This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mean Field Portfolio Games111We thank the Co-Editor, anonymous Associate Editor, and anonymous referee for many valuable comments and suggestions, which have significantly improved the quality of the paper.

Guanxing Fu222Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. Email: [email protected]. G. Fu’s research is supported by the Start-up Fund P0035348 from The Hong Kong Polytechnic University.  and  Chao Zhou333Department of Mathematics and Risk Management Institute, National University of Singapore. Email: [email protected]. C. Zhou’s research is supported by Singapore MOE (Ministry of Educations) AcRF Grants R-146- 000-271-112 and R-146-000-284-114, as well as NSFC Grant No. 11871364.
Abstract

We study mean field portfolio games with random market parameters, where each player is concerned with not only her own wealth but also relative performance to her competitors. We use the martingale optimality principle approach to characterize the unique Nash equilibrium in terms of a mean field FBSDE with quadratic growth, which is solvable under a weak interaction assumption. Motivated by the weak interaction assumption, we establish an asymptotic expansion result in powers of the competition parameter. When the market parameters do not depend on the Brownian paths, we obtain the Nash equilibrium in closed form.

AMS Subject Classification: 93E20, 91B70, 60H30

Keywords: mean field game, portfolio game, martingale optimality principle, FBSDE.

1 Introduction

Mean field games (MFGs) are a powerful tool to study large population games, where each player has negligible influence on the outcome of the game. Introduced independently by Huang et al. [19] and Lasry and Lions [23], MFGs have received considerable attention in the probability and financial mathematics literature. In this paper, we study a classs of mean field portfolio games with random market parameters by the martingale optimality principle (MOP) approach.

Assume that there are NN risky assets in the market, with price dynamics of asset i{1,,N}i\in\{1,\cdots,N\} following

dSti=Sti(htidt+σtiWti+σti0dWt0),dS^{i}_{t}=S^{i}_{t}\Big{(}h^{i}_{t}\,dt+\sigma^{i}_{t}\,W^{i}_{t}+\sigma^{i0}_{t}\,dW^{0}_{t}\Big{)}, (1.1)

where the return rate hih^{i} and the volatility (σi,σi0)(\sigma^{i},\sigma^{i0}) are assumed to be bounded progressively measurable stochastic processes; WiW^{i} is a Brownian motion describing the idiosyncratic noise to the asset ii; and W0W^{0} is a Brownian motion that is independent of WiW^{i}, describing common noise to all risky assets. The interest rate of the risk-free asset is assumed to be zero for simplicity. Let XiX^{i} be the wealth process of player ii, who trades asset ii, and X¯i\overline{X}^{-i} be the performance index of player ii. Each player solves a utility maximization problem and she is concerned with not only her own wealth XiX^{i}, but also the “difference” between her wealth and the performance index.

We further assume that the risk preference of players is characterized by power utility functions, i.e., player i{1,2,,N}i\in\{1,2,\cdots,N\} chooses the fraction of her wealth invested in the risky asset ii to maximize the objective function:

maxπi𝔼[1γi(XTi(X¯Ti)θi)γi],\max_{\pi^{i}}\quad\mathbb{E}\left[\frac{1}{\gamma^{i}}\left(X^{i}_{T}(\overline{X}^{-i}_{T})^{-\theta^{i}}\right)^{\gamma^{i}}\right], (1.2)

where the wealth process XiX^{i} follows

dXti=πtiXti(htidt+σtidWti+σti0dWt0),X0i=xi,dX^{i}_{t}=\pi^{i}_{t}X^{i}_{t}\Big{(}h^{i}_{t}\,dt+\sigma^{i}_{t}\,dW^{i}_{t}+\sigma^{i0}_{t}\,dW^{0}_{t}\Big{)},\quad X^{i}_{0}=x^{i}, (1.3)

where X¯i=(ΠjiXj)1N1\overline{X}^{-i}=\left(\Pi_{j\neq i}X^{j}\right)^{\frac{1}{N-1}} is the geometric average of all players’ wealth except for player ii; γi(,1)/{0}\gamma^{i}\in(-\infty,1)/\{0\} is the degree of risk aversion; and θi[0,1]\theta^{i}\in[0,1] is the relative competition parameter: player ii is more concerned with her own terminal wealth XTiX^{i}_{T} if θi\theta^{i} is closer to 0 and more concerned with the relative distance XTiX¯Ti\frac{X^{i}_{T}}{\overline{X}^{-i}_{T}} between her terminal wealth and the performance index if θi\theta^{i} is closer to 11. The goal is to find a Nash equilibrium (NE) (π1,,,πN,)(\pi^{1,*},\cdots,\pi^{N,*}) such that πi,\pi^{i,*} is the optimal strategy for player ii and no one wants to change her strategy unilaterally.

By MOP, as in Hu et al. [18] and Rouge and El Karoui [25] for single player’s utility maximization problems, the unique NE for the NN-player game (1.2)-(1.3) can be characterized by a multidimensional FBSDE with quadratic growth; see Section 5. Although such FBSDE is solvable, the equations are tedious. The analysis can be significantly simplified by studying the corresponding MFG:

{1.Fix μ in some suitable space;2.Solve the optimization problem: 𝔼[1γ(XTμTθ)γ]max over πsuch that dXt=πtXt(htdt+σtdWt+σt0dWt0),X0=x;3.Search for the fixed point μt=exp(𝔼[logXt|t0]),t[0,T],X is the optimal wealth from 2 and 0 is the filtration generated by W0.\left\{\begin{split}1.&~{}\textrm{Fix }\mu\textrm{ in some suitable space};\\ 2.&~{}\textrm{Solve the optimization problem: }\\ &~{}\mathbb{E}\left[\frac{1}{\gamma}(X_{T}\mu^{-\theta}_{T})^{\gamma}\right]\rightarrow\max\textrm{ over }\pi\\ &~{}\textrm{such that }dX_{t}=\pi_{t}X_{t}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t}),~{}X_{0}=x;\\ 3.&~{}\textrm{Search for the fixed point }\mu_{t}=\exp\left(\mathbb{E}[\log X^{*}_{t}|\mathcal{F}^{0}_{t}]\right),~{}t\in[0,T],\\ &~{}X^{*}\textrm{ is the optimal wealth from }2\textrm{ and }\mathcal{F}^{0}\textrm{ is the filtration generated by }W^{0}.\end{split}\right. (1.4)

In the MFG (1.4), by the approach introduced in [19, 23], it is only necessary to consider a representative player’s utility maximization problem with μ\mu fixed, which in turn should be consistent with the aggregation of optimal wealth.

In the mathematical finance literature, the first result on portfolio games with relative performance concerns including NN-player games and MFGs was obtained by Espinosa and Touzi [8]: in the context of a complete market, the unique NE was established for general utility functions; in the context of an incomplete market where each player has a heterogeneous portfolio constraint, by assuming that the drift and volatility of the log price are deterministic, using a BSDE approach, [8] obtained a unique NE for exponential utility functions, which was called deterministic Nash equilibrium in that paper. Moreover, the convergence from NN-player games to MFGs was also studied in [8]. Later, Frei and dos Reis [9] studied similar portfolio games to [8] from a different perspective: they constructed counterexamples where no NE exists. In contrast to [8, 9], where all players trade common stocks, Lacker and Zariphopoulou [22] investigated NN-player and mean field portfolio games where the stock price follows (1.1), but with constant market parameters. Using a PDE approach, [22] established a constant equilibrium that was proven to be unique among all constant ones. In addition, portfolio games with mean field interaction have been examined in [6, 7, 17, 21], where in [6, 7] dos Reis and Platonov studied NN-player games and MFGs with forward utilities; and in [21], Lacker and Soret extended the CRRA model in [22] to include consumption, by using PDE approaches. In [17], Hu and Zariphopoulou studied portfolio games in an Itô-diffusion environment.

In this paper, we study portfolio games with power utility functions. The games with exponential utility functions and log utility functions can be studied in the same manner; refer to Remark 2.3 and Remark 2.4. Our paper makes two main contributions. The first one is the wellposedness result of NE for the portfolio game (1.4). We first establish a one-to-one correspondence between the NE of (1.4) with random market parameters and some mean field FBSDE with quadratic growth. Such correspondence result is key to prove the uniqueness of the NE result. We then solve the FBSDE under a weak interaction assumption, i.e., the competition parameter θ\theta is assumed to be small. Such assumption is widely used in the game theory and financial mathematics literature; see [4, 5, 10, 11, 13, 15], among others. In order to achieve this, our idea is to first consider the difference between the FBSDE with the benchmark one when θ=0\theta=0 to cancel out non-homogenous terms, and then transform the resulting FBSDE into a mean field quadratic BSDE. It is worth noting that although a transformation argument from FBSDE to BSDE was also used in [8], there is an essential difference from our transformation: the terminal condition of our resulting BSDE is bounded, which makes it convenient to apply the theory of quadratic BSDE. To solve the BSDE, our idea is to decompose the driver into two parts. Specifically, one part does not depend on θ\theta and the other part depends on θ\theta, and all mean field terms belong to the second part so that they can be controlled by θ\theta. To the best of our knowledge, both our existence and uniqueness results are new in the literature. In particular, the contribution of our uniqueness result is two-fold. On the one hand, our uniqueness result partially generalizes the uniqueness result in [8] in the sense that our utility functions can be beyond exponential ones, our stock price is driven by both idiosyncratic and common noise, and both the market parameters and the admissible strategies can be random; however, there is no trading constraint in our paper. On the other hand, when the market parameters are independent of the Brownian paths, we construct a unique NE in LL^{\infty} in closed form, which is beyond constant strategies. This result completely generalizes the result in [22], where only constant NE was studied. Such generalization strongly relies on our FBSDE approach, which shares a similar idea to [3, 8, 9] and is more powerful than the PDE approach in [22].

Our second contribution is an asymptotic expansion result. Motivated by the weak interaction assumption, we provide an approximation in any order of the value function and the optimal investment for the model with competition in terms of the solutions to the benchmark model without competition when the investor is only concerned with her own wealth. These results enable us to obtain the value function and the optimal investment based only on the benchmark model in the case of a small competition parameter. In order to obtain the asymptotic expansion results, our idea is to start with the FBSDE charaterization of the NE, and establish the expansion of the solution to the FBSDE by studying the iterative system of FBSDEs with coefficients in the BMO space. Our analysis relies on the application of energy inequality and reverse Hölder’s inequality for BMO martingales. Asymptotic expansion results in stochastic optimization and game setting were also studied in [16] and [4, 5] by PDE analysis. In [16], Horst et al. investigated a single-player optimal liquidation problem under ambiguity with respect to price impact parameters. They established a first-order approximation result of the robust model for small uncertainty factors, while our approximation is in any order. In [4, 5], Chan and Sircar analyzed continuous time Bertrand and Cournot competitions as MFGs. Instead of solving the forward-backward PDE characterizing the NE, they established a formal asymptotic expansion result in powers of the competition parameter; no rigorous proof of the asymptotic result was provided there. It is worth noting that the market parameters in [4, 5, 16] are deterministic, while ours are random.

The remainder of this paper is organized as follows:
\bullet After the introduction of notation, in Section 2, we establish an equivalent relationship between the existence of NE of the MFG (1.4) and the solvability of some mean field FBSDE.
\bullet In Section 3, we study the MFG (1.4) in detail; in particular, Section 3 addresses the wellposedness of the MFG with general market parameters by solving the FBSDE introduced in Section 2. Moreover, when the market parameters do not depend on the Brownian paths, we find the NE in closed form.
\bullet In Section 4, the asymptotic result is established. Specifically, the logarithm of value function and the optimal investment are expanded into any order in powers of θ\theta.
\bullet In Section 5, we comment on the result of NN-player games.

Notation

In the probability space (Ω,,𝕂=(𝒦t)0tT)(\Omega,\mathbb{P},\mathbb{K}=(\mathcal{K}_{t})_{0\leq t\leq T}), a two-dimensional Brownian motion W¯=(W,W0)\overline{W}=(W,W^{0})^{\top} is defined, where WW is the idiosyncratic noise for the representative player, and W0W^{0} is the common noise for all players. In addition, 𝔾={𝒢t,t[0,T]}\mathbb{G}=\{\mathcal{G}_{t},t\in[0,T]\} is assumed to be the augmented natural filtration of W¯\overline{W}. The augmented natural filtration of W0W^{0} is denoted by 𝔽0={t0,t[0,T]}\mathbb{F}^{0}=\{\mathcal{F}^{0}_{t},t\in[0,T]\}. Let 𝒜\mathcal{A} be a σ\sigma-algebra that is independent of 𝔾\mathbb{G}. Let 𝔽={t,t[0,T]}\mathbb{F}=\{\mathcal{F}_{t},t\in[0,T]\} be the σ\sigma-algebra generated by 𝒜\mathcal{A} and 𝔾\mathbb{G}.

For a random variable ξ\xi, let ξ\|\xi\| be the essential supremum of its absolute value |ξ||\xi|, and let ξ¯\underline{\xi} be its essential infimum. For a sub σ\sigma-algebra \mathcal{H} of 𝔽\mathbb{F}, let Prog(Ω×[0,T];)\textrm{Prog}(\Omega\times[0,T];\mathcal{H}) be the space of all stochastic processes that are \mathcal{H}-progressively measurable. For each ηProg(Ω×[0,T];)\eta\in\textrm{Prog}(\Omega\times[0,T];\mathcal{H}), define η=esssupωΩ,t[0,T]|ηt(ω)|\|\eta\|_{\infty}=\operatorname*{ess\,sup}_{\omega\in\Omega,t\in[0,T]}|\eta_{t}(\omega)|. Let LL^{\infty}_{\mathcal{H}} be the space of all essentially bounded stochastic processes, i.e.:

L={ηProg(Ω×[0,T];):η<}.L^{\infty}_{\mathcal{H}}=\{\eta\in\textrm{Prog}(\Omega\times[0,T];\mathcal{H}):\|\eta\|_{\infty}<\infty\}.

Let SS^{\infty}_{\mathcal{H}} be the subspace of LL^{\infty}_{\mathcal{H}}, where the trajectories of all processes are continuous. Furthermore, for a probability measure \mathbb{Q} and for p>1p>1, define

S,p={ηProg(Ω×[0,T];):η has continuous trajectory and ηS,p:=(𝔼[sup0tT|ηt|p])1/p<}S^{p}_{\mathbb{Q},\mathcal{H}}=\left\{\eta\in\textrm{Prog}(\Omega\times[0,T];\mathcal{H}):\eta\textrm{ has continuous trajectory and }\|\eta\|_{S^{p}_{\mathbb{Q},\mathcal{H}}}:=\left(\mathbb{E}^{\mathbb{Q}}\left[\sup_{0\leq t\leq T}|\eta_{t}|^{p}\right]\right)^{1/p}<\infty\right\}

and

M,p={ηProg(Ω×[0,T];):ηM,p:=(𝔼[(0T|ηt|2𝑑t)p2])1/p<}.M^{p}_{\mathbb{Q},\mathcal{H}}=\left\{\eta\in\textrm{Prog}(\Omega\times[0,T];\mathcal{H}):\|\eta\|_{M^{p}_{\mathbb{Q},\mathcal{H}}}:=\left(\mathbb{E}^{\mathbb{Q}}\left[\left(\int_{0}^{T}|\eta_{t}|^{2}\,dt\right)^{\frac{p}{2}}\right]\right)^{1/p}<\infty\right\}.

Define the BMO space under \mathbb{Q} as

HBMO,,2={ηProg(Ω×[0,T];):ηBMO,,2:=supτ:stopping time𝔼[τT|ηt|2dt|τ]<}.H^{2}_{BMO,\mathbb{Q},\mathcal{H}}=\left\{\eta\in\textrm{Prog}(\Omega\times[0,T];\mathcal{H}):\|\eta\|_{BMO,\mathbb{Q},\mathcal{H}}^{2}:=\sup_{\tau:\mathcal{H}-\textrm{stopping time}}\left\|\mathbb{E}^{\mathbb{Q}}\left[\left.\int_{\tau}^{T}|\eta_{t}|^{2}\,dt\right|\mathcal{F}_{\tau}\right]\right\|_{\infty}<\infty\right\}.

In particular, if =\mathbb{Q}=\mathbb{P}, which is the physical measure, and/or =𝔽\mathcal{H}=\mathbb{F}, we drop the dependence on \mathbb{Q} and/or \mathcal{H} in the definition of the above spaces.

Assumption 1.

The initial wealth xx, risk aversion parameter γ\gamma, and competition parameter θ\theta of the population are assumed to be bounded 𝒜\mathcal{A}-measurable random variables. In addition, xx is valued in (0,)(0,\infty), γ\gamma is valued in (,1)/{0}(-\infty,1)/\{0\}, and θ\theta is valued in [0,1][0,1].

Assume the return rate hLh\in L^{\infty} and the volatility σ~:=(σ,σ0)L×L\widetilde{\sigma}:=(\sigma,\sigma^{0})^{\top}\in L^{\infty}\times L^{\infty}. Furthermore, |γ||\gamma|, |σ|+|σ0||\sigma|+|\sigma^{0}| are bounded away from 0, i.e., |γ|γ¯>0|\gamma|\geq\underline{\gamma}>0 a.s. and essinfωΩinft[0,T]σ~σ~>0\operatorname*{ess\,inf}_{\omega\in\Omega}\inf_{t\in[0,T]}\widetilde{\sigma}^{\top}\widetilde{\sigma}>0.

Space of Admissible Strategies.

We assume that the space of admissible strategies for the representative player is HBMO2H^{2}_{BMO}.

Definition of NE. We say that the pair (μ,π)(\mu^{*},\pi^{*}) is an NE of (1.4), if πHBMO2\pi^{*}\in H^{2}_{BMO}, μt=exp(𝔼[logXt|t0])\mu^{*}_{t}=\exp\left(\mathbb{E}[\log X^{*}_{t}|\mathcal{F}^{0}_{t}]\right), for t[0,T]t\in[0,T], and 𝔼[1γ(XTπ(μT)θ)γ]𝔼[1γ(XTπ(μT)θ)γ]\mathbb{E}\left[\frac{1}{\gamma}\Big{(}X^{\pi^{*}}_{T}(\mu^{*}_{T})^{-\theta}\Big{)}^{\gamma}\right]\geq\mathbb{E}\left[\frac{1}{\gamma}\Big{(}X^{\pi}_{T}(\mu^{*}_{T})^{-\theta}\Big{)}^{\gamma}\right] for each admissible strategy π\pi. Specifically, (μt)0tT(\mu^{*}_{t})_{0\leq t\leq T} is called a solution to (1.4).

Remark 1.1.

(1) In Assumption 1, the assumption that (xx, γ\gamma, θ\theta) is 𝒜\mathcal{A}-measurable is consistent with the formulation in [8, Remark 5.10] and the random type introduced in [22];

(2) The space of admissible strategies is consistent with [9] and [24];

(3) The NE in Definition of NE is of open-loop type. We make a remark on the closed-loop NE in Remark 5.3.

2 MFGs and Mean Field FBSDEs Are Equivalent

In this section, we prove that the solvability of some mean field FBSDE is sufficient and necessary for the solvability of the MFG (1.4). This equivalent result is key to establish the uniqueness result of NE. The sufficient part is proven by MOP in [18], and the necessary part is proven by the dynamic programming principle in [8, Theorem 4.7] and [9, Lemma 3.2], where the NN-player game with exponential utility functions and trading constraint, but without idiosyncratic noise, was studied. In the next proposition, we adapt the argument to our MFG (1.4) with power utility functions.

Proposition 2.1.

(𝟏)\bm{(1)} If an NE (μ,π)(\mu^{*},\pi^{*}) of the MFG (1.4) exists, with (μ^,π)S𝔽02×HBMO2(\widehat{\mu}^{*},\pi^{*})\in S^{2}_{\mathbb{F}^{0}}\times H^{2}_{BMO} and

𝔼[1γeγ(X^Tπθμ^T)|] satisfying Rp for some p>1,\mathbb{E}\left[\frac{1}{\gamma}e^{\gamma(\widehat{X}^{\pi^{*}}_{T}-\theta\widehat{\mu}^{*}_{T})}\Big{|}\mathcal{F}_{\cdot}\right]\textrm{ satisfying }R_{p}\textrm{ for some }p>1, (2.1)

where X^π=logXπ\widehat{X}^{\pi^{*}}=\log X^{\pi^{*}} is the log-wealth and μ^=logμ\widehat{\mu}^{*}=\log\mu^{*}, then the following mean field FBSDE admits a solution, such that (Z,Z0)HBMO2×HBMO2(Z,Z^{0})\in H^{2}_{BMO}\times H^{2}_{BMO},

{dX^t=ht+σtZt+σt0Zt0(1γ)(σt2+(σt0)2){(htht+σtZt+σt0Zt02(1γ))dt+σtdWt+σt0dWt0},dYt=(Zt2+(Zt0)22+γ2(1γ)(ht+σtZt+σt0Zt0)2σt2+(σt0)2)dtZtdWtZt0dWt0,X^0=log(x),YT=γθ𝔼[X^T|T0].\left\{\begin{split}d\widehat{X}_{t}=&~{}\frac{h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left\{\left(h_{t}-\frac{h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t}}{2(1-\gamma)}\right)\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t}\right\},\\ -dY_{t}=&~{}\left(\frac{Z^{2}_{t}+(Z^{0}_{t})^{2}}{2}+\frac{\gamma}{2(1-\gamma)}\frac{(h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t})^{2}}{\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}}\right)\,dt-Z_{t}\,dW_{t}-Z_{t}^{0}\,dW^{0}_{t},\\ \widehat{X}_{0}=&~{}\log(x),~{}Y_{T}=-\gamma\theta\mathbb{E}[\widehat{X}_{T}|\mathcal{F}^{0}_{T}].\end{split}\right. (2.2)

(𝟐)\bm{(2)} If the FBSDE (2.2) admits a solution, such that (Z,Z0)HBMO2×HBMO2(Z,Z^{0})\in H^{2}_{BMO}\times H^{2}_{BMO}, then the MFG (1.4) admits an NE (μ,π)(\mu^{*},\pi^{*}), such that (μ^,π)S𝔽02×HBMO2(\widehat{\mu}^{*},\pi^{*})\in S^{2}_{\mathbb{F}^{0}}\times H^{2}_{BMO} and (2.1) holds.

The relationship is given by π=h+σZ+σ0Z0(1γ)(σ2+(σ0)2)\pi^{*}=\frac{h+\sigma Z+\sigma^{0}Z^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}.

Proof.

(𝟏)\bm{(1)} Let (μ,π)(\mu^{*},\pi^{*}) be an NE of (1.4) such that (2.1) holds. Define

Mtπ=eγX^tπesssupκHBMO2𝔼[1γeγ(X^TκX^tκθμ^T)|t],M^{\pi}_{t}=e^{\gamma\widehat{X}^{\pi}_{t}}\operatorname*{ess\,sup}_{\kappa\in H^{2}_{BMO}}\mathbb{E}\left[\frac{1}{\gamma}e^{\gamma(\widehat{X}_{T}^{\kappa}-\widehat{X}^{\kappa}_{t}-\theta\widehat{\mu}^{*}_{T})}\Big{|}\mathcal{F}_{t}\right],

where X^κ\widehat{X}^{\kappa} is the log-wealth associated with the strategy κ\kappa. Following the argument in [8, Theorem 4.7] and [9, Lemma 3.2], MπM^{\pi} has a continuous version which is a supermartingale for all π\pi and a martingale for π\pi^{*}, and there exists a Z˘HBMO2×HBMO2\breve{Z}\in H^{2}_{BMO}\times H^{2}_{BMO}, such that

Mtπ=M0πe0tZ˘s𝑑W¯s120tZ˘sZ˘s𝑑s.M^{\pi^{*}}_{t}=M^{\pi^{*}}_{0}e^{\int_{0}^{t}\breve{Z}^{\top}_{s}\,d\overline{W}_{s}-\frac{1}{2}\int_{0}^{t}\breve{Z}^{\top}_{s}\breve{Z}_{s}\,ds}.

Straightforward calculation implies that

Mtπ=eγ(X^tπX^tπ)Mtπ=M0π(0t(γπsσ~s+γπsσ~s+Z˘s)𝑑W¯s)exp(0tf~s𝑑s),\begin{split}M^{\pi}_{t}=&~{}e^{-\gamma(\widehat{X}^{\pi^{*}}_{t}-\widehat{X}^{\pi}_{t})}M^{\pi^{*}}_{t}\\ =&~{}M^{\pi^{*}}_{0}\mathcal{E}\Big{(}\int_{0}^{t}(-\gamma\pi^{*}_{s}\widetilde{\sigma}^{\top}_{s}+\gamma\pi_{s}\widetilde{\sigma}^{\top}_{s}+\breve{Z}^{\top}_{s})\,d\overline{W}_{s}\Big{)}\exp\Big{(}\int_{0}^{t}\widetilde{f}_{s}\,ds\Big{)},\end{split} (2.3)

where

f~=γπh+γ2(π)2σ~σ~+γπhγ2π2σ~σ~+12(γπσ~γπσ~)(γπσ~γπσ~)+(γπσ~+γπσ~)Z˘.\widetilde{f}=-\gamma\pi^{*}h+\frac{\gamma}{2}(\pi^{*})^{2}\widetilde{\sigma}^{\top}\widetilde{\sigma}+\gamma\pi h-\frac{\gamma}{2}\pi^{2}\widetilde{\sigma}^{\top}\widetilde{\sigma}+\frac{1}{2}\Big{(}\gamma\pi^{*}\widetilde{\sigma}^{\top}-\gamma\pi\widetilde{\sigma}^{\top}\Big{)}\Big{(}\gamma\pi^{*}\widetilde{\sigma}-\gamma\pi\widetilde{\sigma}\Big{)}+(-\gamma\pi^{*}\widetilde{\sigma}^{\top}+\gamma\pi\widetilde{\sigma}^{\top})\breve{Z}.

Let Z̊=Z˘γπσ~\mathring{Z}=\breve{Z}-\gamma\pi^{*}\widetilde{\sigma}. Then f~\widetilde{f} can be rewritten as

f~=γ2(1γ)σ~σ~|(1γ)σ~σ~πhσ~Z̊|2γ2(1γ)σ~σ~|(1γ)σ~σ~πhσ~Z̊|2.\widetilde{f}=\frac{\gamma}{2(1-\gamma)\widetilde{\sigma}^{\top}\widetilde{\sigma}}\Big{|}(1-\gamma)\widetilde{\sigma}^{\top}\widetilde{\sigma}\pi^{*}-h-\widetilde{\sigma}^{\top}\mathring{Z}\Big{|}^{2}-\frac{\gamma}{2(1-\gamma)\widetilde{\sigma}^{\top}\widetilde{\sigma}}\Big{|}(1-\gamma)\widetilde{\sigma}^{\top}\widetilde{\sigma}\pi-h-\widetilde{\sigma}^{\top}\mathring{Z}\Big{|}^{2}.

Since MπM^{\pi} is a supermartingale, exp(0fs𝑑s)\exp\Big{(}\int_{0}^{\cdot}f_{s}\,ds\Big{)} is nonincreasing if γ>0\gamma>0 and nondecreasing if γ<0\gamma<0. As a result, fγ\frac{f}{\gamma} is nonpositive. Thus, π=h+σ~Z̊(1γ)σ~σ~\pi^{*}=\frac{h+\widetilde{\sigma}^{\top}\mathring{Z}}{(1-\gamma)\widetilde{\sigma}^{\top}\widetilde{\sigma}}. Define Y=log(Mπexp(γX^π))Y=\log\Big{(}M^{\pi^{*}}\exp(-\gamma\widehat{X}^{\pi^{*}})\Big{)}. Then (logXπ,Y,Z̊)(\log X^{\pi^{*}},Y,\mathring{Z}) satisfies (2.2).

(𝟐)\bm{(2)} For each strategy πHBMO2\pi\in H^{2}_{BMO}, define Rtπ=1γXtγeYtR^{\pi}_{t}=\frac{1}{\gamma}X^{\gamma}_{t}e^{Y_{t}}, where dYt=ft(Zt,Zt0)dt+ZtdWt+Zt0dWt0dY_{t}=f_{t}(Z_{t},Z^{0}_{t})\,dt+Z_{t}\,dW_{t}+Z^{0}_{t}\,dW^{0}_{t}, YT=γθμTY_{T}=-\gamma\theta\mu^{*}_{T} with ff to be determined, such that

R0π is independent of π;Rπ is a supermartingale for all π and a martingale for some π;RTπ=1γ(XT(μT)θ)γ.\begin{split}\bullet&~{}R^{\pi}_{0}\textrm{ is independent of }\pi;\\ \bullet&~{}R^{\pi}\textrm{ is a supermartingale for all }\pi\textrm{ and a martingale for some }\pi^{*};\\ \bullet&~{}R^{\pi}_{T}=\frac{1}{\gamma}(X_{T}(\mu_{T}^{*})^{-\theta})^{\gamma}.\end{split} (2.4)

The three points in (2.4) indicate that 𝔼[RTπ]=𝔼[R0π]=𝔼[R0π]𝔼[RTπ]\mathbb{E}[R^{\pi^{*}}_{T}]=\mathbb{E}[R^{\pi^{*}}_{0}]=\mathbb{E}[R^{\pi}_{0}]\geq\mathbb{E}[R^{\pi}_{T}] for all π\pi.

Note that

Rtπ=1γxγexp(Y0)exp(0t(γπshsγπs22(σs2+(σs0)2)+fs(Zs,Zs0)+12(γπsσs+Zs)2+12(γπsσs0+Zs0)2)𝑑s)×(0t(γπsσs+Zs)𝑑Ws+0t(γπsσs0+Zs0)𝑑Ws0):=1γxγexp(Y0)exp(0tf~s(πs,Zs,Zs0)𝑑s)(0t(γπsσs+Zs)𝑑Ws+0t(γπsσs0+Zs0)𝑑Ws0).\begin{split}R^{\pi}_{t}=&~{}\frac{1}{\gamma}x^{\gamma}\exp(Y_{0})\exp\left(\int_{0}^{t}\left(\gamma\pi_{s}h_{s}-\frac{\gamma\pi^{2}_{s}}{2}(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})+f_{s}(Z_{s},Z^{0}_{s})+\frac{1}{2}(\gamma\pi_{s}\sigma_{s}+Z_{s})^{2}+\frac{1}{2}(\gamma\pi_{s}\sigma^{0}_{s}+Z^{0}_{s})^{2}\right)\,ds\right)\\ &~{}\times\mathcal{E}\left(\int_{0}^{t}(\gamma\pi_{s}\sigma_{s}+Z_{s})\,dW_{s}+\int_{0}^{t}(\gamma\pi_{s}\sigma^{0}_{s}+Z^{0}_{s})\,dW^{0}_{s}\right)\\ :=&~{}\frac{1}{\gamma}x^{\gamma}\exp(Y_{0})\exp\left(\int_{0}^{t}\widetilde{f}_{s}(\pi_{s},Z_{s},Z^{0}_{s})\,ds\right)\mathcal{E}\left(\int_{0}^{t}(\gamma\pi_{s}\sigma_{s}+Z_{s})\,dW_{s}+\int_{0}^{t}(\gamma\pi_{s}\sigma^{0}_{s}+Z^{0}_{s})\,dW^{0}_{s}\right).\end{split}

Since πHBMO2\pi\in H^{2}_{BMO}, (0t(γπsσs+Zs)𝑑Ws+0t(γπsσs0+Zs0)𝑑Ws0)\mathcal{E}\left(\int_{0}^{t}(\gamma\pi_{s}\sigma_{s}+Z_{s})\,dW_{s}+\int_{0}^{t}(\gamma\pi_{s}\sigma^{0}_{s}+Z^{0}_{s})\,dW^{0}_{s}\right) is a martingale. In order to make RπR^{\pi} satisfy the second point of (2.4), we choose ff, such that f~(π,Z,Z0)\widetilde{f}(\pi,Z,Z^{0}) is nonpositive for all π\pi and zero for some π\pi^{*}. By rearranging terms we have the following equation

f~(π,Z,Z0)=γγ22(σ2+(σ0)2)π2+(γh+σγZ+γσ0Z0)π+Z2+(Z0)22+f(Z,Z0).\begin{split}\widetilde{f}(\pi,Z,Z^{0})=-\frac{\gamma-\gamma^{2}}{2}(\sigma^{2}+(\sigma^{0})^{2})\pi^{2}+(\gamma h+\sigma\gamma Z+\gamma\sigma^{0}Z^{0})\pi+\frac{Z^{2}+(Z^{0})^{2}}{2}+f(Z,Z^{0}).\end{split}

By choosing

π=h+σZ+σ0Z0(1γ)(σ2+(σ0)2)\pi^{*}=\frac{h+\sigma Z+\sigma^{0}Z^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}

and

f(Z,Z0)=Z2+(Z0)22γ2(1γ)(h+σZ+σ0Z0)2σ2+(σ0)2,f(Z,Z^{0})=-\frac{Z^{2}+(Z^{0})^{2}}{2}-\frac{\gamma}{2(1-\gamma)}\frac{(h+\sigma Z+\sigma^{0}Z^{0})^{2}}{\sigma^{2}+(\sigma^{0})^{2}},

it holds that f~\widetilde{f} is nonpositive for all π\pi, and f~(π,Z,Z0)=0\widetilde{f}(\pi^{*},Z,Z^{0})=0. Thus, by (2.4), an NE of (1.4) exists if the following FBSDE admits a solution with (Z,Z0)HBMO2×HBMO2(Z,Z^{0})\in H^{2}_{BMO}\times H^{2}_{BMO}

{dXt=ht+σtZt+σt0Zt0(1γ)(σt2+(σt0)2)Xt(htdt+σtdWt+σt0dWt0)dYt=(Zt2+(Zt0)22+γ2(1γ)(ht+σtZt+σt0Zt0)2σt2+(σt0)2)dtZtdWtZt0dWt0,X0=x,YT=γθ𝔼[logXT|T0]\left\{\begin{split}dX_{t}=&~{}\frac{h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}X_{t}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t})\\ -dY_{t}=&~{}\left(\frac{Z^{2}_{t}+(Z^{0}_{t})^{2}}{2}+\frac{\gamma}{2(1-\gamma)}\frac{(h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t})^{2}}{\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}}\right)\,dt-Z_{t}\,dW_{t}-Z_{t}^{0}\,dW^{0}_{t},\\ X_{0}=&~{}x,~{}Y_{T}=-\gamma\theta\mathbb{E}[\log X_{T}|\mathcal{F}^{0}_{T}]\end{split}\right. (2.5)

Let X^=logX\widehat{X}=\log X. (2.5) is equivalent to (2.2). ∎

Remark 2.2.

The proof of (𝟐)\bm{(2)} in Proposition 2.1 relies on MOP in [18]. The essential difference between our proof and [18] is the choice of strategies; we consider the fraction of the wealth invested in stock π\pi as our strategy, while in [18] Hu et al. considered the scaled one π~:=π(σ,σ0)\widetilde{\pi}:=\pi(\sigma,\sigma^{0}) as a strategy. We claim that the choice in [18] is not appropriate in the game-theoretic version of utility maximization problems. The reason is that σ\sigma and σ0\sigma^{0} do not have symmetric status in the game; the former is the volatility of the idiosyncratic noise, while the latter is the volatility of the common noise. To illustrate the difference resulting from the choice of strategies, we assume that all coefficients are 𝒜\mathcal{A}-measurable random variables. Following the argument in [18, Section 3], the optimal strategy is given by

π~=11γ(𝒁~+Θ),\widetilde{\pi}^{*}=\frac{1}{1-\gamma}(\widetilde{\bm{Z}}+\Theta),

where Θ=(σhσ2+(σ0)2,σ0hσ2+(σ0)2)\Theta=\left(\frac{\sigma h}{\sigma^{2}+(\sigma^{0})^{2}},\frac{\sigma^{0}h}{\sigma^{2}+(\sigma^{0})^{2}}\right), and 𝒁~=(Z,Z0)\widetilde{\bm{Z}}=(Z,Z^{0}) together with some (𝑿~,𝒀~)(\widetilde{\bm{X}},\widetilde{\bm{Y}}) satisfies the FBSDE

{d𝑿~t=π~t(Θ12(π~t))dt+π~tdW¯t,d𝒀~t=γ|𝒁~t+Θ|22(1γ)+|𝒁~t|22dt𝒁~tdW¯t,𝑿~0=log(x),𝒀~T=γθμ^T,\left\{\begin{split}d\widetilde{\bm{X}}_{t}=&~{}\widetilde{\pi}^{*}_{t}\left(\Theta^{\top}-\frac{1}{2}(\widetilde{\pi}^{*}_{t})^{\top}\right)\,dt+\widetilde{\pi}^{*}_{t}\,d\overline{W}_{t},\\ -d\widetilde{\bm{Y}}_{t}=&~{}\frac{\gamma|\widetilde{\bm{Z}}_{t}+\Theta|^{2}}{2(1-\gamma)}+\frac{|\widetilde{\bm{Z}}_{t}|^{2}}{2}\,dt-\widetilde{\bm{Z}}_{t}\,d\overline{W}_{t},\\ \widetilde{\bm{X}}_{0}=&~{}\log(x),\quad\widetilde{\bm{Y}}_{T}=-\gamma\theta\widehat{\mu}^{*}_{T},\end{split}\right. (2.6)

with μ^T=𝔼[𝑿~T|T0]\widehat{\mu}^{*}_{T}=\mathbb{E}[\widetilde{\bm{X}}_{T}|\mathcal{F}^{0}_{T}]. One can verify directly that the ZZ-component of the solution to (2.6) is

𝒁~=(0,θγ𝔼[σ0h(1γ)(σ2+(σ0)2)]1+𝔼[θγ1γ]).\widetilde{\bm{Z}}=\left(0,-\frac{\theta\gamma\mathbb{E}\left[\frac{\sigma^{0}h}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}\right).

Thus, the optimal strategy is

π~=11γ(σhσ2+(σ0)2,σ0hσ2+(σ0)2θγ𝔼[σ0h(1γ)(σ2+(σ0)2)]1+𝔼[θγ1γ]):=π(σ,σ0).\widetilde{\pi}^{*}=\frac{1}{1-\gamma}\left(\frac{\sigma h}{\sigma^{2}+(\sigma^{0})^{2}},~{}\frac{\sigma^{0}h}{\sigma^{2}+(\sigma^{0})^{2}}-\frac{\theta\gamma\mathbb{E}\left[\frac{\sigma^{0}h}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}\right):=\pi^{*}(\sigma,\sigma^{0}). (2.7)

Multiplying (σ,σ0)(\sigma,\sigma^{0})^{\top} on both sides of (2.7), we get

π=1(1γ)(σ2+(σ0)2){hθγσ0𝔼[σ0h(1γ)(σ2+(σ0)2)]1+𝔼[θγ1γ]},\pi^{*}=\frac{1}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\left\{h-\frac{\theta\gamma\sigma^{0}\mathbb{E}\left[\frac{\sigma^{0}h}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}\right\},

which is surprisingly different from our Theorem 3.12 and Corollary 3.13, unless in the following two special cases:

\bullet σ=0:\sigma=0: in this case, all players trade a common stock; this case was considered in [8, 9].
\bullet θ=0\theta=0: in this case, there is no competition; this is the single-player utility maximization problem considered in [18].

Given the above argument, we provided the detailed proof in Proposition 2.1(𝟐)\bm{(2)} for readers’ convenience.

Remark 2.3 (MFGs with exponential utility functions).

If each player uses an exponential utility criterion, then the MFG becomes

{1.Fix μ in some suitable space;2.Solve the optimization problem: 𝔼[eα(XTθμT)]max over πsuch that dXt=πt(htdt+σtdWt+σt0dWt0),X0=xexp;3.Search for the fixed point μt=𝔼[Xt|t0],t[0,T],X is the optimal wealth from 2.\left\{\begin{split}1.&~{}\textrm{Fix }\mu\textrm{ in some suitable space};\\ 2.&~{}\textrm{Solve the optimization problem: }\\ &~{}\mathbb{E}\left[-e^{-\alpha(X_{T}-\theta\mu_{T})}\right]\rightarrow\max\textrm{ over }\pi\\ &~{}\textrm{such that }dX_{t}=\pi_{t}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t}),~{}X_{0}=x_{exp};\\ 3.&~{}\textrm{Search for the fixed point }\mu_{t}=\mathbb{E}[X^{*}_{t}|\mathcal{F}^{0}_{t}],~{}t\in[0,T],\\ &~{}X^{*}\textrm{ is the optimal wealth from }2.\end{split}\right. (2.8)

By the same analysis as in Proposition 2.1, the existence of NE of the MFG (2.8) is equivalent to the solvability of the following FBSDE

{dXt=ασtZt+ασt0Zt0+htα(σt2+(σt0)2)(htdt+σtdWt+σt0dWt0),dYt=((ασtZt+ασt0Zt0+ht)22α(σt2+(σt0)2)α2(Zt2+(Zt0)2))dt+ZtdWt+Zt0dWt0,X0=xexp,YT=θ𝔼[XT|T0].\left\{\begin{split}dX_{t}=&~{}\frac{\alpha\sigma_{t}Z_{t}+\alpha\sigma^{0}_{t}Z^{0}_{t}+h_{t}}{\alpha(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t}),\\ dY_{t}=&~{}\left(\frac{(\alpha\sigma_{t}Z_{t}+\alpha\sigma^{0}_{t}Z^{0}_{t}+h_{t})^{2}}{2\alpha(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}-\frac{\alpha}{2}(Z_{t}^{2}+(Z^{0}_{t})^{2})\right)\,dt+Z_{t}\,dW_{t}+Z^{0}_{t}\,dW^{0}_{t},\\ X_{0}=&~{}x_{exp},~{}Y_{T}=\theta\mathbb{E}[X_{T}|\mathcal{F}^{0}_{T}].\end{split}\right. (2.9)

The relationship is given by π=ασZ+ασZ0+hα(σ2+(σ0)2)\pi^{*}=\frac{\alpha\sigma Z+\alpha\sigma Z^{0}+h}{\alpha\big{(}\sigma^{2}+(\sigma^{0})^{2}\big{)}}. The FBSDE (2.9) can be solved in exactly the same manner as (2.2). Consequently, in this paper, we will only consider the game with power utility functions, and the analysis of the exponential case is available upon request.

Remark 2.4 (MFGs with log utility functions).

If each player uses a log utility criterion, then the MFG becomes

{1.Fix μ in some suitable space;2.Solve the optimization problem: 𝔼[log(XTμTθ)]max over πsuch that dXt=πtXt(htdt+σtdWt+σt0dWt0),X0=xlog;3.Search for the fixed point μt=exp(𝔼[logXt|t0]),t[0,T],X is the optimal wealth from 2.\left\{\begin{split}1.&~{}\textrm{Fix }\mu\textrm{ in some suitable space};\\ 2.&~{}\textrm{Solve the optimization problem: }\\ &~{}\mathbb{E}\left[\log\big{(}X_{T}\mu^{-\theta}_{T}\big{)}\right]\rightarrow\max\textrm{ over }\pi\\ &~{}\textrm{such that }dX_{t}=\pi_{t}X_{t}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t}),~{}X_{0}=x_{log};\\ 3.&~{}\textrm{Search for the fixed point }\mu_{t}=\exp\left(\mathbb{E}[\log X^{*}_{t}|\mathcal{F}^{0}_{t}]\right),~{}t\in[0,T],\\ &~{}X^{*}\textrm{ is the optimal wealth from }2.\end{split}\right. (2.10)

Note that argmaxπ𝔼[log(XTπμTθ)]=argmaxπ𝔼[logXTπ]\arg\max_{\pi}\mathbb{E}\left[\log\big{(}X^{\pi}_{T}\mu^{-\theta}_{T}\big{)}\right]=\arg\max_{\pi}\mathbb{E}[\log X^{\pi}_{T}]. Therefore, the MFG with log utility criterion is decoupled; each player makes her decision by disregarding her competitors. By [18], the NE of (2.10) is given by

μ=exp(𝔼[logXT|T0]),π=hσ2+(σ0)2,\mu^{*}=\exp\Big{(}\mathbb{E}[\log X_{T}|\mathcal{F}^{0}_{T}]\Big{)},\qquad\pi^{*}=\frac{h}{\sigma^{2}+(\sigma^{0})^{2}}, (2.11)

where XX together with some (Y,Z)(Y,Z) is the unique solution to the (trivially solvable) FBSDE

{dXt=htσt2+(σt0)2Xt(htdt+σtdWt+σt0dWt0),dYt=ht22(σt2+(σt0)2)dt+ZtdWt+Zt0dWt0,X0=xlog,YT=θ𝔼[logXT|T0].\left\{\begin{split}dX_{t}=&~{}\frac{h_{t}}{\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}}X_{t}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t}),\\ -dY_{t}=&~{}\frac{h^{2}_{t}}{2(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\,dt+Z_{t}\,dW_{t}+Z^{0}_{t}\,dW^{0}_{t},\\ X_{0}=&~{}x_{log},~{}Y_{T}=-\theta\mathbb{E}[\log X_{T}|\mathcal{F}^{0}_{T}].\end{split}\right. (2.12)

Let (μ,π)(\mu^{\prime},\pi^{\prime}) be any other NE of (2.10). Given μ\mu^{\prime}, by MOP in [18], the optimal response is hσ2+(σ0)2\frac{h}{\sigma^{2}+(\sigma^{0})^{2}}, which is unique since the log utility function is concave. Thus, π=hσ2+(σ0)2\pi^{\prime}=\frac{h}{\sigma^{2}+(\sigma^{0})^{2}} and μt=exp(𝔼[logXt|t0])\mu^{\prime}_{t}=\exp\Big{(}\mathbb{E}[\log X_{t}|\mathcal{F}^{0}_{t}]\Big{)}, t[0,T]t\in[0,T] and XX is the unique solution to (2.12). Therefore, (μ,π)=(μ,π)(\mu^{*},\pi^{*})=(\mu^{\prime},\pi^{\prime}) and the NE of (2.10) is unique.

In Section 3, we will study the MFG (1.4) by examining the FBSDE (2.2). In particular, we will consider the difference between the FBSDE (2.2) with the benchmark one when the competition parameter θ=0\theta=0, and then transform the resulting FBSDE into some BSDE.

3 Wellposedness of the FBSDE (2.2) and the MFG (1.4)

3.1 The Adjusted Mean Field FBSDE

By Proposition 2.1, to solve the MFG (1.4), it is equivalent to solve the mean field FBSDE (2.2). In order to solve (2.2), we compare (2.2) with the benchmark FBSDE associated with the single player’s utility maximization problem, i.e., the utility game with θ=0\theta=0. When θ=0\theta=0, (2.2) is decoupled into

{dX^t=ht+σtZt+σt0Zt0(1γ)(σt2+(σt0)2){(htht+σtZt+σt0Zt02(1γ))dt+σtdWt+σt0dWt0},dYt=(Zt2+(Zt0)22+γ2(1γ)(ht+σtZt+σt0Zt0)2σt2+(σt0)2)dtZtdWtZt0dWt0,X^0=log(x),YT=0.\left\{\begin{split}d\widehat{X}_{t}=&~{}\frac{h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left\{\left(h_{t}-\frac{h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t}}{2(1-\gamma)}\right)\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t}\right\},\\ -dY_{t}=&~{}\left(\frac{Z^{2}_{t}+(Z^{0}_{t})^{2}}{2}+\frac{\gamma}{2(1-\gamma)}\frac{(h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t})^{2}}{\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}}\right)\,dt-Z_{t}\,dW_{t}-Z_{t}^{0}\,dW^{0}_{t},\\ \widehat{X}_{0}=&~{}\log(x),~{}Y_{T}=0.\end{split}\right. (3.1)

The solvability of the FBSDE (3.1) is summarized in the following proposition.

Proposition 3.1.

The FBSDE (3.1) has a unique solution in p>1Sp×S×HBMO2×HBMO2\bigcap_{p>1}S^{p}\times S^{\infty}\times H^{2}_{BMO}\times H^{2}_{BMO}.

Proof.

Theorem 7 in [18] implies that there exists a unique (Y,Z,Z0)S×HBMO2×HBMO2(Y,Z,Z^{0})\in S^{\infty}\times H^{2}_{BMO}\times H^{2}_{BMO} satisfying the BSDE in (3.1). By the energy inequality ([20, P.26]), it holds that (Z,Z0)p>1Mp×p>1Mp(Z,Z^{0})\in\bigcap\limits_{p>1}M^{p}\times\bigcap\limits_{p>1}M^{p}, which implies that X^p>1Sp\widehat{X}\in\bigcap\limits_{p>1}S^{p}.

From now on, we denote the unique solution to (3.1) by (Xo¯,Yo¯,Zo¯,Z0,o¯)(X^{\bar{o}},Y^{\bar{o}},Z^{\bar{o}},Z^{0,\bar{o}}). Let (X^,Y,Z,Z0)(\widehat{X},Y,Z,Z^{0}) be a solution to (2.2) and we consider the difference

(X¯,Y¯,Z¯,Z¯0):=(X^Xo¯,YYo¯,ZZo¯,Z0Z0,o¯),(\overline{X},\overline{Y},\overline{Z},\overline{Z}^{0}):=(\widehat{X}-X^{\bar{o}},Y-Y^{\bar{o}},Z-Z^{\bar{o}},Z^{0}-Z^{0,\bar{o}}), (3.2)

which satisfies

{dX¯t={σtZ¯t+σt0Z¯t0(1γ)(σt2+(σt0)2)(ht11γ(ht+σtZto¯+σt0Zt0,o¯))(σtZ¯t+σt0Z¯t0)22(1γ)2(σt2+(σt0)2)}dt+σtZ¯t+σt0Z¯t0(1γ)(σt2+(σt0)2)(σtdWt+σt0dWt0)dY¯t={(2Zto¯+Z¯t)Z¯t+(2Zt0,o¯+Z¯t0)Z¯t02+γ(2ht+2σtZto¯+2σt0Zt0,o¯+σtZ¯t+σt0Z¯t0)(σtZ¯t+σt0Z¯t0)2(1γ)(σt2+(σt0)2)}dtZ¯tdWtZ¯t0dWt0,X¯0=0,Y¯T=θγ𝔼[X¯T|T0]θγ𝔼[XTo¯|T0].\left\{\begin{split}d\overline{X}_{t}=&~{}\bigg{\{}\frac{\sigma_{t}\overline{Z}_{t}+\sigma^{0}_{t}\overline{Z}^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left(h_{t}-\frac{1}{1-\gamma}(h_{t}+\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t})\right)\\ &~{}-\frac{\left(\sigma_{t}\overline{Z}_{t}+\sigma^{0}_{t}\overline{Z}^{0}_{t}\right)^{2}}{2(1-\gamma)^{2}(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\bigg{\}}\,dt+\frac{\sigma_{t}\overline{Z}_{t}+\sigma^{0}_{t}\overline{Z}^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}(\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t})\\ -d\overline{Y}_{t}=&~{}\left\{\frac{(2Z^{\bar{o}}_{t}+\overline{Z}_{t})\overline{Z}_{t}+(2Z^{0,\bar{o}}_{t}+\overline{Z}^{0}_{t})\overline{Z}^{0}_{t}}{2}\right.\\ &~{}\left.+\frac{\gamma(2h_{t}+2\sigma_{t}Z^{\bar{o}}_{t}+2\sigma^{0}_{t}Z^{0,\bar{o}}_{t}+\sigma_{t}\overline{Z}_{t}+\sigma^{0}_{t}\overline{Z}^{0}_{t})(\sigma_{t}\overline{Z}_{t}+\sigma^{0}_{t}\overline{Z}^{0}_{t})}{2(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right\}\,dt\\ &~{}-\overline{Z}_{t}\,dW_{t}-\overline{Z}^{0}_{t}\,dW^{0}_{t},\\ \overline{X}_{0}=&~{}0,~{}\overline{Y}_{T}=-\theta\gamma\mathbb{E}[\overline{X}_{T}|\mathcal{F}^{0}_{T}]-\theta\gamma\mathbb{E}[X^{\bar{o}}_{T}|\mathcal{F}^{0}_{T}].\end{split}\right. (3.3)
Remark 3.2.

There are two reasons why we consider the difference instead of the original FBSDE. First, we want to solve (2.2) under a weak interaction assumption. In order to avoid any unreasonable assumptions on (h,γ,σ,σ0)(h,\gamma,\sigma,\sigma^{0}), we need to drop the non-homogenous terms without θ\theta. This can be done by considering the difference. Second, (3.3) is the starting point of the asymptotic expansion result in Section 4.

3.2 The Equivalent BSDE

In this section, we will show that the FBSDE (3.3) is equivalent to some BSDE. First, we will prove a general result on the equivalence between a class of FBSDEs and BSDEs. Subsequently, we will show that our FBSDE (3.3) is a special case and thus can be transformed into some BSDE.

We consider the following FBSDE

{d𝒳t=dr(t,𝒴t,𝒵t,𝒵t0)dt+ diff(t,𝒴t,𝒵t,𝒵t0)dWt+𝑑𝑖𝑓𝑓0(t,𝒵t,𝒵t0)dWt0,d𝒴t=𝐷𝑟(t,𝒴t,𝒵t,𝒵t0)dt𝒵tdWt𝒵t0dWt0,𝒳0=𝒙,𝒴T=ν𝔼[𝒳T|T0],\left\{\begin{split}d\mathcal{X}_{t}=&~{}\textit{dr}(t,\mathcal{Y}_{t},\mathcal{Z}_{t},\mathcal{Z}^{0}_{t})\,dt+\textit{ diff}(t,\mathcal{Y}_{t},\mathcal{Z}_{t},\mathcal{Z}^{0}_{t})dW_{t}+{\it diff}^{0}(t,\mathcal{Z}_{t},\mathcal{Z}^{0}_{t})\,dW^{0}_{t},\\ -d\mathcal{Y}_{t}=&~{}{\it Dr}(t,\mathcal{Y}_{t},\mathcal{Z}_{t},\mathcal{Z}^{0}_{t})\,dt-\mathcal{Z}_{t}\,dW_{t}-\mathcal{Z}^{0}_{t}\,dW^{0}_{t},\\ \mathcal{X}_{0}=&~{}\bm{x},\quad\mathcal{Y}_{T}=\nu\mathbb{E}[\mathcal{X}_{T}|\mathcal{F}^{0}_{T}],\end{split}\right. (3.4)

where the coefficients are assumed to satisfy the following conditions.

  • AS-1. For any given 𝒴~\widetilde{\mathcal{Y}}, 𝒵\mathcal{Z} and 𝒵0\mathcal{Z}^{0}, the following mean field SDE for 𝒴\mathcal{Y} has a unique solution

    𝒴~t=𝒴t0tν𝔼[𝑑𝑟(s,𝒴s,𝒵s,𝒵s0)|s0]𝑑s0tν𝔼[𝑑𝑖𝑓𝑓0(s,𝒵s,𝒵s0)|s0]𝑑Ws0.\begin{split}\widetilde{\mathcal{Y}}_{t}=\mathcal{Y}_{t}-\int_{0}^{t}\nu\mathbb{E}\left[{\it dr}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}\right]\,ds-\int_{0}^{t}\nu\mathbb{E}\left[{\it diff}^{0}(s,\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}\right]\,dW^{0}_{s}.\end{split} (3.5)

    The unique solution is denoted by 𝒴t=g1(t,𝒴~t,𝒵t,𝒵t0)\mathcal{Y}_{t}=g_{1}(t,\widetilde{\mathcal{Y}}_{\cdot\wedge t},\mathcal{Z}_{\cdot\wedge t},\mathcal{Z}^{0}_{\cdot\wedge t}).

  • AS-2. For each given 𝒵~0\widetilde{\mathcal{Z}}^{0} and 𝒵\mathcal{Z}, the following equation for 𝒵0\mathcal{Z}^{0} is uniquely solvable

    𝒵~t0=𝒵t0ν𝔼[𝑑𝑖𝑓𝑓0(t,𝒵t,𝒵t0)|t0].\widetilde{\mathcal{Z}}^{0}_{t}=\mathcal{Z}^{0}_{t}-\nu\mathbb{E}[{\it diff}^{0}(t,\mathcal{Z}_{t},\mathcal{Z}^{0}_{t})|\mathcal{F}^{0}_{t}]. (3.6)

    The unique solution is denoted by 𝒵t0=g2(t,𝒵t,𝒵~t0)\mathcal{Z}^{0}_{t}=g_{2}(t,\mathcal{Z}_{t},\widetilde{\mathcal{Z}}^{0}_{t}).

The next proposition shows that the solution to the FBSDE (3.4) satisfying the above conditions has a one-to-one correspondence with the solution to some BSDE. Such correspondence relies on the fact that 𝒴\mathcal{Y} depends on 𝒳\mathcal{X} in a linear way and only through the terminal condition, as well as the unique solvability of (3.5) and (3.6). The linear dependence allows us to rewrite and split the terminal value into an integral on [0,t][0,t] and an integral on [t,T][t,T], where the former integral can be merged into the solution to a new BSDE and the latter integral can be merged into the coefficient of the new BSDE. The unique solvability of (3.5) and (3.6) yields the one-to-one correspondence.

Proposition 3.3.

Under AS-1 and AS-2, there is a one-to-one correspondence between the solution to the FBSDE (3.4) and the solution to the following BSDE

𝒴~t=ν𝔼[𝒙]tT𝒵~s𝑑WstT𝒵~s0𝑑Ws0+tT{ν𝔼[𝑑𝑟(s,g1(s,𝒴~s,𝒵~s,g2(s,𝒵~s,𝒵~s0)),𝒵~s,g2(s,𝒵~s,𝒵~s0))|s0]+𝐷𝑟(s,g1(s,𝒴~s,𝒵~s,g2(s,𝒵~s,𝒵~s0)),𝒵~s,g2(s,𝒵~s,𝒵~s0))}ds.\begin{split}\widetilde{\mathcal{Y}}_{t}=&~{}\nu\mathbb{E}[\bm{x}]-\int_{t}^{T}\widetilde{\mathcal{Z}}_{s}\,dW_{s}-\int_{t}^{T}\widetilde{\mathcal{Z}}^{0}_{s}\,dW^{0}_{s}\\ &~{}+\int_{t}^{T}\bigg{\{}\nu\mathbb{E}\left[\left.{\it dr}\left(s,g_{1}(s,\widetilde{\mathcal{Y}}_{\cdot\wedge s},\widetilde{\mathcal{Z}}_{\cdot\wedge s},g_{2}(\cdot\wedge s,\widetilde{\mathcal{Z}}_{\cdot\wedge s},\widetilde{\mathcal{Z}}^{0}_{\cdot\wedge s})),\widetilde{\mathcal{Z}}_{s},g_{2}(s,\widetilde{\mathcal{Z}}_{s},\widetilde{\mathcal{Z}}^{0}_{s})\right)\right|\mathcal{F}^{0}_{s}\right]\\ &~{}+{\it Dr}\left(s,g_{1}(s,\widetilde{\mathcal{Y}}_{\cdot\wedge s},\widetilde{\mathcal{Z}}_{\cdot\wedge s},g_{2}(\cdot\wedge s,\widetilde{\mathcal{Z}}_{\cdot\wedge s},\widetilde{\mathcal{Z}}^{0}_{\cdot\wedge s})),\widetilde{\mathcal{Z}}_{s},g_{2}(s,\widetilde{\mathcal{Z}}_{s},\widetilde{\mathcal{Z}}^{0}_{s})\right)\bigg{\}}\,ds.\end{split} (3.7)

Let the solution to (3.4) and the solution to (3.7) be (𝒳,𝒴,𝒵,𝒵0)(\mathcal{X},\mathcal{Y},\mathcal{Z},\mathcal{Z}^{0}) and (𝒴~,𝒵~,𝒵~0)(\widetilde{\mathcal{Y}},\widetilde{\mathcal{Z}},\widetilde{\mathcal{Z}}^{0}), respectively. The relationship is given by for each t[0,T]t\in[0,T]

{𝒴~t=𝒴t0tν𝔼[𝑑𝑟(s,𝒴s,𝒵s,𝒵s0)|s0]𝑑s0tν𝔼[𝑑𝑖𝑓𝑓0(s,𝒵s,𝒵s0)|s0]𝑑Ws0𝒵~t=𝒵t𝒵~t0=𝒵t0ν𝔼[𝑑𝑖𝑓𝑓0(t,𝒵t,𝒵t0)|t0].\left\{\begin{split}\widetilde{\mathcal{Y}}_{t}=&~{}\mathcal{Y}_{t}-\int_{0}^{t}\nu\mathbb{E}[{\it dr}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]\,ds-\int_{0}^{t}\nu\mathbb{E}[{\it diff}^{0}(s,\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]\,dW^{0}_{s}\\ \widetilde{\mathcal{Z}}_{t}=&~{}\mathcal{Z}_{t}\\ \widetilde{\mathcal{Z}}^{0}_{t}=&~{}\mathcal{Z}^{0}_{t}-\nu\mathbb{E}[{\it diff}^{0}(t,\mathcal{Z}_{t},\mathcal{Z}^{0}_{t})|\mathcal{F}^{0}_{t}].\end{split}\right. (3.8)
Proof.

From the dynamics of (3.4), we have the following:

𝒴t=\displaystyle\mathcal{Y}_{t}= ν𝔼[𝒳T|T0]+tT𝐷𝑟(s,𝒴s,𝒵s,𝒵s0)𝑑stT𝒵s𝑑WstT𝒵s0𝑑Ws0\displaystyle~{}\nu\mathbb{E}[\mathcal{X}_{T}|\mathcal{F}^{0}_{T}]+\int_{t}^{T}{\it Dr}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})\,ds-\int_{t}^{T}\mathcal{Z}_{s}\,dW_{s}-\int_{t}^{T}\mathcal{Z}^{0}_{s}\,dW^{0}_{s}
=\displaystyle= ν𝔼[𝒙]+0Tν𝔼[𝑑𝑟(s,𝒴s,𝒵s,𝒵s0)|s0]𝑑s+0Tν𝔼[𝑑𝑖𝑓𝑓0(s,𝒴s,𝒵s,𝒵s0)|s0]𝑑Ws0\displaystyle~{}\nu\mathbb{E}[\bm{x}]+\int_{0}^{T}\nu\mathbb{E}[{\it dr}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]\,ds+\int_{0}^{T}\nu\mathbb{E}[{\it diff}^{0}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]\,dW^{0}_{s}
+tT𝐷𝑟(s,𝒴s,𝒵s,𝒵s0)𝑑stT𝒵s𝑑WstT𝒵s0𝑑Ws0\displaystyle~{}+\int_{t}^{T}{\it Dr}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})\,ds-\int_{t}^{T}\mathcal{Z}_{s}\,dW_{s}-\int_{t}^{T}\mathcal{Z}^{0}_{s}\,dW^{0}_{s}
=\displaystyle= ν𝔼[𝒙]+0tν𝔼[𝑑𝑟(s,𝒴s,𝒵s,𝒵s0)|s0]𝑑s+0tν𝔼[𝑑𝑖𝑓𝑓0(s,𝒵s,𝒵s0)|s0]𝑑Ws0\displaystyle~{}\nu\mathbb{E}[\bm{x}]+\int_{0}^{t}\nu\mathbb{E}[{\it dr}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]\,ds+\int_{0}^{t}\nu\mathbb{E}[{\it diff}^{0}(s,\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]\,dW^{0}_{s}
+tT{ν𝔼[𝑑𝑟(s,𝒴s,𝒵s,𝒵s0)|s0]+𝐷𝑟(s,𝒴s,𝒵s,𝒵s0)}𝑑s\displaystyle~{}+\int_{t}^{T}\left\{\nu\mathbb{E}[{\it dr}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]+{\it Dr}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})\right\}\,ds
tT𝒵s𝑑WstT{𝒵s0ν𝔼[𝑑𝑖𝑓𝑓0(s,𝒵s,𝒵s0)|s0]}𝑑Ws0.\displaystyle~{}-\int_{t}^{T}\mathcal{Z}_{s}\,dW_{s}-\int_{t}^{T}\left\{\mathcal{Z}^{0}_{s}-\nu\mathbb{E}[{\it diff}^{0}(s,\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]\right\}\,dW^{0}_{s}.

Define for each t[0,T]t\in[0,T]

𝒴~t=𝒴t0tν𝔼[𝑑𝑟(s,𝒴s,𝒵s,𝒵s0)|s0]𝑑s0tν𝔼[𝑑𝑖𝑓𝑓0(s,𝒵s,𝒵s0)|s0]𝑑Ws0\begin{split}\widetilde{\mathcal{Y}}_{t}=&~{}\mathcal{Y}_{t}-\int_{0}^{t}\nu\mathbb{E}[{\it dr}(s,\mathcal{Y}_{s},\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]\,ds-\int_{0}^{t}\nu\mathbb{E}[{\it diff}^{0}(s,\mathcal{Z}_{s},\mathcal{Z}^{0}_{s})|\mathcal{F}^{0}_{s}]\,dW^{0}_{s}\end{split} (3.9)

and

{𝒵~t=𝒵t𝒵~t0=𝒵t0ν𝔼[𝑑𝑖𝑓𝑓0(t,𝒵t,𝒵t0)|t0].\left\{\begin{split}\widetilde{\mathcal{Z}}_{t}=&~{}\mathcal{Z}_{t}\\ \widetilde{\mathcal{Z}}^{0}_{t}=&~{}\mathcal{Z}^{0}_{t}-\nu\mathbb{E}[{\it diff}^{0}(t,\mathcal{Z}_{t},\mathcal{Z}^{0}_{t})|\mathcal{F}^{0}_{t}].\end{split}\right. (3.10)

From (3.9) and (3.10), conditions (3.5) and (3.6) imply that

𝒵t0=g2(t,𝒵~t,𝒵~t0)\mathcal{Z}^{0}_{t}=g_{2}(t,\widetilde{\mathcal{Z}}_{t},\widetilde{\mathcal{Z}}^{0}_{t}) (3.11)

and

𝒴t=g1(t,𝒴~t,𝒵t,𝒵t0)=g1(t,𝒴~t,𝒵~t,g2(t,𝒵~t,𝒵~t0)).\mathcal{Y}_{t}=g_{1}(t,\widetilde{\mathcal{Y}}_{\cdot\wedge t},\mathcal{Z}_{\cdot\wedge t},\mathcal{Z}^{0}_{\cdot\wedge t})=g_{1}(t,\widetilde{\mathcal{Y}}_{\cdot\wedge t},\widetilde{\mathcal{Z}}_{\cdot\wedge t},g_{2}(\cdot\wedge t,\widetilde{\mathcal{Z}}_{\cdot\wedge t},\widetilde{\mathcal{Z}}^{0}_{\cdot\wedge t})). (3.12)

Then, (𝒴~,𝒵~,𝒵~0)(\widetilde{\mathcal{Y}},\widetilde{\mathcal{Z}},\widetilde{\mathcal{Z}}^{0}) satisfies the BSDE (3.7).

Moreover, if there exists some (𝒴~,𝒵~,𝒵~0)(\widetilde{\mathcal{Y}},\widetilde{\mathcal{Z}},\widetilde{\mathcal{Z}}^{0}) satisfying (3.7), by equations (3.10), (3.11) and (3.12), we can construct (𝒳,𝒴,𝒵,𝒵0)(\mathcal{X},\mathcal{Y},\mathcal{Z},\mathcal{Z}^{0}) satisfying (3.4). ∎

We introduce the following BSDE

Y~t=θ𝔼[logx]+tT{𝒥1(s,Z~s,Z~s0)+𝒥2(s;Z~,Z~0,θ)}𝑑stTZ~s𝑑WstTZ~s0𝑑Ws0,\begin{split}\widetilde{Y}_{t}=&~{}\theta\mathbb{E}[\log x]+\int_{t}^{T}\left\{\mathcal{J}_{1}(s,\widetilde{Z}_{s},\widetilde{Z}^{0}_{s})+\mathcal{J}_{2}(s;\widetilde{Z},\widetilde{Z}^{0},\theta)\right\}\,ds-\int_{t}^{T}\widetilde{Z}_{s}\,dW_{s}-\int_{t}^{T}\widetilde{Z}^{0}_{s}\,dW^{0}_{s},\end{split} (3.13)

where 𝒥1(;Z~,Z~0)\mathcal{J}_{1}(\cdot;\widetilde{Z},\widetilde{Z}^{0}) are terms that do not depend on θ\theta

𝒥1(,Z~,Z~0)=12{1+γσ2(1γ)(σ2+(σ0)2)}Z~2+12{1+γ(σ0)2(1γ)(σ2+(σ0)2)}(Z~0)2+{Zo¯+γσ(h+σZo¯+σ0Z0,o¯)(1γ)(σ2+(σ0)2)}Z~+{Z0,o¯+γσ0(h+σZo¯+σ0Z0,o¯)(1γ)(σ2+(σ0)2)}Z~0+γσσ0(1γ)(σ2+(σ0)2)Z~Z~0,\begin{split}\mathcal{J}_{1}(\cdot,\widetilde{Z},\widetilde{Z}^{0})=&~{}\frac{1}{2}\left\{1+\frac{\gamma\sigma^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right\}\widetilde{Z}^{2}+\frac{1}{2}\left\{1+\frac{\gamma(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right\}(\widetilde{Z}^{0})^{2}\\ &~{}+\left\{Z^{\bar{o}}+\frac{\gamma\sigma(h+\sigma Z^{\bar{o}}+\sigma^{0}Z^{0,\bar{o}})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right\}\widetilde{Z}+\left\{Z^{0,\bar{o}}+\frac{\gamma\sigma^{0}(h+\sigma Z^{\bar{o}}+\sigma^{0}Z^{0,\bar{o}})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right\}\widetilde{Z}^{0}\\ &~{}+\frac{\gamma\sigma\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\widetilde{Z}\widetilde{Z}^{0},\end{split}

and 𝒥2(;Z~,Z~0,θ)\mathcal{J}_{2}(\cdot;\widetilde{Z},\widetilde{Z}^{0},\theta) are terms that depend on θ\theta. The expression of 𝒥2\mathcal{J}_{2} is cumbersome and we summarize it in Appendix A due to the convenience of the statement in the main text.

As a corollary of Proposition 3.3, we can show that the FBSDE (3.3) and the BSDE (3.13) are equivalent.

Corollary 3.4.

The wellposedness of the FBSDE (3.3) is equivalent to the wellposedness of the BSDE (3.13). The relationship is given by for each t[0,T]t\in[0,T]

Y~t=Y¯t+θγ0t𝔼[σsZ¯s+σs0Z¯s0(1γ)(σs2+(σs0)2)(hs11γ(hs+σsZso¯+σs0Zs0,o¯))|s0]𝑑sθγ0t𝔼[(σsZ¯s+σs0Z¯s0)22(1γ)2(σs2+(σs0)2)|s0]𝑑s+θγ0t𝔼[hs+σsZso¯+σs0Zs0,o¯(1γ)(σs2+(σs0)2)(hshs+σsZso¯+σs0Zs0,o¯2(1γ))|s0]𝑑s+θγ0t{𝔼[σsZ¯s+σs0Z¯s0(1γ)(σs2+(σs0)2)σs0|s0]+𝔼[hs+σs0Zso¯+σs0Zs0,o¯(1γ)(σs2+(σs0)2)σs0|s0]}𝑑Ws0\begin{split}\widetilde{Y}_{t}=&~{}\overline{Y}_{t}+\theta\gamma\int_{0}^{t}\mathbb{E}\left[\left.\frac{\sigma_{s}\overline{Z}_{s}+\sigma^{0}_{s}\overline{Z}^{0}_{s}}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\left(h_{s}-\frac{1}{1-\gamma}(h_{s}+\sigma_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s})\right)\right|\mathcal{F}^{0}_{s}\right]\,ds\\ &~{}-\theta\gamma\int_{0}^{t}\mathbb{E}\left[\left.\frac{\left(\sigma_{s}\overline{Z}_{s}+\sigma^{0}_{s}\overline{Z}^{0}_{s}\right)^{2}}{2(1-\gamma)^{2}(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right|\mathcal{F}^{0}_{s}\right]\,ds\\ &~{}+\theta\gamma\int_{0}^{t}\mathbb{E}\left[\left.\frac{h_{s}+\sigma_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s}}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\left(h_{s}-\frac{h_{s}+\sigma_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s}}{2(1-\gamma)}\right)\right|\mathcal{F}^{0}_{s}\right]\,ds\\ &~{}+\theta\gamma\int_{0}^{t}\left\{\mathbb{E}\left[\left.\frac{\sigma_{s}\overline{Z}_{s}+\sigma^{0}_{s}\overline{Z}^{0}_{s}}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\sigma^{0}_{s}\right|\mathcal{F}^{0}_{s}\right]+\mathbb{E}\left[\left.\frac{h_{s}+\sigma^{0}_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s}}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\sigma^{0}_{s}\right|\mathcal{F}^{0}_{s}\right]\right\}\,dW^{0}_{s}\end{split} (3.14)

and

Z~t=Z¯t,Z~t0=Z¯t0+θγ𝔼[σZ¯t+σt0Z¯t0(1γ)(σt2+(σt0)2)σt0|t0]+θγ𝔼[ht+σZto¯+σt0Zt0,o¯(1γ)(σt2+(σt0)2)σt0|t0].\widetilde{Z}_{t}=\overline{Z}_{t},\quad\widetilde{Z}^{0}_{t}=\overline{Z}^{0}_{t}+\theta\gamma\mathbb{E}\left[\left.\frac{\sigma\overline{Z}_{t}+\sigma^{0}_{t}\overline{Z}^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\sigma^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]+\theta\gamma\mathbb{E}\left[\left.\frac{h_{t}+\sigma Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\sigma^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]. (3.15)
Proof.

Let ν=(θγ,θγ)\nu=(-\theta\gamma,-\theta\gamma) and 𝒳=(X¯,Xo¯)\mathcal{X}=(\overline{X},X^{\bar{o}})^{\top}, where X¯\overline{X} and Xo¯X^{\bar{o}} satisfy the forward dynamics of (3.3) and (3.1), respectively. Because the drift of 𝒳\mathcal{X} does not depend on the 𝒴\mathcal{Y}-component, AS-1 trivially holds. To verify AS-2, it is sufficient to solve a unique Z¯0\overline{Z}^{0} from (3.15).

Multiplied by (σ0)2(1γ)(σ2+(σ0)2)\frac{(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})} on both sides of the second equality in (3.15) and taking conditional expectations 𝔼[|t0]\mathbb{E}[\cdot|\mathcal{F}^{0}_{t}], we obtain an equality for 𝔼[(σt0)2(1γ)(σt2+(σt0)2)Z~t0|t0]\mathbb{E}\left[\left.\frac{(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma_{t}^{2}+(\sigma^{0}_{t})^{2})}\widetilde{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right] in terms of 𝔼[(σt0)2(1γ)(σt2+(σt0)2)Z¯t0|t0]\mathbb{E}\left[\left.\frac{(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\overline{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right], from which we get for each t[0,T]t\in[0,T]

𝔼[(σt0)2(1γ)(σt2+(σt0)2)Z¯t0|t0]=𝔼[(σt0)2(1γ)(σt2+(σt0)2)Z~t0|t0]𝔼[θγ(σt0)2(1γ)(σt2+(σt0)2)|t0]𝔼[σtσt0(1γ)(σt2+(σt0)2)Z~t|t0]1+𝔼[θγ(σt0)2(1γ)(σt2+(σt0)2)|t0]𝔼[θγ(σt0)2(1γ)(σt2+(σt0)2)|t0]𝔼[htσt0+σtσt0Zto¯+(σt0)2Z0,o¯(1γ)(σt2+(σt0)2)|t0]1+𝔼[θγ(σt0)2(1γ)(σt2+(σt0)2)|t0].\begin{split}&~{}\mathbb{E}\left[\left.\frac{(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma_{t}^{2}+(\sigma^{0}_{t})^{2})}\overline{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]\\ =&~{}\frac{\mathbb{E}\left[\left.\frac{(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma_{t}^{2}+(\sigma^{0}_{t})^{2})}\widetilde{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]-\mathbb{E}\left[\left.\frac{\theta\gamma(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma_{t}^{2}+(\sigma^{0}_{t})^{2})}\right|\mathcal{F}^{0}_{t}\right]\mathbb{E}\left[\left.\frac{\sigma_{t}\sigma^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\widetilde{Z}_{t}\right|\mathcal{F}^{0}_{t}\right]}{1+\mathbb{E}\left[\left.\frac{\theta\gamma(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right|\mathcal{F}^{0}_{t}\right]}\\ &~{}-\frac{\mathbb{E}\left[\left.\frac{\theta\gamma(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma_{t}^{2}+(\sigma^{0}_{t})^{2})}\right|\mathcal{F}^{0}_{t}\right]\mathbb{E}\left[\left.\frac{h_{t}\sigma^{0}_{t}+\sigma_{t}\sigma^{0}_{t}Z^{\bar{o}}_{t}+(\sigma^{0}_{t})^{2}Z^{0,\bar{o}}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right|\mathcal{F}^{0}_{t}\right]}{1+\mathbb{E}\left[\left.\frac{\theta\gamma(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right|\mathcal{F}^{0}_{t}\right]}.\end{split} (3.16)

Taking (3.16) back into (3.15) and rearranging terms, we obtain Z¯0\overline{Z}^{0} in terms of Z~0\widetilde{Z}^{0} and Z~\widetilde{Z}

Z¯t0=Z~t0θγ𝔼[σtσt0(1γ)(σt2+(σt0)2)Z~t|t0]+θγ𝔼[(σt0)2(1γ)(σt2+(σt0)2)Z~t0|t0]1+𝔼[θγ(σt0)2(1γ)(σt2+(σt0)2)|t0]θγ𝔼[htσt0+σtσt0Zto¯+(σt0)2Zt0,o¯(1γ)(σt2+(σt0)2)|t0]1+𝔼[θγ(σt0)2(1γ)(σt2+(σt0)2)|t0],t[0,T].\begin{split}\overline{Z}^{0}_{t}=&~{}\widetilde{Z}^{0}_{t}-\frac{\theta\gamma\mathbb{E}\left[\left.\frac{\sigma_{t}\sigma^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\widetilde{Z}_{t}\right|\mathcal{F}^{0}_{t}\right]+\theta\gamma\mathbb{E}\left[\left.\frac{(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\widetilde{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]}{1+\mathbb{E}\left[\left.\frac{\theta\gamma(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right|\mathcal{F}^{0}_{t}\right]}\\ &~{}-\frac{\theta\gamma\mathbb{E}\left[\left.\frac{h_{t}\sigma^{0}_{t}+\sigma_{t}\sigma^{0}_{t}Z^{\bar{o}}_{t}+(\sigma^{0}_{t})^{2}Z^{0,\bar{o}}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right|\mathcal{F}^{0}_{t}\right]}{1+\mathbb{E}\left[\left.\frac{\theta\gamma(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right|\mathcal{F}^{0}_{t}\right]},\quad t\in[0,T].\end{split} (3.17)

Thus, AS-2 is verified, and Proposition 3.3 implies that the FBSDE (3.3) is equivalent to the BSDE (3.13). ∎

3.3 Wellposedness of the BSDE (3.13) and the FBSDE (2.2)

The BSDE (3.13) is a quadratic one of conditional mean field type, and it does not satisfy the assumptions in [14]. In particular, the quadratic growth in (3.13) comes from both (Z~,Z~0)(\widetilde{Z},\widetilde{Z}^{0}) and the conditional expectation of (Z~,Z~0)(\widetilde{Z},\widetilde{Z}^{0}); refer to the expression for 𝒥2\mathcal{J}_{2} in Appendix A. In addition, the feature of 𝒥2\mathcal{J}_{2} is that it includes all mean field terms, and each term in 𝒥2\mathcal{J}_{2} can be controlled by θ\theta. This observation motivates us to solve (3.13) under a weak interaction assumption, where the competition parameter θ\theta is assumed to be sufficiently small.

To make it convenient to apply the theory of quadratic BSDE, by a change of measure, we can transform 𝒥1\mathcal{J}_{1} into a pure quadratic term. Indeed, define

do¯d=(0{Zso¯+γσs(hs+σsZso¯+σs0Zs0,o¯)(1γ)(σs2+(σs0)2)}𝑑Ws+0{Zs0,o¯+γσs0(hs+σsZso¯+σs0Zs0,o¯)(1γ)(σs2+(σs0)2)}𝑑Ws0):=(0sd(Ws,Ws0)),\begin{split}\frac{d\mathbb{P}^{\bar{o}}}{d\mathbb{P}}=&~{}\mathcal{E}\left(\int_{0}^{\cdot}\left\{Z^{\bar{o}}_{s}+\frac{\gamma\sigma_{s}(h_{s}+\sigma_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s})}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right\}\,dW_{s}+\int_{0}^{\cdot}\left\{Z^{0,\bar{o}}_{s}+\frac{\gamma\sigma^{0}_{s}(h_{s}+\sigma_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s})}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right\}\,dW^{0}_{s}\right)\\ :=&~{}\mathcal{E}\left(\int_{0}^{\cdot}\mathcal{M}_{s}\,d(W_{s},W^{0}_{s})^{\top}\right),\end{split} (3.18)

where

=(Zo¯+γσ(h+σZo¯+σ0Z0,o¯)(1γ)(σ2+(σ0)2),Z0,o¯+γσ0(h+σZo¯+σ0Z0,o¯)(1γ)(σ2+(σ0)2)).\mathcal{M}=\left(Z^{\bar{o}}+\frac{\gamma\sigma(h+\sigma Z^{\bar{o}}+\sigma^{0}Z^{0,\bar{o}})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},~{}Z^{0,\bar{o}}+\frac{\gamma\sigma^{0}(h+\sigma Z^{\bar{o}}+\sigma^{0}Z^{0,\bar{o}})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right). (3.19)

By Proposition 3.1 and [20, Theorem 2.3], it holds that o¯\mathbb{P}^{\bar{o}} is a probability measure, and the Girsanov theorem yields that

Y~t=θγ𝔼[log(x)]+tT(𝒥1o¯(s,Z~s,Z~s0)+𝒥2(s;Z~,Z~0,θ))𝑑stTZ~s𝑑W~stTZ~s0𝑑W~s0,\widetilde{Y}_{t}=-\theta\gamma\mathbb{E}[\log(x)]+\int_{t}^{T}\left(\mathcal{J}^{\bar{o}}_{1}(s,\widetilde{Z}_{s},\widetilde{Z}^{0}_{s})+\mathcal{J}_{2}(s;\widetilde{Z},\widetilde{Z}^{0},\theta)\right)\,ds-\int_{t}^{T}\widetilde{Z}_{s}\,d\widetilde{W}_{s}-\int_{t}^{T}\widetilde{Z}^{0}_{s}\,d\widetilde{W}^{0}_{s}, (3.20)

where

Wto¯:=(W~t,W~t0)=(Wt0t{Zso¯+γσs(hs+σsZso¯+σs0Zs0,o¯)(1γ)(σs2+(σs0)2)}𝑑s,Wt00t{Zs0,o¯+γσs0(hs+σsZso¯+σs0Zs0,o¯)(1γ)(σs2+(σs0)2)}𝑑s)\begin{split}&~{}W^{\bar{o}}_{t}:=(\widetilde{W}_{t},\widetilde{W}^{0}_{t})^{\top}=\\ &~{}\left(W_{t}-\int_{0}^{t}\left\{Z^{\bar{o}}_{s}+\frac{\gamma\sigma_{s}(h_{s}+\sigma_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s})}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right\}\,ds,~{}W^{0}_{t}-\int_{0}^{t}\left\{Z^{0,\bar{o}}_{s}+\frac{\gamma\sigma^{0}_{s}(h_{s}+\sigma_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s})}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right\}\,ds\right)^{\top}\end{split} (3.21)

is a two-dimensional Brownian motion under o¯\mathbb{P}^{\bar{o}}, and

𝒥1o¯(,Z~,Z~0)=12{1+γσ2(1γ)(σ2+(σ0)2)}Z~2+12{1+γ(σ0)2(1γ)(σ2+(σ0)2)}(Z~0)2+γσσ0(1γ)(σ2+(σ0)2)Z~Z~0.\begin{split}\mathcal{J}^{\bar{o}}_{1}(\cdot,\widetilde{Z},\widetilde{Z}^{0})=&~{}\frac{1}{2}\left\{1+\frac{\gamma\sigma^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right\}\widetilde{Z}^{2}+\frac{1}{2}\left\{1+\frac{\gamma(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right\}(\widetilde{Z}^{0})^{2}\\ &~{}+\frac{\gamma\sigma\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\widetilde{Z}\widetilde{Z}^{0}.\end{split} (3.22)

Therefore, solving (3.13) under \mathbb{P} is equivalent to solving (3.20) under o¯\mathbb{P}^{\bar{o}}. To do so, we will use a fixed point argument as in [26] to study a general BSDE with (3.20) as a special case.

Lemma 3.5.

Define a BSDE

d𝒴^t={f1(t,𝒵^t)+f2(t;𝒵^,θ)}dt𝒵^tdWto¯,𝒴T=θ𝐱,-d\widehat{\mathcal{Y}}_{t}=\left\{f_{1}(t,\widehat{\mathcal{Z}}_{t})+f_{2}(t;\widehat{\mathcal{Z}},\theta)\right\}\,dt-\widehat{\mathcal{Z}}_{t}\,dW^{\bar{o}}_{t},\quad\mathcal{Y}_{T}=\theta\bf{x}, (3.23)

The random coefficients f1f_{1} and f2f_{2} are assumed to satisfy the following conditions: there exists an 𝒜\mathcal{A}-measurable, positive and bounded random variable c1c_{1}, an increasing positive locally bounded function C1C_{1}, and a positive constant C2C_{2} such that for any z^,z^HBMO,o¯2\widehat{z},\widehat{z}^{\prime}\in H^{2}_{BMO,\mathbb{P}^{\bar{o}}} it holds that:

ASS-1.|f1(t,z^)|c1|z^|2|f_{1}(t,\widehat{z})|\leq c_{1}|\widehat{z}|^{2}   and  |2c1f2(;z^,θ)|12BMO,o¯2θC1(z^BMO,o¯);\left\|\left|2c_{1}f_{2}(\cdot;\widehat{z},\theta)\right|^{\frac{1}{2}}\right\|_{BMO,\mathbb{P}^{\bar{o}}}^{2}\leq\|\theta\|C_{1}(\|\widehat{z}\|_{BMO,\mathbb{P}^{\bar{o}}});

ASS-2. |f1(t,z^)f1(t,z^)|c1|z^z^|(|z^|+|z^|)|f_{1}(t,\widehat{z})-f_{1}(t,\widehat{z}^{\prime})|\leq c_{1}|\widehat{z}-\widehat{z}^{\prime}|(|\widehat{z}|+|\widehat{z}^{\prime}|), and f2(;z^,θ)f2(;z^,θ)BMO,o¯θC2z^z^BMO,o¯(1+z^BMO,o¯+z^BMO,o¯).\|f_{2}(\cdot;\widehat{z},\theta)-f_{2}(\cdot;\widehat{z}^{\prime},\theta)\|_{BMO,\mathbb{P}^{\bar{o}}}\leq\|\theta\|C_{2}\|\widehat{z}-\widehat{z}^{\prime}\|_{BMO,\mathbb{P}^{\bar{o}}}\left(1+\|\widehat{z}\|_{BMO,\mathbb{P}^{\bar{o}}}+\|\widehat{z}^{\prime}\|_{BMO,\mathbb{P}^{\bar{o}}}\right).

Then, for each fixed 0<R142c10<R\leq\frac{1}{4\sqrt{2}\|c_{1}\|}, there exists a constant θ\theta^{*} that is small enough and only depends on RR, 𝐱{\bf x}, c1c_{1}, C1C_{1} and C2C_{2}, such that for each 0θθ0\leq\|\theta\|\leq\theta^{*} the BSDE (3.23) admits a unique solution (𝒴^,𝒵^)(\widehat{\mathcal{Y}},\widehat{\mathcal{Z}}) with 𝒵^\widehat{\mathcal{Z}} located in the RR-ball of HBMO,o¯2H^{2}_{BMO,\mathbb{P}^{\bar{o}}}. Furthermore, the solution satisfies the following estimate

𝒴^θ𝐱12c1¯log{1|2c1f2(;𝒵^,θ)|12BMO,o¯2}\|\widehat{\mathcal{Y}}\|_{\infty}\leq\|\theta{\bf x}\|-\frac{1}{2\underline{c_{1}}}\log\bigg{\{}1-\left\|\left|2c_{1}f_{2}(\cdot;\widehat{\mathcal{Z}},\theta)\right|^{\frac{1}{2}}\right\|^{2}_{BMO,\mathbb{P}^{\bar{o}}}\bigg{\}} (3.24)

and

𝒵^BMO,o¯212c1¯e2c1θ𝐱12c1¯θ𝐱c1¯+e2c1𝒴^1c1¯|f2(;𝒵^,θ)|12BMO,o¯2,\|\widehat{\mathcal{Z}}\|^{2}_{BMO,\mathbb{P}^{\bar{o}}}\leq\frac{\frac{1}{2\underline{c_{1}}}e^{2\|c_{1}\|\|\theta{\bf x}\|}-\frac{1}{2\underline{c_{1}}}-\|\theta{\bf x}\|}{\underline{c_{1}}}+\frac{e^{2\|c_{1}\|\|\widehat{\mathcal{Y}}\|_{\infty}}-1}{\underline{c_{1}}}\left\||f_{2}(\cdot;\widehat{\mathcal{Z}},\theta)|^{\frac{1}{2}}\right\|^{2}_{BMO,\mathbb{P}^{\bar{o}}}, (3.25)

where we recall that c1¯\underline{c_{1}} is the essential infimum of c1c_{1}.

Proof.

Step 1. In the first step, we prove that for each fixed R>0R>0 and z^HBMO,o¯2\widehat{z}\in H^{2}_{BMO,\mathbb{P}^{\bar{o}}} with z^BMO,o¯2R\|\widehat{z}\|^{2}_{BMO,\mathbb{P}^{\bar{o}}}\leq R, there exists a unique solution to

d𝒴^t={f1(t,𝒵^t)+f2(t;z^,θ)}dt𝒵^tdWto¯,𝒴T=θ𝐱.-d\widehat{\mathcal{Y}}_{t}=\left\{f_{1}(t,\widehat{\mathcal{Z}}_{t})+f_{2}(t;\widehat{z},\theta)\right\}\,dt-\widehat{\mathcal{Z}}_{t}\,dW^{\bar{o}}_{t},\quad\mathcal{Y}_{T}=\theta\bf{x}. (3.26)

In addition, the solution satisfies the estimates (3.24) and (3.25) with 𝒵^\widehat{\mathcal{Z}} on the right side replaced by z^.\widehat{z}.

In order to prove the claim in Step 1, we choose θ1\theta_{1}^{*}, such that θ1C1(R)<1\theta_{1}^{*}C_{1}(R)<1. Then for all 0θθ10\leq\|\theta\|\leq\theta_{1}^{*}, we have by ASS-1

|2c1f2(;z^,θ)|12BMO,o¯2C1(R)θ<1,\left\|\left|2c_{1}f_{2}(\cdot;\widehat{z},\theta)\right|^{\frac{1}{2}}\right\|_{BMO,\mathbb{P}^{\bar{o}}}^{2}\leq C_{1}(R)\|\theta\|<1,

which implies that by [20, Theorem 2.2]

𝔼o¯[e2c1tTf2(s;z^,θ)ds|t]11|2c1f2(;z^,θ)|12BMO,o¯2<.\mathbb{E}^{\mathbb{P}^{\bar{o}}}\left[\left.e^{2c_{1}\int_{t}^{T}f_{2}(s;\widehat{z},\theta)}\,ds\right|\mathcal{F}_{t}\right]\leq\frac{1}{1-\left\|\left|2c_{1}f_{2}(\cdot;\widehat{z},\theta)\right|^{\frac{1}{2}}\right\|_{BMO,\mathbb{P}^{\bar{o}}}^{2}}<\infty.

Thus, all conditions in [2, Proposition 3] are satisfied. It yields a solution (𝒴^,𝒵^)(\widehat{\mathcal{Y}},\widehat{\mathcal{Z}}) of (3.26), such that the estimate for 𝒴^\widehat{\mathcal{Y}} holds. In order to obtain the estimate for 𝒵^\widehat{\mathcal{Z}}, we define 𝒯(y)=12ce2c1|y|12c1|y|c1\mathcal{T}(y)=\frac{\frac{1}{2c}e^{2c_{1}|y|}-\frac{1}{2c_{1}}-|y|}{c_{1}}. Itô’s formula implies that

𝒯(𝒴^t)=𝒯(θ𝐱)+tT𝒯(𝒴^s)(f1(s,𝒵^s)+f2(s;z^,θ))𝑑s12tT𝒯′′(𝒴^s)|Z^s|2𝑑stT𝒯(𝒴s)𝒵^s𝑑Wso¯𝒯(θ𝐱)+tT(c1|𝒯(𝒴^s)|12𝒯′′(𝒴^s))|𝒵^s|2𝑑s(by ASS-1)+tT𝒯(𝒴^s)f2(s;z^,θ)𝑑stT𝒯(𝒴^s)𝒵^s𝑑Wso¯=𝒯(θ𝐱)tT|𝒵^s|2𝑑s+tT𝒯(𝒴^s)f2(s;z^,θ)𝑑stT𝒯(𝒴^s)𝒵^s𝑑Wso¯.\begin{split}\mathcal{T}(\widehat{\mathcal{Y}}_{t})=&~{}\mathcal{T}(\theta{\bf x})+\int_{t}^{T}\mathcal{T}^{\prime}(\widehat{\mathcal{Y}}_{s})\left(f_{1}(s,\widehat{\mathcal{Z}}_{s})+f_{2}(s;\widehat{z},\theta)\right)\,ds\\ &~{}-\frac{1}{2}\int_{t}^{T}\mathcal{T}^{\prime\prime}(\widehat{\mathcal{Y}}_{s})|\widehat{Z}_{s}|^{2}\,ds-\int_{t}^{T}\mathcal{T}^{\prime}(\mathcal{Y}_{s})\widehat{\mathcal{Z}}_{s}\,dW^{\bar{o}}_{s}\\ \leq&~{}\mathcal{T}(\theta{\bf x})+\int_{t}^{T}\left(c_{1}|\mathcal{T}^{\prime}(\widehat{\mathcal{Y}}_{s})|-\frac{1}{2}\mathcal{T}^{\prime\prime}(\widehat{\mathcal{Y}}_{s})\right)|\widehat{\mathcal{Z}}_{s}|^{2}\,ds\qquad(\textrm{by }\textbf{ASS{\rm-}1})\\ &~{}+\int_{t}^{T}\mathcal{T}^{\prime}(\widehat{\mathcal{Y}}_{s})f_{2}(s;\widehat{z},\theta)\,ds-\int_{t}^{T}\mathcal{T}^{\prime}(\widehat{\mathcal{Y}}_{s})\widehat{\mathcal{Z}}_{s}\,dW^{\bar{o}}_{s}\\ =&~{}\mathcal{T}(\theta{\bf x})-\int_{t}^{T}|\widehat{\mathcal{Z}}_{s}|^{2}\,ds+\int_{t}^{T}\mathcal{T}^{\prime}(\widehat{\mathcal{Y}}_{s})f_{2}(s;\widehat{z},\theta)\,ds-\int_{t}^{T}\mathcal{T}^{\prime}(\widehat{\mathcal{Y}}_{s})\widehat{\mathcal{Z}}_{s}\,dW^{\bar{o}}_{s}.\end{split}

Note that 𝒯\mathcal{T} is increasing for y>0y>0. Therefore, for any stopping time τ\tau, it holds that

𝔼o¯[τT|𝒵^s|2𝑑s|τ]𝒯(θ𝐱)+τT𝒯(𝒴^s)f2(s;z^,θ)𝑑s12c1¯e2c1θ𝐱12c1¯θ𝐱c1¯+e2c1𝒴^1c1¯|f2(;z^,θ)|12BMO,o¯2,\begin{split}&~{}\mathbb{E}^{\mathbb{P}^{\bar{o}}}\left[\left.\int_{\tau}^{T}|\widehat{\mathcal{Z}}_{s}|^{2}\,ds\right|\mathcal{F}_{\tau}\right]\\ \leq&~{}\mathcal{T}(\|\theta{\bf x}\|)+\int_{\tau}^{T}\mathcal{T}^{\prime}(\widehat{\mathcal{Y}}_{s})f_{2}(s;\widehat{z},\theta)\,ds\\ \leq&~{}\frac{\frac{1}{2\underline{c_{1}}}e^{2\|c_{1}\|\|\theta{\bf x}\|}-\frac{1}{2\underline{c_{1}}}-\|\theta{\bf x}\|}{\underline{c_{1}}}+\frac{e^{2\|c_{1}\|\|\widehat{\mathcal{Y}}\|_{\infty}}-1}{\underline{c_{1}}}\left\||f_{2}(\cdot;\widehat{z},\theta)|^{\frac{1}{2}}\right\|^{2}_{BMO,\mathbb{P}^{\bar{o}}},\end{split} (3.27)

which implies the estimate for 𝒵^\widehat{\mathcal{Z}}.

Moreover, for any two solutions (𝒴^,𝒵^)(\widehat{\mathcal{Y}},\widehat{\mathcal{Z}}) and (𝒴^,𝒵^)(\widehat{\mathcal{Y}}^{\prime},\widehat{\mathcal{Z}}^{\prime}) in S×HBMO,o¯2S^{\infty}\times H^{2}_{BMO,\mathbb{P}^{\bar{o}}}, (Δ𝒴^,Δ𝒵^):=(𝒴^𝒴^,𝒵^𝒵^)(\Delta{\widehat{\mathcal{Y}}},\Delta{\mathcal{\widehat{Z}}}):=(\widehat{\mathcal{Y}}-\widehat{\mathcal{Y}}^{\prime},\mathcal{\widehat{Z}}-\mathcal{\widehat{Z}}^{\prime}) follows for some stochastic process LL

Δ𝒴^t=tTLsΔ𝒵^s𝑑stTΔ𝒵^s𝑑Wso¯,\Delta\widehat{\mathcal{Y}}_{t}=\int_{t}^{T}L_{s}\Delta\widehat{\mathcal{Z}}_{s}\,ds-\int_{t}^{T}\Delta\widehat{\mathcal{Z}}_{s}\,dW^{\bar{o}}_{s},

where |L|c1(|𝒵^|+|𝒵^|)|L|\leq c_{1}(|\widehat{\mathcal{Z}}|+|\widehat{\mathcal{Z}}^{\prime}|). Define \mathbb{Q}^{\prime} by ddo¯=(0Ls𝑑Wso¯)\frac{d\mathbb{Q}^{\prime}}{d\mathbb{P}^{\bar{o}}}=\mathcal{E}\left(\int_{0}L_{s}\,dW^{\bar{o}}_{s}\right). [20, Theorem 2.3] implies that \mathbb{Q}^{\prime} is a probability measure. Consequently, we can rewrite the above equation as Δ𝒴^t=tTΔ𝒵^s𝑑Ws,\Delta{\widehat{\mathcal{Y}}}_{t}=-\int_{t}^{T}\Delta{\widehat{\mathcal{Z}}}_{s}\,dW_{s}^{\mathbb{Q}^{\prime}}, where W=Wo¯0Ls𝑑sW^{\mathbb{Q}^{\prime}}=W^{\bar{o}}-\int_{0}L_{s}\,ds is a Brownian motion under \mathbb{Q}^{\prime}. Obviously it holds that Δ𝒴^=Δ𝒵^=0\Delta\widehat{\mathcal{Y}}=\Delta\widehat{\mathcal{Z}}=0 and the uniqueness result follows.

Step 2. For each fixed RR and each z^\widehat{z} in the RR-ball of HBMO,o¯2H^{2}_{BMO,\mathbb{P}^{\bar{o}}}, Step 1 yields a unique (𝒴^,𝒵^)(\widehat{\mathcal{Y}},\widehat{\mathcal{Z}}), such that (3.26) holds. According to the estimate for (𝒴^,𝒵^)(\widehat{\mathcal{Y}},\widehat{\mathcal{Z}}) in Step 1, we can choose a small θ2θ1\theta_{2}^{*}\leq\theta_{1}^{*} depending on RR, 𝐱{\bf x}, c1c_{1}, C1C_{1} and C2C_{2}, such that for any 0θθ20\leq\|\theta\|\leq\theta_{2}^{*}, it holds that 𝒵^BMO,o¯2R\|\widehat{\mathcal{Z}}\|^{2}_{BMO,\mathbb{P}^{\bar{o}}}\leq R. Thus, the mapping z^𝒵^\widehat{z}\mapsto\widehat{\mathcal{Z}} from the RR-ball of HBMO,2H^{2}_{BMO,\mathbb{Q}} to itself is well-defined. It remains to prove that this mapping is a contraction.

For any two z^\widehat{z} and z^\widehat{z}^{\prime} in the RR-ball of HBMO,o¯2H^{2}_{BMO,\mathbb{P}^{\bar{o}}}, Step 1 yields a unique solution (𝒴^,𝒵^)(\widehat{\mathcal{Y}},\widehat{\mathcal{Z}}) and (𝒴^,𝒵^)(\widehat{\mathcal{Y}}^{\prime},\widehat{\mathcal{Z}}^{\prime}) of (3.26), corresponding to z^\widehat{z} and z^\widehat{z}^{\prime}, respectively. Applying Itô’s formula to the BSDE of (Δ𝒴^,Δ𝒵^):=(𝒴^𝒴^,𝒵^𝒵^)(\Delta{\widehat{\mathcal{Y}}},\Delta{\mathcal{\widehat{Z}}}):=(\widehat{\mathcal{Y}}-\widehat{\mathcal{Y}}^{\prime},\mathcal{\widehat{Z}}-\mathcal{\widehat{Z}}^{\prime}), by ASS-2 and Young’s inequality we have

Δ𝒴^2+𝒵^BMO,o¯22Δ𝒴^c1Δ𝒵^BMO,o¯(𝒵^BMO,o¯+𝒵^BMO,o¯)+2C2Δ𝒴^θΔz^BMO,o¯(1+z^BMO,o¯+z^BMO,o¯)4Rc1Δ𝒴^Δ𝒵^BMO,o¯+2C2θ(1+2R)Δ𝒴^Δz^BMO,o¯12Δ𝒴^2+8R2c12Δ𝒵^BMO,o¯2+12Δ𝒴^2+2C22θ||2(1+2R)2Δz^BMO,o¯2.\begin{split}&~{}\|\Delta\widehat{\mathcal{Y}}\|_{\infty}^{2}+\|\widehat{\mathcal{Z}}\|_{BMO,\mathbb{P}^{\bar{o}}}^{2}\\ \leq&~{}2\|\Delta\widehat{\mathcal{Y}}\|_{\infty}\|c_{1}\|\|\Delta\widehat{\mathcal{Z}}\|_{BMO,\mathbb{P}^{\bar{o}}}\left(\|\widehat{\mathcal{Z}}\|_{BMO,\mathbb{P}^{\bar{o}}}+\|\widehat{\mathcal{Z}}^{\prime}\|_{BMO,\mathbb{P}^{\bar{o}}}\right)\\ &~{}+2C_{2}\|\Delta\widehat{\mathcal{Y}}\|_{\infty}\|\theta\|\|\Delta\widehat{z}\|_{BMO,\mathbb{P}^{\bar{o}}}\left(1+\|\widehat{z}\|_{BMO,\mathbb{P}^{\bar{o}}}+\|\widehat{z}^{\prime}\|_{BMO,\mathbb{P}^{\bar{o}}}\right)\\ \leq&~{}4R\|c_{1}\|\|\Delta\widehat{\mathcal{Y}}\|_{\infty}\|\Delta\widehat{\mathcal{Z}}\|_{BMO,\mathbb{P}^{\bar{o}}}+2C_{2}\|\theta\|(1+2R)\|\Delta\widehat{\mathcal{Y}}\|_{\infty}\|\Delta\widehat{z}\|_{BMO,\mathbb{P}^{\bar{o}}}\\ \leq&~{}\frac{1}{2}\|\Delta\widehat{\mathcal{Y}}\|_{\infty}^{2}+8R^{2}\|c_{1}\|^{2}\|\Delta\widehat{\mathcal{Z}}\|^{2}_{BMO,\mathbb{P}^{\bar{o}}}+\frac{1}{2}\|\Delta\widehat{\mathcal{Y}}\|_{\infty}^{2}+2C_{2}^{2}\|\theta||^{2}(1+2R)^{2}\|\Delta\widehat{z}\|_{BMO,\mathbb{P}^{\bar{o}}}^{2}.\end{split}

First, choose RR, such that 8R2c12148R^{2}\|c_{1}\|^{2}\leq\frac{1}{4}. Second, choose θθ2\theta^{*}\leq\theta_{2}^{*}, such that 2C22(θ)2(1+2R)142C_{2}^{2}(\theta^{*})^{2}(1+2R)\leq\frac{1}{4}. Then, for all 0θθ0\leq\|\theta\|\leq\theta^{*}, it holds that Δ𝒵^BMO,o¯12Δz^BMO,o¯2\|\Delta\widehat{\mathcal{Z}}\|_{BMO,\mathbb{P}^{\bar{o}}}\leq\frac{1}{2}\|\Delta\widehat{z}\|^{2}_{BMO,\mathbb{P}^{\bar{o}}}, which implies a contraction. ∎

As a corollary of Lemma 3.5, we get the wellposedness result of (3.20).

Theorem 3.6.

Let Assumption 1 hold. Let c1=11γc_{1}=\frac{1}{1-\gamma} and choose RR, such that R142c1R\leq\frac{1}{4\sqrt{2}\|c_{1}\|}. Then, there exists a positive constant θ\theta^{*} only depending on R,T,γ,σ,σ0R,~{}T,~{}\gamma,~{}\sigma,~{}\sigma^{0} and hh, such that for all 0θθ0\leq\|\theta\|\leq\theta^{*}, there exists a unique (Y~,Z~,Z~0)S×HBMO,o¯2×HBMO,o¯2(\widetilde{Y},\widetilde{Z},\widetilde{Z}^{0})\in S^{\infty}\times H^{2}_{BMO,\mathbb{P}^{\bar{o}}}\times H^{2}_{BMO,\mathbb{P}^{\bar{o}}} satisfying (3.20), and the estimates (3.24) and (3.25).

Proof.

It is sufficient to verify that the driver of (3.20) satisfies ASS-1 and ASS-2 in Lemma 3.5. Let 𝒵^=(Z~,Z~0)\widehat{\mathcal{Z}}=(\widetilde{Z},\widetilde{Z}^{0}). First, by the definition of 𝒥1o¯\mathcal{J}_{1}^{\bar{o}} in (3.22), it is straightforward to verify that

|𝒥1o¯(t,𝒵^)|c1|𝒵^|2, and |𝒥1o¯(t,𝒵^)𝒥1o¯(t,𝒵^)|c1|𝒵^𝒵^|(|𝒵^|+|𝒵^|).|\mathcal{J}^{\bar{o}}_{1}(t,\widehat{\mathcal{Z}})|\leq c_{1}|\widehat{\mathcal{Z}}|^{2},\quad\textrm{ and }\quad|\mathcal{J}_{1}^{\bar{o}}(t,\widehat{\mathcal{Z}})-\mathcal{J}_{1}^{\bar{o}}(t,\widehat{\mathcal{Z}}^{\prime})|\leq c_{1}|\widehat{\mathcal{Z}}-\widehat{\mathcal{Z}}^{\prime}|(|\widehat{\mathcal{Z}}|+|\widehat{\mathcal{Z}}’|).

Furthermore, by the expression of 𝒥2\mathcal{J}_{2} in Appendix A and [12, Lemma A.1], there exists a positive constant C2C_{2} that only depends on γ\gamma, σ\sigma, σ0\sigma^{0}, hh, Zo¯BMO,o¯\|Z^{\bar{o}}\|_{BMO,\mathbb{P}^{\bar{o}}} and Z0,o¯BMO,o¯\|Z^{0,\bar{o}}\|_{BMO,\mathbb{P}^{\bar{o}}}, such that

𝒥2(t;𝒵^,θ)𝒥2(t;𝒵^,θ)BMO,o¯θC2𝒵^𝒵^BMO,o¯(1+𝒵^BMO,o¯+𝒵^BMO,o¯).\|\mathcal{J}_{2}(t;\widehat{\mathcal{Z}},\theta)-\mathcal{J}_{2}(t;\widehat{\mathcal{Z}}^{\prime},\theta)\|_{BMO,\mathbb{P}^{\bar{o}}}\leq\|\theta\|C_{2}\|\widehat{\mathcal{Z}}-\widehat{\mathcal{Z}}^{\prime}\|_{BMO,\mathbb{P}^{\bar{o}}}\left(1+\|\widehat{\mathcal{Z}}\|_{BMO,\mathbb{P}^{\bar{o}}}+\|\widehat{\mathcal{Z}}^{\prime}\|_{BMO,\mathbb{P}^{\bar{o}}}\right).

Again using Appendix A and [12, Lemma A.1], there exists a positive locally bounded function C1C_{1} depending on γ\gamma, σ\sigma, σ0\sigma^{0} and hh, such that

|2c1𝒥2(;𝒵^)|12BMO,o¯2θC1(𝒵^BMO,o¯).\left\||2c_{1}\mathcal{J}_{2}(\cdot;\widehat{\mathcal{Z}})|^{\frac{1}{2}}\right\|^{2}_{BMO,\mathbb{P}^{\bar{o}}}\leq\|\theta\|C_{1}(\|\widehat{\mathcal{Z}}\|_{BMO,\mathbb{P}^{\bar{o}}}).

Therefore, ASS-1 and ASS-2 are satisfied. From Lemma 3.5, we obtain the desired results. ∎

The following corollary implies that the unique solution to (3.13) can be controlled by θ\theta. In particular, the triple (Y~,Z~BMO,Z~0BMO)\left(\|\widetilde{Y}\|_{\infty},\|\widetilde{Z}\|_{BMO},\|\widetilde{Z}^{0}\|_{BMO}\right) goes to 0 as θ\|\theta\| goes to 0. This result is used to establish the convergence result in Corollary 3.8, which will be used in Section 4.

Corollary 3.7.

Let Assumption 1 hold and let (Y~,Z~,Z~0)(\widetilde{Y},\widetilde{Z},\widetilde{Z}^{0}) be the unique solution to (3.13). Then, it holds that

limθ0(Y~+Z~BMO+Z~0BMO)=0.\lim_{\|\theta\|\rightarrow 0}\left(\|\widetilde{Y}\|_{\infty}+\|\widetilde{Z}\|_{BMO}+\|\widetilde{Z}^{0}\|_{BMO}\right)=0.

and

limθ0(Z~Mp+Z~0Mp)=0.\lim_{\|\theta\|\rightarrow 0}\left(\|\widetilde{Z}\|_{M^{p}}+\|\widetilde{Z}^{0}\|_{M^{p}}\right)=0.
Proof.

Note that Z~\widetilde{Z} and Z~0\widetilde{Z}^{0} belong to the RR-ball of HBMO,o¯2H^{2}_{BMO,\mathbb{P}^{\bar{o}}}, where RR is independent of θ\theta by Theorem 3.6. Thus, by (3.24) and letting θ0\|\theta\|\rightarrow 0, we get Y~0\|\widetilde{Y}\|_{\infty}\rightarrow 0. Taking this convergence into (3.25), we get the convergence of 𝒵^:=(Z~,Z~0)\widehat{\mathcal{Z}}:=(\widetilde{Z},\widetilde{Z}^{0}) in HBMO,o¯2H^{2}_{BMO,\mathbb{P}^{\bar{o}}}. The convergence of 𝒵^\widehat{\mathcal{Z}} in HBMO2H^{2}_{BMO} can be obtained by [13, Lemma A.1]. The convergence in MpM^{p} is obtained by the energy inequality; see [20, P.26]. ∎

Another corollary of Theorem 3.6 is that the FBSDE (3.3), and thus the FBSDE (2.2) are wellposed.

Corollary 3.8.

Let Assumption 1 hold and 0θθ0\leq\|\theta\|\leq\theta^{*}, where θ\theta^{*} is the constant determined in Theorem 3.6. The FBSDE (3.3) has a unique solution (X¯,Y¯,Z¯,Z¯0)p>1Sp×p>1Sp×HBMO2×HBMO2(\overline{X},\overline{Y},\overline{Z},\overline{Z}^{0})\in\bigcap_{p>1}S^{p}\times\bigcap_{p>1}S^{p}\times H^{2}_{BMO}\times H^{2}_{BMO} with the convergence

limθ0(Z¯Mp+Z¯0Mp)=0\lim_{\|\theta\|\rightarrow 0}\left(\|\overline{Z}\|_{M^{p}}+\|\overline{Z}^{0}\|_{M^{p}}\right)=0

and the FBSDE (2.2) is wellposed in p>1Sp×p>1Sp×HBMO2×HBMO2\bigcap_{p>1}S^{p}\times\bigcap_{p>1}S^{p}\times H^{2}_{BMO}\times H^{2}_{BMO}.

Proof.

Theorem 3.6 and Corollary 3.4 imply that there exists a unique (X¯,Y¯,Z¯,Z¯0)(\overline{X},\overline{Y},\overline{Z},\overline{Z}^{0}) satisfying (3.3). Theorem 3.6, Proposition 3.1, (3.15), (3.17), and [13, Lemma A.1] imply that (Z¯,Z¯0)HBMO2×HBMO2(\overline{Z},\overline{Z}^{0})\in H^{2}_{BMO}\times H^{2}_{BMO}. In order to prove X¯p>1Sp\overline{X}\in\bigcap_{p>1}S^{p}, we make a change of measure by defining

dd=(0σ~(σ~σ~)1{hshs+σsZso¯+σs0Zs0,o¯1γσsZ¯s+σs0Z¯s02(1γ)}𝑑W¯s):=(0^s𝑑W¯s),\frac{d\mathbb{Q}}{d\mathbb{P}}=\mathcal{E}\left(-\int_{0}^{\cdot}\widetilde{\sigma}^{\top}(\widetilde{\sigma}^{\top}\widetilde{\sigma})^{-1}\left\{h_{s}-\frac{h_{s}+\sigma_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s}}{1-\gamma}-\frac{\sigma_{s}\overline{Z}_{s}+\sigma^{0}_{s}\overline{Z}^{0}_{s}}{2(1-\gamma)}\right\}\,d\overline{W}_{s}\right):=\mathcal{E}\left(-\int_{0}^{\cdot}\widehat{\mathcal{M}}_{s}\,d\overline{W}_{s}\right),

where we recall that σ~=(σ,σ0)\widetilde{\sigma}=(\sigma,\sigma^{0})^{\top}. Then, the dynamics of X¯\overline{X} can be rewritten as

dX¯t=σtZ¯t+σt0Z¯t0(1γ)(σt2+(σt0)2)σ~tdW^t,d\overline{X}_{t}=\frac{\sigma_{t}\overline{Z}_{t}+\sigma^{0}_{t}\overline{Z}^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\widetilde{\sigma}_{t}^{\top}\,d\widehat{W}_{t},

where

W^t=W¯t+0tσ~s(σ~sσ~s)1{hshs+σsZso¯+σs0Zs0,o¯1γσsZ¯s+σs0Z¯s02(1γ)}𝑑s\widehat{W}_{t}=\overline{W}_{t}+\int_{0}^{t}\widetilde{\sigma}_{s}(\widetilde{\sigma}^{\top}_{s}\widetilde{\sigma}_{s})^{-1}\left\{h_{s}-\frac{h_{s}+\sigma_{s}Z^{\bar{o}}_{s}+\sigma^{0}_{s}Z^{0,\bar{o}}_{s}}{1-\gamma}-\frac{\sigma_{s}\overline{Z}_{s}+\sigma^{0}_{s}\overline{Z}^{0}_{s}}{2(1-\gamma)}\right\}\,ds

is a \mathbb{Q}-Brownian motion. For each p>1p>1, it holds that

𝔼[sup0tT|X¯t|p]C𝔼[(0T(σtZ¯t+σt0Z¯t0(1γ)(σt2+(σt0)2))2σ~tσ~t𝑑t)p2](by BDG’s inequality)C(Z¯BMO,2+Z¯0BMO,2)(by energy inequality)<(by [13, Lemma A.1]).\begin{split}\mathbb{E}^{\mathbb{Q}}\left[\sup_{0\leq t\leq T}|\overline{X}_{t}|^{p}\right]\leq&~{}C\mathbb{E}^{\mathbb{Q}}\left[\left(\int_{0}^{T}\left(\frac{\sigma_{t}\overline{Z}_{t}+\sigma^{0}_{t}\overline{Z}^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right)^{2}\widetilde{\sigma}_{t}^{\top}\widetilde{\sigma}_{t}\,dt\right)^{\frac{p}{2}}\right]\quad(\textrm{by BDG's inequality})\\ \leq&~{}C\left(\|\overline{Z}\|^{2}_{BMO,\mathbb{Q}}+\|\overline{Z}^{0}\|^{2}_{BMO,\mathbb{Q}}\right)\qquad(\textrm{by energy inequality})\\ <&~{}\infty\qquad(\textrm{by }\cite[cite]{[\@@bibref{}{HMP-2019}{}{}, {Lemma A.1}]}).\end{split}

By the definition of \mathbb{Q}, for any p>1p>1 and any 1<q<p^1<q<p_{\widehat{\mathcal{M}}}, where we recall p^p_{\widehat{\mathcal{M}}} is defined in Appendix B, it holds that

𝔼[sup0tT|X¯t|p]=𝔼[(0T^t𝑑W^t)sup0tT|X¯t|p]𝔼[(0T^t𝑑W^t)q]1q𝔼[sup0tT|X¯t|pq]1q(1q+1q=1)<(by Lemma B.1).\begin{split}\mathbb{E}\left[\sup_{0\leq t\leq T}|\overline{X}_{t}|^{p}\right]=&~{}\mathbb{E}^{\mathbb{Q}}\left[\mathcal{E}\left(\int_{0}^{T}\widehat{\mathcal{M}}_{t}\,d\widehat{W}_{t}\right)\sup_{0\leq t\leq T}|\overline{X}_{t}|^{p}\right]\\ \leq&~{}\mathbb{E}^{\mathbb{Q}}\left[\mathcal{E}\left(\int_{0}^{T}\widehat{\mathcal{M}}_{t}\,d\widehat{W}_{t}\right)^{q}\right]^{\frac{1}{q}}\mathbb{E}^{\mathbb{Q}}\left[\sup_{0\leq t\leq T}|\overline{X}_{t}|^{pq^{*}}\right]^{\frac{1}{q^{*}}}\qquad(\frac{1}{q}+\frac{1}{q^{*}}=1)\\ <&~{}\infty\qquad(\textrm{by Lemma }\ref{lem:reverse}).\end{split}

Therefore, X¯p>1Sp\overline{X}\in\bigcap_{p>1}S^{p}. The same arguement implies that Y¯p>1Sp.\overline{Y}\in\bigcap_{p>1}S^{p}. The convergence is obtained by Corollary 3.7, (3.15), and (3.17).

The wellposedness of (2.2) follows from (3.2), Proposition 3.1, and Theorem 3.6. ∎

3.4 Wellposedness of the MFG (1.4)

The main result in Section 3 is the following wellposedness result of MFG (1.4). In particular, our NE is unique.

Theorem 3.9.

Let Assumption 1 hold and 0θθ0\leq\|\theta\|\leq\theta^{*}, where θ\theta^{*} is the constant determined in Theorem 3.6. Let (X^,Y,Z,Z0,)(\widehat{X}^{*},Y^{*},Z^{*},Z^{0,*}) be the unique solution to (2.2), and μt=exp(𝔼[X^t|t0])\mu^{*}_{t}=\exp\left(\mathbb{E}[\widehat{X}^{*}_{t}|\mathcal{F}^{0}_{t}]\right), t[0,T]t\in[0,T]. Under μ\mu^{*}, the unique optimal response for the representative player is

π=h+σZ+σ0Z0,(1γ)(σ2+(σ0)2)\pi^{*}=\frac{h+\sigma Z^{*}+\sigma^{0}Z^{0,*}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})} (3.28)

and the value function given one realization of (θ,γ,x)(\theta,\gamma,x) follows

V(θ,γ,x,μ)=1γxγeY0.V(\theta,\gamma,x,\mu^{*})=\frac{1}{\gamma}x^{\gamma}e^{Y^{*}_{0}}.

Moreover, (μ,π)(\mu^{*},\pi^{*}) is the unique NE of (1.4), where logμp>1S𝔽0p\log\mu^{*}\in\bigcap_{p>1}S^{p}_{\mathbb{F}^{0}} and πHBMO2\pi^{*}\in H^{2}_{BMO}.

Proof.

By Proposition 2.1, there is a one-to-one correspondence between the FBSDE (2.2) and the NE of (1.4). Therefore, the existence and uniqueness result of NE can be obtained by Corollary 3.8. ∎

Remark 3.10.

By [18, Proposition 15], for each realization of the random variables (θ,γ,x)(\theta,\gamma,x), the value function satisfies the dynamic version

V(t,Xt;θ,γ,x,μ)=1γ(Xt)γeYt,V(t,X^{*}_{t};\theta,\gamma,x,\mu^{*})=\frac{1}{\gamma}(X^{*}_{t})^{\gamma}e^{Y^{*}_{t}}, (3.29)

where

V(t,Xt;θ,γ,x,μ):=maxπ𝔼[1γ(XT(μT)θ)γ|t].V(t,X^{*}_{t};\theta,\gamma,x,\mu^{*}):=\max_{\pi}\mathbb{E}\left[\left.\frac{1}{\gamma}\Big{(}X_{T}(\mu^{*}_{T})^{-\theta}\Big{)}^{\gamma}\right|\mathcal{F}_{t}\right].

The dynamic version of value function (3.29) will be used in Section 4.

3.5 The Portfolio Game under 𝒜\mathcal{A}-Measurable Market Parameters

In this section, we consider a special case, in which the market parameters are 𝒜\mathcal{A}-measurable. In addition to Assumption 1, we make the following assumption:

Assumption 2. For each t[0,T]t\in[0,T], the return rate hth_{t} and the volatility (σt,σt0)(\sigma_{t},\sigma^{0}_{t}) are measurable w.r.t. 𝒜\mathcal{A}.

Under Assumption 2, we will construct a unique solution to the FBSDE (2.2) in closed form. As a result, we get an NE of the MFG (1.4) in closed form, which is proven to be unique in LL^{\infty}. Furthermore, when all of the market parameters become time-independent, we revisit the model in [22], and we prove that the constant equilibrium obtained in [22] is the unique one in LL^{\infty}, not only in the space of constant equilibria, as shown in [22].

The following proposition shows the closed form solution to the FBSDE (2.2) under Assumption 1 and Assumption 2.

Proposition 3.11.

Under Assumption 1 and Assumption 2, there exists a unique tuple (X^,Y,Z,Z0)S2×S2×L×L(\widehat{X},Y,Z,Z^{0})\in S^{2}\times S^{2}\times L^{\infty}\times L^{\infty} satisfying (2.2). In particular, the ZZ-component of the solution has the following closed form expression

Z=0,Z0=θγ𝔼[σ0h(1γ)(σ2+(σ0)2)]1+𝔼[θγ(σ0)2(1γ)(σ2+(σ0)2)].Z=0,\qquad Z^{0}=-\frac{\theta\gamma\mathbb{E}\left[\frac{\sigma^{0}h}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}. (3.30)
Proof.

We first verify that (3.30), together with some X^\widehat{X} and YY, satisfies (2.2) by construction. Our goal is to construct (Z,Z0)(Z,Z^{0}), such that (Zt,Zt0)(Z_{t},Z^{0}_{t}) is 𝒜\mathcal{A}-measurable for each t[0,T]t\in[0,T]. Assuming that (Zt,Zt0)(Z_{t},Z^{0}_{t}) is 𝒜\mathcal{A}-measurable for each t[0,T]t\in[0,T] and taking the forward dynamics in (2.2) into the backward one in (2.2), we have the following

Yt=θγ𝔼[log(x)]θγ0T𝔼[hs+σsZs+σs0Zs0(1γ)(σs2+(σs0)2){hshs+σsZs+σs0Zs02(1γ)}]𝑑s+tT{Zs2+(Zs0)22+γ(hs+σsZs+σs0Zs0)22(1γ)(σs2+(σs0)2)}𝑑sθγ0T𝔼[hs+σsZs+σs0Zs0(1γ)(σs2+(σs0)2)σs0]𝑑Ws0tTZs0𝑑Ws0tTZs𝑑Ws,\begin{split}Y_{t}=&~{}-\theta\gamma\mathbb{E}[\log(x)]-\theta\gamma\int_{0}^{T}\mathbb{E}\left[\frac{h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s}}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\left\{h_{s}-\frac{h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s}}{2(1-\gamma)}\right\}\right]\,ds\\ &~{}+\int_{t}^{T}\left\{\frac{Z^{2}_{s}+(Z^{0}_{s})^{2}}{2}+\frac{\gamma(h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s})^{2}}{2(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right\}\,ds\\ &~{}-\theta\gamma\int_{0}^{T}\mathbb{E}\left[\frac{h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s}}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\sigma^{0}_{s}\right]\,dW^{0}_{s}-\int_{t}^{T}Z^{0}_{s}\,dW^{0}_{s}-\int_{t}^{T}Z_{s}\,dW_{s},\end{split}

where in the first line we use the assumption that (Zt,Zt0)(Z_{t},Z^{0}_{t}) is 𝒜\mathcal{A}-measurable, and that 𝒜\mathcal{A} and W0W^{0} are independent. In order to make YY adapted, we let

Z0,θγ𝔼[h+σZ+σ0Z0(1γ)(σ2+(σ0)2)σ0]Z0=0,Z\equiv 0,\qquad-\theta\gamma\mathbb{E}\left[\frac{h+\sigma Z+\sigma^{0}Z^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\sigma^{0}\right]-Z^{0}=0,

which implies (3.30). Note that (3.30) together with the constructed YY is an adapted solution to (2.2).

Under Assumption 2, it holds that Zo¯=Z0,o¯=0Z^{\bar{o}}=Z^{0,\bar{o}}=0. To prove the uniqueness result, by Corollary 3.4, it is sufficient to show that the solution to (3.13) is unique in S2×L×LS^{2}\times L^{\infty}\times L^{\infty}. Let (Y~,Z~,Z~0)S2×L×L(\widetilde{Y},\widetilde{Z},\widetilde{Z}^{0})\in S^{2}\times L^{\infty}\times L^{\infty} and (Y~,Z~,Z~0)S2×L×L(\widetilde{Y}^{\prime},\widetilde{Z}^{\prime},\widetilde{Z}^{0^{\prime}})\in S^{2}\times L^{\infty}\times L^{\infty} be two solutions to (3.13). Define (ΔY,ΔZ,ΔZ0):=(Y~Y~,Z~Z~,Z~0Z~0).(\Delta Y,\Delta Z,\Delta Z^{0}):=(\widetilde{Y}-\widetilde{Y}^{\prime},\widetilde{Z}-\widetilde{Z}^{\prime},\widetilde{Z}^{0}-\widetilde{Z}^{0^{\prime}}). Then, by the dynamics of (3.13) and by noting that (Z~,Z~0)L×L(\widetilde{Z},\widetilde{Z}^{0})\in L^{\infty}\times L^{\infty} and (Z~,Z~0)L×L(\widetilde{Z}^{\prime},\widetilde{Z}^{0^{\prime}})\in L^{\infty}\times L^{\infty}, the tuple ΔY,ΔZ,ΔZ0\Delta Y,\Delta Z,\Delta Z^{0} satisfies a conditional mean field BSDE with Lipschitz coefficients. Standard arguments imply that the unique solution is (ΔY,ΔZ,ΔZ0)=(0,0,0)(\Delta Y,\Delta Z,\Delta Z^{0})=(0,0,0). ∎

With the explicit solution in Proposition 3.11, we can construct an optimal strategy in closed form for the representative player, which is unique in LL^{\infty}.

Theorem 3.12.

Let Assumption 1 and Assumption 2 hold. Then, in LL^{\infty} the unique optimal response of the respresentative player is given by

πt=ht(1γ)(σt2+(σt0)2)θγσt0(1γ)(σt2+(σt0)2)𝔼[htσt0(1γ)(σt2+(σt0)2)]1+𝔼[θγ(σt0)2(1γ)(σt2+(σt0)2)],t[0,T].\pi^{*}_{t}=\frac{h_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}-\frac{\theta\gamma\sigma^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\frac{\mathbb{E}\left[\frac{h_{t}\sigma^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma(\sigma^{0}_{t})^{2}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right]},\quad t\in[0,T]. (3.31)
Proof.

Taking (3.30) into (3.28), we get (3.31), which is unique in LL^{\infty} by Proposition 3.11. ∎

As a corollary, when all coefficients become time-independent, we revisit the MFG in [22].

Corollary 3.13 (Lacker & Zariphopoulou’s MFGs revisited).

Let Assumption 1 and Assumption 2 hold, and the return rate hh and the volatility (σ,σ0)(\sigma,\sigma^{0}) be time-independent. Then, the unique optimal response is

π=h(1γ)(σ2+(σ0)2)θγσ0(1γ)(σ2+(σ0)2)𝔼[hσ0(1γ)(σ2+(σ0)2)]1+𝔼[θγ(σ0)2(1γ)(σ2+(σ0)2)].\pi^{*}=\frac{h}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}-\frac{\theta\gamma\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\frac{\mathbb{E}\left[\frac{h\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}. (3.32)

The constant equilibrium (3.32) is identical to [22, Theorem 19], which is unique in LL^{\infty}.

Remark 3.14.

If 0θθ0\leq\|\theta\|\leq\theta^{*} holds, then (3.30) is also unique in HBMO2×HBMO2H^{2}_{BMO}\times H^{2}_{BMO} by Corollary 3.8. Therefore, the constant equilibrium (3.32) is the unique one in HBMO2H^{2}_{BMO}, and there is no nonconstant equilibrium in the subspace of HBMO2H^{2}_{BMO} with (2.1) being true.

4 Asymptotic Expansion in Terms of θ\theta

Motivated by the weak interaction assumption, we develop an asymptotic expansion result of the value function and the optimal investment. Specifically, we provide an approximation in any order of the value function and optimal investment for the model with competition in terms of the solution to the benchmark model without competition when the investor is only concerned with her own wealth. Our idea is to start with the FBSDE characterization of the NE, and translate the expansion of the value function and the optimal investment to that of the solution to the FBSDE.

Let VθV^{\theta} and πθ\pi^{\theta} be the value function and the optimal investment of the MFG (1.4), and Vo¯V^{\bar{o}} and πo¯\pi^{\bar{o}} be the value function and the optimal investment of the benchmark utility maximization problem (i.e. when θ=0\theta=0 in (1.4)). Then by Theorem 3.9 and Remark 3.10, we have

Vtθ=1γeγX^tθ+Ytθ,πθ=h+σZθ+σ0Z0,θ(1γ)(σ2+(σ0)2);Vto¯=1γeγXto¯+Yto¯,πo¯=h+σZo¯+σ0Z0,o¯(1γ)(σ2+(σ0)2),\begin{split}&~{}V^{\theta}_{t}=\frac{1}{\gamma}e^{\gamma\widehat{X}^{\theta}_{t}+Y^{\theta}_{t}},\qquad\pi^{\theta}=\frac{h+\sigma Z^{\theta}+\sigma^{0}Z^{0,\theta}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})};\\ &~{}V^{\bar{o}}_{t}=\frac{1}{\gamma}e^{\gamma X^{\bar{o}}_{t}+Y^{\bar{o}}_{t}},\qquad\pi^{\bar{o}}=\frac{h+\sigma Z^{\bar{o}}+\sigma^{0}Z^{0,\bar{o}}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},\end{split}

where (X^θ,Yθ,Zθ,Z0,θ)(\widehat{X}^{\theta},Y^{\theta},Z^{\theta},Z^{0,\theta}) and (Xo¯,Yo¯,Zo¯,Z0,o¯)(X^{\bar{o}},Y^{\bar{o}},Z^{\bar{o}},Z^{0,\bar{o}}) are the unique solutions to (2.2) with θ\theta and θ=0\theta=0, respectively. As a result, it holds that

logVθVto¯=γ(X^tθXto¯)+(YtθYto¯),πθπo¯=σ(ZθZo¯)+σ0(Z0,θZ0,o¯)(1γ)(σ2+(σ0)2).\begin{split}\log\frac{V^{\theta}}{V_{t}^{\bar{o}}}=&~{}\gamma(\widehat{X}^{\theta}_{t}-X^{\bar{o}}_{t})+(Y^{\theta}_{t}-Y^{\bar{o}}_{t}),\qquad\pi^{\theta}-\pi^{\bar{o}}=\frac{\sigma(Z^{\theta}-Z^{\bar{o}})+\sigma^{0}(Z^{0,\theta}-Z^{0,\bar{o}})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}.\end{split}

Let (X¯θ,Y¯θ,Z¯θ,Z¯0,θ):=(X^θXo¯,YθYo¯,ZθZo¯,Z0,θZ0,o¯)(\overline{X}^{\theta},\overline{Y}^{\theta},\overline{Z}^{\theta},\overline{Z}^{0,\theta}):=(\widehat{X}^{\theta}-X^{\bar{o}},Y^{\theta}-Y^{\bar{o}},Z^{\theta}-Z^{\bar{o}},Z^{0,\theta}-Z^{0,\bar{o}}) be the unique solution to (3.3).

Our goal is to prove that for any n1n\geq 1 there exist (X^(i),Y(i),Z(i),Z0,(i))i=1,,n(\widehat{X}^{(i)},Y^{(i)},Z^{(i)},Z^{0,(i)})_{i=1,\cdots,n}, such that it holds that555In Section 4, θi\theta^{i} means θ\theta raised to the power of ii. It should not be confused with player ii’s competition parameter θi\theta^{i} in the NN-player game, e.g., (1.2).

X^θXo¯=X¯θ=i=1nθiX^(i)+o(θn),YθYo¯=Y¯θ=i=1nθiY(i)+o(θn),ZθZo¯=Z¯θ=i=1nθiZ(i)+o(θn),Z0,θZ0,o¯=Z¯0,θ=i=1nθiZ0,(i)+o(θn).\begin{split}\widehat{X}^{\theta}-X^{\bar{o}}=&~{}\overline{X}^{\theta}=\sum_{i=1}^{n}\theta^{i}\widehat{X}^{(i)}+o(\theta^{n}),\qquad Y^{\theta}-Y^{\bar{o}}=\overline{Y}^{\theta}=\sum_{i=1}^{n}\theta^{i}Y^{(i)}+o(\theta^{n}),\\ Z^{\theta}-Z^{\bar{o}}=&~{}\overline{Z}^{\theta}=\sum_{i=1}^{n}\theta^{i}Z^{(i)}+o(\theta^{n}),\qquad Z^{0,\theta}-Z^{0,\bar{o}}=\overline{Z}^{0,\theta}=\sum_{i=1}^{n}\theta^{i}Z^{0,(i)}+o(\theta^{n}).\end{split}

For φ=X^,Y,Z,Z0\varphi=\widehat{X},Y,Z,Z^{0}, define

φθ,(1)=φθφo¯θ=φ¯θθ,\varphi^{\theta,(1)}=\frac{\varphi^{\theta}-\varphi^{\bar{o}}}{\theta}=\frac{\overline{\varphi}^{\theta}}{\theta},

which implies

{dX^tθ,(1)={σtZtθ,(1)+σt0Zt0,θ,(1)(1γ)(σt2+(σt0)2)(ht11γ(ht+σtZto¯+σt0Zt0,o¯))(σtZ¯tθ+σt0Z¯t0,θ)(σtZtθ,(1)+σt0Zt0,θ,(1))2(1γ)2(σt2+(σt0)2)}dt+σtZtθ,(1)+σt0Zt0,θ,(1)(1γ)(σt2+(σt0)2)(σtdWt+σt0dWt0)dYtθ,(1)={(2Zto¯+Z¯tθ)Ztθ,(1)2+(2Zt0,o¯+Z¯t0,θ)Zt0,θ,(1)2+γ(2ht+2σtZto¯+2σt0Zt0,o¯+σtZ¯tθ+σt0Z¯t0,θ)(σtZtθ,(1)+σt0Zt0,θ,(1))2(1γ)(σt2+(σt0)2)}dtZtθ,(1)dWtZt0,θ,(1)dWt0,X^0θ,(1)=0,YTθ,(1)=γ𝔼[X¯Tθ|T0]γ𝔼[XTo¯|T0].\left\{\begin{split}d\widehat{X}^{\theta,(1)}_{t}=&~{}\bigg{\{}\frac{\sigma_{t}Z^{\theta,(1)}_{t}+\sigma^{0}_{t}Z^{0,\theta,(1)}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left(h_{t}-\frac{1}{1-\gamma}(h_{t}+\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t})\right)\\ &~{}-\frac{\left(\sigma_{t}\overline{Z}_{t}^{\theta}+\sigma^{0}_{t}\overline{Z}^{0,\theta}_{t}\right)\left(\sigma_{t}Z^{\theta,(1)}_{t}+\sigma^{0}_{t}Z^{0,\theta,(1)}_{t}\right)}{2(1-\gamma)^{2}(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\bigg{\}}\,dt\\ &~{}+\frac{\sigma_{t}Z^{\theta,(1)}_{t}+\sigma^{0}_{t}Z^{0,\theta,(1)}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}(\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t})\\ -dY^{\theta,(1)}_{t}=&~{}\left\{\frac{(2Z^{\bar{o}}_{t}+\overline{Z}^{\theta}_{t})Z^{\theta,(1)}_{t}}{2}+\frac{(2Z^{0,\bar{o}}_{t}+\overline{Z}^{0,\theta}_{t})Z^{0,\theta,(1)}_{t}}{2}\right.\\ &~{}\left.+\frac{\gamma(2h_{t}+2\sigma_{t}Z^{\bar{o}}_{t}+2\sigma^{0}_{t}Z^{0,\bar{o}}_{t}+\sigma_{t}\overline{Z}^{\theta}_{t}+\sigma^{0}_{t}\overline{Z}^{0,\theta}_{t})(\sigma_{t}Z^{\theta,(1)}_{t}+\sigma^{0}_{t}Z^{0,\theta,(1)}_{t})}{2(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right\}\,dt\\ &~{}-Z^{\theta,(1)}_{t}\,dW_{t}-Z^{0,\theta,(1)}_{t}\,dW^{0}_{t},\\ \widehat{X}^{\theta,(1)}_{0}=&~{}0,~{}Y^{\theta,(1)}_{T}=-\gamma\mathbb{E}[\overline{X}^{\theta}_{T}|\mathcal{F}^{0}_{T}]-\gamma\mathbb{E}[X^{\bar{o}}_{T}|\mathcal{F}^{0}_{T}].\end{split}\right. (4.1)

We now establish the convergence of (X^θ,(1),Yθ,(1),Zθ,(1),Z0,θ,(1))(\widehat{X}^{\theta,(1)},Y^{\theta,(1)},Z^{\theta,(1)},Z^{0,\theta,(1)}) in a suitable sense as θ0\theta\rightarrow 0. Let the candidate limit of (4.1) satisfy

{dX^t(1)=σtZt(1)+σt0Zt0,(1)(1γ)(σt2+(σt0)2)(ht11γ(ht+σtZto¯+σt0Zt0,o¯))dt+σtZt(1)+σt0Zt0,(1)(1γ)(σt2+(σt0)2)(σtdWt+σt0dWt0)dYt(1)={Zto¯Zt(1)+Zt0,o¯Zt0,(1)+γ(ht+σtZto¯+σt0Zt0,o¯)(σtZt(1)+σt0Zt0,(1))(1γ)(σt2+(σt0)2)}dtZt(1)dWtZt0,(1)dWt0,X^0(1)=0,YT(1)=γ𝔼[XTo¯|T0].\left\{\begin{split}d\widehat{X}^{(1)}_{t}=&~{}\frac{\sigma_{t}Z^{(1)}_{t}+\sigma^{0}_{t}Z^{0,(1)}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left(h_{t}-\frac{1}{1-\gamma}(h_{t}+\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t})\right)\,dt\\ &~{}+\frac{\sigma_{t}Z^{(1)}_{t}+\sigma^{0}_{t}Z^{0,(1)}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}(\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t})\\ -dY^{(1)}_{t}=&~{}\left\{Z^{\bar{o}}_{t}Z^{(1)}_{t}+Z^{0,\bar{o}}_{t}Z^{0,(1)}_{t}\right.\\ &~{}\left.+\frac{\gamma(h_{t}+\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t})(\sigma_{t}Z^{(1)}_{t}+\sigma^{0}_{t}Z^{0,(1)}_{t})}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}})\right\}\,dt\\ &~{}-Z^{(1)}_{t}\,dW_{t}-Z^{0,(1)}_{t}\,dW^{0}_{t},\\ \widehat{X}^{(1)}_{0}=&~{}0,~{}Y^{(1)}_{T}=-\gamma\mathbb{E}[X^{\bar{o}}_{T}|\mathcal{F}^{0}_{T}].\end{split}\right. (4.2)

The following lemma establishes the wellposedness result of (4.2) and the convergence from (4.1) to (4.2). In particular, the first-order approximation of the FBSDE is obtained.

Lemma 4.1.

Let Assumption 1 hold.

(1) There exists a unique (X^(1),Y(1),Z(1),Z0,(1))p>1Sp×p>1Sp×p>1Mp×p>1Mp(\widehat{X}^{(1)},Y^{(1)},Z^{(1)},Z^{0,(1)})\in\bigcap\limits_{p>1}S^{p}\times\bigcap\limits_{p>1}S^{p}\times\bigcap\limits_{p>1}M^{p}\times\bigcap\limits_{p>1}M^{p} satisfying (4.2);

(2) For each p>1p>1, the following convergence holds

limθ0(X^θ,(1)X^(1)Sp+Yθ,(1)Y(1)Sp+Zθ,(1)Z(1)Mp+Z0,θZ0,(1)Mp)=0.\lim\limits_{\theta\rightarrow 0}\left(\|\widehat{X}^{\theta,(1)}-\widehat{X}^{(1)}\|_{S^{p}}+\|Y^{\theta,(1)}-Y^{(1)}\|_{S^{p}}+\|Z^{\theta,(1)}-Z^{(1)}\|_{M^{p}}+\|Z^{0,\theta}-Z^{0,(1)}\|_{M^{p}}\right)=0. (4.3)
Proof.

(1). Recall o¯\mathbb{P}^{\bar{o}} defined in (3.18). Then the backward dynamics in (4.2) can be rewritten as

dYt(1)=Zt(1)dW~t+Zt0,(1)dW~t0,YT(1)=γ𝔼[XTo¯|T0],dY^{(1)}_{t}=Z^{(1)}_{t}\,d\widetilde{W}_{t}+Z^{0,(1)}_{t}\,d\widetilde{W}^{0}_{t},\qquad Y^{(1)}_{T}=-\gamma\mathbb{E}[X^{\bar{o}}_{T}|\mathcal{F}^{0}_{T}],

where Wo¯=(W~,W~0)W^{\bar{o}}=(\widetilde{W},\widetilde{W}^{0})^{\top} is defined in (3.21). In order to apply [1, Theorem 3.5], it suffices to prove that for each p>1p>1

𝔼o¯[(𝔼[XTo¯|T0])p]<.\mathbb{E}^{\mathbb{P}^{\bar{o}}}[(\mathbb{E}[X^{\bar{o}}_{T}|\mathcal{F}^{0}_{T}])^{p}]<\infty.

In fact, by the notation \mathcal{M} in (3.19) and pp_{\mathcal{M}} in Appendix B, for any p>1p>1 and any q(1,p)q\in(1,p_{\mathcal{M}})

𝔼o¯[(𝔼[|XTo¯||T0])p]=𝔼[T()(𝔼[|XTo¯||T0])p](𝔼[|T()|q])1q(𝔼[(𝔼[|XTo¯||T0])pq])1q(by Hölder’s inequality, 1q+1q=1)K1q(q,BMO)(𝔼[(𝔼[|XTo¯||T0])pq])1q( by Lemma B.1 )<(by Proposition 3.1).\begin{split}&~{}\mathbb{E}^{\mathbb{P}^{\bar{o}}}[(\mathbb{E}[|X^{\bar{o}}_{T}||\mathcal{F}^{0}_{T}])^{p}]=\mathbb{E}\left[\mathcal{E}_{T}(\mathcal{M})(\mathbb{E}[|X^{\bar{o}}_{T}||\mathcal{F}^{0}_{T}])^{p}\right]\\ \leq&~{}\left(\mathbb{E}[|\mathcal{E}_{T}(\mathcal{M})|^{q}]\right)^{\frac{1}{q}}\left(\mathbb{E}\left[\left(\mathbb{E}[|X^{\bar{o}}_{T}||\mathcal{F}^{0}_{T}]\right)^{pq^{*}}\right]\right)^{\frac{1}{q^{*}}}\qquad(\textrm{by H\"{o}lder's inequality, }~{}\frac{1}{q}+\frac{1}{q^{*}}=1)\\ \leq&~{}K^{\frac{1}{q}}(q,\|\mathcal{M}\|_{BMO})\left(\mathbb{E}\left[\left(\mathbb{E}[|X^{\bar{o}}_{T}||\mathcal{F}^{0}_{T}]\right)^{pq^{*}}\right]\right)^{\frac{1}{q^{*}}}\qquad(\textrm{ by Lemma \ref{lem:reverse} })\\ <&~{}\infty\qquad\qquad(\textrm{by Proposition }\ref{lem:YZ-o}).\end{split} (4.4)

Therefore, by [1, Theorem 3.5], there exists a unique (Y(1),Z(1),Z0,(1))So¯2×p>1Mo¯p×p>1Mo¯p(Y^{(1)},Z^{(1)},Z^{0,(1)})\in S^{2}_{\mathbb{P}^{\bar{o}}}\times\bigcap\limits_{p>1}M^{p}_{\mathbb{P}^{\bar{o}}}\times\bigcap\limits_{p>1}M^{p}_{\mathbb{P}^{\bar{o}}}, which implies that (Y(1),Z(1),Z0,(1))S2×p>1Mp×p>1Mp(Y^{(1)},Z^{(1)},Z^{0,(1)})\in S^{2}\times\bigcap\limits_{p>1}M^{p}\times\bigcap\limits_{p>1}M^{p}. Indeed, by the definition of o¯\mathbb{P}^{\bar{o}} in (3.18), it holds that

ddo¯=(0s𝑑Wso¯).\frac{d\mathbb{P}}{d\mathbb{P}^{\bar{o}}}=\mathcal{E}\left(-\int_{0}^{\cdot}\mathcal{M}_{s}\,dW^{\bar{o}}_{s}\right).

Thus, by the same argument as (4.4), we have for any p>1p>1

𝔼[(0T(Zs(1))2𝑑s)p2]=𝔼o¯[T(0s𝑑Wso¯)(0T(Zs(1))2𝑑s)p2]<.\begin{split}&~{}\mathbb{E}\left[\left(\int_{0}^{T}(Z^{(1)}_{s})^{2}\,ds\right)^{\frac{p}{2}}\right]=\mathbb{E}^{\mathbb{P}^{\bar{o}}}\left[\mathcal{E}_{T}\left(-\int_{0}^{\cdot}\mathcal{M}_{s}\,dW^{\bar{o}}_{s}\right)\left(\int_{0}^{T}(Z^{(1)}_{s})^{2}\,ds\right)^{\frac{p}{2}}\right]<\infty.\end{split}

The same result holds for Z0,(1)Z^{0,(1)}. By the dynamics of Y(1)Y^{(1)} and standard estimate, we have Y(1)p>1SpY^{(1)}\in\bigcap\limits_{p>1}S^{p}.

(2). Let Δφθ=φθ,(1)φ(1)\Delta\varphi^{\theta}=\varphi^{\theta,(1)}-\varphi^{(1)} for φ=X^,Y,Z,Z0\varphi=\widehat{X},Y,Z,Z^{0}. Then, (ΔYθ,ΔZθ,ΔZ0,θ)(\Delta Y^{\theta},\Delta Z^{\theta},\Delta Z^{0,\theta}) satisfies

{dΔYtθ={12Z¯tθZtθ,(1)+12Z¯t0,θZt0,θ,(1)+γ(σtZtθ,(1)+σt0Zt0,θ,(1))(σtZ¯tθ+σt0Z¯t0,θ)2(1γ)(σt2+(σt0)2)+(Zto¯+γσt(ht+σtZto¯+σt0Zt0,o¯)(1γ)(σt2+(σt0)2))ΔZtθ+(Z0,o¯+γσt0(ht+σtZto¯+σt0Zt0,o¯)(1γ)(σt2+(σt0)2))ΔZt0,θ}dtΔZθtdWtΔZ0,θdW0t,ΔYTθ=γ𝔼[X¯Tθ|T0].\left\{\begin{split}-d\Delta Y^{\theta}_{t}=&~{}\Bigg{\{}\frac{1}{2}\overline{Z}^{\theta}_{t}Z^{\theta,(1)}_{t}+\frac{1}{2}\overline{Z}^{0,\theta}_{t}Z^{0,\theta,(1)}_{t}+\frac{\gamma\left(\sigma_{t}Z^{\theta,(1)}_{t}+\sigma^{0}_{t}Z^{0,\theta,(1)}_{t}\right)\left(\sigma_{t}\overline{Z}^{\theta}_{t}+\sigma^{0}_{t}\overline{Z}^{0,\theta}_{t}\right)}{2(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\\ &~{}+\left(Z^{\bar{o}}_{t}+\frac{\gamma\sigma_{t}(h_{t}+\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t})}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right)\Delta Z^{\theta}_{t}\\ &~{}+\left(Z^{0,\bar{o}}+\frac{\gamma\sigma^{0}_{t}(h_{t}+\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t})}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right)\Delta Z^{0,\theta}_{t}\Bigg{\}}\,dt-\Delta Z^{\theta}_{t}\,dW_{t}-\Delta Z^{0,\theta}\,dW^{0}_{t},\\ \Delta Y^{\theta}_{T}=&~{}-\gamma\mathbb{E}[\overline{X}^{\theta}_{T}|\mathcal{F}^{0}_{T}].\end{split}\right. (4.5)

The conditions in [1, Corollary 3.4] are satisfied. Indeed, by Corollary 3.8 and the energy inequality (see [20, P. 26]), it holds that for each p>1p>1, 𝔼[(𝔼[X¯Tθ|T0])p]<\mathbb{E}\left[\left(\mathbb{E}[\overline{X}^{\theta}_{T}|\mathcal{F}^{0}_{T}]\right)^{p}\right]<\infty. The same reason, together with the result in (1), implies that for each p>1p>1 the non-homogenous term in the driver of ΔYθ\Delta Y^{\theta} is in MpM^{p}. Thus, [1, Assumption A.3] is satisfied. [1, Assumption A.2] holds due to Corollary 3.8 and Proposition 3.1. By [1, Corollary 3.4], it holds that for each p>1p>1 there exists p>1p^{\prime}>1 and p′′>1p^{\prime\prime}>1, such that

ΔYθSp+ΔZθMp+ΔZ0,θMpC{𝔼[|X¯Tθ|p]+(Zθ,(1)Mp+Z0,θ,(1)Mp)(Z¯θMp+Z¯0,θMp)}×{1+Z0,o¯+γσ0(h+σZo¯+σ0Z0,o¯)(1γ)(σ2+(σ0)2)Mp′′+Zo¯+γσ(h+σZo¯+σ0Z0,o¯)(1γ)(σ2+(σ0)2)Mp′′}0,(by Corollary 3.8)\begin{split}&~{}\|\Delta Y^{\theta}\|_{S^{p}}+\|\Delta Z^{\theta}\|_{M^{p}}+\|\Delta Z^{0,\theta}\|_{M^{p}}\\ \leq&~{}C\left\{\mathbb{E}\left[|\overline{X}^{\theta}_{T}|^{p^{\prime}}\right]+(\|Z^{\theta,(1)}\|_{M^{p^{\prime}}}+\|Z^{0,\theta,(1)}\|_{M^{p^{\prime}}})(\|\overline{Z}^{\theta}\|_{M^{p^{\prime}}}+\|\overline{Z}^{0,\theta}\|_{M^{p^{\prime}}})\right\}\\ &~{}\times\Bigg{\{}1+\left\|Z^{0,\bar{o}}+\frac{\gamma\sigma^{0}(h+\sigma Z^{\bar{o}}+\sigma^{0}Z^{0,\bar{o}})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right\|_{M^{p^{\prime\prime}}}+\left\|Z^{\bar{o}}+\frac{\gamma\sigma(h+\sigma Z^{\bar{o}}+\sigma^{0}Z^{0,\bar{o}})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right\|_{M^{p^{\prime\prime}}}\Bigg{\}}\\ \rightarrow&~{}0,\qquad(\textrm{by Corollary }\ref{coro:wellpos-FBSDEs})\end{split}

where CC does not depend on θ\theta. ∎

In order to establish higher order approximation, we define

{K(θ,n1),(θ,1):=(σZθ,(n1)+σ0Z0,θ,(n1))(σZθ,(1)+σ0Z0,θ,(1))2(σ2+(σ0)2),K(i),(θ,ni):=(σZ(i)+σ0Z0,(i))(σZθ,(ni)+σ0Z0,θ,(ni))2(σ2+(σ0)2),K(i),(ni):=(σZ(i)+σ0Z0,(i))(σZ(ni)+σ0Z0,(ni))2(σ2+(σ0)2).\left\{\begin{split}K^{(\theta,n-1),(\theta,1)}:=&~{}\frac{\left(\sigma Z^{\theta,(n-1)}+\sigma^{0}Z^{0,\theta,(n-1)}\right)\left(\sigma Z^{\theta,(1)}+\sigma^{0}Z^{0,\theta,(1)}\right)}{2(\sigma^{2}+(\sigma^{0})^{2})},\\ K^{(i),(\theta,n-i)}:=&~{}\frac{\left(\sigma Z^{(i)}+\sigma^{0}Z^{0,(i)}\right)\left(\sigma Z^{\theta,(n-i)}+\sigma^{0}Z^{0,\theta,(n-i)}\right)}{2(\sigma^{2}+(\sigma^{0})^{2})},\\ K^{(i),(n-i)}:=&~{}\frac{\left(\sigma Z^{(i)}+\sigma^{0}Z^{0,(i)}\right)\left(\sigma Z^{(n-i)}+\sigma^{0}Z^{0,(n-i)}\right)}{2(\sigma^{2}+(\sigma^{0})^{2})}.\end{split}\right.

Based on the above notation, we now introduce the candidate (X^(n),Y(n),Z(n),Z0,(n))(\widehat{X}^{(n)},Y^{(n)},Z^{(n)},Z^{0,(n)}), n2n\geq 2. Intuitively, (X^(n+1),Y(n+1),Z(n+1),Z0,(n+1))(\widehat{X}^{(n+1)},Y^{(n+1)},Z^{(n+1)},Z^{0,(n+1)}) is the limit of

(X^θ,(n)X^(n)θ,Yθ,(n)Y(n)θ,Zθ,(n)Z(n)θ,Z0,θ,(n)Z0,(n)θ):=(X^θ,(n+1),Yθ,(n+1),Zθ,(n+1),Z0,θ,(n+1)).\left(\frac{\widehat{X}^{\theta,(n)}-\widehat{X}^{(n)}}{\theta},\frac{Y^{\theta,(n)}-Y^{(n)}}{\theta},\frac{Z^{\theta,(n)}-Z^{(n)}}{\theta},\frac{Z^{0,\theta,(n)}-Z^{0,(n)}}{\theta}\right):=(\widehat{X}^{\theta,(n+1)},Y^{\theta,(n+1)},Z^{\theta,(n+1)},Z^{0,\theta,(n+1)}).

Thus, for each n2n\geq 2, we introduce two (decoupled) FBSDE systems iteratively

{dX^tθ,(n)={σtZtθ,(n)+σt0Zt0,θ,(n)(1γ)(σt2+(σt0)2){ht11γ(ht+σtZto¯+σt0Zt0,o¯)}Kt(θ,n1),(θ,1)(1γ)2j=1n21(1γ)2Kt(j),(θ,nj)}dt+σtZtθ,(n)+σt0Zt0,θ,(n)(1γ)(σt2+(σt0)2)(σtdWt+σt0dWt0)dYtθ,(n)={γ(σtZtθ,(n)+σt0Zt0,θ,(n))(1γ)(σt2+(σt0)2)(σtZto¯+σt0Zt0,o¯+ht)+γ1γKt(θ,n1),(θ,1)+j=1n2γ1γKt(j),(θ,nj)+Zto¯Ztθ,(n)+Zt0,o¯Zt0,θ,(n)+12Ztθ,(n1)Ztθ,(1)+12Zt0,θ,(n1)Zt0,θ,(1)+12j=1n2Zt(j)Ztθ,(nj)+12j=1n2Zt0,(j)Zt0,θ,(nj)}dtZθ,(n)tdWtZ0,θ,(n)tdW0tX^0θ,(n)=0,YTθ,(n)=γ𝔼[X^Tθ,(n1)|T0]\left\{\begin{split}d\widehat{X}^{\theta,(n)}_{t}=&~{}\left\{\frac{\sigma_{t}Z^{\theta,(n)}_{t}+\sigma^{0}_{t}Z^{0,\theta,(n)}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left\{h_{t}-\frac{1}{1-\gamma}(h_{t}+\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t})\right\}-\frac{K^{(\theta,n-1),(\theta,1)}_{t}}{(1-\gamma)^{2}}\right.\\ &~{}\left.-\sum_{j=1}^{n-2}\frac{1}{(1-\gamma)^{2}}K^{(j),(\theta,n-j)}_{t}\right\}\,dt+\frac{\sigma_{t}Z^{\theta,(n)}_{t}+\sigma^{0}_{t}Z^{0,\theta,(n)}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}(\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t})\\ -dY^{\theta,(n)}_{t}=&~{}\left\{\frac{\gamma\left(\sigma_{t}Z^{\theta,(n)}_{t}+\sigma^{0}_{t}Z^{0,\theta,(n)}_{t}\right)}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left(\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t}+h_{t}\right)+\frac{\gamma}{1-\gamma}K^{(\theta,n-1),(\theta,1)}_{t}\right.\\ &~{}+\sum_{j=1}^{n-2}\frac{\gamma}{1-\gamma}K^{(j),(\theta,n-j)}_{t}+Z^{\bar{o}}_{t}Z^{\theta,(n)}_{t}+Z^{0,\bar{o}}_{t}Z^{0,\theta,(n)}_{t}\\ &~{}+\frac{1}{2}Z^{\theta,(n-1)}_{t}Z^{\theta,(1)}_{t}+\frac{1}{2}Z^{0,\theta,(n-1)}_{t}Z^{0,\theta,(1)}_{t}\\ &~{}\left.+\frac{1}{2}\sum_{j=1}^{n-2}Z^{(j)}_{t}Z^{\theta,(n-j)}_{t}+\frac{1}{2}\sum_{j=1}^{n-2}Z^{0,(j)}_{t}Z^{0,\theta,(n-j)}_{t}\right\}\,dt-Z^{\theta,(n)}_{t}\,dW_{t}-Z^{0,\theta,(n)}_{t}\,dW^{0}_{t}\\ \widehat{X}^{\theta,(n)}_{0}=&~{}0,~{}Y^{\theta,(n)}_{T}=-\gamma\mathbb{E}[\widehat{X}^{\theta,(n-1)}_{T}|\mathcal{F}^{0}_{T}]\end{split}\right. (4.6)

and

{dX^t(n)=(σtZt(n)+σt0Zt0,(n)(1γ)(σt2+(σt0)2){ht11γ(ht+σtZto¯+σt0Zt0,o¯)}j=1n11(1γ)2Kt(j),(nj))dt+(σtZt(n)+σt0Zt0,(n))(1γ)(σt2+(σt0)2)(σtdWt+σt0dWt0)dYt(n)={γ(σtZt(n)+σt0Zt0,(n))(1γ)(σt2+(σt0)2)(σtZto¯+σt0Zt0,o¯+ht)+j=1n1γ1γKt(j),(nj)+Zto¯Zt(n)+Zt0,o¯Zt0,(n)+12j=1n1Zt(j)Zt(nj)+12j=1n1Zt0,(j)Zt0,(nj)}dtZt(n)dWtZt0,(n)dWt0X^0(n)=0,YT(n)=γ𝔼[X^T(n1)|T0].\left\{\begin{split}d\widehat{X}^{(n)}_{t}=&~{}\Bigg{(}\frac{\sigma_{t}Z^{(n)}_{t}+\sigma^{0}_{t}Z^{0,(n)}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left\{h_{t}-\frac{1}{1-\gamma}(h_{t}+\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t})\right\}\\ &~{}-\sum_{j=1}^{n-1}\frac{1}{(1-\gamma)^{2}}K_{t}^{(j),(n-j)}\Bigg{)}\,dt+\frac{\left(\sigma_{t}Z^{(n)}_{t}+\sigma^{0}_{t}Z^{0,(n)}_{t}\right)}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\Big{(}\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t}\Big{)}\\ -dY^{(n)}_{t}=&~{}\left\{\frac{\gamma\left(\sigma_{t}Z^{(n)}_{t}+\sigma^{0}_{t}Z^{0,(n)}_{t}\right)}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left(\sigma_{t}Z^{\bar{o}}_{t}+\sigma^{0}_{t}Z^{0,\bar{o}}_{t}+h_{t}\right)+\sum_{j=1}^{n-1}\frac{\gamma}{1-\gamma}K_{t}^{(j),(n-j)}\right.\\ &~{}\left.+Z^{\bar{o}}_{t}Z^{(n)}_{t}+Z^{0,\bar{o}}_{t}Z^{0,(n)}_{t}+\frac{1}{2}\sum_{j=1}^{n-1}Z^{(j)}_{t}Z^{(n-j)}_{t}+\frac{1}{2}\sum_{j=1}^{n-1}Z^{0,(j)}_{t}Z^{0,(n-j)}_{t}\right\}\,dt\\ &~{}-Z^{(n)}_{t}\,dW_{t}-Z^{0,(n)}_{t}\,dW^{0}_{t}\\ \widehat{X}^{(n)}_{0}=&~{}0,~{}Y^{(n)}_{T}=-\gamma\mathbb{E}[\widehat{X}^{(n-1)}_{T}|\mathcal{F}^{0}_{T}].\end{split}\right. (4.7)

In the FBSDEs (4.6) and (4.7), we use the convention that the sum vanishes whenever the lower bound of the index is larger than the upper bound of the index.

The next theorem is our main result in this section, which establishes the expansion result of the FBSDE, and thus the expansion result of the value function and the optimal investment.

Theorem 4.2.

Let Assumption 1 hold. We have for any n1n\geq 1

X^θ=Xo¯+i=1nθiX^(i)+o(θn),Yθ=Yo¯+i=1nθiY(i)+o(θn),Zθ=Zo¯+i=1nθiZ(i)+o(θn),Z0,θ=Z0,o¯+i=1nθiZ0,(i)+o(θn),\begin{split}\widehat{X}^{\theta}=&~{}X^{\bar{o}}+\sum_{i=1}^{n}\theta^{i}\widehat{X}^{(i)}+o(\theta^{n}),\qquad Y^{\theta}=Y^{\bar{o}}+\sum_{i=1}^{n}\theta^{i}Y^{(i)}+o(\theta^{n}),\\ Z^{\theta}=&~{}Z^{\bar{o}}+\sum_{i=1}^{n}\theta^{i}Z^{(i)}+o(\theta^{n}),\qquad Z^{0,\theta}=Z^{0,\bar{o}}+\sum_{i=1}^{n}\theta^{i}Z^{0,(i)}+o(\theta^{n}),\end{split} (4.8)

where (X^(n),Y(n),Z(n),Z0,(n))(\widehat{X}^{(n)},Y^{(n)},Z^{(n)},Z^{0,(n)}) is the unique solution to (4.7). In particular,

logVθVo¯=i=1nθi(γX^(i)+Y(i))+o(θn),πθπo¯=σi=1nθiZ(i)+σ0i=1nθiZ0,(i)(1γ)(σ2+(σ0)2)+o(θn).\log\frac{V^{\theta}}{V^{\bar{o}}}=\sum_{i=1}^{n}\theta^{i}\left(\gamma\widehat{X}^{(i)}+Y^{(i)}\right)+o(\theta^{n}),\qquad\pi^{\theta}-\pi^{\bar{o}}=\frac{\sigma\sum_{i=1}^{n}\theta^{i}Z^{(i)}+\sigma^{0}\sum_{i=1}^{n}\theta^{i}Z^{0,(i)}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}+o(\theta^{n}).
Proof.

The proof is done by induction. Lemma 4.1 implies that

X^θ=Xo¯+θX^(1)+o(θ),Yθ=Yo¯+θY(1)+o(θ),Zθ=Zo¯+θZ(1)+o(θ),Z0,θ=Z0,o¯+θZ0,(1)+o(θ),\widehat{X}^{\theta}=X^{\bar{o}}+\theta\widehat{X}^{(1)}+o(\theta),\quad Y^{\theta}=Y^{\bar{o}}+\theta Y^{(1)}+o(\theta),\quad Z^{\theta}=Z^{\bar{o}}+\theta Z^{(1)}+o(\theta),\quad Z^{0,\theta}=Z^{0,\bar{o}}+\theta Z^{0,(1)}+o(\theta),

which verifies (4.8) for n=1n=1. Furthermore, by definition, it holds that φθ,(1)=φθφo¯θ\varphi^{\theta,(1)}=\frac{\varphi^{\theta}-\varphi^{\bar{o}}}{\theta}, φ=X^,Y,Z,Z0\varphi=\widehat{X},Y,Z,Z^{0}.

Now assume that the result holds for n2n\geq 2, i.e., there exists a unique tuple (X^θ,(n),Yθ,(n),Zθ,(n),Z0,θ,(n))p>1Sp×p>1Sp×p>1Mp×p>1Mp(\widehat{X}^{\theta,(n)},Y^{\theta,(n)},Z^{\theta,(n)},Z^{0,\theta,(n)})\in\bigcap\limits_{p>1}S^{p}\times\bigcap\limits_{p>1}S^{p}\times\bigcap\limits_{p>1}M^{p}\times\bigcap\limits_{p>1}M^{p} and a unique tuple (X^(n),Y(n),Z(n),Z0,(n))p>1Sp×p>1Sp×p>1Mp×p>1Mp(\widehat{X}^{(n)},Y^{(n)},Z^{(n)},Z^{0,(n)})\in\bigcap\limits_{p>1}S^{p}\times\bigcap\limits_{p>1}S^{p}\times\bigcap\limits_{p>1}M^{p}\times\bigcap\limits_{p>1}M^{p} satisfying (4.6) and (4.7), respectively, and for each p>1p>1

limθ0(X^θ,(n)X^(n)Sp+Yθ,(n)Y(n)Sp+Zθ,(n)Z(n)Mp+Z0,θ,(n)Z0,(n)Mp)=0,\lim_{\theta\rightarrow 0}\left(\|\widehat{X}^{\theta,(n)}-\widehat{X}^{(n)}\|_{S^{p}}+\|Y^{\theta,(n)}-Y^{(n)}\|_{S^{p}}+\|Z^{\theta,(n)}-Z^{(n)}\|_{M^{p}}+\|Z^{0,\theta,(n)}-Z^{0,(n)}\|_{M^{p}}\right)=0, (4.9)

and

φθ,(n)=φθφo¯i=1n1θiφ(i)θn,φ=X^,Y,Z,Z0.\varphi^{\theta,(n)}=\frac{\varphi^{\theta}-\varphi^{\bar{o}}-\sum_{i=1}^{n-1}\theta^{i}\varphi^{(i)}}{\theta^{n}},\qquad\varphi=\widehat{X},Y,Z,Z^{0}. (4.10)

It remains to be shown that the above results also hold for n+1n+1. Define

φθ,(n+1)=φθ,(n)φ(n)θ,φ=X^,Y,Z,Z0,\varphi^{\theta,(n+1)}=\frac{\varphi^{\theta,(n)}-\varphi^{(n)}}{\theta},\quad\varphi=\widehat{X},Y,Z,Z^{0},

which implies by (4.10)

φθ,(n+1)=φθφo¯i=1nθiφ(i)θn+1,φ=X^,Y,Z,Z0.\varphi^{\theta,(n+1)}=\frac{\varphi^{\theta}-\varphi^{\bar{o}}-\sum_{i=1}^{n}\theta^{i}\varphi^{(i)}}{\theta^{n+1}},\qquad\varphi=\widehat{X},Y,Z,Z^{0}.

It can also be verified directly that (X^θ,(n+1),Yθ,(n+1),Zθ,(n+1),Z0,θ,(n+1))(\widehat{X}^{\theta,(n+1)},Y^{\theta,(n+1)},Z^{\theta,(n+1)},Z^{0,\theta,(n+1)}) satisfies (4.6) with nn replaced by n+1n+1. By the argument in the proof of Lemma 4.1(1), (4.7) is wellposed with nn replaced by n+1n+1. Denote by (X^(n+1),Y(n+1),Z(n+1),Z0,(n+1))(\widehat{X}^{(n+1)},Y^{(n+1)},Z^{(n+1)},Z^{0,(n+1)}) the unique solution to (4.7). By (4.9) and the same argument in the proof of Lemma 4.1(2), we have for each p>1p>1

limθ0(X^θ,(n+1)X^(n+1)Sp+Yθ,(n+1)Y(n+1)Sp+Zθ,(n+1)Z(n+1)Mp+Z0,θ,(n+1)Z0,(n+1)Mp)=0.\begin{split}\lim_{\theta\rightarrow 0}\Big{(}&~{}\|\widehat{X}^{\theta,(n+1)}-\widehat{X}^{(n+1)}\|_{S^{p}}+\|Y^{\theta,(n+1)}-Y^{(n+1)}\|_{S^{p}}\\ &~{}+\|Z^{\theta,(n+1)}-Z^{(n+1)}\|_{M^{p}}+\|Z^{0,\theta,(n+1)}-Z^{0,(n+1)}\|_{M^{p}}\Big{)}=0.\end{split}

Thus, there exists Δθ\Delta_{\theta} with limθ0Δθ=0\lim_{\theta\rightarrow 0}\Delta_{\theta}=0 such that

φθ,(n+1)=φ(n+1)+Δθ,φ=X^,Y,Z,Z0,\varphi^{\theta,(n+1)}=\varphi^{(n+1)}+\Delta_{\theta},\qquad\varphi=\widehat{X},Y,Z,Z^{0},

which implies that by the definition of φθ,(n+1)\varphi^{\theta,(n+1)}

φθ,(n)=φ(n)+θφ(n+1)+θΔθ.\varphi^{\theta,(n)}=\varphi^{(n)}+\theta\varphi^{(n+1)}+\theta\Delta_{\theta}.

By the induction assumption (4.10), it holds that

φθ=φo¯+i=1n1θiφ(i)+θnφ(n)+θn+1φ(n+1)+θn+1Δθ,\varphi^{\theta}=\varphi^{\bar{o}}+\sum_{i=1}^{n-1}\theta^{i}\varphi^{(i)}+\theta^{n}\varphi^{(n)}+\theta^{n+1}\varphi^{(n+1)}+\theta^{n+1}\Delta_{\theta},

which implies (4.8) with n+1n+1. ∎

5 Comments on NN-Player Games

In this section, we comment on the NN-player game (1.2)-(1.3) introduced in the Introduction. By the same argument as in Proposition 2.1, the NE of the NN-player game is equivalent to a multidimensional FBSDE, whose wellposedness can be obtained by the same argument in Section 3, and poses no essential difference other than notational complexity. Therefore, we will omit the detailed proof for the solvability of the FBSDE with general market parameters, but instead, we discuss the case in which all market parameters are deterministic functions and connect our result with the NN-player games studied in [8, 9, 22].

By the same argument as in Proposition 2.1, the NE (π1,,,πN,)(\pi^{1,*},\cdots,\pi^{N,*}) of the NN-player game with power utility functions (1.2)-(1.3) is equivalent to the following multidimensional FBSDE

{dX^ti=hti+σtiZtii+σti0Zti0(1γi)((σti)2+(σti0)2){(htihti+σtiZtii+σti0Zti02(1γi))dt+σtidWti+σti0dWt0},dYti={(Ztii)2+(Zti0)22+ji(Ztij)22+γi(hti+σtiZtii+σti0Zti0)22(1γi)((σti)2+(σti0)2)}dtZtiidWtiZti0dWt0jiZtijdWtj,X^0i=logxi,YTi=θiγiN1jiX^Tj,\left\{\begin{split}d\widehat{X}^{i}_{t}=&~{}\frac{h^{i}_{t}+\sigma^{i}_{t}Z^{ii}_{t}+\sigma^{i0}_{t}Z^{i0}_{t}}{(1-\gamma^{i})((\sigma^{i}_{t})^{2}+(\sigma^{i0}_{t})^{2})}\left\{\left(h^{i}_{t}-\frac{h^{i}_{t}+\sigma^{i}_{t}Z^{ii}_{t}+\sigma^{i0}_{t}Z^{i0}_{t}}{2(1-\gamma^{i})}\right)\,dt+\sigma^{i}_{t}\,dW^{i}_{t}+\sigma^{i0}_{t}\,dW^{0}_{t}\right\},\\ -dY^{i}_{t}=&~{}\left\{\frac{(Z^{ii}_{t})^{2}+(Z^{i0}_{t})^{2}}{2}+\frac{\sum_{j\neq i}(Z^{ij}_{t})^{2}}{2}+\frac{\gamma^{i}\left(h^{i}_{t}+\sigma^{i}_{t}Z^{ii}_{t}+\sigma^{i0}_{t}Z^{i0}_{t}\right)^{2}}{2(1-\gamma^{i})((\sigma^{i}_{t})^{2}+(\sigma^{i0}_{t})^{2})}\right\}\,dt\\ &~{}-Z^{ii}_{t}\,dW^{i}_{t}-Z^{i0}_{t}\,dW^{0}_{t}-\sum_{j\neq i}Z^{ij}_{t}\,dW^{j}_{t},\\ \widehat{X}^{i}_{0}=&~{}\log x^{i},~{}Y^{i}_{T}=-\frac{\theta^{i}\gamma^{i}}{N-1}\sum_{j\neq i}\widehat{X}^{j}_{T},\end{split}\right. (5.1)

with X^i=logXi\widehat{X}^{i}=\log X^{i} denoting the logarithm of the wealth process, and

πi,=hi+σiZii+σi0Zi0(1γi)((σi)2+(σi0)2).\pi^{i,*}=\frac{h^{i}+\sigma^{i}Z^{ii}+\sigma^{i0}Z^{i0}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}. (5.2)

The proof of the wellposedness for (5.1) is the same as that for (2.2); we compare (5.1) with the system when θi=0\theta^{i}=0 and transform the resulting FBSDE to a BSDE by the approach in Proposition 3.3, followed by an a priori estimate and fixed point argument as in Lemma 3.5 and Theorem 3.6. Instead of the detailed proof, in the next theorem, we obtain the explicit expression of the NE when market parameters are deterministic.

Theorem 5.1.

When all of the coefficients hih^{i}, σi\sigma^{i} and σi0\sigma^{i0}, i=1,,Ni=1,\cdots,N, are deterministic functions of time, the unique NE is (π1,,,πN,)(\pi^{1,*},\cdots,\pi^{N,*}), where the unique bounded optimal strategy for player ii is

πti,=hti(1γi)(σti)2+(1γiθiγiN1)(σti0)2θiγiσti0(1γi)(σti)2+(1γiθiγiN1)(σti0)2φt(1),N1+φt(2),N,t[0,T],i=1,,N,\begin{split}\pi^{i,*}_{t}=&~{}\frac{h^{i}_{t}}{(1-\gamma^{i})(\sigma^{i}_{t})^{2}+\left(1-\gamma^{i}-\frac{\theta^{i}\gamma^{i}}{N-1}\right)(\sigma^{i0}_{t})^{2}}\\ &~{}-\frac{\theta^{i}\gamma^{i}\sigma^{i0}_{t}}{(1-\gamma^{i})(\sigma^{i}_{t})^{2}+\left(1-\gamma^{i}-\frac{\theta^{i}\gamma^{i}}{N-1}\right)(\sigma^{i0}_{t})^{2}}\frac{\varphi^{(1),N}_{t}}{1+\varphi^{(2),N}_{t}},\quad t\in[0,T],\quad i=1,\cdots,N,\end{split} (5.3)

where

φ(1),N=1N1j=1Nhjσj0(1γj)(σj)2+(1γjθjγjN1)(σj0)2\begin{split}\varphi^{(1),N}=\frac{1}{N-1}\sum_{j=1}^{N}\frac{h^{j}\sigma^{j0}}{(1-\gamma^{j})(\sigma^{j})^{2}+\left(1-\gamma^{j}-\frac{\theta^{j}\gamma^{j}}{N-1}\right)(\sigma^{j0})^{2}}\end{split}

and

φ(2),N=1N1j=1Nθjγj(σj0)2(1γj)(σj)2+(1γjθjγjN1)(σj0)2.\varphi^{(2),N}=\frac{1}{N-1}\sum_{j=1}^{N}\frac{\theta^{j}\gamma^{j}(\sigma^{j0})^{2}}{(1-\gamma^{j})(\sigma^{j})^{2}+\left(1-\gamma^{j}-\frac{\theta^{j}\gamma^{j}}{N-1}\right)(\sigma^{j0})^{2}}.

In addition, if {(xi,θi,γi,hi,σi,σi0)}i=1N\{(x^{i},\theta^{i},\gamma^{i},h^{i},\sigma^{i},\sigma^{i0})\}_{i=1}^{N} are realizations from independent copies of (x,θ,γ,h,σ,σ0)(x,\theta,\gamma,h,\sigma,\sigma^{0}) in Theorem 3.12, then (5.3) converges to (3.31).

Proof.

One can show that (5.1) admits at most one solution in (S2×S2×L×L×L)N(S^{2}\times S^{2}\times L^{\infty}\times L^{\infty}\times L^{\infty})^{N}. The unique bounded optimal strategy is constructed as follows. Let X^¯i=1N1jiX^j\overline{\widehat{X}}^{-i}=\frac{1}{N-1}\sum_{j\neq i}\widehat{X}^{j} and x^¯i=1N1jilog(xj)\overline{\widehat{x}}^{-i}=\frac{1}{N-1}\sum_{j\neq i}\log(x^{j}). By taking the average of the forward dynamics of (5.1), we get X^¯i\overline{\widehat{X}}^{-i}, and by taking X^¯i\overline{\widehat{X}}^{-i} into the backward dynamics of (5.1), it holds that

Yti=\displaystyle Y^{i}_{t}= θiγix^¯iθiγiN1ji0Thsj+σsjZsjj+σsj0Zsj0(1γj)((σsj)2+(σsj0)2)(hsjhsj+σsjZsjj+σsj0Zsj02(1γj))𝑑s\displaystyle~{}-\theta^{i}\gamma^{i}\overline{\widehat{x}}^{-i}-\frac{\theta^{i}\gamma^{i}}{N-1}\sum_{j\neq i}\int_{0}^{T}\frac{h^{j}_{s}+\sigma^{j}_{s}Z^{jj}_{s}+\sigma^{j0}_{s}Z^{j0}_{s}}{(1-\gamma^{j})((\sigma^{j}_{s})^{2}+(\sigma^{j0}_{s})^{2})}\left(h^{j}_{s}-\frac{h^{j}_{s}+\sigma^{j}_{s}Z^{jj}_{s}+\sigma^{j0}_{s}Z^{j0}_{s}}{2(1-\gamma^{j})}\right)\,ds
+tT{(Zsii)2+(Zsi0)22+ji(Zsij)22+γi(hsi+σsiZsii+σsi0Zsi0)22(1γi)((σsi)2+(σsi0)2)}𝑑s\displaystyle~{}+\int_{t}^{T}\left\{\frac{(Z^{ii}_{s})^{2}+(Z^{i0}_{s})^{2}}{2}+\frac{\sum_{j\neq i}(Z^{ij}_{s})^{2}}{2}+\frac{\gamma^{i}\left(h^{i}_{s}+\sigma^{i}_{s}Z^{ii}_{s}+\sigma^{i0}_{s}Z^{i0}_{s}\right)^{2}}{2(1-\gamma^{i})((\sigma^{i}_{s})^{2}+(\sigma^{i0}_{s})^{2})}\right\}\,ds
θiγiN1ji0tσsjZsjj+σsj0Zsj0+hsj(1γj)((σsj)2+(σsj0)2)σsj𝑑Wsj\displaystyle~{}-\frac{\theta^{i}\gamma^{i}}{N-1}\sum_{j\neq i}\int_{0}^{t}\frac{\sigma^{j}_{s}Z^{jj}_{s}+\sigma^{j0}_{s}Z^{j0}_{s}+h^{j}_{s}}{(1-\gamma^{j})((\sigma^{j}_{s})^{2}+(\sigma^{j0}_{s})^{2})}\sigma^{j}_{s}\,dW^{j}_{s}
θiγiN1ji0tσsjZsjj+σsj0Zsj0+hsj(1γj)((σsj)2+(σsj0)2)σsj0𝑑Ws0\displaystyle~{}-\frac{\theta^{i}\gamma^{i}}{N-1}\sum_{j\neq i}\int_{0}^{t}\frac{\sigma^{j}_{s}Z^{jj}_{s}+\sigma^{j0}_{s}Z^{j0}_{s}+h^{j}_{s}}{(1-\gamma^{j})((\sigma^{j}_{s})^{2}+(\sigma^{j0}_{s})^{2})}\sigma^{j0}_{s}\,dW^{0}_{s}
tTZsii𝑑Wsi+tTji{θiγiN1σsjZsjj+σsj0Zsj0+hsj(1γj)((σsj)2+(σsj0)2)σsjZsij}dWsj\displaystyle~{}-\int_{t}^{T}Z^{ii}_{s}\,dW^{i}_{s}+\int_{t}^{T}\sum_{j\neq i}\left\{-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{\sigma^{j}_{s}Z^{jj}_{s}+\sigma^{j0}_{s}Z^{j0}_{s}+h^{j}_{s}}{(1-\gamma^{j})((\sigma^{j}_{s})^{2}+(\sigma^{j0}_{s})^{2})}\sigma^{j}_{s}-Z^{ij}_{s}\right\}\,dW^{j}_{s}
+tT{θiγiN1jiσsjZsjj+σsj0Zsj0+hsj(1γj)((σsj)2+(σsj0)2)σsj0Zsi0}𝑑Ws0.\displaystyle~{}+\int_{t}^{T}\left\{-\frac{\theta^{i}\gamma^{i}}{N-1}\sum_{j\neq i}\frac{\sigma^{j}_{s}Z^{jj}_{s}+\sigma^{j0}_{s}Z^{j0}_{s}+h^{j}_{s}}{(1-\gamma^{j})((\sigma^{j}_{s})^{2}+(\sigma^{j0}_{s})^{2})}\sigma^{j0}_{s}-Z^{i0}_{s}\right\}\,dW^{0}_{s}.

To construct an adapted YiY^{i}, let

{0=Zii0=θiγiN1σjZjj+σj0Zj0+hj(1γj)((σj)2+(σj0)2)σjZij0=θiγiN1jiσjZjj+σj0Zj0+hj(1γj)((σj)2+(σj0)2)σj0Zi0.\left\{\begin{split}0=&~{}Z^{ii}\\ 0=&~{}-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{\sigma^{j}Z^{jj}+\sigma^{j0}Z^{j0}+h^{j}}{(1-\gamma^{j})((\sigma^{j})^{2}+(\sigma^{j0})^{2})}\sigma^{j}-Z^{ij}\\ 0=&~{}-\frac{\theta^{i}\gamma^{i}}{N-1}\sum_{j\neq i}\frac{\sigma^{j}Z^{jj}+\sigma^{j0}Z^{j0}+h^{j}}{(1-\gamma^{j})((\sigma^{j})^{2}+(\sigma^{j0})^{2})}\sigma^{j0}-Z^{i0}.\end{split}\right. (5.4)

The first and the third equalities in (5.4) yield that

(1θiγiN1(σi0)2(1γi)((σi)2+(σi0)2))Zi0=θiγiN1j=1N(σj0)2Zj0(1γj)((σj)2+(σj0)2)θiγiN1jihjσj0(1γj)((σj)2+(σj0)2),\begin{split}&~{}\left(1-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}\right)Z^{i0}\\ =&~{}-\frac{\theta^{i}\gamma^{i}}{N-1}\sum_{j=1}^{N}\frac{(\sigma^{j0})^{2}Z^{j0}}{(1-\gamma^{j})((\sigma^{j})^{2}+(\sigma^{j0})^{2})}-\frac{\theta^{i}\gamma^{i}}{N-1}\sum_{j\neq i}\frac{h^{j}\sigma^{j0}}{(1-\gamma^{j})((\sigma^{j})^{2}+(\sigma^{j0})^{2})},\end{split} (5.5)

which further implies by multiplying (σi0)2(1γi)((σi)2+(σi0)2)1θiγiN1(σi0)2(1γi)((σi)2+(σi0)2)\frac{\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}}{1-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}} and taking the sum from 11 to NN on both sides

i=1N(σi0)2Zi0(1γi)((σi)2+(σi0)2)=i=1NθiγiN1(σi0)2(1γi)((σi)2+(σi0)2)1θiγiN1(σi0)2(1γi)((σi)2+(σi0)2)j=1N(σj0)2Zj0(1γj)((σj)2+(σj0)2)+i=1NθiγiN1(σi0)2(1γi)((σi)2+(σi0)2)1θiγiN1(σi0)2(1γi)((σi)2+(σi0)2)jihjσj0(1γj)((σj)2+(σj0)2).\begin{split}&~{}\sum_{i=1}^{N}\frac{(\sigma^{i0})^{2}Z^{i0}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}\\ =&~{}\sum_{i=1}^{N}\frac{-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}}{1-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}}\sum_{j=1}^{N}\frac{(\sigma^{j0})^{2}Z^{j0}}{(1-\gamma^{j})((\sigma^{j})^{2}+(\sigma^{j0})^{2})}\\ &~{}+\sum_{i=1}^{N}\frac{-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}}{1-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}}\sum_{j\neq i}\frac{h^{j}\sigma^{j0}}{(1-\gamma^{j})((\sigma^{j})^{2}+(\sigma^{j0})^{2})}.\end{split}

From the above linear equation for i=1N(σi0)2Zi0(1γi)((σi)2+(σi0)2)\sum_{i=1}^{N}\frac{(\sigma^{i0})^{2}Z^{i0}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}, we get

i=1N(σi0)2Zi0(1γi)((σi)2+(σi0)2)=11+i=1NθiγiN1(σi0)2(1γi)((σi)2+(σi0)2)1θiγiN1(σi0)2(1γi)((σi)2+(σi0)2)i=1NθiγiN1(σi0)2(1γi)((σi)2+(σi0)2)1θiγiN1(σi0)2(1γi)((σi)2+(σi0)2)jihjσj0(1γj)((σj)2+(σj0)2).\begin{split}&~{}\sum_{i=1}^{N}\frac{(\sigma^{i0})^{2}Z^{i0}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}\\ =&~{}\frac{-1}{1+\sum_{i=1}^{N}\frac{\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}}{1-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}}}\sum_{i=1}^{N}\frac{\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}}{1-\frac{\theta^{i}\gamma^{i}}{N-1}\frac{(\sigma^{i0})^{2}}{(1-\gamma^{i})((\sigma^{i})^{2}+(\sigma^{i0})^{2})}}\sum_{j\neq i}\frac{h^{j}\sigma^{j0}}{(1-\gamma^{j})((\sigma^{j})^{2}+(\sigma^{j0})^{2})}.\end{split}

Taking the equality back into (5.5), we obtain

Zi0=θiγiN11θiγi(σi0)2(N1)(1γi){(σi0)2+(σ0)2}jiσj0hj(1γj){(σj)2+(σj0)2}+θiγiN11θiγi(σi0)2(N1)(1γi){(σi)2+(σi0)2}11+φ(2),Ni=1Nθiγi(σi0)2(N1)(1γi){(σi)2+(σi0)2}1θiγi(σi0)2(N1)(1γi){(σi)2+(σi0)2}jiσj0hj(1γj){(σj)2+(σj0)2},\begin{split}Z^{i0}=&~{}-\frac{\frac{\theta^{i}\gamma^{i}}{N-1}}{1-\frac{\theta^{i}\gamma^{i}(\sigma^{i0})^{2}}{(N-1)(1-\gamma^{i})\{(\sigma^{i0})^{2}+(\sigma^{0})^{2}\}}}\sum_{j\neq i}\frac{\sigma^{j0}h^{j}}{(1-\gamma^{j})\{(\sigma^{j})^{2}+(\sigma^{j0})^{2}\}}\\ &~{}+\frac{\frac{\theta^{i}\gamma^{i}}{N-1}}{1-\frac{\theta^{i}\gamma^{i}(\sigma^{i0})^{2}}{(N-1)(1-\gamma^{i})\{(\sigma^{i})^{2}+(\sigma^{i0})^{2}\}}}\frac{1}{1+\varphi^{(2),N}}\sum_{i=1}^{N}\frac{\frac{\theta^{i}\gamma^{i}(\sigma^{i0})^{2}}{(N-1)(1-\gamma^{i})\{(\sigma^{i})^{2}+(\sigma^{i0})^{2}\}}}{1-\frac{\theta^{i}\gamma^{i}(\sigma^{i0})^{2}}{(N-1)(1-\gamma^{i})\{(\sigma^{i})^{2}+(\sigma^{i0})^{2}\}}}\sum_{j\neq i}\frac{\sigma^{j0}h^{j}}{(1-\gamma^{j})\{(\sigma^{j})^{2}+(\sigma^{j0})^{2}\}},\end{split}

where φ(2),N\varphi^{(2),N} is defined in the statement of the theorem. Consequently, the optimal strategy (5.3) can be obtained from (5.2). The convergence from (5.3) to (3.31) is obtained by the law of large numbers. ∎

Remark 5.2.

This remark discusses the link between our NN-player game and the NN-player games studied by Espinosa and Touzi in [8], where all players trade common stocks; in our model, the stock prices are driven by both idiosyncratic noise and common noise. First, when there is no trading constraint, Espinosa and Touzi obtained a unique NE by convex duality for general utility functions; refer to [8, Theorem 3.3]. Note that the analysis in [8] can cover the case of power utility functions as in our paper, although power utility functions do not satisfy the Inada conditions in [8, (2.4)]. Second, when there is a general trading constraint, Espinosa and Touzi obtained a unique NE for exponential utility functions by assuming the market parameters to be deterministic and continuous; refer to [8, Theorem 4.8]. This NE was called deterministic Nash equilibrium, which was also studied in [9]. When there is a linear trading constraint, [8, Theorem 5.2] obtained an NE in closed form for exponential utility functions and deterministic market parameters. Thus, our paper partially recovers [8, Theorem 5.2] given Remark 2.3. Third, [8, Example 5.12–5.16] obtained a closed form NE under various trading constraints by assuming the price processes of risky assets to be independent. The NN-player game with independence assumption is similar to our model when the individual volatility σi=0\sigma^{i}=0 for all ii; however, we have no trading constraint. Fourth, in our paper, both idiosyncratic noise and common noise are one-dimensional, so we cannot study correlated investments as in [8, Example 5.17], although generalization to multi-dimension can be expected. Finally, [8] also investigated convergence from NN-player games to MFGs under deterministic market parameters; refer to [8, Proposition 4.12, Proposition 5.7, Example 5.8 and Example 5.9].

Remark 5.3 (Comments on closed-loop NE).

The closed-loop NE may not exist. However, once it exists, the closed-loop NE must be identical to the open-loop NE. Indeed, If we assume all competing players except player ii use a closed-loop strategy πj(t,θ,γ,𝑿)\pi^{j}(t,\theta,\gamma,\bm{X}) with 𝑿=(X1,,XN)\bm{X}=(X^{1},\cdots,X^{N}), then the same argument leading to (5.1) implies that πi,\pi^{i,*} has the same expression as (5.2). If the market parameters (hi,σi,σi0)(h^{i},\sigma^{i},\sigma^{i0}) are progressively measurable with respect to the filtration generated by the Browian motions, {Zij}j=0,1,,N\{Z^{ij}\}_{j=0,1,\cdots,N} are not necessarily deterministic functions of 𝑿\bm{X} since the nonsingularity of (πi,)2((σi)2+(σi0)2)(\pi^{i,*})^{2}((\sigma^{i})^{2}+(\sigma^{i0})^{2}) cannot be guaranteed. Consequently, the closed-loop equilibrium may not exist. Furthermore, under the assumptions in Theorem 5.1, the open-loop NE (5.3) is also a closed-loop one.

This comment also applies to the MFG (1.4).

As a corollary of Theorem 5.1, we recover the NN-player games in [22] and conclude that the constant equilibrium is unique in LL^{\infty}.

Corollary 5.4 (Lacker & Zariphopoulou’s NN-player games revisited).

Assume that all of the coefficients hih^{i}, σi\sigma^{i} and σi0\sigma^{i0} are constants, then the NE obtained in (5.3) is unique in LL^{\infty}. Furthermore, (5.3) is consistent with [22, Theorem 14] by taking [22, Remark 16] into account.

6 Conclusion

In this paper we study mean field portfolio games with random market parameters. We establish a one-to-one correspondence between the NE of the portfolio game and the solution to some mean field FBSDE. The unique NE is obtained by solving the FBSDE under a weak interaction assumption. When the market parameters do not depend on the Brownian paths, we get the NE in closed form. Our result partially generalizes the results in [8] and completely generalizes the results in [22]. Moreover, motivated by the weak interaction assumption, we establish an asymptotic expansion result in powers of the competition parameter θ\theta. In particular, we expand the log-value function and the optimal investment in powers of θ\theta into any order. This result allows us to obtain the value function and the optimal investment based only on the benchmark model without competition. Although our paper focuses on the case of power utility functions, our analysis can also be extended to cases of exponential and log utility functions.

Appendix A θ\theta-Dependent Terms in the BSDE (3.13)

In this section, we summarize the cumbersome θ\theta-dependent terms in the BSDE (3.13). To facilitate the presentation, we introduce the following notation

ϕσ=1+γσ2(1γ)(σ2+(σ0)2),ϕσ0=1+γ(σ0)2(1γ)(σ2+(σ0)2),g=𝔼[θγ(σ0)2(1γ)(σ2+(σ0)2)|0],\displaystyle~{}\phi^{\sigma}=1+\frac{\gamma\sigma^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},\quad\phi^{\sigma^{0}}=1+\frac{\gamma(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},\quad g_{\cdot}=-\mathbb{E}\left[\left.\frac{\theta\gamma(\sigma^{0}_{\cdot})^{2}}{(1-\gamma)(\sigma^{2}_{\cdot}+(\sigma^{0}_{\cdot})^{2})}\right|\mathcal{F}^{0}_{\cdot}\right],
fσ=σh(1γ)(σ2+(σ0)2),fσ0=σ0h(1γ)(σ2+(σ0)2),fh=h2(1γ)(σ2+(σ0)2),\displaystyle~{}f^{\sigma}=\frac{\sigma h}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},\quad f^{\sigma^{0}}=\frac{\sigma^{0}h}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},\quad f^{h}=\frac{h^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},
ψ=σσ0(1γ)(σ2+(σ0)2),ψσ=σ2(1γ)(σ2+(σ0)2),ψσ0=(σ0)2(1γ)(σ2+(σ0)2),\displaystyle~{}\psi=\frac{\sigma\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},\quad\psi^{\sigma}=\frac{\sigma^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},\quad\psi^{\sigma^{0}}=\frac{(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},
ϕ(1)=hσ0(1γ)(σ2+(σ0)2)+σσ0Zo¯(1γ)(σ2+(σ0)2)+(σ0)2Z0,o¯(1γ)(σ2+(σ0)2),\displaystyle~{}\phi^{(1)}=\frac{h\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}+\frac{\sigma\sigma^{0}Z^{\bar{o}}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}+\frac{(\sigma^{0})^{2}Z^{0,\bar{o}}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},
ϕ(2)=hσ(1γ)(σ2+(σ0)2)+σ2Zo¯(1γ)(σ2+(σ0)2)+σσ0Z0,o¯(1γ)(σ2+(σ0)2),\displaystyle~{}\phi^{(2)}=\frac{h\sigma}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}+\frac{\sigma^{2}Z^{\bar{o}}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}+\frac{\sigma\sigma^{0}Z^{0,\bar{o}}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},
ϕ(3)=Z0,o¯+γσ0(h+σZo¯+σ0Z0,o¯)(1γ)(σ2+(σ0)2),\displaystyle~{}\phi^{(3)}=Z^{0,\bar{o}}+\frac{\gamma\sigma^{0}(h+\sigma Z^{\bar{o}}+\sigma^{0}Z^{0,\bar{o}})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})},
ϕ(4)=Zo¯+γσ(h+σZo¯+σ0Z0,o¯)(1γ)(σ2+(σ0)2).\displaystyle~{}\phi^{(4)}=Z^{\bar{o}}+\frac{\gamma\sigma(h+\sigma Z^{\bar{o}}+\sigma^{0}Z^{0,\bar{o}})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}.

The terms that are dependent on θ\theta follow

𝒥2(t;Z~,Z~0,θ)=1(t;Z~)+2(t;Z~0)+3(t;Z~,Z~0)+4(t),\mathcal{J}_{2}(t;\widetilde{Z},\widetilde{Z}^{0},\theta)=\mathcal{I}_{1}(t;\widetilde{Z})+\mathcal{I}_{2}(t;\widetilde{Z}^{0})+\mathcal{I}_{3}(t;\widetilde{Z},\widetilde{Z}^{0})+\mathcal{I}_{4}(t),

where the terms involving Z~\widetilde{Z} are given by

1(t;Z~)={ϕtσ0θ2γ22(1gt)2+θγ𝔼[θ2γ2ψtσ02(1γ)(1gt)2|t0]}(𝔼[ψtZ~t|t0])2+θγ𝔼[ψtσ2(1γ)(Z~t)2|0]θγ2ψt1gtZ~t𝔼[ψtZ~t|t0]θγ𝔼[θγψt(1γ)(1gt)Z~t|t0]𝔼[ψtZ~t|t0]θγ𝔼[ftσZ~t|t0]+{θγ1gt𝔼[θγftσ0|t0]θγ1gtϕt(3)+θ2γ2(1gt)2ϕtσ0𝔼[ϕt(1)|t0]}𝔼[ψtZ~t|t0]+θγ{𝔼[θγϕt(1)(1γ)(1gt)|t0]+𝔼[θ2γ2ψtσ0(1γ)(1gt)2|t0]𝔼[ϕt(1)|t0]}𝔼[ψtZ~t|t0]+θγ𝔼[ϕt(2)1γZ~t|t0]θγ𝔼[ϕt(1)|t0]𝔼[θγψt(1γ)(1gt)Z~t|t0]+{ϕt(4)θγ21gtψt𝔼[ϕt(1)|t0]}Z~t,\begin{split}\mathcal{I}_{1}(t;\widetilde{Z})=&~{}\left\{\frac{\phi^{\sigma^{0}}_{t}\theta^{2}\gamma^{2}}{2(1-g_{t})^{2}}+\theta\gamma\mathbb{E}\left[\left.\frac{\theta^{2}\gamma^{2}\psi^{\sigma^{0}}_{t}}{2(1-\gamma)(1-g_{t})^{2}}\right|\mathcal{F}^{0}_{t}\right]\right\}\left(\mathbb{E}[\psi_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]\right)^{2}+\theta\gamma\mathbb{E}\left[\left.\frac{\psi^{\sigma}_{t}}{2(1-\gamma)}(\widetilde{Z}_{t})^{2}\right|\mathcal{F}^{0}\right]\\ &~{}-\frac{\theta\gamma^{2}\psi_{t}}{1-g_{t}}\widetilde{Z}_{t}\mathbb{E}[\psi_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]-\theta\gamma\mathbb{E}\left[\left.\frac{\theta\gamma\psi_{t}}{(1-\gamma)(1-g_{t})}\widetilde{Z}_{t}\right|\mathcal{F}^{0}_{t}\right]\mathbb{E}[\psi_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]-\theta\gamma\mathbb{E}[f^{\sigma}_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]\\ &~{}+\left\{\frac{\theta\gamma}{1-g_{t}}\mathbb{E}[\theta\gamma f^{\sigma^{0}}_{t}|\mathcal{F}^{0}_{t}]-\frac{\theta\gamma}{1-g_{t}}\phi^{(3)}_{t}+\frac{\theta^{2}\gamma^{2}}{(1-g_{t})^{2}}\phi^{\sigma^{0}}_{t}\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\right\}\mathbb{E}[\psi_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]\\ &~{}+\theta\gamma\left\{-\mathbb{E}\left[\left.\frac{\theta\gamma\phi_{t}^{(1)}}{(1-\gamma)(1-g_{t})}\right|\mathcal{F}^{0}_{t}\right]+\mathbb{E}\left[\left.\frac{\theta^{2}\gamma^{2}\psi_{t}^{\sigma^{0}}}{(1-\gamma)(1-g_{t})^{2}}\right|\mathcal{F}^{0}_{t}\right]\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\right\}\mathbb{E}[\psi_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]\\ &~{}+\theta\gamma\mathbb{E}\left[\left.\frac{\phi_{t}^{(2)}}{1-\gamma}\widetilde{Z}_{t}\right|\mathcal{F}^{0}_{t}\right]-\theta\gamma\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\mathbb{E}\left[\left.\frac{\theta\gamma\psi_{t}}{(1-\gamma)(1-g_{t})}\widetilde{Z}_{t}\right|\mathcal{F}^{0}_{t}\right]+\left\{\phi_{t}^{(4)}-\frac{\theta\gamma^{2}}{1-g_{t}}\psi_{t}\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\right\}\widetilde{Z}_{t},\end{split}

the terms involving Z~0\widetilde{Z}^{0} are given by

2(t;Z~0)=\displaystyle\mathcal{I}_{2}(t;\widetilde{Z}^{0})= {ϕtσ0θ2γ22(1gt)2+θγ𝔼[θ2γ2ψtσ02(1γ)(1gt)2|t0]}(𝔼[ψtσ0Z~t0|t0])2θγϕtσ01gtZ~t0𝔼[ψtσ0Z~t0|t0]\displaystyle~{}\left\{\frac{\phi_{t}^{\sigma^{0}}\theta^{2}\gamma^{2}}{2(1-g_{t})^{2}}+\theta\gamma\mathbb{E}\left[\left.\frac{\theta^{2}\gamma^{2}\psi_{t}^{\sigma^{0}}}{2(1-\gamma)(1-g_{t})^{2}}\right|\mathcal{F}^{0}_{t}\right]\right\}\left(\mathbb{E}[\psi_{t}^{\sigma^{0}}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}]\right)^{2}-\frac{\theta\gamma\phi^{\sigma^{0}}_{t}}{1-g_{t}}\widetilde{Z}^{0}_{t}\mathbb{E}[\psi^{\sigma^{0}}_{t}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}]
+θγ𝔼[ψtσ02(1γ)(Z~t0)2|0]θγ𝔼[θγψtσ0(1γ)(1gt)Z~t0|t0]𝔼[ψtσ0Z~t0|t0]\displaystyle~{}+\theta\gamma\mathbb{E}\left[\left.\frac{\psi^{\sigma^{0}}_{t}}{2(1-\gamma)}(\widetilde{Z}^{0}_{t})^{2}\right|\mathcal{F}^{0}\right]-\theta\gamma\mathbb{E}\left[\left.\frac{\theta\gamma\psi_{t}^{\sigma^{0}}}{(1-\gamma)(1-g_{t})}\widetilde{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]\mathbb{E}[\psi_{t}^{\sigma^{0}}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}]
+θγ1gt{𝔼[θγftσ0|t0]ϕt(3)+θγ1gtϕtσ0𝔼[ϕt(1)|t0]}𝔼[ψtσ0Z~t0|t0]\displaystyle~{}+\frac{\theta\gamma}{1-g_{t}}\left\{\mathbb{E}[\theta\gamma f^{\sigma^{0}}_{t}|\mathcal{F}^{0}_{t}]-\phi^{(3)}_{t}+\frac{\theta\gamma}{1-g_{t}}\phi^{\sigma^{0}}_{t}\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\right\}\mathbb{E}[\psi^{\sigma^{0}}_{t}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}]
+θγ{𝔼[θγϕt(1)(1γ)(1gt)|t0]+𝔼[θ2γ2ψtσ0(1γ)(1gt)2|t0]𝔼[ϕt(1)|t0]}𝔼[ψtσ0Z~t0|t0]\displaystyle~{}+\theta\gamma\left\{-\mathbb{E}\left[\left.\frac{\theta\gamma\phi^{(1)}_{t}}{(1-\gamma)(1-g_{t})}\right|\mathcal{F}^{0}_{t}\right]+\mathbb{E}\left[\left.\frac{\theta^{2}\gamma^{2}\psi^{\sigma^{0}}_{t}}{(1-\gamma)(1-g_{t})^{2}}\right|\mathcal{F}^{0}_{t}\right]\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\right\}\mathbb{E}[\psi^{\sigma^{0}}_{t}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}]
+θγ𝔼[ϕt(1)1γZ~t0|t0]θγ𝔼[ϕt(1)|t0]𝔼[θγψtσ0(1γ)(1gt)Z~t0|t0]θγ𝔼[ftσ0Z~t0|t0]\displaystyle~{}+\theta\gamma\mathbb{E}\left[\left.\frac{\phi_{t}^{(1)}}{1-\gamma}\widetilde{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]-\theta\gamma\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\mathbb{E}\left[\left.\frac{\theta\gamma\psi^{\sigma^{0}}_{t}}{(1-\gamma)(1-g_{t})}\widetilde{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]-\theta\gamma\mathbb{E}[f^{\sigma^{0}}_{t}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}]
+{ϕt(3)θγ1gtϕtσ0𝔼[ϕt(1)|t0]}Z~t0,\displaystyle~{}+\left\{\phi^{(3)}_{t}-\frac{\theta\gamma}{1-g_{t}}\phi^{\sigma^{0}}_{t}\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\right\}\widetilde{Z}^{0}_{t},

the crossing terms involving both Z~\widetilde{Z} and Z~0\widetilde{Z}^{0} are given by

3(t;Z~,Z~t0)=θγ2ψ1gtZ~t𝔼[ψtσ0Z~t0|t0]θγϕtσ01gt𝔼[ψtZ~t|t0]Z~t0+θ2γ2ϕtσ0(1gt)2𝔼[ψtZ~t|t0]𝔼[ψtσ0Z~t0|t0]θγ𝔼[θγψtσ0(1γ)(1gt)Z~t0|t0]𝔼[ψtZ~t|t0]+θγ𝔼[θ2γ2ψtσ0(1γ)(1gt)2|t0]𝔼[ψtZ~t|t0]𝔼[ψtσ0Z~t0|t0]+θγ𝔼[ψt1γZ~tZ~t0|t0]θγ𝔼[θγψt(1γ)(1gt)Z~t|t0]𝔼[ψtσ0Z~t0|t0],\begin{split}&~{}\mathcal{I}_{3}(t;\widetilde{Z},\widetilde{Z}^{0}_{t})\\ =&~{}-\frac{\theta\gamma^{2}\psi}{1-g_{t}}\widetilde{Z}_{t}\mathbb{E}[\psi^{\sigma^{0}}_{t}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}]-\frac{\theta\gamma\phi_{t}^{\sigma^{0}}}{1-g_{t}}\mathbb{E}[\psi_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]\widetilde{Z}^{0}_{t}+\frac{\theta^{2}\gamma^{2}\phi_{t}^{\sigma^{0}}}{(1-g_{t})^{2}}\mathbb{E}[\psi_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]\mathbb{E}[\psi_{t}^{\sigma^{0}}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}]\\ &~{}-\theta\gamma\mathbb{E}\left[\left.\frac{\theta\gamma\psi_{t}^{\sigma^{0}}}{(1-\gamma)(1-g_{t})}\widetilde{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]\mathbb{E}[\psi_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]+\theta\gamma\mathbb{E}\left[\left.\frac{\theta^{2}\gamma^{2}\psi_{t}^{\sigma^{0}}}{(1-\gamma)(1-g_{t})^{2}}\right|\mathcal{F}^{0}_{t}\right]\mathbb{E}[\psi_{t}\widetilde{Z}_{t}|\mathcal{F}^{0}_{t}]\mathbb{E}[\psi_{t}^{\sigma^{0}}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}]\\ &~{}+\theta\gamma\mathbb{E}\left[\left.\frac{\psi_{t}}{1-\gamma}\widetilde{Z}_{t}\widetilde{Z}^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]-\theta\gamma\mathbb{E}\left[\left.\frac{\theta\gamma\psi_{t}}{(1-\gamma)(1-g_{t})}\widetilde{Z}_{t}\right|\mathcal{F}^{0}_{t}\right]\mathbb{E}\left[\psi_{t}^{\sigma^{0}}\widetilde{Z}^{0}_{t}|\mathcal{F}^{0}_{t}\right],\end{split}

and the remaining terms are given by

4(t)=(θγ)2ϕtσ02(1gt)2(𝔼[ϕt(1)|t0])2θγ1gt(𝔼[θγftσ0|t0]+ϕt(3))𝔼[ϕt(1)|t0]+θγ𝔼[(σt2+(σt0)2)|ϕt(1)|22|t0]θγ𝔼[ϕt(1)|t0]𝔼[θγϕt(1)(1γ)(1gt)|t0]+θ3γ3(1gt)2𝔼[ψtσ02(1γ)|t0](𝔼[ϕt(1)|t0])2θγ𝔼[fth+ftσZto¯+ftσ0Zt0,o¯|t0].\begin{split}\mathcal{I}_{4}(t)=&~{}\frac{(\theta\gamma)^{2}\phi^{\sigma^{0}}_{t}}{2(1-g_{t})^{2}}(\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}])^{2}-\frac{\theta\gamma}{1-g_{t}}\left(-\mathbb{E}[\theta\gamma f^{\sigma^{0}}_{t}|\mathcal{F}^{0}_{t}]+\phi^{(3)}_{t}\right)\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\\ &~{}+\theta\gamma\mathbb{E}\left[\left.\frac{(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})|\phi^{(1)}_{t}|^{2}}{2}\right|\mathcal{F}^{0}_{t}\right]-\theta\gamma\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\mathbb{E}\left[\left.\frac{\theta\gamma\phi_{t}^{(1)}}{(1-\gamma)(1-g_{t})}\right|\mathcal{F}^{0}_{t}\right]\\ &~{}+\frac{\theta^{3}\gamma^{3}}{(1-g_{t})^{2}}\mathbb{E}\left[\left.\frac{\psi^{\sigma^{0}}_{t}}{2(1-\gamma)}\right|\mathcal{F}^{0}_{t}\right]\left(\mathbb{E}[\phi^{(1)}_{t}|\mathcal{F}^{0}_{t}]\right)^{2}\\ &~{}-\theta\gamma\mathbb{E}[f^{h}_{t}+f_{t}^{\sigma}Z^{\bar{o}}_{t}+f^{\sigma^{0}}_{t}Z^{0,\bar{o}}_{t}|\mathcal{F}^{0}_{t}].\end{split}

Appendix B Reverse Hölder’s Inequality

We summarize the reverse Hölder’s inequality for a general stochastic process and for the stochastic exponential of a stochastic process in the BMO space ([20, Theorem 3.1]), which is used in the main text.

For some p>1p>1, we say that a stochastic process DD satisfies RpR_{p} if there exists a constant CC, such that for any [0,T][0,T]-valued stopping time τ\tau, it holds that

𝔼[|DTDτ|p|τ]C.\mathbb{E}\left[\left|\frac{D_{T}}{D_{\tau}}\right|^{p}\Big{|}\mathcal{F}_{\tau}\right]\leq C.

Let ΘHBMO2\Theta\in H^{2}_{BMO} and BB be a Brownian motion. Define

t(Θ)=(0tΘs𝑑Bs).\mathcal{E}_{t}(\Theta)=\mathcal{E}\left(\int_{0}^{t}\Theta_{s}\,dB_{s}\right).

Let Φ\Phi be a function defined on (1,)(1,\infty):

Φ(x)={1+1x2log2x12(x1)}121,\Phi(x)=\left\{1+\frac{1}{x^{2}}\log\frac{2x-1}{2(x-1)}\right\}^{\frac{1}{2}}-1,

which is a continuous decreasing function satisfying limx1Φ(x)=\lim_{x\searrow 1}\Phi(x)=\infty and limxΦ(x)=0\lim_{x\nearrow\infty}\Phi(x)=0. Let pΘp_{\Theta} be the unique constant, such that Φ(pΘ)=ΘBMO\Phi(p_{\Theta})=\|\Theta\|_{BMO}. Then we have the following reverse Hölder’s inequality.

Lemma B.1.

For any 1<p<pΘ1<p<p_{\Theta} and any stopping time τ\tau, it holds that (Θ)\mathcal{E}(\Theta) satisfies RpR_{p}. In particular,

𝔼[|T(Θ)τ(Θ)|p|τ]K(p,ΘBMO),\mathbb{E}\left[\left.\left|\frac{\mathcal{E}_{T}(\Theta)}{\mathcal{E}_{\tau}(\Theta)}\right|^{p}\right|\mathcal{F}_{\tau}\right]\leq K(p,\|\Theta\|_{BMO}),

where

K(p,N)=212(p1)2p1ep2(N2+2N).K(p,N)=\frac{2}{1-\frac{2(p-1)}{2p-1}e^{p^{2}(N^{2}+2N)}}.\\

References

  • [1] P. Briand and F. Confortola. BSDEs with stochastic lipschitz conditon and quadratic PDEs in Hilbert spaces. Stochastic Processes and their Applications, 118(5):818–838, 2008.
  • [2] P. Briand and Y. Hu. Quadratic BSDEs with convex generators and unbounded terminal conditions. Probability Theory and Related Fields, 141(3-4):543–567, 2008.
  • [3] R. Carmona and F. Delarue. Probabilistic analysis of mean-field games. SIAM Journal on Control and Optimization, 51(4):2705–2734, 2013.
  • [4] P. Chan and R. Sircar. Bertrand and cournot mean field games. Applied Mathematics & Optimization, 71(3):533–569, 2015.
  • [5] P. Chan and R. Sircar. Fracking, renewables, and mean field games. SIAM Review, 59(3):588–615, 2017.
  • [6] G. dos Reis and V. Platonov. Forward utilities and mean-field games under relative performance concerns. to appear in Particle Systems and Partial Differential Equations, 2021.
  • [7] G. dos Reis and V. Platonov. Forward utility and market adjustments in relative investment-consumption games of many players. arXiv:2012.01235, 2021.
  • [8] G. Espinosa and N. Touzi. Optimal investment under relative performance concerns. Mathematical Finance, 25(2):221–257, 2015.
  • [9] C. Frei and G. dos Reis. A financial market with interacting investors: does an equilibrium exist? Mathematics and Financial Economics, 4:161–182, 2011.
  • [10] G. Fu, P. Graewe, U. Horst, and A. Popier. A mean field game of optimal portfolio liquidation. to appear in Mathematics of Operations Research, 2021.
  • [11] G. Fu and U. Horst. Mean field leader follower games with terminal state constraint. SIAM Journal on Control and Optimization, 58(4):2078–2113, 2020.
  • [12] G. Fu, X. Su, and C. Zhou. Mean field exponential utility games: a probabilistic approach. arXiv:2006.07684, 2020.
  • [13] M. Herdegen, J. Muhle-Karbe, and D. Possamaï. Equilibrium asset pricing with transaction costs. to appear in Finance and Stochastics, 2020.
  • [14] H. Hibon, Y. Hu, and S. Tang. Mean-field type quadratic BSDEs. arXiv:1708.08784, 2017.
  • [15] U. Horst. Stationary equilibria in discounted stochastic games with weakly interacting players. Games and Economic Behavior, 52(1):83–108, 2005.
  • [16] U. Horst, X. Xia, and C. Zhou. Portfolio liquidation under factor uncertainty. The Annals of Applied Probability, 32(1):80–123, 2022.
  • [17] R. Hu and T. Zariphopoulou. N{N}-player and mean-field games in Itô-diffusion markets with competitive or homophilous interaction. arXiv:2106.00581, 2021.
  • [18] Y. Hu, P. Imkeller, and M. Müller. Utility maximization in incomplete markets. The Annals of Applied Probability, 15(3):1691–1712, 2005.
  • [19] M. Huang, R. Malhamé, and P. Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information and Sytems, 6(3):221–252, 2006.
  • [20] N. Kazamaki. Continuous Exponential Martingales and BMO. Springer, 2006.
  • [21] D. Lacker and A. Soret. Many-player games of optimal consumption and investment under relative performance criteria. Mathematics and Financial Economics, 14(2):263–281, 2020.
  • [22] D. Lacker and T. Zariphopoulou. Mean field and n-agent games for optimal investment under relative performance criteria. Mathematical Finance, 29(4):1003–1038, 2019.
  • [23] J.-M. Lasry and P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260, 2007.
  • [24] A. Matoussi, D. Possamaï, and C. Zhou. Robust utility maximization in non-dominated models with 2BSDEs. Mathematical Finance, 25(2):258–287, 2015.
  • [25] R. Rouge and N. El Karoui. Pricing via utility maximization and entropy. Mathematical Finance, 10(2):259–276, 2000.
  • [26] R. Tevzadze. Solvability of backward stochastic differential equations with quadratic growth. Stochastic processes and their Applications, 118(3):503–515, 2008.