This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Measurement of branching fraction of 𝑫𝒔+𝑫𝒔+𝝅𝟎D^{*+}_{s}\to D^{+}_{s}\pi^{0} relative to 𝑫𝒔+𝑫𝒔+𝜸D^{*+}_{s}\to D^{+}_{s}\gamma

M. Ablikim1, M. N. Achasov11,b, P. Adlarson70, M. Albrecht4, R. Aliberti31, A. Amoroso69A,69C, M. R. An35, Q. An66,53, X. H. Bai61, Y. Bai52, O. Bakina32, R. Baldini Ferroli26A, I. Balossino27A, Y. Ban42,g, V. Batozskaya1,40, D. Becker31, K. Begzsuren29, N. Berger31, M. Bertani26A, D. Bettoni27A, F. Bianchi69A,69C, J. Bloms63, A. Bortone69A,69C, I. Boyko32, R. A. Briere5, A. Brueggemann63, H. Cai71, X. Cai1,53, A. Calcaterra26A, G. F. Cao1,58, N. Cao1,58, S. A. Cetin57A, J. F. Chang1,53, W. L. Chang1,58, G. Chelkov32,a, C. Chen39, Chao Chen50, G. Chen1, H. S. Chen1,58, M. L. Chen1,53, S. J. Chen38, S. M. Chen56, T. Chen1, X. R. Chen28,58, X. T. Chen1, Y. B. Chen1,53, Z. J. Chen23,h, W. S. Cheng69C, S. K. Choi 50, X. Chu39, G. Cibinetto27A, F. Cossio69C, J. J. Cui45, H. L. Dai1,53, J. P. Dai73, A. Dbeyssi17, R.  E. de Boer4, D. Dedovich32, Z. Y. Deng1, A. Denig31, I. Denysenko32, M. Destefanis69A,69C, F. De Mori69A,69C, Y. Ding36, J. Dong1,53, L. Y. Dong1,58, M. Y. Dong1,53,58, X. Dong71, S. X. Du75, P. Egorov32,a, Y. L. Fan71, J. Fang1,53, S. S. Fang1,58, W. X. Fang1, Y. Fang1, R. Farinelli27A, L. Fava69B,69C, F. Feldbauer4, G. Felici26A, C. Q. Feng66,53, J. H. Feng54, K Fischer64, M. Fritsch4, C. Fritzsch63, C. D. Fu1, H. Gao58, Y. N. Gao42,g, Yang Gao66,53, S. Garbolino69C, I. Garzia27A,27B, P. T. Ge71, Z. W. Ge38, C. Geng54, E. M. Gersabeck62, A Gilman64, K. Goetzen12, L. Gong36, W. X. Gong1,53, W. Gradl31, M. Greco69A,69C, L. M. Gu38, M. H. Gu1,53, Y. T. Gu14, C. Y Guan1,58, A. Q. Guo28,58, L. B. Guo37, R. P. Guo44, Y. P. Guo10,f, A. Guskov32,a, T. T. Han45, W. Y. Han35, X. Q. Hao18, F. A. Harris60, K. K. He50, K. L. He1,58, F. H. Heinsius4, C. H. Heinz31, Y. K. Heng1,53,58, C. Herold55, G. Y. Hou1,58, Y. R. Hou58, Z. L. Hou1, H. M. Hu1,58, J. F. Hu51,i, T. Hu1,53,58, Y. Hu1, G. S. Huang66,53, K. X. Huang54, L. Q. Huang28,58, X. T. Huang45, Y. P. Huang1, Z. Huang42,g, T. Hussain68, N Hüsken25,31, W. Imoehl25, M. Irshad66,53, J. Jackson25, S. Jaeger4, S. Janchiv29, E. Jang50, J. H. Jeong50, Q. Ji1, Q. P. Ji18, X. B. Ji1,58, X. L. Ji1,53, Y. Y. Ji45, Z. K. Jia66,53, H. B. Jiang45, S. S. Jiang35, X. S. Jiang1,53,58, Y. Jiang58, J. B. Jiao45, Z. Jiao21, S. Jin38, Y. Jin61, M. Q. Jing1,58, T. Johansson70, N. Kalantar-Nayestanaki59, X. S. Kang36, R. Kappert59, M. Kavatsyuk59, B. C. Ke75, I. K. Keshk4, A. Khoukaz63, R. Kiuchi1, R. Kliemt12, L. Koch33, O. B. Kolcu57A, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc40,70, W. Kühn33, J. J. Lane62, J. S. Lange33, P.  Larin17, A. Lavania24, L. Lavezzi69A,69C, Z. H. Lei66,53, H. Leithoff31, M. Lellmann31, T. Lenz31, C. Li39, C. Li43, C. H. Li35, Cheng Li66,53, D. M. Li75, F. Li1,53, G. Li1, H. Li47, H. Li66,53, H. B. Li1,58, H. J. Li18, H. N. Li51,i, J. Q. Li4, J. S. Li54, J. W. Li45, Ke Li1, L. J Li1, L. K. Li1, Lei Li3, M. H. Li39, P. R. Li34,j,k, S. X. Li10, S. Y. Li56, T.  Li45, W. D. Li1,58, W. G. Li1, X. H. Li66,53, X. L. Li45, Xiaoyu Li1,58, Y. G. Li42,g, Z. X. Li14, H. Liang1,58, H. Liang30, H. Liang66,53, Y. F. Liang49, Y. T. Liang28,58, G. R. Liao13, L. Z. Liao45, J. Libby24, A.  Limphirat55, C. X. Lin54, D. X. Lin28,58, T. Lin1, B. J. Liu1, C. X. Liu1, D.  Liu17,66, F. H. Liu48, Fang Liu1, Feng Liu6, G. M. Liu51,i, H. Liu34,j,k, H. B. Liu14, H. M. Liu1,58, Huanhuan Liu1, Huihui Liu19, J. B. Liu66,53, J. L. Liu67, J. Y. Liu1,58, K. Liu1, K. Y. Liu36, Ke Liu20, L. Liu66,53, Lu Liu39, M. H. Liu10,f, P. L. Liu1, Q. Liu58, S. B. Liu66,53, T. Liu10,f, W. K. Liu39, W. M. Liu66,53, X. Liu34,j,k, Y. Liu34,j,k, Y. B. Liu39, Z. A. Liu1,53,58, Z. Q. Liu45, X. C. Lou1,53,58, F. X. Lu54, H. J. Lu21, J. G. Lu1,53, X. L. Lu1, Y. Lu7, Y. P. Lu1,53, Z. H. Lu1, C. L. Luo37, M. X. Luo74, T. Luo10,f, X. L. Luo1,53, X. R. Lyu58, Y. F. Lyu39, F. C. Ma36, H. L. Ma1, L. L. Ma45, M. M. Ma1,58, Q. M. Ma1, R. Q. Ma1,58, R. T. Ma58, X. Y. Ma1,53, Y. Ma42,g, F. E. Maas17, M. Maggiora69A,69C, S. Maldaner4, S. Malde64, Q. A. Malik68, A. Mangoni26B, Y. J. Mao42,g, Z. P. Mao1, S. Marcello69A,69C, Z. X. Meng61, J. Messchendorp12,59, G. Mezzadri27A, H. Miao1, T. J. Min38, R. E. Mitchell25, X. H. Mo1,53,58, N. Yu. Muchnoi11,b, Y. Nefedov32, F. Nerling17,d, I. B. Nikolaev11,b, Z. Ning1,53, S. Nisar9,l, Y. Niu 45, S. L. Olsen58, Q. Ouyang1,53,58, S. Pacetti26B,26C, X. Pan10,f, Y. Pan52, A.  Pathak30, M. Pelizaeus4, H. P. Peng66,53, K. Peters12,d, J. L. Ping37, R. G. Ping1,58, S. Plura31, S. Pogodin32, V. Prasad66,53, F. Z. Qi1, H. Qi66,53, H. R. Qi56, M. Qi38, T. Y. Qi10,f, S. Qian1,53, W. B. Qian58, Z. Qian54, C. F. Qiao58, J. J. Qin67, L. Q. Qin13, X. P. Qin10,f, X. S. Qin45, Z. H. Qin1,53, J. F. Qiu1, S. Q. Qu56, K. H. Rashid68, C. F. Redmer31, K. J. Ren35, A. Rivetti69C, V. Rodin59, M. Rolo69C, G. Rong1,58, Ch. Rosner17, S. N. Ruan39, H. S. Sang66, A. Sarantsev32,c, Y. Schelhaas31, C. Schnier4, K. Schoenning70, M. Scodeggio27A,27B, K. Y. Shan10,f, W. Shan22, X. Y. Shan66,53, J. F. Shangguan50, L. G. Shao1,58, M. Shao66,53, C. P. Shen10,f, H. F. Shen1,58, X. Y. Shen1,58, B. A. Shi58, H. C. Shi66,53, J. Y. Shi1, Q. Q. Shi50, R. S. Shi1,58, X. Shi1,53, X. D Shi66,53, J. J. Song18, W. M. Song30,1, Y. X. Song42,g, S. Sosio69A,69C, S. Spataro69A,69C, F. Stieler31, K. X. Su71, P. P. Su50, Y. J. Su58, G. X. Sun1, H. Sun58, H. K. Sun1, J. F. Sun18, L. Sun71, S. S. Sun1,58, T. Sun1,58, W. Y. Sun30, X Sun23,h, Y. J. Sun66,53, Y. Z. Sun1, Z. T. Sun45, Y. H. Tan71, Y. X. Tan66,53, C. J. Tang49, G. Y. Tang1, J. Tang54, L. Y Tao67, Q. T. Tao23,h, M. Tat64, J. X. Teng66,53, V. Thoren70, W. H. Tian47, Y. Tian28,58, I. Uman57B, B. Wang1, B. L. Wang58, C. W. Wang38, D. Y. Wang42,g, F. Wang67, H. J. Wang34,j,k, H. P. Wang1,58, K. Wang1,53, L. L. Wang1, M. Wang45, M. Z. Wang42,g, Meng Wang1,58, S. Wang13, S. Wang10,f, T.  Wang10,f, T. J. Wang39, W. Wang54, W. H. Wang71, W. P. Wang66,53, X. Wang42,g, X. F. Wang34,j,k, X. L. Wang10,f, Y. Wang56, Y. D. Wang41, Y. F. Wang1,53,58, Y. H. Wang43, Y. Q. Wang1, Yaqian Wang16,1, Z. Wang1,53, Z. Y. Wang1,58, Ziyi Wang58, D. H. Wei13, F. Weidner63, S. P. Wen1, D. J. White62, U. Wiedner4, G. Wilkinson64, M. Wolke70, L. Wollenberg4, J. F. Wu1,58, L. H. Wu1, L. J. Wu1,58, X. Wu10,f, X. H. Wu30, Y. Wu66, Y. J Wu28, Z. Wu1,53, L. Xia66,53, T. Xiang42,g, D. Xiao34,j,k, G. Y. Xiao38, H. Xiao10,f, S. Y. Xiao1, Y.  L. Xiao10,f, Z. J. Xiao37, C. Xie38, X. H. Xie42,g, Y. Xie45, Y. G. Xie1,53, Y. H. Xie6, Z. P. Xie66,53, T. Y. Xing1,58, C. F. Xu1, C. J. Xu54, G. F. Xu1, H. Y. Xu61, Q. J. Xu15, X. P. Xu50, Y. C. Xu58, Z. P. Xu38, F. Yan10,f, L. Yan10,f, W. B. Yan66,53, W. C. Yan75, H. J. Yang46,e, H. L. Yang30, H. X. Yang1, L. Yang47, S. L. Yang58, Tao Yang1, Y. F. Yang39, Y. X. Yang1,58, Yifan Yang1,58, M. Ye1,53, M. H. Ye8, J. H. Yin1, Z. Y. You54, B. X. Yu1,53,58, C. X. Yu39, G. Yu1,58, T. Yu67, X. D. Yu42,g, C. Z. Yuan1,58, L. Yuan2, S. C. Yuan1, X. Q. Yuan1, Y. Yuan1,58, Z. Y. Yuan54, C. X. Yue35, A. A. Zafar68, F. R. Zeng45, X. Zeng6, Y. Zeng23,h, Y. H. Zhan54, A. Q. Zhang1, B. L. Zhang1, B. X. Zhang1, D. H. Zhang39, G. Y. Zhang18, H. Zhang66, H. H. Zhang54, H. H. Zhang30, H. Y. Zhang1,53, J. L. Zhang72, J. Q. Zhang37, J. W. Zhang1,53,58, J. X. Zhang34,j,k, J. Y. Zhang1, J. Z. Zhang1,58, Jianyu Zhang1,58, Jiawei Zhang1,58, L. M. Zhang56, L. Q. Zhang54, Lei Zhang38, P. Zhang1, Q. Y.  Zhang35,75, Shuihan Zhang1,58, Shulei Zhang23,h, X. D. Zhang41, X. M. Zhang1, X. Y. Zhang50, X. Y. Zhang45, Y. Zhang64, Y.  T. Zhang75, Y. H. Zhang1,53, Yan Zhang66,53, Yao Zhang1, Z. H. Zhang1, Z. Y. Zhang71, Z. Y. Zhang39, G. Zhao1, J. Zhao35, J. Y. Zhao1,58, J. Z. Zhao1,53, Lei Zhao66,53, Ling Zhao1, M. G. Zhao39, Q. Zhao1, S. J. Zhao75, Y. B. Zhao1,53, Y. X. Zhao28,58, Z. G. Zhao66,53, A. Zhemchugov32,a, B. Zheng67, J. P. Zheng1,53, Y. H. Zheng58, B. Zhong37, C. Zhong67, X. Zhong54, H.  Zhou45, L. P. Zhou1,58, X. Zhou71, X. K. Zhou58, X. R. Zhou66,53, X. Y. Zhou35, Y. Z. Zhou10,f, J. Zhu39, K. Zhu1, K. J. Zhu1,53,58, L. X. Zhu58, S. H. Zhu65, S. Q. Zhu38, T. J. Zhu72, W. J. Zhu10,f, Y. C. Zhu66,53, Z. A. Zhu1,58, B. S. Zou1, J. H. Zou1 (BESIII Collaboration) 1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
10 Fudan University, Shanghai 200433, People’s Republic of China
11 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
12 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
13 Guangxi Normal University, Guilin 541004, People’s Republic of China
14 Guangxi University, Nanning 530004, People’s Republic of China
15 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
16 Hebei University, Baoding 071002, People’s Republic of China
17 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
18 Henan Normal University, Xinxiang 453007, People’s Republic of China
19 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
20 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
21 Huangshan College, Huangshan 245000, People’s Republic of China
22 Hunan Normal University, Changsha 410081, People’s Republic of China
23 Hunan University, Changsha 410082, People’s Republic of China
24 Indian Institute of Technology Madras, Chennai 600036, India
25 Indiana University, Bloomington, Indiana 47405, USA
26 INFN Laboratori Nazionali di Frascati, (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
27 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
28 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
29 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
30 Jilin University, Changchun 130012, People’s Republic of China
31 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
32 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
33 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
34 Lanzhou University, Lanzhou 730000, People’s Republic of China
35 Liaoning Normal University, Dalian 116029, People’s Republic of China
36 Liaoning University, Shenyang 110036, People’s Republic of China
37 Nanjing Normal University, Nanjing 210023, People’s Republic of China
38 Nanjing University, Nanjing 210093, People’s Republic of China
39 Nankai University, Tianjin 300071, People’s Republic of China
40 National Centre for Nuclear Research, Warsaw 02-093, Poland
41 North China Electric Power University, Beijing 102206, People’s Republic of China
42 Peking University, Beijing 100871, People’s Republic of China
43 Qufu Normal University, Qufu 273165, People’s Republic of China
44 Shandong Normal University, Jinan 250014, People’s Republic of China
45 Shandong University, Jinan 250100, People’s Republic of China
46 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
47 Shanxi Normal University, Linfen 041004, People’s Republic of China
48 Shanxi University, Taiyuan 030006, People’s Republic of China
49 Sichuan University, Chengdu 610064, People’s Republic of China
50 Soochow University, Suzhou 215006, People’s Republic of China
51 South China Normal University, Guangzhou 510006, People’s Republic of China
52 Southeast University, Nanjing 211100, People’s Republic of China
53 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
54 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
55 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
56 Tsinghua University, Beijing 100084, People’s Republic of China
57 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
58 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
59 University of Groningen, NL-9747 AA Groningen, The Netherlands
60 University of Hawaii, Honolulu, Hawaii 96822, USA
61 University of Jinan, Jinan 250022, People’s Republic of China
62 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
63 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
64 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
65 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
66 University of Science and Technology of China, Hefei 230026, People’s Republic of China
67 University of South China, Hengyang 421001, People’s Republic of China
68 University of the Punjab, Lahore-54590, Pakistan
69 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
70 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
71 Wuhan University, Wuhan 430072, People’s Republic of China
72 Xinyang Normal University, Xinyang 464000, People’s Republic of China
73 Yunnan University, Kunming 650500, People’s Republic of China
74 Zhejiang University, Hangzhou 310027, People’s Republic of China
75 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at the Department of Mathematical Sciences, IBA, Karachi, Pakistan
Abstract

Based on 7.33 fb-1 of e+ee^{+}e^{-} collision data taken at center-of-mass energies between 4.128 and 4.226 GeV with the BESIII detector, we measure the branching fraction of Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0} relative to that of Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma to be (6.16±0.43±0.19)%(6.16\pm 0.43\pm 0.19)\%. The first uncertainty is statistical and the second one is systematic. By using the world average value of the branching fraction of Ds+Ds+e+eD^{*+}_{s}\to D^{+}_{s}e^{+}e^{-}, we determine the branching fractions of Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0} to be (93.57±0.44±0.19)%(93.57\pm 0.44\pm 0.19)\% and (5.76±0.44±0.19)%(5.76\pm 0.44\pm 0.19)\%, respectively.

I Introduction

The excited strange charmed meson, Ds+D_{s}^{*+}, is formed from cs¯c\bar{s} quark-antiquark pair. Throughout this paper, charge-conjugate states are always included. The Ds+D_{s}^{*+} decays are dominated by the radiative process Ds+Ds+γD_{s}^{*+}\to D_{s}^{+}\gamma and the isospin-violating hadronic process Ds+Ds+π0D_{s}^{*+}\to D_{s}^{+}\pi^{0} due to the quark SU(2) flavor breaking and isospin violating effects. Measurements of the branching fractions (BFs) of the Ds+D_{s}^{*+} decays are important to explore quantum chromodynamics (QCD) Fritzsch:1973pi describing the strong interaction. The decay widths of Ds+Ds+γD_{s}^{*+}\to D^{+}_{s}\gamma and/or Ds+Ds+π0D_{s}^{*+}\to D^{+}_{s}\pi^{0} have been theoretically predicted based on effective models, e.g. chiral perturbation theory (χ\chiPT) Yang:2019cat ; Cheng:1993kp ; Cho:1994zu ; Wang:2019mhm , the light-front quark model (LFQM) Choi:2007us , the relativistic quark model (RQM)Goity:2000dk , QCD sum rules (QCDSR) Aliev:1994nq ; Yu:2015xwa , the Nambu-Jona-Lasinio model (NJLM) Deng:2013uca , lattice QCD (LQCD) Donald:2013sra , the non-relativistic quark model (NRQM) Kamal:1992uv ; Fayyazuddin:1993eb , and the covariant model (CM) Cheung:2015rya . The BF of Ds+Ds+π0D_{s}^{*+}\to D^{+}_{s}\pi^{0} relative to that of Ds+Ds+γD_{s}^{*+}\to D^{+}_{s}\gamma has been measured by using e+ee^{+}e^{-} collision data accumulated at the Υ(3S)\Upsilon(3S) and Υ(4S)\Upsilon(4S) by the CLEO cleo2 and BaBar babar2 experiments. The precision of the world average of the BF of Ds+Ds+γD_{s}^{*+}\to D^{+}_{s}\gamma is about 0.7% pdg2022 . Precision measurements of these BFs help to constrain the model parameters, thereby improving the effective models. In addition, the BFs are important inputs in the precise determination of the Ds+D^{+}_{s} decay constant fDs+f_{D^{+}_{s}} and the csc\to s CKM matrix element |Vcs||V_{cs}| via the e+eDs±Dse^{+}e^{-}\to D_{s}^{*\pm}D_{s}^{\mp} processes.

In this paper, we report an improved measurement of the BF of Ds+Ds+π0D_{s}^{*+}\to D^{+}_{s}\pi^{0} relative to Ds+Ds+γD_{s}^{*+}\to D^{+}_{s}\gamma and then determine the BFs of Ds+Ds+γD_{s}^{*+}\to D^{+}_{s}\gamma and Ds+Ds+π0D_{s}^{*+}\to D^{+}_{s}\pi^{0}. This analysis is carried out by using 7.33 fb-1 of e+ee^{+}e^{-} collision data taken at center-of-mass energies EcmE_{\rm cm} between 4.128 and 4.226 GeV with the BESIII detector.

II BESIII detector and Monte Carlo

The BESIII detector Ablikim:2009aa records symmetric e+ee^{+}e^{-} collisions provided by the BEPCII storage ring Yu:IPAC2016-TUYA01 in the center-of-mass energy range from 2.0 to 4.95 GeV, with a peak luminosity of 1×10331\times 10^{33} cm-2s-1 achieved at s=3.773GeV\sqrt{s}=3.773~{}\text{GeV}. BESIII has collected large data samples in this energy region Ablikim:2019hff . BESIII is a cylindrical spectrometer with a geometrical acceptance of 93%93\% over the 4π4\pi solid angle. It consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identifier modules interleaved with steel Huang:geometry . The charged particle momentum resolution is 0.5%0.5\% at 1 GeV/cc, and the specific energy loss (dEE/dxx) resolution is 6%6\% for the electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end-cap) region. The time resolution in the TOF barrel region is 68 ps. The end-cap TOF system was upgraded in 2015 using multi-gap resistive plate chamber technology, providing a time resolution of 60 ps etof . Approximately 83% of the data used here was collected after this upgrade; luminosities lumi at each energy are given in Table 1.

Simulated data samples are produced with a geant4-based geant4 Monte Carlo (MC) toolkit including the geometric description of the BESIII detector and the detector response. The simulation includes the beam energy spread and initial state radiation (ISR) in the e+ee^{+}e^{-} annihilations with the generator kkmc ref:kkmc . In the MC simulation, the production of open-charm processes directly produced via e+ee^{+}e^{-} annihilations are modelled with the generator conexc ref:conexc . The ISR production of vector charmonium(-like) states and the continuum processes are incorporated in kkmc ref:kkmc . All particle decays are modelled with evtgen ref:evtgen using BFs either taken from the Particle Data Group pdg2022 , when available, or otherwise estimated with lundcharm ref:lundcharm . Final state radiation (FSR) from charged final state particles is incorporated using photos photos .

The input cross section line shape of e+eDs±Dse^{+}e^{-}\to D^{*\pm}_{s}D^{\mp}_{s} is based on the results in Ref. crsDsDss . In this analysis, the inclusive MC sample, which is generated at various energy points and has an integrated luminosity of 40 times individual data sets, is used to determine detection efficiencies and to estimate background contributions.

III Event selection

At the center-of-mass energies between 4.128 and 4.226 GeV, Ds+DsD^{*+}_{s}D^{-}_{s} pairs are produced copiously by e+ee^{+}e^{-} collisions. The Ds+D^{*+}_{s} mesons decay predominantly via Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0}. Candidate events are selected by reconstructing Ds+D^{+}_{s} and DsD^{-}_{s} mesons via hadronic decay modes. To obtain better momentum resolution and lower background contamination, we use three modes of Ds+K+Kπ+D^{+}_{s}\to K^{+}K^{-}\pi^{+} versus DsK+KπD^{-}_{s}\to K^{+}K^{-}\pi^{-}, Ds+K+Kπ+D^{+}_{s}\to K^{+}K^{-}\pi^{+} versus DsKS0KD^{-}_{s}\to K^{0}_{S}K^{-}, and Ds+KS0K+D^{+}_{s}\to K^{0}_{S}K^{+} versus DsKS0KD^{-}_{s}\to K^{0}_{S}K^{-}, which are labelled as modes I, II, and III, respectively. In order to improve detection efficiencies, no transition photon or π0\pi^{0} from the Ds+D_{s}^{*+} decay is required.

Charged tracks detected in the MDC are required to be within a polar angle (θ\theta) range of |cosθ|<0.93|\rm{cos\theta}|<0.93, where θ\theta is defined with respect to the zz-axis, which is the symmetry axis of the MDC. For charged tracks not originating from KS0K_{S}^{0} decays, the distance of closest approach to the interaction point (IP) must be less than 10 cm along the zz-axis, |Vz||V_{z}|, and less than 1 cm in the transverse plane, |Vxy||V_{xy}|. No additional charged track passing the cosθ\rm{cos\theta} and IP cuts is allowed for selected candidates. Particle identification (PID) for charged tracks combines measurements of the dEE/dxx in the MDC and the flight time in the TOF to form likelihoods for charged pion and kaon hypotheses, (π)\mathcal{L}(\pi) and (K)\mathcal{L}(K). Pion candidates are required to satisfy (π)\mathcal{L}(\pi) >> (K)\mathcal{L}(K) and (π)>0\mathcal{L}(\pi)>0, and kaon candidates are required to satisfy (K)\mathcal{L}(K) >> (π)\mathcal{L}(\pi) and (K)>0\mathcal{L}(K)>0.

The KS0K_{S}^{0} candidates are reconstructed via the decay KS0π+πK^{0}_{S}\to\pi^{+}\pi^{-}. The two charged pions are required to satisfy |Vz|<20|V_{z}|<20 cm and |cosθ|<0.93|\!\cos\theta|<0.93 but no particle identification is applied. The π+π\pi^{+}\pi^{-} invariant mass is required to be within the interval (0.487,0.511)(0.487,0.511) GeV/c2c^{2}. A vertex fit is performed, constraining the two tracks to originate from a common vertex, and the decay length of KS0K_{S}^{0} candidates is required to be greater than twice the resolution.

To suppress non-Ds±DsD_{s}^{\pm}D_{s}^{*\mp} events, the beam-constrained mass of the DsD_{s}^{-} candidate

MBCEbeam2|ptag|2,M_{\rm BC}\equiv\sqrt{E_{\rm beam}^{2}-|\vec{p}_{\rm tag}|^{2}}, (1)

is required to be within the intervals as shown in Table 1. Here, EbeamE_{\rm beam} is the beam energy and ptag\vec{p}_{\rm tag} is the three-momentum of the reconstructed DsD_{s}^{-} candidate in the e+ee^{+}e^{-} center-of-mass frame. In each event, we only keep one candidate per tag mode per charge, selecting the one with the DsD_{s}^{-} recoil mass

Mrec(Ecm|ptag|2+mDs2)2|ptag|2,M_{\rm rec}\equiv\sqrt{(E_{\rm cm}-\sqrt{|\vec{p}_{\rm tag}|^{2}+m^{2}_{D_{s}}})^{2}-|\vec{p}_{\rm tag}|^{2}}, (2)

closest to the nominal Ds+D_{s}^{*+} mass pdg2022 . The Ds+D^{+}_{s} candidate is selected in the presence of the tag DsD^{-}_{s}. If there are multiple Ds+D^{+}_{s} combinations in an event, the one giving the minimum |MDs++MDs2mDs||M_{D_{s}^{+}}+M_{D_{s}^{-}}-2m_{D_{s}}| is retained for further analysis. Here MDs±M_{D^{\pm}_{s}} is the invariant mass of the Ds±D^{\pm}_{s} candidate and mDsm_{D_{s}} is the nominal DsD_{s} mass pdg2022 . Figure 1 shows the distribution of MDsM_{D^{-}_{s}} vs. MDs+M_{D^{+}_{s}} of the accepted candidates in data. To suppress background, the invariant masses of K+Kπ±K^{+}K^{-}\pi^{\pm} and KS0K±K^{0}_{S}K^{\pm} combinations are required to be within the interval MDs±(1.958,1.978)M_{D^{\pm}_{s}}\in(1.958,1.978) GeV/c2c^{2}.

Table 1: The integrated luminosity and MBCM_{\rm BC} requirement for each energy (EcmE_{\rm cm}) point.
EcmE_{\rm cm} (GeV) Luminosity (pb-1) MBCM_{\rm BC} (GeV/c2c^{2})
4.128 401.5 [2.010, 2.061]
4.157 408.7 [2.010, 2.070]
4.178 3189.0 [2.010, 2.073]
4.189 569.8 [2.010, 2.076]
4.199 526.0 [2.010, 2.079]
4.209 571.7 [2.010, 2.082]
4.219 568.7 [2.010, 2.085]
4.226 1091.7 [2.010, 2.088]

To improve momentum resolution, a two-constraint (2C) kinematic fit, in which the invariant mass of the K+Kπ±K^{+}K^{-}\pi^{\pm} or KS0K±K^{0}_{S}K^{\pm} combination is constrained to the known DsD_{s} mass pdg2022 is performed. The momenta updated by the kinematic fit are kept for further analysis.

To separate the Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0} candidates, we define the missing mass squared of the reconstructed Ds+DsD^{+}_{s}D^{-}_{s} combination as

Mmiss2(EcmEDs+EDs)2|pDs+pDs|2,M^{2}_{\rm miss}\equiv\left(E_{\rm cm}-E_{D^{+}_{s}}-E_{D^{-}_{s}}\right)^{2}-|-\vec{p}_{D^{+}_{s}}-\vec{p}_{D^{-}_{s}}|^{2}, (3)

where EDs±E_{D^{\pm}_{s}} and pDs±\vec{p}_{D^{\pm}_{s}} are the energy and momentum of Ds±D^{\pm}_{s} in the e+ee^{+}e^{-} center-of-mass system, respectively. The resultant Mmiss2M^{2}_{\rm miss} distribution of the accepted Ds+DsD^{+}_{s}D^{-}_{s} candidate combinations is shown in Fig. 2, where the peak near to zero and its right-side peak correspond to Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0} candidates, respectively.

Refer to caption
Fig. 1: The distribution of MDsM_{D^{-}_{s}} vs. MDs+M_{D^{+}_{s}} summing over modes I, II, and III in data. The red rectangle denotes the signal region.
Refer to caption
Fig. 2: The Mmiss2M^{2}_{\rm miss} distributions of the accepted candidates, summing over modes I, II, and III. The points with error bars are data, the open red histograms are the scaled signal MC events, and the filled green histograms are normalized background events from the inclusive MC sample. The blue vertical arrow shows the dividing line for Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0} candidates; for the filled green histogram, the small peaking background around zero is from the e+eDs+Dse^{+}e^{-}\to D^{+}_{s}D^{-}_{s} process, and the open red and magenta histograms are the signals of Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0}, respectively.

IV Branching fractions

Following Ref. songwm , the BF of Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma relative to the sum of Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0} is determined by

fγ=Ds+Ds+γDs+Ds+γ+Ds+Ds+π0=NγprodNγprod+Nπ0prod,f_{\gamma}=\frac{{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\gamma}}{{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\gamma}+{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\pi^{0}}}=\frac{N_{\gamma}^{\rm prod}}{N_{\gamma}^{\rm prod}+N_{\pi^{0}}^{\rm prod}}, (4)

where NγprodN_{\gamma}^{\rm prod} and Nπ0prodN_{\pi^{0}}^{\rm prod} are the numbers of produced Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0} events, respectively. This ratio captures the binomial nature of the separation of the low-background signal into the two decays under study.

As shown in Fig. 2, the individual signal regions of Mmiss2M_{\rm miss}^{2} are defined as [0.020,0.013][-0.020,0.013] and [0.013,0.040][0.013,0.040] GeV2/c4c^{4} for Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0}, respectively. The dividing line accepts about 99.0% of the D+Ds+γD^{*+}\to D_{s}^{+}\gamma signal and about 98.5% of the Ds+Ds+π0D_{s}^{*+}\to D_{s}^{+}\pi^{0} signal. Due to the overlapping Mmiss2M_{\rm miss}^{2} distributions, some Ds+Ds+γD_{s}^{*+}\to D_{s}^{+}\gamma events can be misidentified as Ds+Ds+π0D_{s}^{*+}\to D_{s}^{+}\pi^{0}, and vice versa. To account for this effect, the yields of NγprodN_{\gamma}^{\rm prod} and Nπ0prodN_{\pi^{0}}^{\rm prod} are obtained by solving the following equation

(NγobsNγbkgNπ0obsNπ0bkg)=(ϵγγϵπ0γϵγπ0ϵπ0π0)(NγprodNπ0prod),\left(\begin{array}[]{l}N_{\gamma}^{\rm obs}-N_{\gamma}^{\rm bkg}\\ N_{\pi^{0}}^{\rm obs}-N_{\pi^{0}}^{\rm bkg}\end{array}\right)=\left(\begin{array}[]{cc}\epsilon_{\gamma\gamma}&\epsilon_{\pi^{0}\gamma}\\ \epsilon_{\gamma\pi^{0}}&\epsilon_{\pi^{0}\pi^{0}}\end{array}\right)\left(\begin{array}[]{l}N_{\gamma}^{\rm prod}\\ N_{\pi^{0}}^{\rm prod}\end{array}\right), (5)

where NiobsN_{i}^{\rm obs} is the number of selected events in data by counting, NibkgN_{i}^{\rm bkg} is the number of background events estimated from the inclusive MC sample; ϵij\epsilon_{ij} is the efficiency of the generated Ds+Ds++iD^{*+}_{s}\to D^{+}_{s}+i events selected as Ds+Ds++jD^{*+}_{s}\to D^{+}_{s}+j, where ii and jj denote γ\gamma or π0\pi^{0}. Both Ds+Ds+π0,Ds+γD^{*+}_{s}\to D_{s}^{+}\pi^{0},D_{s}^{+}\gamma are simulated. The background rates estimated from the inclusive MC sample for modes I, II, and III are all less than 1.5%.

To consider different detection efficiencies for ISR and FSR effects, the detection efficiencies at various energy points have been weighted by individual single tag Ds+D^{+}_{s} yields in data.

Table 2 lists the quantities used for the fγf_{\gamma} measurements and the results obtained. Weighting the fγf_{\gamma} results for modes I, II, and III by their inverse statistical uncertainties squared, we obtain their average fγ=(94.20±0.38)%f_{\gamma}=(94.20\pm 0.38)\%.

Table 2: The quantities used for fγf_{\gamma} measurements and the obtained results. The average result is weighted over modes I, II, and III by their inverse statistical uncertainties squared. The uncertainties are statistical only.
Mode NγobsN_{\gamma}^{\rm obs} Nπ0obsN_{\pi^{0}}^{\rm obs} NγbkgN_{\gamma}^{\rm bkg} Nπ0bkgN_{\pi^{0}}^{\rm bkg} ϵγγ(%)\epsilon_{\gamma\gamma}\left(\%\right) ϵγπ0(%)\epsilon_{\gamma\pi^{0}}\left(\%\right) ϵπ0γ(%)\epsilon_{\pi^{0}\gamma}\left(\%\right) ϵπ0π0(%)\epsilon_{\pi^{0}\pi^{0}}\left(\%\right) fγ(%){f}_{\gamma}\left(\%\right)
I 2293.0±47.92293.0\pm 47.9 239.0±15.5239.0\pm 15.5 31.0±0.931.0\pm 0.9 5.0±0.45.0\pm 0.4 14.16±0.0414.16\pm 0.04 0.42±0.010.42\pm 0.01 0.22±0.020.22\pm 0.02 15.08±0.1715.08\pm 0.17 93.52±0.4993.52\pm 0.49
II 1044.0±32.31044.0\pm 32.3 83.0±9.183.0\pm 9.1 12.0±0.512.0\pm 0.5 1.0±0.21.0\pm 0.2 15.97±0.0715.97\pm 0.07 0.46±0.010.46\pm 0.01 0.16±0.030.16\pm 0.03 16.38±0.2916.38\pm 0.29 95.32±0.6395.32\pm 0.63
III 119.0±10.9119.0\pm 10.9 11.0±3.311.0\pm 3.3 1.0±0.21.0\pm 0.2 0.0±0.00.0\pm 0.0 17.27±0.2317.27\pm 0.23 0.52±0.050.52\pm 0.05 0.00±0.000.00\pm 0.00 18.08±0.9618.08\pm 0.96 94.31±2.0494.31\pm 2.04
Average 94.20±0.3894.20\pm 0.38

V Systematic uncertainties

The systematic uncertainties in the BF measurements are discussed below. The systematic uncertainty due to Mmiss2M_{{\rm miss}}^{2} resolution is examined in the following procedure. We perform a fit to Mmiss2M_{{\rm miss}}^{2} distribution of data. To take into account the resolution difference between data and MC, a signal MC shape smeared with a Gaussian function is used. From the fit, we obtain the parameters (means, widths) of the Gaussian resolution functions, which are (1.0±0.1,1.0±0.2)(1.0\pm 0.1,1.0\pm 0.2), (1.1±0.1,1.0±0.2)(1.1\pm 0.1,1.0\pm 0.2), and (0.4±0.3,1.7±0.4)(0.4\pm 0.3,1.7\pm 0.4) MeV2/c4c^{4} for modes I, II, and III, respectively. The change of BF before and after smearing the Gaussian resolution function to the Mmiss2M_{\rm miss}^{2} distribution of the signal MC events, 0.07%, is taken as the associated systematic uncertainty.

The systematic uncertainty caused by the statistical uncertainty of the MC efficiencies is estimated by varying each of the efficiency matrix elements by ±1σ\pm 1\sigma. The largest change of the BF is taken as the systematic uncertainty.

The systematic uncertainty from background estimation is considered in two parts. The number of background events is calculated from the inclusive MC sample. The corresponding systematic uncertainty is estimated from the uncertainties of the cross sections used in generating this sample. The dominant background events are from open charm processes of e+eDs+Dse^{+}e^{-}\to D^{+}_{s}D^{-}_{s} and e+eDs+Dse^{+}e^{-}\to D^{*+}_{s}D^{-}_{s}. The systematic uncertainty is estimated by varying the cross sections and BFs of the hadronic Ds+D^{+}_{s} decays by ±1σ\pm 1\sigma. This effect on the BF measurement is negligible. In addition, we have also varied the simulated background events by the ratio of the background events observed in the Ds+DsD^{+}_{s}D^{-}_{s} sideband regions between data and the inclusive MC sample. The change of the BF, 0.10%, is taken as the corresponding systematic uncertainty.

Other possible systematic uncertainty sources, such as the ISR simulation, the kinematic fit, the tracking and the particle identification efficiencies between the two decay modes of Ds+D_{s}^{*+}, the MBCM_{\rm BC} requirement and the Mmiss2M^{2}_{\rm miss} range, have also been investigated. All of them are negligible.

All systematic uncertainties are summarized in Table 3. Assuming the systematic uncertainties from different sources are independent, the total systematic uncertainty is obtained to be 0.17% by adding all the sources quadratically.

VI Summary

By analyzing 7.33 fb-1 of e+ee^{+}e^{-} collision data taken at center-of-mass energies between 4.128 and 4.226 GeV, we measure the BF of Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma relative to the sum of Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma and Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0} to be fγ=(94.20±0.38±0.17)%f_{\gamma}=(94.20\pm 0.38\pm 0.17)\%. This gives the BF of Ds+Ds+π0D^{*+}_{s}\to D^{+}_{s}\pi^{0} relative to that of Ds+Ds+γD^{*+}_{s}\to D^{+}_{s}\gamma to be Ds+Ds+π0/Ds+Ds+γ=1fγ1=(6.16±0.43±0.19)%{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\pi^{0}}/{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\gamma}=\frac{1}{f_{\gamma}}-1=(6.16\pm 0.43\pm 0.19)\%. The Ds+D^{*+}_{s} is known to decay dominantly into three final states of Ds+γD^{+}_{s}\gamma, Ds+π0D^{+}_{s}\pi^{0} and Ds+e+eD^{+}_{s}e^{+}e^{-} Cheung:2015rya . Combining the world average of Ds+Ds+e+e=(0.67±0.16)%{\cal B}_{D^{*+}_{s}\to D^{+}_{s}e^{+}e^{-}}=(0.67\pm 0.16)\% pdg2022 , we obtain Ds+Ds+γ=(93.57±0.44±0.19)%{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\gamma}=(93.57\pm 0.44\pm 0.19)\% and Ds+Ds+π0=(5.76±0.44±0.19)%{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\pi^{0}}=(5.76\pm 0.44\pm 0.19)\%.

Figure 3 shows the comparison of the measured BF of Ds+Ds+π0/Ds+Ds+γ{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\pi^{0}}/{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\gamma} with other experiments and the world average value pdg2022 . Our measurement is well consistent with the previous ones but with better precision. Table 4 shows comparisons of the BFs measured in this work with the world average values and the decay widths or BFs predicted by various theories. Our results of DsDs+γ{\mathcal{B}}_{D^{*}_{s}\to D_{s}^{+}\gamma} and DsDs+π0{\mathcal{B}}_{D^{*}_{s}\to D_{s}^{+}\pi^{0}} are consistent with those predicted in Ref. Cheung:2015rya . At present, only limits on the Ds+D^{*+}_{s} width have been reported. More experimental measurements and theoretical calculations of the Ds+D^{*+}_{s} decays will be beneficial to give quantitative tests on the predicted partial decay widths, thereby better understand the radiative and strong decays of Ds+D^{*+}_{s}. As necessary inputs, the reported BFs with much improved precision are also important for the precise measurements of fDs+f_{D^{+}_{s}} and |Vcs||V_{cs}| by using the reactions of e+eDs±Dse^{+}e^{-}\to D_{s}^{*\pm}D_{s}^{\mp}.

Table 3: Relative systematic uncertainties in the determination of fγf_{\gamma}.
Source Uncertainty (%)\left(\%\right)
Mmiss2M_{{\rm miss}}^{2} resolution 0.07
MC statistics 0.12
Background 0.10
Sum 0.17
Refer to caption
Fig. 3: Comparison of Ds+Ds+π0/Ds+Ds+γ{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\pi^{0}}/{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\gamma} measured by this work and previous experiments. The points with error bars are from different experiments. For each experiment, the shorter error bar denotes statistical only while the longer error bar combines both statistical and systematic uncertainties. The green band corresponds to the ±1σ\pm 1\sigma limit of the world average.

acknowledgements

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406400, 2020YFA0406300; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11635010, 11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207, U1932102; 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation under Contract No. B16F640076; STFC (United Kingdom); Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and National Science Research and Innovation Fund (NSRF) under Contract No. 160355; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374.

Table 4: Comparisons of the partial widths (Γ\Gamma) and BFs (in brackets). The decay widths are in units of keV. The first two rows are from this work and the PDG, while the others are from various theoretical predictions. The superscript a denotes the value corresponding to g=0.52g=0.52, β=2.6\beta=2.6 GeV-1, and mc=1.6m_{c}=1.6 GeV; b denotes the values for a linear model; c denotes the value for κq=0.55\kappa^{q}=0.55; and d denotes the values for (a)(a) model.
Γ[]DsDs+γ\Gamma\,[\mathcal{B}]_{D^{*}_{s}\to D_{s}^{+}\gamma} Γ[]DsDs+π0\Gamma\,[\mathcal{B}]_{D^{*}_{s}\to D_{s}^{+}\pi^{0}} Ds+Ds+π0/Ds+Ds+γ{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\pi^{0}}/{\cal B}_{D^{*+}_{s}\to D^{+}_{s}\gamma}
This work [(93.57±0.41±0.16)%][(93.57\pm 0.41\pm 0.16)\%] [(5.76±0.39±0.16)%][(5.76\pm 0.39\pm 0.16)\%] (6.16±0.40±0.17)%(6.16\pm 0.40\pm 0.17)\%
PDG pdg2022 [(94.2±0.7)%][(94.2\pm 0.7)\%] [(5.9±0.7)%][(5.9\pm 0.7)\%] (6.2±0.8)%(6.2\pm 0.8)\%
CM Cheung:2015rya 3.53 [(92.7±0.7)%][(92.7\pm 0.7)\%] 0.2770.026+0.0280.277^{+0.028}_{-0.026} [(7.3±0.7)%][(7.3\pm 0.7)\%] (7.9±0.8)%(7.9\pm 0.8)\%
χ\chiPT Cheng:1993kp a 4.54.5
χ\chiPT Cho:1994zu 8×105/(D+D+γ)8\times 10^{-5}/{\cal B}(D^{*+}\to D^{+}\gamma)
χ\chiPT Wang:2019mhm 0.32±0.300.32\pm 0.30
χ\chiPT Yang:2019cat 0.00810.0026+0.00300.0081^{+0.0030}_{-0.0026}
LFQM Choi:2007us b 0.18±0.010.18\pm 0.01
RQM Goity:2000dk c 0.3210.008+0.0090.321^{+0.009}_{-0.008}
QCDSR Aliev:1994nq 0.25±0.080.25\pm 0.08
QCDSR Yu:2015xwa 0.59±0.150.59\pm 0.15
NJLM Deng:2013uca 0.090.09
LQCD Donald:2013sra 0.066±0.0260.066\pm 0.026
NRQM Kamal:1992uv 0.210.21
NRQM Fayyazuddin:1993eb d 0.400.40

References