu61, C. Z. Yuan1,52, W. Yuan63A,63C, X. Q. Yuan38,k, Y. Yuan1, Z. Y. Yuan49, C. X. Yue33, A. Yuncu51B,a, A. A. Zafar62, Y. Zeng20,l, B. X. Zhang1, Guangyi Zhang16, H. H. Zhang49, H. Y. Zhang1,48, J. L. Zhang66, J. Q. Zhang4, J. W. Zhang1,48,52, J. Y. Zhang1, J. Z. Zhang1,52, Jianyu Zhang1,52, Jiawei Zhang1,52, L. Zhang1, Lei Zhang36, S. Zhang49, S. F. Zhang36, T. J. Zhang42,g, X. Y. Zhang41, Y. Zhang58, Y. H. Zhang1,48, Y. T. Zhang60,48, Yan Zhang60,48, Yao Zhang1, Yi Zhang9,h, Z. H. Zhang6, Z. Y. Zhang65, G. Zhao1, J. Zhao33, J. Y. Zhao1,52, J. Z. Zhao1,48, Lei Zhao60,48, Ling Zhao1, M. G. Zhao37, Q. Zhao1, S. J. Zhao68, Y. B. Zhao1,48, Y. X. Zhao25, Z. G. Zhao60,48, A. Zhemchugov29,b, B. Zheng61, J. P. Zheng1,48, Y. Zheng38,k, Y. H. Zheng52, B. Zhong35, C. Zhong61, L. P. Zhou1,52, Q. Zhou1,52, X. Zhou65, X. K. Zhou52, X. R. Zhou60,48, A. N. Zhu1,52, J. Zhu37, K. Zhu1, K. J. Zhu1,48,52, S. H. Zhu59, W. J. Zhu37, X. L. Zhu50, Y. C. Zhu60,48, Z. A. Zhu1,52, B. S. Zou1, J. H. Zou1
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
8 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 Fudan University, Shanghai 200443, People’s Republic of China
10 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
11 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
12 Guangxi Normal University, Guilin 541004, People’s Republic of China
13 Guangxi University, Nanning 530004, People’s Republic of China
14 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
15 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
16 Henan Normal University, Xinxiang 453007, People’s Republic of China
17 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
18 Huangshan College, Huangshan 245000, People’s Republic of China
19 Hunan Normal University, Changsha 410081, People’s Republic of China
20 Hunan University, Changsha 410082, People’s Republic of China
21 Indian Institute of Technology Madras, Chennai 600036, India
22 Indiana University, Bloomington, Indiana 47405, USA
23 (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
24 (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
25 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
26 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
27 Jilin University, Changchun 130012, People’s Republic of China
28 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
29 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
30 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
31 KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
32 Lanzhou University, Lanzhou 730000, People’s Republic of China
33 Liaoning Normal University, Dalian 116029, People’s Republic of China
34 Liaoning University, Shenyang 110036, People’s Republic of China
35 Nanjing Normal University, Nanjing 210023, People’s Republic of China
36 Nanjing University, Nanjing 210093, People’s Republic of China
37 Nankai University, Tianjin 300071, People’s Republic of China
38 Peking University, Beijing 100871, People’s Republic of China
39 Qufu Normal University, Qufu 273165, People’s Republic of China
40 Shandong Normal University, Jinan 250014, People’s Republic of China
41 Shandong University, Jinan 250100, People’s Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
43 Shanxi Normal University, Linfen 041004, People’s Republic of China
44 Shanxi University, Taiyuan 030006, People’s Republic of China
45 Sichuan University, Chengdu 610064, People’s Republic of China
46 Soochow University, Suzhou 215006, People’s Republic of China
47 Southeast University, Nanjing 211100, People’s Republic of China
48 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
49 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
50 Tsinghua University, Beijing 100084, People’s Republic of China
51 (A)Ankara University, 06100 Tandogan, Ankara, Turkey; (B)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey; (C)Uludag University, 16059 Bursa, Turkey; (D)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
52 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
53 University of Hawaii, Honolulu, Hawaii 96822, USA
54 University of Jinan, Jinan 250022, People’s Republic of China
55 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
56 University of Minnesota, Minneapolis, Minnesota 55455, USA
57 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
58 University of Oxford, Keble Rd, Oxford, UK OX13RH
59 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
60 University of Science and Technology of China, Hefei 230026, People’s Republic of China
61 University of South China, Hengyang 421001, People’s Republic of China
62 University of the Punjab, Lahore-54590, Pakistan
63 (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
64 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
65 Wuhan University, Wuhan 430072, People’s Republic of China
66 Xinyang Normal University, Xinyang 464000, People’s Republic of China
67 Zhejiang University, Hangzhou 310027, People’s Republic of China
68 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at Bogazici University, 34342 Istanbul, Turkey
b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
c Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
d Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
e Also at Istanbul Arel University, 34295 Istanbul, Turkey
f Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
g Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
h Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
i Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA
j Currently at: Institute of Physics and Technology, Peace Ave.54B, Ulaanbaatar 13330, Mongolia
k Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
l School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract

Based on 2.93 fb-1 e+ee^{+}e^{-} collision data taken at center-of-mass energy of 3.773 GeV by the BESIII detector, we report the measurements of the absolute branching fractions of D0K+Kπ0π0D^{0}\to K^{+}K^{-}\pi^{0}\pi^{0}, D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-}, D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}, D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0}, D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}, D+KS0K+π0π0D^{+}\to K^{0}_{S}K^{+}\pi^{0}\pi^{0}, D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+}, D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-}, and D+KS0KS0π+π0D^{+}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{0}. The decays D0K+Kπ0π0D^{0}\to K^{+}K^{-}\pi^{0}\pi^{0}, D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}, D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0}, D+KS0KS0π+π0D^{+}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{0}, and D+KS0K+π0π0D^{+}\to K^{0}_{S}K^{+}\pi^{0}\pi^{0} are observed for the first time. The branching fractions of the decays D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-}, D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}, D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+}, and D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-} are measured with improved precision compared to the world-average values.

pacs:
13.20.Fc, 14.40.Lb

I Introduction

Multi-body hadronic D0(+)D^{0(+)} decays provide an ideal laboratory to study strong and weak interactions. Amplitude analyses of these decays offer comprehensive information of quasi-two-body D0(+)D^{0(+)} decays, which are important to explore DD¯0D\bar{D}^{0} mixing, charge-parity (CPCP) violation and quark SU(3)-flavor asymmetry breaking phenomenon ref5 ; theory_1 ; theory_2 ; chenghy1 ; yufs . In particular, for the search of CPCP violation, it is important to understand the intermediate structures for the singly Cabibbo-suppressed decays of D0(+)KK¯ππD^{0(+)}\to K\bar{K}\pi\pi xwkang ; Charles:2009ig ; yufs-cpv .

Current measurements of the D0(+)KK¯ππD^{0(+)}\to K\bar{K}\pi\pi decays containing KS0K^{0}_{S} or π0\pi^{0} are limited pdg2018 . The branching fractions (BFs) of D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-} FOCUS_kskspipi ; ARGUS_kkpipi , D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+} FOCUS_kskpipi , D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-} FOCUS_kskpipi , and D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0} ACCMOR_kkpipi0 were only determined relative to some well known decays or via topological normalization, with poor precision. This paper presents the first direct measurements of the absolute BFs for the decays D0K+Kπ0π0D^{0}\to K^{+}K^{-}\pi^{0}\pi^{0}, D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-}, D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}, D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0}, D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}, D+KS0K+π0π0D^{+}\to K^{0}_{S}K^{+}\pi^{0}\pi^{0}, D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+}, D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-}, and D+KS0KS0π+π0D^{+}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{0}. The D0KS0KS0π0π0D^{0}\to K^{0}_{S}K^{0}_{S}\pi^{0}\pi^{0} decay is not included since it suffers from poor statistics and high background. Throughout this paper, charge conjugate processes are implied. An e+ee^{+}e^{-} collision data sample corresponding to an integrated luminosity of 2.93 fb-1 lum_bes3 collected at a center-of-mass energy of s=\sqrt{s}= 3.773 GeV with the BESIII detector is used to perform this analysis.

II BESIII detector and Monte Carlo simulation

The BESIII detector is a magnetic spectrometer BESIII located at the Beijing Electron Positron Collider (BEPCII) Yu:IPAC2016-TUYA01 . The cylindrical core of the BESIII detector consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identifier modules interleaved with steel. The acceptance of charged particles and photons is 93% over 4π4\pi solid angle. The charged-particle momentum resolution at 1GeV/c1~{}{\rm GeV}/c is 0.5%0.5\%, and the dE/dxdE/dx resolution is 6%6\% for the electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end cap) region. The time resolution of the TOF barrel part is 68 ps, while that of the end cap part is 110 ps.

Simulated samples produced with the geant4-based geant4 Monte Carlo (MC) package including the geometric description of the BESIII detector and the detector response, are used to determine the detection efficiency and to estimate the backgrounds. The simulation includes the beam-energy spread and initial-state radiation (ISR) in the e+ee^{+}e^{-} annihilations modeled with the generator kkmc kkmc . The inclusive MC samples consist of the production of DD¯D\bar{D} pairs with consideration of quantum coherence for all neutral DD modes, the non-DD¯D\bar{D} decays of the ψ(3770)\psi(3770), the ISR production of the J/ψJ/\psi and ψ(3686)\psi(3686) states, and the continuum processes. The known decay modes are modeled with evtgen evtgen using the BFs taken from the Particle Data Group (PDG) pdg2018 , and the remaining unknown decays from the charmonium states are modeled with lundcharm lundcharm . The final-state radiations from charged final-state particles are incorporated with the photos package photos .

III Measurement Method

The D0D¯0D^{0}\bar{D}^{0} or D+DD^{+}D^{-} pair is produced without an additional hadron in e+ee^{+}e^{-} annihilations at s=3.773\sqrt{s}=3.773 GeV. This process offers a clean environment to measure the BFs of the hadronic DD decay with the double-tag (DT) method. The single-tag (ST) candidate events are selected by reconstructing a D¯0\bar{D}^{0} or DD^{-} in the following hadronic final states: D¯0K+π\bar{D}^{0}\to K^{+}\pi^{-}, K+ππ0K^{+}\pi^{-}\pi^{0}, and K+πππ+K^{+}\pi^{-}\pi^{-}\pi^{+}, and DK+ππD^{-}\to K^{+}\pi^{-}\pi^{-}, KS0πK^{0}_{S}\pi^{-}, K+πππ0K^{+}\pi^{-}\pi^{-}\pi^{0}, KS0ππ0K^{0}_{S}\pi^{-}\pi^{0}, KS0π+ππK^{0}_{S}\pi^{+}\pi^{-}\pi^{-}, and K+KπK^{+}K^{-}\pi^{-}. The event in which a signal candidate is selected in the presence of an ST D¯\bar{D} meson, is called a DT event. The BF of the signal decay is determined by

sig=NDTnet/(NSTtotϵsig),{\mathcal{B}}_{{\rm sig}}=N^{\rm net}_{\rm DT}/(N^{\rm tot}_{\rm ST}\cdot\epsilon_{{\rm sig}}), (1)

where NSTtot=iNSTiN^{\rm tot}_{\rm ST}=\sum_{i}N_{{\rm ST}}^{i} and NDTnetN^{\rm net}_{\rm DT} are the total yields of the ST and DT candidates in data, respectively. NSTiN_{{\rm ST}}^{i} is the ST yield for the tag mode ii. For the signal decays involving KS0K^{0}_{S} meson(s) in the final states, NDTnetN^{\rm net}_{\rm DT} is the net DT yields after removing the peaking background from the corresponding non-KS0K^{0}_{S} decays. For the other signal decays, the variable corresponds to the fitted DT yields as described later. Here, ϵsig\epsilon_{{\rm sig}} is the efficiency of detecting the signal DD decay, averaged over the tag mode ii, which is given by:

ϵsig=i(NSTiϵDTi/ϵSTi)/NSTtot,\epsilon_{{\rm sig}}=\sum_{i}(N^{i}_{{\rm ST}}\cdot\epsilon^{i}_{{\rm DT}}/\epsilon^{i}_{{\rm ST}})/N^{\rm tot}_{\rm ST}, (2)

where ϵSTi\epsilon^{i}_{{\rm ST}} and ϵDTi\epsilon^{i}_{{\rm DT}} are the efficiencies of detecting ST and DT candidates in the tag mode ii, respectively.

IV Event selection

The selection criteria of K±K^{\pm}, π±\pi^{\pm}, KS0K^{0}_{S}, and π0\pi^{0} are the same as those used in the analyses presented in Refs. epjc76 ; cpc40 ; bes3-pimuv ; bes3-Dp-K1ev ; bes3-etaetapi ; bes3-omegamuv ; bes3-etamuv ; bes3-etaX . All charged tracks, except those from KS0K^{0}_{S} decays, are required to have a polar angle θ\theta with respect to the beam direction within the MDC acceptance |cosθ|<0.93|\rm{cos\theta}|<0.93, and a distance of closest approach to the interaction point (IP) within 10 cm along the beam direction and within 1 cm in the plane transverse to the beam direction. Particle identification (PID) for charged pions, kaons, and protons is performed by exploiting TOF information and the specific ionization energy loss dE/dxdE/dx measured by the MDC. The confidence levels for pion and kaon hypotheses (CLπCL_{\pi} and CLKCL_{K}) are calculated. Kaon and pion candidates are required to satisfy CLK>CLπCL_{K}>CL_{\pi} and CLπ>CLKCL_{\pi}>CL_{K}, respectively.

The KS0K^{0}_{S} candidates are reconstructed from two oppositely charged tracks to which no PID criteria are applied and which masses are assumed to be that of pions. The charged tracks from the KS0K^{0}_{S} candidate must satisfy |cosθ|<0.93|\rm{cos\theta}|<0.93. In addition, due to the long lifetime of the KS0K^{0}_{S} meson, there is a less stringent criterion on the distance of closest approach to the IP in the beam direction of less than 20 cm and no requirement on the distance of closest approach in the plane transverse to the beam direction. Furthermore, the π+π\pi^{+}\pi^{-} pairs are constrained to originate from a common vertex and their invariant mass is required to be within (0.486,0.510)GeV/c2(0.486,0.510)~{}{\rm GeV}/c^{2}, which corresponds to about three times the fitted resolution around the nominal KS0K^{0}_{S} mass. The decay length of the KS0K^{0}_{S} candidate is required to be larger than two standard deviations of the vertex resolution away from the IP.

The π0\pi^{0} candidate is reconstructed via its γγ\gamma\gamma decay. The photon candidates are selected using the information from the EMC shower. It is required that each EMC shower starts within 700 ns of the event start time and its energy is greater than 25 (50) MeV in the barrel (end cap) region of the EMC BESIII . The energy deposited in the nearby TOF counters is included to improve the reconstruction efficiency and energy resolution. The opening angle between the candidate shower and the nearest charged track must be greater than 1010^{\circ}. The γγ\gamma\gamma pair is taken as a π0\pi^{0} candidate if its invariant mass is within (0.115, 0.150)(0.115,\,0.150) GeV/c2/c^{2}. To improve the resolution, a kinematic fit constraining the γγ\gamma\gamma invariant mass to the π0\pi^{0} nominal mass pdg2018 is imposed on the selected photon pair.

V Yields of ST D¯\bar{D} mesons

To select D¯0K+π\bar{D}^{0}\to K^{+}\pi^{-} candidates, the backgrounds from cosmic rays and Bhabha events are rejected by using the same requirements described in Ref. deltakpi . In the selection of D¯0K+πππ+\bar{D}^{0}\to K^{+}\pi^{-}\pi^{-}\pi^{+} candidates, the D¯0KS0K±π\bar{D}^{0}\to K^{0}_{S}K^{\pm}\pi^{\mp} decays are suppressed by requiring the mass of all π+π\pi^{+}\pi^{-} pairs to be outside (0.478,0.518)(0.478,0.518) GeV/c2c^{2}.

The tagged D¯\bar{D} mesons are identified using two variables, namely the energy difference

ΔEtagEtagEb,\Delta E_{\rm tag}\equiv E_{\rm tag}-E_{\rm b}, (3)

and the beam-constrained mass

MBCtagEb2|ptag|2.M_{\rm BC}^{\rm tag}\equiv\sqrt{E^{2}_{\rm b}-|\vec{p}_{\rm tag}|^{2}}. (4)

Here, EbE_{\rm b} is the beam energy, ptag\vec{p}_{\rm tag} and EtagE_{\rm tag} are the momentum and energy of the D¯\bar{D} candidate in the rest frame of e+ee^{+}e^{-} system, respectively. For each tag mode, if there are multiple candidates in an event, only the one with the smallest |ΔEtag||\Delta E_{\rm tag}| is kept. The tagged D¯\bar{D} candidates are required to satisfy ΔEtag(55,40)\Delta E_{\rm tag}\in(-55,40) MeV for the tag modes containing π0\pi^{0} in the final states and ΔEtag(25,25)\Delta E_{\rm tag}\in(-25,25) MeV for the other tag modes, thereby taking into account the different resolutions.

To extract the yields of ST D¯\bar{D} mesons for individual tag modes, binned-maximum likelihood fits are performed on the corresponding MBCtagM_{\rm BC}^{\rm tag} distributions of the accepted ST candidates following Refs. epjc76 ; cpc40 ; bes3-pimuv ; bes3-Dp-K1ev ; bes3-etaetapi ; bes3-omegamuv ; bes3-etamuv . In the fits, the D¯\bar{D} signal is modeled by an MC-simulated shape convolved with a double-Gaussian function describing the resolution difference between data and MC simulation. The combinatorial background shape is described by an ARGUS function ARGUS defined as cf(f;Eend,ξf)=Aff1f2Eend2exp[ξf(1f2Eend2)]c_{f}(f;E_{\rm end},\xi_{f})=A_{f}\cdot f\cdot\sqrt{1-\frac{f^{2}}{E^{2}_{\rm end}}}\cdot\exp\left[\xi_{f}\left(1-\frac{f^{2}}{E^{2}_{\rm end}}\right)\right], where ff denotes MBCtagM^{\rm tag}_{\rm BC}, EendE_{\rm end} is an endpoint fixed at 1.8865 GeV, AfA_{f} is a normalization factor, and ξf\xi_{f} is a free parameter. The resulting fits to the MBCM_{\rm BC} distributions for each mode are shown in Fig. 1. The total yields of the ST D¯0\bar{D}^{0} and DD^{-} mesons in data are 2327839±18602327839\pm 1860 and 1558159±21131558159\pm 2113, respectively, where the uncertainties are statistical only.

Refer to caption
Fig. 1: Fits to the MBCM_{\rm BC} distributions of the ST D¯0\bar{D}^{0} (left column) and DD^{-} (middle and right columns) candidates, where the points with error bars are data, the blue solid and red dashed curves are the fit results and the fitted backgrounds, respectively.

VI Yields of DT events

In the recoiling sides against the tagged D¯\bar{D} candidates, the signal DD decays are selected by using the residual tracks that have not been used to reconstruct the tagged D¯\bar{D} candidates. To suppress the KS0K^{0}_{S} contribution in the individual mass spectra for the D0K+Kπ0π0D^{0}\to K^{+}K^{-}\pi^{0}\pi^{0}, D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-}, and D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-} decays, the π+π\pi^{+}\pi^{-} and π0π0\pi^{0}\pi^{0} invariant masses are required to be outside (0.468,0.528)(0.468,0.528) GeV/c2c^{2} and (0.438,0.538)(0.438,0.538) GeV/c2c^{2}, respectively. To suppress the background from D0Kπ+ωD^{0}\to K^{-}\pi^{+}\omega in the identification of the D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0} process, the KS0π0K^{0}_{S}\pi^{0} invariant mass is required to be outside (0.742,0.822)(0.742,0.822) GeV/c2c^{2}. These requirements correspond to at least five times the fitted mass resolution away from the fitted mean of the mass peak.

The signal DD mesons are identified using the energy difference ΔEsig\Delta E_{\rm sig} and the beam-constrained mass MBCsigM_{\rm BC}^{\rm sig}, which are calculated with Eqs. (3) and (4) by substituting “tag” with “sig”. For each signal mode, if there are multiple candidates in an event, only the one with the smallest |ΔEsig||\Delta E_{\rm sig}| is kept. The signal decays are required to satisfy the mode-dependent ΔEsig\Delta E_{\rm sig} requirements, as shown in the second column of Table 1. To suppress incorrectly identified DD¯D\bar{D} candidates, the opening angle between the tagged D¯\bar{D} and the signal DD is required to be greater than 160160^{\circ}, resulting in a loss of (2-6)% of the signal and suppressing (8-55)% of the background.

Figure 2 shows the MBCtagM_{\rm BC}^{\rm tag} versus MBCsigM_{\rm BC}^{\rm sig} distribution of the accepted DT candidates in data. The signal events concentrate around MBCtag=MBCsig=MDM_{\rm BC}^{\rm tag}=M_{\rm BC}^{\rm sig}=M_{D}, where MDM_{D} is the nominal DD mass pdg2018 . The events with correctly reconstructed DD (D¯\bar{D}) and incorrectly reconstructed D¯\bar{D} (DD), named BKGI, are spread along the lines around MBCtag=MDM_{\rm BC}^{\rm tag}=M_{D} or MBCsig=MDM_{\rm BC}^{\rm sig}=M_{D}. The events smeared along the diagonal, named BKGII, are mainly from the e+eqq¯e^{+}e^{-}\to q\bar{q} processes. The events with uncorrelated and incorrectly reconstructed DD and D¯\bar{D}, named BKGIII, disperse across the whole allowed kinematic region.

For each signal DD decay mode, the yield of DT events (NDTfitN^{\rm fit}_{\rm DT}) is obtained from a two-dimensional (2D) unbinned maximum-likelihood fit cleo-2Dfit on the MBCtagM_{\rm BC}^{\rm tag} versus MBCsigM_{\rm BC}^{\rm sig} distribution of the accepted candidates. In the fit, the probability density functions (PDFs) of signal, BKGI, BKGII, and BKGIII are constructed as

  • signal: a(x,y)a(x,y),

  • BKGI: b(x)cy(y;Eb,ξy)+b(y)cx(x;Eb,ξx)b(x)\cdot c_{y}(y;E_{\rm b},\xi_{y})+b(y)\cdot c_{x}(x;E_{\rm b},\xi_{x}),

  • BKGII: cz(z;2Eb,ξz)g(k)c_{z}(z;\sqrt{2}E_{\rm b},\xi_{z})\cdot g(k), and

  • BKGIII: cx(x;Eb,ξx)cy(y;Eb,ξy)c_{x}(x;E_{\rm b},\xi_{x})\cdot c_{y}(y;E_{\rm b},\xi_{y}),

respectively. Here, x=MBCsigx=M_{\rm BC}^{\rm sig}, y=MBCtagy=M_{\rm BC}^{\rm tag}, z=(x+y)/2z=(x+y)/\sqrt{2}, and k=(xy)/2k=(x-y)/\sqrt{2}. The PDFs of signal a(x,y)a(x,y), b(x)b(x), and b(y)b(y) are described by the corresponding MC-simulated shapes. cf(f;Eend,ξf)c_{f}(f;E_{\rm end},\xi_{f}) is an ARGUS function ARGUS defined above, where ff denotes xx, yy, or zz; EbE_{\rm b} is fixed at 1.8865 GeV. g(k)g(k) is a Gaussian function with mean of zero and standard deviation parametrized by σk=σ0(2Eb/c2z)p\sigma_{k}=\sigma_{0}\cdot(\sqrt{2}E_{\rm b}/c^{2}-z)^{p}, where σ0\sigma_{0} and pp are fit parameters.

Refer to caption
Fig. 2: The MBCtagM_{\rm BC}^{\rm tag} versus MBCsigM_{\rm BC}^{\rm sig} distribution of the accepted DT candidates of D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0} in data. Here, ISR denotes the signal spreading along the diagonal direction.

Combinatorial π+π\pi^{+}\pi^{-} pairs from the decays D0KS02(π+π)D^{0}\to K^{0}_{S}2(\pi^{+}\pi^{-}) [and D03(π+π)D^{0}\to 3(\pi^{+}\pi^{-})], D0Kπ+π+ππ0D^{0}\to K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}, D0K+π+πππ0D^{0}\to K^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}, D+Kπ+π+π+πD^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{+}\pi^{-}, D+K+2(π+π)D^{+}\to K^{+}2(\pi^{+}\pi^{-}), D+K+π+ππ0π0D^{+}\to K^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}, D+KS0π+π+ππ0D^{+}\to K^{0}_{S}\pi^{+}\pi^{+}\pi^{-}\pi^{0} [and D+2(π+π)π+π0D^{+}\to 2(\pi^{+}\pi^{-})\pi^{+}\pi^{0}] may also satisfy the KS0K^{0}_{S} selection criteria and form peaking backgrounds around MDM_{D} in the MBCsigM_{\rm BC}^{\rm sig} distributions for D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-}, D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}, D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0}, D+KS0K+π0π0D^{+}\to K^{0}_{S}K^{+}\pi^{0}\pi^{0} D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+}, D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-}, and D+KS0KS0π+π0D^{+}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{0}, respectively. This kind of peaking background is estimated by selecting events in the KS0K^{0}_{S} sideband region of (0.454,0.478)(0.518,0.542)GeV/c2(0.454,0.478)\cup(0.518,0.542)~{}{\rm GeV}/c^{2}. For D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}, D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0}, D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+}, D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-}, and D+KS0K+π0π0D^{+}\to K^{0}_{S}K^{+}\pi^{0}\pi^{0} decays, one-dimensional (1D) signal and sideband regions are used. For D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-} and D+KS0KS0π+π0D^{+}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{0} decays, 2D signal and sideband regions are used. The 2D KS0K^{0}_{S} signal region is defined as the square region with both π+π\pi^{+}\pi^{-} combinations lying in the KS0K^{0}_{S} signal regions. The 2D KS0K^{0}_{S} sideband 1 (2) regions are defined as the square regions with 1 (2) π+π\pi^{+}\pi^{-} combination(s) located in the 1D KS0K^{0}_{S} sideband regions and the rest in the 1D KS0K^{0}_{S} signal region. Figure 3 shows 1D and 2D π+π\pi^{+}\pi^{-} invariant-mass distributions as well as the KS0K^{0}_{S} signal and sideband regions.

Refer to caption
Fig. 3: (a) The π+π\pi^{+}\pi^{-} invariant-mass distributions of the D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+} candidate events of data (points with error bars) and inclusive MC sample (histogram). Pairs of the red solid (blue dashed) arrows denote the KS0K^{0}_{S} signal (sideband) regions. (b) Distribution of Mπ+π(1)M_{\pi^{+}\pi^{-}(1)} versus Mπ+π(2)M_{\pi^{+}\pi^{-}(2)} for the D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-} candidate events in data. Red solid box denotes the 2D signal region. Pink dot-dashed (blue dashed) boxes indicate the 2D sideband 1 (2) regions.

For the signal decays involving KS0K^{0}_{S} meson(s) in the final states, the net yields of DT events are calculated by subtracting the sideband contribution from the DT fitted yield by

NDTnet=NDTfit+ΣiN[(12)iNsidifit].N^{\rm net}_{\rm DT}=N^{\rm fit}_{\rm DT}+\Sigma^{N}_{i}\left[\left(-\frac{1}{2}\right)^{i}N^{\rm fit}_{{\rm sid}i}\right]. (5)

Here, N=1N=1 for the decays with one KS0K^{0}_{S} meson while N=2N=2 for the decays with two KS0K^{0}_{S} mesons. The combinatorial π+π\pi^{+}\pi^{-} backgrounds are assumed to be uniformly distributed and double-counting is avoided by subtracting (2) yields from (1) yields appropriately. NDTfitN^{\rm fit}_{\rm DT} and NsidifitN^{\rm fit}_{{\rm sid}i} are the fitted DD yields in the 1D or 2D signal region and sideband ii region, respectively. For the other signal decays, the net yields of DT events are NDTfitN^{\rm fit}_{\rm DT}. Figure 4 shows the MBCtagM^{\rm tag}_{\rm BC} and MBCsigM^{\rm sig}_{\rm BC} projections of the 2D fits to data. From these 2D fits, we obtain the DT yields for individual signal decays as shown in Table 1.

For each signal decay mode, the statistical significance is calculated according to 2ln(0/max)\sqrt{-2{\rm ln({\mathcal{L}_{0}}/{\mathcal{L}_{\rm max}}})}, where max{\mathcal{L}}_{\rm max} and 0{\mathcal{L}}_{0} are the maximum likelihoods of the fits with and without involving the signal component, respectively. The effect of combinatorial π+π\pi^{+}\pi^{-} backgrounds in the KS0K^{0}_{S}-signal regions has been considered for the decays involving a KS0K^{0}_{S}. The statistical significance for each signal decay is found to be greater than 8σ8\sigma.

VII Results

Each of the D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}, D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}, D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+}, and D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-} decays is modeled by the corresponding mixed signal MC samples, in which the dominant decay modes containing resonances of K(892)K^{*}(892), ρ(770)\rho(770), and ϕ\phi are mixed with the phase space (PHSP) signal MC samples. The mixing ratios are determined by examining the corresponding invariant mass and momentum spectra. The other decays, which are limited in statistics, are generated with the PHSP generator. The momentum and the polar angle distributions of the daughter particles and the invariant masses of each two- and three-body particle combinations of the data agree with those of the MC simulations. As an example, Fig. 5 shows the invariant mass distributions of two or three-body particle combinations of D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0} candidate events for data and MC simulations.

The measured values of NDTnetN^{\rm net}_{{\rm DT}}, ϵsig\epsilon_{{\rm sig}}, and the obtained BFs are summarized in Table 1. The current world-average values are also given for comparison. The signal efficiencies have been corrected by the necessary data-MC differences in the selection efficiencies of K±K^{\pm} and π±\pi^{\pm} tracking and PID procedures and the π0\pi^{0} reconstruction. These efficiencies also include the BFs of the KS0K^{0}_{S} and π0\pi^{0} decays. The efficiency for D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-} (D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}) is lower than that of D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+} (D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0}) due to the KS0K^{0}_{S} (ω)(\omega) rejection in the π+π\pi^{+}\pi^{-} (KS0π0K^{0}_{S}\pi^{0}) mass spectrum.

Refer to caption
Refer to caption
Fig. 4: Projections on the MBCtagM^{\rm tag}_{\rm BC} and MBCsigM^{\rm sig}_{\rm BC} distributions of the 2D fits to the DT candidate events with all D¯0\bar{D}^{0} or DD^{-} tags. Data are shown as points with error bars. Blue solid, light blue dotted, blue dot-dashed, red dot-long-dashed, and pink long-dashed curves denote the overall fit results, signal, BKGI, BKGII, and BKGIII components (see text), respectively.
Refer to caption
Fig. 5: The invariant mass distributions of two or three-body particle combinations of D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0} candidate events for data and MC simulations. Data are shown as points with error bars. Red solid histograms are mixed signal MC samples. Blue dashed histograms are PHSP signal MC samples. Yellow hatched histograms are the backgrounds estimated from the inclusive MC sample.

VIII Systematic uncertainties

The systematic uncertainties are estimated relative to the measured BFs and are discussed below. In BF determinations using Eq. (1), all uncertainties associated with the selection of tagged D¯\bar{D} canceled in the ratio. The systematic uncertainties in the total yields of ST D¯\bar{D} mesons related to the MBCM_{\rm BC} fits to the ST D¯\bar{D} candidates, were previously estimated to be 0.5% for both neutral and charged D¯\bar{D} epjc76 ; cpc40 ; bes3-pimuv .

The tracking and PID efficiencies for K±K^{\pm} or π±\pi^{\pm}, ϵKorπtracking(PID)[data]\epsilon_{K\,{\rm or}\,\pi}^{\rm tracking\,(PID)}[{\rm data}] and ϵKorπtracking(PID)[MC]\epsilon_{K\,{\rm or}\,\pi}^{\rm tracking\,(PID)}[{\rm MC}], are investigated using DT DD¯D\bar{D} hadronic events. The averaged ratios between data and MC efficiencies (fKorπtracking(PID)=ϵKorπtracking(PID)[data]/ϵKorπtracking(PID)[MC]f_{K\,{\rm or}\,\pi}^{\rm tracking\,(PID)}=\epsilon_{K\,{\rm or}\,\pi}^{\rm tracking\,(PID)}[{\rm data}]/\epsilon_{K\,{\rm or}\,\pi}^{\rm tracking\,(PID)}[{\rm MC}]) of tracking (PID) for K±K^{\pm} or π±\pi^{\pm} are weighted by the corresponding momentum spectra of signal MC events, giving fKtrackingf_{K}^{\rm tracking} to be 1.022-1.0311.022{\text{-}}1.031 and fπtrackingf_{\pi}^{\rm tracking} to be close to unity. After correcting the MC efficiencies by fKtrackingf_{K}^{\rm tracking}, the residual uncertainties of fKorπtrackingf_{K\,{\rm or}\,\pi}^{\rm tracking} are assigned as the systematic uncertainties of tracking efficiencies, which are (0.4-0.7)% per K±K^{\pm} and (0.2-0.3)% per π±\pi^{\pm}. fKPIDf_{K}^{\rm PID} and fπPIDf_{\pi}^{\rm PID} are all close to unity and their individual uncertainties, (0.2-0.3)%, are taken as the associated systematic uncertainties per K±K^{\pm} or π±\pi^{\pm}.

The systematic error related to the uncertainty in the KS0K_{S}^{0} reconstruction efficiency is estimated from measurements of J/ψK(892)K±J/\psi\to K^{*}(892)^{\mp}K^{\pm} and J/ψϕKS0K±πJ/\psi\to\phi K_{S}^{0}K^{\pm}\pi^{\mp} control samples sysks and found to be 1.6% per KS0K^{0}_{S}. The systematic uncertainty of π0\pi^{0} reconstruction efficiency is assigned as (0.7-0.8)% per π0\pi^{0} from a study of DT DD¯D\bar{D} hadronic decays of D¯0K+ππ0\bar{D}^{0}\to K^{+}\pi^{-}\pi^{0} and D¯0KS0π0\bar{D}^{0}\to K^{0}_{S}\pi^{0} decays tagged by either D0Kπ+D^{0}\to K^{-}\pi^{+} or D0Kπ+π+πD^{0}\to K^{-}\pi^{+}\pi^{+}\pi^{-} epjc76 ; cpc40 .

The systematic uncertainty in the 2D fit to the MBCtagM_{\rm BC}^{\rm tag} versus MBCsigM_{\rm BC}^{\rm sig} distribution is examined via the repeated measurements in which the signal shape and the endpoint of the ARGUS function (±0.2\pm 0.2 MeV/c2c^{2}) are varied. Quadratically summing the changes of the BFs for these two sources yields the corresponding systematic uncertainties.

The systematic uncertainty due to the ΔEsig\Delta E_{\rm sig} requirement is assigned to be 0.3%, which corresponds to the largest efficiency difference with and without smearing the data-MC Gaussian resolution of ΔEsig\Delta E_{\rm sig} for signal MC events. Here, the smeared Gaussian parameters are obtained by using the samples of DT events D0KS0π0D^{0}\to K^{0}_{S}\pi^{0}, D0Kπ+π0D^{0}\to K^{-}\pi^{+}\pi^{0}, D0Kπ+π0π0D^{0}\to K^{-}\pi^{+}\pi^{0}\pi^{0}, and D+Kπ+π+π0D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0} versus the same D¯\bar{D} tags in our nominal analysis. The systematic uncertainties due to KS0K^{0}_{S} sideband choice and KS0K^{0}_{S} rejection mass window are assigned by examining the changes of the BFs via varying nominal KS0K^{0}_{S} sideband and corresponding rejection window by ±5\pm 5 MeV/c2c^{2}.

For the decays whose efficiencies are estimated with mixed signal MC events, the systematic uncertainty in the MC modeling is determined by comparing the signal efficiency when changing the percentage of MC sample components. For the decays whose efficiencies are estimated with PHSP-distributed signal MC events, the uncertainties are assigned as the change of the signal efficiency after adding the possible decays containing K(892)K^{*}(892) or ρ(770)\rho(770). The imperfect simulations of the momentum and cosθ\cos\theta distributions of charged particles are considered as a source of systematic uncertainty. The signal efficiencies are re-weighted by those distributions in data with background subtracted. The largest change of the re-weighted to nominal efficiencies, 0.9%, is assigned as the corresponding systematic uncertainty.

The measurements of the BFs of the neutral DD decays are affected by quantum correlation effect. For each neutral DD decay, the CPCP-even component is estimated by the CPCP-even tag D0K+KD^{0}\to K^{+}K^{-} and the CPCP-odd tag D0KS0π0D^{0}\to K^{0}_{S}\pi^{0}. Using the same method as described in Ref. QC-factor and the necessary parameters quoted from Refs. R-ref1 ; R-ref2 ; R-ref3 , we find the correction factors to account for the quantum correlation effect on the measured BFs are (98.31.1stat+1.6)%(98.3^{+1.6}_{-1.1{\,\rm stat}})\%, (98.11.7stat+2.8)%(98.1^{+2.8}_{-1.7{\,\rm stat}})\%, (95.92.7stat+3.4)%(95.9^{+3.4}_{-2.7{\,\rm stat}})\%, and (98.41.0stat+1.1)%(98.4^{+1.1}_{-1.0{\,\rm stat}})\% for D0K+Kπ0π0D^{0}\to K^{+}K^{-}\pi^{0}\pi^{0}, D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-}, D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}, and D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0}, respectively. After correcting the signal efficiencies by the individual factors, the residual uncertainties are assigned as systematic uncertainties.

The uncertainties due to the limited MC statistics for various signal decays, (0.4-0.8)%, are taken into account as a systematic uncertainty. The uncertainties of the quoted BFs of the KS0π+πK^{0}_{S}\to\pi^{+}\pi^{-} and π0γγ\pi^{0}\to\gamma\gamma decays are 0.07% and 0.03%, respectively pdg2018 .

The efficiencies of DD¯D\bar{D} opening angle requirement is studied by using the DT events of D0Kπ+π+πD^{0}\to K^{-}\pi^{+}\pi^{+}\pi^{-}, D0Kπ+π0π0D^{0}\to K^{-}\pi^{+}\pi^{0}\pi^{0}, and D+Kπ+π+π0D^{+}\to K^{-}\pi^{+}\pi^{+}\pi^{0} tagged by the same tag modes in our nominal analysis. The difference of the accepted efficiencies between data and MC simulations, 0.4% for the decays without π0\pi^{0}, 0.8% for the decays involving one π0\pi^{0} and 0.3% for the decays involving two π0\pi^{0}s, is assigned as the associated systematic uncertainty.

Table 2 summarizes the systematic uncertainties in the BF measurements. For each signal decay, the total systematic uncertainty is obtained by adding the above effects in quadrature to be (2.6-6.0)% for various signal decay modes.

Table 1: Requirements of ΔEsig\Delta E_{\rm sig}, net yields of DT candidates (NDTnetN^{\rm net}_{{\rm DT}}), signal efficiencies (ϵsig\epsilon_{\rm sig}), and the obtained BFs (sig{\mathcal{B}}_{\rm sig}) for various signal decays as well as comparisons with the world-average BFs (PDG{\mathcal{B}}_{\rm PDG}). The first and second uncertainties for sig{\mathcal{B}}_{\rm sig} are statistical and systematic, respectively, while the uncertainties for NDTnetN^{\rm net}_{\rm DT} and ϵsig\epsilon_{\rm sig} are statistical only. The world-average BF of D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0} is obtained by summing over the contributions of D+ϕ(K+K)π+π0D^{+}\to\phi(\to K^{+}K^{-})\pi^{+}\pi^{0} and D+K+Kπ+π0|non-ϕD^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}|_{{\rm non\text{-}}\phi}.
Signal mode ΔEsig\Delta E_{\rm sig} (MeV) NDTnetN^{\rm net}_{\rm DT} ϵsig\epsilon_{\rm sig} (%) sig{\mathcal{B}}_{\rm sig} (×103\times 10^{-3}) PDG{\mathcal{B}}_{\rm PDG} (×103\times 10^{-3})
D0K+Kπ0π0D^{0}\to K^{+}K^{-}\pi^{0}\pi^{0} (59,40)(-59,40) 132.1±13.9132.1\pm 13.9 8.20±0.078.20\pm 0.07 0.69±0.07±0.040.69\pm 0.07\pm 0.04
D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-} (22,22)(-22,22) 62.5±10.462.5\pm 10.4 5.14±0.045.14\pm 0.04 0.52±0.09±0.030.52\pm 0.09\pm 0.03 1.22±0.231.22\pm 0.23
D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0} (43,32)(-43,32) 195.8±20.3195.8\pm 20.3 6.38±0.066.38\pm 0.06 1.32±0.14±0.071.32\pm 0.14\pm 0.07
D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0} (44,33)(-44,33) 119.3±12.9119.3\pm 12.9 7.94±0.067.94\pm 0.06 0.65±0.07±0.020.65\pm 0.07\pm 0.02
D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0} (39,30)(-39,30) 1311.7±40.41311.7\pm 40.4 12.72±0.0812.72\pm 0.08 6.62±0.20±0.256.62\pm 0.20\pm 0.25 268+926^{+9}_{-8}
D+KS0K+π0π0D^{+}\to K^{0}_{S}K^{+}\pi^{0}\pi^{0} (61,44)(-61,44) 34.7±7.234.7\pm 7.2 3.77±0.023.77\pm 0.02 0.59±0.12±0.040.59\pm 0.12\pm 0.04
D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+} (22,21)(-22,21) 467.9±26.6467.9\pm 26.6 13.24±0.0813.24\pm 0.08 2.27±0.12±0.062.27\pm 0.12\pm 0.06 2.38±0.172.38\pm 0.17
D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-} (21,20)(-21,20) 279.6±18.1279.6\pm 18.1 9.39±0.069.39\pm 0.06 1.91±0.12±0.051.91\pm 0.12\pm 0.05 1.74±0.181.74\pm 0.18
D+KS0KS0π+π0D^{+}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{0} (46,37)(-46,37) 80.4±12.080.4\pm 12.0 3.84±0.033.84\pm 0.03 1.34±0.20±0.061.34\pm 0.20\pm 0.06
Table 2: Systematic uncertainties (%) in the measurements of the BFs of the signal decays (1) D0K+Kπ0π0D^{0}\to K^{+}K^{-}\pi^{0}\pi^{0}, (2) D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-}, (3) D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}, (4) D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0}, (5) D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}, (6) D+KS0K+π0π0D^{+}\to K^{0}_{S}K^{+}\pi^{0}\pi^{0}, (7) D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+}, (8) D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-}, and (9) D+KS0KS0π+π0D^{+}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{0}.
Source/Signal decay 1 2 3 4 5 6 7 8 9
NSTtotN^{\rm tot}_{\rm ST} 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
(K/π)±(K/\pi)^{\pm} tracking 1.0 0.6 0.9 0.9 1.6 0.4 1.1 1.2 0.3
(K/π)±(K/\pi)^{\pm} PID 0.4 0.4 0.6 0.6 1.0 0.2 0.6 0.7 0.2
KS0K^{0}_{S} reconstruction 3.2 1.6 1.6 1.6 1.6 1.6 3.2
π0\pi^{0} reconstruction 1.6 0.7 0.7 0.8 1.6 0.7
ΔEsig\Delta E_{\rm sig} requirement 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
KS0K_{S}^{0} rejection 4.2 2.4 4.2 0.8
KS0K_{S}^{0} sideband 0.2 1.1 0.2 1.3 0.1 0.1 0.2
Quoted BFs 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1
MC statistics 0.8 0.6 0.7 0.6 0.5 0.4 0.4 0.5 0.6
MC modeling 1.3 1.0 0.5 0.7 2.1 1.4 0.5 0.7 0.5
Imperfect simulation 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
DD¯D\bar{D} opening angle 0.3 0.4 0.8 0.8 0.8 0.3 0.4 0.4 0.8
2D fit 1.3 2.8 3.1 1.5 1.9 2.7 0.5 0.6 3.0
Quantum correlation effect 1.6 2.8 3.4 1.1
Total 5.5 5.9 5.4 3.3 3.8 6.0 2.6 2.8 4.8

IX Summary

In summary, by analyzing a data sample obtained in e+ee^{+}e^{-} collisions at s=3.773\sqrt{s}=3.773 GeV with the BESIII detector and corresponding to an integrated luminosity of 2.93 fb-1, we obtained the first direct measurements of the absolute BFs of nine D0(+)KK¯ππD^{0(+)}\to K\bar{K}\pi\pi decays containing KS0K^{0}_{S} or π0\pi^{0} mesons. The D0K+Kπ0π0D^{0}\to K^{+}K^{-}\pi^{0}\pi^{0}, D0KS0Kπ+π0D^{0}\to K^{0}_{S}K^{-}\pi^{+}\pi^{0}, D0KS0K+ππ0D^{0}\to K^{0}_{S}K^{+}\pi^{-}\pi^{0}, D+KS0K+π0π0D^{+}\to K^{0}_{S}K^{+}\pi^{0}\pi^{0}, and D+KS0KS0π+π0D^{+}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{0} decays are observed for the first time. Compared to the world-average values, the BFs of the D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-}, D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0}, D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+}, and D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-} decays are measured with improved precision. Our BFs of D+KS0Kπ+π+D^{+}\to K^{0}_{S}K^{-}\pi^{+}\pi^{+} and D+KS0K+π+πD^{+}\to K^{0}_{S}K^{+}\pi^{+}\pi^{-} are in agreement with individual world averages within 1σ1\sigma while our BFs of D0KS0KS0π+πD^{0}\to K^{0}_{S}K^{0}_{S}\pi^{+}\pi^{-} and D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0} deviate with individual world averages by 2.3σ2.3\sigma and 2.8σ2.8\sigma, respectively. The precision of the BF of D+K+Kπ+π0D^{+}\to K^{+}K^{-}\pi^{+}\pi^{0} is improved by a factor of about seven. Future amplitude analyses of all these D0(+)KK¯ππD^{0(+)}\to K\bar{K}\pi\pi decays with larger data samples foreseen at BESIII bes3-white-paper , Belle II belle2-white-paper , and LHCb lhcb-white-paper will supply rich information of the two-body decay modes containing scalar, vector, axial and tensor mesons, thereby benefiting the understanding of quark SU(3)-flavor symmetry.

X Acknowledgement

Authors thank for valuable discussions with Prof. Fu-sheng Yu. The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11775230, 11475123, 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1532101, U1932102, U1732263, U1832207; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.

References