This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Measure theoretic properties of large products of consecutive partial quotients

Adam Brown-Sarre Gerardo González Robert  and  Mumtaz Hussain Department of Mathematical and Physical Sciences, La Trobe University, Bendigo 3552, Australia. [email protected] [email protected], [email protected] [email protected]
Abstract.

The theory of uniform approximation of real numbers motivates the study of products of consecutive partial quotients in regular continued fractions. For any non-decreasing positive function φ:+\varphi:\mathbb{N}\to\mathbb{R}^{+} and \ell\in\mathbb{N}, we determine the Lebesgue measure and Hausdorff dimension of the set (φ)\mathcal{F}_{\ell}(\varphi) of irrational numbers xx whose regular continued fraction x=[a1(x),a2(x),]x\leavevmode\nobreak\ =\leavevmode\nobreak\ [a_{1}(x),a_{2}(x),\ldots] is such that for infinitely many nn\in\mathbb{N} there are two numbers 1j<kn1\leq j<k\leq n satisfying

ak(x)ak+1(x)φ(n),aj(x)aj+1(x)φ(n).a_{k}(x)\cdots a_{k+\ell-1}(x)\geq\varphi(n),\;a_{j}(x)\cdots a_{j+\ell-1}(x)\geq\varphi(n).

One of the consequences of the results is that the strong law of large numbers for products of \ell consecutive partial quotients is impossible even if the block with the largest product is removed.

2020 Mathematics Subject Classification:
Primary 11K55; Secondary 11J83, 28A80

1. Introduction

Regular continued fractions constitute a representation system of real numbers with outstanding approximation properties. Recall that, for each xx\in\mathbb{R}\setminus\mathbb{Q} there is a single sequence of integers (aj(x))j0(a_{j}(x))_{j\geq 0} with aj(x)1a_{j}(x)\geq 1 for j1j\geq 1 such that

x=a0(x)+1a1(x)+1a2(x)+1:=[a0(x);a1(x),a2(x),].x=a_{0}(x)+\cfrac{1}{a_{1}(x)+\cfrac{1}{a_{2}(x)+\cfrac{1}{\ddots}}}:=[a_{0}(x);a_{1}(x),a_{2}(x),\ldots].

The numbers an(x)a_{n}(x) are known as the partial quotients of xx. We have x[0,1)x\in[0,1) if and only if a0(x)=0a_{0}(x)=0. In this case, we write the continued fractions of xx as [a1(x),a2(x),][a_{1}(x),a_{2}(x),\ldots]. It is well known that the nn-th convergent of xx given by

pn(x)qn(x)=[a1(x),,an(x)] for all n,\frac{p_{n}(x)}{q_{n}(x)}=[a_{1}(x),\ldots,a_{n}(x)]\quad\text{ for all }n\in\mathbb{N},

where qn(x)1q_{n}(x)\geq 1 and pn(x)p_{n}(x) are coprime integers, satisfies the relation

1(an+1(x)+2)qn2(x)<|xpn(x)qn(x)|<1qn2(x) for all n,\frac{1}{(a_{n+1}(x)+2)q_{n}^{2}(x)}<\left|x-\frac{p_{n}(x)}{q_{n}(x)}\right|<\frac{1}{q_{n}^{2}(x)}\quad\text{ for all }n\in\mathbb{N},

see Equation (34) in [16]. Because (qn(x))n1(q_{n}(x))_{n\geq 1} is strictly increasing, the rate at which rationals approximate xx is closely related to the size of its partial quotients. This leads us to consider, for any function φ:>0\varphi:\mathbb{N}\to\mathbb{R}_{>0}, the set

1(φ):={x[0,1):an(x)φ(n) for i.m. n}.\mathcal{E}_{1}(\varphi):=\{x\in[0,1):a_{n}(x)\geq\varphi(n)\text{ for i.m. }n\in\mathbb{N}\}.

Here and in what follows “i.m.” stands for “infinitely many”. The well-known Borel-Bernstein Theorem establishes the Lebesgue measure 𝔪\mathfrak{m} of 1(φ)\mathcal{E}_{1}(\varphi):

𝔪(1(φ))={0, if n11φ(n)<,1, if n11φ(n)=.\mathfrak{m}\left(\mathcal{E}_{1}(\varphi)\right)=\begin{cases}0,\text{ if }\displaystyle\sum_{n\geq 1}\frac{1}{\varphi(n)}<\infty,\\ 1,\text{ if }\displaystyle\sum_{n\geq 1}\frac{1}{\varphi(n)}=\infty.\\ \end{cases}

For proof of this theorem, see for example [2, Theorem 1.11]. Łuczak [21] and Feng et al. [6] calculated the Hausdorff dimension, denoted as dimH\dim_{\mathrm{H}}, of 1(φ)\mathcal{E}_{1}(\varphi) when φ(n)=cbn\varphi(n)=c^{b^{n}} for some fixed c,b>1c,b>1 (see Lemma 2.7). Wang and Wu solved the general case in [27] (see Theorem 1.2 below with =1\ell=1).

While studying improvements to the classical Dirichlet theorem, Kleinbock and Wadleigh [18] showed that the set of Dirichlet non-improvable numbers is related to the set

2(φ):={x[0,1):an(x)an+1(x)φ(n) for i.m. n}.\mathcal{E}_{2}(\varphi):=\{x\in[0,1):a_{n}(x)a_{n+1}(x)\geq\varphi(n)\text{ for i.m. }n\in\mathbb{N}\}.

In fact, they computed the Lebesgue measure of 2(φ)\mathcal{E}_{2}(\varphi) and the Hausdorff measure and dimension were proven in [1, 12]. In [11], Huang, Wu, and Xu determined the Lebesgue measure and the Hausdorff dimension of the general set (φ)\mathcal{E}_{\ell}(\varphi), \ell\in\mathbb{N}, defined as:

(φ):={x[0,1):an(x)an+1(x)φ(n) for i.m. n}.\mathcal{E}_{\ell}(\varphi):=\{x\in[0,1):a_{n}(x)\cdots a_{n+\ell-1}(x)\geq\varphi(n)\text{ for i.m. }n\in\mathbb{N}\}.
Theorem 1.1 (Huang, Wu, Xu [11]).

If φ:2\varphi:\mathbb{N}\to\mathbb{R}_{\geq 2}, then

𝔪((φ))={0,if n=1log1φ(n)φ(n)<,1,if n=1log1φ(n)φ(n)=.\mathfrak{m}\left(\mathcal{E}_{\ell}(\varphi)\right)=\begin{cases}0,&\text{\rm if }\displaystyle\sum_{n=1}^{\infty}\frac{\log^{\ell-1}\varphi(n)}{\varphi(n)}<\infty,\\ 1,&\text{\rm if }\displaystyle\sum_{n=1}^{\infty}\frac{\log^{\ell-1}\varphi(n)}{\varphi(n)}=\infty.\end{cases}

Define BB and bb as

(1) logB:=lim infnlogφ(n)n, and logb=lim infnloglogφ(n)n.\log B:=\liminf_{n\xrightarrow{}\infty}\frac{\log\varphi(n)}{n},\;\text{ and }\;\log b=\liminf_{n\xrightarrow{}\infty}\frac{\log\log\varphi(n)}{n}.
Theorem 1.2 (Huang, Wu, Xu [11]).

Let (fn)n1(f_{n})_{n\geq 1} be the sequence of real functions on [0,1][0,1] given by

f1(s)=s, and fn+1=sfn(s)1s+fn(s) for all n.f_{1}(s)=s,\;\text{ and }\;f_{n+1}=\frac{sf_{n}(s)}{1-s+f_{n}(s)}\;\text{ for all }n\in\mathbb{N}.

Let φ:>0\varphi:\mathbb{N}\to\mathbb{R}_{>0} be arbitrary and BB, bb as in (1). Then, the Hausdorff dimension of (φ)\mathcal{E}_{\ell}(\varphi) is

dimH(φ)={1,if B=1,inf{s0:P(T,flogBslog|T|)0},if 1<B<,11+b,if B=.\dim_{\mathrm{H}}\mathcal{E}_{\ell}(\varphi)=\begin{cases}1,&\text{\rm if }B=1,\\ \inf\{s\geq 0:P(T,-f_{\ell}\log B-s\log|T^{\prime}|)\leq 0\},&\text{\rm if }1<B<\infty,\\ \frac{1}{1+b},&\text{\rm if }B=\infty.\end{cases}

The pressure function P(T,)P(T,\cdot) appearing in the Hausdorff dimension formula above and in all the theorems below will be defined in Section 2.

From a probabilistic perspective, we may interpret partial quotients as random variables defined on [0,1)[0,1) (their definition of rational numbers is irrelevant for our purposes). These random variables are not independent, hence the Borel-Bernstein Theorem is not a trivial consequence of the Borel-Cantelli lemma. Moreover, the Borel-Bernstein theorem tells us that for almost every number xx (with respect to 𝔪\mathfrak{m}) the inequality an(x)nlogna_{n}(x)\geq n\log n holds infinitely often. This implies that, writing Sn(x):=a1(x)++an(x)S_{n}(x):=a_{1}(x)+\cdots+a_{n}(x), we have

lim supn1nSn(x)= for almost all x[0,1).\limsup_{n\to\infty}\frac{1}{n}S_{n}(x)=\infty\;\text{ for almost all }x\in[0,1).

Despite not being independent and having infinite expected value, the partial quotients satisfy a weak law of large numbers. Khinchin [17, §. 4] proved that Sn/(nlogn)S_{n}/(n\log n) converges in Lebesgue measure to 1log2\frac{1}{\log 2} as nn\to\infty. Furthermore, Philipp [23, Theorem 1] proved that there is no reasonable function σ\sigma for which Sn/σ(n)S_{n}/\sigma(n) converges almost everywhere to a finite positive constant. Large partial quotients are to blame for this phenomenon. Certainly, Diamond and Vaaler [4, Corollary 1] showed that convergence almost everywhere does hold for Khinchin’s averaging function when omitting the largest partial quotient: for almost every x[0,1)x\in[0,1) we have

(2) limn1nlogn(Sn(x)max1jnaj(x))=1log2.\lim_{n\to\infty}\frac{1}{n\log n}\left(S_{n}(x)-\max_{1\leq j\leq n}a_{j}(x)\right)=\frac{1}{\log 2}.

This result was extended by Hu, Hussain, and Yu for sums of products of two partial quotients [10, Theorem 1.5]. They showed that almost every x[0,1)x\in[0,1) satisfies

(3) limn1nlog2n(j=1naj(x)aj+1(x)max1jnaj(x)aj+1(x))=12log2.\lim_{n\to\infty}\frac{1}{n\log^{2}n}\left(\sum_{j=1}^{n}a_{j}(x)a_{j+1}(x)-\max_{1\leq j\leq n}a_{j}(x)a_{j+1}(x)\right)=\frac{1}{2\log 2}.

A key aspect in the proofs by Diamond and Vaaler, and Hu, Hussain, and Yu respectively is proving that, for c>12c>\frac{1}{2} and d>32d>\frac{3}{2}, the sets

{x[0,1):aj(x)n(logn)c,ak(x)n(logn)c, for some 1j<kn for i.m. n}\left\{x\in[0,1):\begin{matrix}a_{j}(x)\geq n(\log n)^{c},\\ a_{k}(x)\geq n(\log n)^{c},\end{matrix}\;\text{ for some }1\leq j<k\leq n\text{ for i.m. }n\in\mathbb{N}\right\}

and

{x[0,1):aj(x)aj+1(x)n(logn)d,ak(x)ak+1(x)n(logn)d, for some 1j<kn for i.m. n}\left\{x\in[0,1):\begin{matrix}a_{j}(x)a_{j+1}(x)\geq n(\log n)^{d},\\ a_{k}(x)a_{k+1}(x)\geq n(\log n)^{d},\\ \end{matrix}\;\text{ for some }1\leq j<k\leq n\text{ for i.m. }n\in\mathbb{N}\right\}

are of Lebesgue measure 0.

Recently, Tan, Tian, and Wang [25] generalised this result of Diamond and Vaaler to a wider family of functions. Later, Tan and Zhou [26] also extended the result of Hu, Hussain and Yu. More precisely, define

(φ):={x[0,1):aj(x)aj+1(x)φ(n),ak(x)ak+1(x)φ(n), for some 1j<kn for i.m. n}.\mathcal{F}_{\ell}(\varphi):=\left\{x\in[0,1):\begin{matrix}a_{j}(x)\cdots a_{j+\ell-1}(x)\geq\varphi(n),\\ a_{k}(x)\cdots a_{k+\ell-1}(x)\geq\varphi(n),\end{matrix}\;\text{ for some }1\leq j<k\leq n\text{ for i.m. }n\in\mathbb{N}\right\}.

In both [25] and [26], φ\varphi is assumed to be non-decreasing. It is obvious that (φ)=[0,1)\mathcal{F}_{\ell}(\varphi)=[0,1)\setminus\mathbb{Q} whenever φ(n)1\varphi(n)\leq 1 for all nn\in\mathbb{N}. Hence, in what follows we suppose that φ\varphi is non-decreasing and φ:[2,)\varphi:\mathbb{N}\to[2,\infty).

Theorem 1.3 (Tan, Tian, Wang [25]).

Let φ:[2,)\varphi:\mathbb{N}\to[2,\infty) be non-decreasing. Then, the Lebesgue measure of 1(φ)\mathcal{F}_{1}(\varphi) is

𝔪(1(φ))={0,if k1nφ(n)2<,1,if k1nφ(n)2=.\mathfrak{m}(\mathcal{F}_{1}(\varphi))=\begin{cases}0,&\text{\rm if }\displaystyle\sum_{k\geq 1}\frac{n}{\varphi(n)^{2}}<\infty,\\ 1,&\text{\rm if }\displaystyle\sum_{k\geq 1}\frac{n}{\varphi(n)^{2}}=\infty.\end{cases}
Theorem 1.4 (Tan, Zhou, 2024).

Let φ:[2,)\varphi:\mathbb{N}\to[2,\infty) be non-decreasing. Then, the Lebesgue measure of 2(φ)\mathcal{F}_{2}(\varphi) is given by

𝔪(2(φ))={0,if n1nlogφ(n)φ2(n)+1φ(n)<,1,if n1nlogφ(n)φ2(n)+1φ(n)=.\mathfrak{m}(\mathcal{F}_{2}(\varphi))=\begin{cases}0,&\text{\rm if }\displaystyle\sum_{n\geq 1}\frac{n\log\varphi(n)}{\varphi^{2}(n)}+\frac{1}{\varphi(n)}<\infty,\\ 1,&\text{\rm if }\displaystyle\sum_{n\geq 1}\frac{n\log\varphi(n)}{\varphi^{2}(n)}+\frac{1}{\varphi(n)}=\infty.\end{cases}

Our first result, which includes Theorem 1.4, completes the picture of the Lebesgue measure of (φ)\mathcal{F}_{\ell}(\varphi).

Theorem 1.5.

Let φ:[2,)\varphi:\mathbb{N}\to[2,\infty) be non-decreasing. For 2\ell\geq 2, the Lebesgue measure of (φ)\mathcal{F}_{\ell}(\varphi) is given by

𝔪((φ))={0if n1nlog2(1)φ(n)φ2(n)+log2φ(n)φ(n)<,1if n1nlog2(1)φ(n)φ2(n)+log2φ(n)φ(n)=.\mathfrak{m}(\mathcal{F}_{\ell}(\varphi))=\begin{cases}0&\text{\rm if }\displaystyle\sum_{n\geq 1}\frac{n\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}+\frac{\log^{\ell-2}\varphi(n)}{\varphi(n)}<\infty,\\ 1&\text{\rm if }\displaystyle\sum_{n\geq 1}\frac{n\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}+\frac{\log^{\ell-2}\varphi(n)}{\varphi(n)}=\infty.\end{cases}
Remark 1.6.

Since all the partial quotients are at least 11, for almost every x[0,1)x\in[0,1) we have

lim supn1nj=1naj(x)aj+(x)=.\limsup_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n}a_{j}(x)\cdots a_{j+\ell}(x)=\infty.

Theorem 1.5 implies that for almost every x[0,1)x\in[0,1) there are infinitely many numbers nn\in\mathbb{N} for which there are 1j<kn1\leq j<k\leq n satisfying

aj(x)aj+1(x)nlog1n and ak(x)ak+1(x)nlog1n.a_{j}(x)\cdots a_{j+\ell-1}(x)\geq n\log^{\ell-1}n\;\text{ and }\;a_{k}(x)\cdots a_{k+\ell-1}(x)\geq n\log^{\ell-1}n.

Therefore, we have

lim supn1n(j=1naj(x)aj+1(x)max1jnaj(x)aj+1(x))=.\limsup_{n\to\infty}\frac{1}{n}\left(\sum_{j=1}^{n}a_{j}(x)\cdots a_{j+\ell-1}(x)-\max_{1\leq j\leq n}a_{j}(x)\cdots a_{j+\ell-1}(x)\right)=\infty.

Theorem 1.5 is also a crucial step in an extension of the limits (2) and (3). In fact, in a forthcoming paper we rely on Theorem 1.5 to show that for almost every x[0,1)x\in[0,1) we have

limn1nlogn(j=1naj(x)aj+(x)max1jnaj(x)aj+1(x))=1log2.\lim_{n\to\infty}\frac{1}{n\log^{\ell}n}\left(\sum_{j=1}^{n}a_{j}(x)\cdots a_{j+\ell}(x)-\max_{1\leq j\leq n}a_{j}(x)\cdots a_{j+\ell-1}(x)\right)=\frac{1}{\ell\log 2}.

Other anticipated results are stated in Section 6.

Remark 1.7.

While proving Theorem 1.5 we must obtain new estimates corresponding to overlapping blocks of consecutive partial quotients with large products. The number of terms overlapping in Theorem 1.5 ranges from 0 up to 1\ell-1 whereas in Theorem 1.4 the only overlaps are of length 0 and 11 and there are no overlaps in Theorem 1.3.

The Hausdorff dimensions of 1(φ)\mathcal{F}_{1}(\varphi) and 2(φ)\mathcal{F}_{2}(\varphi) were computed, respectively, in [25] and [26].

Theorem 1.8 (Tan, Tian, Wang [25]).

Let φ:[2,)\varphi:\mathbb{N}\to[2,\infty) be non-decreasing and BB and bb as in (1). Then, the Hausdorff dimension of 1(φ)\mathcal{F}_{1}(\varphi) is given by

dimH1(φ)={1,if B=1,inf{s0:P(T,(3s1)logBslog|T|)0},if 1<B<,11+b,if B=.\dim_{\mathrm{H}}\mathcal{F}_{1}(\varphi)=\begin{cases}1,&\text{\rm if }B=1,\\ \inf\{s\geq 0:P(T,-(3s-1)\log B-s\log|T^{\prime}|)\leq 0\},&\text{\rm if }1<B<\infty,\\ \frac{1}{1+b},&\text{\rm if }B=\infty.\end{cases}
Theorem 1.9 (Tan, Zhou [26]).

Let φ:[2,)\varphi:\mathbb{N}\to[2,\infty) be non-decreasing and BB and bb as in (1). Then the Hausdorff dimension of 2(φ)\mathcal{F}_{2}(\varphi) is given by

dimH2(φ)={1,if B=1,inf{s0:P(T,(3s1s2)logBslog|T|)0},if 1<B<,11+b,if B=.\dim_{\mathrm{H}}\mathcal{F}_{2}(\varphi)=\begin{cases}1,&\text{\rm if }B=1,\\ \inf\{s\geq 0:P(T,-(3s-1-s^{2})\log B-s\log|T^{\prime}|)\leq 0\},&\text{\rm if }1<B<\infty,\\ \frac{1}{1+b},&\text{\rm if }B=\infty.\end{cases}

The case 1<B<1<B<\infty is the main substance of theorems 1.8 and 1.9. In both theorems, this case can be obtained as an application of a general criterion established in [14] (see Lemma 2.10). We refer to [13] for the study of the product of partial quotients arising from arithmetic progressions and the metrical study of this set providing information on the size of the set of exceptions to the convergence criteria of multiple ergodic averages for the Gauss dynamical systems.

Our second result provides the Hausdorff dimension of 3(φ)\mathcal{F}_{3}(\varphi). Let g3:g_{3}:\mathbb{R}\to\mathbb{R} be given by

g3(s):=3s35s2+4s1s2s+1.g_{3}(s):=\frac{3s^{3}-5s^{2}+4s-1}{s^{2}-s+1}.
Theorem 1.10.

Let φ:[2,)\varphi:\mathbb{N}\to[2,\infty) be non-decreasing and BB, bb as in (1). Then, the Hausdorff dimension of 3(φ)\mathcal{F}_{3}(\varphi) is given by

dimH3(φ)={1,if B=1,inf{s0:P(T,g3(s)logBslog|T|)0},if 1<B<,11+b,if B=.\dim_{\mathrm{H}}\mathcal{F}_{3}(\varphi)=\begin{cases}1,&\text{\rm if }B=1,\\ \inf\{s\geq 0:P(T,-g_{3}(s)\log B-s\log|T^{\prime}|)\leq 0\},&\text{\rm if }1<B<\infty,\\ \frac{1}{1+b},&\text{\rm if }B=\infty.\end{cases}

The paper is organised as follows. Section 2 contains some preliminaries and auxiliary lemmas from measure theory and continued fractions, in particular on the Hausdorff dimension and pressure functions. In Section 3 we estimate certain series that are fundamental for our proofs. The proof of Theorem 1.5 is in Section 4 and the proof of Theorem 1.10 is in Section 5. Lastly, Section 6 contains some final remarks and results developed to further this study.

Notation.

Whenever (xn)n1(x_{n})_{n\geq 1} and (yn)n1(y_{n})_{n\geq 1} are two sequences of positive real numbers, we write xnynx_{n}\ll y_{n} to mean that for some constant c>0c>0 and every nn\in\mathbb{N} we have xncynx_{n}\leq cy_{n}. When cc depends on some parameter λ\lambda, we write xnλynx_{n}\ll_{\lambda}y_{n}. By xnynx_{n}\asymp y_{n} we mean xnynx_{n}\ll y_{n} and ynxny_{n}\ll x_{n}. For the rest of the paper, \ell will denote an arbitrary natural number.

Acknowledgements. GGR and MH were funded by the Australian Research Council discovery project grant number 200100994. We thank Nikita Shulga and Ben Ward for useful discussions.

2. Preliminaries

In this section, we recall some definitions and elementary results on measure theory, Hausdorff dimension, continued fractions, and pressure functions.

2.1. Full and null sets

The Borel-Cantelli Lemma is a fundamental tool for determining the measure of a limsup set. A proof may be found, for example, in [15, Lemma 4.18].

Theorem 2.1 (Borel-Cantelli Lemma).

Let (Ek)k1(E_{k})_{k\geq 1} be a sequence of measurable sets in a probability space (Ω,𝒜,μ)(\Omega,\mathscr{A},\mu) and E=lim supnEnE=\limsup_{n}E_{n}.

  1. (i).

    If nμ(En)<\sum_{n}\mu(E_{n})<\infty, then μ(E)=0\mu(E)=0.

  2. (ii).

    If the collection {En:n}\{E_{n}:n\in\mathbb{N}\} is stochastically independent and nμ(En)=\sum_{n}\mu(E_{n})=\infty, then μ(E)=1\mu(E)=1.

The independence assumption is rather restrictive, it will not hold in our context. A way to circumvent this problem is proving the positive measure of the limsup set and showing by some other means that the measure is either full or null.

We show the full measure statement in Theorem 1.5 using a ubiquity-type property and Lemma 2.2. This lemma is attributed to Knopp [19] by Tan and Zhou [26]. Recall that, given two measurable sets A,BA,B in a probability space (X,𝒜,μ)(X,\mathscr{A},\mu), we write AB(modμ)A\equiv B\pmod{\mu} if and only if μ(AB)=μ(BA)=0\mu(A\setminus B)=\mu(B\setminus A)=0.

Lemma 2.2.

Let A[0,1)A\subset[0,1) be a Borel set and 𝒞\mathcal{C} a class of subintervals of [0,1)[0,1) satisfying both of the following conditions:

  1. (1)

    Every open subinterval of [0,1)[0,1) is an at most countable union (mod𝔪)\pmod{\mathfrak{m}} of disjoint elements from 𝒞\mathcal{C},

  2. (2)

    There is a constant c>0c>0 such that for any B𝒞B\in\mathcal{C} we have 𝔪(AB)c𝔪(B)\mathfrak{m}(A\bigcap B)\geq c\mathfrak{m}(B).

Then, 𝔪(A)=1\mathfrak{m}(A)=1.

In order to apply Lemma 2.2, we need the following result due to Chung and Erdös [3] (see also [24, Lemma 6] for the formulation stated below).

Lemma 2.3 (Chung, Erdös, [3]).

Let (Ek)k1(E_{k})_{k\geq 1} be a sequence of measurable sets in a probability space (Ω,𝒜,μ)(\Omega,\mathscr{A},\mu). If nμ(En)=\sum_{n}\mu(E_{n})=\infty, then

μ(lim supnEn)lim supN(1nNμ(En))21ijNμ(EiEj).\mu\left(\limsup_{n\to\infty}E_{n}\right)\geq\limsup_{N\to\infty}\frac{\left(\displaystyle\sum_{1\leq n\leq N}\mu(E_{n})\right)^{2}}{\displaystyle\sum_{1\leq i\neq j\leq N}\mu(E_{i}\cap E_{j})}.

2.2. Hausdorff dimension

The Hausdorff dimension provides a way to distinguish between the sets of Lebesgue measure 0. We recall the definition of the Hausdorff dimension and refer to [5] for its general theory.

Given a non-empty subset AA of real numbers, let |A||A| be its diameter. For δ>0\delta>0, by a δ\delta-cover of AA we mean a countable collection {Bi:i}\{B_{i}:i\in\mathbb{N}\} such that

supi|Bi|δ and AiBi.\sup_{i\in\mathbb{N}}|B_{i}|\leq\delta\quad\text{ and }\quad A\subseteq\bigcup_{i\in\mathbb{N}}B_{i}.

For s0s\geq 0 and EE\subseteq\mathbb{R} we define

δs(E)=inf{i|Bi|s:{Bi:i} is a δcover of E}.\mathcal{H}^{s}_{\delta}(E)=\inf\left\{\sum_{i\in\mathbb{N}}|B_{i}|^{s}:\{B_{i}:i\in\mathbb{N}\}\text{ is a }\delta-\text{cover of }E\right\}.

The ss-Hausdorff measure s\mathcal{H}^{s} of EE is the outer measure given by

s(E):=limδ0δs(E).\mathcal{H}^{s}(E):=\lim_{\delta\to 0}\mathcal{H}^{s}_{\delta}(E).

It is well known that for each EE\subseteq\mathbb{R} there is a number, called the Hausdorff dimension of EE and denoted dimHE\dim_{\mathrm{H}}E, such that for all s0s\geq 0

s(E):={,ifs<dimHE,0,ifs>dimHE.\mathcal{H}^{s}(E):=\begin{cases}\infty,&\text{if}\ \ s<\dim_{\mathrm{H}}E,\\ 0,&\text{if}\ \ s>\dim_{\mathrm{H}}E.\end{cases}

Thus, the Hausdorff dimension of EE can also be defined as

dimHE=inf{s0:s(E)=0}.\dim_{\mathrm{H}}E=\inf\left\{s\geq 0:\mathcal{H}^{s}(E)=0\right\}.

2.3. Continued fractions

We recall some elementary facts of continued fractions. For each real number tt, let [t][t] denote its integer part. Regular continued fractions can be generated with the Gauss map T:[0,1)[0,1)T:[0,1)\to[0,1) given by

T(x)={x1[x1],x0,0,x0.T(x)=\begin{cases}x^{-1}-[x^{-1}],&x\neq 0,\\ 0,&x\neq 0.\end{cases}

For any x[0,1)x\in[0,1)\setminus\mathbb{Q} let a1:[0,1)a_{1}:[0,1)\setminus\mathbb{Q}\to\mathbb{N} be given by a1(x)=[x1]a_{1}(x)=[x^{-1}] and for each nn\in\mathbb{N} we define an(x)=a1(Tn1(x))a_{n}(x)=a_{1}(T^{n-1}(x)). The numbers (an(x))n1(a_{n}(x))_{n\geq 1} are known as the partial quotients of xx and they are the single sequence of natural numbers satisfying

x=[a1(x),a2(x),].x=[a_{1}(x),a_{2}(x),\ldots].

We can extend the definition of partial quotients in an obvious manner for rational numbers. In this case, however, we obtain a finite sequence. For any non-negative integer nn, the nn-th convergent of xx is

pn(x)qn(x):=[a1(x),,an(x)].\frac{p_{n}(x)}{q_{n}(x)}:=[a_{1}(x),\ldots,a_{n}(x)].

An elementary result (see, for example, [9, Proposition 1.1]) states that the sequences (pn(x))n0(p_{n}(x))_{n\geq 0}, (qn(x))n1(q_{n}(x))_{n\geq 1} verify

q0(x)=1,q1(x)=a1(x),p0(x)=0,p1(x)=1q_{0}(x)=1,\quad q_{1}(x)=a_{1}(x),\quad p_{0}(x)=0,\quad p_{1}(x)=1

and

pn+1(x)=an+1(x)pn(x)+pn1(x),qn+1(x)=an+1(x)qn(x)+qn1(x) for all n.p_{n+1}(x)=a_{n+1}(x)p_{n}(x)+p_{n-1}(x),\quad q_{n+1}(x)=a_{n+1}(x)q_{n}(x)+q_{n-1}(x)\;\text{ for all }n\in\mathbb{N}.

The terms of the sequence (qn(x))n1(q_{n}(x))_{n\geq 1} are called continuants. Observe that the nn-th continuant depends only on the first partial nn quotients of xx. Therefore, any other number yy whose first nn partial quotients are exactly those of xx also has the same continuants as xx. When we consider the partial quotients as functions on [0,1)[0,1), we can easily determined their inverse images. For each nn\in\mathbb{N} and 𝐚=(a1,,an)n\mathbf{a}=(a_{1},\ldots,a_{n})\in\mathbb{N}^{n}, the fundamental interval In(𝐚)I_{n}(\mathbf{a}) is

In(𝐚):={x[0,1):a1(x)=a1,,an(x)=an}.I_{n}(\mathbf{a}):=\left\{x\in[0,1):a_{1}(x)=a_{1},\ldots,a_{n}(x)=a_{n}\right\}.

In the following, we denote by qn(𝐚)q_{n}(\mathbf{a}) the nn-th convergent of any number in In(𝐚)I_{n}(\mathbf{a}). We omit the argument of qnq_{n} if there is no risk of ambiguity.

Lemma 2.4 ([16, Section 12]).

There are some absolute constants such that for all nn\in\mathbb{N} and all 𝐚n\mathbf{a}\in\mathbb{N}^{n} we have

|In(𝐚)|1qn2(𝐚).|I_{n}(\mathbf{a})|\asymp\frac{1}{q_{n}^{2}(\mathbf{a})}.

For any n,mn,m\in\mathbb{N}, 𝐚=(a1,,an)n\mathbf{a}=(a_{1},\ldots,a_{n})\in\mathbb{N}^{n}, and 𝐛=(b1,,bm)m\mathbf{b}=(b_{1},\ldots,b_{m})\in\mathbb{N}^{m}, we write

(𝐚,𝐛):=(a1,,an,b1,,bm).(\mathbf{a},\mathbf{b}):=(a_{1},\ldots,a_{n},b_{1},\ldots,b_{m}).
Lemma 2.5 ([9, Proposition 1.1]).

For any m,nm,n\in\mathbb{N}, 𝐚n\mathbf{a}\in\mathbb{N}^{n}, and 𝐛m\mathbf{b}\in\mathbb{N}^{m},

qn(𝐚)qm(𝐛)qn+m(𝐚,𝐛)2qn(𝐚)qm(𝐛).q_{n}(\mathbf{a})q_{m}(\mathbf{b})\leq q_{n+m}(\mathbf{a},\mathbf{b})\leq 2q_{n}(\mathbf{a})q_{m}(\mathbf{b}).
Lemma 2.6 ([28, Lemma 2.1]).

For any nn\in\mathbb{N}, 𝐚=(a1,,an)n\mathbf{a}=(a_{1},\ldots,a_{n})\in\mathbb{N}^{n}, and k{1,,n}k\in\{1,\ldots,n\}, we have

ak+12qn(a1,,an)qn1(a1,,ak1,ak+1,,an)ak+1.\frac{a_{k}+1}{2}\leq\frac{q_{n}(a_{1},\ldots,a_{n})}{q_{n-1}(a_{1},\ldots,a_{k-1},a_{k+1},\ldots,a_{n})}\leq a_{k}+1.
Lemma 2.7 ([6, 21]).

For any constants b,c>1b,c>1, we have

1b+1\displaystyle\frac{1}{b+1} =dimH{x[0,1):an(x)bcn for all large n},\displaystyle=\dim_{\mathrm{H}}\left\{x\in[0,1):a_{n}(x)\geq b^{c^{n}}\text{ for all large }n\in\mathbb{N}\right\},
=dimH{x[0,1):an(x)bcn for i.m. n}.\displaystyle=\dim_{\mathrm{H}}\left\{x\in[0,1):a_{n}(x)\geq b^{c^{n}}\text{ for i.m. }n\in\mathbb{N}\right\}.

2.4. Pressure functions

For the general theory of pressure functions, we refer the reader to the monograph by Mauldin and Urbański [22]. Pressure function have gained popularity in Diophantine approximation because their zeros are the Hausdorff dimension of certain sets determined by dynamical means. In this paper, we restrict ourselves to the dynamical system ([0,1),T)([0,1)\setminus\mathbb{Q},T).

Given a function φ:[0,1]\varphi:[0,1]\to\mathbb{R}, for x[0,1]x\in[0,1] and nn\in\mathbb{N}, we denote by Sn(φ;x)S_{n}(\varphi;x) the ergodic sum

Sn(φ;x):=φ(x)+φ(T(x))++φ(Tn1(x)).S_{n}(\varphi;x):=\varphi(x)+\varphi(T(x))+\ldots+\varphi\left(T^{n-1}(x)\right).

For each nn\in\mathbb{N} the nn–th variation of φ\varphi is given by

Varn(φ):=sup{|φ(x)φ(y)|:In(x)=In(y)}.\operatorname{Var}_{n}(\varphi):=\sup\left\{|\varphi(x)-\varphi(y)|:I_{n}(x)=I_{n}(y)\right\}.

For any non-empty subset AA\subseteq\mathbb{N} we consider

XA:={x[0,1):an(x)A for all n}.X_{A}:=\left\{x\in[0,1):a_{n}(x)\in A\text{ for all }n\in\mathbb{N}\right\}.

The pressure function PA(T,)P_{A}(T,\cdot) on φ\varphi is given by

PA(T,φ):=limn1nlog(𝐚AnsupxIn(𝐚)XAexp(Sn(φ,x))).P_{A}(T,\varphi):=\lim_{n\to\infty}\frac{1}{n}\log\left(\sum_{\mathbf{a}\in A^{n}}\sup_{x\in I_{n}(\mathbf{a})\cap X_{A}}\exp\left(S_{n}(\varphi,x)\right)\right).

In this context, we call φ\varphi a potential. When A=A=\mathbb{N} we simply write P(T,φ)P(T,\varphi). The existence of PA(T,φ)P_{A}(T,\varphi) is not immediate, but it does exist under some reasonable regularity conditions. Furthermore, we can approximate P(T,φ)P(T,\varphi) by PA(T,φ)P_{A}(T,\varphi) with AA finite.

Lemma 2.8 ([20, Proposition 2.4]).

Let φ:[0,1]\varphi:[0,1]\to\mathbb{R} be such that Var1(φ)<\operatorname{Var}_{1}(\varphi)<\infty and Varn(φ)0\operatorname{Var}_{n}(\varphi)\to 0 as nn\to\infty. Then, PA(T,φ)P_{A}(T,\varphi) is well defined and the supremum in the definition of PA(T,φ)P_{A}(T,\varphi) may be replaced by any point in In(𝐚)XAI_{n}(\mathbf{a})\cap X_{A}.

Lemma 2.9 ([7, Proposition 2]).

Let φ:[0,1]\varphi:[0,1]\to\mathbb{R} be such that Var1(φ)<\operatorname{Var}_{1}(\varphi)<\infty and Varn(φ)0\operatorname{Var}_{n}(\varphi)\to 0 as nn\to\infty. We have

P(T,φ)=sup{PA(T,φ):Ais finite}.P(T,\varphi)=\sup\left\{P_{A}(T,\varphi):A\subseteq\mathbb{N}\;\text{\rm is finite}\right\}.

Given a continuous function f:[0,1]f:[0,1]\to\mathbb{R}, consider the potential

φs(x):=f(s)logBslog|T(x)|.\varphi_{s}(x):=-f(s)\log B-s\log|T^{\prime}(x)|.

Then, φ\varphi satisfies the hypotheses of Lemma 2.8 and of Lemma 2.9. Since for every x[0,1)x\in[0,1) with nn partial quotients we have

(Tn)(x)=(1)n(xqn1pn1)2,(T^{n})^{\prime}(x)=\frac{(-1)^{n}}{(xq_{n-1}-p_{n-1})^{2}},

the pressure function P(T,)P(T,\cdot) evaluated on φs\varphi_{s} looks like this:

P(T,φs)=limn1nlog(𝐚An1Bf(s)qn2s(𝐚)).P(T,\varphi_{s})=\lim_{n\to\infty}\frac{1}{n}\log\left(\sum_{\mathbf{a}\in A^{n}}\frac{1}{B^{f(s)}q_{n}^{2s}(\mathbf{a})}\right).

In our context, for some B>1B>1, we consider the potentials φs\varphi_{s} given by

φs(x)=g3(s)logBslog|T(x)|.\varphi_{s}(x)=-g_{3}(s)\log B-s\log|T^{\prime}(x)|.

Define

pB:=inf{s0:g3(s)logBslog|T(x)|}.p_{B}:=\inf\{s\geq 0:-g_{3}(s)\log B-s\log|T^{\prime}(x)|\}.

For each mm\in\mathbb{N} write

(4) sm(B):=infs0(a1,,am)m(1qm2sBg3(s))1.s_{m}(B):=\inf_{s\geq 0}\sum_{(a_{1},\ldots,a_{m})\in\mathbb{N}^{m}}\left(\frac{1}{q_{m}^{2s}B^{g_{3}(s)}}\right)\leq 1.

The arguments of [27, Section 2] allow us to conclude

limmsm(B)=sB.\lim_{m\to\infty}s_{m}(B)=s_{B}.

Moreover, relying on Theorem 1.8, [25, Proposition 2.11], and g3(x)3x1g_{3}(x)\leq 3x-1 for x25x\geq\frac{2}{5} we may show that pB12p_{B}\geq\frac{1}{2}.

The lower estimate for the Hausdorff dimension of sets similar to that in Theorem 1.10 tends to be computationally demanding. A general strategy is to construct a Cantor set CC contained in our set of interest, afterwards define a probablity measure on CC and apply the Mass Distribution Principle [5, Proposition 4.2]. Recently, Hussain and Shulga [14] computed the Hausdorff dimension of a large family of sets defined by continued fractions restrictions. For A0,,A1>1A_{0},\ldots,A_{\ell-1}>1, define

S(A0,,A1):={x[0,1):A0nan(x)2A0n,,A1nan+1(x)2A1n for i.m. n}.S_{\ell}(A_{0},\ldots,A_{\ell-1}):=\left\{x\in[0,1):A_{0}^{n}\leq a_{n}(x)\leq 2A_{0}^{n},\ldots,A_{\ell-1}^{n}\leq a_{n+\ell-1}(x)\leq 2A_{\ell-1}^{n}\text{ for i.m. }n\in\mathbb{N}\right\}.

Put β1=1\beta_{-1}=1 and βi=Aiβi1\beta_{i}=A_{i}\beta_{i-1} for i{0,,1}i\in\{0,\ldots,\ell-1\} and for such ii write

di:=inf{s0:P(T,slog|T|slogβi+(1s)logβi10}.d_{i}:=\inf\left\{s\geq 0:P(T,-s\log|T^{\prime}|-s\log\beta_{i}+(1-s)\log\beta_{i-1}\leq 0\right\}.
Lemma 2.10 ([14, Theorem 1.1]).

dimHS(A0,,A1)=min0i1di\dim_{\mathrm{H}}S_{\ell}(A_{0},\ldots,A_{\ell-1})=\displaystyle\min_{0\leq i\leq\ell-1}d_{i}.

3. Series estimates

In this section we estimate certain series appearing in the proofs of theorems 1.5 and 1.10. In all of the sums studied in this section, the variables a1,a2,a_{1},a_{2},\ldots are natural numbers. For readibilty, we omit this restriction. We remind the reader that \ell stands for an arbitrary natural number.

Let us start with the lemmas needed in the proof of Theorem 1.5. The first one can be retrieved from the proof of [11, Theorem 1.5].

Lemma 3.1 ([11]).

For any M>1M>1, we have

(5) a1aM1a12a2log1(M)M.\sum_{a_{1}\cdots a_{\ell}\geq M}\frac{1}{a_{1}^{2}\cdots a_{\ell}^{2}}\asymp_{\ell}\frac{\log^{\ell-1}(M)}{M}.

We recall a result from analytic number theory (see, for example, [8, Section 4]).

Lemma 3.2 (Dirichlet-Piltz formula).

Take kk\in\mathbb{N}. For each xx\in\mathbb{N}, let dk(x)d_{k}(x) denote the number of ways we can express xx as a product of kk natural numbers. For every M>1M>1, define

Dk(M):=xMdk(x).D_{k}(M):=\sum_{x\leq M}d_{k}(x).

There exist a polynomial PkP_{k} of degree k1k-1 and a constant αk<1\alpha_{k}<1 such that for any ε>0\varepsilon>0 we have

Dk(M)=MPk(logM)+O(Mαk+ε) as M.D_{k}(M)=MP_{k}(\log M)+O(M^{\alpha_{k}+\varepsilon})\;\text{ as }\;M\to\infty.
Lemma 3.3.

For every large MM (depending on \ell) and any r,jr,j\in\mathbb{N} such that r+j=r+j=\ell we have

(6) a1arb1bjMb1bjc1crM1a12ar2b12bj2c12cr2logj1(M)M,\sum_{\begin{subarray}{c}a_{1}\cdots a_{r}b_{1}\cdots b_{j}\geq M\\ b_{1}\cdots b_{j}c_{1}\cdots c_{r}\geq M\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}b_{1}^{2}\cdots b_{j}^{2}c_{1}^{2}\cdots c_{r}^{2}}\asymp_{\ell}\frac{\log^{j-1}(M)}{M},
(7) a1aM1a1alog(M),\sum_{a_{1}\cdots a_{\ell}\leq M}\frac{1}{a_{1}\cdots a_{\ell}}\asymp_{\ell}\log^{\ell}(M),
(8) a1a<Ma2a+1M1a12a2a+12log1MM.\sum_{\begin{subarray}{c}a_{1}\cdots a_{\ell}<M\\ a_{2}\cdots a_{\ell+1}\geq M\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{\ell}^{2}a_{\ell+1}^{2}}\asymp_{\ell}\frac{\log^{\ell-1}M}{M}.
Remark 3.4.

The assumption r+j=r+j=\ell in (6) is needed for the implied constant to depend on \ell. Otherwise, as the proof makes it clear, this constant depends on jj.

Proof.

We start with (6). We split the sum on the left hand side of (6) into two sums according to whether b1bjMb_{1}\cdots b_{j}\geq M or b1bj<Mb_{1}\cdots b_{j}<M. In the first case, we have

a1arb1bjMb1bjc1crMb1bjM1a12ar2b12bj2c12cr2\displaystyle\sum_{\begin{subarray}{c}a_{1}\cdots a_{r}b_{1}\cdots b_{j}\geq M\\ b_{1}\cdots b_{j}c_{1}\cdots c_{r}\geq M\\ b_{1}\cdots b_{j}\geq M\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}b_{1}^{2}\cdots b_{j}^{2}c_{1}^{2}\cdots c_{r}^{2}} =b1bjMa1arb1bjMb1bjc1crM1a12ar2b12bj2c12cr2\displaystyle=\sum_{b_{1}\cdots b_{j}\geq M}\sum_{\begin{subarray}{c}a_{1}\cdots a_{r}b_{1}\cdots b_{j}\geq M\\ b_{1}\cdots b_{j}c_{1}\cdots c_{r}\geq M\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}b_{1}^{2}\cdots b_{j}^{2}c_{1}^{2}\cdots c_{r}^{2}}
=b1bjM1b12bj2a1,,arc1,,cr1a12ar2c12cr2\displaystyle=\sum_{b_{1}\cdots b_{j}\geq M}\frac{1}{b_{1}^{2}\cdots b_{j}^{2}}\sum_{\begin{subarray}{c}a_{1},\ldots,a_{r}\in\mathbb{N}\\ c_{1},\ldots,c_{r}\in\mathbb{N}\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}c_{1}^{2}\cdots c_{r}^{2}}
π4r62rlogj1MM.\displaystyle\asymp\frac{\pi^{4r}}{6^{2r}}\frac{\log^{j-1}M}{M}.

For the second case, we split the sum corresponding to b1bj<Mb_{1}\cdots b_{j}<M into two further sums:

a1arb1bjMb1bjc1crMM2<b1bj<M1a12ar2b12bj2c12cr2+a1arb1bjMb1bjc1crMb1bj<M21a12ar2b12bj2c12cr2\sum_{\begin{subarray}{c}a_{1}\cdots a_{r}b_{1}\cdots b_{j}\geq M\\ b_{1}\cdots b_{j}c_{1}\cdots c_{r}\geq M\\ \frac{M}{2}<b_{1}\cdots b_{j}<M\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}b_{1}^{2}\cdots b_{j}^{2}c_{1}^{2}\cdots c_{r}^{2}}+\sum_{\begin{subarray}{c}a_{1}\cdots a_{r}b_{1}\cdots b_{j}\geq M\\ b_{1}\cdots b_{j}c_{1}\cdots c_{r}\geq M\\ b_{1}\cdots b_{j}<\frac{M}{2}\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}b_{1}^{2}\cdots b_{j}^{2}c_{1}^{2}\cdots c_{r}^{2}}

Let us start with the first one. Observe that

M2<b1bj<M if and only if1<Mb1bj<2,\frac{M}{2}<b_{1}\cdots b_{j}<M\quad\text{ if and only if}\quad 1<\frac{M}{b_{1}\cdots b_{j}}<2,

hence

a1arb1bjMb1bjc1crMM2<b1bj<M1a12ar2b12bj2c12cr2\displaystyle\sum_{\begin{subarray}{c}a_{1}\cdots a_{r}b_{1}\cdots b_{j}\geq M\\ b_{1}\cdots b_{j}c_{1}\cdots c_{r}\geq M\\ \frac{M}{2}<b_{1}\cdots b_{j}<M\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}b_{1}^{2}\cdots b_{j}^{2}c_{1}^{2}\cdots c_{r}^{2}} =M2<b1bj<M1b12bj2a1arMb1bjc1crMb1bj1a12ar2c12cr2\displaystyle=\sum_{\frac{M}{2}<b_{1}\cdots b_{j}<M}\frac{1}{b_{1}^{2}\cdots b_{j}^{2}}\sum_{\begin{subarray}{c}a_{1}\cdots a_{r}\geq\frac{M}{b_{1}\cdots b_{j}}\\ c_{1}\cdots c_{r}\geq\frac{M}{b_{1}\cdots b_{j}}\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}c_{1}^{2}\cdots c_{r}^{2}}
=M2<b1bj<M1b12bj2((a11a2)r1)2\displaystyle=\sum_{\frac{M}{2}<b_{1}\cdots b_{j}<M}\frac{1}{b_{1}^{2}\cdots b_{j}^{2}}\left(\left(\sum_{a\geq 1}\frac{1}{a^{2}}\right)^{r}-1\right)^{2}
M2<b1bj<M1b12bj2logj1MM,\displaystyle\asymp_{\ell}\sum_{\frac{M}{2}<b_{1}\cdots b_{j}<M}\frac{1}{b_{1}^{2}\cdots b_{j}^{2}}\ll\frac{\log^{j-1}M}{M},

Lastly, we have

a1arb1bjMb1bjc1crMb1bjM21a12ar2b12bj2c12cr2\displaystyle\sum_{\begin{subarray}{c}a_{1}\cdots a_{r}b_{1}\cdots b_{j}\geq M\\ b_{1}\cdots b_{j}c_{1}\cdots c_{r}\geq M\\ b_{1}\cdots b_{j}\leq\frac{M}{2}\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}b_{1}^{2}\cdots b_{j}^{2}c_{1}^{2}\cdots c_{r}^{2}} =b1bjM21b12bj2a1arMb1bjc1crMb1bj1a12ar2c12cr2\displaystyle=\sum_{b_{1}\cdots b_{j}\leq\frac{M}{2}}\frac{1}{b_{1}^{2}\cdots b_{j}^{2}}\sum_{\begin{subarray}{c}a_{1}\cdots a_{r}\geq\frac{M}{b_{1}\cdots b_{j}}\\ c_{1}\cdots c_{r}\geq\frac{M}{b_{1}\cdots b_{j}}\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}c_{1}^{2}\cdots c_{r}^{2}}
=b1bjM21b12bj2(a1arMb1bj1a12ar2)2\displaystyle=\sum_{b_{1}\cdots b_{j}\leq\frac{M}{2}}\frac{1}{b_{1}^{2}\cdots b_{j}^{2}}\left(\sum_{a_{1}\cdots a_{r}\geq\frac{M}{b_{1}\cdots b_{j}}}\frac{1}{a_{1}^{2}\cdots a_{r}^{2}}\right)^{2}
b1bjM21b12bj2(1Mb1bj)2\displaystyle\asymp\sum_{b_{1}\cdots b_{j}\leq\frac{M}{2}}\frac{1}{b_{1}^{2}\cdots b_{j}^{2}}\left(\frac{1}{\frac{M}{b_{1}\cdots b_{j}}}\right)^{2}
=1M2b1bjM21logj1MM.\displaystyle=\frac{1}{M^{2}}\sum_{b_{1}\cdots b_{j}\leq\frac{M}{2}}1\asymp\frac{\log^{j-1}M}{M}.

The last step follows from Dirichlet-Piltz formula.

The estimate (7) is clear when =1\ell=1. Assume that it holds for some \ell\in\mathbb{N}. It is easily seen that

(9) 1tlog(Mt)dt=1+1log+1(Mt)+C.\int\frac{1}{t}\log^{\ell}\left(\frac{M}{t}\right)\mathrm{d}t=\frac{-1}{\ell+1}\log^{\ell+1}\left(\frac{M}{t}\right)+C.

We write the sum for +1\ell+1 as follows:

a1aa+1M1a1a=1a+1<M21a+1a1aMa+11a1a+M2a+1M1a+1a1aMa+11a1a\sum_{a_{1}\cdots a_{\ell}a_{\ell+1}\leq M}\frac{1}{a_{1}\cdots a_{\ell}}=\sum_{1\leq a_{\ell+1}<\frac{M}{2}}\frac{1}{a_{\ell+1}}\sum_{a_{1}\cdots a_{\ell}\leq\frac{M}{a_{\ell+1}}}\frac{1}{a_{1}\cdots a_{\ell}}+\sum_{\frac{M}{2}\leq a_{\ell+1}\leq M}\frac{1}{a_{\ell+1}}\sum_{a_{1}\cdots a_{\ell}\leq\frac{M}{a_{\ell+1}}}\frac{1}{a_{1}\cdots a_{\ell}}

We use the induction hypothesis and (9) on the first term to get

1a+1<M21a+1a1aMa+11a1a1a+1<M21a+1log(Ma+1)log+1(M).\sum_{1\leq a_{\ell+1}<\frac{M}{2}}\frac{1}{a_{\ell+1}}\sum_{a_{1}\cdots a_{\ell}\leq\frac{M}{a_{\ell+1}}}\frac{1}{a_{1}\cdots a_{\ell}}\asymp\sum_{1\leq a_{\ell+1}<\frac{M}{2}}\frac{1}{a_{\ell+1}}\log^{\ell}\left(\frac{M}{a_{\ell+1}}\right)\asymp\log^{\ell+1}(M).

The second term is bounded, because of (9):

M2a+1M1a+1a1aMa+11a1aM/2M1tlogMtdt1.\sum_{\frac{M}{2}\leq a_{\ell+1}\leq M}\frac{1}{a_{\ell+1}}\sum_{a_{1}\cdots a_{\ell}\leq\frac{M}{a_{\ell+1}}}\frac{1}{a_{1}\cdots a_{\ell}}\asymp\int_{M/2}^{M}\frac{1}{t}\log^{\ell}\frac{M}{t}\mathrm{d}t\asymp_{\ell}1.

Therefore, (7) also holds for +1\ell+1.

Lastly, we prove (8). First, we rewrite the series in (8) as

a1a<Ma2a+1M1a12a+12=a2aMa1Ma2aa+1Ma2a1a12a+12.\sum_{\begin{subarray}{c}a_{1}\cdots a_{\ell}<M\\ a_{2}\cdots a_{\ell+1}\geq M\end{subarray}}\frac{1}{a_{1}^{2}\cdots a_{\ell+1}^{2}}=\sum_{a_{2}\cdots a_{\ell}\leq M}\sum_{a_{1}\leq\frac{M}{a_{2}\ldots a_{\ell}}}\sum_{a_{\ell+1}\geq\frac{M}{a_{2}\cdots a_{\ell}}}\frac{1}{a_{1}^{2}\cdots a_{\ell+1}^{2}}.

We split the last series into two by conditioning on whether 1a2aM21\leq a_{2}\ldots a_{\ell}\leq\frac{M}{2} or M2<a2a<M\frac{M}{2}<a_{2}\cdots a_{\ell}<M. In the first case, since 1j=1nj2<31\leq\sum_{j=1}^{n}j^{-2}<3 for all nn\in\mathbb{N} and because of (7), we have

a2aM2a1Ma2aa+1Ma2a1a12a+12\displaystyle\sum_{a_{2}\cdots a_{\ell}\leq\frac{M}{2}}\sum_{a_{1}\leq\frac{M}{a_{2}\ldots a_{\ell}}}\sum_{a_{\ell+1}\geq\frac{M}{a_{2}\cdots a_{\ell}}}\frac{1}{a_{1}^{2}\cdots a_{\ell+1}^{2}} a2a+1M21a22a2a1Ma2a+11a12a+2Ma2a+11a+12\displaystyle\asymp\sum_{a_{2}\cdots a_{\ell+1}\leq\frac{M}{2}}\frac{1}{a_{2}^{2}\cdots a_{\ell}^{2}}\sum_{a_{1}\leq\frac{M}{a_{2}\ldots a_{\ell+1}}}\frac{1}{a_{1}^{2}}\sum_{a_{\ell+2}\geq\frac{M}{a_{2}\cdots a_{\ell+1}}}\frac{1}{a_{\ell+1}^{2}}
a2aM21a22a2(a+1Ma2a1a+12)\displaystyle\asymp\sum_{a_{2}\cdots a_{\ell}\leq\frac{M}{2}}\frac{1}{a_{2}^{2}\cdots a_{\ell}^{2}}\left(\sum_{a_{\ell+1}\geq\frac{M}{a_{2}\cdots a_{\ell}}}\frac{1}{a_{\ell+1}^{2}}\right)
1Ma2aM21a2a\displaystyle\asymp\frac{1}{M}\sum_{a_{2}\cdots a_{\ell}\leq\frac{M}{2}}\frac{1}{a_{2}\cdots a_{\ell}}
log1MM.\displaystyle\asymp\frac{\log^{\ell-1}M}{M}.

When M2<a2a<M\frac{M}{2}<a_{2}\cdots a_{\ell}<M, the condition a1Ma2aa_{1}\leq\frac{M}{a_{2}\ldots a_{\ell}} reduces to a1=1a_{1}=1 and a+1Ma2aa_{\ell+1}\geq\frac{M}{a_{2}\cdots a_{\ell}} reduces to a+12a_{\ell+1}\geq 2, then

M2a2aMa1Ma2aa+2Ma1a1a12a+12\displaystyle\sum_{\frac{M}{2}\leq a_{2}\cdots a_{\ell}\leq M}\sum_{a_{1}\leq\frac{M}{a_{2}\ldots a_{\ell}}}\sum_{a_{\ell+2}\geq\frac{M}{a_{1}\cdots a_{\ell}}}\frac{1}{a_{1}^{2}\cdots a_{\ell+1}^{2}} a2aM1a22a2\displaystyle\asymp\sum_{a_{2}\cdots a_{\ell}\leq M}\frac{1}{a_{2}^{2}\cdots a_{\ell}^{2}}
a2aM21a22a2log2MM.\displaystyle\asymp\sum_{a_{2}\cdots a_{\ell}\leq\frac{M}{2}}\frac{1}{a_{2}^{2}\cdots a_{\ell}^{2}}\asymp\frac{\log^{\ell-2}M}{M}.

This proves (8). ∎

Theorem 1.8 requires similar estimates where the exponents may take non-integer values.

Lemma 3.5 ([11, Lemma 4.2]).

For β>1\beta>1, 0<s<10<s<1, and nn\in\mathbb{N}, we have

(10) a1aβn(1a1a)s(logβn)1(1)!βn(1s).\sum_{a_{1}\cdots a_{\ell}\leq\beta^{n}}\left(\frac{1}{a_{1}\cdots a_{\ell}}\right)^{s}\asymp\frac{(\log\beta^{n})^{{\ell}-1}}{({\ell}-1)!}\beta^{n(1-s)}.
Lemma 3.6.

For any M>1M>1 and any t>1t>1 we have

(11) abM1atbtM1tt1logM,\sum_{ab\geq M}\frac{1}{a^{t}b^{t}}\asymp\frac{M^{1-t}}{t-1}\log M,
(12) abcM1atbtct(1t1+logM)M1t.\sum_{abc\geq M}\frac{1}{a^{t}b^{t}c^{t}}\ll\left(\frac{1}{t-1}+\log M\right)M^{1-t}.
Proof.

The estimate (11) is shown as (8) and (12) follows from (11). ∎

4. Proof of Theorem 1.5

For any nn\in\mathbb{N}_{\geq\ell} and k{1,,n1}k\in\{1,\ldots,n-1\}, consider

An,k(φ):={x[0,1):ak(x)ak+1(x)φ(n),an(x)an+1(x)φ(n)}A_{n,k}(\varphi):=\left\{x\in[0,1):\begin{matrix}a_{k}(x)\cdots a_{k+\ell-1}(x)\geq\varphi(n),\\ a_{n}(x)\cdots a_{n+\ell-1}(x)\geq\varphi(n)\end{matrix}\right\}

and define

An(φ):=k=1n1An,k(φ).A_{n}(\varphi):=\bigcup_{k=1}^{n-1}A_{n,k}(\varphi).

As in [26], we may check that the monotonocity of φ\varphi implies

(φ)=lim supnAn(φ).\mathcal{F}_{\ell}(\varphi)=\limsup_{n\to\infty}A_{n}(\varphi).

4.1. Convergence case

Take nn\in\mathbb{N}_{\geq\ell}. We estimate 𝔪(An,k)\mathfrak{m}(A_{n,k}) by considering two cases according to whether the restricted blocks overlap or not.

Lemma 4.1.

Let k{1,,n1}k\in\{1,\ldots,n-1\}.

  1. 1.

    If 1kn1\leq k\leq n-\ell, then

    𝔪(An,k)log2(1)φ(n)φ2(n).\mathfrak{m}(A_{n,k})\asymp_{\ell}\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}.
  2. 2.

    If n+1kn1n-\ell+1\leq k\leq n-1, then

    𝔪(An,k)log+kn1φ(n)φ(n).\mathfrak{m}(A_{n,k})\asymp_{\ell}\frac{\log^{\ell+k-n-1}\varphi(n)}{\varphi(n)}.
Proof.
  1. 1.

    Assume that 1kn1\leq k\leq n-\ell, so k+1n1k+\ell-1\leq n-1. Let 𝐛=(b1,,bn+1)n+1\mathbf{b}=(b_{1},\ldots,b_{n+\ell-1})\in\mathbb{N}^{n+\ell-1} such that An,kI(𝐛)A_{n,k}\cap I(\mathbf{b})\neq\varnothing. Clearly I(𝐛)An,kI(\mathbf{b})\subseteq A_{n,k}. Write

    𝐛=(b1,,bk1,bk+,,bn1),\mathbf{b}^{\prime}=(b_{1},\ldots,b_{k-1},b_{k+\ell},\ldots,b_{n-1}),

    that is, 𝐛\mathbf{b}^{\prime} is 𝐛\mathbf{b} without the blocks (bk,,bk+1)(b_{k},\ldots,b_{k+\ell-1}) and (bn,,bn+1)(b_{n},\ldots,b_{n+\ell-1}), then

    𝔪(In+1(𝐛))𝔪(In1(𝐛))1(bk2bk+12)(bn2bn+12).\mathfrak{m}(I_{n+\ell-1}(\mathbf{b}))\asymp_{\ell}\mathfrak{m}(I_{n-\ell-1}(\mathbf{b}^{\prime}))\,\frac{1}{(b_{k}^{2}\cdots b_{k+\ell-1}^{2})(b_{n}^{2}\cdots b_{n+\ell-1}^{2})}.

    Therefore, we have

    𝔪(An,k)\displaystyle\mathfrak{m}(A_{n,k}) =𝐛n+1𝔪(An,kIn+1(𝐛))\displaystyle=\sum_{\mathbf{b}\in\mathbb{N}^{n+\ell-1}}\mathfrak{m}\left(A_{n,k}\cap I_{n+\ell-1}(\mathbf{b})\right)
    =𝐛n+1bkbk+1φ(n)bnbn+1φ(n)𝔪(In+1(𝐛))\displaystyle=\sum_{\begin{subarray}{c}\mathbf{b}\in\mathbb{N}^{n+\ell-1}\\ b_{k}\cdots b_{k+\ell-1}\geq\varphi(n)\\ b_{n}\cdots b_{n+\ell-1}\geq\varphi(n)\end{subarray}}\mathfrak{m}\left(I_{n+\ell-1}(\mathbf{b})\right)
    𝐛n1bkbk+1φ(n)bnbn+1φ(n)𝔪(In1(𝐛))1(bk2bk+12)(bn2bn+12).\displaystyle\asymp\sum_{\begin{subarray}{c}\mathbf{b}^{\prime}\in\mathbb{N}^{n-\ell-1}\\ b_{k}\cdots b_{k+\ell-1}\geq\varphi(n)\\ b_{n}\cdots b_{n+\ell-1}\geq\varphi(n)\end{subarray}}\mathfrak{m}(I_{n-\ell-1}(\mathbf{b}^{\prime}))\,\frac{1}{(b_{k}^{2}\cdots b_{k+\ell-1}^{2})(b_{n}^{2}\cdots b_{n+\ell-1}^{2})}.
    =(𝐛n1𝔪(In1(𝐛)))(bkbk+1φ(n)1bk2bk+12)(bnbn+1φ(n)1bn2bn+12)\displaystyle=\left(\sum_{\mathbf{b}^{\prime}\in\mathbb{N}^{n-\ell-1}}\mathfrak{m}(I_{n-\ell-1}(\mathbf{b}^{\prime}))\right)\left(\sum_{b_{k}\cdots b_{k+\ell-1}\geq\varphi(n)}\frac{1}{b_{k}^{2}\cdots b_{k+\ell-1}^{2}}\right)\left(\sum_{b_{n}\cdots b_{n+\ell-1}\geq\varphi(n)}\frac{1}{b_{n}^{2}\cdots b_{n+\ell-1}^{2}}\right)
    =(b1bφ(n)1b12b2)2log2(1)φ(n)φ2(n).\displaystyle=\left(\sum_{b_{1}\cdots b_{\ell}\geq\varphi(n)}\frac{1}{b_{1}^{2}\cdots b_{\ell}^{2}}\right)^{2}\asymp\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}.

    The last estimate follows from (5).

  2. 2.

    Assume that n+1kn1n-\ell+1\leq k\leq n-1 and write j=+knj=\ell+k-n. Then, jj is the length of the overlap of the blocks appearing in the definition of An,kA_{n,k}. We may argue as in the previous case and apply (6) rather than (5) to conclude

    𝔪(An,k)bkbk+1φ(n)bnbn+1φ(n)1bk2bk+12bk+2bn+12logj1φ(n)φ(n).\mathfrak{m}(A_{n,k})\asymp_{\ell}\sum_{\begin{subarray}{c}b_{k}\cdots b_{k+\ell-1}\geq\varphi(n)\\ b_{n}\cdots b_{n+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{b_{k}^{2}\cdots b_{k+\ell-1}^{2}b_{k+\ell}^{2}\cdots b_{n+\ell-1}^{2}}\asymp\frac{\log^{j-1}\varphi(n)}{\varphi(n)}.

Proof of Theorem 1.5. Convergence case..

For any nn\in\mathbb{N}_{\geq\ell} we have

𝔪(An)\displaystyle\mathfrak{m}(A_{n}) k=1n𝔪(An,k)\displaystyle\leq\sum_{k=1}^{n}\mathfrak{m}(A_{n,k})
=k=1n𝔪(An,k)+k=n+1n1𝔪(An,k)\displaystyle=\sum_{k=1}^{n-\ell}\mathfrak{m}(A_{n,k})+\sum_{k=n-\ell+1}^{n-1}\mathfrak{m}(A_{n,k})
(n)log2(1)φ(n)φ2(n)+1φ(n)k=n+1n1logk+n1φ(n)\displaystyle\asymp(n-\ell)\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}+\frac{1}{\varphi(n)}\sum_{k=n-\ell+1}^{n-1}\log^{k+\ell-n-1}\varphi(n)
nlog2(1)φ(n)φ2(n)+log2φ(n)φ(n).\displaystyle\asymp\frac{n\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}+\frac{\log^{\ell-2}\varphi(n)}{\varphi(n)}.

The result follows from the convergence part of the Borel-Cantelli Lemma. ∎

4.2. Divergence case

We may impose two additional assumptions without losing any generality. First, we suppose that

limnφ(n)=.\lim_{n\to\infty}\varphi(n)=\infty.

If this was not the case, then every irrational number with unbounded partial quotients would belong to (φ)\mathcal{F}_{\ell}(\varphi) and, thus, 𝔪((φ))=1\mathfrak{m}(\mathcal{F}_{\ell}(\varphi))=1 by the Borel-Bernstein Theorem. Second, we may assume that 111There seems to be a gap in the proof of this assertion for =2\ell=2 in [26]. Consider 0<α<10<\alpha<1 and φ(n)=n(logn)α\varphi(n)=n(\log n)^{\alpha}. Then, nφ(n)1=\sum_{n}\varphi(n)^{-1}=\infty and φ(n)<nlogφ(n)\varphi(n)<n\log\varphi(n) for all large nn. According to [26, Section 3.2], we should consider the function ψ\psi given by ψ(n)=max{φ(n),nlogφ(n)}\psi(n)=\max\{\varphi(n),n\log\varphi(n)\}. However, for all large nn we have nlogψ(n)=nlog(nlogφ(n))>nlogφ(n)=ψ(n)n\log\psi(n)=n\log(n\log\varphi(n))>n\log\varphi(n)=\psi(n). This minor gap does not affect validity of that paper at all.

(13) φ(n)nlog1φ(n) for all n.\varphi(n)\geq n\log^{\ell-1}\varphi(n)\quad\text{ for all }n\in\mathbb{N}.

Certainly, for each nn\in\mathbb{N} let xnx_{n} be the solution xx of the equation

xlog1x=n.\frac{x}{\log^{\ell-1}x}=n.

Then, (xn)n1(x_{n})_{n\geq 1} tends to infinity and it is eventually strictly increasing. Let ψ:\psi:\mathbb{N}\to\mathbb{N} be given by

ψ(n)=max{φ(n),xn} for all n.\psi(n)=\max\{\varphi(n),x_{n}\}\quad\text{ for all }n\in\mathbb{N}.

We can trivially modify at most finitely many terms of ψ\psi to ensure that it is non-decreasing. Furthermore, since ψφ\psi\geq\varphi, we have (ψ)(φ)\mathcal{E}_{\ell}(\psi)\subseteq\mathcal{E}_{\ell}(\varphi) and ψ(n)\psi(n)\to\infty as nn\to\infty. It is also clear that ψ(n)nlog1ψ(n)\psi(n)\geq n\log^{\ell-1}\psi(n) for all nn\in\mathbb{N}, because xxlog1xx\mapsto\frac{x}{\log^{\ell-1}x} is strictly increasing for large xx. Lastly, let us show that

n=1n(log1ψ(n)ψ(n))2+log2ψ(n)ψ(n)=.\sum_{n=1}^{\infty}n\left(\frac{\log^{\ell-1}\psi(n)}{\psi(n)}\right)^{2}+\frac{\log^{\ell-2}\psi(n)}{\psi(n)}=\infty.

The divergence is obvious if φ(n)>xn\varphi(n)>x_{n} for all but finitely many nn\in\mathbb{N}. If this is not the case, then there is a strictly increasing sequence of natural numbers (mk)k1(m_{k})_{k\geq 1} such that

mk+1>2mk and φ(mk)<xmk for all k.m_{k+1}>2m_{k}\text{ and }\varphi(m_{k})<x_{m_{k}}\;\text{ for all }\;k\in\mathbb{N}.

Hence,

n=1n(log1ψ(n)ψ(n))2+log2ψ(n)ψ(n)\displaystyle\sum_{n=1}^{\infty}n\left(\frac{\log^{\ell-1}\psi(n)}{\psi(n)}\right)^{2}+\frac{\log^{\ell-2}\psi(n)}{\psi(n)} k=1[mk+12]nmk+1n(log1ψ(n)ψ(n))2\displaystyle\geq\sum_{k=1}^{\infty}\sum_{\left[\frac{m_{k+1}}{2}\right]\leq n\leq m_{k+1}}n\left(\frac{\log^{\ell-1}\psi(n)}{\psi(n)}\right)^{2}
k=1mk+12[mk+12]nmk+1(log1ψ(n)ψ(n))2\displaystyle\geq\sum_{k=1}^{\infty}\frac{m_{k+1}}{2}\sum_{\left[\frac{m_{k+1}}{2}\right]\leq n\leq m_{k+1}}\left(\frac{\log^{\ell-1}\psi(n)}{\psi(n)}\right)^{2}
k=1mk+12[mk+12]nmk+1(log1xmk+1xmk+1)2\displaystyle\geq\sum_{k=1}^{\infty}\frac{m_{k+1}}{2}\sum_{\left[\frac{m_{k+1}}{2}\right]\leq n\leq m_{k+1}}\left(\frac{\log^{\ell-1}x_{m_{k+1}}}{x_{m_{k+1}}}\right)^{2}
=k=1mk+12[mk+12]nmk+1(1mk+1)2\displaystyle=\sum_{k=1}^{\infty}\frac{m_{k+1}}{2}\sum_{\left[\frac{m_{k+1}}{2}\right]\leq n\leq m_{k+1}}\left(\frac{1}{m_{k+1}}\right)^{2}
k=114=.\displaystyle\geq\sum_{k=1}^{\infty}\frac{1}{4}=\infty.

Take tt\in\mathbb{N}, 𝐛=(b1,,bt)t\mathbf{b}=(b_{1},\ldots,b_{t})\in\mathbb{N}^{t}, write It=It(𝐛)I_{t}=I_{t}(\mathbf{b}), and let M=M(𝐛)t+1M=M(\mathbf{b})\in\mathbb{N}_{\geq t+1} be such that φ(M)>(max{b1,,bt})\varphi(M)>\left(\max\{b_{1},\ldots,b_{t}\}\right)^{\ell}.

Lemma 4.2.

If nMn\in\mathbb{N}_{\geq M}, then

𝔪(AnIt)𝔪(It)(nlog2(1)φ(n)φ(n)2+log2φ(n)φ(n)).\mathfrak{m}\left(A_{n}\cap I_{t}\right)\gg_{\ell}\mathfrak{m}(I_{t})\left(\frac{n\log^{2(\ell-1)}\varphi(n)}{\varphi(n)^{2}}+\frac{\log^{\ell-2}\varphi(n)}{\varphi(n)}\right).
Proof.

Take nMn\in\mathbb{N}_{\geq M}. Define the set

Bn:={xIt:an1(x)an+2(x)φ(n),an(x)an+1(x)φ(n)}.B_{n}:=\left\{x\in I_{t}:\begin{matrix}a_{n-1}(x)\cdots a_{n+\ell-2}(x)\geq\varphi(n),\\ a_{n}(x)\cdots a_{n+\ell-1}(x)\geq\varphi(n)\end{matrix}\right\}.

For each ii\in\mathbb{N} such that Mi<n1M\leq i<n-1 and in1(mod)i\equiv n-1\pmod{\ell}, let BiB_{i} be the set of those xItx\in I_{t} satisfying the next properties:

  1. 1.

    ai(x)ai+1(x)φ(n)a_{i}(x)\cdots a_{i+\ell-1}(x)\geq\varphi(n),

  2. 2.

    For each kk\in\mathbb{N} such that 0<k<n1i0<k<\frac{n-1-i}{\ell} we have ai+k(x)ai+(k+1)1(x)<φ(n)a_{i+k\ell}(x)\cdots a_{i+(k+1)\ell-1}(x)<\varphi(n).

  3. 3.

    an1(x)an+2(x)<φ(n)a_{n-1}(x)\cdots a_{n+\ell-2}(x)<\varphi(n) and an(x)an+1(x)φ(n)a_{n}(x)\cdots a_{n+\ell-1}(x)\geq\varphi(n).

Note that we are imposing restrictions on non-overlapping contiguous blocks of length \ell. Clearly, we have

(14) BnMi<n1in1()BiAnIt,B_{n}\cup\bigcup_{\begin{subarray}{c}M\leq i<n-1\\ i\equiv n-1(\ell)\end{subarray}}B_{i}\subseteq A_{n}\cap I_{t},

where the union is disjoint. From (6) we obtain

(15) 𝔪(Bn)log1φ(n)φ(n)𝔪(It).\mathfrak{m}(B_{n})\asymp_{\ell}\frac{\log^{\ell-1}\varphi(n)}{\varphi(n)}\mathfrak{m}(I_{t}).

Take ii such that in1(mod)i\equiv n-1\pmod{\ell} and Mi<n1M\leq i<n-1. As in the convergence case, in order to estimate 𝔪(Bi)\mathfrak{m}(B_{i}) it suffices to estimate the series

aiai+1φ(n)ai+kai+(k+1)1<φ(n)0<k<n1ian1an+2<φ(n)anan+1φ(n)1ai2an+22.\sum_{a_{i}\cdots a_{i+\ell-1}\geq\varphi(n)}\,\sum_{\begin{subarray}{c}a_{i+k\ell}\cdots a_{i+(k+1)\ell-1}<\varphi(n)\\ 0<k<\frac{n-1-i}{\ell}\end{subarray}}\,\sum_{\begin{subarray}{c}a_{n-1}\cdots a_{n+\ell-2}<\varphi(n)\\ a_{n}\cdots a_{n+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{a_{i}^{2}\cdots a_{n+\ell-2}^{2}}.

From (5) and (8) we obtain

aiai+1φ(n)1ai2ai+12an1an+2<φ(n)anan+1φ(n)1an12an++12log2(1)φ(n)φ2(n).\sum_{a_{i}\cdots a_{i+\ell-1}\geq\varphi(n)}\frac{1}{a_{i}^{2}\cdots a_{i+\ell-1}^{2}}\;\sum_{\begin{subarray}{c}a_{n-1}\cdots a_{n+\ell-2}<\varphi(n)\\ a_{n}\cdots a_{n+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{a_{n-1}^{2}\cdots a_{n+\ell+1}^{2}}\asymp\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}.

Also, for every integer kk with 0<k<n1i0<k<\frac{n-1-i}{\ell} we have

ai+kai+(k+1)1<φ(n)1ai+k2ai+(k+1)121log1φ(n)2φ(n)112n.\sum_{a_{i+k\ell}\cdots a_{i+(k+1)\ell-1}<\varphi(n)}\frac{1}{a_{i+k\ell}^{2}\cdots a_{i+(k+1)\ell-1}^{2}}\gg 1-\frac{\log^{\ell-1}\varphi(n)}{2\varphi(n)}\geq 1-\frac{1}{2n}.

Hence, by (14), we arrive at

𝔪(Bi)𝔪(It)log2(1)φ(n)φ(n)(112n)ni\mathfrak{m}(B_{i})\gg\mathfrak{m}(I_{t})\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi(n)}\left(1-\frac{1}{2n}\right)^{n-i}

and we conclude

(16) 𝔪(Mi<n1in1()Bi)𝔪(It)nlog2(1)φ(n)φ(n).\mathfrak{m}\left(\bigcup_{\begin{subarray}{c}M\leq i<n-1\\ i\equiv n-1(\ell)\end{subarray}}B_{i}\right)\gg\mathfrak{m}(I_{t})\frac{n\log^{2(\ell-1)}\varphi(n)}{\varphi(n)}.

The lemma follows from (14), (15), and (16). ∎

Lemma 4.3.

For large NN\in\mathbb{N} we have

(17) Mm<nN𝔪(AmAnIt)n=MN𝔪(AnIt)+𝔪(It)1(n=MN𝔪(AnIt))2.\sum_{M\leq m<n\leq N}\mathfrak{m}\left(A_{m}\cap A_{n}\cap I_{t}\right)\ll_{\ell}\sum_{n=M}^{N}\mathfrak{m}\left(A_{n}\cap I_{t}\right)+\mathfrak{m}(I_{t})^{-1}\left(\sum_{n=M}^{N}\mathfrak{m}\left(A_{n}\cap I_{t}\right)\right)^{2}.
Proof.

Consider the index set

:={(m,n)2:Mm<nN}.\mathcal{I}:=\{(m,n)\in\mathbb{N}^{2}:M\leq m<n\leq N\}.

We partition \mathcal{I} into

1:={(m,n):Mmn(21)},2:={(m,n):n2+2mn1}}\mathcal{I}_{1}:=\{(m,n)\in\mathcal{I}:M\leq m\leq n-(2\ell-1)\},\quad\mathcal{I}_{2}:=\{(m,n)\in\mathcal{I}:n-2\ell+2\leq m\leq n-1\}\}

and write

S1:=(m,n)1𝔪(AmAnIt) and S2:=(m,n)2𝔪(AmAnIt).S_{1}:=\sum_{(m,n)\in\mathcal{I}_{1}}\mathfrak{m}\left(A_{m}\cap A_{n}\cap I_{t}\right)\;\text{ and }\;S_{2}:=\sum_{(m,n)\in\mathcal{I}_{2}}\mathfrak{m}\left(A_{m}\cap A_{n}\cap I_{t}\right).

It is clear that

S22n=1N𝔪(AnIt).S_{2}\leq 2\ell\sum_{n=1}^{N}\mathfrak{m}\left(A_{n}\cap I_{t}\right).

Now we give an upper bound for S1S_{1}. For each (m,n)1(m,n)\in\mathcal{I}_{1} define the sets U1(m,n)U_{1}(m,n), U2(m,n)U_{2}(m,n), U3(m,n)U_{3}(m,n) as follows:

  1. 1.

    Let U1(m,n)U_{1}(m,n) be the set of irrational numbers xItx\in I_{t} such that

    • am(x)am+1(x)φ(m)a_{m}(x)\cdots a_{m+\ell-1}(x)\geq\varphi(m),

    • For some k<mk<m we have ak(x)ak+1(x)φ(n)a_{k}(x)\cdots a_{k+\ell-1}(x)\geq\varphi(n),

    • an(x)an+1(x)φ(n)a_{n}(x)\cdots a_{n+\ell-1}(x)\geq\varphi(n).

  2. 2.

    Let U2(m,n)U_{2}(m,n) be the set of irrational numbers xItx\in I_{t} such that

    • For some j<mj<m we have aj(x)aj+1(x)φ(m)a_{j}(x)\cdots a_{j+\ell-1}(x)\geq\varphi(m),

    • am(x)am+1(x)φ(n)a_{m}(x)\cdots a_{m+\ell-1}(x)\geq\varphi(n),

    • an(x)an+1(x)φ(n)a_{n}(x)\cdots a_{n+\ell-1}(x)\geq\varphi(n).

  3. 3.

    Let U3(m,n)U_{3}(m,n) be the set of irrational numbers xItx\in I_{t} such that

    • For some j<mj<m we have aj(x)aj+1φ(m)a_{j}(x)\cdots a_{j+\ell-1}\geq\varphi(m),

    • am(x)am+1(x)φ(m)a_{m}(x)\cdots a_{m+\ell-1}(x)\geq\varphi(m),

    • For some m<k<nm<k<n we have ak(x)ak+1φ(n)a_{k}(x)\cdots a_{k+\ell-1}\geq\varphi(n),

    • an(x)am+1(x)φ(m)a_{n}(x)\cdots a_{m+\ell-1}(x)\geq\varphi(m).

We claim that

(18) 𝔪(U1(m,n))𝔪(It)log2(1)φ(n)φ2(n),\mathfrak{m}(U_{1}(m,n))\ll\mathfrak{m}(I_{t})\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)},
(19) 𝔪(U2(m,n))𝔪(It)log2(1)φ(n)φ2(n),\mathfrak{m}(U_{2}(m,n))\ll\mathfrak{m}(I_{t})\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)},
𝔪(U3(m,n))\displaystyle\mathfrak{m}(U_{3}(m,n)) 𝔪(It)log2(1)φ(n)φ2(n)+\displaystyle\ll\mathfrak{m}(I_{t})\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}+
(20) +𝔪(It)(nlogφ(n)φ2(n)+log2φ(n)φ(n))(mlogφ(m)φ2(m)+log2φ(n)φ(m)).\displaystyle\quad\;+\mathfrak{m}(I_{t})\left(\frac{n\log\varphi(n)}{\varphi^{2}(n)}+\frac{\log^{\ell-2}\varphi(n)}{\varphi(n)}\right)\left(\frac{m\log\varphi(m)}{\varphi^{2}(m)}+\frac{\log^{\ell-2}\varphi(n)}{\varphi(m)}\right).

Let us show (18). When MkmM\leq k\leq m-\ell, we apply (5) to get

akak+1φ(n)amam+1φ(m)anan+1φ(n)1ak2ak+12am2am+12an2an+12logφ(m)φ(m)log2(1)φ(n)φ2(n).\sum_{\begin{subarray}{c}a_{k}\cdots a_{k+\ell-1}\geq\varphi(n)\\ a_{m}\cdots a_{m+\ell-1}\geq\varphi(m)\\ a_{n}\cdots a_{n+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{a_{k}^{2}\cdots a_{k+\ell-1}^{2}a_{m}^{2}\cdots a_{m+\ell-1}^{2}a_{n}^{2}\cdots a_{n+\ell-1}^{2}}\asymp\frac{\log\varphi(m)}{\varphi(m)}\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}.

For m+1km1m-\ell+1\leq k\leq m-1 we have

akak+1φ(n)amam+1φ(m)anan+1φ(n)1ak2am+12an2an+12\displaystyle\sum_{\begin{subarray}{c}a_{k}\cdots a_{k+\ell-1}\geq\varphi(n)\\ a_{m}\cdots a_{m+\ell-1}\geq\varphi(m)\\ a_{n}\cdots a_{n+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{a_{k}^{2}\cdots a_{m+\ell-1}^{2}a_{n}^{2}\cdots a_{n+\ell-1}^{2}} akak+1φ(n)anan+1φ(n)1ak2am+12an2an+12\displaystyle\leq\sum_{\begin{subarray}{c}a_{k}\cdots a_{k+\ell-1}\geq\varphi(n)\\ a_{n}\cdots a_{n+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{a_{k}^{2}\cdots a_{m+\ell-1}^{2}a_{n}^{2}\cdots a_{n+\ell-1}^{2}}
log2(1)φ(n)φ2(n).\displaystyle\ll\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}.

Then, the above inequalities along with (13) yield

𝔪(U1(m,n))\displaystyle\mathfrak{m}(U_{1}(m,n)) mlog1φ(m)φ(m)log2(1)φ(n)φ2(n)+log2(1)φ(n)φ2(n)\displaystyle\leq m\frac{\log^{\ell-1}\varphi(m)}{\varphi(m)}\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}+\ell\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}
log2(1)φ(n)φ2(n).\displaystyle\ll\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}.

This shows (18). Note that we have used that for the values of kk considered the blocks (ak,,ak+1)(a_{k},\ldots,a_{k+\ell-1}) and (an,,an+1)(a_{n},\ldots,a_{n+\ell-1}) do not overlap. Here and in the following, whenever we assert something about blocks of a sequence of natural numbers without quantifiers, it should be understood that the assertion holds for every sequence of natural numbers.

We consider two different series to estimate 𝔪(U2(m,n))\mathfrak{m}(U_{2}(m,n)). First, if MjmM\leq j\leq m-\ell then the blocks (aj,,aj+1)(a_{j},\ldots,a_{j+\ell-1}) and (am,,am+1)(a_{m},\ldots,a_{m+\ell-1}) do not overlap and

j=Mmajaj+1φ(m)amam+1φ(n)1aj2aj+12am2am+12\displaystyle\sum_{j=M}^{m-\ell}\sum_{\begin{subarray}{c}a_{j}\cdots a_{j+\ell-1}\geq\varphi(m)\\ a_{m}\cdots a_{m+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{a_{j}^{2}\cdots a_{j+\ell-1}^{2}a_{m}^{2}\cdots a_{m+\ell-1}^{2}} mlog1φ(m)φ(m)log1φ(n)φ(n)\displaystyle\ll m\frac{\log^{\ell-1}\varphi(m)}{\varphi(m)}\frac{\log^{\ell-1}\varphi(n)}{\varphi(n)}
log1φ(n)φ(n).\displaystyle\leq\frac{\log^{\ell-1}\varphi(n)}{\varphi(n)}.

The product aj2am+12a_{j}^{2}\cdots a_{m+\ell-1}^{2} in the series to come should be interpreted as follows: if j+1mj+\ell-1\leq m, then aj2am+12a_{j}^{2}\cdots a_{m+\ell-1}^{2} is the product of the products of the blocks (aj,,aj+1)(a_{j},\ldots,a_{j+\ell-1}) and (am,,am+1)(a_{m},\ldots,a_{m+\ell-1}); if j+1>mj+\ell-1>m, then aj2am+12a_{j}^{2}\cdots a_{m+\ell-1}^{2} is the product of the block (aj,aj+1,,am+1)(a_{j},a_{j+1},\ldots,a_{m+\ell-1}). We use a similar convention for other combinations of the parameters j,k,m,nj,k,m,n.

When m+1jm1m-\ell+1\leq j\leq m-1, the blocks (aj,,aj+1)(a_{j},\ldots,a_{j+\ell-1}) and (am,,am+1)(a_{m},\ldots,a_{m+\ell-1}) overlap and

j=m+1m1ajaj+1φ(m)amam+1φ(n)1aj2am+12\displaystyle\sum_{j=m-\ell+1}^{m-1}\sum_{\begin{subarray}{c}a_{j}\cdots a_{j+\ell-1}\geq\varphi(m)\\ a_{m}\cdots a_{m+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{a_{j}^{2}\cdots a_{m+\ell-1}^{2}} j=m+1m1amam+1φ(n)1aj2am+12\displaystyle\leq\sum_{j=m-\ell+1}^{m-1}\sum_{a_{m}\cdots a_{m+\ell-1}\geq\varphi(n)}\frac{1}{a_{j}^{2}\cdots a_{m+\ell-1}^{2}}
log1φ(n)φ(n).\displaystyle\ll_{\ell}\frac{\log^{\ell-1}\varphi(n)}{\varphi(n)}.

We may now argue as in the convergence case recalling the restriction anan+1φ(n)a_{n}\cdots a_{n+\ell-1}\geq\varphi(n) to conclude (19).

Next, we show (4.2). First, we consider the values of kk for which the block (ak,,ak+1)(a_{k},\ldots,a_{k+\ell-1}) does not overlap neither (an,,an+1)(a_{n},\ldots,a_{n+\ell-1}) nor (am,,am+1)(a_{m},\ldots,a_{m+\ell-1}). In other words, we assume m+knm+\ell\leq k\leq n-\ell. This leads us to the series

j=Mm1k=m+najaj+1φ(m)amam+1φ(m)akak+1φ(n)anan+1φ(n)1aj2am+12ak2ak+12an2an+12,\sum_{j=M}^{m-1}\sum_{k=m+\ell}^{n-\ell}\sum_{\begin{subarray}{c}a_{j}\cdots a_{j+\ell-1}\geq\varphi(m)\\ a_{m}\cdots a_{m+\ell-1}\geq\varphi(m)\\ a_{k}\cdots a_{k+\ell-1}\geq\varphi(n)\\ a_{n}\cdots a_{n+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{a_{j}^{2}\cdots a_{m+\ell-1}^{2}a_{k}^{2}\cdots a_{k+\ell-1}^{2}a_{n}^{2}\cdots a_{n+\ell-1}^{2}},

which is asymptotically equivalent to

(log1φ(n)φ(n))2\displaystyle\left(\frac{\log^{\ell-1}\varphi(n)}{\varphi(n)}\right)^{2} j=Mm1ajaj+1φ(m)amam+1φ(m)1aj2am+12\displaystyle\sum_{j=M}^{m-1}\sum_{\begin{subarray}{c}a_{j}\cdots a_{j+\ell-1}\geq\varphi(m)\\ a_{m}\cdots a_{m+\ell-1}\geq\varphi(m)\end{subarray}}\frac{1}{a_{j}^{2}\cdots a_{m+\ell-1}^{2}}\ll
(log1φ(n)φ(n))2(mlog2(1)φ(m)φ(m)+log2φ(m)φ(m)).\displaystyle\ll\left(\frac{\log^{\ell-1}\varphi(n)}{\varphi(n)}\right)^{2}\left(m\frac{\log^{2(\ell-1)}\varphi(m)}{\varphi(m)}+\frac{\log^{\ell-2}\varphi(m)}{\varphi(m)}\right).

The last estimate is obtained as in the convergence case. Now suppose that n+1kn1n-\ell+1\leq k\leq n-1. This means that (ak,,ak+1)(a_{k},\ldots,a_{k+\ell-1}) and (an,,an+1)(a_{n},\ldots,a_{n+\ell-1}) overlap but (ak,,ak+1)(a_{k},\ldots,a_{k+\ell-1}) and (am,,am+1)(a_{m},\ldots,a_{m+\ell-1}) do not (by the definition of 1\mathcal{I}_{1}), hence

j=Mm1\displaystyle\sum_{j=M}^{m-1} k=n+1n1ajaj+1φ(m)amam+1φ(m)akak+1φ(n)anan+1φ(n)1aj2am+12ak2an+12\displaystyle\sum_{k=n-\ell+1}^{n-1}\sum_{\begin{subarray}{c}a_{j}\cdots a_{j+\ell-1}\geq\varphi(m)\\ a_{m}\cdots a_{m+\ell-1}\geq\varphi(m)\\ a_{k}\cdots a_{k+\ell-1}\geq\varphi(n)\\ a_{n}\cdots a_{n+\ell-1}\geq\varphi(n)\end{subarray}}\frac{1}{a_{j}^{2}\cdots a_{m+\ell-1}^{2}a_{k}^{2}\cdots a_{n+\ell-1}^{2}}\ll
log2φ(n)φ(n)j=Mm1ajaj+1φ(m)amam+1φ(m)1aj2am+12\displaystyle\ll\frac{\log^{\ell-2}\varphi(n)}{\varphi(n)}\sum_{j=M}^{m-1}\sum_{\begin{subarray}{c}a_{j}\cdots a_{j+\ell-1}\geq\varphi(m)\\ a_{m}\cdots a_{m+\ell-1}\geq\varphi(m)\end{subarray}}\frac{1}{a_{j}^{2}\cdots a_{m+\ell-1}^{2}}
log2φ(n)φ(n)(mlog2(1)φ(m)φ(m)+log2φ(m)φ(m)).\displaystyle\ll\frac{\log^{\ell-2}\varphi(n)}{\varphi(n)}\left(m\frac{\log^{2(\ell-1)}\varphi(m)}{\varphi(m)}+\frac{\log^{\ell-2}\varphi(m)}{\varphi(m)}\right).

Lastly, we deal with the values of kk for which the blocks (am,,am+1)(a_{m},\ldots,a_{m+\ell-1}) and (ak,,ak+1)(a_{k},\ldots,a_{k+\ell-1}) overlap. This happens if and only if km+1k\leq m+\ell-1. In this case, k+1m+2(1)<nk+\ell-1\leq m+2(\ell-1)<n, hence (ak,,ak+1)(a_{k},\ldots,a_{k+\ell-1}) and (an,,an+1)(a_{n},\ldots,a_{n+\ell-1}) do not overlap. For any j{M,,m1}j\in\{M,\ldots,m-1\}, k{m+1,,m+1}k\in\{m+1,\ldots,m+\ell-1\} define

Dj,k:={xIt:aj(x)aj+1(x)φ(m),am(x)am+1(x)φ(m),ak(x)ak+1(x)φ(n),an(x)an+1(x)φ(n)}.D_{j,k}:=\left\{x\in I_{t}:\begin{matrix}a_{j}(x)\cdots a_{j+\ell-1}(x)\geq\varphi(m),&a_{m}(x)\cdots a_{m+\ell-1}(x)\geq\varphi(m),\\ a_{k}(x)\cdots a_{k+\ell-1}(x)\geq\varphi(n),&a_{n}(x)\cdots a_{n+\ell-1}(x)\geq\varphi(n)\end{matrix}\right\}.

For such kk we have

j=Mm1Dj,k{xIt:ak(x)ak+1(x)φ(n),an(x)an+1(x)φ(n)}=An,kIt.\bigcup_{j=M}^{m-1}D_{j,k}\subseteq\left\{x\in I_{t}:\begin{matrix}a_{k}(x)\cdots a_{k+\ell-1}(x)\geq\varphi(n),\\ a_{n}(x)\cdots a_{n+\ell-1}(x)\geq\varphi(n)\end{matrix}\right\}=A_{n,k}\cap I_{t}.

We conclude

𝔪(k=m+1m+1j=Mm1Dj,k)k=m+1m+1𝔪(An,kIt)log2(1)φ(n)φ2(n)𝔪(It)\mathfrak{m}\left(\bigcup_{k=m+1}^{m+\ell-1}\bigcup_{j=M}^{m-1}D_{j,k}\right)\leq\sum_{k=m+1}^{m+\ell-1}\mathfrak{m}(A_{n,k}\cap I_{t})\ll_{\ell}\frac{\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}\mathfrak{m}(I_{t})

and (4.2) follows.

In view of Lemma 4.2, (18), (19), and (4.2), direct computations give

S1\displaystyle S_{1} (m,n)1𝔪(U1(m,n))+𝔪(U2(m,n))+𝔪(U3(m,n))\displaystyle\leq\sum_{(m,n)\in\mathcal{I}_{1}}\mathfrak{m}(U_{1}(m,n))+\mathfrak{m}(U_{2}(m,n))+\mathfrak{m}(U_{3}(m,n))
1𝔪(It)(n=MN𝔪(AnIt))2.\displaystyle\ll\frac{1}{\mathfrak{m}(I_{t})}\left(\sum_{n=M}^{N}\mathfrak{m}(A_{n}\cap I_{t})\right)^{2}.

The lemma is now proven. ∎

Proof of Theorem 1.5. Divergence case.

Take any tt\in\mathbb{N} and 𝐛t\mathbf{b}\in\mathbb{N}^{t}. Write It=It(𝐛)I_{t}=I_{t}(\mathbf{b}) and let MM be as above. For each nn\in\mathbb{N} put En:=AM1+nItE_{n}:=A_{M-1+n}\cap I_{t}. Lemma 4.2 and the divergence assumption imply n𝔪(En)=\sum_{n}\mathfrak{m}(E_{n})=\infty. Then, Lemma 4.3 and the Chung-Erdös inequality yield

𝔪(lim supnEn)𝔪(It).\mathfrak{m}\left(\limsup_{n\to\infty}E_{n}\right)\gg_{\ell}\mathfrak{m}(I_{t}).

Let 𝒞\mathcal{C} denote the family of open intervals which are the interior some fundamental interval. The result now follows from 3(φ)It=lim supnEn\mathcal{F}_{3}(\varphi)\cap I_{t}=\limsup_{n}E_{n} and Lemma 2.2. ∎

5. Proof of Theorem 1.10

The cases B=1B=1 and B=B=\infty follow from 2(φ)3(φ)2(φ)\mathcal{F}_{2}(\varphi)\subseteq\mathcal{F}_{3}(\varphi)\subseteq\mathcal{E}_{2}(\varphi) and theorems 1.8 and 1.2. Thus, we assume 1<B<1<B<\infty. Define the functions X1,X2,X3:[0,1]X_{1},X_{2},X_{3}:[0,1]\to\mathbb{R} by

X1(s)=(1s)2s2s+1,X2(s)=s2s2s+1,X3(s)=1(X1(s)+X2(s)).X_{1}(s)=\frac{(1-s)^{2}}{s^{2}-s+1},\quad X_{2}(s)=\frac{s^{2}}{s^{2}-s+1},\quad X_{3}(s)=1-(X_{1}(s)+X_{2}(s)).

Direct computations tell us that for all s[0,1]s\in[0,1] we have 0X1(s),X2(s),X3(s)10\leq X_{1}(s),X_{2}(s),X_{3}(s)\leq 1, and

(21) g3(s)\displaystyle g_{3}(s) =(2s1)+X1(s)s,\displaystyle=(2s-1)+X_{1}(s)s,
(22) g3(s)\displaystyle g_{3}(s) <(1s)X1s,\displaystyle<(1-s)X_{1}-s,
(23) g3(s)\displaystyle g_{3}(s) (3s1)(X1(s)+X2(s))+s.\displaystyle\leq(3s-1)(X_{1}(s)+X_{2}(s))+s.

Write

x1:=X1(pB),x2:=X2(pB),x3:=X3(pB).x_{1}:=X_{1}(p_{B}),\quad x_{2}:=X_{2}(p_{B}),\quad x_{3}:=X_{3}(p_{B}).

5.1. Upper bound

We cover 3(B)\mathcal{F}_{3}(B) by three sets determined by the length of the overlap of the restricted blocks of partial quotients. Define

32(B)\displaystyle\mathcal{F}_{3}^{2}(B) :={x[0,1):an1(x)an(x)an+1(x)Bn,an(x)an+1(x)an+2(x)Bn for i.m. n},\displaystyle:=\left\{x\in[0,1):\begin{matrix}a_{n-1}(x)a_{n}(x)a_{n+1}(x)\geq B^{n},\\ a_{n}(x)a_{n+1}(x)a_{n+2}(x)\geq B^{n}\end{matrix}\text{ for i.m. }n\in\mathbb{N}\right\},
31(B)\displaystyle\mathcal{F}_{3}^{1}(B) :={x[0,1):an2(x)an1(x)an(x)Bn,an(x)an+1(x)an+2(x)Bn for i.m. n},\displaystyle:=\left\{x\in[0,1):\begin{matrix}a_{n-2}(x)a_{n-1}(x)a_{n}(x)\geq B^{n},\\ a_{n}(x)a_{n+1}(x)a_{n+2}(x)\geq B^{n}\end{matrix}\text{ for i.m. }n\in\mathbb{N}\right\},
30(B)\displaystyle\mathcal{F}_{3}^{0}(B) :={x[0,1):ak(x)ak+1(x)ak+2(x)Bn,an(x)an+1(x)an+2(x)Bn for some 1kn3 for i.m. n}.\displaystyle:=\left\{x\in[0,1):\begin{matrix}a_{k}(x)a_{k+1}(x)a_{k+2}(x)\geq B^{n},\\ a_{n}(x)a_{n+1}(x)a_{n+2}(x)\geq B^{n}\end{matrix}\text{ for some }1\leq k\leq n-3\text{ for i.m. }n\in\mathbb{N}\right\}.

The family {32(B),31(B),30(B)}\{\mathcal{F}_{3}^{2}(B),\mathcal{F}_{3}^{1}(B),\mathcal{F}_{3}^{0}(B)\} covers 3(B)\mathcal{F}_{3}(B). The result will follow from estimating the Hausdorff dimension of each 3j(B)\mathcal{F}_{3}^{j}(B), j=0,1,2j=0,1,2. The computations in the three cases are alike. For this reason, we only give a fully detailed proof for 32(B)\mathcal{F}_{3}^{2}(B) and sketch the argument for 31(B)\mathcal{F}_{3}^{1}(B) and 30(B)\mathcal{F}_{3}^{0}(B).

5.1.1. Overlaps of length 2

Let us show that

(24) dimH32(B)pB.\dim_{\mathrm{H}}\mathcal{F}_{3}^{2}(B)\leq p_{B}.

Write α:=Bx1\alpha:=B^{x_{1}}. Take nn\in\mathbb{N} and define

3,n2(B):={x[0,1):an1(x)an(x)an+1(x)Bn,an(x)an+1(x)an+2(x)Bn}.\mathcal{F}_{3,n}^{2}(B):=\left\{x\in[0,1):\begin{matrix}a_{n-1}(x)a_{n}(x)a_{n+1}(x)\geq B^{n},\\ a_{n}(x)a_{n+1}(x)a_{n+2}(x)\geq B^{n}\end{matrix}\right\}.

We cover 3,n2(B)\mathcal{F}_{3,n}^{2}(B) by the sets 3,n1,C(B)\mathcal{F}_{3,n}^{1,C}(B) and 3,n1,G(B)\mathcal{F}_{3,n}^{1,G}(B) given by

3,n2,G(B)\displaystyle\mathcal{F}_{3,n}^{2,G}(B) :={x[0,1):an1(x)αn,an1(x)an(x)an+1(x)Bn,an(x)an+1(x)an+2(x)Bn},\displaystyle:=\left\{x\in[0,1):a_{n-1}(x)\geq\alpha^{n},\,a_{n-1}(x)a_{n}(x)a_{n+1}(x)\geq B^{n},a_{n}(x)a_{n+1}(x)a_{n+2}(x)\geq B^{n}\right\},
3,n2,C(B)\displaystyle\mathcal{F}_{3,n}^{2,C}(B) :={x[0,1):an1(x)<αn,an1(x)an(x)an+1(x)Bn}.\displaystyle:=\left\{x\in[0,1):a_{n-1}(x)<\alpha^{n},\,a_{n-1}(x)a_{n}(x)a_{n+1}(x)\geq B^{n}\right\}.

Let us cover 3,n2,G(B)\mathcal{F}_{3,n}^{2,G}(B) with the sets FF^{\prime} and F′′F^{\prime\prime} defined as

F\displaystyle F^{\prime} :={x[0,1):an1(x)αn,Bnan1(x)an(x)an+1(x)Bnαn,an+2(x)Bnan(x)an+1(x)},\displaystyle:=\left\{x\in[0,1):a_{n-1}(x)\geq\alpha^{n},\;\frac{B^{n}}{a_{n-1}(x)}\leq a_{n}(x)a_{n+1}(x)\leq\frac{B^{n}}{\alpha^{n}},a_{n+2}(x)\geq\frac{B^{n}}{a_{n}(x)a_{n+1}(x)}\right\},
F′′\displaystyle F^{\prime\prime} :={x[0,1):an1(x)αn,Bnαnan(x)an+1(x)}.\displaystyle:=\left\{x\in[0,1):a_{n-1}(x)\geq\alpha^{n},\;\frac{B^{n}}{\alpha^{n}}\leq a_{n}(x)a_{n+1}(x)\right\}.

Put

I\displaystyle I :={𝐚=(a1,,an+1)n+1:an1>αn, 1anan+1Bnαn},\displaystyle:=\left\{\mathbf{a}=(a_{1},\ldots,a_{n+1})\in\mathbb{N}^{n+1}:a_{n-1}>\alpha^{n},\;1\leq a_{n}a_{n+1}\leq\frac{B^{n}}{\alpha^{n}}\right\},
I\displaystyle I^{\prime} :={𝐚=(a1,,an1)n1:an1>αn}.\displaystyle:=\left\{\mathbf{a}=(a_{1},\ldots,a_{n-1})\in\mathbb{N}^{n-1}:a_{n-1}>\alpha^{n}\right\}.

For any 𝐚I\mathbf{a}\in I the set

Jn+1(𝐚):=an+2Bnanan+1In+2(𝐚,an+2)J_{n+1}(\mathbf{a}):=\bigcup_{a_{n+2}\geq\frac{B^{n}}{a_{n}a_{n+1}}}I_{n+2}(\mathbf{a},a_{n+2})

satisfies

(25) |Jn+1(𝐚)|an+2Bnanan+11qn12an2an+12an+221qn12Bnanan+1.|J_{n+1}(\mathbf{a})|\asymp\sum_{a_{n+2}\geq\frac{B^{n}}{a_{n}a_{n+1}}}\frac{1}{q_{n-1}^{2}a_{n}^{2}a_{n+1}^{2}a_{n+2}^{2}}\asymp\frac{1}{q_{n-1}^{2}B^{n}a_{n}a_{n+1}}.

Similarly, for any 𝐚I\mathbf{a}\in I^{\prime} the set

Jn1(𝐚):=anan+1BnαnIn+1(𝐚,an,an+1)J_{n-1}^{\prime}(\mathbf{a}):=\bigcup_{a_{n}a_{n+1}\geq\frac{B^{n}}{\alpha^{n}}}I_{n+1}(\mathbf{a},a_{n},a_{n+1})

satisfies

(26) |Jn1(𝐚)|1qn12anan+1Bnαn1an2an+12αnqn12BnnlogαBnαnqn12Bn.|J_{n-1}^{\prime}(\mathbf{a})|\asymp\frac{1}{q_{n-1}^{2}}\sum_{a_{n}a_{n+1}\geq\frac{B^{n}}{\alpha^{n}}}\frac{1}{a_{n}^{2}a_{n+1}^{2}}\asymp\frac{\alpha^{n}}{q_{n-1}^{2}B^{n}}n\log\frac{\alpha}{B}\asymp\frac{n\alpha^{n}}{q_{n-1}^{2}B^{n}}.

The last estimate follows from the definition of α\alpha. Note that

F𝐚IJn+1(𝐚) and F′′𝐚IJn1(𝐚).F^{\prime}\subseteq\bigcup_{\mathbf{a}\in I}J_{n+1}(\mathbf{a})\quad\text{ and }\quad F^{\prime\prime}\subseteq\bigcup_{\mathbf{a}\in I^{\prime}}J_{n-1}^{\prime}(\mathbf{a}).

Now define

I′′:={(a1,,an1)n1:1an1αn}.I^{\prime\prime}:=\left\{(a_{1},\ldots,a_{n-1})\in\mathbb{N}^{n-1}:1\leq a_{n-1}\leq\alpha^{n}\right\}.

For each 𝐚I′′\mathbf{a}\in I^{\prime\prime} the set

Jn1′′(𝐚):=anan+1Bnan1In+1(𝐚,an,an+1)J_{n-1}^{\prime\prime}(\mathbf{a}):=\bigcup_{a_{n}a_{n+1}\geq\frac{B^{n}}{a_{n-1}}}I_{n+1}(\mathbf{a},a_{n},a_{n+1})

satisfies

(27) |Jn1′′(𝐚)|1qn22an1BnlogBnan11qn22an1Bn.|J_{n-1}^{\prime\prime}(\mathbf{a})|\asymp\frac{1}{q_{n-2}^{2}a_{n-1}B^{n}}\log\frac{B^{n}}{a_{n-1}}\asymp\frac{1}{q_{n-2}^{2}a_{n-1}B^{n}}.

The last estimate follows from an1αna_{n-1}\leq\alpha^{n}.

Let ε>0\varepsilon>0 be arbitrary and write s=pB+εs=p_{B}+\varepsilon. By (21),

(2s1)+sx1>(2pB1)+x1pB=g3(pB)(2s-1)+sx_{1}>(2p_{B}-1)+x_{1}p_{B}=g_{3}(p_{B})

Since g3g_{3} is continuous and strictly increasing, we may pick ε1,δ1>0\varepsilon_{1},\delta_{1}>0 satisfying 0<ε1<ε0<\varepsilon_{1}<\varepsilon and

(2s1)+sx1>g3(pB+ε1)+δ1.(2s-1)+sx_{1}>g_{3}(p_{B}+\varepsilon_{1})+\delta_{1}.

Let N1N_{1}\in\mathbb{N} such that sn<s+ε1<s+εs_{n}<s+\varepsilon_{1}<s+\varepsilon whenever nN1n\in\mathbb{N}_{\geq N_{1}}. Then, for such nn we have

(2s1)+sx1>g3(sn2)+δ1.(2s-1)+sx_{1}>g_{3}(s_{n-2})+\delta_{1}.

As a consequence, taking any (a1,,an2)n2(a_{1},\ldots,a_{n-2})\in\mathbb{N}^{n-2} and writing qn2=qn2(a1,,an2)q_{n-2}=q_{n-2}(a_{1},\ldots,a_{n-2}),

an1αnanan+1Bnαn(1qn12Bnanan+1)s\displaystyle\sum_{a_{n-1}\geq\alpha^{n}}\sum_{a_{n}a_{n+1}\leq\frac{B^{n}}{\alpha^{n}}}\left(\frac{1}{q_{n-1}^{2}B^{n}a_{n}a_{n+1}}\right)^{s} 1qn22sBnsan1αn1an12sanan+1Bnαn1ansan+1s\displaystyle\asymp\frac{1}{q_{n-2}^{2s}B^{ns}}\sum_{a_{n-1}\geq\alpha^{n}}\frac{1}{a_{n-1}^{2s}}\sum_{a_{n}a_{n+1}\leq\frac{B^{n}}{\alpha^{n}}}\frac{1}{a_{n}^{s}a_{n+1}^{s}}
1qn22sBnsαn(12s)(Bα)n(1s)\displaystyle\asymp\frac{1}{q_{n-2}^{2s}B^{ns}}\alpha^{n(1-2s)}\left(\frac{B}{\alpha}\right)^{n(1-s)}
1qn22sBn(12s)αns\displaystyle\asymp\frac{1}{q_{n-2}^{2s}}B^{n(1-2s)}\alpha^{-ns}
1qn22sn2Bn(g3(sn2)+δ1).\displaystyle\leq\frac{1}{q_{n-2}^{2s_{n-2}}B^{n(g_{3}(s_{n-2})+\delta_{1})}}.

This estimate corresponds to (25).

We may use a similar argument relying on (22) rather than on (21) to show the existence of some constants ε2,δ2>0\varepsilon_{2},\delta_{2}>0 with 0<ε2<ε0<\varepsilon_{2}<\varepsilon and some N2N_{2}\in\mathbb{N} such that for any nN2n\in\mathbb{N}_{\geq N_{2}}, any 𝐚=(a1,,an2)n2\mathbf{a}=(a_{1},\ldots,a_{n-2})\in\mathbb{N}^{n-2} we have

an1αn(nαnqn12Bn)snsqn22s(αnBn)sαn(12s)nsαn(1s)Bnsqn22s1qn22sn2Bn(g3(sn2)+δ2).\sum_{a_{n-1}\geq\alpha^{n}}\left(\frac{n\alpha^{n}}{q_{n-1}^{2}B^{n}}\right)^{s}\asymp\frac{n^{s}}{q_{n-2}^{2s}}\left(\frac{\alpha^{n}}{B^{n}}\right)^{s}\alpha^{n(1-2s)}\leq n^{s}\frac{\alpha^{n(1-s)}}{B^{ns}q_{n-2}^{2s}}\leq\frac{1}{q_{n-2}^{2s_{n-2}}B^{n(g_{3}(s_{n-2})+\delta_{2})}}.

This estimate corresponds to (26).

Likewise, we may show the existence of constants ε3,δ3>0\varepsilon_{3},\delta_{3}>0 with 0<ε3<ε0<\varepsilon_{3}<\varepsilon and N3N_{3}\in\mathbb{N} such that for all nN3n\in\mathbb{N}_{\geq N_{3}} and (a1,,an2)n2(a_{1},\ldots,a_{n-2})\in\mathbb{N}^{n-2} we have

an1αn(1qn22an1Bn)s1qn22sn2Bn(g3(sn2)+δ3).\sum_{a_{n-1}\leq\alpha^{n}}\left(\frac{1}{q_{n-2}^{2}a_{n-1}B^{n}}\right)^{s}\ll\frac{1}{q_{n-2}^{2s_{n-2}}B^{n(g_{3}(s_{n-2})+\delta_{3})}}.

This estimate corresponds to (27).

Therefore, if N=max{N1,N2,N3}N=\max\{N_{1},N_{2},N_{3}\} and δ=min{δ1,δ2,δ3}\delta=\min\{\delta_{1},\delta_{2},\delta_{3}\}, for every nNn\in\mathbb{N}_{\geq N} we have

a1,,an2anan+1Bnαn(1Bnanqn22)s\displaystyle\sum_{a_{1},\ldots,a_{n-2}\in\mathbb{N}}\sum_{a_{n}a_{n+1}\leq\frac{B^{n}}{\alpha^{n}}}\left(\frac{1}{B^{n}a_{n}q_{n-2}^{2}}\right)^{s} +anan+1Bnαn(1Bnanqn22)s+\displaystyle+\sum_{a_{n}a_{n+1}\leq\frac{B^{n}}{\alpha^{n}}}\left(\frac{1}{B^{n}a_{n}q_{n-2}^{2}}\right)^{s}+
+an1αn(1qn22an1Bn)sBnδ.\displaystyle\quad+\sum_{a_{n-1}\leq\alpha^{n}}\left(\frac{1}{q_{n-2}^{2}a_{n-1}B^{n}}\right)^{s}\ll B^{-n\delta}.

We conclude

s(32(B))lim infNnNBnδ=0.\mathcal{H}^{s}(\mathcal{F}_{3}^{2}(B))\leq\liminf_{N\to\infty}\sum_{n\geq N}B^{-n\delta}=0.

Since ε>0\varepsilon>0 was arbitrary, dimH32(B)pB\dim_{\mathrm{H}}\mathcal{F}_{3}^{2}(B)\leq p_{B}.

5.1.2. Overlaps of length 1

Write β=Bx1+x2\beta=B^{x_{1}+x_{2}}. Cover 31(B)\mathcal{F}_{3}^{1}(B) by the sets

31,C(B)\displaystyle\mathcal{F}_{3}^{1,C}(B) :={x31(B):an2(x)an1(x)βn for i.m. n}\displaystyle:=\left\{x\in\mathcal{F}_{3}^{1}(B):a_{n-2}(x)a_{n-1}(x)\leq\beta^{n}\text{ for i.m. }n\in\mathbb{N}\right\}
31,G(B,β)\displaystyle\mathcal{F}_{3}^{1,G}(B,\beta) :={x31(B):an2(x)an1(x)>βn for i.m. n}.\displaystyle:=\left\{x\in\mathcal{F}_{3}^{1}(B):a_{n-2}(x)a_{n-1}(x)>\beta^{n}\text{ for i.m. }n\in\mathbb{N}\right\}.

We may cover 31,G(B)\mathcal{F}_{3}^{1,G}(B) by the sets

31,G,1(B)\displaystyle\mathcal{F}_{3}^{1,G,1}(B) :={x[0,1):an2(x)an1(x)>βn,1an(x)Bnβn for i.m. n},\displaystyle:=\left\{x\in[0,1):a_{n-2}(x)a_{n-1}(x)>\beta^{n},1\leq a_{n}(x)\leq\frac{B^{n}}{\beta^{n}}\text{ for i.m. }n\in\mathbb{N}\right\},
31,G,2(B)\displaystyle\mathcal{F}_{3}^{1,G,2}(B) :={x[0,1):an2(x)an1(x)>βn,an(x)>Bnβn for i.m. n}.\displaystyle:=\left\{x\in[0,1):a_{n-2}(x)a_{n-1}(x)>\beta^{n},a_{n}(x)>\frac{B^{n}}{\beta^{n}}\text{ for i.m. }n\in\mathbb{N}\right\}.

For each nn\in\mathbb{N} and every 𝐚=(a1,,an1,an)n\mathbf{a}=(a_{1},\ldots,a_{n-1},a_{n})\in\mathbb{N}^{n} such that an2an1>βna_{n-2}a_{n-1}>\beta^{n} and 1anBnβn1\leq a_{n}\leq\frac{B^{n}}{\beta^{n}} define

KnG,1(𝐚):=an+1an+2BnanIn+2(𝐚,an+1,an+2).K_{n}^{G,1}(\mathbf{a}):=\bigcup_{a_{n+1}a_{n+2}\geq\frac{B^{n}}{a_{n}}}I_{n+2}(\mathbf{a},a_{n+1},a_{n+2}).

Then, using (11) and βnBnanBn\beta^{n}\leq\frac{B^{n}}{a_{n}}\leq B^{n}, we have

|KnG,1(𝐚)|nqn12anBn.|K_{n}^{G,1}(\mathbf{a})|\asymp\frac{n}{q_{n-1}^{2}a_{n}B^{n}}.

Considering a1,,an3a_{1},\ldots,a_{n-3} fixed, we may use again (11) to obtain

nanBnβnan2an1βn1qn32san22san12san2sBnsnqn32sBn(12s)βnsnqn32sBn(12s)αns.n\sum_{a_{n}\leq\frac{B^{n}}{\beta^{n}}}\sum_{a_{n-2}a_{n-1}\leq\beta^{n}}\frac{1}{q_{n-3}^{2s}a_{n-2}^{2s}a_{n-1}^{2s}a_{n}^{2s}B^{ns}}\ll\frac{n}{q_{n-3}^{2s}}B^{n(1-2s)}\beta^{-ns}\leq\frac{n}{q_{n-3}^{2s}}B^{n(1-2s)}\alpha^{-ns}.

As a consequence, arguing as with 32(B)\mathcal{F}_{3}^{2}(B), we have dimH31,G,1(B)pB\dim_{\mathrm{H}}\mathcal{F}_{3}^{1,G,1}(B)\leq p_{B}. In order to estimate dimH31,C,2(B)\dim_{\mathrm{H}}\mathcal{F}_{3}^{1,C,2}(B), for each 𝐚=(a1,,an1)n1\mathbf{a}=(a_{1},\ldots,a_{n-1})\in\mathbb{N}^{n-1} such that an2an1βna_{n-2}a_{n-1}\geq\beta^{n} we consider the set

Kn1G,2(𝐚):=anBnβnIn+2(𝐚,an),K_{n-1}^{G,2}(\mathbf{a}):=\bigcup_{a_{n}\geq\frac{B^{n}}{\beta^{n}}}I_{n+2}(\mathbf{a},a_{n}),

which satisfies

|Kn1G,2(𝐚)|βnBnqn12.|K_{n-1}^{G,2}(\mathbf{a})|\asymp\frac{\beta^{n}}{B^{n}q_{n-1}^{2}}.

Fixing the terms a1,,an3a_{1},\ldots,a_{n-3}, for any s>0s>0 we have

an2an1βn(βnBnqn12)sβn(13s)qn32sBns.\sum_{a_{n-2}a_{n-1}\geq\beta^{n}}\left(\frac{\beta^{n}}{B^{n}q_{n-1}^{2}}\right)^{s}\asymp\frac{\beta^{n(1-3s)}}{q_{n-3}^{2s}B^{ns}}.

We may argue as we did for F′′F^{\prime\prime} using (23) to conclude dimH31,G,2(B)pB\dim_{\mathrm{H}}\mathcal{F}_{3}^{1,G,2}(B)\leq p_{B}.

The set 31,C\mathcal{F}_{3}^{1,C} is contained in

31,C,1(B):={x[0,1):an2(x)an1(x)βn,an(x)(Bβ)n for i.m. n}.\mathcal{F}_{3}^{1,C,1}(B):=\left\{x\in[0,1):a_{n-2}(x)a_{n-1}(x)\leq\beta^{n},a_{n}(x)\geq\left(\frac{B}{\beta}\right)^{n}\text{ for i.m. }n\in\mathbb{N}\right\}.

For nn\in\mathbb{N} and (a1,,an1)n1(a_{1},\ldots,a_{n-1})\in\mathbb{N}^{n-1} such that an2an1βna_{n-2}a_{n-1}\leq\beta^{n} define

Kn1(a1,,an1)=an>BnβnIn(a1,,an),K_{n-1}(a_{1},\ldots,a_{n-1})=\bigcup_{a_{n}>\frac{B^{n}}{\beta^{n}}}I_{n}(a_{1},\ldots,a_{n}),

so

|Kn1(a1,,an1)|1Bnqn3san1an2.|K_{n-1}(a_{1},\ldots,a_{n-1})|\asymp\frac{1}{B^{n}q_{n-3}^{s}a_{n-1}a_{n-2}}.

Moreover, fixing a1,,an3a_{1},\ldots,a_{n-3} and assuming that nn is large, every s>0s>0 verifies

an1an2<Bnβn(1Bnqn3san1an2)sBn(12s)βnsqn32s<Bn(12s)αnsqn32s.\sum_{a_{n-1}a_{n-2}<\frac{B^{n}}{\beta^{n}}}\left(\frac{1}{B^{n}q_{n-3}^{s}a_{n-1}a_{n-2}}\right)^{s}\asymp\frac{B^{n(1-2s)}\beta^{-ns}}{q_{n-3}^{2s}}<\frac{B^{n(1-2s)}\alpha^{-ns}}{q_{n-3}^{2s}}.

Arguing as above, we conclude that dimH31,C,1(B)pB\dim_{\mathrm{H}}\mathcal{F}_{3}^{1,C,1}(B)\leq p_{B} and, thus, dimH31,C(B)pB\dim_{\mathrm{H}}\mathcal{F}_{3}^{1,C}(B)\leq p_{B} .

5.1.3. No overlaps

We content ourselves with describing the useful covering of 30(B)\mathcal{F}_{3}^{0}(B). First, for nn\in\mathbb{N}, k{1,,n3}k\in\{1,\ldots,n-3\}, and 𝐚n1\mathbf{a}\in\mathbb{N}^{n-1} such that akak+1ak+2Bna_{k}a_{k+1}a_{k+2}\geq B^{n} define

Kn13,G,k(𝐚):=anαnIn(𝐚,an), so |Kn13,G,k(𝐚)|1αnqn12.K_{n-1}^{3,G,k}(\mathbf{a}):=\bigcup_{a_{n}\geq\alpha^{n}}I_{n}(\mathbf{a},a_{n}),\quad\text{ so }\quad|K_{n-1}^{3,G,k}(\mathbf{a})|\asymp\frac{1}{\alpha^{n}q_{n-1}^{2}}.

Therefore, letting ak,ak+1,ak+2a_{k},a_{k+1},a_{k+2} run along the pairs satisfying akak+1ak+2>Bna_{k}a_{k+1}a_{k+2}>B^{n} considering the remaining terms fixed, we have

akak+1ak+2>Bn1αnsqn12sBn(12s)αnsqn42s\sum_{a_{k}a_{k+1}a_{k+2}>B^{n}}\frac{1}{\alpha^{ns}q_{n-1}^{2s}}\ll\frac{B^{n(1-2s)}}{\alpha^{ns}q_{n-4}^{2s}}

and we proceed as in the estimate for 32(B)\mathcal{F}_{3}^{2}(B).

Second, for any nn\in\mathbb{N}, k{1,,n3}k\in\{1,\ldots,n-3\}, 𝐚n\mathbf{a}\in\mathbb{N}^{n} such that akak+1ak+2Bna_{k}a_{k+1}a_{k+2}\geq B^{n} and anαna_{n}\leq\alpha^{n} define

Kn3,C,k(𝐚):=an+1an+2BnanIn(𝐚,an+1,an+2), so |Kn3,C,k(𝐚)|nBnanqn12.K_{n}^{3,C,k}(\mathbf{a}):=\bigcup_{a_{n+1}a_{n+2}\geq\frac{B^{n}}{a_{n}}}I_{n}(\mathbf{a},a_{n+1},a_{n+2}),\quad\text{ so }\quad|K_{n}^{3,C,k}(\mathbf{a})|\asymp\frac{n}{B^{n}a_{n}q_{n-1}^{2}}.

Hence, varying ak,ak+1a_{k},a_{k+1} along the pairs satisfying akak+1Bna_{k}a_{k+1}\geq B^{n} and ana_{n} along 1anαn1\leq a_{n}\leq\alpha^{n}, for all s>0s>0 we have

akak+1Bnanαn(nBnanqn12)snsBnsqn32sBn(12s)αn(1s)nsqn32sBn(13s)αn(1s).\sum_{a_{k}a_{k+1}\geq B^{n}}\sum_{a_{n}\leq\alpha^{n}}\left(\frac{n}{B^{n}a_{n}q_{n-1}^{2}}\right)^{s}\ll\frac{n^{s}}{B^{ns}q_{n-3}^{2s}}B^{n(1-2s)}\alpha^{n(1-s)}\leq\frac{n^{s}}{q_{n-3}^{2s}}B^{n(1-3s)}\alpha^{n(1-s)}.

Direct computations tell us that for s12s\geq\frac{1}{2} we have

(3s1)+X1(s)(s1)>g3(s).(3s-1)+X_{1}(s)(s-1)>g_{3}(s).

Arguing as we did for 32(B)\mathcal{F}_{3}^{2}(B), we may conclude that dimH30(B)pB\dim_{\mathrm{H}}\mathcal{F}_{3}^{0}(B)\leq p_{B}.

5.2. Lower bound

Let x1,x2,x3x_{1},x_{2},x_{3} be as in the upper bound and define

A0=Bx1,A1=Bx2,A2=Bx3,A3=Bx1.A_{0}=B^{x_{1}},\quad A_{1}=B^{x_{2}},\quad A_{2}=B^{x_{3}},\quad A_{3}=B^{x_{1}}.

With notation of Lemma 2.10, we have S4(A0,A1,A2,A3)3(B)S_{4}(A_{0},A_{1},A_{2},A_{3})\subseteq\mathcal{F}_{3}(B) and

dimHS4(A0,A1,A2,A3)dimH3(B).\dim_{\mathrm{H}}S_{4}(A_{0},A_{1},A_{2},A_{3})\leq\dim_{\mathrm{H}}\mathcal{F}_{3}(B).

Also, A0A1A2=A1A2A3=BA_{0}A_{1}A_{2}=A_{1}A_{2}A_{3}=B and

logβ1=0,logβ0=x1logB,logβ1=(x1+x2)logB,\log\beta_{-1}=0,\quad\log\beta_{0}=x_{1}\log B,\quad\log\beta_{1}=(x_{1}+x_{2})\log B,
logβ2=logB,logβ3=(1+x1)logB.\log\beta_{2}=\log B,\quad\log\beta_{3}=(1+x_{1})\log B.

As a consequence, the potentials φi,s\varphi_{i,s} defining did_{i} are

φ0,s(x)\displaystyle\varphi_{0,s}(x) =sx1logBslog|T(x)|,\displaystyle=-sx_{1}\log B-s\log|T^{\prime}(x)|,
φ1,s(x)\displaystyle\varphi_{1,s}(x) =((2x1+x2)sx1)logBslog|T(x)|,\displaystyle=-((2x_{1}+x_{2})s-x_{1})\log B-s\log|T^{\prime}(x)|,
φ2,s(x)\displaystyle\varphi_{2,s}(x) =((1+x1+x2)sx1x2)logBslog|T(x)|,\displaystyle=-((1+x_{1}+x_{2})s-x_{1}-x_{2})\log B-s\log|T^{\prime}(x)|,
φ3,s(x)\displaystyle\varphi_{3,s}(x) =((2+x1)s1)logBslog|T(x)|.\displaystyle=-((2+x_{1})s-1)\log B-s\log|T^{\prime}(x)|.

It is not hard to show that pB=d1=d2=d3d0p_{B}=d_{1}=d_{2}=d_{3}\leq d_{0}. Certainly, since sX1(s)(2+X1(s))s1sX_{1}(s)\leq(2+X_{1}(s))s-1 when 12s1\frac{1}{2}\leq s\leq 1, we have d3d0d_{3}\leq d_{0}. We only explain pB=d1p_{B}=d_{1}, the other equalities are handled in a similar fashion. First, note that

g3(pB)=(2+x1)pB1g_{3}(p_{B})=(2+x_{1})p_{B}-1

and that the functions g3g_{3} and s(2+x1)s1s\mapsto(2+x_{1})s-1 are strictly increasing and continuous on [12,1]\left[\frac{1}{2},1\right]. If ε>0\varepsilon>0 and s=pB+εs=p_{B}+\varepsilon, then

(2+x1)s1>g(pB)(2+x_{1})s-1>g(p_{B})

and we would have P(T;φ1,s)0P(T;\varphi_{1,s})\leq 0, hence d1pB+εd_{1}\leq p_{B}+\varepsilon. Since ε\varepsilon was arbitrary, d1pBd_{1}\leq p_{B}. We now show that d1<pBd_{1}<p_{B} leads to a contradiction. If the strict inequality were true, we would be able to pick some number ss with d1<s<pBd_{1}<s<p_{B} and close enough to pBp_{B} such that g(s)=(2+x1)s1<g(pB)g(s)=(2+x_{1})s-1<g(p_{B}). However, for such ss we would have

0>P(T;φ1,s)=P(T;g3(s)logBslog|T|)>0.0>P(T;\varphi_{1,s})=P(T;-g_{3}(s)\log B-s\log|T^{\prime}|)>0.

By virtue of Lemma 2.10, pBdimH3(B)p_{B}\leq\dim_{\mathrm{H}}\mathcal{F}_{3}(B).

6. Final remarks and further results

We stated in the introduction that Theorem 1.5 is an important piece in the extension of the laws of large numbers due to Diamond and Vaaler (Equation (2)) and Hu, Hussain, and Yu (Equation (3)). In a forthcoming article, we study the asymptotic behaviour of the sums of products of consecutive partial quotients. More precisely, for n,n,\ell\in\mathbb{N} and any irrational number x[0,1)x\in[0,1) define

Sn,(x)=j=1naj(x)aj+1(x).S_{n,\ell}(x)=\sum_{j=1}^{n}a_{j}(x)\cdots a_{j+\ell-1}(x).
Theorem 6.1.
  1. 1.

    For every ε>0\varepsilon>0 we have

    limn𝔪({x[0,1):|1nlognSn,(x)1log2|ε})=0.\lim_{n\to\infty}\mathfrak{m}\left(\left\{x\in[0,1):\left|\frac{1}{n\log^{\ell}n}S_{n,\ell}(x)-\frac{1}{\ell\log 2}\right|\geq\varepsilon\right\}\right)=0.
  2. 2.

    Almost every x[0,1)x\in[0,1) satisfies

    limn1nlogn(Sn,(x)max1jnaj(x)aj+1(x))=1log2.\lim_{n\to\infty}\frac{1}{n\log^{\ell}n}\left(S_{n,\ell}(x)-\max_{1\leq j\leq n}a_{j}(x)\cdots a_{j+\ell-1}(x)\right)=\frac{1}{\ell\log 2}.

These results could be extended to products of partial quotients in arithmetic progressions. Given any dd\in\mathbb{N}, for nn\in\mathbb{N} and any irrational x[0,1)x\in[0,1) define the sum

Sn,d(x)=j=1naj(x)aj+d(x)aj+(1)d(x).S_{n,\ell}^{d}(x)=\sum_{j=1}^{n}a_{j}(x)a_{j+d}(x)\cdots a_{j+(\ell-1)d}(x).
Proposition 6.2.

Theorem 6.1 holds if Sn,(x)S_{n,\ell}(x) is replaced with Sn,d(x)S_{n,\ell}^{d}(x).

With regards to the Hausdorff dimension of certain Lebesgue null sets, for an increasing function ϕ:\phi:\mathbb{N}\to\mathbb{R} with ϕ(n)\phi(n)\to\infty as nn\to\infty we consider the set

E(ϕ):={x[0,1):limnSn,(x)ϕ(n)=1}.E_{\ell}(\phi):=\left\{x\in[0,1):\lim_{n\to\infty}\frac{S_{n,\ell}(x)}{\phi(n)}=1\right\}.
Theorem 6.3.
  1. (I)

    If 0<α<120<\alpha<\frac{1}{2} and ϕ(n)=enα\phi(n)=e^{n^{\alpha}}, then dimHE(ϕ)=1\dim_{\mathrm{H}}E_{\ell}(\phi)=1.

  2. (II)

    If 12α\frac{1}{2}\leq\alpha and ϕ(n)=enα\phi(n)=e^{n^{\alpha}}, then dimHE(ϕ)=12\dim_{\mathrm{H}}E_{\ell}(\phi)=\frac{1}{2}.

  3. (III)

    If 1<α1<\alpha and ϕ(n)=eαn\phi(n)=e^{\alpha^{n}}, then dimHE(ϕ)=11+α\dim_{\mathrm{H}}E_{\ell}(\phi)=\frac{1}{1+\alpha}.

Remark 6.4.

Recall that the nn-th term of the series in Theorem 1.5 is

nlog2(1)φ(n)φ2(n)+log2φ(n)φ(n).\frac{n\log^{2(\ell-1)}\varphi(n)}{\varphi^{2}(n)}+\frac{\log^{\ell-2}\varphi(n)}{\varphi(n)}.

It is clear from the proof that the first term accounts for the large products appearing in non-overlapping blocks and the second term corresponds overlapping blocks. Hence, for =1\ell=1 the second term is non-existent.

Remark 6.5.

We suspect that arguments resembling the proof of Theorem 1.10 can lead to the computation of dimH(φ)\dim_{\mathrm{H}}\mathcal{F}_{\ell}(\varphi) for 4\ell\geq 4. This could provide a recursive definition of the potential giving the Hausdorff dimension when 1<B<1<B<\infty (see Theorem 1.2). However, we stress that the proofs for {2,3}\ell\in\{2,3\} do not rely on the result for lower values of \ell.

References

  • [1] P. Bos, M. Hussain, and D. Simmons. The generalised Hausdorff measure of sets of Dirichlet non-improvable numbers. Proc. Amer. Math. Soc., 151(5):1823–1838, 2023.
  • [2] Y. Bugeaud. Approximation by algebraic numbers, volume 160 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2004.
  • [3] K. L. Chung and P. Erdös. On the application of the Borel-Cantelli lemma. Trans. Amer. Math. Soc., 72:179–186, 1952.
  • [4] H. G. Diamond and J. D. Vaaler. Estimates for partial sums of continued fraction partial quotients. Pacific J. Math., 122(1):73–82, 1986.
  • [5] K. Falconer. Fractal geometry. John Wiley & Sons, Ltd., Chichester, third edition, 2014. Mathematical foundations and applications.
  • [6] D. J. Feng, J. Wu, J.-C. Liang, and S. Tseng. Appendix to the paper by T. łuczak—a simple proof of the lower bound: “On the fractional dimension of sets of continued fractions”. Mathematika, 44(1):54–55, 1997.
  • [7] P. Hanus, R. D. Mauldin, and M. Urbański. Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems. Acta Math. Hungar., 96(1-2):27–98, 2002.
  • [8] G. H. Hardy and J. E. Littlewood. The Approximate Functional Equation in the Theory of the Zeta-Function, with Applications to the Divisor-Problems of Dirichlet and Piltz. Proc. London Math. Soc. (2), 21:39–74, 1923.
  • [9] D. Hensley. Continued fractions. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
  • [10] H. Hu, M. Hussain, and Y. Yu. Limit theorems for sums of products of consecutive partial quotients of continued fractions. Nonlinearity, 34(12):8143–8173, 2021.
  • [11] L. Huang, J. Wu, and J. Xu. Metric properties of the product of consecutive partial quotients in continued fractions. Israel J. Math., 238(2):901–943, 2020.
  • [12] M. Hussain, D. Kleinbock, N. Wadleigh, and B.-W. Wang. Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika, 64(2):502–518, 2018.
  • [13] M. Hussain and N. Shulga. Metrical properties of finite product of partial quotients in arithmetic progressions. In press: Ann. Sc. Norm. Super. Pisa Cl. Sci., 2024.
  • [14] M. Hussain and N. Shulga. Metrical properties of exponentially growing partial quotients. arXiv:2309.10529, preprint 2023.
  • [15] O. Kallenberg. Foundations of modern probability, volume 99 of Probability Theory and Stochastic Modelling. Springer, Cham, third edition, [2021] ©2021.
  • [16] A. Y. Khinchin. Continued fractions. University of Chicago Press, Chicago, Ill.-London, 1964.
  • [17] A. Khintchine. Metrische Kettenbruchprobleme. Compositio Math., 1:361–382, 1935.
  • [18] D. Kleinbock and N. Wadleigh. An inhomogeneous Dirichlet theorem via shrinking targets. Compos. Math., 155(7):1402–1423, 2019.
  • [19] K. Knopp. Mengentheoretische behandlung einiger probleme der diophantischen approximationen und der transfiniten wahrscheinlichkeiten. Mathematische Annalen, 95:409–426, 1926.
  • [20] B. Li, B.-W. Wang, J. Wu, and J. Xu. The shrinking target problem in the dynamical system of continued fractions. Proc. Lond. Math. Soc. (3), 108(1):159–186, 2014.
  • [21] T. Łuczak. On the fractional dimension of sets of continued fractions. Mathematika, 44(1):50–53, 1997.
  • [22] R. D. Mauldin and M. Urbański. Graph directed Markov systems, volume 148 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2003. Geometry and dynamics of limit sets.
  • [23] W. Philipp. Limit theorems for sums of partial quotients of continued fractions. Monatsh. Math., 105(3):195–206, 1988.
  • [24] V. G. Sprindžuk. Metric theory of Diophantine approximations. Scripta Series in Mathematics. V. H. Winston & Sons, Washington, DC; John Wiley & Sons, New York-Toronto-London, 1979. With a foreword by Donald J. Newman, A Halsted Press Book.
  • [25] B. Tan, C. Tian, and B. Wang. The distribution of the large partial quotients in continued fraction expansions. Sci. China Math., 66(5):935–956, 2023.
  • [26] B. Tan and Q.-L. Zhou. Metrical properties of the large products of partial quotients in continued fractions. Nonlinearity, 37(2):Paper No. 025008, 28, 2024.
  • [27] B.-W. Wang and J. Wu. Hausdorff dimension of certain sets arising in continued fraction expansions. Adv. Math., 218(5):1319–1339, 2008.
  • [28] J. Wu. A remark on the growth of the denominators of convergents. Monatsh. Math., 147(3):259–264, 2006.