This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Measurement of Branching Fractions of Singly Cabibbo-suppressed Decays 𝚲c+𝚺𝟎K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and 𝚺+KS𝟎\Sigma^{+}K_{S}^{0}

M. Ablikim1, M. N. Achasov11,b, P. Adlarson70, M. Albrecht4, R. Aliberti31, A. Amoroso69A,69C, M. R. An35, Q. An66,53, X. H. Bai61, Y. Bai52, O. Bakina32, R. Baldini Ferroli26A, I. Balossino1,27A, Y. Ban42,g, V. Batozskaya1,40, D. Becker31, K. Begzsuren29, N. Berger31, M. Bertani26A, D. Bettoni27A, F. Bianchi69A,69C, J. Bloms63, A. Bortone69A,69C, I. Boyko32, R. A. Briere5, A. Brueggemann63, H. Cai71, X. Cai1,53, A. Calcaterra26A, G. F. Cao1,58, N. Cao1,58, S. A. Cetin57A, J. F. Chang1,53, W. L. Chang1,58, G. Chelkov32,a, C. Chen39, Chao Chen50, G. Chen1, H. S. Chen1,58, M. L. Chen1,53, S. J. Chen38, S. M. Chen56, T. Chen1, X. R. Chen28,58, X. T. Chen1, Y. B. Chen1,53, Z. J. Chen23,h, W. S. Cheng69C, S. K. Choi50, X. Chu39, G. Cibinetto27A, F. Cossio69C, J. J. Cui45, H. L. Dai1,53, J. P. Dai73, A. Dbeyssi17, R. E. de Boer4, D. Dedovich32, Z. Y. Deng1, A. Denig31, I. Denysenko32, M. Destefanis69A,69C, F. De Mori69A,69C, Y. Ding36, J. Dong1,53, L. Y. Dong1,58, M. Y. Dong1,53,58, X. Dong71, S. X. Du75, P. Egorov32,a, Y. L. Fan71, J. Fang1,53, S. S. Fang1,58, W. X. Fang1, Y. Fang1, R. Farinelli27A, L. Fava69B,69C, F. Feldbauer4, G. Felici26A, C. Q. Feng66,53, J. H. Feng54, K Fischer64, M. Fritsch4, C. Fritzsch63, C. D. Fu1, H. Gao58, Y. N. Gao42,g, Yang Gao66,53, S. Garbolino69C, I. Garzia27A,27B, P. T. Ge71, Z. W. Ge38, C. Geng54, E. M. Gersabeck62, A Gilman64, K. Goetzen12, L. Gong36, W. X. Gong1,53, W. Gradl31, M. Greco69A,69C, L. M. Gu38, M. H. Gu1,53, Y. T. Gu14, C. Y Guan1,58, A. Q. Guo28,58, L. B. Guo37, R. P. Guo44, Y. P. Guo10,f, A. Guskov32,a, T. T. Han45, W. Y. Han35, X. Q. Hao18, F. A. Harris60, K. K. He50, K. L. He1,58, F. H. Heinsius4, C. H. Heinz31, Y. K. Heng1,53,58, C. Herold55, M. Himmelreich31,d, G. Y. Hou1,58, Y. R. Hou58, Z. L. Hou1, H. M. Hu1,58, J. F. Hu51,i, T. Hu1,53,58, Y. Hu1, G. S. Huang66,53, K. X. Huang54, L. Q. Huang67, L. Q. Huang28,58, X. T. Huang45, Y. P. Huang1, Z. Huang42,g, T. Hussain68, N Hüsken25,31, W. Imoehl25, M. Irshad66,53, J. Jackson25, S. Jaeger4, S. Janchiv29, E. Jang50, J. H. Jeong50, Q. Ji1, Q. P. Ji18, X. B. Ji1,58, X. L. Ji1,53, Y. Y. Ji45, Z. K. Jia66,53, H. B. Jiang45, S. S. Jiang35, X. S. Jiang1,53,58, Y. Jiang58, J. B. Jiao45, Z. Jiao21, S. Jin38, Y. Jin61, M. Q. Jing1,58, T. Johansson70, N. Kalantar-Nayestanaki59, X. S. Kang36, R. Kappert59, M. Kavatsyuk59, B. C. Ke75, I. K. Keshk4, A. Khoukaz63, P. Kiese31, R. Kiuchi1, R. Kliemt12, L. Koch33, O. B. Kolcu57A, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc40,70, W. Kühn33, J. J. Lane62, J. S. Lange33, P. Larin17, A. Lavania24, L. Lavezzi69A,69C, Z. H. Lei66,53, H. Leithoff31, M. Lellmann31, T. Lenz31, C. Li43, C. Li39, C. H. Li35, Cheng Li66,53, D. M. Li75, F. Li1,53, G. Li1, H. Li47, H. Li66,53, H. B. Li1,58, H. J. Li18, H. N. Li51,i, J. Q. Li4, J. S. Li54, J. W. Li45, Ke Li1, L. J Li1, L. K. Li1, Lei Li3, M. H. Li39, P. R. Li34,j,k, S. X. Li10, S. Y. Li56, T. Li45, W. D. Li1,58, W. G. Li1, X. H. Li66,53, X. L. Li45, Xiaoyu Li1,58, H. Liang66,53, H. Liang1,58, H. Liang30, Y. F. Liang49, Y. T. Liang28,58, G. R. Liao13, L. Z. Liao45, J. Libby24, A. Limphirat55, C. X. Lin54, D. X. Lin28,58, T. Lin1, B. J. Liu1, C. X. Liu1, D. Liu17,66, F. H. Liu48, Fang Liu1, Feng Liu6, G. M. Liu51,i, H. Liu34,j,k, H. B. Liu14, H. M. Liu1,58, Huanhuan Liu1, Huihui Liu19, J. B. Liu66,53, J. L. Liu67, J. Y. Liu1,58, K. Liu1, K. Y. Liu36, Ke Liu20, L. Liu66,53, Lu Liu39, M. H. Liu10,f, P. L. Liu1, Q. Liu58, S. B. Liu66,53, T. Liu10,f, W. K. Liu39, W. M. Liu66,53, X. Liu34,j,k, Y. Liu34,j,k, Y. B. Liu39, Z. A. Liu1,53,58, Z. Q. Liu45, X. C. Lou1,53,58, F. X. Lu54, H. J. Lu21, J. G. Lu1,53, X. L. Lu1, Y. Lu7, Y. P. Lu1,53, Z. H. Lu1, C. L. Luo37, M. X. Luo74, T. Luo10,f, X. L. Luo1,53, X. R. Lyu58, Y. F. Lyu39, F. C. Ma36, H. L. Ma1, L. L. Ma45, M. M. Ma1,58, Q. M. Ma1, R. Q. Ma1,58, R. T. Ma58, X. Y. Ma1,53, Y. Ma42,g, F. E. Maas17, M. Maggiora69A,69C, S. Maldaner4, S. Malde64, Q. A. Malik68, A. Mangoni26B, Y. J. Mao42,g,g, Z. P. Mao1, S. Marcello69A,69C, Z. X. Meng61, J. G. Messchendorp12,59, G. Mezzadri1,27A, H. Miao1, T. J. Min38, R. E. Mitchell25, X. H. Mo1,53,58, N. Yu. Muchnoi11,b, Y. Nefedov32, F. Nerling17,d, I. B. Nikolaev11, Z. Ning1,53, S. Nisar9,l, Y. Niu45, S. L. Olsen58, Q. Ouyang1,53,58, S. Pacetti26B,26C, X. Pan10,f, Y. Pan52, A. Pathak30, M. Pelizaeus4, H. P. Peng66,53, K. Peters12,d, J. Pettersson70, J. L. Ping37, R. G. Ping1,58, S. Plura31, S. Pogodin32, V. Prasad66,53, F. Z. Qi1, H. Qi66,53, H. R. Qi56, M. Qi38, T. Y. Qi10,f, S. Qian1,53, W. B. Qian58, Z. Qian54, C. F. Qiao58, J. J. Qin67, L. Q. Qin13, X. P. Qin10,f, X. S. Qin45, Z. H. Qin1,53, J. F. Qiu1, S. Q. Qu39, S. Q. Qu56, K. H. Rashid68, C. F. Redmer31, K. J. Ren35, A. Rivetti69C, V. Rodin59, M. Rolo69C, G. Rong1,58, Ch. Rosner17, S. N. Ruan39, H. S. Sang66, A. Sarantsev32,c, Y. Schelhaas31, C. Schnier4, K. Schönning70, M. Scodeggio27A,27B, K. Y. Shan10,f, W. Shan22, X. Y. Shan66,53, J. F. Shangguan50, L. G. Shao1,58, M. Shao66,53, C. P. Shen10,f, H. F. Shen1,58, X. Y. Shen1,58, B. A. Shi58, H. C. Shi66,53, J. Y. Shi1, q. q. Shi50, R. S. Shi1,58, X. Shi1,53, X. D Shi66,53, J. J. Song18, W. M. Song1,30, Y. X. Song42,g, S. Sosio69A,69C, S. Spataro69A,69C, F. Stieler31, K. X. Su71, P. P. Su50, Y. J. Su58, G. X. Sun1, H. Sun58, H. K. Sun1, J. F. Sun18, L. Sun71, S. S. Sun1,58, T. Sun1,58, W. Y. Sun30, X Sun23,h, Y. J. Sun66,53, Y. Z. Sun1, Z. T. Sun45, Y. H. Tan71, Y. X. Tan66,53, C. J. Tang49, G. Y. Tang1, J. Tang54, L. Y Tao67, Q. T. Tao23,h, M. Tat64, J. X. Teng66,53, V. Thoren70, W. H. Tian47, Y. Tian28,58, I. Uman57B, B. Wang1, B. L. Wang58, C. W. Wang38, D. Y. Wang42,g, F. Wang67, H. J. Wang34,j,k, H. P. Wang1,58, K. Wang1,53, L. L. Wang1, M. Wang45, M. Z. Wang42,g, Meng Wang1,58, S. Wang13, S. Wang10,f, T. Wang10,f, T. J. Wang39, W. Wang54, W. H. Wang71, W. P. Wang66,53, X. Wang42,g, X. F. Wang34,j,k, X. L. Wang10,f, Y. D. Wang41, Y. F. Wang1,53,58, Y. H. Wang43, Y. Q. Wang1, Yaqian Wang1,16, Yi Wang56, Z. Wang1,53, Z. Y. Wang1,58, Ziyi Wang58, D. H. Wei13, F. Weidner63, S. P. Wen1, D. J. White62, U. Wiedner4, G. Wilkinson64, M. Wolke70, L. Wollenberg4, J. F. Wu1,58, L. H. Wu1, L. J. Wu1,58, X. Wu10,f, X. H. Wu30, Y. Wu66, Z. Wu1,53, L. Xia66,53, T. Xiang42,g, D. Xiao34,j,k, G. Y. Xiao38, H. Xiao10,f, S. Y. Xiao1, Y. L. Xiao10,f, Z. J. Xiao37, C. Xie38, X. H. Xie42,g, Y. Xie45, Y. G. Xie1,53, Y. H. Xie6, Z. P. Xie66,53, T. Y. Xing1,58, C. F. Xu1, C. J. Xu54, G. F. Xu1, H. Y. Xu61, Q. J. Xu15, S. Y. Xu65, X. P. Xu50, Y. C. Xu58, Z. P. Xu38, F. Yan10,f, L. Yan10,f, W. B. Yan66,53, W. C. Yan75, H. J. Yang46,e, H. L. Yang30, H. X. Yang1, L. Yang47, S. L. Yang58, Tao Yang1, Y. F. Yang39, Y. X. Yang1,58, Yifan Yang1,58, M. Ye1,53, M. H. Ye8, J. H. Yin1, Z. Y. You54, B. X. Yu1,53,58, C. X. Yu39, G. Yu1,58, T. Yu67, X. D. Yu42,g, C. Z. Yuan1,58, L. Yuan2, S. C. Yuan1, X. Q. Yuan1, Y. Yuan1,58, Z. Y. Yuan54, C. X. Yue35, A. A. Zafar68, F. R. Zeng45, X. Zeng6, Y. Zeng23,h, Y. H. Zhan54, A. Q. Zhang1, B. L. Zhang1, B. X. Zhang1, D. H. Zhang39, G. Y. Zhang18, H. Zhang66, H. H. Zhang54, H. H. Zhang30, H. Y. Zhang1,53, J. L. Zhang72, J. Q. Zhang37, J. W. Zhang1,53,58, J. X. Zhang34,j,k, J. Y. Zhang1, J. Z. Zhang1,58, Jianyu Zhang1,58, Jiawei Zhang1,58, L. M. Zhang56, L. Q. Zhang54, Lei Zhang38, P. Zhang1, Q. Y. Zhang35,75, Shulei Zhang23,h, X. D. Zhang41, X. M. Zhang1, X. Y. Zhang45, X. Y. Zhang50, Y. Zhang64, Y. T. Zhang75, Y. H. Zhang1,53, Yan Zhang66,53, Yao Zhang1, Z. H. Zhang1, Z. Y. Zhang71, Z. Y. Zhang39, G. Zhao1, J. Zhao35, J. Y. Zhao1,58, J. Z. Zhao1,53, Lei Zhao66,53, Ling Zhao1, M. G. Zhao39, Q. Zhao1, S. J. Zhao75, Y. B. Zhao1,53, Y. X. Zhao28,58, Z. G. Zhao66,53, A. Zhemchugov32,a, B. Zheng67, J. P. Zheng1,53, Y. H. Zheng58, B. Zhong37, C. Zhong67, X. Zhong54, H. Zhou45, L. P. Zhou1,58, X. Zhou71, X. K. Zhou58, X. R. Zhou66,53, X. Y. Zhou35, Y. Z. Zhou10,f, J. Zhu39, K. Zhu1, K. J. Zhu1,53,58, L. X. Zhu58, S. H. Zhu65, S. Q. Zhu38, T. J. Zhu72, W. J. Zhu10,f, Y. C. Zhu66,53, Z. A. Zhu1,58, B. S. Zou1, J. H. Zou1
(BESIII Collaboration)
1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
10 Fudan University, Shanghai 200433, People’s Republic of China
11 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
12 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
13 Guangxi Normal University, Guilin 541004, People’s Republic of China
14 Guangxi University, Nanning 530004, People’s Republic of China
15 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
16 Hebei University, Baoding 071002, People’s Republic of China
17 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
18 Henan Normal University, Xinxiang 453007, People’s Republic of China
19 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
20 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
21 Huangshan College, Huangshan 245000, People’s Republic of China
22 Hunan Normal University, Changsha 410081, People’s Republic of China
23 Hunan University, Changsha 410082, People’s Republic of China
24 Indian Institute of Technology Madras, Chennai 600036, India
25 Indiana University, Bloomington, Indiana 47405, USA
26 INFN Laboratori Nazionali di Frascati, (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
27 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
28 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
29 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
30 Jilin University, Changchun 130012, People’s Republic of China
31 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
32 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
33 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
34 Lanzhou University, Lanzhou 730000, People’s Republic of China
35 Liaoning Normal University, Dalian 116029, People’s Republic of China
36 Liaoning University, Shenyang 110036, People’s Republic of China
37 Nanjing Normal University, Nanjing 210023, People’s Republic of China
38 Nanjing University, Nanjing 210093, People’s Republic of China
39 Nankai University, Tianjin 300071, People’s Republic of China
40 National Centre for Nuclear Research, Warsaw 02-093, Poland
41 North China Electric Power University, Beijing 102206, People’s Republic of China
42 Peking University, Beijing 100871, People’s Republic of China
43 Qufu Normal University, Qufu 273165, People’s Republic of China
44 Shandong Normal University, Jinan 250014, People’s Republic of China
45 Shandong University, Jinan 250100, People’s Republic of China
46 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
47 Shanxi Normal University, Linfen 041004, People’s Republic of China
48 Shanxi University, Taiyuan 030006, People’s Republic of China
49 Sichuan University, Chengdu 610064, People’s Republic of China
50 Soochow University, Suzhou 215006, People’s Republic of China
51 South China Normal University, Guangzhou 510006, People’s Republic of China
52 Southeast University, Nanjing 211100, People’s Republic of China
53 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
54 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
55 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
56 Tsinghua University, Beijing 100084, People’s Republic of China
57 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
58 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
59 University of Groningen, NL-9747 AA Groningen, The Netherlands
60 University of Hawaii, Honolulu, Hawaii 96822, USA
61 University of Jinan, Jinan 250022, People’s Republic of China
62 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
63 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
64 University of Oxford, Keble Rd, Oxford, UK OX13RH
65 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
66 University of Science and Technology of China, Hefei 230026, People’s Republic of China
67 University of South China, Hengyang 421001, People’s Republic of China
68 University of the Punjab, Lahore-54590, Pakistan
69 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
70 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
71 Wuhan University, Wuhan 430072, People’s Republic of China
72 Xinyang Normal University, Xinyang 464000, People’s Republic of China
73 Yunnan University, Kunming 650500, People’s Republic of China
74 Zhejiang University, Hangzhou 310027, People’s Republic of China
75 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at the Department of Mathematical Sciences, IBA, Karachi , Pakistan
Abstract

Based on a sample of 4.4 fb1\mathrm{fb}^{-1} of e+ee^{+}e^{-} annihilation data collected in the energy region between 4.6 GeV and 4.7 GeV with the BESIII detector at BEPCII, two singly Cabibbo-suppressed decays Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K_{S}^{0} are studied. The ratio of the branching fraction (Λc+Σ0K+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+}) relative to (Λc+Σ0π+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+}) is measured to be 0.0361±0.0073(stat.)±0.0005(syst.)0.0361\pm 0.0073(\mathrm{stat.})\pm 0.0005(\mathrm{syst.}), and the ratio of (Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K_{S}^{0}) relative to (Λc+Σ+π+π)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-}) is measured to be 0.0106±0.0031(stat.)±0.0004(syst.)0.0106\pm 0.0031(\mathrm{stat.})\pm 0.0004(\mathrm{syst.}). After taking the world-average branching fractions of the reference decay channels, the branching fractions (Λc+Σ0K+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+}) and (Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K_{S}^{0}) are determined to be (4.7±0.9(stat.)±0.1(syst.)±0.3(ref.))×104(4.7\pm 0.9(\mathrm{stat.})\pm 0.1(\mathrm{syst.})\pm 0.3(\mathrm{ref.}))\times 10^{-4} and (4.8±1.4(stat.)±0.2(syst.)±0.3(ref.))×104(4.8\pm 1.4(\mathrm{stat.})\pm 0.2(\mathrm{syst.})\pm 0.3(\mathrm{ref.}))\times 10^{-4}, respectively. The branching fraction of the Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K_{S}^{0} decay is measured for the first time.

pacs:
14.20.Lq, 13.30.Eg, 13.66.Bc

I Introduction

The study of charmed baryon decays is valuable for both understanding charmed-baryon dynamics and probing the effects of the weak and strong interactions. Since the ground state of the charmed baryons Λc+\Lambda_{c}^{+} was discovered [1], many efforts have been made to predict its branching fractions (BFs) into two-body hadronic final states, Λc+BnM\Lambda_{c}^{+}\rightarrow\mathrm{B}_{n}M [2, 3, 4, 5, 6, 7], where Bn\mathrm{B}_{n} and MM denote the octet baryon and nonet meson states, respectively. However, progress has been hindered, due to the limited precision of experimental measurements [8] and difficulties in the theoretical treatment of non-perturbative strong interaction effects. For example, before studies of Singly Cabibbo-Suppressed (SCS) Λc+\Lambda_{c}^{+} decays were performed by the Belle [9] and BaBar [10] collaborations, only one theoretical calculation existed for the BFs of these SCS processes [2]. Throughout this paper, the charge-conjugate modes are implied, unless otherwise stated.

The challenge for theoretical predictions is that the well-known factorization approach, which has been applied successfully to heavy-meson decays, has difficulties in describing charmed-baryon decays [11]. This is because the nonfactorizable terms are sizable or even dominant contributions in Λc+\Lambda_{c}^{+} hadronic decays [2], compared with the charmed-meson case [12, 13], e.g., the SCS Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ+KS0\Sigma^{+}K^{0}_{\mathrm{S}} decays only receive nonfactorizable contribution. These nonfactorizable terms, arising from WW-exchange or internal WW-emission [3], can be constrained by precise experimental inputs in charmed-meson decays [14].

The BESIII collaboration [15] has reported significant improvements in the precision of absolute hadronic BFs of the Λc\Lambda_{c} baryon, and the first model-independent measurements near the threshold of Λc+Λ¯c\Lambda_{c}^{+}\bar{\Lambda}_{c}^{-} production [16]. In addition, the BESIII, LHCb and Belle collaborations have carried out complementary analyses of charmed baryons, such as lifetime measurements [17, 18, 19, 20, 21] and studies of semi-leptonic decays [22, 23, 24, 25, 26]. Improved measurements of the BFs of the Λc\Lambda_{c} decays can provide crucial inputs for the theoretical models [3, 4, 5, 6], in particular those of the SCS ΛcΣK\Lambda_{c}\to\Sigma K decays for which there exists very limited experimental information.

Theoretical predictions for SCS Λc\Lambda_{c} decays are listed in Table 1. In Refs. [2, 3], factorizable terms are made accessible by inserting vacuum intermediates states [2], which are then reduced to the products of current matrix elements defined with decay constants of the emitted meson MM and form factors of the Λc+Bn\Lambda_{c}^{+}\to\mathrm{B}_{n} transition. Nonfactorizable terms are tackled in the current algebra framework with the pole approximation in Refs. [2, 3]. Ref. [3] uses the MIT bag model [27] to account for baryon pole transition matrix elements, while Ref. [2] makes short-distance QCD corrections to the weak Hamiltonian. In Ref. [4], a diagrammatic analysis is performed and (Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}}) is predicted to be (9.6±2.4)×104(9.6\pm 2.4)\times 10^{-4}. Ref. [5] expects that (Λc+Σ0K+)=(Λc+Σ+KS0)=(5.4±0.7)×104\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+})=\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}})=(5.4\pm 0.7)\times 10^{-4} under SU(3)FSU(3)_{F} flavor symmetry. In Ref. [6], the irreducible representation amplitude (IRA) approach is used to extract amplitudes from experimental data inputs, which gives quite different predictions for (Λc+Σ0K+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+}) and (Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}}). In particular, Ref. [6] predicts that (Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}}) is about one fifth of (Λc+Σ0K+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+}), which is far smaller than other predictions.

Table 1 shows the current Particle Data Group (PDG) [28] world average value of (Λc+Σ0K+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+}) based on measurements from the Belle [9] and BaBar [10] collaborations, performed more than a decade ago, while no measurement exits for the Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} decay. All theoretical predictions for (Λc+Σ0K+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+}) are consistent with the experimental value. Those predictions in Refs. [4, 5, 6] are from fits that take an ensemble of measured BFs as inputs, and are limited by the precision of these measurements. Thus, new determinations of the BFs of ΛcΣK\Lambda_{c}\to\Sigma K decays, in particular the mode Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}}, are important for validating and improving these theoretical-model calculations. Furthermore, improved measurements may clarify the tension between the predictions in Ref. [6] and Refs. [2, 3, 4, 5].

Table 1: Comparison of various theoretical predictions and the experimental values for (Λc+ΣK)\mathcal{B}(\Lambda_{c}^{+}\to\Sigma K) (in unit of 10410^{-4}). In Ref. [2], alternative assignments to QCD corrections give different predictions as shown in the parentheses. The theoretical uncertainties in Ref. [3] are estimated to be 25%, arising from a slight change of the MIT bag radius.
(Λc+Σ0K+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+}) (Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}})
QCD corrections [2] 2(8) 2(4)
MIT bag model [3] 7.2±1.87.2\pm 1.8 7.2±1.87.2\pm 1.8
Diagrammatic analysis [4] 5.5±1.65.5\pm 1.6 9.6±2.49.6\pm 2.4
SU(3)FSU(3)_{F} flavor symmetry [5] 5.4±0.75.4\pm 0.7 5.4±0.75.4\pm 0.7
IRA method [6] 5.0±0.65.0\pm 0.6 1.0±0.41.0\pm 0.4
PDG 2020 [28] 5.2±0.85.2\pm 0.8 /

In this paper, we present a study of the SCS decays Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ+KS0\Sigma^{+}K^{0}_{\mathrm{S}} based on 4.4 fb-1 of e+ee^{+}e^{-} annihilation data collected at the center-of-mass energies s=4.600\sqrt{s}=4.600, 4.612, 4.628, 4.641, 4.661, 4.682, 4.699 GeV [29, 30] with the BESIII detector at BEPCII. We report the first study of the channel Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} and provide the BF ratio, (Λc+Σ+KS0)/(Λc+Σ+π+π)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}})/\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-}), together with an improved measurement of the BF ratio, (Λc+Σ0K+)/(Λc+Σ0π+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+})/\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+}).

II BESIII Experiment and Monte Carlo Simulation

The BESIII detector [31] records symmetric e+ee^{+}e^{-} collisions provided by the BEPCII storage ring [32] in the center-of-mass energy range from 2.0 to 4.95 GeV, with a peak luminosity of 1×1033cm2s11\times 10^{33}\;\text{cm}^{-2}\text{s}^{-1} achieved at s=3.77GeV\sqrt{s}=3.77\;\text{GeV}. The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identification modules interleaved with steel. The charged-particle momentum resolution at 1GeV/c1\,\mbox{GeV/$c$} is 0.5%0.5\%, and the ionization energy loss dE/dx\mathrm{d}E/\mathrm{d}x resolution is 6%6\% for electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 1GeV1\,\mbox{GeV} in the barrel (end-cap) region. The time resolution in the TOF barrel region is 68 ps, while that in the end-cap region is 110 ps. The end-cap TOF system was upgraded in 2015 using multi-gap resistive plate chamber technology, providing a time resolution of 60 ps [33, *guo:TOF2, *Cao:2020ibk]. More detailed descriptions can be found in Refs. [36, 37].

Simulated data samples are produced with a Geant4-based [38] Monte Carlo (MC) package, which includes the geometric description of the BESIII detector [39, 40] and the detector response. The simulation models the beam-energy spread and initial-state radiation (ISR) in the e+ee^{+}e^{-} annihilations with the generator kkmc [41]. The final-state radiation from charged final-state particles is incorporated using photos [42].

The “inclusive MC sample” includes the production of Λc+Λ¯c\Lambda_{c}^{+}\bar{\Lambda}_{c}^{-} pairs and open-charmed mesons, ISR production of vector charmonium(-like) states, and continuum processes which are incorporated in kkmc [41, 43]. Known decay modes are modeled with evtgen [44, 45] using the BFs taken from the PDG [28]. The BF (Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}}) is assumed to be the same as (Λc+Σ0K+)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+}). The remaining unknown charmonium decays are modeled with lundcharm [46, 47]. The inclusive MC sample is used to study background contributions and to optimize event selections. We denote “Hadron MC” as the inclusive MC sample with Λc+Λ¯c\Lambda_{c}^{+}\bar{\Lambda}_{c}^{-} pairs removed, which therefore only includes backgrounds for this study. For the reference mode Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-}, the intermediate states are modeled according to an internal partial-wave analysis of this channel. For the reference mode Λc+Σ0π+\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+}, the angular distributions are described with consideration of the transverse polarization and decay asymmetry parameters of the Λc+\Lambda_{c}^{+} and its daughter baryons [48]. We use a uniformly distributed phase-space model for the simulation of the signal SCS decays Λc+Σ0K+\Lambda_{c}^{+}\to\Sigma^{0}K^{+} and Σ+KS0\Sigma^{+}K_{S}^{0}. The e+eΛc+Λ¯ce^{+}e^{-}\to\Lambda_{c}^{+}\bar{\Lambda}_{c}^{-} “signal MC” samples, in which the Λc+\Lambda_{c}^{+} decays exclusively into signal (reference) modes while the Λ¯c\bar{\Lambda}_{c}^{-} decays inclusively, are used to determine the detection efficiencies.

III Event Selection

In this analysis, we reconstruct the two signal modes through the cascade decays Λc+Σ0K+,Σ0γΛ,Λpπ\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+},\Sigma^{0}\rightarrow\gamma\Lambda,\Lambda\rightarrow p\pi^{-} and Λc+Σ+KS0,Σ+pπ0,π0γγ,KS0π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}K_{S}^{0},\Sigma^{+}\rightarrow p\pi^{0},\pi^{0}\rightarrow\gamma\gamma,K_{S}^{0}\rightarrow\pi^{+}\pi^{-}. The reference modes Λc+Σ0π+\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+} and Σ+π+π\Sigma^{+}\pi^{+}\pi^{-} are reconstructed through the same decay chains of the Σ0\Sigma^{0} and Σ+\Sigma^{+} baryons. As the Λc+Λ¯c\Lambda_{c}^{+}\bar{\Lambda}_{c}^{-} pair is produced without any accompanying hadrons, it is possible to reconstruct the Λc+\Lambda_{c}^{+} and infer the presence of the Λ¯c\bar{\Lambda}_{c}^{-} through its recoil mass.

Charged tracks are reconstructed in the MDC, and are required to have a polar angle θ\theta with respect to the zz-axis, defined as the symmetry axis of the MDC, satisfying |cosθ|<0.93|\!\cos\theta|<0.93. Those tracks that are not used in the reconstruction of KS0π+πK_{S}^{0}\to\pi^{+}\pi^{-} and Λpπ\Lambda\to p\pi^{-} candidates must have a distance of closest approach to the interaction point (IP) smaller than 10 cm along the zz-axis (VzV_{z}) and smaller than 1 cm in the perpendicular plane (VrV_{r}). Particle identification (PID) for charged tracks is implemented [49] using combined information from the flight time measured in the TOF and the dE/dx\mathrm{d}E/\mathrm{d}x measured in the MDC. Charged tracks are identified as protons when they satisfy (p)>(K)\mathcal{L}(p)>\mathcal{L}(K), (p)>(π)\mathcal{L}(p)>\mathcal{L}(\pi) and (p)>0.0001\mathcal{L}(p)>0.0001, where (h)\mathcal{L}(h) is the PID probability for each hadron (h)(h) hypothesis with h=p,π,Kh=p,\pi,K. Charged tracks are identified as pions when they satisfy (π)>(K)\mathcal{L}(\pi)>\mathcal{L}(K). In the selection of Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ0π+\Sigma^{0}\pi^{+} decays, no PID requirement is imposed for the bachelor kaons and pions, but the χPID,K(π)2\chi^{2}_{\mathrm{PID},K(\pi)} for kaon (pion) hypothesis is retained for further analysis in the signal-candidate selection.

Photon candidates from π0\pi^{0} and Σ0\Sigma^{0} decays are reconstructed from the electromagnetic showers detected in the EMC crystals. The deposited energy is required to be larger than 25MeV25\,\mbox{MeV} in the barrel region with |cosθ|<0.80|\!\cos\theta|<0.80 and larger than 50MeV50\,\mbox{MeV} in the end-cap region with 0.86<|cosθ|<0.920.86<|\!\cos\theta|<0.92. To further suppress fake photon candidates due to electronic noise or beam-related background, the measured EMC time is required to be within 700 ns from the event start time. To reconstruct π0\pi^{0} candidates, the invariant mass of a photon pair is required to satisfy 0.115<Mγγ<0.150GeV/c20.115<M_{\gamma\gamma}<0.150\,\mbox{GeV/$c^{2}$}. To further improve the momentum resolution, the invariant mass of the photon pair is constrained to the known π0\pi^{0} mass [28] by applying a one-constraint kinematic fit, the χ2\chi^{2} of which is required to be less than 200. The momentum of the π0\pi^{0} after the fit is used in the subsequent analysis.

Neutral kaon candidates are reconstructed through the decay KS0π+πK_{S}^{0}\to\pi^{+}\pi^{-} by combining all pairs of oppositely charged tracks with both pions passing the PID requirement. These tracks, and also those used to build Λ\Lambda candidates, must satisfy |cosθ|<0.93|\!\cos\theta|<0.93 and |Vz|<20cm|V_{z}|<20\,\mathrm{cm}, while no VrV_{r} requirement is applied. A vertex fit is applied to pairs of charged tracks, constraining them to originate from a common decay vertex, and the χ2\chi^{2} of this vertex fit is required to be less than 100. The invariant mass of the π+π\pi^{+}\pi^{-} pair needs to satisfy 0.487<Mπ+π<0.511GeV/c20.487<M_{\pi^{+}\pi^{-}}<0.511\,\mbox{GeV/$c^{2}$}. Here, Mπ+πM_{\pi^{+}\pi^{-}} is calculated with the pions constrained to originate at the decay vertex. To further suppress background, we require the ratio of the decay length to the resolution of decay length to be greater than 2. An analogous normalised decay-length requirement is imposed on Λ\Lambda candidates reconstructed in the final state pπp\pi^{-}. Here a PID requirement is imposed on the proton candidate, but not on the π\pi^{-} candidate. The invariant mass of the pπp\pi^{-} combination must satisfy 1.111<Mpπ<1.121GeV/c21.111<M_{p\pi^{-}}<1.121\,\mbox{GeV/$c^{2}$}.

Protons and reconstructed π0\pi^{0} mesons are used to form Σ+\Sigma^{+} candidates. The invariant mass of the pπ0p\pi^{0} pair is required to be 1.15<Mpπ0<1.28GeV/c21.15<M_{p\pi^{0}}<1.28\,\mbox{GeV/$c^{2}$}, which is a loose requirement since this kinematic variable is fitted to determine the Σ+\Sigma^{+} signal.

When selecting Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} decays we veto events where the invariant mass of the π+π\pi^{+}\pi^{-} pair satisfies 0.48<Mπ+π<0.52GeV/c20.48<M_{\pi^{+}\pi^{-}}<0.52\,\mbox{GeV/$c^{2}$}, in order to avoid cross-contamination between Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} and Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-}. Possible backgrounds from Λpπ\Lambda\to p\pi^{-} in the final states are also rejected by requiring M(pπ)M(p\pi^{-}) lies outside the range (1.11,1.12)GeV/c2(1.11,1.12)\,\mbox{GeV/$c^{2}$}. Since the Λ\Lambda background is not significant in Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} decays, a Λ\Lambda veto is not imposed for the mode. If there are multiple Λc+\Lambda_{c}^{+} combinations in a single event, we choose the candidate with the minimum magnitude of the energy difference, defined as ΔEEΛcEbeam\Delta E\equiv E_{\Lambda_{c}}-E_{\rm{beam}}, where EΛcE_{\Lambda_{c}} is the energy of the detected Λc+\Lambda_{c}^{+} candidate in the rest frame of the initial e+ee^{+}e^{-} collision system, and EbeamE_{\rm{beam}} is the beam energy. Furthermore, the requirement 0.02<ΔE<0.01GeV-0.02<\Delta E<0.01\,\mbox{GeV} is imposed as illustrated in Fig. 1, where the cut values are decided from inspection of the the figure-of-merit FOM=SS+B\mathrm{FOM}=\frac{S}{\sqrt{S+B}}, where SS (B)(B) is the number of signal (background) events in the inclusive MC samples.

The Σ0\Sigma^{0} candidates are reconstructed from photon candidates and Λ\Lambda candidates. To suppress backgrounds from energetic showers, we further require the deposited energies of the photon candidates to be less than 0.25GeV0.25\,\mbox{GeV} in Σ0\Sigma^{0} reconstruction. The invariant mass of the γΛ\gamma\Lambda pair is required to lie within 1.179<MγΛ<1.203GeV/c21.179<M_{\gamma\Lambda}<1.203\,\mbox{GeV/$c^{2}$}.

When reconstructing the Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ0π+\Sigma^{0}\pi^{+} signal decays, we perform a kinematic fit that constrains the invariant mass of the recoil side of the Λc+\Lambda_{c}^{+} candidate to the known mass of the Λ¯c\bar{\Lambda}_{c}^{-} [28]. To improve the resolution of photon momenta originating from Σ0\Sigma^{0}, we also constrain the invariant masses of the pπp\pi^{-} and γpπ\gamma p\pi^{-} to the known masses of Λ\Lambda and Σ0\Sigma^{0}, respectively. The fitted momenta from this three-constraint (3C) kinematic fit are used in the subsequent analysis. The aforementioned ΔE\Delta E metric can be used for selection the only candidate when there are multiple Λc+\Lambda_{c}^{+} candidates in the event. But the χtotal2χ3C2+χVF2+χPID,h2\chi^{2}_{\mathrm{total}}\equiv\chi^{2}_{\mathrm{3C}}+\chi^{2}_{\mathrm{VF}}+\chi^{2}_{\mathrm{PID},h} metric gives better signal significance, where χ3C2\chi^{2}_{\mathrm{3C}} is the 3C fit quality and, χVF2\chi^{2}_{\mathrm{VF}} is the quality of the vertex fit of the Λ\Lambda reconstruction. The χPID,h2\chi^{2}_{\mathrm{PID},h} is defined as [49]

χPID,h2(tthσTOF)2+(dE/dx(dE/dx)hσdE/dx)2,\chi^{2}_{\mathrm{PID},h}\equiv\left(\frac{t-t_{h}}{\sigma_{\mathrm{TOF}}}\right)^{2}+\left(\frac{\mathrm{d}E/\mathrm{d}x-(\mathrm{d}E/\mathrm{d}x)_{h}}{\sigma_{\mathrm{d}E/\mathrm{d}x}}\right)^{2}\,, (1)

where tt and dE/dx\mathrm{d}E/\mathrm{d}x are the measured TOF and ionization energy loss, the index “hh” denotes the values expected for the h=π,Kh=\pi,K hypotheses and σTOF\sigma_{\mathrm{TOF}} and σdE/dx\sigma_{\mathrm{d}E/\mathrm{d}x} are the resolutions of TOF and dE/dx\mathrm{d}E/\mathrm{d}x measurements, respectively. No explicit PID requirement is imposed on the particle that accompanies the Σ0\Sigma^{0}, and the assignment of Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ0π+\Sigma^{0}\pi^{+} modes is only based on χtotal2\chi^{2}_{\mathrm{total}} with the KK and π\pi hypotheses, respectively. To suppress backgrounds, a requirement of χtotal2<20\chi^{2}_{\mathrm{total}}<20 is imposed for both modes, which gives best FOM values.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: ΔE\Delta E distributions for the data samples passing the event selections. The arrows indicate the requirements for ΔE\Delta E. MBCM_{\rm{BC}} and Mpπ0M_{p\pi^{0}} for Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} and Σ+π+π\Sigma^{+}\pi^{+}\pi^{-} modes are required to be within ±3σ\pm 3\sigma resolutions around individual peaks. The momenta before the kinematic fit are used for calculating ΔE\Delta E of Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ0π+\Sigma^{0}\pi^{+} modes.

IV Relative branching fraction measurements

To determine the yields for the four signal Λc+\Lambda_{c}^{+} decay modes, we use the the beam-constrained mass MBCM_{\rm{BC}}, which is defined as

MBCEbeam2/c4|pΛc|2/c2,\displaystyle M_{\rm{BC}}\equiv\sqrt{{E_{\rm{beam}}}^{2}/c^{4}-\left|\vec{p}_{\Lambda_{c}}\right|^{2}/c^{2}}, (2)

where pΛc\vec{p}_{\Lambda_{c}} is the three-momentum of the tagged Λc+\Lambda_{c}^{+} candidate in the rest frame of the initial e+ee^{+}e^{-} collision system. To mitigate systematic uncertainties associate with the Σ\Sigma detection, we measure the relative BFs of RΣ0K+(Λc+Σ0K+)/(Λc+Σ0π+)R_{\Sigma^{0}K^{+}}\equiv\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+})/\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+}) and RΣ+KS0(Λc+Σ+KS0)/(Λc+Σ+π+π)R_{\Sigma^{+}K^{0}_{\mathrm{S}}}\equiv\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}})/\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-}).

To determine RΣ0K+R_{\Sigma^{0}K^{+}}, the MBCM_{\rm{BC}} distributions of the Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ0π+\Sigma^{0}\pi^{+} decays, as illustrated in Fig. 2, are fitted simultaneously for the seven energy points. In the unbinned extended maximum-likelihood fit, the signal shapes are derived from MC simulations convolved with Gaussian functions to account for the potential difference between data the MC simulations, due to imperfect modeling in MC simulation and the beam-energy spread. The parameters of the Gaussian functions in the signal mode are the same as the reference mode, which are floating in the fit. The combinatorial background is described by an ARGUS function [50]

fARGUSMBC1(MBCc2Ebeam)2×ea(1MBCc2Ebeam)2,f^{\mathrm{ARGUS}}\propto M_{\mathrm{BC}}\sqrt{1-\left(\frac{M_{\mathrm{BC}}\cdot c^{2}}{E_{\mathrm{beam}}}\right)^{2}}\times e^{a\left(1-\frac{M_{\mathrm{BC}}\cdot c^{2}}{E_{\mathrm{beam}}}\right)^{2}}, (3)

where the parameter aa is different in the signal and reference modes and the cut-off parameter is fixed to the beam energy EbeamE_{\mathrm{beam}} at each energy point. The observed yield nΣ0K+n_{\Sigma^{0}K^{+}} of Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} decays is related to nΣ0π+n_{\Sigma^{0}\pi^{+}}, the yield of Λc+Σ0π+\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+} decays, by

nΣ0K+=RΣ0K+εΣ0K+εΣ0π+nΣ0π+,n_{\Sigma^{0}K^{+}}=R_{\Sigma^{0}K^{+}}\cdot\frac{\varepsilon_{\Sigma^{0}K^{+}}}{\varepsilon_{\Sigma^{0}\pi^{+}}}\cdot n_{\Sigma^{0}\pi^{+}}, (4)

where εΣ0K+\varepsilon_{\Sigma^{0}K^{+}} (εΣ0π+\varepsilon_{\Sigma^{0}\pi^{+}}) is the detection efficiency of Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} (Λc+Σ0π+\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+}) estimated with the signal MC samples. The relative BF RΣ0K+R_{\Sigma^{0}K^{+}} is obtained directly in the simultaneous fit as summarized in Table 2. The fit results are shown in Fig. 2.

Refer to caption
Refer to caption
Refer to caption
Figure 2: The simultaneous fit results of the MBCM_{\rm{BC}} distributions for the Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ0π+\Sigma^{0}\pi^{+} candidates at different energy points, where the black points with error bars denote data, the red solid lines denote the fit results, the green dotted lines denote the signal components and the orange dashed lines denote combinatorial backgrounds.

The decay Λc+pKS0π0\Lambda_{c}^{+}\rightarrow pK_{S}^{0}\pi^{0} includes many resonant enhancements which may peak in the MBCM_{\rm{BC}} spectrum and potentially bias the measurement of RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}. A two-dimensional, i.e., MBCM_{\rm{BC}} and Mpπ0M_{p\pi^{0}}, unbinned fit is performed to distinguish the signal Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} decay from other contributions.

In the simultaneous fit to the signal and the reference modes, we adopt two-dimensional signal shapes from MC simulations convolved with two uncorrelated Gaussian functions to determine the yield nΣ+KS0n_{\Sigma^{+}K^{0}_{\mathrm{S}}} for Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} decays, which is related to nΣ+π+πn_{\Sigma^{+}\pi^{+}\pi^{-}} by

nΣ+KS0=RΣ+KS0interεΣ+KS0εΣ+π+πnΣ+π+π,n_{\Sigma^{+}K^{0}_{\mathrm{S}}}=R_{\Sigma^{+}K^{0}_{\mathrm{S}}}\cdot\frac{\mathcal{B}_{\mathrm{inter}}\varepsilon_{\Sigma^{+}K^{0}_{\mathrm{S}}}}{\varepsilon_{\Sigma^{+}\pi^{+}\pi^{-}}}\cdot n_{\Sigma^{+}\pi^{+}\pi^{-}}, (5)

where εΣ+KS0\varepsilon_{\Sigma^{+}K^{0}_{\mathrm{S}}} (εΣ+π+π\varepsilon_{\Sigma^{+}\pi^{+}\pi^{-}}) is the detection efficiency of Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} (Σ+π+π\Sigma^{+}\pi^{+}\pi^{-}) estimated with signal MC samples, and inter=(KS0π+π)\mathcal{B}_{\mathrm{inter}}=\mathcal{B}(K^{0}_{\mathrm{S}}\rightarrow\pi^{+}\pi^{-}) is taken from the PDG [28]. Three types of background components are included: (a) combinatorial backgrounds with no peaking structures in both dimensions, (b) non-Σ+\Sigma^{+} background (mainly coming from non-signal Λc+pKS0π0\Lambda_{c}^{+}\rightarrow pK_{S}^{0}\pi^{0} decays), and (c) non-Λc+\Lambda_{c}^{+} background from inclusive Σ+\Sigma^{+} production. The combinatorial background component is described by a product of an ARGUS function in the MBCM_{\rm{BC}} dimension and a linear function in the Mpπ0M_{p\pi^{0}} dimension

fCombBkgfARGUS[c0+c1Mpπ0],f^{\mathrm{CombBkg}}\propto f^{\mathrm{ARGUS}}\cdot\left[c_{0}+c_{1}M_{p\pi^{0}}\right], (6)

where the parameter aa of the fARGUSf_{\mathrm{ARGUS}} function is different from that in the fit of Λc+Σ0K+\Lambda_{c}^{+}\to\Sigma^{0}K^{+} and Σ0π+\Sigma^{0}\pi^{+} decays, and c0c_{0}, c1c_{1} are coefficients of the linear function. The approach for modeling the non-Σ+\Sigma^{+} background is different between the signal and reference modes. For the reference mode, the shape of non-Σ+\Sigma^{+} background is modeled with a product of the Λc+\Lambda_{c}^{+} signal shape in MBCM_{\rm{BC}} and a linear function in Mpπ0M_{p\pi^{0}}. For the signal mode, the shape of the non-Σ+\Sigma^{+} background coming from Λc+pKS0π0\Lambda_{c}^{+}\rightarrow pK_{S}^{0}\pi^{0} decays is described by a two-dimensional shape derived from MC simulation in which intermediate states of the process Λc+pKS0π0\Lambda_{c}^{+}\rightarrow pK_{S}^{0}\pi^{0} are considered. Other non-Σ+\Sigma^{+} backgrounds from Λc+pη,pω\Lambda_{c}^{+}\to p\eta,p\omega, etc., are found to be negligible. The shape of non-Λc+\Lambda_{c}^{+} backgrounds is described by a product of an ARGUS function in MBCM_{\rm{BC}} and the Σ+\Sigma^{+} signal shape derived from MC simulations in Mpπ0M_{p\pi^{0}}. The yields of these background components are free parameters in the fit. When fitting Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}}, an extra background component is included that accounts for non-KS0K_{S}^{0} contamination from the Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} decays, whose shape is fixed according to MC simulations. The yield ncontn_{\mathrm{cont}} of this background is related to the fitted yield nΣ+π+πn_{\Sigma^{+}\pi^{+}\pi^{-}} in the Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} decay as follows:

ncont=εcontεΣ+π+πnΣ+π+π.n_{\mathrm{cont}}=\frac{\varepsilon_{\mathrm{cont}}}{\varepsilon_{\Sigma^{+}\pi^{+}\pi^{-}}}\cdot n_{\Sigma^{+}\pi^{+}\pi^{-}}. (7)

Here εcont\varepsilon_{\mathrm{cont}} is the contamination rate of Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} decays into the Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} sample. The relative BF RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}} is obtained from the simultaneous fit of Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} and Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} decays, as summarized in Table 2. The MBCM_{\rm{BC}} and Mpπ0M_{p\pi^{0}} projections of the simultaneous two-dimensional fit of the signal and reference modes are shown in Fig. 3 and Fig. 4.

Table 2: Integrated luminosities taken from Refs. [29, 30], yields and detection efficiencies for the signal modes Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ+KS0\Sigma^{+}K^{0}_{\mathrm{S}}, as well as those for the reference modes Λc+Σ0π+\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+} and Σ+π+π\Sigma^{+}\pi^{+}\pi^{-} modes at the seven energy points. The uncertainties are statistical. Also listed are the results for the relative BFs, where the first uncertainties are statistical, and the second are systematic.
s\sqrt{s} (GeV) int\mathcal{L}_{\mathrm{int}} (pb-1) nΣ0K+n_{\Sigma^{0}K^{+}} nΣ0π+n_{\Sigma^{0}\pi^{+}} 102εΣ0K+10^{2}\varepsilon_{\Sigma^{0}K^{+}} 102εΣ0π+10^{2}\varepsilon_{\Sigma^{0}\pi^{+}} nΣ+KS0n_{\Sigma^{+}K^{0}_{\mathrm{S}}} nΣ+π+πn_{\Sigma^{+}\pi^{+}\pi^{-}} 102εΣ+KS010^{2}\varepsilon_{\Sigma^{+}K^{0}_{\mathrm{S}}} 102εΣ+π+π10^{2}\varepsilon_{\Sigma^{+}\pi^{+}\pi^{-}}
4.600 566.9 5.5±1.25.5\pm 1.2 178±13178\pm 13 9.30±0.049.30\pm 0.04 10.79±0.0510.79\pm 0.05 6.3±1.96.3\pm 1.9 900±35900\pm 35 18.85±0.0618.85\pm 0.06 19.92±0.0619.92\pm 0.06
4.612 103.8 1.1±0.31.1\pm 0.3 38±638\pm 6 8.46±0.048.46\pm 0.04 10.02±0.0510.02\pm 0.05 1.1±0.31.1\pm 0.3 157±15157\pm 15 17.83±0.0617.83\pm 0.06 19.26±0.0619.26\pm 0.06
4.628 521.5 4.8±1.04.8\pm 1.0 156±13156\pm 13 8.31±0.048.31\pm 0.04 9.71±0.049.71\pm 0.04 5.3±1.65.3\pm 1.6 778±35778\pm 35 17.37±0.0617.37\pm 0.06 18.83±0.0618.83\pm 0.06
4.641 552.4 5.4±1.25.4\pm 1.2 174±14174\pm 14 8.36±0.048.36\pm 0.04 9.76±0.049.76\pm 0.04 5.2±1.65.2\pm 1.6 783±36783\pm 36 17.00±0.0617.00\pm 0.06 18.65±0.0618.65\pm 0.06
4.661 529.6 5.3±1.15.3\pm 1.1 173±14173\pm 14 8.20±0.048.20\pm 0.04 9.60±0.049.60\pm 0.04 5.2±1.65.2\pm 1.6 770±36770\pm 36 16.63±0.0616.63\pm 0.06 18.18±0.0618.18\pm 0.06
4.682 1669.3 16.4±3.316.4\pm 3.3 530±24530\pm 24 8.22±0.048.22\pm 0.04 9.56±0.049.56\pm 0.04 15.9±4.815.9\pm 4.8 2395±632395\pm 63 16.18±0.0616.18\pm 0.06 17.92±0.0617.92\pm 0.06
4.699 536.5 4.9±1.14.9\pm 1.1 159±13159\pm 13 8.12±0.048.12\pm 0.04 9.47±0.049.47\pm 0.04 4.6±1.44.6\pm 1.4 694±34694\pm 34 15.73±0.0615.73\pm 0.06 17.62±0.0617.62\pm 0.06
RΣ0K+=0.0361±0.0073±0.0005R_{\Sigma^{0}K^{+}}=0.0361\pm 0.0073\pm 0.0005 RΣ+KS0=0.0106±0.0031±0.0004R_{\Sigma^{+}K^{0}_{\mathrm{S}}}=0.0106\pm 0.0031\pm 0.0004
Refer to caption
Refer to caption
Refer to caption
Figure 3: The MBCM_{\rm{BC}} projections of the simultaneous two-dimensional fit of the Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} and Σ+π+π\Sigma^{+}\pi^{+}\pi^{-} candidates at different energy points, where the black points with error bars denote data, the red solid lines denote the fit results, and the other colored curves denote the different components. In the left panel, the green dotted lines denote Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} signal. In the right side, the blue dashed-dotted lines denote Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} signal.
Refer to caption
Refer to caption
Refer to caption
Figure 4: The Mpπ0M_{p\pi^{0}} projections of the simultaneous two-dimensional fit of the Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} and Σ+π+π\Sigma^{+}\pi^{+}\pi^{-} candidates at different energy points, where the black points with error bars denote data, the red solid lines denote the fit results, and the other colored curves denote the different components. In the left panel, the green dotted lines denote Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} signal. In the right side, the blue dashed-dotted lines denote Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} signal.

V Systematic uncertainties

In the measurements of RΣ0K+R_{\Sigma^{0}K^{+}} and RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}, the uncertainties associated with the Σ0\Sigma^{0} and Σ+\Sigma^{+} reconstruction cancel in the ratio. In the RΣ0K+R_{\Sigma^{0}K^{+}} measurement, the equal number of charged tracks in the signal and reference modes means that any uncertainty in the tracking efficiency also cancels. Similarly, in the RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}} measurement, there in no uncertainty from PID as the same π+π\pi^{+}\pi^{-} PID requirements are imposed in the KS0K_{S}^{0} reconstruction and for the reference mode Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-}. Those uncertainties that do not cancel are summarized in Table 3 and discussed below.

Table 3: Summary of systematic uncertainties for relative BF measurements of the Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ+KS0\Sigma^{+}K^{0}_{\mathrm{S}} decays. The total systematic uncertainty is the sum in quadrature of the individual components. “—–” indicates cases where there is no uncertainty.
Source RΣ0K+R_{\Sigma^{0}K^{+}}(%) RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}(%)
PID 0.9 —–
Tracking —– 1.0
KS0K^{0}_{\mathrm{S}} reconstruction —– 1.0
KS0K^{0}_{\mathrm{S}} veto region —– 0.4
Λ\Lambda veto region —– 0.4
χ2\chi^{2} requirement 0.7 —–
ΔE\Delta E requirement —– 0.5
Signal model 0.5 2.5
Fitting model 0.6 1.6
(KS0π+π)\mathcal{B}(K^{0}_{\mathrm{S}}\rightarrow\pi^{+}\pi^{-}) —– 0.1
Total 1.4 3.4

(I) PID. To account for the difference between data and MC simulation, we study a series of control samples of e+eK+Kπ+π,K+KK+Ke^{+}e^{-}\rightarrow K^{+}K^{-}\pi^{+}\pi^{-},K^{+}K^{-}K^{+}K^{-}, K+Kπ+ππ0,π+ππ+π,π+ππ+ππ0K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0},\pi^{+}\pi^{-}\pi^{+}\pi^{-},\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0} events [51] to determine the K±K^{\pm} and π±\pi^{\pm} PID efficiencies. The detection efficiencies for the four Λc+\Lambda_{c}^{+} decay modes are recalculated after reweighting the corresponding MC samples on an event-by-event basis according to the momentum-dependent efficiency differences between data and MC simulations. The corrected efficiencies are then input to the simultaneous fits and the resultant changes are taken as the systematic uncertainty. The statistical fluctuations in the control samples also induce uncertainties in the reweighting procedure, which are evaluated in the different momentum regions and propagated to the final measurement. The average uncertainty is calculated as

σsyst.=1nMCi=1nMCσi2,\sigma_{\mathrm{syst.}}=\sqrt{\frac{1}{n_{\mathrm{MC}}}\sum^{n_{\mathrm{MC}}}_{i=1}\sigma_{i}^{2}}, (8)

where nMCn_{\mathrm{MC}} is the size of the MC samples and σi\sigma_{i} is the statistical uncertainty of the control samples in the momentum region where the ii-th event in the MC sample is found. We add these two contributions in quadrature to arrive at the total uncertainty from PID, which is 0.9% for RΣ0K+R_{\Sigma^{0}K^{+}}.

(II) Tracking. Using the same control samples to determine the π±\pi^{\pm} tracking efficiencies, we reweight the detection efficiency for Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} and evaluate the systematic uncertainty in the same way as for the PID, which results in a contribution of 1.0% for RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}.

(III) KS0K^{0}_{\mathrm{S}} reconstruction. The KS0K^{0}_{\mathrm{S}} reconstruction efficiencies are studied by using control samples of J/ψK(892)±KJ/\psi\rightarrow K^{*}(892)^{\pm}K^{\mp}, K(892)±KS0π±K^{*}(892)^{\pm}\rightarrow K_{S}^{0}\pi^{\pm}and J/ψϕKS0Kπ±J/\psi\rightarrow\phi K_{S}^{0}K^{\mp}\pi^{\pm} decays. The systematic uncertainty is again evaluated in the same way as for the PID, which gives a contribution of 1.0% for RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}.

(IV) KS0(Λ)K^{0}_{\mathrm{S}}(\Lambda) veto region. For the Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} decay mode, the KS0(Λ)K^{0}_{\mathrm{S}}(\Lambda) veto may have a different efficiency in data and MC simulation. To bound any such bias, we remove the KS0(Λ)K^{0}_{\mathrm{S}}(\Lambda) veto and reevaluate the relative BFs. The relative difference between the reevaluated result and the nominal result is taken as the systematic uncertainty, which is 0.4%(0.4%) for RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}.

(V) Joint fit-quality χtotal2\chi^{2}_{\mathrm{total}} requirement. Joint fit-quality χtotal2\chi^{2}_{\mathrm{total}} requirements are imposed on the Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ0π+\Sigma^{0}\pi^{+} decay modes. To evaluate the effect of any difference between data and MC simulation, we fit to the χtotal2\chi^{2}_{\mathrm{total}} distribution in data with the shapes derived from MC simulations convolved with a floating Gaussian function. The detection efficiency is remeasured after resampling the corresponding χtotal2\chi^{2}_{\mathrm{total}} variable in MC samples according to the fitted Gaussian function, and RΣ0K+R_{\Sigma^{0}K^{+}} is updated accordingly. The Gaussian parameters are randomly varied within the fitted uncertainties, and the corresponding value of RΣ0K+R_{\Sigma^{0}K^{+}} is recorded. The mean μχ2\mu_{\chi^{2}} and the standard deviation σχ2\sigma_{\chi^{2}} of the RΣ0K+R_{\Sigma^{0}K^{+}} distribution is measured and μχ22+σχ22/RΣ0K+\sqrt{\mu_{\chi^{2}}^{2}+\sigma_{\chi^{2}}^{2}}/R_{\Sigma^{0}K^{+}} is assigned as the the corresponding systematic uncertainty, which is 0.7%.

(VI) Energy difference ΔE\Delta E requirement. The energy difference ΔE\Delta E requirement is used in the measurement of RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}. Following a similar procedure as for the χ2\chi^{2} uncertainty, we first obtain the difference of ΔE\Delta E distributions in data and MC simulations, and then study the distribution of the corresponding RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}} values with updated efficiencies, which leads to the assignment of a systematic uncertainty of 0.5% for RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}.

(VII) Signal model. We use the phase-space model for simulating the Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ+KS0\Sigma^{+}K^{0}_{\mathrm{S}} decay modes to obtain our central values, since the decay-asymmetry parameters are not known. As a systematic check, we test several extreme cases of the decay-asymmetry parameters and recalculate their detection efficiencies based on the corresponding signal MC samples. The resultant changes on the relative BFs are taken as the systematic uncertainties, which are 0.5% and 2.5% for RΣ0K+R_{\Sigma^{0}K^{+}} and RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}, respectively.

(VIII) Fitting model. The fitting procedure has uncertainties arising from both the signal and background shapes. For the signal shapes, the convolved Gaussian functions are varied by ±1σ\pm 1\sigma around their baseline values. For the Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} mode, we also consider the effect of the correlation between the convolved Gaussian functions in MBCM_{\rm{BC}} and Mpπ0M_{p\pi^{0}} by including a correlation coefficient determined from MC and verify that this leads to a negligible bias. For the background shapes, the parameter EbeamE_{\rm{beam}} in the ARGUS function of Eq. (3) is randomly varied by ±0.15\pm 0.15 MeV and the shape of the Λc+pKS0π0\Lambda_{c}^{+}\rightarrow pK_{S}^{0}\pi^{0} background component is replaced by a shape from an alternative partial wave analysis, in which more intermediate states are considered than those in the nominal signal MC simulation. To take into account these effects, 5000 pseudo data sets are sampled according to the bootstrap method [52]. For each pseudo data set, the fitting models are varied randomly. Pull distributions are inspected from these pseudo data sets, and the small biases of 0.6% and 1.6% are assigned as the systematic uncertainties for RΣ0K+R_{\Sigma^{0}K^{+}} and RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}, respectively.

(IX) (KS0π+π)\mathcal{B}(K^{0}_{\mathrm{S}}\rightarrow\pi^{+}\pi^{-}). The uncertainty on the BF (KS0π+π)\mathcal{B}(K^{0}_{\mathrm{S}}\rightarrow\pi^{+}\pi^{-}) [28] is propagated to give a systematic uncertainty of 0.1% in RΣ+KS0R_{\Sigma^{+}K^{0}_{\mathrm{S}}}.

VI Summary

In summary, based on 4.4 fb-1 of e+ee^{+}e^{-} annihilation data collected in the energy region between 4.6 GeV and 4.7 GeV with the BESIII detector at BEPCII, we report the measurements of BFs of the two singly Cabibbo-suppressed decay modes Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} and Σ+KS0\Sigma^{+}K^{0}_{\mathrm{S}} relative to the reference modes Λc+Σ0π+\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+} and Σ+π+π\Sigma^{+}\pi^{+}\pi^{-}, respectively. The BF of Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} relative to Λc+Σ0π+\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+} is measured to be 0.0361±0.0073(stat.)±0.0005(syst.)0.0361\pm 0.0073(\mathrm{stat.})\pm 0.0005(\mathrm{syst.}), while the BF of Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} relative to Λc+Σ+π+π\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-} is measured to be 0.0106±0.0031(stat.)±0.0004(syst.)0.0106\pm 0.0031(\mathrm{stat.})\pm 0.0004(\mathrm{syst.}). Taking the world-average BFs (Λc+Σ0π+)=(1.29±0.07)%\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}\pi^{+})=(1.29\pm 0.07)\% and (Λc+Σ+π+π)=(4.50±0.25)%\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}\pi^{+}\pi^{-})=(4.50\pm 0.25)\% from the PDG [28], yields the the absolute BF (Λc+Σ0K+)=(4.7±0.9(stat.)±0.1(syst.)±0.3(ref.))×104\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+})=(4.7\pm 0.9(\mathrm{stat.})\pm 0.1(\mathrm{syst.})\pm 0.3(\mathrm{ref.}))\times 10^{-4}, and (Λc+Σ+KS0)=(4.8±1.4(stat.)±0.2(syst.)±0.3(ref.))×104\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}})=(4.8\pm 1.4(\mathrm{stat.})\pm 0.2(\mathrm{syst.})\pm 0.3(\mathrm{ref.}))\times 10^{-4}. This is the first measurement of the Λc+Σ+KS0\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}} branching fraction. The Λc+Σ0K+\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+} BF is measured with a comparable precision to the combined result from the Belle [9] and BaBar [10] collaborations. The ratio (Λc+Σ0K+)/(Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{0}K^{+})/\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}}) is determined to be 0.98±0.35(stat.)±0.04(syst.)±0.08(ref.)0.98\pm 0.35(\mathrm{stat.})\pm 0.04(\mathrm{syst.})\pm 0.08(\mathrm{ref.}), which is consistent with the predictions in Refs. [3, 5] under SU(3)FSU(3)_{F} flavor symmetry and disfavors the prediction in Ref. [6]. The prediction for (Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}}) in Ref. [6] differs from our result by 2.5σ\sigma, indicating a reassessment of the IRA method may be needed. Though our work is generally consistent with the predictions in Refs. [2, 3, 4, 5] within 12σ1\sim 2\sigma, these theoretical predictions generally overestimate the BFs. The systematic uncertainties of our results are smaller than those of from the Belle and BaBar collaborations, but our precision is limited by the relatively low sample size. With the additional data which are foreseen to be collected near the Λc+Λ¯c\Lambda_{c}^{+}\bar{\Lambda}_{c}^{-} threshold in the coming years [53], we expect our measurements to improve in precision, and shed more light on the topic of charmed baryon decays.

Note: After the publication of our measurement, we were contacted by the authors of Ref. [6] that there was a numerical mistake in their calculation of (Λc+Σ+KS0)\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}}). The erratum can be found in Ref. [54]. The result has been changed to (Λc+Σ+KS0)=(6.3±2.5)%\mathcal{B}(\Lambda_{c}^{+}\rightarrow\Sigma^{+}K^{0}_{\mathrm{S}})=(6.3\pm 2.5)\%, which is consistent with our measurement within 1σ1\sigma.

Acknowledgements.
The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406400, 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11635010, 11675275, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12175321, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207, U1932101; State Key Laboratory of Nuclear Physics and Technology, PKU under Grant No. NPT2020KFY04; CAS Key Research Program of Frontier Sciences under Contract No. QYZDJ-SSW-SLH040; 100 Talents Program of CAS; the Fundamental Research Funds for the Central Universities; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation under Contract No. B16F640076; STFC (United Kingdom); Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and National Science Research and Innovation Fund (NSRF) under Contract No. 160355; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374.

References