This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Measurement of e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}cross sections at center-of-mass energies from 2.00 to 3.08 GeV

M. Ablikim1, M. N. Achasov13,b, P. Adlarson73, R. Aliberti34, A. Amoroso72A,72C, M. R. An38, Q. An69,56, Y. Bai55, O. Bakina35, I. Balossino29A, Y. Ban45,g, V. Batozskaya1,43, K. Begzsuren31, N. Berger34, M. Berlowski43, M. Bertani28A, D. Bettoni29A, F. Bianchi72A,72C, E. Bianco72A,72C, J. Bloms66, A. Bortone72A,72C, I. Boyko35, R. A. Briere5, A. Brueggemann66, H. Cai74, X. Cai1,56, A. Calcaterra28A, G. F. Cao1,61, N. Cao1,61, S. A. Cetin60A, J. F. Chang1,56, T. T. Chang75, W. L. Chang1,61, G. R. Che42, G. Chelkov35,a, C. Chen42, Chao Chen53, G. Chen1, H. S. Chen1,61, M. L. Chen1,56,61, S. J. Chen41, S. M. Chen59, T. Chen1,61, X. R. Chen30,61, X. T. Chen1,61, Y. B. Chen1,56, Y. Q. Chen33, Z. J. Chen25,h, W. S. Cheng72C, S. K. Choi10A, X. Chu42, G. Cibinetto29A, S. C. Coen4, F. Cossio72C, J. J. Cui48, H. L. Dai1,56, J. P. Dai77, A. Dbeyssi19, R.  E. de Boer4, D. Dedovich35, Z. Y. Deng1, A. Denig34, I. Denysenko35, M. Destefanis72A,72C, F. De Mori72A,72C, B. Ding64,1, X. X. Ding45,g, Y. Ding33, Y. Ding39, J. Dong1,56, L. Y. Dong1,61, M. Y. Dong1,56,61, X. Dong74, S. X. Du79, Z. H. Duan41, P. Egorov35,a, Y. L. Fan74, J. Fang1,56, S. S. Fang1,61, W. X. Fang1, Y. Fang1, R. Farinelli29A, L. Fava72B,72C, F. Feldbauer4, G. Felici28A, C. Q. Feng69,56, J. H. Feng57, K Fischer67, M. Fritsch4, C. Fritzsch66, C. D. Fu1, Y. W. Fu1, H. Gao61, Y. N. Gao45,g, Yang Gao69,56, S. Garbolino72C, I. Garzia29A,29B, P. T. Ge74, Z. W. Ge41, C. Geng57, E. M. Gersabeck65, A Gilman67, K. Goetzen14, L. Gong39, W. X. Gong1,56, W. Gradl34, S. Gramigna29A,29B, M. Greco72A,72C, M. H. Gu1,56, Y. T. Gu16, C. Y Guan1,61, Z. L. Guan22, A. Q. Guo30,61, L. B. Guo40, R. P. Guo47, Y. P. Guo12,f, A. Guskov35,a, X. T. H.1,61, W. Y. Han38, X. Q. Hao20, F. A. Harris63, K. K. He53, K. L. He1,61, F. H. Heinsius4, C. H. Heinz34, Y. K. Heng1,56,61, C. Herold58, T. Holtmann4, P. C. Hong12,f, G. Y. Hou1,61, Y. R. Hou61, Z. L. Hou1, H. M. Hu1,61, J. F. Hu54,i, T. Hu1,56,61, Y. Hu1, G. S. Huang69,56, K. X. Huang57, L. Q. Huang30,61, X. T. Huang48, Y. P. Huang1, T. Hussain71, N Hüsken27,34, W. Imoehl27, M. Irshad69,56, J. Jackson27, S. Jaeger4, S. Janchiv31, J. H. Jeong10A, Q. Ji1, Q. P. Ji20, X. B. Ji1,61, X. L. Ji1,56, Y. Y. Ji48, Z. K. Jia69,56, P. C. Jiang45,g, S. S. Jiang38, T. J. Jiang17, X. S. Jiang1,56,61, Y. Jiang61, J. B. Jiao48, Z. Jiao23, S. Jin41, Y. Jin64, M. Q. Jing1,61, T. Johansson73, X. K.1, S. Kabana32, N. Kalantar-Nayestanaki62, X. L. Kang9, X. S. Kang39, R. Kappert62, M. Kavatsyuk62, B. C. Ke79, A. Khoukaz66, R. Kiuchi1, R. Kliemt14, L. Koch36, O. B. Kolcu60A, B. Kopf4, M. Kuessner4, A. Kupsc43,73, W. Kühn36, J. J. Lane65, J. S. Lange36, P.  Larin19, A. Lavania26, L. Lavezzi72A,72C, T. T. Lei69,k, Z. H. Lei69,56, H. Leithoff34, M. Lellmann34, T. Lenz34, C. Li42, C. Li46, C. H. Li38, Cheng Li69,56, D. M. Li79, F. Li1,56, G. Li1, H. Li69,56, H. B. Li1,61, H. J. Li20, H. N. Li54,i, Hui Li42, J. R. Li59, J. S. Li57, J. W. Li48, Ke Li1, L. J Li1,61, L. K. Li1, Lei Li3, M. H. Li42, P. R. Li37,j,k, S. X. Li12, T.  Li48, W. D. Li1,61, W. G. Li1, X. H. Li69,56, X. L. Li48, Xiaoyu Li1,61, Y. G. Li45,g, Z. J. Li57, Z. X. Li16, Z. Y. Li57, C. Liang41, H. Liang33, H. Liang1,61, H. Liang69,56, Y. F. Liang52, Y. T. Liang30,61, G. R. Liao15, L. Z. Liao48, J. Libby26, A.  Limphirat58, D. X. Lin30,61, T. Lin1, B. J. Liu1, B. X. Liu74, C. Liu33, C. X. Liu1, D.  Liu19,69, F. H. Liu51, Fang Liu1, Feng Liu6, G. M. Liu54,i, H. Liu37,j,k, H. B. Liu16, H. M. Liu1,61, Huanhuan Liu1, Huihui Liu21, J. B. Liu69,56, J. L. Liu70, J. Y. Liu1,61, K. Liu1, K. Y. Liu39, Ke Liu22, L. Liu69,56, L. C. Liu42, Lu Liu42, M. H. Liu12,f, P. L. Liu1, Q. Liu61, S. B. Liu69,56, T. Liu12,f, W. K. Liu42, W. M. Liu69,56, X. Liu37,j,k, Y. Liu37,j,k, Y. B. Liu42, Z. A. Liu1,56,61, Z. Q. Liu48, X. C. Lou1,56,61, F. X. Lu57, H. J. Lu23, J. G. Lu1,56, X. L. Lu1, Y. Lu7, Y. P. Lu1,56, Z. H. Lu1,61, C. L. Luo40, M. X. Luo78, T. Luo12,f, X. L. Luo1,56, X. R. Lyu61, Y. F. Lyu42, F. C. Ma39, H. L. Ma1, J. L. Ma1,61, L. L. Ma48, M. M. Ma1,61, Q. M. Ma1, R. Q. Ma1,61, R. T. Ma61, X. Y. Ma1,56, Y. Ma45,g, F. E. Maas19, M. Maggiora72A,72C, S. Maldaner4, S. Malde67, A. Mangoni28B, Y. J. Mao45,g, Z. P. Mao1, S. Marcello72A,72C, Z. X. Meng64, J. G. Messchendorp14,62, G. Mezzadri29A, H. Miao1,61, T. J. Min41, R. E. Mitchell27, X. H. Mo1,56,61, N. Yu. Muchnoi13,b, Y. Nefedov35, F. Nerling19,d, I. B. Nikolaev13,b, Z. Ning1,56, S. Nisar11,l, Y. Niu 48, S. L. Olsen61, Q. Ouyang1,56,61, S. Pacetti28B,28C, X. Pan53, Y. Pan55, A.  Pathak33, P. Patteri28A, Y. P. Pei69,56, M. Pelizaeus4, H. P. Peng69,56, K. Peters14,d, J. L. Ping40, R. G. Ping1,61, S. Plura34, S. Pogodin35, V. Prasad32, F. Z. Qi1, H. Qi69,56, H. R. Qi59, M. Qi41, T. Y. Qi12,f, S. Qian1,56, W. B. Qian61, C. F. Qiao61, J. J. Qin70, L. Q. Qin15, X. P. Qin12,f, X. S. Qin48, Z. H. Qin1,56, J. F. Qiu1, S. Q. Qu59, C. F. Redmer34, K. J. Ren38, A. Rivetti72C, V. Rodin62, M. Rolo72C, G. Rong1,61, Ch. Rosner19, S. N. Ruan42, N. Salone43, A. Sarantsev35,c, Y. Schelhaas34, K. Schoenning73, M. Scodeggio29A,29B, K. Y. Shan12,f, W. Shan24, X. Y. Shan69,56, J. F. Shangguan53, L. G. Shao1,61, M. Shao69,56, C. P. Shen12,f, H. F. Shen1,61, W. H. Shen61, X. Y. Shen1,61, B. A. Shi61, H. C. Shi69,56, J. L. Shi12, J. Y. Shi1, Q. Q. Shi53, R. S. Shi1,61, X. Shi1,56, J. J. Song20, T. Z. Song57, W. M. Song33,1, Y.  J. Song12, Y. X. Song45,g, S. Sosio72A,72C, S. Spataro72A,72C, F. Stieler34, Y. J. Su61, G. B. Sun74, G. X. Sun1, H. Sun61, H. K. Sun1, J. F. Sun20, K. Sun59, L. Sun74, S. S. Sun1,61, T. Sun1,61, W. Y. Sun33, Y. Sun9, Y. J. Sun69,56, Y. Z. Sun1, Z. T. Sun48, Y. X. Tan69,56, C. J. Tang52, G. Y. Tang1, J. Tang57, Y. A. Tang74, L. Y Tao70, Q. T. Tao25,h, M. Tat67, J. X. Teng69,56, V. Thoren73, W. H. Tian57, W. H. Tian50, Y. Tian30,61, Z. F. Tian74, I. Uman60B, B. Wang1, B. L. Wang61, Bo Wang69,56, C. W. Wang41, D. Y. Wang45,g, F. Wang70, H. J. Wang37,j,k, H. P. Wang1,61, K. Wang1,56, L. L. Wang1, M. Wang48, Meng Wang1,61, S. Wang37,j,k, S. Wang12,f, T.  Wang12,f, T. J. Wang42, W. Wang57, W.  Wang70, W. H. Wang74, W. P. Wang69,56, X. Wang45,g, X. F. Wang37,j,k, X. J. Wang38, X. L. Wang12,f, Y. Wang59, Y. D. Wang44, Y. F. Wang1,56,61, Y. H. Wang46, Y. N. Wang44, Y. Q. Wang1, Yaqian Wang18,1, Yi Wang59, Z. Wang1,56, Z. L.  Wang70, Z. Y. Wang1,61, Ziyi Wang61, D. Wei68, D. H. Wei15, F. Weidner66, S. P. Wen1, C. W. Wenzel4, U. Wiedner4, G. Wilkinson67, M. Wolke73, L. Wollenberg4, C. Wu38, J. F. Wu1,61, L. H. Wu1, L. J. Wu1,61, X. Wu12,f, X. H. Wu33, Y. Wu69, Y. J Wu30, Z. Wu1,56, L. Xia69,56, X. M. Xian38, T. Xiang45,g, D. Xiao37,j,k, G. Y. Xiao41, H. Xiao12,f, S. Y. Xiao1, Y.  L. Xiao12,f, Z. J. Xiao40, C. Xie41, X. H. Xie45,g, Y. Xie48, Y. G. Xie1,56, Y. H. Xie6, Z. P. Xie69,56, T. Y. Xing1,61, C. F. Xu1,61, C. J. Xu57, G. F. Xu1, H. Y. Xu64, Q. J. Xu17, W. L. Xu64, X. P. Xu53, Y. C. Xu76, Z. P. Xu41, Z. S. Xu61, F. Yan12,f, L. Yan12,f, W. B. Yan69,56, W. C. Yan79, X. Q Yan1, H. J. Yang49,e, H. L. Yang33, H. X. Yang1, Tao Yang1, Y. Yang12,f, Y. F. Yang42, Y. X. Yang1,61, Yifan Yang1,61, Z. W. Yang37,j,k, M. Ye1,56, M. H. Ye8, J. H. Yin1, Z. Y. You57, B. X. Yu1,56,61, C. X. Yu42, G. Yu1,61, T. Yu70, X. D. Yu45,g, C. Z. Yuan1,61, L. Yuan2, S. C. Yuan1, X. Q. Yuan1, Y. Yuan1,61, Z. Y. Yuan57, C. X. Yue38, A. A. Zafar71, F. R. Zeng48, X. Zeng12,f, Y. Zeng25,h, Y. J. Zeng1,61, X. Y. Zhai33, Y. H. Zhan57, A. Q. Zhang1,61, B. L. Zhang1,61, B. X. Zhang1, D. H. Zhang42, G. Y. Zhang20, H. Zhang69, H. H. Zhang57, H. H. Zhang33, H. Q. Zhang1,56,61, H. Y. Zhang1,56, J. J. Zhang50, J. L. Zhang75, J. Q. Zhang40, J. W. Zhang1,56,61, J. X. Zhang37,j,k, J. Y. Zhang1, J. Z. Zhang1,61, Jianyu Zhang61, Jiawei Zhang1,61, L. M. Zhang59, L. Q. Zhang57, Lei Zhang41, P. Zhang1, Q. Y.  Zhang38,79, Shuihan Zhang1,61, Shulei Zhang25,h, X. D. Zhang44, X. M. Zhang1, X. Y. Zhang53, X. Y. Zhang48, Y. Zhang67, Y.  T. Zhang79, Y. H. Zhang1,56, Yan Zhang69,56, Yao Zhang1, Z. H. Zhang1, Z. L. Zhang33, Z. Y. Zhang74, Z. Y. Zhang42, G. Zhao1, J. Zhao38, J. Y. Zhao1,61, J. Z. Zhao1,56, Lei Zhao69,56, Ling Zhao1, M. G. Zhao42, S. J. Zhao79, Y. B. Zhao1,56, Y. X. Zhao30,61, Z. G. Zhao69,56, A. Zhemchugov35,a, B. Zheng70, J. P. Zheng1,56, W. J. Zheng1,61, Y. H. Zheng61, B. Zhong40, X. Zhong57, H.  Zhou48, L. P. Zhou1,61, X. Zhou74, X. K. Zhou6, X. R. Zhou69,56, X. Y. Zhou38, Y. Z. Zhou12,f, J. Zhu42, K. Zhu1, K. J. Zhu1,56,61, L. Zhu33, L. X. Zhu61, S. H. Zhu68, S. Q. Zhu41, T. J. Zhu12,f, W. J. Zhu12,f, Y. C. Zhu69,56, Z. A. Zhu1,61, J. H. Zou1, J. Zu69,56
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 China University of Geosciences, Wuhan 430074, People’s Republic of China
10 Chung-Ang University, Seoul, 06974, Republic of Korea
11 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
12 Fudan University, Shanghai 200433, People’s Republic of China
13 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
14 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
15 Guangxi Normal University, Guilin 541004, People’s Republic of China
16 Guangxi University, Nanning 530004, People’s Republic of China
17 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
18 Hebei University, Baoding 071002, People’s Republic of China
19 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
20 Henan Normal University, Xinxiang 453007, People’s Republic of China
21 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
22 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
23 Huangshan College, Huangshan 245000, People’s Republic of China
24 Hunan Normal University, Changsha 410081, People’s Republic of China
25 Hunan University, Changsha 410082, People’s Republic of China
26 Indian Institute of Technology Madras, Chennai 600036, India
27 Indiana University, Bloomington, Indiana 47405, USA
28 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
29 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
30 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
31 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
32 Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
33 Jilin University, Changchun 130012, People’s Republic of China
34 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
35 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
36 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
37 Lanzhou University, Lanzhou 730000, People’s Republic of China
38 Liaoning Normal University, Dalian 116029, People’s Republic of China
39 Liaoning University, Shenyang 110036, People’s Republic of China
40 Nanjing Normal University, Nanjing 210023, People’s Republic of China
41 Nanjing University, Nanjing 210093, People’s Republic of China
42 Nankai University, Tianjin 300071, People’s Republic of China
43 National Centre for Nuclear Research, Warsaw 02-093, Poland
44 North China Electric Power University, Beijing 102206, People’s Republic of China
45 Peking University, Beijing 100871, People’s Republic of China
46 Qufu Normal University, Qufu 273165, People’s Republic of China
47 Shandong Normal University, Jinan 250014, People’s Republic of China
48 Shandong University, Jinan 250100, People’s Republic of China
49 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
50 Shanxi Normal University, Linfen 041004, People’s Republic of China
51 Shanxi University, Taiyuan 030006, People’s Republic of China
52 Sichuan University, Chengdu 610064, People’s Republic of China
53 Soochow University, Suzhou 215006, People’s Republic of China
54 South China Normal University, Guangzhou 510006, People’s Republic of China
55 Southeast University, Nanjing 211100, People’s Republic of China
56 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
57 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
58 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
59 Tsinghua University, Beijing 100084, People’s Republic of China
60 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
61 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
62 University of Groningen, NL-9747 AA Groningen, The Netherlands
63 University of Hawaii, Honolulu, Hawaii 96822, USA
64 University of Jinan, Jinan 250022, People’s Republic of China
65 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
66 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
67 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
68 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
69 University of Science and Technology of China, Hefei 230026, People’s Republic of China
70 University of South China, Hengyang 421001, People’s Republic of China
71 University of the Punjab, Lahore-54590, Pakistan
72 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
73 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
74 Wuhan University, Wuhan 430072, People’s Republic of China
75 Xinyang Normal University, Xinyang 464000, People’s Republic of China
76 Yantai University, Yantai 264005, People’s Republic of China
77 Yunnan University, Kunming 650500, People’s Republic of China
78 Zhejiang University, Hangzhou 310027, People’s Republic of China
79 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at the Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan
Abstract

Using data corresponding to an integrated luminosity of 651pb1651~{}\mathrm{pb}^{-1} accumulated at 22 center-of-mass energies from 2.00 to 3.08 GeV by the BESIII experiment, the process e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}is studied. The cross sections for e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}are consistent with previous results, but with improved precision. To measure the mass and width of the structure observed in the cross section line shape, a combine fit is performed after enhancing the contribution from ϕf0(980)\phi f_{0}(980). The fit reveals a structure with the mass of M=2178±20±5MeV/c2M=2178\pm 20\pm 5~{}{\rm MeV}/c^{2} and the width of Γ=140±36±16MeV\varGamma=140\pm 36\pm 16~{}{\rm MeV}, where the first uncertainties are statistical and the second ones are systematic.

I Introduction

The study of the hadron spectrum is important to understand the non-perturbative behavior of quantum chromodynamics (QCD). For the low-energy region, the vector mesons ρ\rho, ω\omega, ϕ\phi and their low-lying excited states are copiously produced in e+ee^{+}e^{-} collision experiments. The experimental results for these states have been tabulated by the Particle Data Group (PDG) Workman et al. (2022), but the higher lying excitations are not fully identified yet, especially in the region around 2.0 GeV. Further measurements are needed to resolve the situation involving resonances such as the ρ(2000)\rho(2000), ρ(2150)\rho(2150) and ϕ(2170)\phi(2170) states.

The ϕ(2170)\phi(2170) resonance was first observed by the BABAR Collaboration via the initial state radiation (ISR) process e+eγISRϕf0(980)e^{+}e^{-}\to\gamma_{\rm ISR}\phi f_{0}(980) Aubert et al. (2006, 2007), and later confirmed by the Belle, BESII, and BESIII experiments Ablikim et al. (2008); Shen et al. (2009); Lees et al. (2012); Ablikim et al. (2015, 2019a). This observation stimulated speculation that the ϕ(2170)\phi(2170) resonance might be a strangeonium counterpart of the charmonium resonance ψ(4260)\psi(4260) due to similarities in their production and decay pattern Ding and Yan (2007a). Considerable efforts have been made theoretically to understand the nature of the ϕ(2170)\phi(2170) resonance and abundant interpretations have been proposed, including a traditional ss¯s\bar{s} state Ding and Yan (2007b); Wang et al. (2012); Afonin and Pusenkov (2014); Pang (2019); Zhao et al. (2019); Li et al. (2021), an ss¯gs\bar{s}g hybrid Ding and Yan (2007a); Ho et al. (2019), an sss¯s¯ss\bar{s}\bar{s} tetra-quark state Wang (2007); Chen et al. (2008); Drenska et al. (2008); Deng et al. (2010); Ke and Li (2019); Agaev et al. (2020); Dong et al. (2020); Liu et al. (2021), a ΛΛ¯\Lambda\bar{\Lambda} bound state Klempt and Zaitsev (2007); Zhao et al. (2013); Deng et al. (2013); Dong et al. (2017); Y. L. Yang and Lu (2019) and an ordinary ϕKK¯\phi K\bar{K} or ϕf0(980)\phi f_{0}(980) resonance produced by interactions between the final state particles Torres et al. (2008); Gomez-Avila et al. (2009). The model predictions differ in both mass and width of the resonance. Further experimental studies are therefore crucial to clarify its nature.

Though many experiments have been carried out to study the ϕ(2170)\phi(2170) resonance Aubert et al. (2006, 2007); Ablikim et al. (2008); Shen et al. (2009); Lees et al. (2012); Ablikim et al. (2015, 2019a); Aubert et al. (2008), the results of the measurements vary substantially. For example, the mass and width of the ϕ(2170)\phi(2170) resonance obtained from the process e+eγISRϕπ+πe^{+}e^{-}\to\gamma_{\rm ISR}\phi\pi^{+}\pi^{-} Shen et al. (2009) shows smaller values than other experimental measurements. Recently, more studies related to the ϕ(2170)\phi(2170) resonance have been carried out by the BESIII experiment. A partial wave analysis of the e+eK+Kπ0π0e^{+}e^{-}\to K^{+}K^{-}\pi^{0}\pi^{0} process Ablikim et al. (2020a) found that the partial widths of the ϕ(2170)\phi(2170) resonance are sizable for the K(1460)+KK(1460)^{+}K^{-}, K1(1400)+KK_{1}(1400)^{+}K^{-}, and K1(1270)+KK_{1}(1270)^{+}K^{-} decay channels, but much smaller for K(892)+K(892)K^{*}(892)^{+}K^{*}(892)^{-} and K(1410)+KK^{*}(1410)^{+}K^{-}. Several theoretical expectations are challenged by the results according to Ref. Ding and Yan (2007b). Attempts have also been made to study channels with simpler topologies, including the processes e+eK+Ke^{+}e^{-}\to K^{+}K^{-}, where a resonance with a mass of (2239.2±7.1±11.3)(2239.2\pm 7.1\pm 11.3) MeV/c2c^{2} and a width of (139.8±12.3±20.6)(139.8\pm 12.3\pm 20.6) MeV is seen Ablikim et al. (2019b); e+eϕK+Ke^{+}e^{-}\to\phi K^{+}K^{-} Ablikim et al. (2019c), where a sharp enhancement is observed in the Born cross section line-shape at a center-of-mass (c.m.) energy of s\sqrt{s} = 2.2324 GeV; e+eϕηe^{+}e^{-}\to\phi\eta^{\prime} Ablikim et al. (2020b), where a resonance with a mass of (2177.5±5.1±18.6)(2177.5\pm 5.1\pm 18.6) MeV/c2c^{2} and a width of (149.0±15.6±8.9)(149.0\pm 15.6\pm 8.9) MeV is seen; e+eωηe^{+}e^{-}\to\omega\eta Ablikim et al. (2021a), a resonance with a mass of (2179±21±3)(2179\pm 21\pm 3) MeV/c2c^{2} and a width of (89±28±5)(89\pm 28\pm 5) MeV is observed with a significance of 6.1σ\sigma; e+eϕηe^{+}e^{-}\to\phi\eta Ablikim et al. (2021b), a resonant structure is observed with parameters determined to be M = (2163.5±6.2±3.02163.5\pm 6.2\pm 3.0) MeV/c2c^{2} and Γ\varGamma = (31.111.6+21.131.1^{+21.1}_{-11.6} ±\pm 1.1) MeV; and e+eKS0KL0e^{+}e^{-}\to K_{S}^{0}K_{L}^{0} Ablikim et al. (2021c), a resonant structure around 2.2 GeV is observed, with a mass and width of 2273.7±5.7±19.32273.7\pm 5.7\pm 19.3 MeV/c2c^{2} and 86±44±5186\pm 44\pm 51 MeV respectively. The Breit-Wigner parameters of ϕ(2170)\phi(2170) are not consistent between the different studies, especially concerning the width.

In addition, a resonance-like structure which we called R(2400) might exist around 2.4 GeV in the ϕπ+π\phi\pi^{+}\pi^{-} cross section line-shape. The R(2400) was first studied by the Belle Shen et al. (2009) experiment. Later, Shen and Yuan Shen and Yuan (2010) performed a fit to the R(2400) structure using the combined data of the Belle and BABAR experiments. The mass and the width are determined to be (2436 ±\pm 26) MeV/c2c^{2} and (121 ±\pm 35) MeV, respectively. However, its statistical significance is less than 3σ3\sigma. An interpretation is proposed for R(2400) as a partner state of the ϕ(2170)\phi(2170) resonance H. X. Chen and Zhu (2018). Therefore, a precise measurement of e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}is desirable to establish the mass and width of the ϕ(2170)\phi(2170) resonance and to search for the possible structure near 2.4 GeV.

In this paper, the measurement of cross sections for the process e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}at 22 center-of-mass energies (s\sqrt{s}) is reported from 2.00 to 3.08 GeV.

II Detector and data samples

The BESIII detector Ablikim et al. (2010) records symmetric e+ee^{+}e^{-} collisions provided by the BEPCII storage ring Yu et al. (2016), which operates with a peak luminosity of 1×10331\times 10^{33} cm-2s-1 in the c.m. energy range between 2.0000 and 4.9000 GeV. BESIII has collected large data samples in this energy region Ablikim et al. (2020c). The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The charged-particle momentum resolution at 1GeV/c1~{}{\rm GeV}/c is 0.5%0.5\%, and the dEE/dxx resolution is 6%6\% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end-cap) region. The time resolution in the TOF barrel region is 68 ps, while that in the end-cap region is 110 ps. The end-cap TOF system was upgraded in 2015 using multi-gap resistive plate chamber technology, providing a time resolution of 60 ps Li et al. (2017); Guo et al. (2017); Cao et al. (2020).

Simulated Monte Carlo (MC) samples of signal and background processes are produced to optimize the event selection criteria, determine the detection efficiency and estimate the background contamination. The response of the detector is reproduced using a geant4-based Agostinelli et al. (2003) MC simulation software package, which includes the geometric and material description of the BESIII detector, the detector response and digitization models.

Background samples of QED processes are produced with the babayaga G. Balossini and Phiccinini (2006) generator and inclusive hadronic processes are generated with the luarlw Andersson and Hu (1999) generator.

The signal MC samples of the process e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-} are generated from a uniform distribution in phase space (PHSP) reweighted by an amplitude analysis. We simulate one million events at each energy point. The signal MC samples are used to determine the reconstruction efficiency, and the correction factors for ISR and vacuum polarization (VP).

III Event Selection and Background Analysis

Signal events of the e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-} process are reconstructed via the ϕK+K\phi\to K^{+}K^{-} decay. Charged track candidates are reconstructed from hits in the MDC and need to satisfy |cosθ|<0.93|\cos\theta|<0.93, where θ\theta is the polar angle with respect to the symmetry axis of the MDC. The closest approach to the interaction point is required to be less than 10 cm along the symmetry axis and less than 1 cm in the perpendicular plane. Combined TOF and dEE/dxx information is used to perform the particle identification (PID), obtaining probabilities for the π,K\pi,K and pp hypotheses. The particle type with the largest probability is assigned to each track. Since the tracking efficiency decreases sharply in the low momentum region below 0.5 GeV/cc, and most kaon candidates are expected to have a low momentum, one kaon is allowed to be missing in this study to increase the selection efficiency. Including events with one missing kaon increases number of signal events by factor of 3 at 2.00 GeV and 30% at 3.08 GeV. A candidate event is, therefore, expected to have two pions and at least one kaon reconstructed.

A vertex fit to the π+πK±\pi^{+}\pi^{-}K^{\pm} combination is then applied and required to have converged for an event to be kept for further analysis. For events with four charged tracks, both π+πK+\pi^{+}\pi^{-}K^{+} and π+πK\pi^{+}\pi^{-}K^{-} combinations are tested. Under the hypothesis that one kaon is missing, a one-constraint (1C) kinematic fit is performed to the combinations that are kept after the vertex fit. For each event, the π+πK±\pi^{+}\pi^{-}K^{\pm} combination with the smallest χ2\chi^{2} of the 1C kinematic fit (χ1C2\chi^{2}_{\rm 1C}(π+πKKmiss\pi^{+}\pi^{-}KK_{miss})) is retained. Finally, events with χ1C210\chi^{2}_{\rm 1C}\geq 10 are rejected. After applying the selection criteria, we use the momenta of the particles obtained from the kinematic fit in the further analysis.

Events passing the selection criteria described above are shown in Fig. 1 for the data at s=2.1250\sqrt{s}=2.1250 GeV. The invariant mass of the K+KK^{+}K^{-} pairs shows a clear signal band around the ϕ\phi mass. The enhancement around 0.98 GeV/c2c^{2} in the π+π\pi^{+}\pi^{-} invariant mass indicates a correlation between f0(980)f_{0}(980) and ϕ\phi production due to the process e+eϕf0(980)e^{+}e^{-}\to\phi f_{0}(980).

\begin{overpic}[width=203.80193pt]{figure1.pdf} \end{overpic}
Figure 1: Distribution of Mπ+πM_{\pi^{+}\pi^{-}} versus MK+KM_{K^{+}K^{-}} for the data at s=2.1250\sqrt{s}=2.1250 GeV.

The distribution of the K+KK^{+}K^{-} invariant mass is shown in Fig. 2. The range of |MK+Kmϕ|<0.01|M_{K^{+}K^{-}}-m_{\phi}|<0.01 GeV/c2c^{2} is regarded as the signal region in the following study, where mϕm_{\phi} = 1019.461 MeV/c2c^{2} is the world average ϕ\phi mass from the PDG Workman et al. (2022). The sideband regions, defined as [0.995,1.005] and [1.035,1.045] GeV/c2c^{2}, are used to study non-ϕ\phi background contributions.

\begin{overpic}[width=241.84842pt,height=184.9429pt,angle={0}]{figure2.pdf} \end{overpic}
Figure 2: Fit to the MK+KM_{K^{+}K^{-}} distribution for the data at s=2.1250\sqrt{s}=2.1250 GeV: the signal is described by a P-wave Breit-Wigner (BW) function convolved with a Gaussian function, and the background is described by a reversed ARGUS function. The range between the two red vertical solid lines is regarded as signal region, and the ranges between the two blue vertical dashed lines on each side of the signal peak are regarded as the sideband regions.

An accumulation of events exists around the mass of the ρ\rho meson in Fig 1. This indicates a non-negligible background contribution from the e+eρK+Ke^{+}e^{-}\to\rho K^{+}K^{-} process. Based on a study of the ϕ\phi sideband and an analysis of the inclusive MC sample, the e+eK(892)K±π±e^{+}e^{-}\to K^{*}(892)K^{\pm}\pi^{\pm} process is found to be the dominant background source. Peaking background in the ϕ\phi signal region is negligible.

IV Signal Yields

The e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-} signal yields are obtained from unbinned maximum likelihood fits to the K+KK^{+}K^{-} invariant mass in the region [2mK±2\cdot m_{K^{\pm}}, 1.08] GeV/c2c^{2}. In the fit, the ϕ\phi peak is modeled as a P-wave BW function convolved with a Gaussian function to account for a difference in detector resolution and an offset in calibration between data and the MC simulation Ablikim et al. (2019c). The P-wave BW function is defined in the form

f(m)=|A(m)|2p2l+1,f(m)=|A(m)|^{2}\cdot p^{2l+1}, (1)
A(m)=1m2mϕ2+imΓ(m)B(p)B(p),A(m)=\frac{1}{m^{2}-m_{\phi}^{2}+im\varGamma(m)}\frac{B(p)}{B(p^{\prime})}, (2)
Γ(m)=(pp)2l+1(mϕm)Γϕ[B(p)B(p)],\varGamma(m)={\left(\frac{p}{p^{\prime}}\right)^{2l+1}\left(\frac{m_{\phi}}{m}\right)\varGamma_{\phi}\left[\frac{B(p)}{B(p^{\prime})}\right]}, (3)
B(p)=11+(Rp)2,B(p)=\frac{1}{\sqrt{1+(Rp)^{2}}}, (4)

where pp is the momentum of the kaon in the rest frame of the K+KK^{+}K^{-} system, pp^{\prime} is the momentum of the kaon at the ϕ\phi peak mass, and Γϕ\varGamma_{\phi} is the width of the ϕ\phi resonance Workman et al. (2022). The angular momentum (ll) is equal to one, B(p)B(p) is the Blatt-Weisskopf form factor, and R=3R=3 GeV-1 is the radius of the centrifugal barrier Hippel and Quigg (1972).

Since no peaking background is expected in the signal area, the background is parameterized with a reversed ARGUS function Albrecht et al. (1994). The parameters of the Gaussian function and the reversed ARGUS function are determined in a fit to the data. The fit result at s=2.1250\sqrt{s}=2.1250 GeV is shown in Fig. 2. We obtain a similar fit quality for all center-of-mass energies.

V Cross section calculation

The dressed cross section of the process e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}is calculated by:

σ=Nobs(1+δγ)ϵ,\sigma=\frac{N^{\rm obs}}{\mathcal{L}\cdot(1+\delta^{\gamma})\cdot\epsilon\cdot\cal{B}}, (5)

where NobsN^{\rm obs} is the signal yield; \mathcal{L} is the integrated luminosity; (1+δγ)(1+\delta^{\gamma}) is the ISR correction factor; ϵ\epsilon is the detection efficiency and \cal B is the branching fraction of the decay ϕK+K\phi\to K^{+}K^{-}. The ISR correction factor is handled by generator conexc Ping et al. (2016), depending on the input cross sections. The lowest-order Born cross section is defined as σB=σD/(1/|1Π|2)\sigma^{\rm B}=\sigma^{\rm D}/(1/|1-\Pi|^{2}), where 1/|1Π|21/|1-\Pi|^{2} is the VP correction factor, available from F. Jegerlehner group Jegerlehner (1986).

To adequately describe the data in our MC simulation, the signal MC is generated from a uniform distribution in PHSP reweighted by an amplitude analysis. The quasi-two-body decay amplitudes in the sequential decays are constructed using covariant tensor amplitudes Zou and Bugg (2003). The e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}process is found to be well described by four subprocesses: e+eϕf0(980),ϕσ,ϕf0(1370)e^{+}e^{-}\to\phi f_{0}(980),~{}\phi\sigma,~{}\phi f_{0}(1370) and ϕf2(1270)\phi f_{2}(1270). The intermediate states are parametrized with relativistic BW functions, except for the σ\sigma and f0(980)f_{0}(980), which are described with using the model described in Ablikim et al. (2007) and by a Flatte´\acute{e} formula Ablikim et al. (2004), respectively. The resonance parameters of the f0(980)f_{0}(980) and the wide resonance σ\sigma in the fit are fixed to those in Ref. Ablikim et al. (2004) and Refs. Ablikim et al. (2004, 2007), respectively, and those of other intermediate states are fixed to the PDG values. The relative magnitudes and phases of the individual intermediate processes are determined by performing an unbinned maximum likelihood fit using MINUIT James and Roos (1975). To describe the background below the ϕ\phi peak, sideband events are added to the likelihood with negative weights. For a few low-statistic points, the fitted parameters obtained at the most adjacent high-statistic energies are applied.

The reweighted signal MC simulation has reasonable agreement with the experimental data at all center-of-mass energies. The comparison of the MC simulation and experimental data in the signal region for the M(π+π)M(\pi^{+}\pi^{-}) distribution at s=2.1250GeV\sqrt{s}=2.1250~{}{\rm GeV} is shown in Fig. 3.

\begin{overpic}[width=216.81pt]{figure3.pdf} \end{overpic}
Figure 3: The invariant mass distribution of the π+π\pi^{+}\pi^{-} candidates for the data at s=2.1250\sqrt{s}=2.1250 GeV. The black dots with uncertainties are experimental data, the blue dashed line is the reweighted signal MC distribution, the green dash-dotted line is the non-ϕ\phi background estimated from the ϕ\phi sideband region and the red solid line is the sum of the former two distributions.

The efficiency ϵ\epsilon and the ISR correction factor (1+δγ1+\delta^{\gamma}) depend on the input cross section line-shape and need to be determined using an iterative procedure. The BABAR result Lees et al. (2012) is used as the initial input cross section and the updated cross section is obtained through the resulting MC simulation. This procedure is repeated until the measured cross section converges. Dressed cross sections for e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}at each energy point are listed in Table 1, together with Born cross sections and VP correction factors. The measured dressed cross sections are shown in Fig. 4.

\begin{overpic}[width=216.81pt]{figure4.pdf} \end{overpic}
Figure 4: The measured dressed cross section of the process e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}. Red dots with errorbars represent the measurement from BESIII. Yellow downside triangles and Blue upside triangles represent the measurements from BABAR and Belle, respectively. The uncertainties incorporate statistical and uncorrelated systematic uncertainties.
Table 1: Cross sections of the process e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}at different center-of-mass energies. The \mathcal{L} is the integrated luminosity; NobsN^{\rm obs} is the yield of signal events; 1+δγ1+\delta^{\gamma} is the ISR correction factor; 1/[1Π]21/[1-\Pi]^{2} is the VP correction factor; ϵ\epsilon is the detection efficiency; σB\sigma^{\rm B} is the Born cross section and σD\sigma^{\rm D} is the dressed cross section. The uncertainties are statistical, uncorrelated systematic and correlated systematic uncertainties, respectively.
s\sqrt{s} (GeV) \mathcal{L} (pb-1) NobsN^{\rm obs} (1+δγ1+\delta^{\gamma}) 1/|1Π|21/|1-\Pi|^{2} ϵ\epsilon σB\sigma^{\rm B}(pb) σD\sigma^{\rm D}(pb)
2.0000 10.1 577 ±\pm 46 0.98 1.04 0.34 342.1 ±\pm 27.7 ±\pm 19.3 ±\pm 15.3 354.7 ±\pm 28.8 ±\pm 20.1 ±\pm 15.9
2.0500 3.34 191 ±\pm 24 0.96 1.04 0.38 309.4 ±\pm 39.7 ±\pm 14.9 ±\pm 13.8 321.2 ±\pm 41.3 ±\pm 15.5 ±\pm 14.4
2.1000 12.2 1100 ±\pm 51 0.95 1.04 0.40 470.0 ±\pm 21.8 ±\pm 11.8 ±\pm 21.0 488.3 ±\pm 22.7 ±\pm 12.2 ±\pm 21.8
2.1250 108 9372 ±\pm 144 0.95 1.04 0.42 427.9 ±\pm 6.6 ±\pm 12.7 ±\pm 19.1 444.6 ±\pm 6.8 ±\pm 13.2 ±\pm 19.9
2.1500 2.84 220 ±\pm 20 0.96 1.04 0.37 419.9 ±\pm 38.2 ±\pm 25.6 ±\pm 18.8 436.7 ±\pm 39.7 ±\pm 26.6 ±\pm 19.5
2.1750 10.6 760 ±\pm 39 1.00 1.04 0.37 372.3 ±\pm 19.1 ±\pm 17.2 ±\pm 16.7 387.2 ±\pm 19.9 ±\pm 17.9 ±\pm 17.3
2.2000 13.7 706 ±\pm 38 1.08 1.04 0.37 257.0 ±\pm 13.9 ±\pm 15.9 ±\pm 11.5 267.2 ±\pm 14.5 ±\pm 16.5 ±\pm 12.0
2.2324 11.9 435 ±\pm 29 1.19 1.04 0.33 180.6 ±\pm 12.2 ±\pm 12.4 ±\pm 8.1 188.0 ±\pm 12.7 ±\pm 12.9 ±\pm 8.4
2.3094 21.1 587 ±\pm 37 1.19 1.04 0.36 127.5 ±\pm 8.2 ±\pm 3.3 ±\pm 5.7 132.7 ±\pm 8.5 ±\pm 3.4 ±\pm 5.9
2.3864 22.5 697 ±\pm 37 1.13 1.04 0.39 137.6 ±\pm 7.3 ±\pm 5.4 ±\pm 6.2 143.3 ±\pm 7.6 ±\pm 5.7 ±\pm 6.4
2.3960 66.9 1977 ±\pm 65 1.13 1.04 0.39 131.1 ±\pm 4.3 ±\pm 5.1 ±\pm 5.9 136.5 ±\pm 4.5 ±\pm 5.3 ±\pm 6.1
2.5000 1.10 18 ±\pm 5 1.21 1.04 0.38 72.8 ±\pm 20.2 ±\pm 3.5 ±\pm 3.3 75.7 ±\pm 21.1 ±\pm 3.7 ±\pm 3.4
2.6444 33.7 501 ±\pm 33 1.31 1.04 0.34 65.9 ±\pm 4.4 ±\pm 3.8 ±\pm 2.9 68.5 ±\pm 4.5 ±\pm 3.9 ±\pm 3.1
2.6464 34.0 423 ±\pm 29 1.31 1.04 0.34 55.3 ±\pm 3.9 ±\pm 3.1 ±\pm 2.5 57.4 ±\pm 4.0 ±\pm 3.3 ±\pm 2.6
2.7000 1.03 22 ±\pm 6 1.64 1.04 0.33 77.4 ±\pm 21.5 ±\pm 4.2 ±\pm 3.5 80.4 ±\pm 22.3 ±\pm 4.4 ±\pm 3.6
2.8000 1.01 11 ±\pm 4 1.45 1.04 0.31 49.8 ±\pm 17.6 ±\pm 2.0 ±\pm 2.2 51.6 ±\pm 18.2 ±\pm 2.0 ±\pm 2.3
2.9000 105 687 ±\pm 37 1.45 1.03 0.30 29.3 ±\pm 1.6 ±\pm 1.2 ±\pm 1.3 30.3 ±\pm 1.7 ±\pm 1.3 ±\pm 1.4
2.9500 15.9 114 ±\pm 14 1.47 1.03 0.30 32.7 ±\pm 4.1 ±\pm 2.0 ±\pm 1.5 33.6 ±\pm 4.3 ±\pm 2.1 ±\pm 1.5
2.9810 16.1 72 ±\pm 15 1.48 1.02 0.30 20.4 ±\pm 4.3 ±\pm 1.2 ±\pm 0.9 20.9 ±\pm 4.4 ±\pm 1.2 ±\pm 0.9
3.0000 15.9 74 ±\pm 13 1.49 1.02 0.29 21.8 ±\pm 3.9 ±\pm 1.6 ±\pm 1.0 22.3 ±\pm 4.0 ±\pm 1.6 ±\pm 1.0
3.0200 17.3 78 ±\pm 12 1.49 1.01 0.29 21.1 ±\pm 3.3 ±\pm 1.3 ±\pm 0.9 21.4 ±\pm 3.3 ±\pm 1.3 ±\pm 1.0
3.0800 126 576 ±\pm 34 1.59 0.92 0.27 23.5 ±\pm 1.4 ±\pm 1.0 ±\pm 1.1 21.5 ±\pm 1.3 ±\pm 0.9 ±\pm 1.0

VI Systematic Uncertainty

Systematic uncertainties in the cross section measurement come from the luminosity measurement, tracking efficiency, PID efficiency, kinematic fit, signal and background shape, fitting range, radiative correction, MC sample size and the branching fraction of the decay ϕK+K\phi\to K^{+}K^{-}.

  1. 1.

    The integrated luminosity is measured using large angle Bhabha events, with an uncertainty of 1.0%1.0\% Ablikim et al. (2017).

  2. 2.

    The tracking efficiency uncertainty is estimated to be 1.0%1.0\% for each track Ablikim et al. (2019c). Thus, 3.0%3.0\% is taken as the systematic uncertainty for the two pion and one kaon tracks.

  3. 3.

    The PID efficiency uncertainty is estimated to be 1.0%1.0\% per π±\pi^{\pm} and 1.0%1.0\% per K±K^{\pm} Ablikim et al. (2019c). So 3.0%3.0\% is taken as the systematic uncertainty on the PID efficiency.

  4. 4.

    The uncertainty in (ϕK+K){\cal B}(\phi\to K^{+}K^{-}) is taken from the PDG Workman et al. (2022).

  5. 5.

    The uncertainty from the kinematic fit comes from the inconsistency between the data and MC simulation of the helix parameters. Following the procedure described in Ref. Ablikim et al. (2013), the helix parameters for the charged tracks of MC samples are corrected to eliminate the inconsistency during uncertainty study. The agreement of χ2\chi^{2} distributions between data and the MC simulation is significantly improved. Half of the difference between the selection efficiencies with and without the helix parameter correction is taken as the systematic uncertainty.

  6. 6.

    Uncertainties due to the choice of signal shape, background shape and fitting range are estimated by introducing the changes below. The ϕ\phi signal is described by a P-wave BW function convolved with a Gaussian function. To estimate the signal shape uncertainty, the signal shape is changed to the shape from the signal MC simulation convolved with a Gaussian function and the resulting difference is taken as the uncertainty from the signal model. To estimate the background model uncertainty the background function is modified from a reversed ARGUS function to the function of f(M)=(MMa)c(MbM)df(M)=(M-M_{a})^{c}(M_{b}-M)^{d}, where MaM_{a} and MbM_{b} are the lower and upper edges of the mass distribution while cc and dd are the parameters which were determined in the fit. The fit range is extended from [0.98, 1.08] GeV/c2c^{2} to [0.98, 1.10] GeV/c2c^{2} to estimate the fit-range uncertainty. The differences between the number of signal events before and after the changes are taken as the systematic uncertainties.

  7. 7.

    The uncertainty due to ϕ\phi shape is examined by using an alternative fit involving the interferences of ϕ\phi with ω\omega, ρ\rho and their excited states. The change of the fitted signal yield, 0.3%, is assigned as a systematic uncertainty.

  8. 8.

    Uncertainties in the possible distortions of the cross section line-shape introduce systematic uncertainties in the radiative correction factor and the efficiency. These are estimated by using the cross section line-shape function σ=σ(s;p1,p2,)\sigma=\sigma(\sqrt{s};p_{1},p_{2},...) obtained from the iteration described in Sec. V, where pi(i=1,2,)p_{i}(i=1,2,...) are the parameters which are determined in the fit. All parameters are randomly varied within their uncertainties and the resulting parametrization of the line-shape is used to recalculate (1 + δ\delta), ϵ\epsilon and the corresponding cross sections. This procedure is repeated 1000 times and the standard deviation of the resulting cross sections is taken as a systematic uncertainty.

  9. 9.

    The uncertainty from the MC sample size is estimated by the number of generated events.

The first four sources of uncertainty are correlated between different energies, which give a total 4.4% contribution to each energies. Other systematic uncertainties are uncorrelated.

VII Line-shape fitting

In the cross section lineshape of the e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}process, clear structure can be seen around 2.1 GeV, which is identified as the ϕ(2170)\phi(2170) resonance. To parameterize its mass and width, the cross sections are fitted by a Breit-Wigner function represent ϕ(2170)\phi(2170) and a continuum contribution:

σ=|fr(s)ϕP+fc(s)|2,\displaystyle\sigma=|f_{r}(\sqrt{s})\phi_{\rm P}+f_{c}(\sqrt{s})|^{2}, (6)
fr(s)=Mrs12πΓeeBrΓrsM2+iMrΓ(s)Φ(s)Φ(Mr),\displaystyle f_{r}(\sqrt{s})=\frac{M_{r}}{\sqrt{s}}\frac{\sqrt{12\pi\varGamma_{ee}Br\varGamma_{r}}}{s-M^{2}+iM_{r}\varGamma(\sqrt{s})}\sqrt{\frac{\varPhi(\sqrt{s})}{\varPhi(M_{r})}},
fc(s)=(p0+p1s+p2s)Φ(s),\displaystyle f_{c}(\sqrt{s})=(p_{0}+p_{1}\cdot\sqrt{s}+p_{2}\cdot s)\cdot\sqrt{\varPhi(\sqrt{s})},

where σ\sigma represents the cross sections; frf_{r} and fcf_{c} represent the contributions from resonance and continuum shapes; MrM_{r} and Γr\varGamma_{r} are the mass and width of the resonant structure; ΓeeBr\varGamma_{ee}Br is the electric partial width times the branching fraction of the resonance decaying to corresponding intermediate states; Φ\varPhi is the phase space factor of the process e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}calculated by using the method in Ref. Lees et al. (2012); Γ(s)=Γr(Φ(s)/Φ(Mr))\varGamma(\sqrt{s})=\varGamma_{r}\cdot(\varPhi(\sqrt{s})/\varPhi(M_{r})) is energy-dependent width; ϕP\phi_{\rm P} is the phase angle between two components and p0p_{0}, p1p_{1} and p2p_{2} represent free parameters for the continuum shape.

In the fit of cross section lineshapes, the minimized χ2\chi^{2} constructed by incorporating both statistical and systematical uncertainties, as described in Ref. D’Agostini (1994), after considering the correlated and uncorrelated terms as formula

χ2=ΔXTM1ΔX,\displaystyle\chi^{2}=\varDelta X^{T}M^{-1}\varDelta X, (7)

where ΔX\varDelta X is the difference between the measured cross section and the expected value calculated by function at each c.m. energy. The MM is the covariance matrix of elements

Mij={(Δisys)2+(Δista)2,i=j(σiεs)(σjεs),ij,\displaystyle M_{ij}=\begin{cases}\left(\varDelta_{i}^{\rm sys}\right)^{2}+\left(\varDelta_{\mathrm{i}}^{\rm sta}\right)^{2},i=j\\ \left(\sigma_{i}\cdot\varepsilon_{s}\right)\cdot\left(\sigma_{j}\cdot\varepsilon_{s}\right),i\neq j\\ \end{cases}, (8)

where the index i(j)i(j) represents the i(j)i(j)-th data set; the Δista\varDelta^{\rm sta}_{i} is the asymmetrically statistical uncertainty for ii-th data set; the Δisys\varDelta^{\rm sys}_{i} is the total systematic uncertainty and the εs\varepsilon_{s} is the relative correlated systematic uncertainty.

The fit results are shown in Fig. 5 and Table 2.

\begin{overpic}[width=138.76157pt]{figure5.pdf} \put(80.0,30.0){\small{(a)}} \end{overpic}\begin{overpic}[width=138.76157pt]{figure6.pdf} \put(80.0,30.0){\small{(b)}} \end{overpic}
\begin{overpic}[width=138.76157pt]{figure7.pdf} \put(80.0,30.0){\small{(c)}} \end{overpic}
Figure 5: The fit results of the cross sections of the process e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}with events in (a) full Mπ+πM_{\pi^{+}\pi^{-}} range, (b) Mπ+π[0.85,1.1]GeV/c2M_{\pi^{+}\pi^{-}}\in[0.85,1.1]~{}{\rm GeV}/c^{2}, and (c) Mπ+π[0.85,1.1]GeV/c2M_{\pi^{+}\pi^{-}}\notin[0.85,1.1]~{}{\rm GeV}/c^{2} GeV/c2/c^{2}. The red dots with error bars represent the obtained cross sections and the uncertainties incorporate statistical and uncorrelated systematic uncertainties. In (a) and (b), the purple solid line represnets the fit function and the green dotted line represents the contribution from ϕ(2170)\phi(2170). The fits in (a) and (b) show the constructive interference results within two parallel solutions.

To further explore the properties of ϕ(2170)\phi(2170), we examine the cross section lineshape with events within Mπ+π[0.85,1.1]GeV/c2M_{\pi^{+}\pi^{-}}\in[0.85,1.1]~{}{\rm GeV}/c^{2}, with the contribution of the e+eϕf0(980)e^{+}e^{-}\to\phi f_{0}(980) subprocess enhanced. The adjusted cross sections (σ\sigma^{*}) are fitted with the same method, with the phase space factors are replaced by those of the process e+eϕf0(980)e^{+}e^{-}\to\phi f_{0}(980) Lees et al. (2012). The results of the fit to this cross section lineshape are shown in Fig. 5(b) and Table 2.

Table 2: Results of the fits to the cross sections of e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}within full Mπ+πM_{\pi^{+}\pi^{-}} range and within Mπ+π[0.85,1.1]GeV/c2M_{\pi^{+}\pi^{-}}\in[0.85,1.1]~{}{\rm GeV}/c^{2}, where mass is reported inMeV/c2~{}{\rm MeV}/c^{2}; width is reported inMeV~{}{\rm MeV}; ϕPD\phi_{\rm P}^{\rm D} and ϕPC\phi_{\rm P}^{\rm C} are phase angles in radian between two components with destructive and constructive interference, respectively.
Parameter σ\sigma σ\sigma^{*}
Mr(ϕ(2170))M_{r}(\phi(2170)) 2171±122171\pm 12 2178±202178\pm 20
Γr(ϕ(2170))\varGamma_{r}(\phi(2170)) 115±28115\pm 28 140±36140\pm 36
ϕPD\phi_{\rm P}^{\rm D} 1.01±0.141.01\pm 0.14 1.13±0.061.13\pm 0.06
ϕPC\phi_{\rm P}^{\rm C} 1.87±0.16-1.87\pm 0.16 1.71±0.12-1.71\pm 0.12
χ2/ndf\chi^{2}/{\rm ndf} 28/1528/15 23/1523/15

In both fitting procedures, two multi-solutions are found with equal fit quality (χ2/ndf\chi^{2}/{\rm ndf}). The figures above only show one of them. The statistical significance of ϕ(2170)\phi(2170) is greater than 10σ10\sigma for each solution. The uncertainties associated with the fit procedure include effects from the choice of continuum shape. Since the ϕf0(980)\phi f_{0}(980) enhanced cross sections are closer to the nature of ϕ(2170)\phi(2170), the fit result with Mπ+π[0.85,1.1]GeV/c2M_{\pi^{+}\pi^{-}}\in[0.85,1.1]~{}{\rm GeV}/c^{2} is taken as the nominal result. To estimate the systematic uncertainty, an alternative fit is carried out by using an exponential function to describe continuum shape. The difference between the nominal and alternative fit results are considered as the systematic uncertainty. The systematic uncertainties of the ϕ(2170)\phi(2170) resonance mass and width are obtained to be 5MeV/c25~{}{\rm MeV}/c^{2} and 16MeV16~{}{\rm MeV}.

For these two fits, we have also tried to fit the cross section lineshapes by adding R(2400) in the fit. However, the statistical significance of R(2400) is no more than 2σ2\sigma.

In addition, we examined the cross section lineshape of e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-} with events in Mπ+π[0.85,1.1]GeV/c2M_{\pi^{+}\pi^{-}}\notin[0.85,1.1]~{}{\rm GeV}/c^{2}, as shown in Fig. 5. A similar fit is also performed on this lineshape, but no resonance structure with statistical significance greater than 3σ3\sigma is found.

VIII Conclusion

In summary, the cross sections of the e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-}~{}process are measured using data samples collected with the BESIII detector at 22 center-of-mass energies from 2.00 GeV to 3.08 GeV. The measured cross section is consistent with previous results from the BABAR Lees et al. (2012), Belle Shen et al. (2009) and BESIII Ablikim et al. (2019d) experiments, but with improved precision.

In the cross section lineshapes of e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-} in full Mπ+πM_{\pi^{+}\pi^{-}} range and in Mπ+π[0.85,1.1]GeV/c2M_{\pi^{+}\pi^{-}}\notin[0.85,1.1]~{}{\rm GeV}/c^{2}, the ϕ(2170)\phi(2170) resonance is clearly observed. For the last case, its mass and width are determined to be M=2178±20±5MeV/c2M=2178~{}\pm~{}20~{}\pm~{}5~{}{\rm MeV}/c^{2} and Γ=140±36±16MeV\varGamma=140~{}\pm~{}36~{}\pm~{}16~{}{\rm MeV}, respectively, where the first uncertainties are statistical and the second ones are systematic. The central value of the ϕ(2170)\phi(2170) width obtained in this work is consistent with existing results Ablikim et al. (2008); Shen et al. (2009); Lees et al. (2012); Ablikim et al. (2015, 2019a). However, no significant ϕ(2170)\phi(2170) is observed in the cross section lineshape of e+eϕπ+πe^{+}e^{-}\to\phi\pi^{+}\pi^{-} with Mπ+π[0.85,1.1]GeV/c2M_{\pi^{+}\pi^{-}}\notin[0.85,1.1]~{}{\rm GeV}/c^{2}.

In addition, no clear structure around 2.4 GeV has been found in this analysis. Since this structure at the same energy has been seen in the K+Kf0(980)K^{+}K^{-}f_{0}(980) mode with f0(980)π+πf_{0}(980)\to\pi^{+}\pi^{-} and π0π0\pi^{0}\pi^{0} Aubert et al. (2006, 2007), a future study of this channel with an amplitude analysis will be helpful to improve knowledge of the R(2400) state.

Acknowledgements.
The BESIII collaboration thanks the staff of BEPCII, the IHEP computing center and the super computing center of USTC for their strong support. This work is supported in part by National Key Basic Research Program of China under Contracts Nos. 2020YFA0406400, 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12061131003, 11705192, 11950410506, 12061131003; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1732263, U1832207, U1832103, U2032111; CAS Key Research Program of Frontier Sciences under Contract No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union Horizon 2020 research and innovation programme under Contract No. Marie Sklodowska-Curie grant agreement No 894790; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, FOR 2359, FOR 2359, GRK 214; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; Olle Engkvist Foundation under Contract No. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069

References