This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mean Field Portfolio Games with Consumption

Guanxing Fu111Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. Email: [email protected]. G. Fu’s research is supported by The Hong Kong RGC (ECS No.25215122), NSFC Grant No.12101523, the Start-up Fund P0035348 from The Hong Kong Polytechnic University, as well as the Research Centre for Quantitative Finance, The Hong Kong Polytechnic University (P0042708).
Abstract

We study mean field portfolio games with consumption. For general market parameters, we establish a one-to-one correspondence between Nash equilibria of the game and solutions to some FBSDE, which is proved to be equivalent to some BSDE. Our approach, which is general enough to cover power, exponential and log utilities, relies on martingale optimality principle in [4, 10] and dynamic programming principle in [7, 8]. When the market parameters do not depend on the Brownian paths, we get the unique Nash equilibrium in closed form. As a byproduct, when all market parameters are time-independent, we answer the question proposed in [13]: the strong equilibrium obtained in [13] is unique in the essentially bounded space.

AMS Subject Classification: 93E20, 91B70, 60H30

Keywords: mean field game, portfolio game, consumption, martingale optimality principle

1 Introduction

As a game-theoretic extension of classical optimal investment problems in [16], portfolio games have received substantial considerations in the financial mathematics literature in recent years. In a portfolio game, each player chooses her investment and/or consumption to maximize her utility induced by some risk preference criterion, by taking her competitors’ decisions into consideration. The goal of the portfolio game is to search for a Nash equilibrium (NE), such that no one would like to change her strategy unilaterally. One way to model the interaction among players in the portfolio game is through the price equilibrium; however, it typically leads to tractability issue. Another way to model the interaction is through the relative performance: each player’s utility is driven by her own wealth as well as the relative wealth to her competitors.

The study of portfolio games with relative performance concerns dates back to [7], where many player portfolio games with common stocks and trading constraint were studied: in the context of complete markets, the unique NE was obtained for general utility functions; in the context of incomplete markets, the unique NE was obtained for games with exponential utility functions, where the uniqueness result was proved by establishing an equivalent relation between each NE for the game and each solution to a multidimensional BSDE. [8] examined similar games as [7] with a different focus: [8] constructed counterexamples where no NE exists, by proving that the corresponding multidimensional BSDE has no solution. In contrast to [7, 8] where all players traded common stocks, [14] studied portfolio games where each player traded a different but correlated stock. Assuming all market parameters to be constant, [14] obtained the unique constant NE by solving coupled HJB equations. In constrast to classical utility functions, [1, 5] studied portfolio games with forward utilities. Recently, [9] studied portfolio games with general market parameters. A one-to-one correspondence between each NE and each solution to some FBSDE was established by dynamic programming principle (DPP) and martingale optimality principle (MOP), so that the portfolio game was solved by solving the FBSDE. In [9], we also obtained an asymptotic expansion result in powers of the competition parameter.

All the aforementioned results do not incorporate consumption. The only results on portfolio games with consumption, to the best of our knowledge, are [13] and [6]. Assuming all market parameters to be constant, [13] obtained a unique NE, which was called strong equilibrium222By [13, Definition 2.1 and Definition 3.1], a strong equilibrium is the one with time-independent investment rate and continuous consumption rate. Moreover, both the investment rate and the consumption rate are adapted to the initial filtration.. [6] examined a portfolio game with both investment and consumption under the framework of forward performance processes; the market parameters were also assumed to be constant.

In this paper, we will study portfolio games with consumption under classical utility criteria, where market parameters are allowed to be time-dependent. Assume there are NN risky assets in the market, with price dynamics of asset i{1,,N}i\in\{1,\cdots,N\} following

dSti=Sti(htidt+σtiWti+σti0dWt0),dS^{i}_{t}=S^{i}_{t}\Big{(}h^{i}_{t}\,dt+\sigma^{i}_{t}\,W^{i}_{t}+\sigma^{i0}_{t}\,dW^{0}_{t}\Big{)}, (1.1)

where hih^{i} is the return rate, σi\sigma^{i} is the volatility corresponding to the idiosyncratic noise WiW^{i}, and σi0\sigma^{i0} is the volatility corresponding to the common noise W0W^{0}. We further assume that player ii specializes in asset ii. Let XiX^{i} be the wealth process of player ii, whose dynamics is given by

dXti=πtiXti(htidt+σtidWti+σti0dWt0)ctiXtidt,X0i=xi,dX^{i}_{t}=\pi^{i}_{t}X^{i}_{t}\Big{(}h^{i}_{t}\,dt+\sigma^{i}_{t}\,dW^{i}_{t}+\sigma^{i0}_{t}\,dW^{0}_{t}\Big{)}-c^{i}_{t}X^{i}_{t}\,dt,\quad X^{i}_{0}=x^{i}, (1.2)

where xix^{i} is the initial wealth, πi\pi^{i} is the investment rate and cic^{i} is the consumption rate. The risk preference for each player is described by a power utility function, i.e. given other players’ strategies, player ii chooses the pair of investment rate and consumption rate (πi,ci)(\pi^{i},c^{i}) to maximize the expected power utility induced by her terminal wealth and intermediate consumption:

maxπi,ci𝔼[1γi(XTi(X¯Ti)θi)γi+0Tαiγi(csiXsi(cX¯si)θi)γi𝑑s].\max_{\pi^{i},c^{i}}\mathbb{E}\left[\frac{1}{\gamma^{i}}\left(X^{i}_{T}(\overline{X}^{-i}_{T})^{-\theta^{i}}\right)^{\gamma^{i}}+\int_{0}^{T}\frac{\alpha^{i}}{\gamma^{i}}\left(c_{s}^{i}X^{i}_{s}(\overline{cX}_{s}^{-i})^{-\theta^{i}}\right)^{\gamma^{i}}\,ds\right]. (1.3)

Here, X¯i=(ΠjiXj)1N1\overline{X}^{-i}=\left(\Pi_{j\neq i}X^{j}\right)^{\frac{1}{N-1}} and cX¯i=(ΠjicjXj)1N1\overline{cX}^{-i}=\left(\Pi_{j\neq i}c^{j}X^{j}\right)^{\frac{1}{N-1}} are the performance indices of player ii, and the constant αi\alpha^{i} describes the relative importance of the utility induced by consumption and terminal wealth.

Although our NN-player game (1.2)-(1.3) is solvable, in this paper we will focus on the corresponding mean field game (MFG), in order to make the statement more concise. According to e.g. [3, 11, 15], the corresponding MFG is:

{1.Fix (μ,ν) in some suitable space;2.Solve the optimization problem: J(π,c)=𝔼[1γ(XTμTθ)γ+0Tαγ(csXs(νs)θ)γ𝑑s]max over (π,c)such that dXt=πtXt(htdt+σtdWt+σt0dWt0)ctXtdt,X0=x;3.Search for the fixed point such that μt=exp(𝔼[logXt|t0]) and νt=exp(𝔼[logct|t0]+𝔼[logXt|t0]),t[0,T],where X and c are the optimal wealth and optimal consumption rate from 2.\left\{\begin{split}1.&~{}\textrm{Fix }(\mu,\nu)\textrm{ in some suitable space};\\ 2.&~{}\textrm{Solve the optimization problem: }\\ &~{}J(\pi,c)=\mathbb{E}\left[\frac{1}{\gamma}(X_{T}\mu^{-\theta}_{T})^{\gamma}+\int_{0}^{T}\frac{\alpha}{\gamma}\left(c_{s}X_{s}(\nu_{s})^{-\theta}\right)^{\gamma}\,ds\right]\rightarrow\max\textrm{ over }(\pi,c)\\ &~{}\textrm{such that }dX_{t}=\pi_{t}X_{t}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t})-c_{t}X_{t}\,dt,~{}X_{0}=x;\\ 3.&~{}\textrm{Search for the fixed point such that }\\ &~{}\mu_{t}=\exp\left(\mathbb{E}[\log X^{*}_{t}|\mathcal{F}^{0}_{t}]\right)\textrm{ and }\nu_{t}=\exp\left(\mathbb{E}[\log c^{*}_{t}|\mathcal{F}^{0}_{t}]+\mathbb{E}[\log X^{*}_{t}|\mathcal{F}^{0}_{t}]\right),\quad t\in[0,T],\\ &~{}\textrm{where }X^{*}\textrm{ and }c^{*}\textrm{ are the optimal wealth and optimal consumption rate from }2.\end{split}\right. (1.4)

Our contributions. Our paper has two contributions. First, under general market parameters, we provide a one-to-one correspondence between each NE of (1.4) and each solution to some FBSDE. The FBSDE is further proved to be equivalent to some BSDE, which completely characterizes the NE of the MFG (1.4). Specifically, the optimal consumption rate and the optimal investment rate for the representative player are characterized by the YY-component and the ZZ-component of the BSDE, respectively. In order to establish the equivalence, we need to prove two sides. On the one hand, for each NE of the MFG (1.4), we will prove that there exists an FBSDE such that the NE can be characterized by this FBSDE. On the other hand, for each solution to this FBSDE, we will prove that the solution corresponds to an NE of the MFG (1.4). The former claim can be proved by DPP, and the latter claim can be proved by MOP. Second, when market parameters do not depend on the Brownian paths, we explicitly solve the BSDE characterizing the NE. In particular, we obtain the unique NE in closed form. The assumption on market parameters implies that the BSDE reduces to an ODE; the ZZ-component is zero. Thus, the optimal investment rate can be obtained, since it is completely characterized by the ZZ-component following our first contribution. The optimal consumption rate is the unique solution to a Riccati equation, which is derived from the above ODE. We emphasize that the uniqueness result strongly relies on the one-to-one correspondence established in the first main contribution.

Connections with existing literature. From a methodology perspective, our paper shares similarities with [4, 7, 8]. Specifically, [4] used MOP to solve utility maximization problems with both investment and consumption. We apply a similar argument to our portfolio game and prove that each solution to some mean field FBSDE yields an NE of (1.4). A key difference of the MOP in [4] and in our paper is the choice of strategies. We claim that the strategies used in [4] is not suitable to portfolio games; refer to [9, Remark 2.2]. The DPP we use is adapted from [7, 8], where all players traded common stocks and there was no consumption. This is a key step to prove the uniqueness result. Note that [6] also obtained a uniqueness result for portfolio games with consumption under forward utilities, using MOP implicitly. However, the uniqueness result in [6] was implied by the definition of, especially the (super)martingale properties of forward utilities. Thus, it does not imply the uniqueness result for games with classical utilities functions. Admittedly, the most similar paper to the current one is [9], where we studied mean field portfolio games with only investment in a general framework. We also used DPP and MOP to establish the one-to-one correspondence. The current paper can be considered as a continuation of [9]. From a modeling perspective, our paper is similar to [13]; when all market parameters become time-independent, our model reduces to the one in [13]. Using a PDE approach, [13] obtained a strong equilibrium, which was proved to be unique among all strong ones. By our more probabilistic approach, we conclude that the strong equilibrium obtained in [13] is unique in the essentially bounded space. Thus, we answered the question proposed in [13].

The rest of the paper is organized as follows. After the introduction of notation, in Section 2, we establish an equivalent relationship between each solution to some mean field (F)BSDE and each NE of the MFG (1.4) with general market parameters. In Section 3, assuming that the market parameters do not depend on the Brownian paths, we construct the unique NE in closed form.

Notation. Let (W,W0)(W,W^{0}) be a two dimensional Brownian motion, defined on a probability space (Ω,)(\Omega,\mathbb{P}). Here, WW denotes the idiosyncratic noise for the representative player, and W0W^{0} denotes the common noise for all players. Moreover, 𝔾={𝒢t,t[0,T]}\mathbb{G}=\{\mathcal{G}_{t},t\in[0,T]\} is assumed to be the augmented natural filtration of (W,W0)(W,W^{0}). The augmented natural filtration of W0W^{0} is denoted by 𝔽0={t0,t[0,T]}\mathbb{F}^{0}=\{\mathcal{F}^{0}_{t},t\in[0,T]\}. To allow for additional heterogeneity across players, we let 𝒜\mathcal{A} be a σ\sigma-algebra that is independent of 𝔾\mathbb{G}. Let 𝔽={t,t[0,T]}\mathbb{F}=\{\mathcal{F}_{t},t\in[0,T]\} be the σ\sigma-algebra generated by 𝒜\mathcal{A} and 𝔾\mathbb{G}.

Denote Prog(Ω×[0,T])\textrm{Prog}(\Omega\times[0,T]) the space of all stochastic processes that are \mathcal{F}-progressively measurable. For each ηProg(Ω×[0,T])\eta\in\textrm{Prog}(\Omega\times[0,T]), define η=esssupωΩ,t[0,T]|ηt(ω)|\|\eta\|_{\infty}=\operatorname*{ess\,sup}_{\omega\in\Omega,t\in[0,T]}|\eta_{t}(\omega)|. Let LL^{\infty} be the space of all essentially bounded stochastic processes, i.e.,

L={ηProg(Ω×[0,T]):η<}.L^{\infty}=\{\eta\in\textrm{Prog}(\Omega\times[0,T]):\|\eta\|_{\infty}<\infty\}.

Define the BMO space under \mathbb{P} as

HBMO2={ηProg(Ω×[0,T]):ηBMO2:=supτ:stopping time𝔼[τT|ηt|2dt|τ]<}.H^{2}_{BMO}=\left\{\eta\in\textrm{Prog}(\Omega\times[0,T]):\|\eta\|_{BMO}^{2}:=\sup_{\tau:\mathcal{F}-\textrm{stopping time}}\left\|\mathbb{E}\left[\left.\int_{\tau}^{T}|\eta_{t}|^{2}\,dt\right|\mathcal{F}_{\tau}\right]\right\|_{\infty}<\infty\right\}.

For each positive random variable ξ\xi, denote ξ^:=log(ξ)\widehat{\xi}:=\log(\xi).

Let CC be a generic positive constant, which may vary from line to line.

2 Equivalence between the MFG (1.4) and Some (F)BSDE

We assume the space of admissible strategies for the representative player is L×LL^{\infty}\times L^{\infty}.333The space LL^{\infty} to accommodate investment rates is smaller than HBMO2H^{2}_{BMO}, which is commonly used in the literature. We use LL^{\infty} as our admissible space for technical purpose; see the estimates in the proof of Theorem 2.2. However, we do not lose much generality because the closed form investment rate constructed in Section 3 stays in LL^{\infty}. Moreover, we say that the tuple (μ,ν,π,c)(\mu^{*},\nu^{*},\pi^{*},c^{*}) is an NE of the MFG (1.4), if (π,c)(\pi^{*},c^{*}) is admissible, with XX^{*} being the corresponding wealth, μt=exp(𝔼[logXt|t0])\mu^{*}_{t}=\exp\left(\mathbb{E}[\log X^{*}_{t}|\mathcal{F}^{0}_{t}]\right) and νt=exp(𝔼[log(ctXt)|t0])\nu^{*}_{t}=\exp\left(\mathbb{E}[\log(c^{*}_{t}X^{*}_{t})|\mathcal{F}^{0}_{t}]\right), t[0,T]t\in[0,T], and if the optimality condition holds for each admissible strategy (π,c)(\pi,c):

𝔼[1γ(XT(μT)θ)γ+0Tαγ(csXs(νs)θ)γ𝑑s]𝔼[1γ(XT(μT)θ)γ+0Tαγ(csXs(νs)θ)γ𝑑s].\mathbb{E}\left[\frac{1}{\gamma}(X^{*}_{T}(\mu^{*}_{T})^{-\theta})^{\gamma}+\int_{0}^{T}\frac{\alpha}{\gamma}\left(c^{*}_{s}X^{*}_{s}(\nu^{*}_{s})^{-\theta}\right)^{\gamma}\,ds\right]\geq\mathbb{E}\left[\frac{1}{\gamma}(X_{T}(\mu^{*}_{T})^{-\theta})^{\gamma}+\int_{0}^{T}\frac{\alpha}{\gamma}\left(c_{s}X_{s}(\nu^{*}_{s})^{-\theta}\right)^{\gamma}\,ds\right].

Throughout the paper, the following assumptions are in force.

Assumption 1. The initial wealth xx, risk aversion parameter γ\gamma, competition parameter θ\theta, and weight parameter α\alpha of the population are assumed to be bounded 𝒜\mathcal{A}-random variables. Moreover, xx and α\alpha are +\mathbb{R}_{+}-valued, γ\gamma is valued in (,1)/{0}(-\infty,1)/\{0\} and θ\theta is valued in [0,1][0,1].

Assume the return rate hLh\in L^{\infty} and the volatilities (σ,σ0)L×L(\sigma,\sigma^{0})\in L^{\infty}\times L^{\infty}. Moreover, |γ||\gamma| and |σ|+|σ0||\sigma|+|\sigma^{0}| are bounded away from 0, i.e., there exist positive constants γ¯\underline{\gamma} and σ¯\underline{\sigma} such that |γ|γ¯>0|\gamma|\geq\underline{\gamma}>0 a.s. and |σ|+|σ0|σ¯>0|\sigma|+|\sigma^{0}|\geq\underline{\sigma}>0 a.s. a.e..

2.1 MFGs and Mean Field FBSDEs Are Equivalent

In this section, we prove that the solvability of a mean field FBSDE is sufficient and necessary for the existence of an NE of the MFG (1.4). First, using MOP as in [4, 10], we prove that the value function and optimal strategy of the associated optimization problem in (1.4) have a one-to-one correspondence to the solution of a BSDE.

Proposition 2.1.

For fixed (μ,ν)(\mu,\nu), the value function VV and the unique optimal strategy (π,c)(\pi^{*},c^{*}) of the associated optimization problem in (1.4) are given by

V=1γeγX^0+Y0,πt=ht+σtZt+σt0Zt0(1γ)(σt2+(σt0)2),ct=α11γe11γ(θγν^t+Yt),t[0,T],V=\frac{1}{\gamma}e^{\gamma\widehat{X}_{0}+Y_{0}},\qquad\pi^{*}_{t}=\frac{h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})},\quad c^{*}_{t}=\alpha^{\frac{1}{1-\gamma}}e^{-\frac{1}{1-\gamma}(\theta\gamma\widehat{\nu}_{t}+Y_{t})},\quad t\in[0,T], (2.1)

where (Y,Z,Z0)(Y,Z,Z^{0}) satisfies the following BSDE

{dYt={Zt2+(Zt0)22+γ2(1γ)(ht+σtZt+σt0Zt0)2σt2+(σt0)2+(1γ){αe(Yt+θγν^t)}11γ}dtZtdWtZt0dWt0,Y^T=γθμ^T.\left\{\begin{split}-dY_{t}=&~{}\Bigg{\{}\frac{Z^{2}_{t}+(Z^{0}_{t})^{2}}{2}+\frac{\gamma}{2(1-\gamma)}\frac{(h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t})^{2}}{\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}}+(1-\gamma)\big{\{}\alpha e^{-(Y_{t}+\theta\gamma\widehat{\nu}_{t})}\big{\}}^{\frac{1}{1-\gamma}}\Bigg{\}}\,dt\\ &~{}-Z_{t}\,dW_{t}-Z_{t}^{0}\,dW^{0}_{t},\\ \widehat{Y}_{T}=&~{}-\gamma\theta\widehat{\mu}_{T}.\end{split}\right. (2.2)

Here, we recall that X^0=logX0\widehat{X}_{0}=\log X_{0}, μ^t=logμt\widehat{\mu}_{t}=\log\mu_{t} and ν^t=logνt\widehat{\nu}_{t}=\log\nu_{t}, t[0,T]t\in[0,T].

Proof.

The proof is a modification of that in [4]. As discussed in the introduction, the essential difference lies in the choice of strategies; our choice is appropriate to the game-theoretic model in this paper.

Let (Y,Z,Z0)(Y,Z,Z^{0}) be a solution to (2.2). We will prove that (π,c)(\pi^{*},c^{*}) defined in (2.1) is an optimal strategy of the associated optimization problem in (1.4), by fixing (μ,ν)(\mu,\nu). To do so, for each strategy (π,c)L×L(\pi,c)\in L^{\infty}\times L^{\infty}, define

Rtπ,c=1γeγX^tπ,c+Yt+0tαγeγc^s+γX^sπ,cθγν^s𝑑s.R^{\pi,c}_{t}=\frac{1}{\gamma}e^{\gamma\widehat{X}^{\pi,c}_{t}+Y_{t}}+\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds.

We will prove that Rπ,cR^{\pi,c} satisfies the following three items:

1.for any (π,c),Rπ,c is a supermartingale;2.Rπ,c is a martingale for (π,c) in (2.1);3.R0π,c is independent of (π,c).\begin{split}1.&\quad\textrm{for any }(\pi,c),~{}R^{\pi,c}\textrm{ is a supermartingale};\\ 2.&\quad R^{\pi^{*},c^{*}}\textrm{ is a martingale for }(\pi^{*},c^{*})\textrm{ in }\eqref{optimal-strategy-optim};\\ 3.&\quad R^{\pi,c}_{0}\textrm{ is independent of }(\pi,c).\end{split} (2.3)

If the claim (2.3) is true, it holds that

𝔼[RTπ,c]R0π,c=R0π,c=𝔼[RTπ,c].\mathbb{E}[R^{\pi,c}_{T}]\leq R_{0}^{\pi,c}=R_{0}^{\pi^{*},c^{*}}=\mathbb{E}[R^{\pi^{*},c^{*}}_{T}].

Thus, (π,c)(\pi^{*},c^{*}) is optimal.

It remains to prove the claim (2.3). Denote by f(Y,Z,Z0)f(Y,Z,Z^{0}) the driver of YY in (2.2). Applying Itô’s formula to Rπ,cR^{\pi,c}, we get

dRtπ,c=XtγeYt{(1γ2(σt2+(σt0)2)πt2+(ht+σtZt+σt0Zt0)πt+Zt2+(Zt0)22γft(Yt,Zt,Zt0)γ)dt+(ct+αγeYt(ct(νt)θ)γ)dt+γπtσt+ZtγdWt+γπtσt0+Zt0γdWt0}=XtγeYt{(1γ2(σt2+(σt0)2){πtht+σtZt+σt0Zt0(1γ)(σt2+(σt0)2)}2)dt+(ct+αγeYt(ct(νt)θ)γ1γγ{αeYt(νt)θγ}11γ)dt+γπtσt+ZtγdWt+γπtσt0+Zt0γdWt0}.\begin{split}dR^{\pi,c}_{t}=&~{}X^{\gamma}_{t}e^{Y_{t}}\Bigg{\{}\bigg{(}-\frac{1-\gamma}{2}(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})\pi^{2}_{t}+(h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t})\pi_{t}+\frac{Z^{2}_{t}+(Z^{0}_{t})^{2}}{2\gamma}-\frac{f_{t}(Y_{t},Z_{t},Z^{0}_{t})}{\gamma}\bigg{)}\,dt\\ &~{}\qquad\qquad+\bigg{(}-c_{t}+\frac{\alpha}{\gamma}e^{-Y_{t}}(c_{t}(\nu^{*}_{t})^{-\theta})^{\gamma}\bigg{)}\,dt+\frac{\gamma\pi_{t}\sigma_{t}+Z_{t}}{\gamma}\,dW_{t}+\frac{\gamma\pi_{t}\sigma^{0}_{t}+Z^{0}_{t}}{\gamma}\,dW^{0}_{t}\Bigg{\}}\\ =&~{}X_{t}^{\gamma}e^{Y_{t}}\Bigg{\{}\bigg{(}-\frac{1-\gamma}{2}\left(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}\right)\bigg{\{}\pi_{t}-\frac{h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\bigg{\}}^{2}\bigg{)}\,dt\\ &~{}\qquad\qquad+\bigg{(}-c_{t}+\frac{\alpha}{\gamma}e^{-Y_{t}}(c_{t}(\nu^{*}_{t})^{-\theta})^{\gamma}-\frac{1-\gamma}{\gamma}\left\{\alpha e^{-Y_{t}}(\nu^{*}_{t})^{-\theta\gamma}\right\}^{\frac{1}{1-\gamma}}\bigg{)}\,dt\\ &~{}\qquad\qquad+\frac{\gamma\pi_{t}\sigma_{t}+Z_{t}}{\gamma}\,dW_{t}+\frac{\gamma\pi_{t}\sigma^{0}_{t}+Z^{0}_{t}}{\gamma}\,dW^{0}_{t}\Bigg{\}}.\end{split}

Note that for all (π,c)(\pi,c) the drift of Rπ,cR^{\pi,c} is non-positive, and the drift of Rπ,cR^{\pi^{*},c^{*}} is zero for (π,c)(\pi^{*},c^{*}) in (2.1). Thus, the claim (2.3) is proved.

Since (π,c)J(π,c)(\pi,c)\mapsto J(\pi,c) is concave, (π,c)(\pi^{*},c^{*}) in (2.1) is unique. ∎

The following theorem, which is the main result of this section, establishes the necessary and sufficient conditions for the solvability of our MFG (1.4). The sufficient condition is a corollary of Proposition 2.1. In order to prove the necessary part, we rely on the dynamic programming principle as in [7, Lemma 4.4] and [8, Lemma 3.2], where the NN-player game with exponential utility functions and trading constraint but without individual noise was considered. In the next theorem, we adapt the argument to our MFG (1.4).

Theorem 2.2.

(𝟏)\bm{(1)} Let (μ,ν,π,c)(\mu^{*},\nu^{*},\pi^{*},c^{*}) be an NE of the MFG (1.4), such that

𝔼[1γeγ(X^Tθμ^T)+0Tαγeγc^s+γX^sθγν^s𝑑s|] satisfies Rp for some p>1.\mathbb{E}\left[\frac{1}{\gamma}e^{\gamma(\widehat{X}^{*}_{T}-\theta\widehat{\mu}^{*}_{T})}+\int_{0}^{T}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\Big{|}\mathcal{F}_{\cdot}\right]\textrm{ satisfies }R_{p}\textrm{ for some }p>1. (2.4)

Then this NE must satisfy for t[0,T]t\in[0,T]

{μ^t=𝔼[X^t|t0],ν^t=𝔼[X^t|t0]1+𝔼[θγ1γ]+𝔼[logα1γ]1+𝔼[θγ1γ]𝔼[Yt1γ|t0]1+𝔼[θγ1γ],πt=ht+σtZt+σt0Zt0(1γ)(σt2+(σt0)2),ct=(αeYt(νt)θγ)11γ,\left\{\begin{split}\widehat{\mu}^{*}_{t}=&~{}\mathbb{E}[\widehat{X}^{*}_{t}|\mathcal{F}^{0}_{t}],\\ \widehat{\nu}^{*}_{t}=&~{}\frac{\mathbb{E}[\widehat{X}^{*}_{t}|\mathcal{F}^{0}_{t}]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}+\frac{\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}-\frac{\mathbb{E}\left[\frac{Y_{t}}{1-\gamma}|\mathcal{F}^{0}_{t}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]},\\ \pi^{*}_{t}=&~{}\frac{h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})},\\ c^{*}_{t}=&~{}\left(\alpha e^{-Y_{t}}(\nu^{*}_{t})^{-\theta\gamma}\right)^{\frac{1}{1-\gamma}},\end{split}\right. (2.5)

where (X^,Y,Z,Z0)(\widehat{X}^{*},Y,Z,Z^{0}) satisfies the following mean field FBSDE

{dX^t={πthtct12(πt)2(σt2+(σt0)2)}dt+πtσtdWt+πtσt0dWt0,dYt={Zt2+(Zt0)22+γ2(1γ)(ht+σtZt+σt0Zt0)2σt2+(σt0)2+(1γ){αeYt(νt)θγ}11γ}dtZtdWtZt0dWt0,X^0=log(x),YT=γθμ^T.\left\{\begin{split}d\widehat{X}^{*}_{t}=&~{}\bigg{\{}\pi^{*}_{t}h_{t}-c^{*}_{t}-\frac{1}{2}(\pi^{*}_{t})^{2}(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})\bigg{\}}\,dt+\pi^{*}_{t}\sigma_{t}\,dW_{t}+\pi^{*}_{t}\sigma^{0}_{t}\,dW^{0}_{t},\\ -dY_{t}=&~{}\Bigg{\{}\frac{Z^{2}_{t}+(Z^{0}_{t})^{2}}{2}+\frac{\gamma}{2(1-\gamma)}\frac{(h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t})^{2}}{\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}}+(1-\gamma)\big{\{}\alpha e^{-Y_{t}}(\nu^{*}_{t})^{-\theta\gamma}\big{\}}^{\frac{1}{1-\gamma}}\Bigg{\}}\,dt\\ &~{}-Z_{t}\,dW_{t}-Z_{t}^{0}\,dW^{0}_{t},\\ \widehat{X}^{*}_{0}=&~{}\log(x),~{}Y_{T}=-\gamma\theta\widehat{\mu}^{*}_{T}.\end{split}\right. (2.6)

Here, we recall μ^t=logμt\widehat{\mu}^{*}_{t}=\log\mu^{*}_{t}, ν^t=logνt\widehat{\nu}^{*}_{t}=\log\nu^{*}_{t}, c^t=logct\widehat{c}^{*}_{t}=\log c^{*}_{t} and X^t=logXt\widehat{X}^{*}_{t}=\log X^{*}_{t}, t[0,T]t\in[0,T].

(𝟐)\bm{(2)} If there exists a solution to the FBSDE (2.6) with (μ,ν,π,c)(\mu^{*},\nu^{*},\pi^{*},c^{*}) defined in (2.5) such that (Z,Z0)L×L(Z,Z^{0})\in L^{\infty}\times L^{\infty} and Y+θγ𝔼[X^|0]LY+\theta\gamma\mathbb{E}[\widehat{X}^{*}|\mathcal{F}^{0}]\in L^{\infty}, then (μ,ν,π,c)(\mu^{*},\nu^{*},\pi^{*},c^{*}) in (2.5) is an NE of the MFG (1.4) such that (2.4) holds.

Proof.

(𝟏)\bm{(1)} Let (μ,ν,π,c)(\mu^{*},\nu^{*},\pi^{*},c^{*}) be an NE of (1.4) such that (2.4) holds. For each (π,c)L×L(\pi,c)\in L^{\infty}\times L^{\infty}, define

Mtπ,c=eγX^tπ,cesssup(κ,b)L×L𝔼[1γeγ(X^Tκ,bX^tκ,bθμ^T)+tTαγeγb^s+γ(X^sκ,bX^tκ,b)θγν^s𝑑s|t]+0tαγeγc^s+γX^sπ,cθγν^s𝑑s,\begin{split}M^{\pi,c}_{t}=&~{}e^{\gamma\widehat{X}^{\pi,c}_{t}}\operatorname*{ess\,sup}_{(\kappa,b)\in L^{\infty}\times L^{\infty}}\mathbb{E}\left[\frac{1}{\gamma}e^{\gamma(\widehat{X}_{T}^{\kappa,b}-\widehat{X}^{\kappa,b}_{t}-\theta\widehat{\mu}^{*}_{T})}+\int_{t}^{T}\frac{\alpha}{\gamma}e^{\gamma\widehat{b}_{s}+\gamma(\widehat{X}^{\kappa,b}_{s}-\widehat{X}_{t}^{\kappa,b})-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\Big{|}\mathcal{F}_{t}\right]\\ &~{}+\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds,\end{split}

where Xκ,bX^{\kappa,b} denotes the wealth process associated with the investment-consumption pair (κ,b)(\kappa,b). Following the argument in [7, Lemma 4.4] and [8, Lemma 3.2], Mπ,cM^{\pi,c} has a continuous version which is a supermartingale for all (π,c)(\pi,c) and a martingale for (π,c)(\pi^{*},c^{*}). Denote X^:=X^π,c\widehat{X}^{*}:=\widehat{X}^{\pi^{*},c^{*}} and M:=Mπ,cM^{*}:=M^{\pi^{*},c^{*}}. Our goal is to get an SDE for Mπ,cM^{\pi,c}, and by the supermartingale property of Mπ,cM^{\pi,c} and martingale property of MM^{*} we link (π,c)(\pi^{*},c^{*}) to some FBSDE. We will achieve the goal by the following steps.

Step 1: representation of MM^{*} and Mπ,cM^{\pi,c}. Note that M0αγeγc^s+γX^sθγν^s𝑑s0M^{*}_{\cdot}-\int_{0}^{\cdot}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\neq 0 a.s.. Thus, martingale representation theorem yields (Z˘,Z˘0)(\breve{Z},\breve{Z}^{0}) such that

dMt=(Mt0tαγeγc^s+γX^sθγν^s𝑑s)(Z˘tdWt+Z˘t0dWt0).dM^{*}_{t}=\left(M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)(\breve{Z}_{t}\,dW_{t}+\breve{Z}^{0}_{t}\,dW^{0}_{t}). (2.7)

Moreover, since MM^{*} is a positive martingale, (2.4) and Lemma A.1 yield (Z̊,Z̊0)HBMO2×HBMO2(\mathring{Z},\mathring{Z}^{0})\in H^{2}_{BMO}\times H^{2}_{BMO} such that

dMt=Mt{Z̊tdWt+Z̊t0dWt0},dM^{*}_{t}=M^{*}_{t}\big{\{}\mathring{Z}_{t}\,dW_{t}+\mathring{Z}^{0}_{t}\,dW^{0}_{t}\big{\}}, (2.8)

which together with (2.7) implies that

(Z˘t,Z˘t0)=MtMt0tαγeγc^s+γX^sθγν^s𝑑s(Z̊t,Z̊t0),a.s.ωΩ,a.e.t[0,T].(\breve{Z}_{t},\breve{Z}^{0}_{t})=\frac{M^{*}_{t}}{M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds}(\mathring{Z}_{t},\mathring{Z}^{0}_{t}),\qquad a.s.~{}\omega\in\Omega,~{}~{}a.e.~{}t\in[0,T]. (2.9)

By the definition of Mπ,cM^{\pi,c} and MM^{*}, we have

Mtπ,c=eγ(X^tπ,cX^t)(Mt0tαγeγc^s+γX^sθγν^s𝑑s)+0tαγeγc^s+γX^sπ,cθγν^s𝑑s.\begin{split}M^{\pi,c}_{t}=&~{}e^{\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\left(M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)+\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds.\end{split} (2.10)

Finally, in this step we define a stochastic process YY for later use, which will turn out to be the backward component of the desired FBSDE:

eYt=γeγX^t(Mt0tαγeγc^s+γX^sθγν^s𝑑s).\begin{split}e^{Y_{t}}=\gamma e^{-\gamma\widehat{X}^{*}_{t}}\left(M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right).\end{split} (2.11)

Using (2.10), it also holds that

eYt=γeγX^tπ,c(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s).e^{Y_{t}}=\gamma e^{-\gamma\widehat{X}^{\pi,c}_{t}}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right). (2.12)

Step 2: SDE for Mπ,cM^{\pi,c}. Recall X^π,c\widehat{X}^{\pi,c} and X^\widehat{X}^{*} are the log-wealth associated with (π,c)(\pi,c) and (π,c)(\pi^{*},c^{*}), respectively. Itô’s formula implies that

deγ(X^tπ,cX^t)=eγ(X^tπ,cX^t){γ(πtπt)htγ(ctct)γ2(πt2(πt)2)(σt2+(σt0)2)+γ22(πtπt)2(σt2+(σt0)2)}dt+eγ(X^tπ,cX^t){γσt(πtπt)dWt+γσt0(πtπt)dWt0}.\begin{split}&~{}de^{\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\\ =&~{}e^{\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\bigg{\{}\gamma(\pi_{t}-\pi^{*}_{t})h_{t}-\gamma(c_{t}-c^{*}_{t})-\frac{\gamma}{2}(\pi^{2}_{t}-(\pi^{*}_{t})^{2})(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})\\ &~{}+\frac{\gamma^{2}}{2}(\pi_{t}-\pi^{*}_{t})^{2}(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})\bigg{\}}\,dt+e^{\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\bigg{\{}\gamma\sigma_{t}(\pi_{t}-\pi^{*}_{t})\,dW_{t}+\gamma\sigma^{0}_{t}(\pi_{t}-\pi^{*}_{t})\,dW^{0}_{t}\bigg{\}}.\end{split} (2.13)

From the expressions (2.10) and (2.7), integration by parts implies that

dMtπ,c\displaystyle~{}dM^{\pi,c}_{t}
=\displaystyle= (Mt0tαγeγc^s+γX^sθγν^s𝑑s)deγ(X^tπ,cX^t)\displaystyle~{}\left(M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)\,de^{\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}
+eγ(X^tπ,cX^t)dMt+(eγ(X^tπ,cX^t)αγeγc^t+γX^tθγν^t+αγeγc^t+γX^tπ,cθγν^t)dt\displaystyle~{}+e^{\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\,dM^{*}_{t}+\left(-e^{\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{t}+\gamma\widehat{X}^{*}_{t}-\theta\gamma\widehat{\nu}^{*}_{t}}+\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{t}+\gamma\widehat{X}^{\pi,c}_{t}-\theta\gamma\widehat{\nu}^{*}_{t}}\right)\,dt
+deγ(X^π,cX^),Mt\displaystyle~{}+d\left\langle e^{\gamma(\widehat{X}^{\pi,c}-\widehat{X}^{*})},M^{*}\right\rangle_{t}
=\displaystyle= eγ(X^tX^tπ,c)(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)deγ(X^tπ,cX^t)(using (2.10))\displaystyle~{}e^{\gamma(\widehat{X}^{*}_{t}-\widehat{X}^{\pi,c}_{t})}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)\,de^{\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\qquad(\textrm{using }\eqref{expression-M})
+eγ(X^tπ,cX^t)dMt+1γeγX^tπ,c+Yt(αeγc^tθγν^tYtαeγc^tθγν^tYt)dt\displaystyle~{}+e^{\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\,dM^{*}_{t}+\frac{1}{\gamma}e^{\gamma\widehat{X}^{\pi,c}_{t}+Y_{t}}\bigg{(}\alpha e^{\gamma\widehat{c}_{t}-\theta\gamma\widehat{\nu}^{*}_{t}-Y_{t}}-\alpha e^{\gamma\widehat{c}^{*}_{t}-\theta\gamma\widehat{\nu}^{*}_{t}-Y_{t}}\bigg{)}\,dt
+deγ(X^π,cX^),Mt\displaystyle~{}+d\left\langle e^{\gamma(\widehat{X}^{\pi,c}-\widehat{X}^{*})},M^{*}\right\rangle_{t}
=\displaystyle= (Mtπ,c0tαγeγc^s+γX^sπ,cθγν^sds){γ(πtπt)htγ(ctct)γ2(πt2(πt)2)(σt2+(σt0)2)\displaystyle~{}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)\bigg{\{}\gamma(\pi_{t}-\pi^{*}_{t})h_{t}-\gamma(c_{t}-c^{*}_{t})-\frac{\gamma}{2}(\pi^{2}_{t}-(\pi^{*}_{t})^{2})(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})
+γ22(πtπt)2(σt2+(σt0)2)}dt\displaystyle~{}+\frac{\gamma^{2}}{2}(\pi_{t}-\pi^{*}_{t})^{2}(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})\bigg{\}}\,dt
+(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s){γσt(πtπt)dWt+γσt0(πtπt)dWt0}(using (2.13))\displaystyle~{}+\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)\bigg{\{}\gamma\sigma_{t}(\pi_{t}-\pi^{*}_{t})\,dW_{t}+\gamma\sigma^{0}_{t}(\pi_{t}-\pi^{*}_{t})\,dW^{0}_{t}\bigg{\}}\qquad(\textrm{using }\eqref{eq:to-supermartingale-1})
+(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)(Z˘tdWt+Z˘t0dWt0)(using (2.7) and (2.10))\displaystyle~{}+\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)(\breve{Z}_{t}\,dW_{t}+\breve{Z}^{0}_{t}\,dW^{0}_{t})\qquad(\textrm{using }\eqref{martingale-representation}\textrm{ and }\eqref{expression-M})
+(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)(αeγc^tθγν^tYtαeγc^tθγν^tYt)dt(using (2.12))\displaystyle~{}+\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)\bigg{(}\alpha e^{\gamma\widehat{c}_{t}-\theta\gamma\widehat{\nu}^{*}_{t}-Y_{t}}-\alpha e^{\gamma\widehat{c}^{*}_{t}-\theta\gamma\widehat{\nu}^{*}_{t}-Y_{t}}\bigg{)}\,dt\qquad(\textrm{using }\eqref{def:Y-2})
+(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s){γσtZ˘t+γσt0Z˘t0}(πtπt)dt(using (2.7),(2.13) and (2.10))\displaystyle~{}+\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)\bigg{\{}\gamma\sigma_{t}\breve{Z}_{t}+\gamma\sigma^{0}_{t}\breve{Z}^{0}_{t}\bigg{\}}(\pi_{t}-\pi^{*}_{t})\,dt\quad(\textrm{using }\eqref{martingale-representation},~{}\eqref{eq:to-supermartingale-1}\textrm{ and }\eqref{expression-M})
=\displaystyle= (γMtπ,c0tαeγc^s+γX^sπ,cθγν^sds){(1γ)(σt2+(σt0)2)2(πt1γht+σtZ˘t+σt0Z˘t0(1γ)(σt2+(σt0)2))2\displaystyle~{}\left(\gamma M^{\pi,c}_{t}-\int_{0}^{t}\alpha e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)\Bigg{\{}\frac{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}{2}\left(\frac{\pi^{*}_{t}}{1-\gamma}-\frac{h_{t}+\sigma_{t}\breve{Z}_{t}+\sigma^{0}_{t}\breve{Z}^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right)^{2}
(1γ)(σt2+(σt0)2)2(πtht+σtZ˘t+σt0Z˘t0(1γ)(σt2+(σt0)2)+γπt1γ)2\displaystyle~{}\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad-\frac{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}{2}\left(\pi_{t}-\frac{h_{t}+\sigma_{t}\breve{Z}_{t}+\sigma^{0}_{t}\breve{Z}^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}+\frac{\gamma\pi^{*}_{t}}{1-\gamma}\right)^{2}
+ctαγeγc^tθγν^tYt+1γγ{αeYtθγν^t}11γct+αγeγc^tθγν^tYt1γγ{αeYtθγν^t}11γ}dt\displaystyle~{}+c^{*}_{t}-\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{t}-\theta\gamma\widehat{\nu}^{*}_{t}-Y_{t}}+\frac{1-\gamma}{\gamma}\{\alpha e^{-Y_{t}-\theta\gamma\widehat{\nu}^{*}_{t}}\}^{\frac{1}{1-\gamma}}-c_{t}+\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{t}-\theta\gamma\widehat{\nu}^{*}_{t}-Y_{t}}-\frac{1-\gamma}{\gamma}\{\alpha e^{-Y_{t}-\theta\gamma\widehat{\nu}^{*}_{t}}\}^{\frac{1}{1-\gamma}}\Bigg{\}}\,dt
+(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s){(γσtπtγσtπt+Z˘t)dWt+(γσt0πtγσt0πt+Z˘t0)dWt0}\displaystyle~{}+\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)\bigg{\{}(\gamma\sigma_{t}\pi_{t}-\gamma\sigma_{t}\pi^{*}_{t}+\breve{Z}_{t})\,dW_{t}+(\gamma\sigma^{0}_{t}\pi_{t}-\gamma\sigma^{0}_{t}\pi^{*}_{t}+\breve{Z}^{0}_{t})\,dW^{0}_{t}\bigg{\}}
:=\displaystyle:= f1,tπ,cdt+f2,tπ,cdWt+f3,tπ,cdWt0.\displaystyle~{}f^{\pi,c}_{1,t}\,dt+f^{\pi,c}_{2,t}\,dW_{t}+f^{\pi,c}_{3,t}\,dW^{0}_{t}.

In the next step, we will verify 0f2,sπ,c𝑑Ws+0f3,sπ,c𝑑Ws0\int_{0}^{\cdot}f^{\pi,c}_{2,s}\,dW_{s}+\int_{0}^{\cdot}f^{\pi,c}_{3,s}\,dW^{0}_{s} is a martingale for each (π,c)L×L(\pi,c)\in L^{\infty}\times L^{\infty}.

Step 3: verification of martingale properties. Since all coefficients are bounded and (π,c,π,c)L×L×L×L(\pi^{*},c^{*},\pi,c)\in L^{\infty}\times L^{\infty}\times L^{\infty}\times L^{\infty}, it is sufficient to verify

𝔼[0T(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)2{1+Z˘t2+(Z˘t0)2}𝑑t]<.\begin{split}\mathbb{E}\left[\int_{0}^{T}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}\bigg{\{}1+\breve{Z}^{2}_{t}+(\breve{Z}^{0}_{t})^{2}\bigg{\}}\,dt\right]<\infty.\end{split}

From (2.9) in Step 1, we have that

𝔼[0T(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)2Z˘t2𝑑t]=𝔼[0T(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)2(Mt)2(Mt0tαγeγc^s+γX^sθγν^s𝑑s)2Z̊t2𝑑t]𝔼[sup0tT(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)2sup0tT(Mt)2inf0tT(Mt0tαγeγc^s+γX^sθγν^s𝑑s)20TZ̊t2𝑑t]:=𝔼[I1,TI2,T0TZ̊t2𝑑t].\begin{split}&~{}\mathbb{E}\left[\int_{0}^{T}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}\breve{Z}^{2}_{t}\,dt\right]\\ =&~{}\mathbb{E}\left[\int_{0}^{T}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}\frac{(M^{*}_{t})^{2}}{(M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds)^{2}}\mathring{Z}^{2}_{t}\,dt\right]\\ \leq&~{}\mathbb{E}\left[\frac{\sup_{0\leq t\leq T}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}\sup_{0\leq t\leq T}(M^{*}_{t})^{2}}{\inf_{0\leq t\leq T}\left(M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}}\int_{0}^{T}\mathring{Z}^{2}_{t}\,dt\right]\\ :=&~{}\mathbb{E}\left[\frac{I_{1,T}}{I_{2,T}}\int_{0}^{T}\mathring{Z}^{2}_{t}\,dt\right].\end{split}

We estimate I1,TI_{1,T} and I2,TI_{2,T} separately. For the denominator I2,TI_{2,T} we have that by the boundedness of all coefficients and (π,c)(\pi^{*},c^{*})

inf0tT(Mt0tαγeγc^s+γX^sθγν^s𝑑s)21γ2inf0tT𝔼[eγ(X^Tθμ^T)|t]2Cinf0tT𝔼[(0Tγσtπt𝑑Wt+0T(γσt0πtθγ𝔼[γσtπt|t0])𝑑Wt0)|t]2=Cinf0tT(0tγσsπs𝑑Ws+0t(γσs0πsθγ𝔼[γσsπs|s0])𝑑Ws0)2,\begin{split}&~{}\inf_{0\leq t\leq T}\left(M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}\\ \geq&~{}\frac{1}{\gamma^{2}}\inf_{0\leq t\leq T}\mathbb{E}\left[\left.e^{\gamma(\widehat{X}^{*}_{T}-\theta\widehat{\mu}^{*}_{T})}\right|\mathcal{F}_{t}\right]^{2}\\ \geq&~{}C\inf_{0\leq t\leq T}\mathbb{E}\left[\left.\mathcal{E}\left(\int_{0}^{T}\gamma\sigma_{t}\pi^{*}_{t}\,dW_{t}+\int_{0}^{T}\left(\gamma\sigma^{0}_{t}\pi^{*}_{t}-\theta\gamma\mathbb{E}[\gamma\sigma_{t}\pi^{*}_{t}|\mathcal{F}^{0}_{t}]\right)\,dW^{0}_{t}\right)\right|\mathcal{F}_{t}\right]^{2}\\ =&~{}C\inf_{0\leq t\leq T}\mathcal{E}\left(\int_{0}^{t}\gamma\sigma_{s}\pi^{*}_{s}\,dW_{s}+\int_{0}^{t}\left(\gamma\sigma^{0}_{s}\pi^{*}_{s}-\theta\gamma\mathbb{E}[\gamma\sigma_{s}\pi^{*}_{s}|\mathcal{F}^{0}_{s}]\right)\,dW^{0}_{s}\right)^{2},\end{split}

from which using again the boundedness of all coefficients and (π,c)(\pi^{*},c^{*}) we have that

1inf0tT(Mt0tαγeγc^s+γX^sθγν^s𝑑s)2Cinf0tT(0tγσsπs𝑑Ws+0t(γσs0πsθγ𝔼[γσsπs|s0])𝑑Ws0)2sup0tTC(0tγσsπs𝑑Ws+0t(γσs0πsθγ𝔼[γσsπs|s0])𝑑Ws0)2Csup0tT(0t2γσsπs𝑑Ws0t2(γσs0πsθγ𝔼[γσsπs|s0])𝑑Ws0).\begin{split}&~{}\frac{1}{\inf_{0\leq t\leq T}\left(M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}}\\ \leq&~{}\frac{C}{\inf_{0\leq t\leq T}\mathcal{E}\left(\int_{0}^{t}\gamma\sigma_{s}\pi^{*}_{s}\,dW_{s}+\int_{0}^{t}\left(\gamma\sigma^{0}_{s}\pi^{*}_{s}-\theta\gamma\mathbb{E}[\gamma\sigma_{s}\pi^{*}_{s}|\mathcal{F}^{0}_{s}]\right)\,dW^{0}_{s}\right)^{2}}\\ \leq&~{}\sup_{0\leq t\leq T}\frac{C}{\mathcal{E}\left(\int_{0}^{t}\gamma\sigma_{s}\pi^{*}_{s}\,dW_{s}+\int_{0}^{t}\left(\gamma\sigma^{0}_{s}\pi^{*}_{s}-\theta\gamma\mathbb{E}[\gamma\sigma_{s}\pi^{*}_{s}|\mathcal{F}^{0}_{s}]\right)\,dW^{0}_{s}\right)^{2}}\\ \leq&~{}C\sup_{0\leq t\leq T}\mathcal{E}\left(-\int_{0}^{t}2\gamma\sigma_{s}\pi^{*}_{s}\,dW_{s}-\int_{0}^{t}2\left(\gamma\sigma^{0}_{s}\pi^{*}_{s}-\theta\gamma\mathbb{E}[\gamma\sigma_{s}\pi^{*}_{s}|\mathcal{F}^{0}_{s}]\right)\,dW^{0}_{s}\right).\end{split}

For the numerator I1,TI_{1,T}, it holds that

sup0tT(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)2sup0tT(Mt)2sup0tTe2γ(X^tπ,cX^t)(Mt0tαγeγc^s+γX^sθγν^s𝑑s)2sup0tT(Mt)2Csup0tTe2γ(X^tπ,cX^t)sup0tT𝔼[eγ(X^Tθμ^T)+0Teγc^s+γX^sθγν^s𝑑s|t]4.\begin{split}&~{}\sup_{0\leq t\leq T}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}\sup_{0\leq t\leq T}(M^{*}_{t})^{2}\\ \leq&~{}\sup_{0\leq t\leq T}e^{2\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\left(M^{*}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}\sup_{0\leq t\leq T}(M^{*}_{t})^{2}\\ \leq&~{}C\sup_{0\leq t\leq T}e^{2\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\sup_{0\leq t\leq T}\mathbb{E}\left[\left.e^{\gamma(\widehat{X}^{*}_{T}-\theta\widehat{\mu}^{*}_{T})}+\int_{0}^{T}e^{\gamma\widehat{c}^{*}_{s}+\gamma\widehat{X}^{*}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right|\mathcal{F}_{t}\right]^{4}.\end{split}

Thus, Hölder’s inequality and Doob’s maximal inequality imply that

𝔼[0T(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)2Z˘t2𝑑t]C𝔼[sup0tT(0t2γσsπs𝑑Ws0t2(γσs0πsθγ𝔼[γσsπs|s0])𝑑Ws0)p1]1p1𝔼[sup0tTe2p2γ(X^tπ,cX^t)]1p2×𝔼[sup0tT𝔼[eγ(X^Tθμ^T)+0Teγc^t+γX^tθγν^t𝑑t|t]4p3]1p3×𝔼[(0TZ̊t2dt)p4]1p4(1p1+1p2+1p3+1p4=1)C𝔼[sup0tT(0t2γσsπs𝑑Ws0t2(γσs0πsθγ𝔼[γσsπs|s0])𝑑Ws0)p1]1p1𝔼[sup0tTe2p2γ(X^tπ,cX^t)]1p2×{𝔼[e4p3γ(XTθμ^T)]1p3+𝔼[0Te4p3(γc^t+γX^tθγν^t)𝑑t]1p3}𝔼[(0TZ̊t2𝑑t)p4]1p4<,\begin{split}&~{}\mathbb{E}\left[\int_{0}^{T}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}\breve{Z}^{2}_{t}\,dt\right]\\ \leq&~{}C\mathbb{E}\left[\sup_{0\leq t\leq T}\mathcal{E}\left(-\int_{0}^{t}2\gamma\sigma_{s}\pi^{*}_{s}\,dW_{s}-\int_{0}^{t}2\left(\gamma\sigma^{0}_{s}\pi^{*}_{s}-\theta\gamma\mathbb{E}[\gamma\sigma_{s}\pi^{*}_{s}|\mathcal{F}^{0}_{s}]\right)\,dW^{0}_{s}\right)^{p_{1}}\right]^{\frac{1}{p_{1}}}\mathbb{E}\left[\sup_{0\leq t\leq T}e^{2p_{2}\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\right]^{\frac{1}{p_{2}}}\\ &~{}\times\mathbb{E}\left[\sup_{0\leq t\leq T}\mathbb{E}\bigg{[}e^{\gamma(\widehat{X}^{*}_{T}-\theta\widehat{\mu}^{*}_{T})}+\int_{0}^{T}e^{\gamma\widehat{c}^{*}_{t}+\gamma\widehat{X}^{*}_{t}-\theta\gamma\widehat{\nu}^{*}_{t}}\,dt\Big{|}\mathcal{F}_{t}\bigg{]}^{4p_{3}}\right]^{\frac{1}{p_{3}}}\\ &~{}\times\mathbb{E}\left[\left(\int_{0}^{T}\mathring{Z}^{2}_{t}\,dt\right)^{p_{4}}\right]^{\frac{1}{p_{4}}}\qquad\qquad\qquad\qquad(\frac{1}{p_{1}}+\frac{1}{p_{2}}+\frac{1}{p_{3}}+\frac{1}{p_{4}}=1)\\ \leq&~{}C\mathbb{E}\left[\sup_{0\leq t\leq T}\mathcal{E}\left(-\int_{0}^{t}2\gamma\sigma_{s}\pi^{*}_{s}\,dW_{s}-\int_{0}^{t}2\left(\gamma\sigma^{0}_{s}\pi^{*}_{s}-\theta\gamma\mathbb{E}[\gamma\sigma_{s}\pi^{*}_{s}|\mathcal{F}^{0}_{s}]\right)\,dW^{0}_{s}\right)^{p_{1}}\right]^{\frac{1}{p_{1}}}\mathbb{E}\left[\sup_{0\leq t\leq T}e^{2p_{2}\gamma(\widehat{X}^{\pi,c}_{t}-\widehat{X}^{*}_{t})}\right]^{\frac{1}{p_{2}}}\\ &~{}\times\Bigg{\{}\mathbb{E}\left[e^{4p_{3}\gamma(X^{*}_{T}-\theta\widehat{\mu}^{*}_{T})}\right]^{\frac{1}{p_{3}}}+\mathbb{E}\left[\int_{0}^{T}e^{4p_{3}(\gamma\widehat{c}^{*}_{t}+\gamma\widehat{X}^{*}_{t}-\theta\gamma\widehat{\nu}^{*}_{t})}\,dt\right]^{\frac{1}{p_{3}}}\Bigg{\}}\mathbb{E}\left[\left(\int_{0}^{T}\mathring{Z}^{2}_{t}\,dt\right)^{p_{4}}\right]^{\frac{1}{p_{4}}}\\ <&~{}\infty,\end{split}

where 𝔼[(0TZ̊t2𝑑t)p4]<\mathbb{E}\left[\left(\int_{0}^{T}\mathring{Z}^{2}_{t}\,dt\right)^{p_{4}}\right]<\infty is due to Z̊HBMO2\mathring{Z}\in H^{2}_{BMO} and the energy inequality; refer to [12, P.26]. Similarly, one also has

𝔼[0T(Mtπ,c0tαγeγc^s+γX^sπ,cθγν^s𝑑s)2(1+(Z˘t0)2)𝑑t]<.\mathbb{E}\left[\int_{0}^{T}\left(M^{\pi,c}_{t}-\int_{0}^{t}\frac{\alpha}{\gamma}e^{\gamma\widehat{c}_{s}+\gamma\widehat{X}^{\pi,c}_{s}-\theta\gamma\widehat{\nu}^{*}_{s}}\,ds\right)^{2}(1+(\breve{Z}_{t}^{0})^{2})\,dt\right]<\infty.

Step 4: complete the proof. Since Mπ,cM^{\pi,c} is a supermartingale and 0f2,sπ,c𝑑Ws+0f3,sπ,c𝑑Ws0\int_{0}^{\cdot}f^{\pi,c}_{2,s}\,dW_{s}+\int_{0}^{\cdot}f^{\pi,c}_{3,s}\,dW^{0}_{s} is a martingale from Step 3, it holds that Mπ,c0f2,sπ,c𝑑Ws0f3,sπ,c𝑑Ws0M^{\pi,c}_{\cdot}-\int_{0}^{\cdot}f^{\pi,c}_{2,s}\,dW_{s}-\int_{0}^{\cdot}f^{\pi,c}_{3,s}\,dW^{0}_{s} is a supermartingale, i.e. 0f1,tπ,c𝑑t\int_{0}^{\cdot}f^{\pi,c}_{1,t}\,dt is a supermartingale for all (π,c)(\pi,c). It implies that f1π,c0f^{\pi,c}_{1}\leq 0 for all (π,c)(\pi,c), and f1π,c=0f^{\pi^{*},c^{*}}_{1}=0 since MM^{*} is a martingale. Thus, we have

π=h+σZ˘+σ0Z˘0σ2+(σ0)2,c=α11γe11γ(θγν^+Y).\pi^{*}=\frac{h+\sigma\breve{Z}+\sigma^{0}\breve{Z}^{0}}{\sigma^{2}+(\sigma^{0})^{2}},\quad c^{*}=\alpha^{\frac{1}{1-\gamma}}e^{-\frac{1}{1-\gamma}(\theta\gamma\widehat{\nu}^{*}+Y)}.

Define (Z,Z0)=(Z˘γσπ,Z˘0γσ0π)(Z,Z^{0})=(\breve{Z}-\gamma\sigma\pi^{*},\breve{Z}^{0}-\gamma\sigma^{0}\pi^{*}). Then

π=h+σZ+σ0Z0(1γ)(σ2+(σ0)2).\pi^{*}=\frac{h+\sigma Z+\sigma^{0}Z^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}.

Recall YY defined in (2.11). Then (X^,Y,Z,Z0)(\widehat{X}^{*},Y,Z,Z^{0}) satisfies the FBSDE (2.6).

(𝟐)\bm{(2)} Let (X^,Y,Z,Z0)(\widehat{X}^{*},Y,Z,Z^{0}) be a solution to (2.6). By Proposition 2.1, together with the probabilistic approach in [2], (μ,ν,π,c)(\mu^{*},\nu^{*},\pi^{*},c^{*}) is an NE of (1.4), with ν^=𝔼[cX^|0]\widehat{\nu}^{*}=\mathbb{E}[\widehat{c^{*}X^{*}}|\mathcal{F}^{0}], μ^\widehat{\mu}^{*}, π\pi^{*} and cc^{*} satisfying the first, the third and the last equality in (2.5). It remains to verify that ν^\widehat{\nu}^{*} satisfies the second equality in (2.5). Indeed, by the last equality in (2.5), it holds that

ν^t=𝔼[c^t|t0]+𝔼[X^t|t0]=𝔼[logα1γ]𝔼[Yt1γ|t0]𝔼[θγν^t1γ|t0]+𝔼[X^t|t0].\begin{split}\widehat{\nu}^{*}_{t}=&~{}\mathbb{E}[\widehat{c}^{*}_{t}|\mathcal{F}^{0}_{t}]+\mathbb{E}[\widehat{X}^{*}_{t}|\mathcal{F}^{0}_{t}]\\ =&~{}\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]-\mathbb{E}\left[\left.\frac{Y_{t}}{1-\gamma}\right|\mathcal{F}^{0}_{t}\right]-\mathbb{E}\left[\left.\frac{\theta\gamma\widehat{\nu}^{*}_{t}}{1-\gamma}\right|\mathcal{F}^{0}_{t}\right]+\mathbb{E}[\widehat{X}^{*}_{t}|\mathcal{F}^{0}_{t}].\end{split} (2.14)

Multiplying θγ1γ\frac{\theta\gamma}{1-\gamma} and taking conditional expectations 𝔼[|t0]\mathbb{E}[\cdot|\mathcal{F}^{0}_{t}] on both sides of (2.14), we have

𝔼[θγ1γν^t|t0]=𝔼[θγ1γ]𝔼[logα1γ]𝔼[θγ1γ]𝔼[Yt1γ|t0]𝔼[θγ1γ]𝔼[θγν^t1γ|t0]+𝔼[θγ1γ]𝔼[X^t|t0],\begin{split}\mathbb{E}\left[\left.\frac{\theta\gamma}{1-\gamma}\widehat{\nu}^{*}_{t}\right|\mathcal{F}^{0}_{t}\right]=&~{}\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]-\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\mathbb{E}\left[\left.\frac{Y_{t}}{1-\gamma}\right|\mathcal{F}^{0}_{t}\right]\\ &~{}-\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\mathbb{E}\left[\left.\frac{\theta\gamma\widehat{\nu}^{*}_{t}}{1-\gamma}\right|\mathcal{F}^{0}_{t}\right]+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\mathbb{E}[\widehat{X}^{*}_{t}|\mathcal{F}^{0}_{t}],\end{split}

which implies that

𝔼[θγν^t1γ|0]=𝔼[θγ1γ]1+𝔼[θγ1γ]{𝔼[logα1γ]𝔼[Yt1γ|t0]+𝔼[X^t|t0]}.\mathbb{E}\left[\left.\frac{\theta\gamma\widehat{\nu}^{*}_{t}}{1-\gamma}\right|\mathcal{F}^{0}\right]=\frac{\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}\left\{\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]-\mathbb{E}\left[\left.\frac{Y_{t}}{1-\gamma}\right|\mathcal{F}^{0}_{t}\right]+\mathbb{E}\left[\widehat{X}^{*}_{t}|\mathcal{F}^{0}_{t}\right]\right\}.

Taking the above equality back into (2.14), we obtain the second equality in (2.5). ∎

The following two remarks show that portfolio games with exponential utility functions and log utility functions are also equivalent to some FBSDEs.

Remark 2.3 (MFGs with exponential utility functions).

If each player uses an exponential utility criterion, then the MFG becomes:

{1.Fix (μ,ν) in some suitable space;2.Solve the optimization problem: 𝔼[0Tαeβ(csθνs)dseβ(XTθμT)]max over (π,c)such that dXt=πt(htdt+σtdWt+σt0dWt0)ctdt,X0=xexp;3.Search for the fixed point (μt,νt)=(𝔼[Xt|t0],𝔼[ct|t0]),t[0,T],X and c are the optimal wealth and consumption from 2.\left\{\begin{split}1.&~{}\textrm{Fix }(\mu,\nu)\textrm{ in some suitable space};\\ 2.&~{}\textrm{Solve the optimization problem: }\\ &~{}\mathbb{E}\left[\int_{0}^{T}-\alpha e^{-\beta(c_{s}-\theta\nu_{s})}\,ds-e^{-\beta(X_{T}-\theta\mu_{T})}\right]\rightarrow\max\textrm{ over }(\pi,c)\\ &~{}\textrm{such that }dX_{t}=\pi_{t}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t})-c_{t}\,dt,~{}X_{0}=x_{exp};\\ 3.&~{}\textrm{Search for the fixed point }(\mu_{t},\nu_{t})=\left(\mathbb{E}[X^{*}_{t}|\mathcal{F}^{0}_{t}],\mathbb{E}[c^{*}_{t}|\mathcal{F}^{0}_{t}]\right),~{}t\in[0,T],\\ &~{}X^{*}\textrm{ and }c^{*}\textrm{ are the optimal wealth and consumption from }2.\end{split}\right. (2.15)

Following the same argument in Theorem 2.2, the NE of the MFG (2.15) has a one-to-one correspondence with the following mean field FBSDE

{dXt=(πthtct)dt+πtσtdWt+πtσt0dWt0dYt={12β(σt2+(σt0)2){htβ(σtZt+σt0Zt0)}2β2(Zt2+(Zt0)2)gtYtθgt𝔼[ct|t0]+gtβloggtαgtβ}dtZtdWtZ0tdW0t,X0=xexp,YT=θ𝔼[XT|T0],\left\{\begin{split}dX_{t}=&~{}(\pi^{*}_{t}h_{t}-c^{*}_{t})\,dt+\pi^{*}_{t}\sigma_{t}\,dW_{t}+\pi^{*}_{t}\sigma^{0}_{t}\,dW^{0}_{t}\\ -dY_{t}=&~{}\bigg{\{}\frac{1}{2\beta(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left\{h_{t}-\beta(\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t})\right\}^{2}-\frac{\beta}{2}(Z^{2}_{t}+(Z^{0}_{t})^{2})\\ &~{}-g_{t}Y_{t}-\theta g_{t}\mathbb{E}[c^{*}_{t}|\mathcal{F}^{0}_{t}]+\frac{g_{t}}{\beta}\log\frac{g_{t}}{\alpha}-\frac{g_{t}}{\beta}\bigg{\}}\,dt-Z_{t}\,dW_{t}-Z^{0}_{t}\,dW^{0}_{t},\\ X_{0}=&~{}x_{exp},\quad Y_{T}=-\theta\mathbb{E}[X_{T}|\mathcal{F}^{0}_{T}],\end{split}\right. (2.16)

where gt=11+Ttg_{t}=\frac{1}{1+T-t}, 0tT0\leq t\leq T, and the optimal investment and consumption are given by

π=hβ(σZ+σ0Z0)βg(σ2+(σ0)2),c=gX+Y+θ𝔼[gX+Y|0]1𝔼[θ]loggαθ𝔼[1βloggα]1𝔼[θ].\pi^{*}=\frac{h-\beta(\sigma Z+\sigma^{0}Z^{0})}{\beta g(\sigma^{2}+(\sigma^{0})^{2})},\quad c^{*}=gX+Y+\frac{\theta\mathbb{E}[gX+Y|\mathcal{F}^{0}]}{1-\mathbb{E}[\theta]}-\log\frac{g}{\alpha}-\frac{\theta\mathbb{E}\left[\frac{1}{\beta}\log\frac{g}{\alpha}\right]}{1-\mathbb{E}[\theta]}.
Remark 2.4 (MFGs with log utility functions).

If each player uses log utility criterion, then the MFG becomes:

{1.Fix μ in some suitable space;2.Solve the optimization problem: 𝔼[0Tαlog(ctXtνtθ)𝑑t+log(XTμTθ)]max over (π,c)such that dXt=πtXt(htdt+σtdWt+σt0dWt0)ctXtdt,X0=xlog;3.Search for the fixed point (μt,νt)=(exp(𝔼[X^t|t0]),exp(𝔼[ctXt^|0])),t[0,T],(X,c) is the optimal wealth and consumption rate from 2.\left\{\begin{split}1.&~{}\textrm{Fix }\mu\textrm{ in some suitable space};\\ 2.&~{}\textrm{Solve the optimization problem: }\\ &~{}\mathbb{E}\left[\int_{0}^{T}\alpha\log(c_{t}X_{t}\nu^{-\theta}_{t})\,dt+\log\big{(}X_{T}\mu^{-\theta}_{T}\big{)}\right]\rightarrow\max\textrm{ over }(\pi,c)\\ &~{}\textrm{such that }dX_{t}=\pi_{t}X_{t}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t})-c_{t}X_{t}\,dt,~{}X_{0}=x_{log};\\ 3.&~{}\textrm{Search for the fixed point }(\mu_{t},\nu_{t})=(\exp\left(\mathbb{E}[\widehat{X}^{*}_{t}|\mathcal{F}^{0}_{t}]\right),\exp\left(\mathbb{E}[\widehat{c^{*}_{t}X^{*}_{t}}|\mathcal{F}^{0}]\right)),~{}t\in[0,T],\\ &~{}(X^{*},c^{*})\textrm{ is the optimal wealth and consumption rate from }2.\end{split}\right. (2.17)

Note that argmaxπ,c𝔼[0Tαlog(ctXtνtθ)𝑑t+log(XTμTθ)]=argmaxπ,c𝔼[0Tαlog(ctXt)+logXT]\arg\max_{\pi,c}\mathbb{E}\left[\int_{0}^{T}\alpha\log(c_{t}X_{t}\nu^{-\theta}_{t})\,dt+\log\big{(}X_{T}\mu^{-\theta}_{T}\big{)}\right]=\arg\max_{\pi,c}\mathbb{E}[\int_{0}^{T}\alpha\log(c_{t}X_{t})+\log X_{T}]. Thus, the MFG with log utility criteria is decoupled; each player makes her decision by disregarding her competitors. By [4], the NE of (2.17) is given by

{πt=htσt2+(σt0)2,ct=α1+α(Tt),μt=exp(𝔼[log(Xt)|t0]),νt=exp(𝔼[log(ctXt)|t0]),\left\{\begin{split}&~{}\pi^{*}_{t}=\frac{h_{t}}{\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}},\quad c^{*}_{t}=\frac{\alpha}{1+\alpha(T-t)},\\ &~{}\mu^{*}_{t}=\exp\left(\mathbb{E}[\log(X^{*}_{t})|\mathcal{F}^{0}_{t}]\right),\quad\nu^{*}_{t}=\exp\left(\mathbb{E}[\log(c^{*}_{t}X^{*}_{t})|\mathcal{F}^{0}_{t}]\right),\end{split}\right. (2.18)

where XX^{*} together with some (Y,Z)(Y,Z) is the unique solution to the (decoupled) FBSDE

{dXt=htσt2+(σt0)2Xt(htdt+σtdWt+σt0dWt0)α1+α(Tt)Xtdt,dYt={ht22(σt2+(σt0)2)+α1+α(Tt)logα1+α(Tt)+α1+α(Tt)}dt+ZtdWt+Zt0dWt0,X0=xlog,YT=θ𝔼[logXT|T0].\left\{\begin{split}dX^{*}_{t}=&~{}\frac{h_{t}}{\sigma^{2}_{t}+(\sigma^{0}_{t})^{2}}X^{*}_{t}(h_{t}\,dt+\sigma_{t}\,dW_{t}+\sigma^{0}_{t}\,dW^{0}_{t})-\frac{\alpha}{1+\alpha(T-t)}X_{t}^{*}\,dt,\\ dY_{t}=&~{}\bigg{\{}\frac{h^{2}_{t}}{2(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}+\frac{\alpha}{1+\alpha(T-t)}\log\frac{\alpha}{1+\alpha(T-t)}+\frac{\alpha}{1+\alpha(T-t)}\bigg{\}}\,dt\\ &~{}+Z_{t}\,dW_{t}+Z^{0}_{t}\,dW^{0}_{t},\\ X_{0}=&~{}x_{log},~{}Y_{T}=-\theta\mathbb{E}[\log X^{*}_{T}|\mathcal{F}^{0}_{T}].\end{split}\right. (2.19)

2.2 MFGs and Mean Field BSDEs Are Equivalent

In this section, based on Theorem 2.2 we prove that the wellposedness of the MFG (1.4) is equivalent to the wellposedness of the following mean field BSDE

Y~t=tT(𝒥Z~,Z~0(s)+(1γ)exp{logα1γY~s1γ+θγ𝔼[Y~s1γ|s0]θγ𝔼[logα1γ](1γ)(1+𝔼[θγ1γ])}+θγ𝔼[exp{logα1γY~s1γ+θγ𝔼[Y~s1γ|s0]θγ𝔼[logα1γ](1γ)(1+𝔼[θγ1γ])}|s0])dstTZ~s𝑑WstTZ~s0𝑑Ws0,\begin{split}\widetilde{Y}_{t}=&~{}\int_{t}^{T}\Bigg{(}\mathcal{J}_{\widetilde{Z},\widetilde{Z}^{0}}(s)+(1-\gamma)\exp\left\{\frac{\log\alpha}{1-\gamma}-\frac{\widetilde{Y}_{s}}{1-\gamma}+\frac{\theta\gamma\mathbb{E}\left[\frac{\widetilde{Y}_{s}}{1-\gamma}|\mathcal{F}^{0}_{s}\right]-\theta\gamma\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\right\}\\ &~{}+\theta\gamma\mathbb{E}\left[\left.\exp\left\{\frac{\log\alpha}{1-\gamma}-\frac{\widetilde{Y}_{s}}{1-\gamma}+\frac{\theta\gamma\mathbb{E}\left[\left.\frac{\widetilde{Y}_{s}}{1-\gamma}\right|\mathcal{F}^{0}_{s}\right]-\theta\gamma\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\right\}\right|\mathcal{F}^{0}_{s}\right]\Bigg{)}\,ds\\ &~{}-\int_{t}^{T}\widetilde{Z}_{s}\,dW_{s}-\int_{t}^{T}\widetilde{Z}^{0}_{s}\,dW^{0}_{s},\end{split} (2.20)

where 𝒥Z~,Z~0\mathcal{J}_{\widetilde{Z},\widetilde{Z}^{0}} includes all terms with (Z~,Z~0)(\widetilde{Z},\widetilde{Z}^{0}), and the expression of 𝒥Z~,Z~0\mathcal{J}_{\widetilde{Z},\widetilde{Z}^{0}} is presented in Appendix B. Specifically, the optimal consumption rate can be characterized by the Y~\widetilde{Y}-component and the optimal investment rate can be characterized by the (Z~,Z~0)(\widetilde{Z},\widetilde{Z}^{0})-component. In order to establish this equivalence, by Theorem 2.2, it is sufficient to prove that there is a one-to-one correspondence between each solution to (2.6) and each solution to (2.20). This is done in the following proposition.

Proposition 2.5.

There is a one-to-one correspondence between solutions to the FBSDE (2.6) and solutions to the BSDE (2.20). Let (X^,Y,Z,Z0)(\widehat{X},Y,Z,Z^{0}) and (Y~,Z~,Z~0)(\widetilde{Y},\widetilde{Z},\widetilde{Z}^{0}) be a solution to (2.6) and (2.20), respectively. The relation is given by

Y~=Y+θγ𝔼[X^|0],Z~=Z,Z~0=Z0+θγ𝔼[h+σZ+σ0Z0(1γ)(σ2+(σ0)2)σ0|0].\begin{split}\widetilde{Y}=Y+\theta\gamma\mathbb{E}[\widehat{X}|\mathcal{F}^{0}],\qquad\widetilde{Z}=Z,\qquad\widetilde{Z}^{0}=Z^{0}+\theta\gamma\mathbb{E}\left[\frac{h+\sigma Z+\sigma^{0}Z^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\sigma^{0}\Big{|}\mathcal{F}^{0}\right].\end{split} (2.21)
Proof.

Let (X^,Y,Z,Z0)(\widehat{X},Y,Z,Z^{0}) be a solution to (2.6). From the forward dynamics of (2.6), we get

{d𝔼[X^t|t0]=𝔼[(ht+σtZt+σ0Zt0)ht(1γ)(σt2+(σt0)2)(αeYt(νt)θγ)11γ(ht+σtZt+σt0Zt0)22(1γ)2(σt2+(σt0)2)|t0]dt+𝔼[ht+σtZt+σt0Zt0(1γ)(σt2+(σt0)2)σt0|t0]dWt0,𝔼[X^0|00]=𝔼[logx].\left\{\begin{split}d\mathbb{E}[\widehat{X}_{t}|\mathcal{F}^{0}_{t}]=&~{}\mathbb{E}\left[\left.\frac{(h_{t}+\sigma_{t}Z_{t}+\sigma^{0}Z^{0}_{t})h_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}-\left(\alpha e^{-Y_{t}}(\nu^{*}_{t})^{-\theta\gamma}\right)^{\frac{1}{1-\gamma}}-\frac{(h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t})^{2}}{2(1-\gamma)^{2}(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right|\mathcal{F}^{0}_{t}\right]\,dt\\ &~{}+\mathbb{E}\left[\left.\frac{h_{t}+\sigma_{t}Z_{t}+\sigma^{0}_{t}Z^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\sigma^{0}_{t}\right|\mathcal{F}^{0}_{t}\right]\,dW^{0}_{t},\\ \mathbb{E}[\widehat{X}_{0}|\mathcal{F}^{0}_{0}]=&\mathbb{E}[\log x].\end{split}\right.

Taking the dynamics of 𝔼[X^|0]\mathbb{E}[\widehat{X}|\mathcal{F}^{0}] into the dynamics of YY, we get

Yt+θγ𝔼[X^t|t0]=θγtT𝔼[(hs+σsZs+σs0Zs0)hs(1γ)(σs2+(σs0)2)(αeYs(νs)θγ)11γ(hs+σsZs+σs0Zs0)22(1γ)(σs2+(σs0)2)|s0]𝑑s+tT{(1γ)(αeYs(νs)θγ)11γ+Zs2+(Zs0)22+γ(hs+σsZs+σs0Zs0)22(1γ)(σs2+(σs0)2)}𝑑sθγtT𝔼[hs+σsZs+σs0Zs0(1γ)(σs2+(σs0)2)σs0|s0]𝑑Ws0tTZs0𝑑Ws0tTZs𝑑Ws.\begin{split}Y_{t}+\theta\gamma\mathbb{E}[\widehat{X}_{t}|\mathcal{F}^{0}_{t}]=&~{}-\theta\gamma\int_{t}^{T}\mathbb{E}\bigg{[}\left.\frac{(h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s})h_{s}}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}-(\alpha e^{-Y_{s}}(\nu^{*}_{s})^{-\theta\gamma})^{\frac{1}{1-\gamma}}-\frac{(h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s})^{2}}{2(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right|\mathcal{F}^{0}_{s}\bigg{]}\,ds\\ &~{}+\int_{t}^{T}\left\{(1-\gamma)(\alpha e^{-Y_{s}}(\nu^{*}_{s})^{-\theta\gamma})^{\frac{1}{1-\gamma}}+\frac{Z^{2}_{s}+(Z^{0}_{s})^{2}}{2}+\frac{\gamma(h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s})^{2}}{2(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right\}\,ds\\ &~{}-\theta\gamma\int_{t}^{T}\mathbb{E}\left[\left.\frac{h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s}}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\sigma^{0}_{s}\right|\mathcal{F}^{0}_{s}\right]\,dW^{0}_{s}-\int_{t}^{T}Z^{0}_{s}\,dW^{0}_{s}-\int_{t}^{T}Z_{s}\,dW_{s}.\end{split}

Define (Y~,Z~,Z~0)(\widetilde{Y},\widetilde{Z},\widetilde{Z}^{0}) through (2.21). It holds that

Y~t=θγtT𝔼[(hs+σsZs+σs0Zs0)hs(1γ)(σs2+(σs0)2)(αeYs(νs)θγ)11γ(hs+σsZs+σs0Zs0)22(1γ)(σs2+(σs0)2)|s0]𝑑s+tT{(1γ)(αeYs(νs)θγ)11γ+Zs2+(Zs0)22+γ(hs+σsZs+σs0Zs0)22(1γ)(σs2+(σs0)2)}𝑑stTZ~s𝑑WstTZ~s0𝑑Ws0.\begin{split}\widetilde{Y}_{t}=&~{}-\theta\gamma\int_{t}^{T}\mathbb{E}\bigg{[}\left.\frac{(h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s})h_{s}}{(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}-(\alpha e^{-Y_{s}}(\nu^{*}_{s})^{-\theta\gamma})^{\frac{1}{1-\gamma}}-\frac{(h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s})^{2}}{2(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right|\mathcal{F}^{0}_{s}\bigg{]}\,ds\\ &~{}+\int_{t}^{T}\left\{(1-\gamma)(\alpha e^{-Y_{s}}(\nu^{*}_{s})^{-\theta\gamma})^{\frac{1}{1-\gamma}}+\frac{Z^{2}_{s}+(Z^{0}_{s})^{2}}{2}+\frac{\gamma(h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s})^{2}}{2(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right\}\,ds\\ &~{}-\int_{t}^{T}\widetilde{Z}_{s}\,dW_{s}-\int_{t}^{T}\widetilde{Z}^{0}_{s}\,dW^{0}_{s}.\end{split} (2.22)

From the second equation and the third equation in (2.21), we can solve Z0Z^{0} in terms of (Z~,Z~0)(\widetilde{Z},\widetilde{Z}^{0}):

Z0=Z~0θγ𝔼[σ0(h+σZ~+σ0Z~0)(1γ)(σ2+(σ0)2)|0]1+𝔼[θγ(σ0)2(1γ)(σ2+(σ0)2)|0].\begin{split}Z^{0}=\widetilde{Z}^{0}-\frac{\theta\gamma\mathbb{E}\left[\left.\frac{\sigma^{0}(h+\sigma\widetilde{Z}+\sigma^{0}\widetilde{Z}^{0})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right|\mathcal{F}^{0}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}|\mathcal{F}^{0}\right]}.\end{split} (2.23)

Taking (2.23) into (2.22) and by straightforward calculation we get

Y~t=tT{𝒥Z~,Z~0(s)+θγ𝔼[(αeYs(νs)θγ)11γ|s0]+(1γ)(αeYs(νs)θγ)11γ}𝑑stTZ~s𝑑WstTZ~s0𝑑Ws0.\begin{split}\widetilde{Y}_{t}=&~{}\int_{t}^{T}\bigg{\{}\mathcal{J}_{\widetilde{Z},\widetilde{Z}^{0}}(s)+\theta\gamma\mathbb{E}\bigg{[}\left.(\alpha e^{-Y_{s}}(\nu^{*}_{s})^{-\theta\gamma})^{\frac{1}{1-\gamma}}\right|\mathcal{F}^{0}_{s}\bigg{]}+(1-\gamma)(\alpha e^{-Y_{s}}(\nu^{*}_{s})^{-\theta\gamma})^{\frac{1}{1-\gamma}}\bigg{\}}\,ds\\ &~{}-\int_{t}^{T}\widetilde{Z}_{s}\,dW_{s}-\int_{t}^{T}\widetilde{Z}^{0}_{s}\,dW^{0}_{s}.\end{split} (2.24)

From the second equation in (2.5) we get

eY(ν)θγ=exp{Y~θγ𝔼[logα1γ]1+𝔼[θγ1γ]+θγ𝔼[Y~1γ|0]1+𝔼[θγ1γ]}.e^{-Y}(\nu^{*})^{-\theta\gamma}=\exp\left\{-\widetilde{Y}-\frac{\theta\gamma\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}+\frac{\theta\gamma\mathbb{E}\left[\frac{\widetilde{Y}}{1-\gamma}\Big{|}\mathcal{F}^{0}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}\right\}. (2.25)

Taking (2.25) into (2.24), we obtain (2.20). Thus, for each solution to (2.6), we have found a corresponding solution to (2.20).

Let (Y~,Z~,Z~0)(\widetilde{Y},\widetilde{Z},\widetilde{Z}^{0}) be a solution to (2.20). Define Z=Z~Z=\widetilde{Z} and Z0Z^{0} by (2.23). With (Z,Z0)(Z,Z^{0}), define π\pi^{*} by the third equality in (2.5). With (2.25), define cc^{*} by the fourth equality in (2.5). Let X^\widehat{X} be the unique solution to the forward SDE in (2.6), in terms of the well-defined π\pi^{*} and cc^{*}. Define Y:=Y~θγ𝔼[X^|0]Y:=\widetilde{Y}-\theta\gamma\mathbb{E}[\widehat{X}|\mathcal{F}^{0}]. One can check that (X^,Y,Z,Z0)(\widehat{X},Y,Z,Z^{0}) satisfies the FBSDE (2.6). Thus, for each solution to (2.20), we have found one corresponding solution to (2.6). ∎

Proposition 2.5 and Theorem 2.2 together yield the following one-to-one correspondence between each solution to (2.20) and each NE of (1.4). Moreover, in Section 3 we will use such correspondence to prove that the NE of (1.4) is unique.

Theorem 2.6.

There is a one-to-one correspondence between each NE of (1.4) and each solution to (2.20). The relation is given by

π=h+σZ~+σ0Z~0θγσ0𝔼[σ0(h+σZ~+σ0Z~0)(1γ)(σ2+(σ0)2)|0]1+𝔼[θγ(σ0)2(1γ)(σ2+(σ0)2)|0](1γ)(σ2+(σ0)2)\pi^{*}=\frac{h+\sigma\widetilde{Z}+\sigma^{0}\widetilde{Z}^{0}-\frac{\theta\gamma\sigma^{0}\mathbb{E}\left[\left.\frac{\sigma^{0}(h+\sigma\widetilde{Z}+\sigma^{0}\widetilde{Z}^{0})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right|\mathcal{F}^{0}\right]}{1+\mathbb{E}\left[\left.\frac{\theta\gamma(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right|\mathcal{F}^{0}\right]}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})} (2.26)

and

c=exp(logα1γY~1γθγ𝔼[logα1γ](1γ)(1+𝔼[θγ1γ])+θγ𝔼[Y~1γ|0](1γ)(1+𝔼[θγ1γ])).c^{*}=\exp\left(\frac{\log\alpha}{1-\gamma}-\frac{\widetilde{Y}}{1-\gamma}-\frac{\theta\gamma\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}+\frac{\theta\gamma\mathbb{E}\left[\left.\frac{\widetilde{Y}}{1-\gamma}\right|\mathcal{F}^{0}\right]}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\right). (2.27)
Proof.

The equalities (2.26) and (2.27) are given by (2.5) and (2.21). ∎

3 The Unique NE in Closed Form under Additional Assumptions

Theorem 2.6 implies that solving the MFG (1.4) is equivalent to solving the BSDE (2.20). However, it is difficult to solve the BSDE in general, due to the mixture of quadratic growth of (Z,Z0)(Z,Z^{0}), conditional mean field terms of (Z,Z0)(Z,Z^{0}), and exponential functions of YY. Therefore, we leave the general case to future study. In this section, we will solve the BSDE (2.20) and the MFG (1.4) under the following additional assumption.

Assumption 2. The return rate hh and the volatilities (σ,σ0)(\sigma,\sigma^{0}) have continuous trajectories and are measurable w.r.t. 𝒜\mathcal{A} at each time t[0,T]t\in[0,T].

The following theorem shows the closed form solution to the BSDE (2.20) as well as the NE of the MFG (1.4) under Assumption 2.

Theorem 3.1.

Under Assumption 1 and Assumption 2, the BSDE (2.20) admits a unique solution (Y~,Z~,Z~0)L×L×L(\widetilde{Y},\widetilde{Z},\widetilde{Z}^{0})\in L^{\infty}\times L^{\infty}\times L^{\infty}, and the MFG (1.4) has a unique NE.

For each t[0,T]t\in[0,T], define the following quantities:

ϕt=𝔼[htσt0(1γ)(σt2+(σt0)2)],ψt=𝔼[(σt0)2θγ(1γ)(σt2+(σt0)2)],\phi_{t}=\mathbb{E}\left[\frac{h_{t}\sigma^{0}_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right],\quad\psi_{t}=\mathbb{E}\left[\frac{(\sigma^{0}_{t})^{2}\theta\gamma}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right],
At=γ2(1γ)(σt2+(σt0)2)(htθγσt0ϕt1+ψt)2ϕt2θ2γ22(1+ψt)2+θγ𝔼[ht2θγσt0htϕt1+ψt(1γ)(σt2+(σt0)2)]θγ2𝔼[(htθγσt0ϕt1+ψt)2(1γ)2(σt2+(σt0)2)],\begin{split}A_{t}=&~{}-\frac{\gamma}{2(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\left(h_{t}-\frac{\theta\gamma\sigma^{0}_{t}\phi_{t}}{1+\psi_{t}}\right)^{2}-\frac{\phi^{2}_{t}\theta^{2}\gamma^{2}}{2(1+\psi_{t})^{2}}+\theta\gamma\mathbb{E}\left[\frac{h^{2}_{t}-\frac{\theta\gamma\sigma^{0}_{t}h_{t}\phi_{t}}{1+\psi_{t}}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right]\\ &~{}-\frac{\theta\gamma}{2}\mathbb{E}\left[\frac{\left(h_{t}-\frac{\theta\gamma\sigma^{0}_{t}\phi_{t}}{1+\psi_{t}}\right)^{2}}{(1-\gamma)^{2}(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\right],\end{split}

and

Bt=θγ1γ𝔼[At1γ]1+𝔼[θγ1γ]At1γ,D=exp{logα1γθγ𝔼[logα1γ](1γ)(1+𝔼[θγ1γ])}.B_{t}=\frac{\theta\gamma}{1-\gamma}\frac{\mathbb{E}\left[\frac{A_{t}}{1-\gamma}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]}-\frac{A_{t}}{1-\gamma},\quad D=\exp\left\{\frac{\log\alpha}{1-\gamma}-\frac{\theta\gamma\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\right\}.

The unique solution to the BSDE (2.20) has the following closed form expression:

{Y~t=θγ𝔼[logD](1γ)logD+θγ𝔼[log(exp(tTBs𝑑s)+DtTexp(tsBr𝑑r)𝑑s)]+(1γ)log(exp(tTBs𝑑s)+DtTexp(tsBr𝑑r)𝑑s)+logα,Z~t=Z~t0=0,t[0,T].\left\{\begin{split}\widetilde{Y}_{t}=&~{}-\theta\gamma\mathbb{E}[\log D]-(1-\gamma)\log D\\ &~{}+\theta\gamma\mathbb{E}\left[\log\left(\exp\left(\int_{t}^{T}B_{s}\,ds\right)+D\int_{t}^{T}\exp\left(\int_{t}^{s}B_{r}\,dr\right)\,ds\right)\right]\\ &~{}+(1-\gamma)\log\left(\exp\left(\int_{t}^{T}B_{s}\,ds\right)+D\int_{t}^{T}\exp\left(\int_{t}^{s}B_{r}\,dr\right)\,ds\right)+\log\alpha,\\ \widetilde{Z}_{t}=&~{}\widetilde{Z}^{0}_{t}=0,\quad t\in[0,T].\end{split}\right. (3.1)

The unique optimal investment rate and optimal consumption rate have the following closed form expressions:

πt=ht(1γ)(σt2+(σt0)2)θγσt0ϕt(1γ)(σt2+(σt0)2)(1+ψt),t[0,T],\pi^{*}_{t}=\frac{h_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}-\frac{\theta\gamma\sigma^{0}_{t}\phi_{t}}{(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})\left(1+\psi_{t}\right)},\quad t\in[0,T], (3.2)

respectively,

ct=Dexp{tTBr𝑑r}1+DtTexp{sTBr𝑑r}𝑑s,t[0,T].c^{*}_{t}=\frac{D\exp\left\{-\int_{t}^{T}B_{r}\,dr\right\}}{1+D\int_{t}^{T}\exp\left\{-\int_{s}^{T}B_{r}\,dr\right\}\,ds},\qquad t\in[0,T]. (3.3)
Proof.

Our goal is to construct a solution to (2.20), such that it does not depend on the Brownian path. If the solution does not depend on the Brownian path, by Assumption 2, the BSDE (2.22) implies

Y~t=θγtT𝔼[πshscs12(πs)2(σs2+(σs0)2)]𝑑s+tT{(1γ)α11γeY~s1γθγ1γ𝔼[logcs]+Zs2+(Zs0)22+γ(hs+σsZs+σs0Zs0)22(1γ)(σs2+(σs0)2)}𝑑stTZ~s𝑑WstTZ~s0𝑑Ws0.\begin{split}\widetilde{Y}_{t}=&~{}-\theta\gamma\int_{t}^{T}\mathbb{E}\left[\pi^{*}_{s}h_{s}-c^{*}_{s}-\frac{1}{2}(\pi^{*}_{s})^{2}(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})\right]\,ds\\ &~{}+\int_{t}^{T}\left\{(1-\gamma)\alpha^{\frac{1}{1-\gamma}}e^{-\frac{\widetilde{Y}_{s}}{1-\gamma}-\frac{\theta\gamma}{1-\gamma}\mathbb{E}[\log c^{*}_{s}]}+\frac{Z^{2}_{s}+(Z^{0}_{s})^{2}}{2}+\frac{\gamma(h_{s}+\sigma_{s}Z_{s}+\sigma^{0}_{s}Z^{0}_{s})^{2}}{2(1-\gamma)(\sigma^{2}_{s}+(\sigma^{0}_{s})^{2})}\right\}\,ds\\ &~{}-\int_{t}^{T}\widetilde{Z}_{s}\,dW_{s}-\int_{t}^{T}\widetilde{Z}^{0}_{s}\,dW^{0}_{s}.\end{split} (3.4)

By the theory of BSDEs, we must have Z~=Z~0=0\widetilde{Z}=\widetilde{Z}^{0}=0, which together with (2.26) yields the optimal investment rate (3.2).

Taking Z~=Z~0=0\widetilde{Z}=\widetilde{Z}^{0}=0 into (3.4) we have

dY~t={θγ𝔼[πtht]θγ𝔼[ct]θγ2𝔼[(πt)2(σt2+(σt0)2)](Zt0)22γ(ht+σt0Zt0)22(1γ)(σt2+(σt0)2)(1γ)α11γeY~t1γθγ𝔼[logct]1γ}dt.\begin{split}d\widetilde{Y}_{t}=&~{}\bigg{\{}\theta\gamma\mathbb{E}[\pi^{*}_{t}h_{t}]-\theta\gamma\mathbb{E}[c^{*}_{t}]-\frac{\theta\gamma}{2}\mathbb{E}\left[(\pi^{*}_{t})^{2}(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})\right]-\frac{(Z^{0}_{t})^{2}}{2}-\frac{\gamma(h_{t}+\sigma^{0}_{t}Z^{0}_{t})^{2}}{2(1-\gamma)(\sigma^{2}_{t}+(\sigma^{0}_{t})^{2})}\\ &~{}-(1-\gamma)\alpha^{\frac{1}{1-\gamma}}e^{-\frac{\widetilde{Y}_{t}}{1-\gamma}-\frac{\theta\gamma\mathbb{E}[\log c^{*}_{t}]}{1-\gamma}}\bigg{\}}\,dt.\end{split} (3.5)

By Z~0=0\widetilde{Z}^{0}=0 and the last equality in (2.21), we obtain

Z0=θγ𝔼[hσ0(1γ)(σ2+(σ0)2)]1+𝔼[θγ(σ0)2(1γ)(σ2+(σ0)2)].Z^{0}=-\frac{\theta\gamma\mathbb{E}\left[\frac{h\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}{1+\mathbb{E}\left[\frac{\theta\gamma(\sigma^{0})^{2}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}.

Plugging the expression of Z0Z^{0} into (3.5), by straightforward calculation we have that

Y~t=Atθγ𝔼[ct](1γ)exp{logα1γY~t1γθγ𝔼[logct]1γ},\widetilde{Y}^{\prime}_{t}=A_{t}-\theta\gamma\mathbb{E}[c^{*}_{t}]-(1-\gamma)\exp\left\{\frac{\log\alpha}{1-\gamma}-\frac{\widetilde{Y}_{t}}{1-\gamma}-\frac{\theta\gamma\mathbb{E}[\log c^{*}_{t}]}{1-\gamma}\right\}, (3.6)

where AA is defined in the statement of the theorem. Let

Y^=Y~logα1γ.\widehat{Y}=\frac{\widetilde{Y}-\log\alpha}{1-\gamma}. (3.7)

Equation (2.27) implies that

c=exp{Y^+θγ(1γ)(1+𝔼[θγ1γ])𝔼[Y^]}.c^{*}=\exp\left\{-\widehat{Y}+\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\mathbb{E}[\widehat{Y}]\right\}. (3.8)

Noting that Y~=(1γ)Y^\widetilde{Y}^{\prime}=(1-\gamma)\widehat{Y}^{\prime} and plugging (3.8) into (3.6), we obtain

Y^t=At1γθγ1γ𝔼[exp{Y^t+θγ(1γ)(1+𝔼[θγ1γ])𝔼[Y^t]}]exp{Y^t+θγ(1γ)(1+𝔼[θγ1γ])𝔼[Y^t]}.\begin{split}\widehat{Y}^{\prime}_{t}=&~{}\frac{A_{t}}{1-\gamma}-\frac{\theta\gamma}{1-\gamma}\mathbb{E}\left[\exp\left\{-\widehat{Y}_{t}+\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\mathbb{E}[\widehat{Y}_{t}]\right\}\right]\\ &~{}-\exp\left\{-\widehat{Y}_{t}+\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\mathbb{E}[\widehat{Y}_{t}]\right\}.\end{split} (3.9)

Taking expectations and multiplying both sides of (3.9) by θγ(1γ)(1+𝔼[θγ1γ])\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)} , we obtain

θγ(1γ)(1+𝔼[θγ1γ])𝔼[Y^t]=θγ(1γ)(1+𝔼[θγ1γ])𝔼[At1γ]θγ1γ𝔼[exp{Y^t+θγ(1γ)(1+𝔼[θγ1γ])𝔼[Y^t]}].\begin{split}\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\mathbb{E}[\widehat{Y}_{t}]^{\prime}=&~{}\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\mathbb{E}\left[\frac{A_{t}}{1-\gamma}\right]\\ &~{}-\frac{\theta\gamma}{1-\gamma}\mathbb{E}\left[\exp\left\{-\widehat{Y}_{t}+\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\mathbb{E}[\widehat{Y}_{t}]\right\}\right].\end{split} (3.10)

Let

Y̊=θγ(1γ)(1+𝔼[θγ1γ])𝔼[Y^]Y^.\mathring{Y}=\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\mathbb{E}[\widehat{Y}]-\widehat{Y}. (3.11)

The difference of (3.9) and (3.10) yields an ODE for Y̊\mathring{Y}

Y̊t=At1γ+θγ(1γ)(1+𝔼[θγ1γ])𝔼[At1γ]+exp{Y̊t}.\mathring{Y}^{\prime}_{t}=-\frac{A_{t}}{1-\gamma}+\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\mathbb{E}\left[\frac{A_{t}}{1-\gamma}\right]+\exp\left\{\mathring{Y}_{t}\right\}. (3.12)

Let Y˘=exp(Y̊)\breve{Y}=\exp(\mathring{Y}). Then, Y˘\breve{Y} satisfies the following Riccati equation

Y˘t=(At1γ+θγ(1γ)(1+𝔼[θγ1γ])𝔼[At1γ])Y˘t+Y˘t2,\breve{Y}^{\prime}_{t}=\left(-\frac{A_{t}}{1-\gamma}+\frac{\theta\gamma}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}\mathbb{E}\left[\frac{A_{t}}{1-\gamma}\right]\right)\breve{Y}_{t}+\breve{Y}^{2}_{t}, (3.13)

with terminal condition Y˘T=exp{θγ𝔼[logα1γ](1γ)(1+𝔼[θγ1γ])+logα1γ}\breve{Y}_{T}=\exp\left\{-\frac{\theta\gamma\mathbb{E}\left[\frac{\log\alpha}{1-\gamma}\right]}{(1-\gamma)\left(1+\mathbb{E}\left[\frac{\theta\gamma}{1-\gamma}\right]\right)}+\frac{\log\alpha}{1-\gamma}\right\}. The unique solution to the Riccati equation (3.13) is

Y˘t=D{exp(tTBs𝑑s)+DtTexp(tsBr𝑑r)𝑑s}1,\breve{Y}_{t}=D\left\{\exp\left(\int_{t}^{T}B_{s}\,ds\right)+D\int_{t}^{T}\exp\left(\int_{t}^{s}B_{r}\,dr\right)\,ds\right\}^{-1}, (3.14)

where BB and DD are defined in the statement of the theorem. By (3.8) and the definition of Y̊\mathring{Y} and Y˘\breve{Y}, it holds that c=Y˘c^{*}=\breve{Y}.

Finally, we obtain the closed form expression for Y~\widetilde{Y} by (3.7), (3.11) and (3.14).

By now, we have constructed one solution to the BSDE (2.20) and the MFG (1.4). It remains to prove the uniqueness result. Let (μ,ν,π,c)(\mu^{*},\nu^{*},\pi^{*},c^{*}) and (μ,ν,π,c)(\mu^{*^{\prime}},\nu^{*^{\prime}},\pi^{*^{\prime}},c^{*^{\prime}}) be two solutions of the MFG (1.4), where the optimal investment rates are in LL^{\infty}. Let (Y~,Z~,Z~0)(\widetilde{Y},\widetilde{Z},\widetilde{Z}^{0}) and (Y~,Z~,Z~0)(\widetilde{Y}^{\prime},\widetilde{Z}^{\prime},\widetilde{Z}^{0^{\prime}}) be two corresponding solutions to (2.20). Under Assumption 2, the driver of the BSDE (2.20) does not depend on WW. Thus, it holds that Z~=Z~=0\widetilde{Z}=\widetilde{Z}^{\prime}=0. By (2.26), we have Z~0,Z~0L\widetilde{Z}^{0},\widetilde{Z}^{0^{\prime}}\in L^{\infty}. Note that |eyex|e|x||y||xy||e^{y}-e^{x}|\leq e^{|x|\vee|y|}|x-y|. Then (Y~Y~,Z~Z~,Z~0Z~0)(\widetilde{Y}-\widetilde{Y}^{\prime},\widetilde{Z}-\widetilde{Z}^{\prime},\widetilde{Z}^{0}-\widetilde{Z}^{0^{\prime}}) satisfies a mean field BSDE with Lipschitz coefficients. Thus, the uniqueness result for the BSDE (2.20) follows from standard estimate, and the uniqueness result for the MFG (1.4) follows from Theorem 2.2 and Theorem 2.6. ∎

Remark 3.2.

The monotonicity of π\pi^{*} and cc^{*} w.r.t. θ\theta and γ\gamma were examined in [13, 14]. This remark investigates the monotonicity of π\pi^{*} and cc^{*} w.r.t. market parameters hh, σ\sigma and σ0\sigma^{0}. The same as [13], we assume that h>0h>0, σ0\sigma\geq 0 and σ00\sigma^{0}\geq 0, which imply that ϕ>0\phi>0 and 1+ψ>01+\psi>0. When taking derivative w.r.t. some parameter, we assume this parameter is a constant.

(1) Monotonicity of π\pi^{*} w.r.t. the return rate hh. Direct computation implies that

πh=1(1γ)(σ2+(σ0)2)>0.\frac{\partial\pi^{*}}{\partial h}=\frac{1}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}>0.

Thus, the representative player would invest more as the individual return rate hh increases; it is consistent with intuition and Merton’s result [16].

The dependence of π\pi^{*} on the population’s return rate is involved with other population parameters. However, if hh is uncorrelated with other population parameters, it holds that

πh¯=θγσ0𝔼[σ0(1γ)(σ2+(σ0)2)](1γ)(σ2+(σ0)2)1+ψ, which is {<0, if γ>0,>0,if γ<0,\frac{\partial\pi^{*}}{\partial\bar{h}}=-\frac{\theta\gamma\sigma^{0}\mathbb{E}\left[\frac{\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\right]}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})1+\psi},\quad\textrm{ which is }\left\{\begin{split}<0,\quad\textrm{ if }\gamma>0,\\ >0,\quad\textrm{if }\gamma<0,\end{split}\right.

where h¯\bar{h} denotes the average return rate of the population. Thus, when the relative risk aversion is smaller than 11 (that is, γ>0\gamma>0), the representative player would invest less if the average return rate of the population increases.

(2) Monotonicity of π\pi^{*} w.r.t. σ0\sigma^{0}. Direct computation yields

πσ0=2hσ0(1γ)(σ2+(σ0)2)2θγ(σ2(σ0)2)(1γ)(σ2+(σ0)2)2ϕ1+ψ.\frac{\partial\pi^{*}}{\partial\sigma^{0}}=-\frac{2h\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})^{2}}-\frac{\theta\gamma(\sigma^{2}-(\sigma^{0})^{2})}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})^{2}}\frac{\phi}{1+\psi}.

Define two thresholds as follows

σ¯0={h+h2+θ2γ2σ2ϕ2(1+ψ)2}(1+ψ)θγϕ,σ¯0={hh2+θ2γ2σ2ϕ2(1+ψ)2}(1+ψ)θγϕ.\overline{\sigma}^{0}=\frac{\left\{h+\sqrt{h^{2}+\frac{\theta^{2}\gamma^{2}\sigma^{2}\phi^{2}}{(1+\psi)^{2}}}\right\}(1+\psi)}{\theta\gamma\phi},\qquad\underline{\sigma}^{0}=\frac{\left\{h-\sqrt{h^{2}+\frac{\theta^{2}\gamma^{2}\sigma^{2}\phi^{2}}{(1+\psi)^{2}}}\right\}(1+\psi)}{\theta\gamma\phi}.

By the assumption σ00\sigma^{0}\geq 0, it holds that

πσ0<0 if σ0(0,σ¯0σ¯0),πσ0>0 if σ0(σ¯0σ¯0,).\frac{\partial\pi^{*}}{\partial\sigma^{0}}<0\textrm{ if }\sigma^{0}\in(0,\overline{\sigma}^{0}\vee\underline{\sigma}^{0}),\qquad\frac{\partial\pi^{*}}{\partial\sigma^{0}}>0\textrm{ if }\sigma^{0}\in(\overline{\sigma}^{0}\vee\underline{\sigma}^{0},\infty).

When there is no competition, i.e. θ=0\theta=0, πσ0=2hσ0(1γ)(σ2+(σ0)2)2<0\frac{\partial\pi^{*}}{\partial\sigma^{0}}=-\frac{2h\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})^{2}}<0.

When the representative player is less competitive, i.e. θ\theta is small, then σ¯0σ¯0\overline{\sigma}^{0}\vee\underline{\sigma}^{0} is large so that the volatility is more likely to be located in (0,σ¯0σ¯0)(0,\overline{\sigma}^{0}\vee\underline{\sigma}^{0}). Thus, the representative player in the MFG behaves in a similar manner as the one in Merton’s problem: the individual investment rate is decreasing w.r.t. the volatility.

When the representative player is more aggressive, i.e. θ\theta is large, then σ¯0σ¯0\overline{\sigma}^{0}\vee\underline{\sigma}^{0} takes a relatively smaller value, such that the monotonicity of π\pi^{*} w.r.t. σ0\sigma^{0} is determined by the threshold σ¯0σ¯0\overline{\sigma}^{0}\vee\underline{\sigma}^{0}: when the volatility σ0\sigma^{0} is larger than σ¯0σ¯0\overline{\sigma}^{0}\vee\underline{\sigma}^{0}, the representative player tends to invest more into the risky asset if σ0\sigma^{0} is larger. The intuitive reason is that the more competitive player is willing to take more risks to expect more returns.

The monotonicity of π\pi^{*} w.r.t. the population’s volatility is not tractable. Similar explanations are applicable to the monotonicity w.r.t. σ\sigma.

(3) The monotonicity of cc^{*} w.r.t. hh, σ\sigma and σ0\sigma^{0} is not as tractable as that for π\pi^{*}. This is because cκ\frac{\partial c^{*}}{\partial\kappa} is highly nonlinear in κ\kappa, with κ=h,σ,σ0\kappa=h,\sigma,\sigma^{0}.

As a corollary, when all coefficients become time-independent, we recover the MFG in [13]. Furthermore, we conclude that the strong NE in [13] is unique in the essentially bounded space.

Corollary 3.3.

Let Assumption 1 and Assumption 2 hold, and the return rate hh and the volatilities (σ,σ0)(\sigma,\sigma^{0}) be time-independent. Then the optimal investment rate is

π=h(1γ)(σ2+(σ0)2)θγσ0(1γ)(σ2+(σ0)2)ϕ1+ψ,\pi^{*}=\frac{h}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}-\frac{\theta\gamma\sigma^{0}}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\frac{\phi}{1+\psi}, (3.15)

and the optimal consumption rate is

ct={{1B+(1D+1B)eB(Tt)}1,if B0,1Tt+1D,if B=0,c^{*}_{t}=\left\{\begin{split}&~{}\left\{-\frac{1}{B}+\left(\frac{1}{D}+\frac{1}{B}\right)e^{B(T-t)}\right\}^{-1},\quad\textrm{if }B\neq 0,\\ &~{}\frac{1}{T-t+\frac{1}{D}},\qquad\qquad\qquad\qquad\quad~{}~{}\textrm{if }B=0,\end{split}\right. (3.16)

where BB and DD are defined in the statement of Theorem 3.1, when all market parameters are time-independent. The optimal response (π,c)(\pi^{*},c^{*}) is unique in L×LL^{\infty}\times L^{\infty}. Furthermore, (π,c)(\pi^{*},c^{*}) given in (3.15) and (3.16) is identical to [13, Theorem 3.2].

4 Conclusion

In this paper we study mean field portfolio games with consumption. By MOP and DPP, we establish a one-to-one correspondence between each NE and each solution to some FBSDE. The FBSDE is further proved to be equivalent to some BSDE. Such equivalence is of vital importance to prove that there exists a unique NE in the essentially bounded space. When the market parameters do not depend on the Brownian paths, we get the NE in closed form. Moreover, when the market parameters become time-independent, we recover the model in [13], and conclude that the strong NE obtained in [13] is unique in the essentially bounded space, not only in the space of all strong ones.

Appendix A Reverse Hölder Inequality

For some p>1p>1, we say a stochastic process DD satisfies reverse Hölder inequality RpR_{p} if there exists a constant CC such that for each [0,T][0,T]-valued stopping time τ\tau it holds that

𝔼[|DTDτ|p|τ]C.\mathbb{E}\left[\left|\frac{D_{T}}{D_{\tau}}\right|^{p}\Big{|}\mathcal{F}_{\tau}\right]\leq C.

Let Θ\Theta be a stochastic process and BB be a Brownian motion. Define

t(Θ)=(0tΘs𝑑Bs).\mathcal{E}_{t}(\Theta)=\mathcal{E}\left(\int_{0}^{t}\Theta_{s}\,dB_{s}\right).

The following result is from [12, Theorem 3.4].

Lemma A.1.

Let (Θ)\mathcal{E}(\Theta) be a uniformly integrable martingale. Then ΘHBMO2\Theta\in H^{2}_{BMO} if and only if (Θ)\mathcal{E}(\Theta) satisfies RpR_{p}.

Appendix B The Expression of 𝒥Z~,Z~0\mathcal{J}_{\widetilde{Z},\widetilde{Z}^{0}} in (2.20)

The term 𝒥Z~,Z~0\mathcal{J}_{\widetilde{Z},\widetilde{Z}^{0}} in the driver of (2.20) includes all terms with (Z~,Z~0)(\widetilde{Z},\widetilde{Z}^{0}). It has the following expression

𝒥Z~,Z~0()=θγ𝔼[fhh+fσhZ~+fσ0hZ~0|0]+θγ𝔼[θγfσ0h|0]𝔼[fσ0h+fσ0σZ~+fσ0σ0Z~0|0]1+𝔼[θγfσ0σ0|0]+θγ𝔼[12(1γ)(σ2+(σ0)2){fh+fσZ~+fσ0Z~0θγfσ0𝔼[fσ0h+fσ0σZ~+fσ0σ0Z~0|0]1+𝔼[θγfσ0σ0|0]}2|0]+Z~22+12{Z~0θγ𝔼[fσ0h+fσ0σZ~+fσ0σ0Z~0|0]1+𝔼[θγfσ0σ0|0]}2+γ(1γ)(σ2+(σ0)2)2{fh+fσZ~+fσ0Z~0θγfσ0𝔼[fσ0h+fσ0σZ~+fσ0σ0Z~0|0]1+𝔼[θγfσ0σ0|0]}2,\begin{split}&~{}\mathcal{J}_{\widetilde{Z},\widetilde{Z}^{0}}(\cdot)\\ =&~{}-\theta\gamma\mathbb{E}\left[\left.f^{hh}+f^{\sigma h}\widetilde{Z}+f^{\sigma^{0}h}\widetilde{Z}^{0}\right|\mathcal{F}^{0}\right]+\theta\gamma\mathbb{E}\left[\theta\gamma f^{\sigma^{0}h}|\mathcal{F}^{0}\right]\frac{\mathbb{E}\left[f^{\sigma^{0}h}+f^{\sigma^{0}\sigma}\widetilde{Z}+f^{\sigma^{0}\sigma^{0}}\widetilde{Z}^{0}|\mathcal{F}^{0}\right]}{1+\mathbb{E}\left[\theta\gamma f^{\sigma^{0}\sigma^{0}}|\mathcal{F}^{0}\right]}\\ &~{}+\theta\gamma\mathbb{E}\left[\left.\frac{1}{2}(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})\left\{f^{h}+f^{\sigma}\widetilde{Z}+f^{\sigma^{0}}\widetilde{Z}^{0}-\frac{\theta\gamma f^{\sigma^{0}}\mathbb{E}[f^{\sigma^{0}h}+f^{\sigma^{0}\sigma}\widetilde{Z}+f^{\sigma^{0}\sigma^{0}}\widetilde{Z}^{0}|\mathcal{F}^{0}]}{1+\mathbb{E}[\theta\gamma f^{\sigma^{0}\sigma^{0}}|\mathcal{F}^{0}]}\right\}^{2}\right|\mathcal{F}^{0}\right]\\ &~{}+\frac{\widetilde{Z}^{2}}{2}+\frac{1}{2}\left\{\widetilde{Z}^{0}-\frac{\theta\gamma\mathbb{E}[f^{\sigma^{0}h}+f^{\sigma^{0}\sigma}\widetilde{Z}+f^{\sigma^{0}\sigma^{0}}\widetilde{Z}^{0}|\mathcal{F}^{0}]}{1+\mathbb{E}[\theta\gamma f^{\sigma^{0}\sigma^{0}}|\mathcal{F}^{0}]}\right\}^{2}\\ &~{}+\frac{\gamma(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}{2}\left\{f^{h}+f^{\sigma}\widetilde{Z}+f^{\sigma^{0}}\widetilde{Z}^{0}-\frac{\theta\gamma f^{\sigma^{0}}\mathbb{E}[f^{\sigma^{0}h}+f^{\sigma^{0}\sigma}\widetilde{Z}+f^{\sigma^{0}\sigma^{0}}\widetilde{Z}^{0}|\mathcal{F}^{0}]}{1+\mathbb{E}[\theta\gamma f^{\sigma^{0}\sigma^{0}}|\mathcal{F}^{0}]}\right\}^{2},\end{split}

where for any stochastic processes aa and bb we denote

fa:=a(1γ)(σ2+(σ0)2)andfab:=ab(1γ)(σ2+(σ0)2).f^{a}:=\frac{a}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}\quad\textrm{and}\quad f^{ab}:=\frac{ab}{(1-\gamma)(\sigma^{2}+(\sigma^{0})^{2})}.

References

  • [1] M. Anthropelos, T. Geng, and T. Zariphopoulou. Competition in fund management and forward relative performance criteria. SIAM Journal on Financial Mathematics, 13(4):1271–1301, 2022.
  • [2] R. Carmona and F. Delarue. Probabilistic analysis of mean-field games. SIAM Journal on Control and Optimization, 51(4):2705–2734, 2013.
  • [3] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games with Applications I-II. Springer, 2018.
  • [4] P. Cheridito and Y. Hu. Optimal consumption and investment in incomplete markets with general constraints. Stochastics and Dynamics, 11(02n03):283–299, 2011.
  • [5] G. dos Reis and V. Platonov. Forward utilities and mean-field games under relative performance concerns. Particle Systems and Partial Differential Equations, VI, VII, VIII, 2021.
  • [6] G. dos Reis and V. Platonov. Forward utility and market adjustments in relative investment-consumption games of many players. SIAM Journal on Financial Mathematics, 13(3):844–876, 2022.
  • [7] G. Espinosa and N. Touzi. Optimal investment under relative performance concerns. Mathematical Finance, 25(2):221–257, 2015.
  • [8] C. Frei and G. dos Reis. A financial market with interacting investors: does an equilibrium exist? Mathematics and Financial Economics, 4:161–182, 2011.
  • [9] G. Fu and C. Zhou. Mean field portfolio games. to appear in Finance and Stochastics, 2022.
  • [10] Y. Hu, P. Imkeller, and M. Müller. Utility maximization in incomplete markets. The Annals of Applied Probability, 15(3):1691–1712, 2005.
  • [11] M. Huang, R. Malhamé, and P. Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information and Systems, 6(3):221–252, 2006.
  • [12] N. Kazamaki. Continuous Exponential Martingales and BMO. Springer, 2006.
  • [13] D. Lacker and A. Soret. Many-player games of optimal consumption and investment under relative performance criteria. Mathematics and Financial Economics, 14(2):263–281, 2020.
  • [14] D. Lacker and T. Zariphopoulou. Mean field and n-agent games for optimal investment under relative performance criteria. Mathematical Finance, 29(4):1003–1038, 2019.
  • [15] J.-M. Lasry and P.-L. Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260, 2007.
  • [16] R. Merton. Optimum consumption and portfolio rules in a continuous-time model. Journal of Economic Theory, 3(4):373–413, 1971.