This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

McKean-Vlasov SPDEs with Ho¨\ddot{\text{o}}lder continuous coefficients: existence, uniqueness, ergodicity, exponential mixing and limit theorems

Corresponding author Shuaishuai Lua 111 E-mail address : [email protected],  Xue Yanga,∗ 222E-mail address : [email protected],  Yong Lia,b 333E-mail address : [email protected]
aCollege of Mathematics, Jilin University, Changchun 130012, P. R. China.
bSchool of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, P. R. China
Abstract

This paper investigates the existence and uniqueness of solutions, as well as the ergodicity and exponential mixing to invariant measures, and limit theorems for a class of McKean-Vlasov SPDEs characterized by Ho¨\ddot{\text{o}}lder continuity. We rigorously establish the existence and uniqueness of strong solutions for a specific class of finite-dimensional systems with Ho¨\ddot{\text{o}}lder continuous coefficients. Extending these results to the infinite-dimensional counterparts using the Galerkin projection technique. Additionally, we explore the properties of the solutions, including time homogeneity, the Markov and the Feller property. Building upon these properties, we examine the exponential ergodicity and mixing of invariant measures under Lyapunov conditions. Finally, within the framework of coefficients meeting the criteria of Ho¨\ddot{\text{o}}lder continuity and Lyapunov conditions, alongside the uniform mixing property of invariant measures, we establish the strong law of large numbers and the central limit theorem for the solution and obtain estimates of corresponding convergence rates.  
 
keywords: McKean-Vlasov SPDEs; Ho¨\ddot{\text{o}}lder continuous; Lyapunov condition; Exponential ergodicity and mixing; Strong law of large numbers; Central limit theorem.

journal: ?

1 Introduction

The McKean-Vlasov stochastic differential equations (SDEs), also called mean-field SDEs, were initially elucidated by Kac [28] within the framework of the Boltzmann equation addressing particle density in sparse monatomic gases and subsequently was initiated by McKean [37]. These equations find extensive utility across a spectrum of disciplines, notably in physics, statistical mechanics, quantum mechanics, and quantum chemistry. For instance, as seen in the literature [38, 6], the utilization of McKean-Vlasov SDEs is demonstrated to characterize the asymptotic behavior of NN-interacting particle systems with weak interactions manifesting chaotic propagation properties. Larsy and Lions [31, 32, 33], as well as Huang et al. [25, 24], respectively introduced mean-field strategies to investigate the deterministic behavior of large populations and stochastic differential strategies. Additionally, Michael [41] analyzed the propagation of chaos results for the mean-field limit of a model for a trimolecular chemical reaction called the ”Brusselator”. Given the widespread applications of mean-field equations, we encourage interested readers to refer to [43, 44, 20, 11, 10, 7, 27] and the references therein. This broad applicability stems from the recognition that the evolution of many stochastic systems is contingent not solely upon the state of the solution but also upon its macroscopic distribution and it is precisely, these broad applications that have piqued our interest in investigating the dynamic properties of McKean-Vlasov S(P)DEs.

In the present paper, we will consider the following McKean-Vlasov stochastic (partial) differential equations:

{du(t)=(A(u(t),u(t))+f(u(t),u(t)))dt+g(u(t),u(t))dW(t),u(0)=xU1,\displaystyle\begin{cases}\text{d}u(t)=(A(u(t),\mathcal{L}_{u(t)})+f(u(t),\mathcal{L}_{u(t)}))\text{d}t+g(u(t),\mathcal{L}_{u(t)})\text{d}W(t),\\ u(0)=x\in U_{1},\end{cases}

where W(t)W(t) is a cylindrical Wiener process on a separable Hilbert space (U2,,U2)(U_{2},\langle\cdot,\cdot\rangle_{U_{2}}) with respect to a complete filtered probability space (Ω,,)\left(\Omega,\mathscr{F},\mathbb{P}\right), and u(t)\mathcal{L}_{u(t)} denotes the law of u(t)u(t) taking values in 𝒫(U1)\mathcal{P}(U_{1}). When the system coefficients are Lipschitz continuous and satisfy linear growth conditions, there have been several relevant studies on the aforementioned McKean-Vlasov stochastic systems. Wang [45] established the existence and uniqueness of solutions for McKean-Vlasov monotone SDEs, and delved into pertinent topics such as exponential ergodicity and Harnack-type inequalities. Buckdahn et al. [9] demonstrated the correlation between functionals in the form of 𝔼f(t,X(t),x(t))\mathbb{E}f(t,X(t),\mathcal{L}_{x(t)}) and the associated second-order PDEs and obtained the unique classical solution of a nonlocal mean-field PDE. Cheng and Liu [12] demonstrates that, despite the coefficients of the mean-field system adhering to the global Lipschitz condition and fulfilling certain requisite regularity criteria, the solution typically does not exhibit the global homeomorphism property beyond the initial time point. Instead, it generally manifests the local diffeomorphism property. In addition, under locally Lipschitz coefficients, Liu and Ma [36] derived conditions ensuring the global existence of solutions, subject to Lyapunov conditions. Furthermore, they demonstrated the exponential convergence of invariant measures. Barbu and Ro¨\ddot{\text{o}}ckner [4] employed nonlinear Fokker-Planck equations to explore the existence of weak solutions to McKean-Vlasov SDEs. For further results on this subject, we refer to [3, 8, 50, 5, 46, 39, 21, 40, 22], and others.

While the Lipschitz continuity condition holds significant importance in the examination of dynamical properties within stochastic systems, it is commonly observed that the Lipschitz continuity condition is frequently violated by coefficients in numerous significant stochastic models. For instance, the Cox-Ingersoll-Ross model and the diffusion coefficients in the Ferrer branch diffusion are merely Ho¨\ddot{\text{o}}lder continuous, rather than Lipschitz continuous. Consequently, for many such models, the (local) Lipschitz condition imposes a considerable constraint. As a result, stochastic models featuring non-Lipschitz coefficients have garnered growing interest in recent years. For example, Fang, Zhang [19] and Wang et al. [49] investigated SDEs and stochastic functional differential equations (SFDEs) featuring non-Lipschitz coefficients, specifically examining the existence and uniqueness of strong solutions. Ding and Qiao [16] employed the stochastic McKean-Vlasov SDEs with non-Lipschitz coefficients as the basis of the study. The existence of a weak solution is established using the Euler-Maruyama approximation, and the pathwise uniqueness of the weak solution is demonstrated to ascertain the existence of a strong solution. We observe that the non-Lipschitz condition mentioned in the previous literature is, in fact, still stronger than Ho¨\ddot{\text{o}}lder continuity. In Reference [30], Kulik and Scheutzow utilized the method of generalized coupling to establish weak uniqueness, but not path uniqueness, for the weak solution of a specific class of SFDEs with Ho¨\ddot{\text{o}}lder continuous coefficients. Therefore, this paper aims to initially investigate the existence and uniqueness of (strong) solutions within the context of McKean-Vlasov S(P)DEs, where the coefficients of the system adhere solely to Ho¨\ddot{\text{o}}lder continuity and linear growth conditions.

In the above literature, we discover that pathwise uniqueness plays a crucial role in determining the properties of (strong) solutions in stochastic differential systems. A classical finding reveals that under Lipschitz conditions, the influence of the initial value on the solution can be examined using Gronwall’s lemma. This leads to the establishment of pathwise uniqueness for the weak solution. However, when the regularity of the coefficients falls below the Lipschitz condition, employing Gronwall’s lemma becomes unfeasible. Consequently, one of the aims of our study in this paper is to address the aforementioned issues. Focusing on McKean-Vlasov S(P)DEs, we initially establish the existence and pathwise uniqueness of the weak solution for a class of finite-dimensional systems, where the coefficients solely adhere to the conditions of Ho¨\ddot{\text{o}}lder continuity and linear growth. We then proceed to establish the existence and uniqueness of the strong solution by leveraging the Yamada-Watanabe criterion. For detailed elaboration, refer to Theorem 3.1. In the context of infinite-dimensional McKean-Vlasov systems with coefficients satisfying the Ho¨\ddot{\text{o}}lder continuity, we employed the Galerkin projection technique. This method, combined with insights from finite-dimensional analysis, enables the proof of existence and uniqueness of variational solutions, as elaborated in Theorem 3.2.

Establishing limit theorems for Markov processes, particularly the strong law of large numbers (SLLN) and the central Limit Theorem (CLT), pivotal in elucidating the long-term dynamics of stochastic processes, constitutes a central pursuit in probability theory, see e.g. [1, 23, 14, 15, 18, 35]. Hence, another primary objective of this paper is to extend these theorems to McKean-Vlasov SPDEs with Ho¨\ddot{\text{o}}lder continuous coefficients. This endeavor necessitates an exploration of the exponential ergodicity. Previous investigations into the ergodic property of mean-field systems have primarily focused on scenarios characterized by monotonic or Lipschitz conditions, as evidenced by references [48, 34, 47], among others. Nonetheless, the exploration of lower regularity conditions, notably the Ho¨\ddot{\text{o}}lder continuous condition, remains relatively sparse in the existing literature. This study endeavors to refine the findings established in reference [36] and make extensions to McKean-Vlasov SPDEs with Ho¨\ddot{\text{o}}lder continuous coefficients. Drawing inspiration from references [36] and [13], we employ Lyapunov functions and the Ito^\hat{\text{o}} formula to unveil the exponential convergence of invariant measures within the framework of the Wasserstein quasi-metric. Furthermore, by reinforcing the condition to encompass integrable Lyapunov functions, we ascertain the exponential mixing property of invariant measures in the Wasserstein metric. Further elaboration on these advancements is provided in Theorem 4.2. This outcome is simple and interesting in its own right, as it imposes constraints on Lyapunov functions rather than solely on system coefficients, thereby broadening the method’s applicability.

As previously indicated, in the case of McKean-Vlasov SPDEs characterized by Ho¨\ddot{\text{o}}lder continuous coefficients, an invariant measure μ\mu^{*} exhibiting uniform mixing properties is derived. Subsequently, leveraging both the exponential mixing property inherent in the invariant measure and the Markov property of the solution, we aim to demonstrate the applicability of the limit theorems delineated in [42] to the present system. Specifically, we establish the SLLN, the CLT, and their associated convergence rates, as detailed in Theorems 5.1 and 5.6:

  1. 1.

    SLLN:

    1t0tΦ(u(s;0,x))dsU1Φ(x)μ(dx)ast,a.s.,\frac{1}{t}\int_{0}^{t}\Phi(u(s;0,x))\text{d}s\to\int_{U_{1}}\Phi(x)\mu^{*}(\text{d}x)\quad\text{as}\quad t\to\infty,\quad\mathbb{P}-a.s.,

    where Φ\Phi is the observation function;

  2. 2.

    CLT:

    1t0t[Φ(u(s;0,x))Φ(x)μ(dx)]ds𝑊ξ,\frac{1}{\sqrt{t}}\int_{0}^{t}[\Phi(u(s;0,x))-\int_{\mathcal{H}}\Phi(x)\mu^{*}(\text{d}x)]\text{d}s\overset{W}{\to}\xi,

    where 𝑊\overset{W}{\to} means weak convergence and ξ\xi is a normal random variable.

The paper is structured as follows. The subsequent section delineates key definitions, notation, and lemmas. In Section 3, we first rigorously establish the existence and uniqueness of a strong solution for a specific class of finite-dimensional systems characterized by Ho¨\ddot{\text{o}}lder continuity. Subsequently, leveraging the sophisticated Galerkin projection technique and leveraging the insights garnered from the finite-dimensional context, we proceed to demonstrate the existence and uniqueness of solutions for the corresponding infinite-dimensional system. Section 4 elucidates properties of the solution including time homogeneity, the Markov and the Feller property. Based on these properties, this section also establishes the ergodicity and exponential mixing of invariant measure under Lyapunov conditions. Following this, in Section 5, we focus on establishing the SLLN, the CLT, and estimating the corresponding convergence rates for McKean-Vlasov SPDEs.

2 Preliminaries

The (Ω,,)\left(\Omega,\mathscr{F},\mathbb{P}\right) be a certain complete probability space with a filtration {t}t0\{\mathscr{F}_{t}\}_{t\geq 0} satisfying the usual condition. If KK is a matrix or a vector, KK^{{}^{\prime}} is its transpose. For a matrix KK, the norm is expressed as K=trace(KK)\left\|K\right\|=\sqrt{\text{trace}(KK^{{}^{\prime}})} and denote by ,\left\langle\cdot,\cdot\right\rangle the inner product of n\mathbb{R}^{n}. (Ui,Ui)(i=1,2)(U_{i},\left\|\cdot\right\|_{U_{i}})(i=1,2) are separable Hilbert spaces with inner product ,Ui\left\langle\cdot,\cdot\right\rangle_{U_{i}} and (B,B)(B,\left\|\cdot\right\|_{B}) is a reflexive Banach space such that BU1B\subset U_{1}. UiU_{i}^{*}, BB^{*} are the dual spaces of UiU_{i}, BB, and

BU1B,\displaystyle B\subset U_{1}\subset B^{*},

where the embedding BU1B\subset U_{1} is continuous and dense, hence we have U1BU_{1}^{*}\subset B^{*} continuously and densely. Let ,BB{}_{B^{\ast}}\langle\cdot,\cdot\rangle_{B} denote the dualization between BB^{\ast} and BB, which shows that for all xU1x\in U_{1}, yBy\in B,

x,yBB=x,yU1,{}_{B^{\ast}}\langle x,y\rangle_{B}=\langle x,y\rangle_{U_{1}},

and (B,U1,BB,U_{1},B^{\ast}) is called a Gelfand triple. For any q1q\geq 1 and the Banach space (Y,Y)(Y,\left\|\cdot\right\|_{Y}), 𝔏q(Ω,Y)\mathfrak{L}^{q}(\Omega,Y) denotes the Banach space of all YY-value random variables:

𝔏q(Ω,Y)={y:ΩY:𝔼yq=ΩyYpd<}.\displaystyle\mathfrak{L}^{q}(\Omega,Y)=\left\{y:\Omega\to Y:\mathbb{E}\left\|y\right\|^{q}=\int_{\Omega}\left\|y\right\|^{p}_{Y}\text{d}\mathbb{P}<\infty\right\}.

Let (U1)\mathcal{B}(U_{1}) denote the σ\sigma-algebra generated by space U1U_{1} and 𝒫(U1)\mathcal{P}(U_{1}) be the family of all probability measures defined on (U1)\mathcal{B}(U_{1}). We introduce the following Banach space 𝒫2(U1)\mathcal{P}_{2}(U_{1}) of signed measures μ\mu on (U1)\mathcal{B}(U_{1}) satisfying

μU12=U1(1+xU1)2|μ|(dx)<,\displaystyle\left\|\mu\right\|_{U_{1}}^{2}=\int_{U_{1}}(1+\left\|x\right\|_{U_{1}})^{2}\left|\mu\right|(\text{d}x)<\infty,

where |μ|=μ++μ\left|\mu\right|=\mu^{+}+\mu^{-} and μ=μ+μ\mu=\mu^{+}-\mu^{-} is the Jordan decomposition of μ\mu. Let 𝒫(U1)=𝒫(U1)𝒫2(U1)\mathcal{P}^{*}(U_{1})=\mathcal{P}(U_{1})\cap\mathcal{P}_{2}(U_{1}) be the family of all probability measures on (U1,(U1))(U_{1},\mathcal{B}(U_{1})) with the following metric:

dU1(μ,ν):=sup{|ΦdμΦdν|:ΦBL1},\displaystyle d_{U_{1}}(\mu,\nu):=\sup\{\left|\int\Phi\text{d}\mu-\int\Phi\text{d}\nu\right|:\left\|\Phi\right\|_{BL}\leq 1\},

where ΦBL:=Φ+Lip(Φ)\left\|\Phi\right\|_{BL}:=\left\|\Phi\right\|_{\infty}+Lip(\Phi) and Φ=supxU1|Φ(x)|(1+xU1)2\left\|\Phi\right\|_{\infty}=\sup_{x\in U_{1}}\frac{|\Phi(x)|}{(1+\left\|x\right\|_{U_{1}})^{2}}, Lip(Φ)=supxy|Φ(x)Φ(y)|xyU1Lip(\Phi)=\sup_{x\neq y}\frac{\left|\Phi(x)-\Phi(y)\right|}{\left\|x-y\right\|_{U_{1}}}. Then it is not difficult to verify that the space (𝒫(U1),dU1)(\mathcal{P}^{*}(U_{1}),d_{U_{1}}) is a complete metric space; see [17] for more details on (𝒫(U1),dU1)(\mathcal{P}^{*}(U_{1}),d_{U_{1}}) and its properties.

Consider the following McKean-Vlasov stochastic partial differential equations(SPDEs):

{du(t)=(A(u(t),u(t))+f(u(t),u(t)))dt+g(u(t),u(t))dW(t),u(0)=xU1,\displaystyle\begin{cases}\text{d}u(t)=(A(u(t),\mathcal{L}_{u(t)})+f(u(t),\mathcal{L}_{u(t)}))\text{d}t+g(u(t),\mathcal{L}_{u(t)})\text{d}W(t),\\ u(0)=x\in U_{1},\end{cases} (2.1)

where W(t)W(t) is a cylindrical Wiener processes on a separable Hilbert space (U2,,U2)(U_{2},\langle\cdot,\cdot\rangle_{U_{2}}) with respect to a complete filtered probability space (Ω,,)\left(\Omega,\mathscr{F},\mathbb{P}\right), and u(t)\mathcal{L}_{u(t)} denotes the law of u(t)u(t) taking values in 𝒫(U1)\mathcal{P}(U_{1}). These are the measurable maps:

A:B×𝒫(U1)B,f:U1×𝒫(U1)U1,g:U1×𝒫(U1)(U2,U1),A:B\times\mathcal{P}^{*}(U_{1})\to B^{*},\quad f:U_{1}\times\mathcal{P}^{*}(U_{1})\to U_{1},\quad g:U_{1}\times\mathcal{P}^{*}(U_{1})\to\mathscr{L}(U_{2},U_{1}),

where (U2,U1)\mathscr{L}(U_{2},U_{1}) is the space of all Hilbert-Schmidt operators from U2U_{2} into U1U_{1}. The definition of variational solution to system (2.1) is given as follows.  

Definition 2.1.[22] We call a continuous U1U_{1}-valued {t}t0\{\mathscr{F}_{t}\}_{t\geq 0}-adapted process {u(t)}t[0,T]\{u(t)\}_{t\in[0,T]} is a solution of the system (2.1), if for its dt×\text{d}t\times\mathbb{P}-equivalent class {u^(t)}t[0,T]\{\hat{u}(t)\}_{t\in[0,T]} satisfying u^(t)𝔏p([0,T]×Ω,B)×𝔏2([0,T]×Ω,U1)\hat{u}(t)\in\mathfrak{L}^{p}([0,T]\times\Omega,B)\times\mathfrak{L}^{2}([0,T]\times\Omega,U_{1}) and \mathbb{P}-a.s.,

du(t)=x+ot(A(u¯(s),u¯(s))+f(u¯(s),u¯(s)))ds+0tg(u¯(s),u¯(s))dW(s),\displaystyle\text{d}u(t)=x+\int_{o}^{t}(A(\bar{u}(s),\mathcal{L}_{\bar{u}(s)})+f(\bar{u}(s),\mathcal{L}_{\bar{u}(s)}))\text{d}s+\int_{0}^{t}g(\bar{u}(s),\mathcal{L}_{\bar{u}(s)})\text{d}W(s),

where u¯\bar{u} is a BB-valued progressively measurable dt×\text{d}t\times\mathbb{P} of u^\hat{u}.  

The transition probability of the Markov process defined on U1U_{1} is a function p:Δ×U1×(U1)+p:\Delta\times U_{1}\times\mathcal{B}(U_{1})\to\mathbb{R}^{+}, where Δ={(t,s):ts,t,s}\Delta=\{(t,s):t\geq s,t,s\in\mathbb{R}\} for u(t)U1u(t)\in U_{1} and Γ(U1)\Gamma\in\mathcal{B}(U_{1}) with the following properties:

  1. 1.

    p(t,s,x,Γ)=(ω:u(t;s,x)Γ|us)p(t,s,x,\Gamma)=\mathbb{P}(\omega:u(t;s,x)\in\Gamma|u_{s});

  2. 2.

    p(t,s,,Γ)p(t,s,\cdot,\Gamma) is (U1)\mathcal{B}(U_{1})-measurable for every tst\geq s and Γ(U1)\Gamma\in\mathcal{B}(U_{1});

  3. 3.

    p(t,s,x,)p(t,s,x,\cdot) is a probability measure on (U1)\mathcal{B}(U_{1}) for every tst\geq s and xU1x\in U_{1};

  4. 4.

    The Chapman-Kolmogorov equation:

    p(t,s,x,Γ)=U1p(t,τ,y,Γ)p(τ,s,x,dy)\displaystyle p(t,s,x,\Gamma)=\underset{U_{1}}{\int}p(t,\tau,y,\Gamma)p(\tau,s,x,\text{d}y)

    holds for any sτts\leq\tau\leq t, xU1x\in U_{1} and Γ(U1)\Gamma\in\mathcal{B}(U_{1}).

We further define a map p^(t,s):𝒫(U1)𝒫(U1)\hat{p}(t,s):\mathcal{P}(U_{1})\to\mathcal{P}(U_{1}) for any μ𝒫(U1)\mu\in\mathcal{P}(U_{1}) and Γ(U1)\Gamma\in\mathcal{B}(U_{1}) by

p^(t,s)μ(Γ)=U1p(t,s,y,Γ)μ(dy).\displaystyle\hat{p}(t,s)\mu(\Gamma)=\underset{U_{1}}{\int}p(t,s,y,\Gamma)\mu(\text{d}y). (2.2)

The Markov process u(t)u(t) is said to be time-homogeneous with the transition function p(t,s,x,Γ)p(t,s,x,\Gamma), if

p(t,s,x,Γ)=p(t+θ,s+θ,x,Γ),\displaystyle p(t,s,x,\Gamma)=p(t+\theta,s+\theta,x,\Gamma),

for all ts0t\geq s\geq 0, θ0\theta\geq 0, xU1x\in U_{1} and Γ(U1)\Gamma\in\mathcal{B}(U_{1}).

3 Existence and uniqueness of solutions for (2.1) with Hölder continuous coefficients

To study the existence and uniqueness of solutions for (2.1) with Ho¨\ddot{\text{o}}lder continuous coefficients, we assume that the initial value xU1x\in U_{1} is independent of W(t)W(t). We first assume that the coefficients in (2.1) satisfy the following hypotheses:  

(H1) (Continuity) For all x,yBx,y\in B and μ𝒫(U1)\mu\in\mathcal{P}^{*}(U_{1}), the map

B×𝒫(U1)(x,μ)BA(x,μ),yB\displaystyle B\times\mathcal{P}^{*}(U_{1})\ni(x,\mu)\to_{B^{\ast}}\langle A(x,\mu),y\rangle_{B}

is continuous.
(H2) (Coercivity) There exist constant λ1\lambda_{1}\in\mathbb{R}, λ2>0\lambda_{2}>0, p2p\geq 2 and M>0M>0 such that for all xBx\in B, μ𝒫(U1)\mu\in\mathcal{P}^{*}(U_{1})

A(x,μ),xBBλ1(xU12+μU12)λ2xBp+M.{}_{B^{\ast}}\langle A(x,\mu),x\rangle_{B}\leq\lambda_{1}(\left\|x\right\|_{U_{1}}^{2}+\left\|\mu\right\|_{U_{1}}^{2})-\lambda_{2}\left\|x\right\|_{B}^{p}+M.

(H3) (Growth) For AA, there exists constant λ1\lambda_{1} for all xBx\in B, μ𝒫(U1)\mu\in\mathcal{P}^{*}(U_{1}) such that

A(x,μ)Bpp1λ2(xBp+μU12)+M,\displaystyle\left\|A(x,\mu)\right\|_{B^{*}}^{\frac{p}{p-1}}\leq\lambda_{2}(\left\|x\right\|_{B}^{p}+\left\|\mu\right\|_{U_{1}}^{2})+M,

and for the continuous functions ff, gg, there exist constant λ1\lambda_{1} for all xU1x\in U_{1}, μ𝒫(U1)\mu\in\mathcal{P}^{*}(U_{1}) such that

f(x,μ)U1g(x,μ)(U2,U1)λ2(xU1+μU1)+M.\displaystyle\left\|f(x,\mu)\right\|_{U_{1}}\vee\left\|g(x,\mu)\right\|_{\mathscr{L}(U_{2},U_{1})}\leq\lambda_{2}(\left\|x\right\|_{U_{1}}+\left\|\mu\right\|_{U_{1}})+M.

(H4) (Ho¨\ddot{\text{o}}lder continuity) Let α(0,1]\alpha\in(0,1] and β(12,1]\beta\in(\frac{1}{2},1]. The map AA satisfies, for all x,yBx,y\in B, μ,ν𝒫(U1)\mu,\nu\in\mathcal{P}^{*}(U_{1}),

2BA(x,μ)A(y,ν),xyBλ1(xyU1α+1+dU1α+1(μ,ν)),\displaystyle 2_{B^{\ast}}\langle A(x,\mu)-A(y,\nu),x-y\rangle_{B}\leq\lambda_{1}(\left\|x-y\right\|_{U_{1}}^{\alpha+1}+d_{U_{1}}^{\alpha+1}(\mu,\nu)),

and the functions ff, gg satisfy, for all x,yU1x,y\in U_{1} and μ,ν𝒫(U1)\mu,\nu\in\mathcal{P}^{*}(U_{1}) with xyU1dU1(μ,ν)1\left\|x-y\right\|_{U_{1}}\vee d_{U_{1}}(\mu,\nu)\leq 1,

f(x,μ)f(y,ν),xyU1λ1(xyU12β+dU12β(μ,ν)),\displaystyle\left\langle f(x,\mu)-f(y,\nu),x-y\right\rangle_{U_{1}}\leq\lambda_{1}(\left\|x-y\right\|_{U_{1}}^{2\beta}+d_{U_{1}}^{2\beta}(\mu,\nu)),
g(x,μ)g(y,ν)(U2,U1)λ2(xyU1β+dU1β(μ,ν)).\displaystyle\left\|g(x,\mu)-g(y,\nu)\right\|_{\mathscr{L}(U_{2},U_{1})}\leq\lambda_{2}(\left\|x-y\right\|_{U_{1}}^{\beta}+d_{U_{1}}^{\beta}(\mu,\nu)).

In this paper, we write LML_{M} to mean some positive constants which depend on MM. If it does not cause confusion, we always assume that the constants λ1\lambda_{1}\in\mathbb{R}, λ2,M>0\lambda_{2},M>0 and these constants may change from line to line. Now we discuss the existence and uniqueness of solutions for (2.1) whose coefficients are assumed to be only Ho¨\ddot{\text{o}}lder continuous.  

Theorem 3.1. Consider (2.1). Suppose that the assumptions (H1)-(H4) hold. For any initial values xU1x\in U_{1}, system (2.1) has a unique solution u(t)u(t) in the sense of Definition 2.1.  

Analyzing system (2.1), we will use the technique of Galerkin type approximation to get the existence and uniqueness of solutions. For ease of description, we first study the following McKean-Vlasov stochastic differential equations(MVSDEs) with Ho¨\ddot{\text{o}}lder continuous coefficients:

dx(t)=F(x(t),x(t))dt+G(x(t),x(t))dB(t),\displaystyle\text{d}x(t)=F(x(t),\mathcal{L}_{x(t)})\text{d}t+G(x(t),\mathcal{L}_{x(t)})\text{d}B(t), (3.1)

with the initial data x(0)=x0nx(0)=x_{0}\in\mathbb{R}^{n}, where B(t)B(t) is an mm-dimensional Wiener process and F:n×𝒫(n)nF:\mathbb{R}^{n}\times\mathcal{P}^{*}(\mathbb{R}^{n})\to\mathbb{R}^{n}, G:n×𝒫(n)n×mG:\mathbb{R}^{n}\times\mathcal{P}^{*}(\mathbb{R}^{n})\to\mathbb{R}^{n\times m} are two continuous maps. To ensure the existence and uniqueness of solutions for (3.1), we make the following assumptions:
(h1) The functions FF and GG are continuous in (x,μ)(x,\mu) and satisfy, for all xnx\in\mathbb{R}^{n}, μ𝒫(n)\mu\in\mathcal{P}^{*}(\mathbb{R}^{n})

F(x,μ),xG(x,μ)2λ1(x2+μn2)+M.\displaystyle\left\langle F(x,\mu),x\right\rangle\vee\left\|G(x,\mu)\right\|^{2}\leq\lambda_{1}(\left\|x\right\|^{2}+\left\|\mu\right\|_{\mathbb{R}^{n}}^{2})+M.

(h2) The functions F,GF,G satisfy, for all x,ynx,y\in\mathbb{R}^{n} and μ,ν𝒫(n)\mu,\nu\in\mathcal{P}^{*}(\mathbb{R}^{n}) with xy1\left\|x-y\right\|\leq 1 and dn(μ,ν)1d_{\mathbb{R}^{n}}(\mu,\nu)\leq 1,

2F(x,μ)F(y,ν),xyG(x,μ)G(y,ν)2λ1(xy2β+dn2β(μ,ν)).\displaystyle 2\left\langle F(x,\mu)-F(y,\nu),x-y\right\rangle\vee\left\|G(x,\mu)-G(y,\nu)\right\|^{2}\leq\lambda_{1}(\left\|x-y\right\|^{2\beta}+d^{2\beta}_{\mathbb{R}^{n}}(\mu,\nu)).

Theorem 3.2. Consider (3.1). Suppose that the assumptions (h1)-(h2) hold. Then the following statement holds: for any x0nx_{0}\in\mathbb{R}^{n}, there exist a unique strong solution x(t)x(t) to (3.1) with x(0)=x0x(0)=x_{0}.  

proof:
Based on the above analysis, we divide the proof of Theorem 3.2 into the following two steps:
step 1: Existence of the weak solutions. We choose a family of finite-dimensional projections {Γn}n1\{\Gamma_{n}\}_{n\geq 1} in 𝒫(n)\mathcal{P}^{*}(\mathbb{R}^{n}) that satisfy the following property:

ΓnI(n),\displaystyle\Gamma_{n}\to I(n\to\infty),

where II is the identity transformation on 𝒫(n)\mathcal{P}^{*}(\mathbb{R}^{n}). Let Fn(x,μ)=F(x,Γn(μ))F^{n}(x,\mu)=F(x,\Gamma_{n}(\mu)) and Gn(x,μ)=G(x,Γn(μ))G^{n}(x,\mu)=G(x,\Gamma_{n}(\mu)), which implies that Fn,GnF^{n},G^{n} satisfy the following properties:

  1. 1.

    FnFF^{n}\to F, GnGG^{n}\to G as nn\to\infty uniformly on each compact subset of n×𝒫(n)\mathbb{R}^{n}\times\mathcal{P}^{*}(\mathbb{R}^{n});

  1. 1.

    Fn,GnF^{n},G^{n} satisfy the conditions (h1) and (h2), that is, the coefficients are independent of nn.

We then convolve the (Fn,Gn)(F^{n},G^{n}) with the finite-dimensional approximation δ\delta-function to obtain the (Fn,δ,Gn,δ)(F^{n,\delta},G^{n,\delta}), hence it’s not hard to get that the functions Fn,δF^{n,\delta} and Gn,δG^{n,\delta} are Lipschitz continuous on each bounded subset of n×𝒫(n)\mathbb{R}^{n}\times\mathcal{P}^{*}(\mathbb{R}^{n}). Fix n1n\geq 1 arbitrarily and we further consider the following equation:

dxn(t)=Fn,δ(xn(t),xn(t))dt+Gn,δ(xn(t),xn(t))dB(t).\displaystyle\text{d}x^{n}(t)=F^{n,\delta}(x^{n}(t),\mathcal{L}_{x^{n}(t)})\text{d}t+G^{n,\delta}(x^{n}(t),\mathcal{L}_{x^{n}(t)})\text{d}B(t). (3.2)

From the above analysis, (3.2) has a unique strong solution xn(t)x^{n}(t) with the initial condition xn(0)=x0x^{n}(0)=x_{0}. Then for any fixed q2q\geq 2, applying Ito^\hat{\text{o}} formula formula to xn(t)q\|x^{n}(t)\|^{q}, we have

xn(t)q=x0q+0t[qxn(s)q2Fn,δ(xn(s),xn(s)),xn(s)+q(q1)2xn(s)q2Gn,δ(xn(s),xn(s))2]ds+0tqxn(s)q2[xn(s)]Gn,δ(xn(t),xn(t))dB(s).\displaystyle\begin{split}\|x^{n}(t)\|^{q}&=\left\|x_{0}\right\|^{q}+\int_{0}^{t}[q\left\|x^{n}(s)\right\|^{q-2}\left\langle F^{n,\delta}(x^{n}(s),\mathcal{L}_{x^{n}(s)}),x^{n}(s)\right\rangle\\ &~{}~{}~{}+\frac{q(q-1)}{2}\left\|x^{n}(s)\right\|^{q-2}\left\|G^{n,\delta}(x^{n}(s),\mathcal{L}_{x^{n}(s)})\right\|^{2}]\text{d}s\\ &~{}~{}~{}+\int_{0}^{t}q\left\|x^{n}(s)\right\|^{q-2}[x^{n}(s)]^{{}^{\prime}}G^{n,\delta}(x^{n}(t),\mathcal{L}_{x^{n}(t)})\text{d}B(s).\end{split}

By Young inequality and assumptions (h1) and (h2), there exist some constants Lq,λ1L_{q,\lambda_{1}} such that

xn(t)q\displaystyle\|x^{n}(t)\|^{q} x0q+Lq,λ10t(xn(s)q+xn(s)nq+M)ds\displaystyle\leq\left\|x_{0}\right\|^{q}+L_{q,\lambda_{1}}\int_{0}^{t}(\left\|x^{n}(s)\right\|^{q}+\left\|\mathcal{L}_{x^{n}(s)}\right\|_{\mathbb{R}^{n}}^{q}+M)\text{d}s
+Lq,λ10t(xn(s)q+xn(s)nq+M)dB(s),\displaystyle~{}~{}~{}+L_{q,\lambda_{1}}\int_{0}^{t}(\left\|x^{n}(s)\right\|^{q}+\left\|\mathcal{L}_{x^{n}(s)}\right\|_{\mathbb{R}^{n}}^{q}+M)\text{d}B(s),

where Lq,λ1L_{q,\lambda_{1}} depends only on q,λ1q,\lambda_{1}. By Cauchy’s inequality and Burkholder–Davis–Gundy inequality, we obtain

𝔼supz[0,t]xn(t)2q3x0q+Lq,λ1𝔼[0t(xn(s)q+xn(s)nq+M)ds]2+Lq,λ1𝔼(supz[0,t]0t(xn(s)q+xn(s)nq+M)dB(s))23x0q+Lq,λ1𝔼0t(xn(s)2q+xn(s)n2q+M2)ds3x0q+Lq,λ10t[𝔼xn(s)2q+Lq𝔼(1+xn(s)2q)+M2]ds3x02q+Lq,λ1,M[0t𝔼supz[0,s]xn(z)2qds+t].\displaystyle\begin{split}\mathbb{E}\underset{z\in[0,t]}{\sup}\left\|x^{n}(t)\right\|^{2q}&\leq 3\left\|x_{0}\right\|^{q}+L_{q,\lambda_{1}}\mathbb{E}[\int_{0}^{t}(\left\|x^{n}(s)\right\|^{q}+\left\|\mathcal{L}_{x^{n}(s)}\right\|_{\mathbb{R}^{n}}^{q}+M)\text{d}s]^{2}\\ &~{}~{}~{}+L_{q,\lambda_{1}}\mathbb{E}(\underset{z\in[0,t]}{\sup}\int_{0}^{t}(\left\|x^{n}(s)\right\|^{q}+\left\|\mathcal{L}_{x^{n}(s)}\right\|_{\mathbb{R}^{n}}^{q}+M)\text{d}B(s))^{2}\\ &\leq 3\left\|x_{0}\right\|^{q}+L_{q,\lambda_{1}}\mathbb{E}\int_{0}^{t}(\left\|x^{n}(s)\right\|^{2q}+\left\|\mathcal{L}_{x^{n}(s)}\right\|_{\mathbb{R}^{n}}^{2q}+M^{2})\text{d}s\\ &\leq 3\left\|x_{0}\right\|^{q}+L_{q,\lambda_{1}}\int_{0}^{t}[\mathbb{E}\left\|x^{n}(s)\right\|^{2q}+L_{q}\mathbb{E}(1+\left\|x^{n}(s)\right\|^{2q})+M^{2}]\text{d}s\\ &\leq 3\left\|x_{0}\right\|^{2q}+L_{q,\lambda_{1},M}[\int_{0}^{t}\mathbb{E}\underset{z\in[0,s]}{\sup}\left\|x^{n}(z)\right\|^{2q}\text{d}s+t].\end{split}

Then, applying the Gronwall inequality yields

𝔼supz[0,t]xn(t)2qLq,λ1,M(x02q+t+et)<,\displaystyle\begin{split}\mathbb{E}\underset{z\in[0,t]}{\sup}\left\|x^{n}(t)\right\|^{2q}\leq L_{q,\lambda_{1},M}(\left\|x_{0}\right\|^{2q}+t+e^{t})<\infty,\end{split} (3.3)

for any T>0T>0 and t[0,T]t\in[0,T]. We can follow from condition (h1) that Fn,δF^{n,\delta} and Gn,δG^{n,\delta} are bounded on every bounded subset of n×𝒫(n)\mathbb{R}^{n}\times\mathcal{P}^{*}(\mathbb{R}^{n}), further by (h1) and (3.3), there exists a constant Lq,λ1,M,T>0L_{q,\lambda_{1},M,T}>0 independent of nn such that

Fn,δ(xn(s),xn(s))Gn,δ(xn(s),xn(s))Lq,λ1,M,T.\displaystyle\left\|F^{n,\delta}(x^{n}(s),\mathcal{L}_{x^{n}(s)})\right\|\vee\left\|G^{n,\delta}(x^{n}(s),\mathcal{L}_{x^{n}(s)})\right\|\leq L_{q,\lambda_{1},M,T}.

Hence for any 0z,tT<0\leq z,t\leq T<\infty, we have

supn1𝔼xn(t)xn(z)2qLq,λ1supn1𝔼ztFn,δ(xn(s),xn(s))ds2q+Lq,λ1𝔼supn1ztGn,δ(xn(s),xn(s))dB(s)2qLq,λ1,M,Ttzq,\displaystyle\begin{split}&\underset{n\geq 1}{\sup}\mathbb{E}\left\|x^{n}(t)-x^{n}(z)\right\|^{2q}\\ &\leq L_{q,\lambda_{1}}\underset{n\geq 1}{\sup}\mathbb{E}\left\|\int_{z}^{t}F^{n,\delta}(x^{n}(s),\mathcal{L}_{x^{n}(s)})\text{d}s\right\|^{2q}+L_{q,\lambda_{1}}\mathbb{E}\underset{n\geq 1}{\sup}\left\|\int_{z}^{t}G^{n,\delta}(x^{n}(s),\mathcal{L}_{x^{n}(s)})\text{d}B(s)\right\|^{2q}\\ &\leq L_{q,\lambda_{1},M,T}\left\|t-z\right\|^{q},\end{split} (3.4)

which yields that the family of laws xn(t)\mathcal{L}_{x^{n}(t)} of xn(t)x^{n}(t) is weakly compact. Further, from property (a) we can obtain the weak limit point x(t)x^{*}(t) of xn(t)(n)x^{n}(t)(n\to\infty), being a weak solution to (3.1). This proof is again quite standard and see Appendix I for details.  

step 2: Pathwise uniqueness of the weak solutions. In the following, we will present the pathwise uniqueness for (3.1). Suppose that two stochastic processes x(t),y(t)x(t),y(t) satisfy the following form:

x(t)=x0+0tF(x(s),x(s))ds+0tG(x(s),x(s))dB(s),\displaystyle x(t)=x_{0}+\int_{0}^{t}F(x(s),\mathcal{L}_{x(s)})\text{d}s+\int_{0}^{t}G(x(s),\mathcal{L}_{x(s)})\text{d}B(s),

and

y(t)=y0+0tF(y(s),y(s))ds+0tG(y(s),y(s))dB(s).\displaystyle y(t)=y_{0}+\int_{0}^{t}F(y(s),\mathcal{L}_{y(s)})\text{d}s+\int_{0}^{t}G(y(s),\mathcal{L}_{y(s)})\text{d}B(s).

Without loss of generality, let’s assume x0y0<1\left\|x_{0}-y_{0}\right\|<1. Denote

τN=inft0{x(t)y(t)>N},τγ=inft0{x(t)y(t)>γ},\displaystyle\tau_{N}=\underset{t\geq 0}{\inf}\{\left\|x(t)\right\|\vee\left\|y(t)\right\|>N\},\quad\tau_{\gamma}=\underset{t\geq 0}{\inf}\{\left\|x(t)-y(t)\right\|>\gamma\},

where N>x0y0N>\left\|x_{0}\right\|\vee\left\|y_{0}\right\| and γ(x0y0,1]\gamma\in(\left\|x_{0}-y_{0}\right\|,1]. In order to better prove the pathwise uniqueness of the weak solution, we first assume that the following property holds:

limx0y00𝔼(supz[0,t]x(zτNτγ)y(zτNτγ)2)=0.\displaystyle\lim_{\left\|x_{0}-y_{0}\right\|\to 0}\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{N}\wedge\tau_{\gamma})-y(z\wedge\tau_{N}\wedge\tau_{\gamma})\right\|^{2})=0. (3.5)

Then by (3.3), we obtain that limNτN=\lim_{N\to\infty}\tau_{N}=\infty a.s., which together with Fatou’s lemma leads to

limx0y00𝔼(supz[0,t]x(zτγ)y(zτγ)2)=0.\lim_{\left\|x_{0}-y_{0}\right\|\to 0}\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{\gamma})-y(z\wedge\tau_{\gamma})\right\|^{2})=0.

In addition, by the definition of τγ\tau_{\gamma}, we have x(τγ)y(τγ)=γ\left\|x(\tau_{\gamma})-y(\tau_{\gamma})\right\|=\gamma, which implies

𝔼(supz[0,t]x(zτγ)y(zτγ)2)\displaystyle\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{\gamma})-y(z\wedge\tau_{\gamma})\right\|^{2}) =(tτγ)𝔼(supz[0,t]x(zτγ)y(zτγ)2)\displaystyle=\mathbb{P}(t\geq\tau_{\gamma})\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{\gamma})-y(z\wedge\tau_{\gamma})\right\|^{2})
+(t<τγ)𝔼(supz[0,t]x(zτγ)y(zτγ)2)\displaystyle~{}~{}~{}+\mathbb{P}(t<\tau_{\gamma})\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{\gamma})-y(z\wedge\tau_{\gamma})\right\|^{2})
(tτγ)γ2,\displaystyle\geq\mathbb{P}(t\geq\tau_{\gamma})\gamma^{2},

i.e., (tτγ)=0\mathbb{P}(t\geq\tau_{\gamma})=0 as x0y00\left\|x_{0}-y_{0}\right\|\to 0. Hence, by (h1) and (3.3), we have

𝔼(supz[0,t]x(z)y(z)2)\displaystyle\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z)-y(z)\right\|^{2}) =𝔼(supz[0,t]x(z)y(z)2χ{t>τγ})+𝔼(supz[0,t]x(z)y(z)2χ{tτγ})\displaystyle=\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z)-y(z)\right\|^{2}\chi_{\{t>\tau_{\gamma}\}})+\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z)-y(z)\right\|^{2}\chi_{\{t\leq\tau_{\gamma}\}})
𝔼(supz[0,t]x(zτγ)y(zτγ)2)\displaystyle\leq\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{\gamma})-y(z\wedge\tau_{\gamma})\right\|^{2})
=0,\displaystyle=0,

which implies that as x0y00\left\|x_{0}-y_{0}\right\|\to 0,

(supz[0,t]x(z)y(z)2=0)=1,\displaystyle\mathbb{P}(\underset{z\in[0,t]}{\sup}\left\|x(z)-y(z)\right\|^{2}=0)=1,

i.e., the pathwise uniqueness of weak solution holds, and then by Yamada–Watanabe principle, we obtain that there exists a unique global strong solution of (3.1).

From the above analysis, we know that the key condition for pathwise uniqueness is that (3.5) holds. So next, we’re going to apply the contradiction to prove that (3.5) is true. We assume that (3.5) does not hold, that is, there is a constant a>0a>0, such that as x0y00\left\|x_{0}-y_{0}\right\|\to 0,

𝔼(supz[0,t]x(zτNτγ)y(zτNτγ)2)a.\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{N}\wedge\tau_{\gamma})-y(z\wedge\tau_{N}\wedge\tau_{\gamma})\right\|^{2})\geq a.

Then applying the Ito^\hat{\text{o}} formula to x(tτNτγ)y(tτNτγ)|2\left\|x(t\wedge\tau_{N}\wedge\tau_{\gamma})-y(t\wedge\tau_{N}\wedge\tau_{\gamma})\right|^{2}, Young inequality, BDG inequality and (h2) yield

𝔼(supz[0,t]x(zτNτγ)y(zτNτγ)2)\displaystyle\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{N}\wedge\tau_{\gamma})-y(z\wedge\tau_{N}\wedge\tau_{\gamma})\right\|^{2})
=x0y02+𝔼0tτNτγ[G(x(s),x(s))G(y(s),y(s))2\displaystyle=\left\|x_{0}-y_{0}\right\|^{2}+\mathbb{E}\int_{0}^{t\wedge\tau_{N}\wedge\tau_{\gamma}}[\left\|G(x(s),\mathcal{L}_{x(s)})-G(y(s),\mathcal{L}_{y(s)})\right\|^{2}
+2F(x(s),x(s))F(y(s),y(s)),x(s)y(s)]ds\displaystyle~{}~{}~{}+2\left\langle F(x(s),\mathcal{L}_{x(s)})-F(y(s),\mathcal{L}_{y(s)}),x(s)-y(s)\right\rangle]\text{d}s
+2𝔼(supz[0,t]0zτNτγ[x(s)y(s)](G(x(s),x(s))G(y(s),y(s)))dB(s))\displaystyle~{}~{}~{}+2\mathbb{E}(\underset{z\in[0,t]}{\sup}\int_{0}^{z\wedge\tau_{N}\wedge\tau_{\gamma}}[x(s)-y(s)]^{\prime}(G(x(s),\mathcal{L}_{x(s)})-G(y(s),\mathcal{L}_{y(s)}))\text{d}B(s)) (3.6)
x0y02+2λ1𝔼0tτNτγ(x(s)y(s)2β+dn2β(x(s),y(s)))ds\displaystyle\leq\left\|x_{0}-y_{0}\right\|^{2}+2\lambda_{1}\mathbb{E}\int_{0}^{t\wedge\tau_{N}\wedge\tau_{\gamma}}(\left\|x(s)-y(s)\right\|^{2\beta}+d_{\mathbb{R}^{n}}^{2\beta}(\mathcal{L}_{x(s)},\mathcal{L}_{y(s)}))\text{d}s
+12𝔼[0tτNτγ(x(s)y(s))(G(x(s),x(s))G(y(s),y(s)))2ds]12\displaystyle~{}~{}~{}+12\mathbb{E}[\int_{0}^{t\wedge\tau_{N}\wedge\tau_{\gamma}}\left\|(x(s)-y(s))^{\prime}(G(x(s),\mathcal{L}_{x(s)})-G(y(s),\mathcal{L}_{y(s)}))\right\|^{2}\text{d}s]^{\frac{1}{2}}
x0y02+2λ1𝔼0tτNτγ(x(s)y(s)2β+dn2β(x(s),y(s)))ds\displaystyle\leq\left\|x_{0}-y_{0}\right\|^{2}+2\lambda_{1}\mathbb{E}\int_{0}^{t\wedge\tau_{N}\wedge\tau_{\gamma}}(\left\|x(s)-y(s)\right\|^{2\beta}+d_{\mathbb{R}^{n}}^{2\beta}(\mathcal{L}_{x(s)},\mathcal{L}_{y(s)}))\text{d}s
+12𝔼(supz[0,tτNτγ]x(z)y(z)2)+72λ1𝔼0tτNτγ(x(s)y(s)2β+dn2β(x(s),y(s)))ds.\displaystyle~{}~{}~{}+\frac{1}{2}\mathbb{E}(\underset{z\in[0,t\wedge\tau_{N}\wedge\tau_{\gamma}]}{\sup}\left\|x(z)-y(z)\right\|^{2})+72\lambda_{1}\mathbb{E}\int_{0}^{t\wedge\tau_{N}\wedge\tau_{\gamma}}(\left\|x(s)-y(s)\right\|^{2\beta}+d_{\mathbb{R}^{n}}^{2\beta}(\mathcal{L}_{x(s)},\mathcal{L}_{y(s)}))\text{d}s.

By the definitions of dn(,)d_{\mathbb{R}^{n}}(\cdot,\cdot) ,

dn(x(s),y(s))\displaystyle d_{\mathbb{R}^{n}}(\mathcal{L}_{x(s)},\mathcal{L}_{y(s)}) =sup{nΦdx(s)nΦdy(s):ΦBL1}\displaystyle=\sup\{\left\|\int_{\mathbb{R}^{n}}\Phi\text{d}\mathcal{L}_{x(s)}-\int_{\mathbb{R}^{n}}\Phi\text{d}\mathcal{L}_{y(s)}\right\|:\left\|\Phi\right\|_{BL}\leq 1\}
=sup{nΦ(x)(ω:x(s)dx)nΦ(x)(ω:y(s)dx):ΦBL1}\displaystyle=\sup\{\left\|\int_{\mathbb{R}^{n}}\Phi(x)\mathbb{P}(\omega:x(s)\in\text{d}x)-\int_{\mathbb{R}^{n}}\Phi(x)\mathbb{P}(\omega:y(s)\in\text{d}x)\right\|:\left\|\Phi\right\|_{BL}\leq 1\}
=sup{𝔼Φ(x(s))𝔼Φ(y(s)):ΦBL1}\displaystyle=\sup\{\left\|\mathbb{E}\Phi(x(s))-\mathbb{E}\Phi(y(s))\right\|:\left\|\Phi\right\|_{BL}\leq 1\} (3.7)
sup{Lip(Φ)𝔼x(s)y(s)n:ΦBL1}\displaystyle\leq\sup\{\left\|Lip(\Phi)\right\|\cdot\mathbb{E}\left\|x(s)-y(s)\right\|_{\mathbb{R}^{n}}:\left\|\Phi\right\|_{BL}\leq 1\}
𝔼x(s)y(s).\displaystyle\leq\mathbb{E}\left\|x(s)-y(s)\right\|.

Substituting (3) into (3), by Ho¨\ddot{\text{o}}lder inequality we have

𝔼(supz[0,t]x(zτNτγ)y(zτNτγ)2)\displaystyle\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{N}\wedge\tau_{\gamma})-y(z\wedge\tau_{N}\wedge\tau_{\gamma})\right\|^{2})
2x0y02+296λ1𝔼0tτNτγx(s)y(s)2βds\displaystyle\leq 2\left\|x_{0}-y_{0}\right\|^{2}+296\lambda_{1}\mathbb{E}\int_{0}^{t\wedge\tau_{N}\wedge\tau_{\gamma}}\left\|x(s)-y(s)\right\|^{2\beta}\text{d}s (3.8)
2x0y02+296λ10t𝔼(supz[0,sτNτγ]x(z)y(z)2)βds\displaystyle\leq 2\left\|x_{0}-y_{0}\right\|^{2}+296\lambda_{1}\int_{0}^{t}\mathbb{E}(\underset{z\in[0,s\wedge\tau_{N}\wedge\tau_{\gamma}]}{\sup}\left\|x(z)-y(z)\right\|^{2})^{\beta}\text{d}s
:=Λ(t).\displaystyle:=\Lambda(t).

Note that β(12,1]\beta\in(\frac{1}{2},1] and let H(t)=t12β12βH(t)=\frac{t^{1-2\beta}}{1-2\beta}, then

  1. 1.

    H(t)H(t) is a monotonically increasing function;

  1. 1.

    limt0+H(t)=\lim_{t\to 0^{+}}H(t)=-\infty ,

i.e., H(t)H(t) satisfies H(t)>H(t)>-\infty for any t>0t>0. Hence

H(a)H(𝔼(supz[0,t]x(zτNτγ)y(zτNτγ)2))H(Λ(t)),\displaystyle H(a)\leq H(\mathbb{E}(\underset{z\in[0,t]}{\sup}\left\|x(z\wedge\tau_{N}\wedge\tau_{\gamma})-y(z\wedge\tau_{N}\wedge\tau_{\gamma})\right\|^{2}))\leq H(\Lambda(t)), (3.9)

further

H(Λ(t))\displaystyle H(\Lambda(t)) =H(Λ(0))+0tH(Λ(s))dΛ(s)\displaystyle=H(\Lambda(0))+\int_{0}^{t}H^{\prime}(\Lambda(s))\text{d}\Lambda(s)
=H(2x0y02)\displaystyle=H(2\left\|x_{0}-y_{0}\right\|^{2})
+0t1Λβ(s)296𝔼(supz[0,sτNτγ]x(z)y(z)2)βΛβ(s)ds\displaystyle~{}~{}~{}+\int_{0}^{t}\frac{1}{\Lambda^{\beta}(s)}\cdot\frac{296\mathbb{E}(\underset{z\in[0,s\wedge\tau_{N}\wedge\tau_{\gamma}]}{\sup}\left\|x(z)-y(z)\right\|^{2})^{\beta}}{\Lambda^{\beta}(s)}\text{d}s (3.10)
H(2x0y02)+0t296Λβ(s)ds\displaystyle\leq H(2\left\|x_{0}-y_{0}\right\|^{2})+\int_{0}^{t}\frac{296}{\Lambda^{\beta}(s)}\text{d}s
H(2x0y02)+296aβt.\displaystyle\leq H(2\left\|x_{0}-y_{0}\right\|^{2})+\frac{296}{a^{\beta}}t.

By (3.9) and (3), we obtain

H(2x0y02)a12β12β296aβt,\displaystyle H(2\left\|x_{0}-y_{0}\right\|^{2})\geq\frac{a^{1-2\beta}}{1-2\beta}-\frac{296}{a^{\beta}}t,

which implies x0y00\left\|x_{0}-y_{0}\right\|\neq 0. This contradicts the condition in (3.5). Therefore we use the technique of contradiction to show that (3.5) holds. This completes the proof.  \Box  

Remark 3.3. For a stochastic differential equation(SDE) with low regularity coefficients, although considerable advance in the properties of its (weak) solutions, there are few work on whether there are strong solutions when the drift and diffusion coefficients of the system satisfy the Ho¨\ddot{\text{o}}lder continuity. Through the proof of Theorem 3.2, it is not difficult to find that for general SDEs, when its drift coefficient and diffusion coefficient only satisfy the Ho¨\ddot{\text{o}}lder continuity and linear growth conditions (i.e. similar to conditions and h1 and h2), we affirmatively prove the existence and uniqueness of the strong solution by Yamada–Watanabe principle.  

Now we give the proof of Theorem 3.1.  

Proof of Theorem 3.1. We first apply the Galerkin projection technique to transform the system (2.1) into a finite-dimensional system. Assuming an orthonormal basis {ε1,ε2,ε3,}B\left\{\varepsilon_{1},\varepsilon_{2},\varepsilon_{3},...\right\}\subset B on U1U_{1} and {ι1,ι2,ι3,}\left\{\iota_{1},\iota_{2},\iota_{3},...\right\} on U2U_{2} and taking the first kk orthonormal bases yield the following operators:

𝒰k:BU1k:=span{ε1,ε2,,εk},𝒲k:U2U2k:=span{ι1,ι2,,ιk}.\displaystyle\begin{split}\mathscr{U}_{k}:B^{*}\to U_{1}^{k}:=\text{span}\{\varepsilon_{1},\varepsilon_{2},...,\varepsilon_{k}\},\quad\mathscr{W}_{k}:U_{2}\to U_{2}^{k}:=\text{span}\{\iota_{1},\iota_{2},...,\iota_{k}\}.\end{split}

Let

uk:=𝒰k(u)=i=1ku,εiBBεi,Wk(t):=𝒲k[W(t)]=i=1kW(t),ιiU2ιi,\displaystyle u^{k}:=\mathscr{U}_{k}(u)=\sum_{i=1}^{k}~{}_{B^{\ast}}\langle u,\varepsilon_{i}\rangle_{B}\varepsilon_{i},\quad W^{k}(t):=\mathscr{W}_{k}[W(t)]=\sum_{i=1}^{k}\left\langle W(t),\iota_{i}\right\rangle_{U_{2}}\iota_{i},

where uBu\in B and k1k\geq 1. We thus obtain the following finite-dimensional equations corresponding to system (2.1):

{duk(t)=𝒰k[(A(u(t),u(t))+f(u(t),u(t)))]dt+𝒰k[g(u(t),u(t))]dWk(t),uk(s)=xkU1k,\displaystyle\begin{cases}\text{d}u^{k}(t)=\mathscr{U}_{k}[(A(u(t),\mathcal{L}_{u(t)})+f(u(t),\mathcal{L}_{u(t)}))]\text{d}t+\mathscr{U}_{k}[g(u(t),\mathcal{L}_{u(t)})]\text{d}W^{k}(t),\\ u^{k}(s)=x^{k}\in U^{k}_{1},\end{cases} (3.11)

where uk(t)=𝒰k[u(t)]u^{k}(t)=\mathscr{U}_{k}[u(t)] and xk:=𝒰k(x)x^{k}:=\mathscr{U}_{k}(x). Following Theorem 3.2, by (H1),(H3) and (H4), system (3.11) has a unique strong solution uk(t)u^{k}(t). Next, we prove Theorem 3.2. Similarly, we prove it in the following two steps:
step 1: Apriori estimates of the solutions uk(t)u^{k}(t). By Itô’s formula, (H2) and (H3), we have

uk(t)U12\displaystyle\left\|u^{k}(t)\right\|^{2}_{U_{1}} =xkU12+0t[2B𝒰k(A(uk(s),uk(s)),uk(s)B\displaystyle=\left\|x^{k}\right\|^{2}_{U_{1}}+\int_{0}^{t}[2_{B^{\ast}}\langle\mathscr{U}_{k}(A(u^{k}(s),\mathcal{L}_{u^{k}(s)}),u^{k}(s)\rangle_{B}
+2𝒰k(f(uk(s),uk(s)),uk(s)U1+𝒰k[g(uk(s),uk(s))]𝒲k(U2,U1)2]ds\displaystyle~{}~{}~{}+2\langle\mathscr{U}_{k}(f(u^{k}(s),\mathcal{L}_{u^{k}(s)}),u^{k}(s)\rangle_{U_{1}}+\left\|\mathscr{U}_{k}[g(u^{k}(s),\mathcal{L}_{u^{k}(s)})]\mathscr{W}_{k}\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}]\text{d}s
+20tuk(s),𝒰k[g(uk(s),uk(s))]dWk(s)U1\displaystyle~{}~{}~{}+2\int_{0}^{t}\langle u^{k}(s),\mathscr{U}_{k}[g(u^{k}(s),\mathcal{L}_{u^{k}(s)})]\text{d}W^{k}(s)\rangle_{U_{1}} (3.12)
xkU12+0t[λ2uk(s)Bp+λ1(uk(s)U12+uk(s)U12)+M]ds\displaystyle\leq\left\|x^{k}\right\|^{2}_{U_{1}}+\int_{0}^{t}[-\lambda_{2}\left\|u^{k}(s)\right\|_{B}^{p}+\lambda_{1}(\left\|u^{k}(s)\right\|_{U_{1}}^{2}+\left\|\mathcal{L}_{u^{k}(s)}\right\|_{U_{1}}^{2})+M]\text{d}s
+20tuk(s),𝒰k[g(uk(s),uk(t))]dWk(s)U1.\displaystyle~{}~{}~{}+2\int_{0}^{t}\langle u^{k}(s),\mathscr{U}_{k}[g(u^{k}(s),\mathcal{L}_{u^{k}(t)})]\text{d}W^{k}(s)\rangle_{U_{1}}.

Denote

τNk=inft0{uk(t)U1>N}.\displaystyle\tau^{k}_{N}=\underset{t\geq 0}{\inf}\{\left\|u^{k}(t)\right\|_{U_{1}}>N\}.

Due to λ2>0\lambda_{2}>0, according to the B-D-G inequality, Young’s inequality, the definitions of μU1\left\|\mu\right\|_{U_{1}}, we get

𝔼supz[0,TτNk]uk(z)U12\displaystyle\mathbb{E}\underset{z\in[0,T\wedge\tau^{k}_{N}]}{\sup}\left\|u^{k}(z)\right\|^{2}_{U_{1}}
λ1xkU12+λ1𝔼0TτNksupz[0,s]uk(z)U12ds+MT\displaystyle\leq\lambda_{1}\left\|x^{k}\right\|^{2}_{U_{1}}+\lambda_{1}\mathbb{E}\int_{0}^{T\wedge\tau^{k}_{N}}\underset{z\in[0,s]}{\sup}\left\|u^{k}(z)\right\|_{U_{1}}^{2}\text{d}s+MT
+6𝔼0TτNkuk(t)U12𝒰k[g(uk(s),uk(t))](U2,U1)2ds\displaystyle~{}~{}+6\mathbb{E}\int_{0}^{T\wedge\tau^{k}_{N}}\left\|u^{k}(t)\right\|^{2}_{U_{1}}\left\|\mathscr{U}_{k}[g(u^{k}(s),\mathcal{L}_{u^{k}(t)})]\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}\text{d}s (3.13)
λ1xkU12+λ1𝔼0TτNksupz[0,s]uk(z)U12ds+MT\displaystyle\leq\lambda_{1}\left\|x^{k}\right\|^{2}_{U_{1}}+\lambda_{1}\mathbb{E}\int_{0}^{T\wedge\tau^{k}_{N}}\underset{z\in[0,s]}{\sup}\left\|u^{k}(z)\right\|_{U_{1}}^{2}\text{d}s+MT
+12𝔼supz[0,TτNk]uk(t)U12.\displaystyle~{}~{}~{}+\frac{1}{2}\mathbb{E}\underset{z\in[0,T\wedge\tau^{k}_{N}]}{\sup}\left\|u^{k}(t)\right\|^{2}_{U_{1}}.

By Gronwall’s lemma, we have

𝔼supz[0,TτNk]uk(z)U12\displaystyle\mathbb{E}\underset{z\in[0,T\wedge\tau^{k}_{N}]}{\sup}\left\|u^{k}(z)\right\|^{2}_{U_{1}} MT,λ1(1+xU12).\displaystyle\leq M_{T,\lambda_{1}}(1+\left\|x\right\|^{2}_{U_{1}}). (3.14)

Take expectations on both sides of (3). Then by (3.14) we obtain

𝔼0TτNkuk(s)BpdsMT,λ1(1+xU12).\displaystyle\mathbb{E}\int_{0}^{T\wedge\tau^{k}_{N}}\left\|u^{k}(s)\right\|_{B}^{p}\text{d}s\leq M_{T,\lambda_{1}}(1+\left\|x\right\|^{2}_{U_{1}}). (3.15)

Combining H2, H3, (3.14) and (3.15) yields

𝔼0TτNk[(A(uk(s),uk(s))Bpp1+f(uk(s),uk(s))U12\displaystyle\mathbb{E}\int_{0}^{T\wedge\tau^{k}_{N}}[\left\|(A(u^{k}(s),\mathcal{L}_{u^{k}(s)})\right\|_{B^{*}}^{\frac{p}{p-1}}+\left\|f(u^{k}(s),\mathcal{L}_{u^{k}(s)})\right\|^{2}_{U_{1}}
+g(uk(s),uk(s))(U2,U1)2]ds\displaystyle~{}~{}~{}+\left\|g(u^{k}(s),\mathcal{L}_{u^{k}(s)})\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}]\text{d}s (3.16)
MT,λ1(1+xU12).\displaystyle\leq M_{T,\lambda_{1}}(1+\left\|x\right\|^{2}_{U_{1}}).

Letting NN\to\infty, we have τNk\tau^{k}_{N}\to\infty by (3.3). We thus obtain the following priori estimates for the solution uk(s)u^{k}(s) of (3.11):

𝔼supz[0,T]uk(z)U12+𝔼0T[(A(uk(s),uk(s))Bpp1+f(uk(s),uk(s))U12\displaystyle\mathbb{E}\underset{z\in[0,T]}{\sup}\left\|u^{k}(z)\right\|^{2}_{U_{1}}+\mathbb{E}\int_{0}^{T}[\left\|(A(u^{k}(s),\mathcal{L}_{u^{k}(s)})\right\|_{B^{*}}^{\frac{p}{p-1}}+\left\|f(u^{k}(s),\mathcal{L}_{u^{k}(s)})\right\|^{2}_{U_{1}}
+g(uk(s),uk(s))(U2,U1)2+uk(s)Bp]ds\displaystyle+\left\|g(u^{k}(s),\mathcal{L}_{u^{k}(s)})\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}+\left\|u^{k}(s)\right\|_{B}^{p}]\text{d}s (3.17)
MT,λ1(1+xU12).\displaystyle\leq M_{T,\lambda_{1}}(1+\left\|x\right\|^{2}_{U_{1}}).

step 2: Existence and uniqueness of the solution to system (2.1). According to the reflexivity of Bp\left\|\cdot\right\|_{B}^{p} and step 1, we may assume that there exist common subsequences kLk_{L} such that when LL\to\infty:

  1. 1.

    ukL(t)u(t)u^{k_{L}}(t)\to u(t) in 𝔏2([0,T]×Ω,U1)\mathfrak{L}^{2}([0,T]\times\Omega,U_{1}) and weakly in 𝔏p([0,T]×Ω,B)\mathfrak{L}^{p}([0,T]\times\Omega,B);

  1. 1.

    A(ukL(),uk())AA(u^{k_{L}}(\cdot),\mathcal{L}_{u^{k}(\cdot)})\to A^{*} weakly in [𝔏p([0,T]×Ω,B)][\mathfrak{L}^{p}([0,T]\times\Omega,B)]^{*} and f(ukL(),ukL())ff(u^{k_{L}}(\cdot),\mathcal{L}_{u^{k_{L}}(\cdot)})\to f^{*} weakly in 𝔏2([0,T]×Ω,U1)\mathfrak{L}^{2}([0,T]\times\Omega,U_{1});

  1. 1.

    g(ukL(),ukL())gg(u^{k_{L}}(\cdot),\mathcal{L}_{u^{k_{L}}(\cdot)})\to g^{*} weakly in 𝔏2([0,T]×Ω,(U2,U1))\mathfrak{L}^{2}([0,T]\times\Omega,\mathscr{L}(U_{2},U_{1})) and hence

    0tg(ukL(s),ukL(s))dW(s)0tg(s)dW(s)\int_{0}^{t}g(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})\text{d}W(s)\to\int_{0}^{t}g^{*}(s)\text{d}W(s)

    weakly* in L([0,T],L2(Ω,U1))L^{\infty}([0,T],L^{2}(\Omega,U_{1})).

Note that BB is separable, and hence for any vBv\in B and t[0,T]t\in[0,T], we obtain

𝔼0t[Bu(s),vB]ds\displaystyle\mathbb{E}\int_{0}^{t}[_{B^{\ast}}\langle u(s),v\rangle_{B}]\text{d}s
=limL𝔼0t[BukL(s),vB]ds\displaystyle=\lim_{L\to\infty}\mathbb{E}\int_{0}^{t}[_{B^{\ast}}\langle u^{k_{L}}(s),v\rangle_{B}]\text{d}s
=limL𝔼0t[BxkL,vB+0s(BA(ukL(z),ukL(z)),vB)dz\displaystyle=\lim_{L\to\infty}\mathbb{E}\int_{0}^{t}[_{B^{\ast}}\langle x^{k_{L}},v\rangle_{B}+\int_{0}^{s}(_{B^{\ast}}\langle A(u^{k_{L}}(z),\mathcal{L}_{u^{k_{L}}(z)}),v\rangle_{B})\text{d}z
+0sf(ukL(z),ukL(z)),vU1dz+0sv,g(ukL(z),ukL(z))dW(z)U1]ds\displaystyle~{}~{}~{}+\int_{0}^{s}\left\langle f(u^{k_{L}}(z),\mathcal{L}_{u^{k_{L}}(z)}),v\right\rangle_{U_{1}}\text{d}z+\int_{0}^{s}\langle v,g(u^{k_{L}}(z),\mathcal{L}_{u^{k_{L}}(z)})\text{d}W(z)\rangle_{U_{1}}]\text{d}s
=𝔼0t[Bx,vB+0s(BA(z),vB)dz+0sf(z),vU1dz\displaystyle=\mathbb{E}\int_{0}^{t}[_{B^{\ast}}\langle x,v\rangle_{B}+\int_{0}^{s}(_{B^{\ast}}\langle A^{*}(z),v\rangle_{B})\text{d}z+\int_{0}^{s}\left\langle f^{*}(z),v\right\rangle_{U_{1}}\text{d}z
+0sv,g(z)dW(z)U1]ds,\displaystyle~{}~{}~{}+\int_{0}^{s}\langle v,g^{*}(z)\text{d}W(z)\rangle_{U_{1}}]\text{d}s,

which implies for any t[0,T]t\in[0,T],

u(t)=x+0tA(s)ds+0tf(s)ds+0tg(s)dW(s),dt×a.e.\displaystyle u(t)=x+\int_{0}^{t}A^{*}(s)\text{d}s+\int_{0}^{t}f^{*}(s)\text{d}s+\int_{0}^{t}g^{*}(s)\text{d}W(s),\quad\text{d}t\times\mathbb{P}-\text{a.e.}

Thus, it suffices to prove that

A=A(u(),u()),f=f(u(),u()),g=g(u(),u()),dt×a.e.\displaystyle A^{*}=A(u(\cdot),\mathcal{L}_{u(\cdot)}),\quad f^{*}=f(u(\cdot),\mathcal{L}_{u(\cdot)}),\quad g^{*}=g(u(\cdot),\mathcal{L}_{u(\cdot)}),\quad\text{d}t\times\mathbb{P}-\text{a.e.} (3.18)

In fact, give any ϱ(t)𝔏p([0,T]×Ω,B)𝔏2([0,T]×Ω,U1)\varrho(t)\in\mathfrak{L}^{p}([0,T]\times\Omega,B)\cap\mathfrak{L}^{2}([0,T]\times\Omega,U_{1}). Without loss of generality, we assume that 𝔼ukL(s)ϱ(s)U121\mathbb{E}\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{U_{1}}^{2}\leq 1 for any t[0,T]t\in[0,T]. Let 𝔼supz[0,T]ukL(z)ϱ(z)U12=a0\mathbb{E}\underset{z\in[0,T]}{\sup}\left\|u^{k_{L}}(z)-\varrho(z)\right\|_{U_{1}}^{2}=a\geq 0, and

η={0,a=0,2λ1a,a0.\eta=\left\{\begin{matrix}0,&a=0,\\ \frac{2\left\|\lambda_{1}\right\|}{a},&a\neq 0.\end{matrix}\right.

Applying the Itô’s formula, we obtain

𝔼eηtukL(t)U12xU12\displaystyle\mathbb{E}e^{-\eta t}\left\|u^{k_{L}}(t)\right\|_{U_{1}}^{2}-\left\|x\right\|_{U_{1}}^{2}
=𝔼0teηs[2BA(ukL(s),ukL(s)),ukL(s)B+2f(ukL(s),ukL(s)),ukL(s)U1\displaystyle=\mathbb{E}\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)}),u^{k_{L}}(s)\rangle_{B}+2\langle f(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)}),u^{k_{L}}(s)\rangle_{U_{1}}
+g(ukL(s),ukL(s))(U2,U1)2ηukL(s)U12]ds\displaystyle~{}~{}~{}+\left\|g(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})\right\|_{\mathscr{L}(U_{2},U_{1})}^{2}-\eta\left\|u^{k_{L}}(s)\right\|_{U_{1}}^{2}]\text{d}s
𝔼0teηs[2BA(ukL(s),ukL(s))A(ϱ(s),ϱ(s)),ukL(s)ϱ(s)B\displaystyle\leq\mathbb{E}\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})-A(\varrho(s),\mathcal{L}_{\varrho(s)}),u^{k_{L}}(s)-\varrho(s)\rangle_{B}
+2f(ukL(s),ukL(s))f(ϱ(s),ϱ(s)),ukL(s)ϱ(s)U1\displaystyle~{}~{}~{}+2\langle f(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})-f(\varrho(s),\mathcal{L}_{\varrho(s)}),u^{k_{L}}(s)-\varrho(s)\rangle_{U_{1}} (3.19)
+g(ukL(s),ukL(s))g(ϱ(s),ϱ(s))(U2,U1)2ηukL(s)ϱ(s)U12\displaystyle~{}~{}~{}+\left\|g(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})-g(\varrho(s),\mathcal{L}_{\varrho(s)})\right\|_{\mathscr{L}(U_{2},U_{1})}^{2}-\eta\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{U_{1}}^{2}
+2BA(ϱ(s),ϱ(s)),ukL(s)B+2f(ϱ(s),ϱ(s)),ukL(s)U1\displaystyle~{}~{}~{}+2_{B^{\ast}}\langle A(\varrho(s),\mathcal{L}_{\varrho(s)}),u^{k_{L}}(s)\rangle_{B}+2\langle f(\varrho(s),\mathcal{L}_{\varrho(s)}),u^{k_{L}}(s)\rangle_{U_{1}}
+2BA(ukL(s),ukL(s))A(ϱ(s),ϱ(s)),ϱ(s)B+2f(ukL(s),ukL(s))f(ϱ(s),ϱ(s)),ϱ(s)U1\displaystyle~{}~{}~{}+2_{B^{\ast}}\langle A(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})-A(\varrho(s),\mathcal{L}_{\varrho(s)}),\varrho(s)\rangle_{B}+2\langle f(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})-f(\varrho(s),\mathcal{L}_{\varrho(s)}),\varrho(s)\rangle_{U_{1}}
+2g(ukL(s),ukL(s)),g(ϱ(s),ϱ(s))(U2,U1)g(ϱ(s),ϱ(s))(U2,U1)2\displaystyle~{}~{}~{}+2\langle g(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)}),g(\varrho(s),\mathcal{L}_{\varrho(s)})\rangle_{\mathscr{L}(U_{2},U_{1})}-\left\|g(\varrho(s),\mathcal{L}_{\varrho(s)})\right\|_{\mathscr{L}(U_{2},U_{1})}^{2}
2ηukL(s),ϱ(s)U1+ηϱ(s)U12]ds.\displaystyle~{}~{}~{}-2\eta\langle u^{k_{L}}(s),\varrho(s)\rangle_{U_{1}}+\eta\left\|\varrho(s)\right\|_{U_{1}}^{2}]\text{d}s.

We can and will assume without loss of generality that there exists a sufficiently large constant MM such that 𝔼ϱ(z)U12M\mathbb{E}\left\|\varrho(z)\right\|^{2}_{U_{1}}\leq M.

By (H4) and (3), we have

Π(t):\displaystyle\Pi(t): =𝔼0teηs[2BA(ukL(s),ukL(s))A(ϱ(s),ϱ(s)),ukL(s)ϱ(s)B\displaystyle=\mathbb{E}\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})-A(\varrho(s),\mathcal{L}_{\varrho(s)}),u^{k_{L}}(s)-\varrho(s)\rangle_{B}
+2f(ukL(s),ukL(s))f(ϱ(s),ϱ(s)),ukL(s)ϱ(s)U1\displaystyle~{}~{}~{}+2\langle f(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})-f(\varrho(s),\mathcal{L}_{\varrho(s)}),u^{k_{L}}(s)-\varrho(s)\rangle_{U_{1}}
+g(ukL(s),ukL(s))g(ϱ(s),ϱ(s))(U2,U1)2ηukL(s)ϱ(s)U12]ds\displaystyle~{}~{}~{}+\left\|g(u^{k_{L}}(s),\mathcal{L}_{u^{k_{L}}(s)})-g(\varrho(s),\mathcal{L}_{\varrho(s)})\right\|_{\mathscr{L}(U_{2},U_{1})}^{2}-\eta\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{U_{1}}^{2}]\text{d}s
𝔼0teηs[λ1(ukL(s)ϱ(s)U1α+1+dU1α+1(ukL(s),ϱ(s))+ukL(s)ϱ(s)2β\displaystyle\leq\mathbb{E}\int_{0}^{t}e^{-\eta s}[\lambda_{1}(\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{U_{1}}^{\alpha+1}+d_{U_{1}}^{\alpha+1}(\mathcal{L}_{u^{k_{L}}(s)},\mathcal{L}_{\varrho(s)})+\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{\mathcal{R}}^{2\beta}
+d2β(ukL(s),ϱ(s)))ηukL(s)ϱ(s)U12]ds\displaystyle~{}~{}~{}+d_{\mathcal{R}}^{2\beta}(\mathcal{L}_{u^{k_{L}}(s)},\mathcal{L}_{\varrho(s)}))-\eta\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{U_{1}}^{2}]\text{d}s
𝔼0teηs[λ1(ukL(s)ϱ(s)U1α+1+ukL(s)ϱ(s)U12β)ηukL(s)ϱ(s)U12]ds.\displaystyle\leq\mathbb{E}\int_{0}^{t}e^{-\eta s}[\left\|\lambda_{1}\right\|(\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{U_{1}}^{\alpha+1}+\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{U_{1}}^{2\beta})-\eta\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{U_{1}}^{2}]\text{d}s.

Hence we obtain:

  1. 1.

    If a=0a=0, then ukL(s)=ϱ(s)u^{k_{L}}(s)=\varrho(s), i.e., Π(t)=0\Pi(t)=0, a.e.\mathbb{P}-\text{a.e.};

  1. 1.

    If a(0,1]a\in(0,1], by Ho¨\ddot{\text{o}}lder inequality, we have

    𝔼ukL(s)ϱ(s)α+1𝔼ukL(s)ϱ(s)2β1.\mathbb{E}\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{\mathcal{R}}^{\alpha+1}\vee\mathbb{E}\left\|u^{k_{L}}(s)-\varrho(s)\right\|_{\mathcal{R}}^{2\beta}\leq 1.

    Let η=2λ1a\eta=\frac{2\left\|\lambda_{1}\right\|}{a}, which implies Π(t)0\Pi(t)\leq 0, a.e.\mathbb{P}-\text{a.e.}

Given any nonnegative function ρL([0,T],)\rho\in L^{\infty}([0,T],\mathbb{R}) and letting LL\to\infty, it follows from (3) that

𝔼0Tρ(t)[eηtu(t)U12xU12]dt\displaystyle\mathbb{E}\int_{0}^{T}\rho(t)[e^{-\eta t}\left\|u(t)\right\|_{U_{1}}^{2}-\left\|x\right\|_{U_{1}}^{2}]\text{d}t
𝔼0Tρ(t)0teηs[2BA(ϱ(s),ϱ(s)),u(s)B+2f(ϱ(s),ϱ(s)),u(s)U1\displaystyle\leq\mathbb{E}\int_{0}^{T}\rho(t)\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A(\varrho(s),\mathcal{L}_{\varrho(s)}),u(s)\rangle_{B}+2\langle f(\varrho(s),\mathcal{L}_{\varrho(s)}),u(s)\rangle_{U_{1}}
+2BA(s)A(ϱ(s),ϱ(s)),ϱ(s)B+2f(s)f(ϱ(s),ϱ(s)),ϱ(s)U1\displaystyle~{}~{}~{}+2_{B^{\ast}}\langle A^{*}(s)-A(\varrho(s),\mathcal{L}_{\varrho(s)}),\varrho(s)\rangle_{B}+2\langle f^{*}(s)-f(\varrho(s),\mathcal{L}_{\varrho(s)}),\varrho(s)\rangle_{U_{1}} (3.20)
+2g(s),g(ϱ(s),ϱ(s))(U2,U1)g(ϱ(s),ϱ(s))(U2,U1)2\displaystyle~{}~{}~{}+2\langle g^{*}(s),g(\varrho(s),\mathcal{L}_{\varrho(s)})\rangle_{\mathscr{L}(U_{2},U_{1})}-\left\|g(\varrho(s),\mathcal{L}_{\varrho(s)})\right\|_{\mathscr{L}(U_{2},U_{1})}^{2}
2ηu(s),ϱ(s)U1+ηϱ(s)U12]dsdt.\displaystyle~{}~{}~{}-2\eta\langle u(s),\varrho(s)\rangle_{U_{1}}+\eta\left\|\varrho(s)\right\|_{U_{1}}^{2}]\text{d}s\text{d}t.

Applying Itô’s formula to eηtu(t)U12xU12e^{-\eta t}\left\|u(t)\right\|_{U_{1}}^{2}-\left\|x\right\|_{U_{1}}^{2} implies

𝔼eηtu(t)U12xU12\displaystyle\mathbb{E}e^{-\eta t}\left\|u(t)\right\|_{U_{1}}^{2}-\left\|x\right\|_{U_{1}}^{2}
=𝔼0teηs[2BA(s),u(s)B+2f(s),u(s)U1\displaystyle=\mathbb{E}\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A^{*}(s),u(s)\rangle_{B}+2\langle f^{*}(s),u(s)\rangle_{U_{1}} (3.21)
+g(s)(U2,U1)2ηu(s)U12]ds.\displaystyle~{}~{}~{}+\left\|g^{*}(s)\right\|_{\mathscr{L}(U_{2},U_{1})}^{2}-\eta\left\|u(s)\right\|_{U_{1}}^{2}]\text{d}s.

Substituting (3) into (3) gives

0𝔼0Tρ(t)0teηs[2BA(s)A(ϱ(s),ϱ(s)),u(s)ϱ(s)B\displaystyle 0\geq\mathbb{E}\int_{0}^{T}\rho(t)\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A^{*}(s)-A(\varrho(s),\mathcal{L}_{\varrho(s)}),u(s)-\varrho(s)\rangle_{B}
+2f(s)f(ϱ(s),ϱ(s)),u(s)ϱ(s)U1+g(s)g(ϱ(s),ϱ(s))(U2,U1)2\displaystyle~{}~{}~{}+2\langle f^{*}(s)-f(\varrho(s),\mathcal{L}_{\varrho(s)}),u(s)-\varrho(s)\rangle_{U_{1}}+\left\|g^{*}(s)-g(\varrho(s),\mathcal{L}_{\varrho(s)})\right\|_{\mathscr{L}(U_{2},U_{1})}^{2} (3.22)
ηu(s)ϱ(s)U12]dsdt.\displaystyle~{}~{}~{}-\eta\left\|u(s)-\varrho(s)\right\|_{U_{1}}^{2}]\text{d}s\text{d}t.

Let ϱ(s)=u(s)\varrho(s)=u(s), which implies g(s)=g(ϱs,ϱs)g^{*}(s)=g(\varrho_{s},\mathcal{L}_{\varrho_{s}}), dt×a.e.\text{d}t\times\mathbb{P}-\text{a.e.} by (3). Then, taking ϱ=uξρv\varrho=u-\xi\rho^{*}v where ρL([0,T],)\rho^{*}\in L^{\infty}([0,T],\mathbb{R}), ξ>0\xi>0 and vBv\in B, we have

0𝔼0Tρ(t)0teηs[2BA(s)A(u(s)ξρ(s)v,u(s)ξρ(s)v),ξρ(s)vB\displaystyle 0\geq\mathbb{E}\int_{0}^{T}\rho(t)\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A^{*}(s)-A(u(s)-\xi\rho^{*}(s)v,\mathcal{L}_{u(s)-\xi\rho^{*}(s)v}),\xi\rho^{*}(s)v\rangle_{B}
+2f(s)f(u(s)ξρ(s)v,u(s)ξρ(s)v),ξρ(s)vU1ηξρ(s)vU12]dsdt,\displaystyle~{}~{}~{}+2\langle f^{*}(s)-f(u(s)-\xi\rho^{*}(s)v,\mathcal{L}_{u(s)-\xi\rho^{*}(s)v}),\xi\rho^{*}(s)v\rangle_{U_{1}}-\eta\left\|\xi\rho^{*}(s)v\right\|_{U_{1}}^{2}]\text{d}s\text{d}t,

which implies

𝔼0Tρ(t)0teηs[2BA(s)A(u(s)ξρ(s)v,u(s)ξρ(s)v),ρ(s)vB\displaystyle\mathbb{E}\int_{0}^{T}\rho(t)\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A^{*}(s)-A(u(s)-\xi\rho^{*}(s)v,\mathcal{L}_{u(s)-\xi\rho^{*}(s)v}),\rho^{*}(s)v\rangle_{B}
+2f(s)f(u(s)ξρ(s)v,u(s)ξρ(s)v),ρ(s)vU1ηξρ(s)vU12]dsdt0.\displaystyle~{}~{}~{}+2\langle f^{*}(s)-f(u(s)-\xi\rho^{*}(s)v,\mathcal{L}_{u(s)-\xi\rho^{*}(s)v}),\rho^{*}(s)v\rangle_{U_{1}}-\eta\xi\left\|\rho^{*}(s)v\right\|_{U_{1}}^{2}]\text{d}s\text{d}t\leq 0.

According to (H1), (H3), (3) and Lebesgue’s dominated convergence theorem, and letting ξ0\xi\to 0, we obtain

𝔼0Tρ(t)0teηs[2BA(s)A(u(s),u(s)),ρ(s)vB\displaystyle\mathbb{E}\int_{0}^{T}\rho(t)\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A^{*}(s)-A(u(s),\mathcal{L}_{u(s)}),\rho^{*}(s)v\rangle_{B}
+2f(s)f(u(s),u(s)),ρ(s)vU1]dsdt0.\displaystyle~{}~{}~{}+2\langle f^{*}(s)-f(u(s),\mathcal{L}_{u(s)}),\rho^{*}(s)v\rangle_{U_{1}}]\text{d}s\text{d}t\leq 0.

Similarly, the converse follows by letting ρ(s)=ρ(s)\rho^{*}(s)=-\rho^{*}(s), and finally we can get

𝔼0Tρ(t)0teηs[2BA(s)A(u(s),u(s)),ρ(s)vB\displaystyle\mathbb{E}\int_{0}^{T}\rho(t)\int_{0}^{t}e^{-\eta s}[2_{B^{\ast}}\langle A^{*}(s)-A(u(s),\mathcal{L}_{u(s)}),\rho^{*}(s)v\rangle_{B}
+2f(s)f(u(s),u(s)),ρ(s)vU1]dsdt=0.\displaystyle~{}~{}~{}+2\langle f^{*}(s)-f(u(s),\mathcal{L}_{u(s)}),\rho^{*}(s)v\rangle_{U_{1}}]\text{d}s\text{d}t=0.

Then, the arbitrariness of ρ(s)\rho^{*}(s) and vv leads to

A(s)=A(u(s),u(s)),f(s)=f(u(s),u(s)),dt×a.e.\displaystyle A^{*}(s)=A(u(s),\mathcal{L}_{u(s)}),\quad f^{*}(s)=f(u(s),\mathcal{L}_{u(s)}),\quad\text{d}t\times\mathbb{P}-\text{a.e.} (3.23)

This completes the existence proof, i.e.,

u(t)=x+0tA(u(s),u(s))ds+0tf(u(s),u(s))ds+0tg(u(s),u(s))dW(s),dt×a.e.\displaystyle u(t)=x+\int_{0}^{t}A(u(s),\mathcal{L}_{u(s)})\text{d}s+\int_{0}^{t}f(u(s),\mathcal{L}_{u(s)})\text{d}s+\int_{0}^{t}g(u(s),\mathcal{L}_{u(s)})\text{d}W(s),\quad\text{d}t\times\mathbb{P}-\text{a.e.}

The uniqueness of (2.1) follows from the Ito^\hat{\text{o}} formula, (H4) and step 2 of Theorem 3.2. This completes the proof.  \Box

4 Ergodicity and exponential mixing under Lyapunov conditions

In this section, we explore the long-term behavior of the solution of system (2.1), which encompass aspects such as existence, uniqueness, exponential convergence, and exponential mixing of invariant measures. The assumption of dissipation is frequently crucial when examining the pertinent properties of the invariant measures. Specifically, it is necessary to assume that the coefficients ff and gg are Lipschitz continuous. To achieve ergodicity and exponential mixing of (2.1) using Itô’s formula, a stronger assumption needs to be made:

f(x,μ)f(y,ν),xyU1λ2(xyU12+dU12(μ,ν)),\displaystyle\left\langle f(x,\mu)-f(y,\nu),x-y\right\rangle_{U_{1}}\leq-\lambda_{2}(\left\|x-y\right\|_{U_{1}}^{2}+d_{U_{1}}^{2}(\mu,\nu)),

where λ2\lambda_{2} is sufficiently large compared to the Lipschitz constant for the diffusion coefficient. However, this imposes a very stringent structural restriction. Therefore, we further improve the assumptions in the following way. We demonstrate that when the coefficients satisfy Hölder continuity assumptions, we can utilize a Lyapunov function to analyze invariant measure properties. We find this approach to be straightforward and intriguing in its own right. Specifically, we attach dissipative conditions to the Lyapunov function rather than to the structure of the system itself. This expansion significantly broadens the applicability of our approach.

Denote by C2(U1,+)C^{2}(U_{1},\mathbb{R}^{+}) the family of all real-valued nondecreasing functions V(x)V(x) defined on U1U_{1}, which are twice continuously differentiable and V(0)=0V(0)=0. Applying Ito^\hat{\text{o}} formula, it follows for u(t)u(t), a solution to (2.1), that

V(u(t))\displaystyle V(u(t)) =V(x)+0t[BA(u(s),u(s)),V(u(s))B+f(us,us),V(u(s))U1\displaystyle=V(x)+\int_{0}^{t}[_{B^{\ast}}\langle A(u(s),\mathcal{L}_{u(s)}),\nabla V(u(s))\rangle_{B}+\left\langle f(u_{s},\mathcal{L}_{u_{s}}),\nabla V(u(s))\right\rangle_{U_{1}}
+122V(u(s))g(us,us)(U2,U1)2]ds+0tV(u(s)),g(us,us)dW(s)U1.\displaystyle~{}~{}~{}+\frac{1}{2}\nabla^{2}V(u(s))\left\|g(u_{s},\mathcal{L}_{u_{s}})\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}]\text{d}s+\int_{0}^{t}\left\langle\nabla V(u(s)),g(u_{s},\mathcal{L}_{u_{s}})\text{d}W(s)\right\rangle_{U_{1}}.

We define an operator LV:U1LV:U_{1}\to\mathbb{R} associated with (2.1) as follows: for any xU1x\in U_{1}

LV(x)=BA(x,x),V(x)B+f(x,x),V(x)U1+122V(x)g(x,x)(U2,U1)2,\displaystyle LV(x)=_{B^{\ast}}\langle A(x,\mathcal{L}_{x}),\nabla V(x)\rangle_{B}+\left\langle f(x,\mathcal{L}_{x}),\nabla V(x)\right\rangle_{U_{1}}+\frac{1}{2}\nabla^{2}V(x)\left\|g(x,\mathcal{L}_{x})\right\|^{2}_{\mathscr{L}(U_{2},U_{1})},

then

V(u(t))\displaystyle V(u(t)) =V(x)+0tLV(u(s))ds+Mt,\displaystyle=V(x)+\int_{0}^{t}LV(u(s))\text{d}s+M_{t},

where Mt=0tV(u(s)),g(u(s),u(s))dW(s)U1M_{t}=\int_{0}^{t}\left\langle\nabla V(u(s)),g(u(s),\mathcal{L}_{u(s)})\text{d}W(s)\right\rangle_{U_{1}} is a continuous martingale with M0=0M_{0}=0.

Let 𝒫V\mathcal{P}_{V} be the family of all probability measures on (U1,(U1))(U_{1},\mathcal{B}(U_{1})) and satisfy μ(V)<\mu(V)<\infty for any μ𝒫(U1)\mu\in\mathcal{P}(U_{1}). Then the following Wasserstein quasi-distance in the metric space is then induced by the Lyapunov function VV:

ΠV(μ,ν)=infπC(μ,ν)U1×U1V(xy)π(dx,dy),\displaystyle\Pi_{V}(\mu,\nu)=\underset{\pi\in C(\mu,\nu)}{\inf}\int_{U_{1}\times U_{1}}V(x-y)\pi(\text{d}x,\text{d}y),

where C(μ,ν)C(\mu,\nu) denotes the set of all couplings between μ\mu and ν\nu, see [36] for more details on this Wasserstein quasi-distance. According to the Kantorovich–Rubinshtein theorem, we know that ΠV(μ,ν)\Pi_{V}(\mu,\nu) has the following alternative expression:

ΠV(μ,ν):=sup{|ΦdμΦdν|:ΦLipV1},\displaystyle\Pi_{V}(\mu,\nu):=\sup\{\left|\int\Phi\text{d}\mu-\int\Phi\text{d}\nu\right|:\left\|\Phi\right\|_{LipV}\leq 1\},

where Φ:U1\Phi:U_{1}\to\mathbb{R} and ΦLipV:=supxy|Φ(x)Φ(y)|V(xy)\left\|\Phi\right\|_{LipV}:=\sup_{x\neq y}\frac{|\Phi(x)-\Phi(y)|}{V(x-y)}.

We denote by

p(t,0,x,Γ):=(ω:u(t;0,x)Γ)p(t,0,x,\Gamma):=\mathbb{P}(\omega:u(t;0,x)\in\Gamma)

the transition probability for the solution u(t;0,x)u(t;0,x), where u(0;0,x)=xu(0;0,x)=x and Γ(U1)\Gamma\in\mathcal{B}(U_{1}). For any t0t\geq 0 we associate a mapping Pt:𝒫(U1)𝒫(U1)P^{*}_{t}:\mathcal{P}(U_{1})\to\mathcal{P}(U_{1}) defined by

Ptμ(Γ)=p^(t,0)μ(Γ)=U1p(t,0,x,Γ)μ(dx).\displaystyle P^{*}_{t}\mu(\Gamma)=\hat{p}(t,0)\mu(\Gamma)=\int_{U_{1}}p(t,0,x,\Gamma)\mu(\text{d}x). (4.1)

For any FCb(U1)F\in C_{b}(U_{1}), which is defined as the the set of all bounded continuous functions F:U1F:U_{1}\to\mathbb{R} endowed with the norm F=supuU1F(u)\left\|F\right\|_{\infty}=\sup_{u\in U_{1}}\left\|F(u)\right\|, we define the following semi-group P0,tP_{0,t} for t0t\geq 0

P0,tF(x)=U1F(y)p(t,0,x,dy).\displaystyle P_{0,t}F(x)=\int_{U_{1}}F(y)p(t,0,x,\text{d}y). (4.2)

In particular, the operator P0,tP_{0,t} is written as PtP_{t}. Firstly, we will establish some properties for the solution u(t;0,x)u(t;0,x) of (2.1).  

Theorem 4.1. Consider (2.1). Suppose that the assumptions (H1)-(H4) hold. Then the following statement holds: the solution u(t;0,x)u(t;0,x) is a time homogeneous Markov process in U1U_{1} and has the Feller property.  

proof:
Let us divide this proof into two steps:
step 1: (Markov and Feller property) Note that the Markov and the Feller property for u(t;0,x)u(t;0,x) is obtained from the same property for ukL(t;0,x)u^{k_{L}}(t;0,x) by the usual approximation argument. Similar to Theorem 2.1 in [17], we obtain that ukL(t;0,x)u^{k_{L}}(t;0,x) is a Markov process and has the Feller property. Hence for any bounded Borel measurable function h:U1h:U_{1}\to\mathbb{R} and 0st<0\leq s\leq t<\infty,

𝔼(h(ukL(t))skL)=𝔼(h(ukL(t))ukL(s)),\displaystyle\mathbb{E}(h(u^{k_{L}}(t))\mid\mathcal{F}_{s}^{k_{L}})=\mathbb{E}(h(u^{k_{L}}(t))\mid u^{k_{L}}(s)),

where tkL=σ{WkL(s):0st}\mathcal{F}_{t}^{k_{L}}=\sigma\{W^{k_{L}}(s):0\leq s\leq t\}. Let LL\to\infty, then we get that ukL(t)u(t)u^{k_{L}}(t)\to u(t) in 𝔏2([0,T]×Ω,U1)\mathfrak{L}^{2}([0,T]\times\Omega,U_{1}) and WkL(t)W(t)W^{k_{L}}(t)\to W(t), which implies

𝔼(h(u(t))s)=𝔼(h(u(t))u(s)).\displaystyle\mathbb{E}(h(u(t))\mid\mathcal{F}_{s})=\mathbb{E}(h(u(t))\mid u(s)).

This proves that u(t)u(t) is a Markov process.

For any FCb(U1)F\in C_{b}(U_{1}), from the definition of the semi-group PtP_{t}, we have PtFF<\left\|P_{t}F\right\|_{\infty}\leq\left\|F\right\|_{\infty}<\infty. The next major task is to prove that PtFP_{t}F is continuous. We just need to prove that for any sequence xnU1x_{n}\in U_{1}, xU1x\in U_{1}, when limnxnxU1=0\lim_{n\to\infty}\left\|x_{n}-x\right\|_{U_{1}}=0, we have limn|PtF(xn)PtF(x)|=0\lim_{n\to\infty}|P_{t}F(x_{n})-P_{t}F(x)|=0.

Let PtkLF(x)=U1F(y)pkL(t,0,x,dy)P^{k_{L}}_{t}F(x)=\int_{U_{1}}F(y)p^{k_{L}}(t,0,x,\text{d}y) and pkL(t,0,x,Γ):=(ω:ukL(t;0,xkL)Γ)p^{k_{L}}(t,0,x,\Gamma):=\mathbb{P}(\omega:u^{k_{L}}(t;0,x^{k_{L}})\in\Gamma). Since ukL(t)u(t)u^{k_{L}}(t)\to u(t) in 𝔏2([0,T]×Ω,U1)\mathfrak{L}^{2}([0,T]\times\Omega,U_{1}), we have for any xU1x\in U_{1}

PtkLF(x)PtF(x),L.\displaystyle P^{k_{L}}_{t}F(x)\to P_{t}F(x),\quad L\to\infty.

Hence

limn|PtF(xn)PtF(x)|\displaystyle\lim_{n\to\infty}|P_{t}F(x_{n})-P_{t}F(x)|
limn[|PtkLF(xn)PtkLF(x)|+|PtF(xn)PtkLF(xn)|+|PtF(x)PtkLF(x)|]\displaystyle\leq\lim_{n\to\infty}[|P^{k_{L}}_{t}F(x_{n})-P^{k_{L}}_{t}F(x)|+|P_{t}F(x_{n})-P^{k_{L}}_{t}F(x_{n})|+|P_{t}F(x)-P^{k_{L}}_{t}F(x)|]
limn[|PtF(xn)PtkLF(xn)|+|PtF(x)PtkLF(x)|].\displaystyle\leq\lim_{n\to\infty}[|P_{t}F(x_{n})-P^{k_{L}}_{t}F(x_{n})|+|P_{t}F(x)-P^{k_{L}}_{t}F(x)|].

Let LL\to\infty, then we finally obtain PtFCb(U1)P_{t}F\in C_{b}(U_{1}).  

step 2: (Time-homogeneous) According to the definition of Time-homogeneous, We just need to prove that for all t0t\geq 0, θ0\theta\geq 0, xU1x\in U_{1} and Γ(U1)\Gamma\in\mathcal{B}(U_{1}),

p(t,0,x,Γ)=p(t+θ,θ,x,Γ).\displaystyle p(t,0,x,\Gamma)=p(t+\theta,\theta,x,\Gamma).

Firstly,

u(t;0,x)=x+0tA(u(s),u(s))ds+0tf(u(s),u(s))ds+0tg(u(s),u(s))dW(s),\displaystyle u(t;0,x)=x+\int_{0}^{t}A(u(s),\mathcal{L}_{u(s)})\text{d}s+\int_{0}^{t}f(u(s),\mathcal{L}_{u(s)})\text{d}s+\int_{0}^{t}g(u(s),\mathcal{L}_{u(s)})\text{d}W(s), (4.3)

in addition, u(t+θ;θ,x)u(t+\theta;\theta,x) is determined by the solution u(t)u(t)

u(t+θ;θ,x)\displaystyle u(t+\theta;\theta,x) =x+θt+θA(u(s),u(s))ds+θt+θf(u(s),u(s))ds\displaystyle=x+\int_{\theta}^{t+\theta}A(u(s),\mathcal{L}_{u(s)})\text{d}s+\int_{\theta}^{t+\theta}f(u(s),\mathcal{L}_{u(s)})\text{d}s (4.4)
+θt+θg(u(s),u(s))dW(s),\displaystyle~{}~{}~{}+\int_{\theta}^{t+\theta}g(u(s),\mathcal{L}_{u(s)})\text{d}W(s),

This equation is equivalent to

u(t+θ;θ,x)\displaystyle u(t+\theta;\theta,x) =x+0tA(u(s+θ),u(s+θ))ds+0tf(u(s+θ),u(s+θ))ds\displaystyle=x+\int_{0}^{t}A(u(s+\theta),\mathcal{L}_{u(s+\theta)})\text{d}s+\int_{0}^{t}f(u(s+\theta),\mathcal{L}_{u(s+\theta)})\text{d}s
+0tg(u(s+θ),u(s+θ))dW~(s),\displaystyle~{}~{}~{}+\int_{0}^{t}g(u(s+\theta),\mathcal{L}_{u(s+\theta)})\text{d}\tilde{W}(s), (4.5)

where W~(t)=W(t+θ)W(θ)\tilde{W}(t)=W(t+\theta)-W(\theta) is a cylindrical Wiener process with the same distribution as W(t)W(t). Then we see by (4.3), (4.4), (4) and the uniqueness of (2.1),

(ω:u(t;0,x)Γ)=(ω:u(t+θ;θ,x)Γ),\displaystyle\mathbb{P}(\omega:u(t;0,x)\in\Gamma)=\mathbb{P}(\omega:u(t+\theta;\theta,x)\in\Gamma),

i.e.,

p(t,0,x,Γ)=p(t+θ,θ,x,Γ).\displaystyle p(t,0,x,\Gamma)=p(t+\theta,\theta,x,\Gamma).

This completes the proof. \Box  

In order to analyze the existence, uniqueness, exponential convergence, and exponential mixing of invariant measures, we need the following conditions (H5) and (H6), which are used in many works.  

(H5) (Dissipative Lyapunov condition) There exists constant δ>0\delta>0 such that for any x,yU1x,y\in U_{1}, μ,ν𝒫(U1)\mu,\nu\in\mathcal{P}^{*}(U_{1}) and πC(μ,ν)\pi\in C(\mu,\nu)

U1×U1L^V(xy)π(dx,dy)δU1×U1V(xy)π(dx,dy),\displaystyle\int_{U_{1}\times U_{1}}\widehat{L}V(x-y)\pi(\text{d}x,\text{d}y)\leq-\delta\int_{U_{1}\times U_{1}}V(x-y)\pi(\text{d}x,\text{d}y), (4.6)

where

L^V(xy)\displaystyle\widehat{L}V(x-y) =BA(x,μ)A(y,ν),V(xy)B+f(x,μ)f(y,ν),V(xy)U1\displaystyle=_{B^{\ast}}\langle A(x,\mu)-A(y,\nu),\nabla V(x-y)\rangle_{B}+\left\langle f(x,\mu)-f(y,\nu),\nabla V(x-y)\right\rangle_{U_{1}}
+122V(xy)g(x,μ)g(y,ν)(U2,U1)2.\displaystyle~{}~{}~{}+\frac{1}{2}\nabla^{2}V(x-y)\left\|g(x,\mu)-g(y,\nu)\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}.

(H6) There exist constants δ,δ0,c>0\delta^{*},\delta_{0},c>0 such that for any xU1x\in U_{1} and μ𝒫(U1)\mu\in\mathcal{P}^{*}(U_{1})

U1LV(x)μ(dx)δU1V(x)μ(dx)+δ0,\displaystyle\int_{U_{1}}LV(x)\mu(\text{d}x)\leq-\delta^{*}\int_{U_{1}}V(x)\mu(\text{d}x)+\delta_{0}, (4.7)

and

V(xy)M[V(cx)+V(cy)].\displaystyle V(x-y)\leq M[V(cx)+V(cy)].

We have the following results on the existence and uniqueness, exponential convergence, and exponential mixing of invariant measures for (2.1).  

Theorem 4.2.

  1. 1.

    Assume that (H1)(H5) hold, then

    1. (a)

      For any initial value x,yU1x,y\in U_{1} such that μ0=x𝒫V\mu_{0}=\mathcal{L}_{x}\in\mathcal{P}_{V} and ν0=y𝒫V\nu_{0}=\mathcal{L}_{y}\in\mathcal{P}_{V}, we have that for any t0t\geq 0

      ΠV(Ptμ0,Ptν0)eδtΠV(μ0,ν0);\displaystyle\Pi_{V}(P^{*}_{t}\mu_{0},P^{*}_{t}\nu_{0})\leq e^{-\delta t}\Pi_{V}(\mu_{0},\nu_{0});
    1. (a)

      there exists ν𝒫V\nu^{*}\in\mathcal{P}_{V} such that

      sup{ΠV(Ptν,ν):t0}<.\displaystyle\sup\{\Pi_{V}(P^{*}_{t}\nu^{*},\nu^{*}):t\geq 0\}<\infty.

      And there exists a unique measure μ𝒫V\mu^{*}\in\mathcal{P}_{V} satisfying

      Ptμ(Γ)=μ(Γ),\displaystyle P^{*}_{t}\mu^{*}(\Gamma)=\mu^{*}(\Gamma),

      for any t0t\geq 0 and Γ(U1)\Gamma\in\mathcal{B}(U_{1}), i.e., μ\mu^{*} is a invariant measure and satisfies

      ΠV(Ptν,μ)eδtΠV(ν,μ),\displaystyle\Pi_{V}(P^{*}_{t}\nu,\mu^{*})\leq e^{-\delta t}\Pi_{V}(\nu,\mu^{*}),

      for any ν𝒫V\nu\in\mathcal{P}_{V}.

  1. 1.

    Under assumptions (H1)-(H6), the invariant measure μ\mu^{*} of (2.1) is uniformly exponential mixing in the sense of Wasserstein metric. More precisely, for any t0>0t_{0}>0, tt0t\geq t_{0} and ν𝒫V\nu\in\mathcal{P}_{V},

    ΠV(Ptν,μ)Meδt[δ0δ(1et0δ)+U1V(cx)ν(dx)].\displaystyle\Pi_{V}(P^{*}_{t}\nu,\mu^{*})\leq Me^{-\delta t}[\frac{\delta_{0}}{\delta^{*}(1-e^{-t_{0}\delta^{*}})}+\int_{U_{1}}V(cx)\nu(\text{d}x)].

Proof of (I): Similar to the proof of Theorem 4.1 in [36]. This argument is again quite standard, we thus omit the details.  

Proof of (II):
For all FCb()F\in C_{b}(\mathcal{R}),

PtF(x)\displaystyle P_{t}F(x) =U1F(y)p(t,0,x,dy)\displaystyle=\int_{U_{1}}F(y)p(t,0,x,\text{d}y)
=U1F(y)(ω:u(t;0,x)dy)\displaystyle=\int_{U_{1}}F(y)\mathbb{P}(\omega:u(t;0,x)\in\text{d}y) (4.8)
=𝔼F(u(t;0,x)),\displaystyle=\mathbb{E}F(u(t;0,x)),

and by the proof of Theorem 4.1 in [36], we have

𝔼V(u(t;0,x)u(t;0,y))eδt𝔼V(xy).\displaystyle\mathbb{E}V(u(t;0,x)-u(t;0,y))\leq e^{-\delta t}\mathbb{E}V(x-y). (4.9)

By (4), (4.9), Chapman–Kolmogorov equation and (H6), we obtain that for any ν𝒫V\nu\in\mathcal{P}_{V},

ΠV(Ptν,μ)\displaystyle\Pi_{V}(P^{*}_{t}\nu,\mu^{*})
=ΠV(Ptν,Ptμ)\displaystyle=\Pi_{V}(P^{*}_{t}\nu,P^{*}_{t}\mu^{*})
=supFLipV1U1F(z)U1p(t,0,x,dz)ν(dx)U1F(z)U1p(t,0,y,dz)μ(dy)\displaystyle=\sup_{\left\|F\right\|_{LipV}\leq 1}\left\|\int_{U_{1}}F(z)\int_{U_{1}}p(t,0,x,\text{d}z)\nu(\text{d}x)-\int_{U_{1}}F(z)\int_{U_{1}}p(t,0,y,\text{d}z)\mu^{*}(\text{d}y)\right\|
=supFLipV1U1𝔼F(u(t;0,x))ν(dx)U1𝔼F(u(t;0,y))μ(dy)\displaystyle=\sup_{\left\|F\right\|_{LipV}\leq 1}\left\|\int_{U_{1}}\mathbb{E}F(u(t;0,x))\nu(\text{d}x)-\int_{U_{1}}\mathbb{E}F(u(t;0,y))\mu^{*}(\text{d}y)\right\| (4.10)
supFLipV1{FLipV(U1U1𝔼V(u(t;0,x)u(t;0,y))μ(dy)ν(dx))}\displaystyle\leq\sup_{\left\|F\right\|_{LipV}\leq 1}\{\left\|F\right\|_{LipV}(\int_{U_{1}}\int_{U_{1}}\mathbb{E}V(u(t;0,x)-u(t;0,y))\mu^{*}(\text{d}y)\nu(\text{d}x))\}
eδtU1U1V(xy)μ(dy)ν(dx)\displaystyle\leq e^{-\delta t}\int_{U_{1}}\int_{U_{1}}V(x-y)\mu^{*}(\text{d}y)\nu(\text{d}x)
Meδt[U1V(cx)ν(dx)+U1V(cy)μ(dy)].\displaystyle\leq Me^{-\delta t}[\int_{U_{1}}V(cx)\nu(\text{d}x)+\int_{U_{1}}V(cy)\mu^{*}(\text{d}y)].

Applying Ito^\hat{\text{o}} formula to V(cu(t;0,x))V(cu(t;0,x)) and by (H6), there exists a constant cc^{*}

c={c2c1,cc<1,\displaystyle c^{*}=\left\{\begin{matrix}c^{2}&c\geq 1,\\ c&c<1,\end{matrix}\right.

such that

𝔼V(cu(t;0,x))\displaystyle\mathbb{E}V(cu(t;0,x)) =V(cx)+𝔼0tLV(cu(s;0,x))ds\displaystyle=V(cx)+\mathbb{E}\int_{0}^{t}LV(cu(s;0,x))\text{d}s
V(cx)cδ𝔼0tV(cu(s;0,x))ds+δ0t.\displaystyle\leq V(cx)-c^{*}\delta^{*}\mathbb{E}\int_{0}^{t}V(cu(s;0,x))\text{d}s+\delta_{0}t.

Let

v(t)=V(cx)cδ0tv(s)ds+δ0t,\displaystyle v(t)=V(cx)-c^{*}\delta^{*}\int_{0}^{t}v(s)\text{d}s+\delta_{0}t,

which implies that v(t)v(t) satisfies the following equation

v˙(t)=δ0cδv(t),\displaystyle\dot{v}(t)=\delta_{0}-c^{*}\delta^{*}v(t),

with initial condition v(0)=V(cx)v(0)=V(cx). Solving this equation for v(t)v(t), we get

v(t)=V(cx)ecδt+δ0cδ(1ecδt).\displaystyle v(t)=V(cx)e^{-c^{*}\delta^{*}t}+\frac{\delta_{0}}{c^{*}\delta^{*}}(1-e^{-c^{*}\delta^{*}t}).

Hence we obtain 𝔼V(cu(t;0,x))V(cx)ecδt+δ0cδ\mathbb{E}V(cu(t;0,x))\leq V(cx)e^{-c^{*}\delta^{*}t}+\frac{\delta_{0}}{c^{*}\delta^{*}} by comparison principle. Then

U1V(cy)μ(dy)\displaystyle\int_{U_{1}}V(cy)\mu^{*}(\text{d}y) =U1V(cy)Ptμ(dy)\displaystyle=\int_{U_{1}}V(cy)P^{*}_{t}\mu^{*}(\text{d}y)
=U1V(cy)U1p(t,0,z,dy)μ(dz)\displaystyle=\int_{U_{1}}V(cy)\int_{U_{1}}p(t,0,z,\text{d}y)\mu^{*}(\text{d}z)
=U1𝔼V(cu(t;0,z))μ(dz)\displaystyle=\int_{U_{1}}\mathbb{E}V(cu(t;0,z))\mu^{*}(\text{d}z)
ecδtU1V(cz)μ(dz)+δ0cδ.\displaystyle\leq e^{-c^{*}\delta^{*}t}\int_{U_{1}}V(cz)\mu^{*}(\text{d}z)+\frac{\delta_{0}}{c^{*}\delta^{*}}.

For any t0>0t_{0}>0, we obtain

U1V(cy)μ(dy)δ0cδ(1et0cδ),\displaystyle\int_{U_{1}}V(cy)\mu^{*}(\text{d}y)\leq\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-t_{0}c^{*}\delta^{*}})},

which implies

ΠV(Ptν,μ)Meδt[δ0cδ(1et0cδ)+U1V(cx)ν(dx)].\displaystyle\Pi_{V}(P^{*}_{t}\nu,\mu^{*})\leq Me^{-\delta t}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-t_{0}c^{*}\delta^{*}})}+\int_{U_{1}}V(cx)\nu(\text{d}x)].

\Box

5 Limit theorems of McKean-Vlasov SPDEs

In this section, based on the uniform exponential mixing of the invariant measure μ\mu^{*}, we further obtain SLLN and CLT of McKean-Vlasov SPDEs. Before presenting some details, to facilitate presentation to follow, we introduce the following preliminaries. Let us fix a weight function (r)>0\mathcal{H}(r)>0 for any r0r\geq 0, which is increasing, continuous and bounded, and let C(U1)C_{\mathcal{H}}(U_{1}) denote the family of all continuous functionals on U1U_{1} such that

Φ:=supxy|Φ(x)Φ(y)|V(xy)[(xU1)+(yU1)]+supxU1|Φ(x)|(xU1)<.\displaystyle\begin{split}\left\|\Phi\right\|_{\mathcal{H}}:=\sup_{x\neq y}\frac{|\Phi(x)-\Phi(y)|}{V(x-y)\cdot[\mathcal{H}(\left\|x\right\|_{U_{1}})+\mathcal{H}(\left\|y\right\|_{U_{1}})]}+\sup_{x\in U_{1}}\frac{|\Phi(x)|}{\mathcal{H}(\left\|x\right\|_{U_{1}})}<\infty.\end{split}

For any ΦC(U1)\Phi\in C_{\mathcal{H}}(U_{1}), we set

Ψtx[Φ]=0tΦ(u(s;x))ds,ψtx[Φ]=1tΨt[Φ],\Psi_{t}^{x}[\Phi]=\int_{0}^{t}\Phi(u(s;x))\text{d}s,\quad\psi_{t}^{x}[\Phi]=\frac{1}{t}\Psi_{t}[\Phi],

where u(t;x)=u(t;0,x)u(t;x)=u(t;0,x) is the solution of (2.1).

5.1 SLLN

Firstly, based on the uniformly exponential mixing of the measure μ\mu^{*} of (2.1), we prove the SLLN for a class of McKean-Vlasov SPDEs with Ho¨\ddot{\text{o}}lder continuous coefficients. Assume, in addition, that the following stronger version of V(x)V(x) holds true:  

(H7) There exist constants δ1,δ2\delta_{1},\delta_{2}\in\mathbb{R} and κ>0\kappa>0 such that for any xU1x\in U_{1} and μ𝒫(U1)\mu\in\mathcal{P}^{*}(U_{1})

U1|V(x)|g(x,μ)(U2,U1)μ(dx)δ1U1Vκ(x)μ(dx)+δ2.\displaystyle\int_{U_{1}}|\nabla V(x)|\left\|g(x,\mu)\right\|_{\mathscr{L}(U_{2},U_{1})}\mu(\text{d}x)\leq\delta_{1}\int_{U_{1}}V^{\kappa}(x)\mu(\text{d}x)+\delta_{2}.


Theorem 5.1. Let assumptions (H1)-(H6) and (H7) with κ=1\kappa=1 hold. Assume also that for some k+k\in\mathbb{N}^{+} such that δ^>0\hat{\delta}>0, where

δ^=2kδ(2k1)[δ0+2δ12k+2δ22(k1)].\hat{\delta}=2k\delta^{*}-(2k-1)[\delta_{0}+2\delta^{2}_{1}k+2\delta^{2}_{2}(k-1)].

Then for any xU1x\in U_{1} and ΦC(U1)\Phi\in C_{\mathcal{H}}(U_{1}), we obtain the following conclusions:

  1. 1.

    There exists a constant M>0M>0 such that

    𝔼|Ψtx[Φ](Φ,μ)|2k2k(2k1)M2δ1[δ0cδ(1ecδ)+V(cx)]2kΦ2ktk,t1,\displaystyle\begin{split}&\mathbb{E}\left|\Psi_{t}^{x}[\Phi]-(\Phi,\mu^{*})\right|^{2k}\\ &\leq 2k(2k-1)M^{2}\delta^{-1}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)]^{2k}\left\|\Phi\right\|^{2k}_{\mathcal{H}}t^{-k},\quad t\geq 1,\end{split} (5.1)

    where (Φ,μ)=U1Φ(z)μ(dz)(\Phi,\mu^{*})=\int_{U_{1}}\Phi(z)\mu^{*}(\text{d}z);

  2. 2.

    There exists a constant M>0M>0 such that

    |ψtx[Φ](Φ,μ)|MΦt12+ε,tTε(ω)1,a.s.,\displaystyle\begin{split}\left|\psi_{t}^{x}[\Phi]-(\Phi,\mu^{*})\right|\leq M\left\|\Phi\right\|_{\mathcal{H}}t^{-\frac{1}{2}+\varepsilon},\quad t\geq T_{\varepsilon}(\omega)\geq 1,\quad\mathbb{P}-a.s.,\end{split} (5.2)

    where the random time Tε(ω)T_{\varepsilon}(\omega) is \mathbb{P}-a.s. finite. Moreover,

    𝔼Tεk(ω)\displaystyle\mathbb{E}T_{\varepsilon}^{k}(\omega) k(k+1)(2k(2k1)M2δ1)kMk[(δ0cδ(1ecδ))2k\displaystyle\leq k(k+1)(2k(2k-1)M^{2}\delta^{-1})^{k}M_{k}[(\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})})^{2k} (5.3)
    +V2k(cx)+[δ0+2δ22(2k1)]cδ^]Φk(k+1).\displaystyle~{}~{}~{}+V^{2k}(cx)+\frac{[\delta_{0}+2\delta^{2}_{2}(2k-1)]}{c^{*}\hat{\delta}}]\left\|\Phi\right\|^{k(k+1)}_{\mathcal{H}}.

proof For any given ΦC(U1)\Phi\in C_{\mathcal{H}}(U_{1}) and xU1x\in U_{1}, it follows from Theorem 4.2 and Chapman-Kolmogorov align that

|PtΦ(x)(Φ,μ)|\displaystyle\left|P_{t}\Phi(x)-(\Phi,\mu^{*})\right| =|U1Φ(z)p(t,0,x,dz)U1Φ(z)μ(dz)|\displaystyle=\left|\int_{U_{1}}\Phi(z)p(t,0,x,\text{d}z)-\int_{U_{1}}\Phi(z)\mu^{*}(\text{d}z)\right|
=|U1U1Φ(z)p(t,0,y,dz)p(0,0,x,dy)U1Φ(z)μ(dz)|\displaystyle=\left|\int_{U_{1}}\int_{U_{1}}\Phi(z)p(t,0,y,\text{d}z)p(0,0,x,\text{d}y)-\int_{U_{1}}\Phi(z)\mu^{*}(\text{d}z)\right|
=|U1Φ(z)Ptp(0,0,x,dz)U1Φ(z)μ(dz)|\displaystyle=\left|\int_{U_{1}}\Phi(z)P^{*}_{t}p(0,0,x,\text{d}z)-\int_{U_{1}}\Phi(z)\mu^{*}(\text{d}z)\right| (5.4)
ΦLipVΠV(Ptμ0x,μ)\displaystyle\leq\left\|\Phi\right\|_{LipV}\cdot\Pi_{V}(P^{*}_{t}\mu_{0}^{x},\mu^{*})
MΦeδt[δ0cδ(1ecδ)+U1V(cy)p(0,0,x,dy)]\displaystyle\leq M\left\|\Phi\right\|_{\mathcal{H}}e^{-\delta t}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+\int_{U_{1}}V(cy)p(0,0,x,\text{d}y)]
=MΦeδt[δ0cδ(1ecδ)+V(cx)],\displaystyle=M\left\|\Phi\right\|_{\mathcal{H}}e^{-\delta t}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)],

where μ0x(Γ)=p(0,0,x,Γ)\mu_{0}^{x}(\Gamma)=p(0,0,x,\Gamma) for any Γ()\Gamma\in\mathcal{B}(\mathcal{R}). In addition, given k1k\geq 1, in view of Itô’s formula, (H6), (H7) and Young’s inequality, we get

𝔼(V2k(u(t)))\displaystyle\mathbb{E}(V^{2k}(u(t)))
=V2k(x)+2k𝔼0tV2k1(u(s))[BA(u(s),u(s)),V(u(s))B+f(us,us),V(u(s))U1\displaystyle=V^{2k}(x)+2k\mathbb{E}\int_{0}^{t}V^{2k-1}(u(s))[_{B^{\ast}}\langle A(u(s),\mathcal{L}_{u(s)}),\nabla V(u(s))\rangle_{B}+\left\langle f(u_{s},\mathcal{L}_{u_{s}}),\nabla V(u(s))\right\rangle_{U_{1}}
+122V(u(s))g(us,us)(U2,U1)2]ds\displaystyle~{}~{}~{}+\frac{1}{2}\nabla^{2}V(u(s))\left\|g(u_{s},\mathcal{L}_{u_{s}})\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}]\text{d}s
+k(2k1)𝔼0tV2k2(u(s))|V(u(s))|2g(us,us)(U2,U1)2]ds\displaystyle~{}~{}~{}+k(2k-1)\mathbb{E}\int_{0}^{t}V^{2k-2}(u(s))|\nabla V(u(s))|^{2}\left\|g(u_{s},\mathcal{L}_{u_{s}})\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}]\text{d}s
V2k(x)+[2δ12k(2k1)2kδ]0tV2k(u(s))ds+2kδ00tV2k1(u(s))ds\displaystyle\leq V^{2k}(x)+[2\delta^{2}_{1}k(2k-1)-2k\delta^{*}]\int_{0}^{t}V^{2k}(u(s))\text{d}s+2k\delta_{0}\int_{0}^{t}V^{2k-1}(u(s))\text{d}s
+2δ22k(2k1)0tV2k2(u(s))ds\displaystyle~{}~{}~{}+2\delta^{2}_{2}k(2k-1)\int_{0}^{t}V^{2k-2}(u(s))\text{d}s
V2k(x)+[2δ12k(2k1)2kδ+δ0(2k1)+2δ22(2k1)(k1)]0t𝔼V2k(u(s))ds\displaystyle\leq V^{2k}(x)+[2\delta^{2}_{1}k(2k-1)-2k\delta^{*}+\delta_{0}(2k-1)+2\delta^{2}_{2}(2k-1)(k-1)]\int_{0}^{t}\mathbb{E}V^{2k}(u(s))\text{d}s
+[δ0+2δ22(2k1)]t.\displaystyle~{}~{}~{}+[\delta_{0}+2\delta^{2}_{2}(2k-1)]t.

Then, it follows from Gronwall’s lemma that

𝔼(V2k(u(t)))eδ^tV2k(x)+[δ0+2δ22(2k1)]δ^<.\displaystyle\mathbb{E}(V^{2k}(u(t)))\leq e^{-\hat{\delta}t}V^{2k}(x)+\frac{[\delta_{0}+2\delta^{2}_{2}(2k-1)]}{\hat{\delta}}<\infty. (5.5)

Hence the assumptions in Lemma 2.1 of [2] hold for 𝔹=U1\mathbb{B}=U_{1}, φ(t)=Meδt\varphi(t)=Me^{-\delta t} and ψ(x)=[δ0cδ(1ecδ)+V(cx)]\psi(x)=[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)], then the desired assertion (5.1) holds.

In addition, the assumptions in Definition 2.5 and Proposition 2.6 of [42] hold for γ(t)=Meδt\gamma(t)=Me^{-\delta t}, ρ(xU1)=δ0cδ(1ecδ)+V(cx)\rho(\left\|x\right\|_{U_{1}})=\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx), and

σ(xU1)=Mk[(δ0cδ(1ecδ))2k+V2k(cx)+[δ0+2δ22(2k1)]cδ^],\sigma(\left\|x\right\|_{U_{1}})=M_{k}[(\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})})^{2k}+V^{2k}(cx)+\frac{[\delta_{0}+2\delta^{2}_{2}(2k-1)]}{c^{*}\hat{\delta}}],

then the desired conclusion (2) holds. The proof of Theorem 5.1 is complete. \quad\Box

5.2 Central limit theorem

In this subsection, let us fix xU1x\in U_{1} and an arbitrary function ΦC(U1)\Phi\in C_{\mathcal{H}}(U_{1}) such that U1Φ(x)μ(dx)=0\int_{U_{1}}\Phi(x)\mu^{*}(\text{d}x)=0 and set

(t)Φx\displaystyle\mathcal{M}(t)^{x}_{\Phi} =0[𝔼(Φ(u(s;x))|t)𝔼(Φ(u(s;x))|0)]ds\displaystyle=\int_{0}^{\infty}[\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{t})-\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{0})]\text{d}s
=0[𝔼(Φ(u(s;x))|t)PtΦ(x)]ds.\displaystyle=\int_{0}^{\infty}[\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{t})-P_{t}\Phi(x)]\text{d}s.

For the property of (t)Φx\mathcal{M}(t)^{x}_{\Phi}, we have the following lemma:  

Lemma 5.2. Assume the conditions of Theorem 5.1 hold. Then (t)Φx\mathcal{M}(t)^{x}_{\Phi} is a well-defined zero-mean martingale with 𝔼|(t)Φx|k<\mathbb{E}\left|\mathcal{M}(t)^{x}_{\Phi}\right|^{k}<\infty.
proof
Firstly, by (5.1) we have

PtΦ(x)MΦeδt[δ0cδ(1ecδ)+V(cx)],\displaystyle\begin{split}\left\|P_{t}\Phi(x)\right\|&\leq M\left\|\Phi\right\|_{\mathcal{H}}e^{-\delta t}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)],\end{split} (5.6)

then, by the dominated convergence theorem, for any t>r0t>r\geq 0, we obtain

𝔼((t)Φx|r)=0[𝔼(𝔼(Φ(u(s;x))|t)|r)𝔼(𝔼(Φ(u(s;x))|0)|r)]ds=0[𝔼(Φ(u(s;x))|r)𝔼(Φ(u(s;x))|0)]ds=(r)Φx.\displaystyle\begin{split}\mathbb{E}(\mathcal{M}(t)^{x}_{\Phi}|\mathscr{F}_{r})&=\int_{0}^{\infty}[\mathbb{E}(\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{t})|\mathscr{F}_{r})-\mathbb{E}(\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{0})|\mathscr{F}_{r})]\text{d}s\\ &=\int_{0}^{\infty}[\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{r})-\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{0})]\text{d}s\\ &=\mathcal{M}(r)^{x}_{\Phi}.\end{split}

In addition, it’s not hard to get that 𝔼(t)Φx=0\mathbb{E}\mathcal{M}(t)^{x}_{\Phi}=0.

Next, by (4) and the Markov properties of u(t)u(t), we obtain

(t)Φx=0[𝔼(Φ(u(s;x))|t)𝔼(Φ(u(s;x))|0)]ds=0tΦ(u(s;x))ds+t𝔼(Φ(u(s;x))|t)ds0𝔼(Φ(u(s;x)))ds=0tΦ(u(s,x))ds+tPstΦ(u(s;x))ds0𝔼(Φ(u(s;x)))ds.\displaystyle\begin{split}\mathcal{M}(t)^{x}_{\Phi}&=\int_{0}^{\infty}[\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{t})-\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{0})]\text{d}s\\ &=\int_{0}^{t}\Phi(u(s;x))\text{d}s+\int_{t}^{\infty}\mathbb{E}(\Phi(u(s;x))|\mathscr{F}_{t})\text{d}s-\int_{0}^{\infty}\mathbb{E}(\Phi(u(s;x)))\text{d}s\\ &=\int_{0}^{t}\Phi(u(s,x))\text{d}s+\int_{t}^{\infty}P_{s-t}\Phi(u(s;x))\text{d}s-\int_{0}^{\infty}\mathbb{E}(\Phi(u(s;x)))\text{d}s.\end{split} (5.7)

Thus, (5.5), (5.6) and the definition of \left\|\cdot\right\|_{\mathcal{H}} yield

𝔼|(t)Φx|k\displaystyle\mathbb{E}\left|\mathcal{M}(t)^{x}_{\Phi}\right|^{k}
=𝔼|0tΦ(u(s;x))ds+tPstΦ(u(s;x))ds0PsΦ(x)ds|k\displaystyle=\mathbb{E}\left|\int_{0}^{t}\Phi(u(s;x))\text{d}s+\int_{t}^{\infty}P_{s-t}\Phi(u(s;x))\text{d}s-\int_{0}^{\infty}P_{s}\Phi(x)\text{d}s\right|^{k}
=Mk𝔼|Φ[0th(u(s;x))ds+Mt[δ0cδ(1ecδ)+V(cu(s;x))]eδ(st)dr]|k\displaystyle=M_{k}\mathbb{E}\left|\left\|\Phi\right\|_{\mathcal{H}}[\int_{0}^{t}h(u(s;x))\text{d}s+M\int_{t}^{\infty}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cu(s;x))]e^{-\delta(s-t)}\text{d}r]\right|^{k}
+Mk𝔼|0MΦ[δ0cδ(1ecδ)+V(cx)]eδsdr)]|k\displaystyle~{}~{}~{}+M_{k}\mathbb{E}\left|\int_{0}^{\infty}M\left\|\Phi\right\|_{\mathcal{H}}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)]e^{-\delta s}\text{d}r)]\right|^{k}
M(t)Φk[1+Vk(cx)],\displaystyle\leq M(t)\left\|\Phi\right\|^{k}_{\mathcal{H}}[1+V^{k}(cx)],

where M(t)M(t) is an increasing function, which implies that 𝔼(t)Φxk<\mathbb{E}\left\|\mathcal{M}(t)^{x}_{\Phi}\right\|^{k}<\infty for tt\in\mathbb{R}. \Box  

For any integer j1j\geq 1, by (5.7), we have

(j)Φx=(j1)Φx+j1jΦ(u(s;x))ds+0PsΦ(u(j;x))PsΦ(u(j1;x))ds.\displaystyle\begin{aligned} \mathcal{M}(j)^{x}_{\Phi}=\mathcal{M}(j-1)^{x}_{\Phi}+\int_{j-1}^{j}\Phi(u(s;x))\text{d}s+\int_{0}^{\infty}P_{s}\Phi(u(j;x))-P_{s}\Phi(u(j-1;x))\text{d}s.\end{aligned} (5.8)

Next consider the conditional variance for {(n)Φx}n+\{\mathcal{M}(n)^{x}_{\Phi}\}_{n\in\mathbb{Z}_{+}},

Υ2[(n)Φx]=j=1n𝔼(((j)Φx(j1)Φx)2|j1).\displaystyle\begin{aligned} \Upsilon^{2}[\mathcal{M}(n)^{x}_{\Phi}]=\sum_{j=1}^{n}\mathbb{E}((\mathcal{M}(j)^{x}_{\Phi}-\mathcal{M}(j-1)^{x}_{\Phi})^{2}|\mathscr{F}_{j-1}).\end{aligned}

By (5.8) and the Markov properties of u(t)u(t), we obtain

𝔼(((j)Φx(j1)Φx)2|i1)=𝔼(i1iΦ(u(s;x))ds+0PsΦ(u(j;x))PsΦ(u(j1;x))ds2|j1).\displaystyle\begin{aligned} &\mathbb{E}((\mathcal{M}(j)^{x}_{\Phi}-\mathcal{M}(j-1)^{x}_{\Phi})^{2}|\mathscr{F}_{i-1})\\ &=\mathbb{E}(\left\|\int_{i-1}^{i}\Phi(u(s;x))\text{d}s+\int_{0}^{\infty}P_{s}\Phi(u(j;x))-P_{s}\Phi(u(j-1;x))\text{d}s\right\|^{2}|\mathscr{F}_{j-1}).\end{aligned}

Then let

Π1[Φ(x)]=0PtΦ(x)dt,\displaystyle\Pi_{1}[\Phi(x)]=\int_{0}^{\infty}P_{t}\Phi(x)\text{dt}, (5.9)

and

Π2[Φ(x)]=𝔼|01Φ(u(s;x))ds+Π1[Φ(u(1;x))]Π1[Φ(x)]|2,\displaystyle\Pi_{2}[\Phi(x)]=\mathbb{E}\left|\int_{0}^{1}\Phi(u(s;x))\text{d}s+\Pi_{1}[\Phi(u(1;x))]-\Pi_{1}[\Phi(x)]\right|^{2}, (5.10)

which implies that by Markov property

Υ2[(n)Φx]=j=1nΠ2[Φ(u(j1;x))].\displaystyle\begin{aligned} \Upsilon^{2}[\mathcal{M}(n)^{x}_{\Phi}]=\sum_{j=1}^{n}\Pi_{2}[\Phi(u(j-1;x))].\end{aligned} (5.11)

To establish the CLT, we derive the following crucial lemmas.  

Lemma 5.3. Let assumptions (H1)-(H6) and (H7) with κ=12\kappa=\frac{1}{2} hold. Then there exist constants c1,c2>0c_{1},c_{2}>0 such that

𝔼(supz[0,t]ec1V(u(z;x)))ec2(1+V(x)),\displaystyle\begin{aligned} \mathbb{E}(\sup_{z\in[0,t]}e^{c_{1}V(u(z;x))})\leq e^{c_{2}(1+V(x))},\end{aligned}

for any t1t\geq 1 and xU1x\in U_{1}.
proof
We first show 𝔼ec1V(u(t;x))<\mathbb{E}e^{c_{1}V(u(t;x))}<\infty for any c1>0c_{1}>0 and t1t\geq 1. In view of Itô’s formula and (H6),

0V(u(t;x))\displaystyle 0\leq V(u(t;x)) =V(x)+0t[BA(u(s),u(s)),V(u(s))B+f(us,us),V(u(s))U1\displaystyle=V(x)+\int_{0}^{t}[_{B^{\ast}}\langle A(u(s),\mathcal{L}_{u(s)}),\nabla V(u(s))\rangle_{B}+\left\langle f(u_{s},\mathcal{L}_{u_{s}}),\nabla V(u(s))\right\rangle_{U_{1}}
+122V(u(s))g(us,us)(U2,U1)2]ds+0tV(u(s)),g(us,us)dW(s)U1\displaystyle~{}~{}~{}+\frac{1}{2}\nabla^{2}V(u(s))\left\|g(u_{s},\mathcal{L}_{u_{s}})\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}]\text{d}s+\int_{0}^{t}\left\langle\nabla V(u(s)),g(u_{s},\mathcal{L}_{u_{s}})\text{d}W(s)\right\rangle_{U_{1}}
V(x)δ0tV(u(s;x))ds+δ0t+^(t),\displaystyle\leq V(x)-\delta^{*}\int_{0}^{t}V(u(s;x))\text{d}s+\delta_{0}t+\widehat{\mathcal{M}}(t),

where ^(t)=0tV(u(s)),g(us,us)dW(s)U1\widehat{\mathcal{M}}(t)=\int_{0}^{t}\left\langle\nabla V(u(s)),g(u_{s},\mathcal{L}_{u_{s}})\text{d}W(s)\right\rangle_{U_{1}}. Then for some ι1>0\iota_{1}>0 to be determined later, we have

𝔼eι10tV(u(s;x))ds\displaystyle\mathbb{E}e^{\iota_{1}\int_{0}^{t}V(u(s;x))\text{d}s} eι1δ(V(x)+δ0t)𝔼eι1δ0tV(u(s)),g(us,us)dW(s)U1\displaystyle\leq e^{\frac{\iota_{1}}{\delta^{*}}(V(x)+\delta_{0}t)}\mathbb{E}e^{\frac{\iota_{1}}{\delta^{*}}\int_{0}^{t}\left\langle\nabla V(u(s)),g(u_{s},\mathcal{L}_{u_{s}})\text{d}W(s)\right\rangle_{U_{1}}}
eι1δ(V(x)+δ0t)[𝔼e2ι12(δ)20t|V(u(s))|2g(u(s),us)(U2,U1)2ds]12\displaystyle\leq e^{\frac{\iota_{1}}{\delta^{*}}(V(x)+\delta_{0}t)}[\mathbb{E}e^{\frac{2\iota_{1}^{2}}{(\delta^{*})^{2}}\int_{0}^{t}|\nabla V(u(s))|^{2}\left\|g(u(s),\mathcal{L}_{u_{s}})\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}\text{d}s}]^{\frac{1}{2}} (5.12)
eι1δ(V(x)+δ0t+2ι1δ22(δ)t)[𝔼e4ι12δ12(δ)20tV(u(s;x))ds]12.\displaystyle\leq e^{\frac{\iota_{1}}{\delta^{*}}(V(x)+\delta_{0}t+\frac{2\iota_{1}\delta^{2}_{2}}{(\delta^{*})}t)}[\mathbb{E}e^{\frac{4\iota_{1}^{2}\delta^{2}_{1}}{(\delta^{*})^{2}}\int_{0}^{t}V(u(s;x))\text{d}s}]^{\frac{1}{2}}.

Let ι1=(δ)24δ12\iota_{1}=\frac{(\delta^{*})^{2}}{4\delta^{2}_{1}}, which implies that for any t1t\geq 1,

𝔼eι10tV(u(s;x))dse2ι1δ(V(x)+δ0t+2ι1δ22(δ)t)<.\displaystyle\mathbb{E}e^{\iota_{1}\int_{0}^{t}V(u(s;x))\text{d}s}\leq e^{\frac{2\iota_{1}}{\delta^{*}}(V(x)+\delta_{0}t+\frac{2\iota_{1}\delta^{2}_{2}}{(\delta^{*})}t)}<\infty. (5.13)

In addition, let ι2=δ4δ1\iota_{2}=\frac{\delta^{*}}{4\delta_{1}}, and we have by (5.2) and (5.13)

𝔼eι2V(u(z;x))\displaystyle\mathbb{E}e^{\iota_{2}V(u(z;x))} eι2(V(x)+δ0t)𝔼eι2^(t)\displaystyle\leq e^{\iota_{2}(V(x)+\delta_{0}t)}\mathbb{E}e^{\iota_{2}\widehat{\mathcal{M}}(t)}
eι2(V(x)+δ0t+2ι2δ22t)[𝔼e4ι22δ120tV(u(s;x))ds]12\displaystyle\leq e^{\iota_{2}(V(x)+\delta_{0}t+2\iota_{2}\delta^{2}_{2}t)}[\mathbb{E}e^{4\iota_{2}^{2}\delta^{2}_{1}\int_{0}^{t}V(u(s;x))\text{d}s}]^{\frac{1}{2}}
eι2(V(x)+δ0t+2ι2δ22t)+ι1δ(V(x)+δ0t+2ι1δ22(δ)t)\displaystyle\leq e^{\iota_{2}(V(x)+\delta_{0}t+2\iota_{2}\delta^{2}_{2}t)+\frac{\iota_{1}}{\delta^{*}}(V(x)+\delta_{0}t+\frac{2\iota_{1}\delta^{2}_{2}}{(\delta^{*})}t)}
<,\displaystyle<\infty,

for any t1t\geq 1.

By Itô’s formula and (H6), for any ϵ(0,δ)\epsilon\in(0,\delta^{*})

eϵtV(u(t;x))\displaystyle e^{\epsilon t}V(u(t;x)) =V(x)+0tϵeϵsV(u(s))ds+0teϵs[BA(u(s),u(s)),V(u(s))B\displaystyle=V(x)+\int_{0}^{t}\epsilon e^{\epsilon s}V(u(s))ds+\int_{0}^{t}e^{\epsilon s}[_{B^{\ast}}\langle A(u(s),\mathcal{L}_{u(s)}),\nabla V(u(s))\rangle_{B}
+f(us,us),V(u(s))U1+122V(u(s))g(us,us)(U2,U1)2]ds\displaystyle~{}~{}~{}+\left\langle f(u_{s},\mathcal{L}_{u_{s}}),\nabla V(u(s))\right\rangle_{U_{1}}+\frac{1}{2}\nabla^{2}V(u(s))\left\|g(u_{s},\mathcal{L}_{u_{s}})\right\|^{2}_{\mathscr{L}(U_{2},U_{1})}]\text{d}s
+0teϵsV(u(s)),g(us,us)dW(s)U1\displaystyle~{}~{}~{}+\int_{0}^{t}e^{\epsilon s}\left\langle\nabla V(u(s)),g(u_{s},\mathcal{L}_{u_{s}})\text{d}W(s)\right\rangle_{U_{1}}
V(x)(δϵ)0teϵsV(u(s;x))ds+ϵ1δ0eϵt+~(t),\displaystyle\leq V(x)-(\delta^{*}-\epsilon)\int_{0}^{t}e^{\epsilon s}V(u(s;x))\text{d}s+\epsilon^{-1}\delta_{0}e^{\epsilon t}+\widetilde{\mathcal{M}}(t),

where ~(t)=0teϵsV(u(s)),g(us,us)dW(s)U1\widetilde{\mathcal{M}}(t)=\int_{0}^{t}e^{\epsilon s}\left\langle\nabla V(u(s)),g(u_{s},\mathcal{L}_{u_{s}})\text{d}W(s)\right\rangle_{U_{1}}. Then by (5.2) and Jensen’s inequality, we obtain for any t1t\geq 1 and c1(0,ι1)c_{1}\in(0,\iota_{1})

𝔼ec1eϵtsupz[0,t]~(t)\displaystyle\mathbb{E}e^{c_{1}e^{-\epsilon t}\underset{z\in[0,t]}{\sup}\widetilde{\mathcal{M}}(t)} 𝔼e1+c1eϵt~(t)\displaystyle\leq\mathbb{E}e^{1+c_{1}e^{-\epsilon t}\widetilde{\mathcal{M}}(t)}
e1+c12δ22ϵ[𝔼e4c12δ22e2ϵt0te2ϵsV(u(s))ds]12\displaystyle\leq e^{1+\frac{c_{1}^{2}\delta^{2}_{2}}{\epsilon}}[\mathbb{E}e^{4c_{1}^{2}\delta^{2}_{2}e^{-2\epsilon t}\int_{0}^{t}e^{2\epsilon s}V(u(s))\text{d}s}]^{\frac{1}{2}}
e1+c12δ22ϵ[𝔼e4c12δ221e2ϵt2ϵ0tV(u(s))2ϵ1e2ϵte2ϵ(ts)ds]12\displaystyle\leq e^{1+\frac{c_{1}^{2}\delta^{2}_{2}}{\epsilon}}[\mathbb{E}e^{4c_{1}^{2}\delta^{2}_{2}\frac{1-e^{-2\epsilon t}}{2\epsilon}\int_{0}^{t}V(u(s))\frac{2\epsilon}{1-e^{-2\epsilon t}}e^{-2\epsilon(t-s)}\text{d}s}]^{\frac{1}{2}} (5.14)
e1+c12δ22ϵ[𝔼0te2c12δ22ϵV(u(s))2ϵ1e2ϵte2ϵ(ts)ds]12\displaystyle\leq e^{1+\frac{c_{1}^{2}\delta^{2}_{2}}{\epsilon}}[\mathbb{E}\int_{0}^{t}e^{\frac{2c_{1}^{2}\delta^{2}_{2}}{\epsilon}V(u(s))}\frac{2\epsilon}{1-e^{-2\epsilon t}}e^{-2\epsilon(t-s)}\text{d}s]^{\frac{1}{2}}
e1+c12δ22ϵ+2ϵe1+c12δ22ϵ1e2ϵ𝔼0te2c12δ22ϵV(u(s))e2ϵ(ts)ds.\displaystyle\leq e^{1+\frac{c_{1}^{2}\delta^{2}_{2}}{\epsilon}}+\frac{2\epsilon e^{1+\frac{c_{1}^{2}\delta^{2}_{2}}{\epsilon}}}{1-e^{-2\epsilon}}\mathbb{E}\int_{0}^{t}e^{\frac{2c_{1}^{2}\delta^{2}_{2}}{\epsilon}V(u(s))}e^{-2\epsilon(t-s)}\text{d}s.

Hence we have

𝔼(supz[0,t]ec1V(u(z;x)))\displaystyle\mathbb{E}(\sup_{z\in[0,t]}e^{c_{1}V(u(z;x))}) =𝔼(ec1supz[0,t]V(u(z;x)))\displaystyle=\mathbb{E}(e^{c_{1}\sup_{z\in[0,t]}V(u(z;x))})
ec1V(x)+c1ϵ1δ0+c12δ22ϵ+2ϵec1V(x)+c1ϵ1δ0+c12δ22ϵ1e2ϵ𝔼0te2c12δ22ϵV(u(s;x))e2ϵ(ts)ds\displaystyle\leq e^{c_{1}V(x)+c_{1}\epsilon^{-1}\delta_{0}+\frac{c_{1}^{2}\delta^{2}_{2}}{\epsilon}}+\frac{2\epsilon e^{c_{1}V(x)+c_{1}\epsilon^{-1}\delta_{0}+\frac{c_{1}^{2}\delta^{2}_{2}}{\epsilon}}}{1-e^{-2\epsilon}}\mathbb{E}\int_{0}^{t}e^{\frac{2c_{1}^{2}\delta^{2}_{2}}{\epsilon}V(u(s;x))}e^{-2\epsilon(t-s)}\text{d}s
:=Mx,ϵ+2ϵMx,ϵ1e2ϵ𝔼0te2c12δ22ϵV(u(s))e2ϵ(ts)ds\displaystyle:=M_{x,\epsilon}+\frac{2\epsilon M_{x,\epsilon}}{1-e^{-2\epsilon}}\mathbb{E}\int_{0}^{t}e^{\frac{2c_{1}^{2}\delta^{2}_{2}}{\epsilon}V(u(s))}e^{-2\epsilon(t-s)}\text{d}s
Mx,ϵ+ϵMx,ϵ2(1e2ϵ)20te2ϵ(ts)ds+ϵ𝔼0te2c12δ22ϵV(u(s))e2ϵ(ts)ds\displaystyle\leq M_{x,\epsilon}+\frac{\epsilon M^{2}_{x,\epsilon}}{(1-e^{-2\epsilon})^{2}}\int_{0}^{t}e^{-2\epsilon(t-s)}\text{d}s+\epsilon\mathbb{E}\int_{0}^{t}e^{\frac{2c_{1}^{2}\delta^{2}_{2}}{\epsilon}V(u(s))}e^{-2\epsilon(t-s)}\text{d}s
Mx,ϵ+ϵ𝔼0tsupz[0,s]e2c12δ22ϵV(u(s))e2ϵ(ts)ds.\displaystyle\leq M_{x,\epsilon}+\epsilon\mathbb{E}\int_{0}^{t}\sup_{z\in[0,s]}e^{\frac{2c_{1}^{2}\delta^{2}_{2}}{\epsilon}V(u(s))}e^{-2\epsilon(t-s)}\text{d}s.

Let c1=ϵ2δ22c_{1}=\frac{\epsilon}{2\delta^{2}_{2}}, then by Gronwall inequality, there exist constants c2>0c_{2}>0 such that

𝔼(supz[0,t]ec1V(u(z;x)))Mx,ϵ+Mx,ϵϵ𝔼0te2ϵ(ts)dsec2(1+V(x)).\displaystyle\mathbb{E}(\sup_{z\in[0,t]}e^{c_{1}V(u(z;x))})\leq M_{x,\epsilon}+M_{x,\epsilon}\epsilon\mathbb{E}\int_{0}^{t}e^{-2\epsilon(t-s)}\text{d}s\leq e^{c_{2}(1+V(x))}.

This completes the proof. \Box  

Remark 5.4. It follows from (4) that for any ν1,ν2𝒫(U1)\nu_{1},\nu_{2}\in\mathcal{P}(U_{1})

ΠV(Ptν1,Ptν2)eδtU1U1V(xy)μ(dy)ν(dx).\displaystyle\begin{aligned} \Pi_{V}(P^{*}_{t}\nu_{1},P^{*}_{t}\nu_{2})\leq e^{-\delta t}\int_{U_{1}}\int_{U_{1}}V(x-y)\mu^{*}(\text{d}y)\nu(\text{d}x).\end{aligned} (5.15)

In addition, by (5.1) and (5.15), we have

|PtΦ(x)PtΦ(y)|ΦLipVΠV(Ptμ0x,Ptμ0y)MΦeδt[U1U1V(mn)p(0,0,x,dm)p(0,0,y,dn)]=MΦeδt[V(xn)p(0,0,y,dn)]=MΦeδtV(xy).\displaystyle\begin{aligned} \left|P_{t}\Phi(x)-P_{t}\Phi(y)\right|&\leq\left\|\Phi\right\|_{LipV}\Pi_{V}(P^{*}_{t}\mu_{0}^{x},P^{*}_{t}\mu_{0}^{y})\\ &\leq M\left\|\Phi\right\|_{\mathcal{H}}e^{-\delta t}[\int_{U_{1}}\int_{U_{1}}V(m-n)p(0,0,x,\text{d}m)p(0,0,y,\text{d}n)]\\ &=M\left\|\Phi\right\|_{\mathcal{H}}e^{-\delta t}[\int_{\mathcal{R}}V(x-n)p(0,0,y,\text{d}n)]\\ &=M\left\|\Phi\right\|_{\mathcal{H}}e^{-\delta t}V(x-y).\end{aligned} (5.16)

Thus, by (5.15) and (5.16), it is similar to Lemma 4.2 in [2], and we can obtain that there exists a constant M>0M>0 such that for any ΦC(U1)\Phi\in C_{\mathcal{H}}(U_{1}) and xU1x\in U_{1}

Π2[Φ]MΦ2.\displaystyle\begin{aligned} \left\|\Pi_{2}[\Phi]\right\|_{\mathcal{H}}\leq M\left\|\Phi\right\|_{\mathcal{H}}^{2}.\end{aligned} (5.17)

Lemma 5.5. Assume the conditions of Theorem 5.1 hold. Then for any ΦC(U1)\Phi\in C_{\mathcal{H}}(U_{1}) with (Φ,μ)=0(\Phi,\mu^{*})=0, we obtain

0U1Π2[Φ(x)]μ(dx)=2U1Φ(x)Π1[Φ(x)]μ(dx)<.\displaystyle\begin{aligned} 0\leq\int_{U_{1}}\Pi_{2}[\Phi(x)]\mu^{*}(\text{d}x)=2\int_{U_{1}}\Phi(x)\Pi_{1}[\Phi(x)]\mu^{*}(\text{d}x)<\infty.\end{aligned}

proof Similar to the proof of Lemma 4.1 in [2], the above results can be obtained by (5.5), (5.6), (5.9) and (5.10).

Subsequently, leveraging the aforementioned groundwork, we present the central limit theorem below.  

Theorem 5.6. Assume the conditions of Theorem 5.1 and (H7) with κ=12\kappa=\frac{1}{2} hold. For any xU1x\in U_{1} and ΦC(U1)\Phi\in C_{\mathcal{H}}(U_{1}) with (Φ,μ)=0(\Phi,\mu^{*})=0, let

Λ=(U1Π2[Φ(x)]μ(dx))12[0,),\Lambda=(\int_{U_{1}}\Pi_{2}[\Phi(x)]\mu^{*}(\text{d}x))^{\frac{1}{2}}\in[0,\infty),

and we have the following conclusions:

  1. 1.

    When Λ>0\Lambda>0, for ε[0,15)\varepsilon\in[0,\frac{1}{5}), there exists an increasing function ε:+×++\mathcal{I}_{\varepsilon}:\mathbb{R}_{+}\times\mathbb{R}_{+}\to\mathbb{R}_{+} such that

    supz|(1t0tΦ(u(s;x))dsz)ΞΛ(z)|ε(Φ,xU1)t15+ε,\displaystyle\begin{aligned} \sup_{z\in\mathbb{R}}\left|\mathbb{P}(\frac{1}{\sqrt{t}}\int_{0}^{t}\Phi(u(s;x))\text{d}s\leq z)-\Xi_{\Lambda}(z)\right|\leq\mathcal{I}_{\varepsilon}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})t^{-\frac{1}{5}+\varepsilon},\end{aligned}

    for any xU1x\in U_{1} and t1t\geq 1;

  1. 1.

    When Λ=0\Lambda=0, there exists an increasing function :+×++\mathcal{I}:\mathbb{R}_{+}\times\mathbb{R}_{+}\to\mathbb{R}_{+} such that

    supz[(|z|1)|(1t0tΦ(u(s;x))dsz)Ξ0(z)|](Φ,xU1)t14,\displaystyle\begin{aligned} \sup_{z\in\mathbb{R}}[(\left|z\right|\wedge 1)\left|\mathbb{P}(\frac{1}{\sqrt{t}}\int_{0}^{t}\Phi(u(s;x))\text{d}s\leq z)-\Xi_{0}(z)\right|]\leq\mathcal{I}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})t^{-\frac{1}{4}},\end{aligned}

    for any xU1x\in U_{1} and t1t\geq 1, where

    ΞΛ(r)=1Λ2πres22Λ2ds,Ξ0(r)={1,r0,0,r<0.\Xi_{\Lambda}(r)=\frac{1}{\Lambda\sqrt{2\pi}}\int_{-\infty}^{r}e^{-\frac{s^{2}}{2\Lambda^{2}}}\text{d}s,\quad\Xi_{0}(r)=\left\{\begin{matrix}1,&r\geq 0,\\ 0,&r<0.\end{matrix}\right.

Proof of (i): The uniformly mixing of (2.1) and Lemma 5.3 imply that the assumptions of Theorem 2.8 in [42] hold, i.e.,

𝔼(supz[k,k+t]ec1V(u(z;x)))ec2(1+V(x)),\displaystyle\begin{aligned} \mathbb{E}(\sup_{z\in[k,k+t]}e^{c_{1}V(u(z;x))})\leq e^{c_{2}(1+V(x))},\end{aligned}

for any k0k\geq 0 and xU1x\in U_{1}. Thus, we can obtain that for Λ¯>0\bar{\Lambda}>0 and ε(0,14)\varepsilon\in(0,\frac{1}{4}), there exists an increasing continuous function 𝒦ε:+×++\mathcal{K}_{\varepsilon}:\mathbb{R}_{+}\times\mathbb{R}_{+}\to\mathbb{R}_{+} such that for any ΛΛ¯\Lambda\geq\bar{\Lambda} and q>0q>0

supz|(1t0tΦ(u(s;x))dsz)ΞΛ(z)|t14+ε𝒦ε(Φ,xU1)+Λ4q[t]q(14ε)𝔼|Υ2[([t])Φx][t]Λ2|2q.\displaystyle\begin{aligned} &\sup_{z\in\mathbb{R}}\left|\mathbb{P}(\frac{1}{\sqrt{t}}\int_{0}^{t}\Phi(u(s;x))\text{d}s\leq z)-\Xi_{\Lambda}(z)\right|\\ &\leq t^{-\frac{1}{4}+\varepsilon}\mathcal{K}_{\varepsilon}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})+\Lambda^{-4q}\left[t\right]^{q(1-4\varepsilon)}\mathbb{E}\left|\frac{\Upsilon^{2}[\mathcal{M}(\left[t\right])^{x}_{\Phi}]}{\left[t\right]}-\Lambda^{2}\right|^{2q}.\end{aligned} (5.18)

where [t]\left[t\right] is the integer part of tt. Similar to (5.1), we have

|PtΠ2[Φ(x)]Λ2|=|PtΠ2[Φ(x)]U1Π2[Φ(x)]μ(dx)|MΠ2[Φ]eδt[δ0cδ(1ecδ)+V(cx)],\displaystyle\begin{aligned} \left|P_{t}\Pi_{2}[\Phi(x)]-\Lambda^{2}\right|&=\left|P_{t}\Pi_{2}[\Phi(x)]-\int_{U_{1}}\Pi_{2}[\Phi(x)]\mu^{*}(\text{d}x)\right|\\ &\leq M\left\|\Pi_{2}[\Phi]\right\|_{\mathcal{H}}e^{-\delta t}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)],\end{aligned}

which implies that there exists a constant MM such that by Lemma 2.1 of [2] and (5.5), we have

𝔼|1nj=1nΠ2[Φ(u(j;x))]Λ2|2qMnqΠ2[Φ]2q[δ0cδ(1ecδ)+V(cx)]2q.\displaystyle\begin{aligned} \mathbb{E}\left|\frac{1}{n}\sum_{j=1}^{n}\|\Pi_{2}[\Phi(u(j;x))]-\Lambda^{2}\right|^{2q}\leq Mn^{-q}\left\|\Pi_{2}[\Phi]\right\|^{2q}_{\mathcal{H}}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)]^{2q}.\end{aligned}

Hence by (5.11), we arrive at

𝔼|Υ2[([t])Φx][t]Λ2|2qM[t]qΠ2[Φ]2q[δ0cδ(1ecδ)+V(cx)]2q.\displaystyle\begin{aligned} \mathbb{E}\left|\frac{\Upsilon^{2}[\mathcal{M}(\left[t\right])^{x}_{\Phi}]}{\left[t\right]}-\Lambda^{2}\right|^{2q}\leq M\left[t\right]^{-q}\left\|\Pi_{2}[\Phi]\right\|^{2q}_{\mathcal{H}}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)]^{2q}.\end{aligned} (5.19)

For an arbitrarily ε(0,1/4)\varepsilon\in(0,1/4), taking q116εq\geq\frac{1}{16\varepsilon}, we have [t]4qεt14+ε\left[t\right]^{-4q\varepsilon}\leq t^{-\frac{1}{4}+\varepsilon} for any t1t\geq 1, which implies

ε(Φ,xU1)=𝒦ε(Φ,xU1)+MΛ4qΦ4q[δ0cδ(1ecδ)+V(cx)]2q,\mathcal{I}_{\varepsilon}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})=\mathcal{K}_{\varepsilon}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})+M\Lambda^{-4q}\left\|\Phi\right\|^{4q}_{\mathcal{H}}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)]^{2q},

by (5.18), (5.19) and Remark 5.4.  

Proof of (ii): When Λ=0\Lambda=0, we can obtain from Theorem 2.8 in [42] that there exists an increasing continuous function 𝒦:+×++\mathcal{K}:\mathbb{R}_{+}\times\mathbb{R}_{+}\to\mathbb{R}_{+} such that

supz|(1t0tΦ(u(s;x))dsz)Ξ0(z)|t14𝒦(Φ,xU1)+[t]12|𝔼Υ2[(n)Φx]|12t14𝒦(Φ,xU1)+[t]14MΠ2[Φ]12[δ0cδ(1ecδ)+V(cx)]12(Φ,xU1)t14,\displaystyle\begin{aligned} &\sup_{z\in\mathbb{R}}\left|\mathbb{P}(\frac{1}{\sqrt{t}}\int_{0}^{t}\Phi(u(s;x))\text{d}s\leq z)-\Xi_{0}(z)\right|\\ &\leq t^{-\frac{1}{4}}\mathcal{K}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})+\left[t\right]^{-\frac{1}{2}}\left|\mathbb{E}\Upsilon^{2}[\mathcal{M}(n)^{x}_{\Phi}]\right|^{\frac{1}{2}}\\ &\leq t^{-\frac{1}{4}}\mathcal{K}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})+\left[t\right]^{-\frac{1}{4}}M\left\|\Pi_{2}[\Phi]\right\|^{\frac{1}{2}}_{\mathcal{H}}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)]^{\frac{1}{2}}\\ &\leq\mathcal{I}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})t^{-\frac{1}{4}},\end{aligned}

where (Φ,xU1)=𝒦(Φ,xU1)+MΦ[δ0cδ(1ecδ)+V(cx)]12\mathcal{I}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})=\mathcal{K}(\left\|\Phi\right\|_{\mathcal{H}},\left\|x\right\|_{U_{1}})+M\left\|\Phi\right\|_{\mathcal{H}}[\frac{\delta_{0}}{c^{*}\delta^{*}(1-e^{-c^{*}\delta^{*}})}+V(cx)]^{\frac{1}{2}}. The proof of Theorem 5.6 is complete.  \Box

Appendix I: The specific proof of weak solutions(the step 1 of Theorem 3.2):

In this section, we predominantly draw upon a segment of the proof provided in reference [49], Theorem 2.1. The specific details are outlined as follows:  

Proof: We first define the following coordinate process:

x(t)ω=ω(t),\displaystyle x^{*}(t)\omega=\omega(t),

where ωC(+,n)\omega\in C(\mathbb{R}^{+},\mathbb{R}^{n}), and let 𝒟t=σ{ω(s);0st}\mathcal{D}_{t}=\sigma\{\omega(s);0\leq s\leq t\}, hence x(t)ωx^{*}(t)\omega is 𝒟t\mathcal{D}_{t}-adapted. Note that xn(t)x^{n}(t) with the initial condition xn(0)=x0x^{n}(0)=x_{0} is the unique strong solution of (3.2), which implies that

n(t)=xn(t)x00tFn,δ(xn(s),xn(s))ds\displaystyle\mathcal{M}^{n}(t)=x^{n}(t)-x_{0}-\int_{0}^{t}F^{n,\delta}(x^{n}(s),\mathcal{L}_{x^{n}(s)})\text{d}s

is a martingale with the covariance given by

i=1m0t[Gn,δ(xn(s),xn(s))]ik[Gn,δ(xn(s),xn(s))]jkds,\displaystyle\sum_{i=1}^{m}\int_{0}^{t}[G^{n,\delta}(x^{n}(s),\mathcal{L}_{x^{n}(s)})]_{ik}[G^{n,\delta}(x^{n}(s),\mathcal{L}_{x^{n}(s)})]_{jk}\text{d}s,

1i,jn1\leq i,j\leq n. Next let

,n(t)=x(t)x00tFn,δ(x(s),x(s))ds,\displaystyle\mathcal{M}^{*,n}(t)=x^{*}(t)-x_{0}-\int_{0}^{t}F^{n,\delta}(x^{*}(s),\mathcal{L}_{x^{*}(s)})\text{d}s,

then ,n(t)\mathcal{M}^{*,n}(t) is a martingale relative to (xn(t),𝒟t)(\mathcal{L}_{x^{n}(t)},\mathcal{D}_{t}) with the covariance

i,n,j,n(t)=i=1m0t[Gn,δ(x(s),x(s))]ik[Gn,δ(x(s),x(s))]jkds.\displaystyle\left\langle\mathcal{M}^{*,n}_{i},\mathcal{M}^{*,n}_{j}\right\rangle(t)=\sum_{i=1}^{m}\int_{0}^{t}[G^{n,\delta}(x^{*}(s),\mathcal{L}_{x^{*}(s)})]_{ik}[G^{n,\delta}(x^{*}(s),\mathcal{L}_{x^{*}(s)})]_{jk}\text{d}s.

Further by the property (a) and (3.3), let nn\to\infty and we obtain

(t)=x(t)x00tF(x(s),x(s))ds.\displaystyle\mathcal{M}^{*}(t)=x^{*}(t)-x_{0}-\int_{0}^{t}F(x^{*}(s),\mathcal{L}_{x^{*}(s)})\text{d}s.

Then for any t>st>s and Γ𝒟t\Gamma\in\mathcal{D}_{t}, by Problem 2.4.12 of [29], we have

n𝒳Γ(t)dx(t)\displaystyle\int_{\mathbb{R}^{n}}\mathcal{X}_{\Gamma}\mathcal{M}^{*}(t)\text{d}\mathcal{L}_{x^{*}(t)} =limnn𝒳Γ,n(t)dx,n(t)\displaystyle=\lim_{n\to\infty}\int_{\mathbb{R}^{n}}\mathcal{X}_{\Gamma}\mathcal{M}^{*,n}(t)\text{d}\mathcal{L}_{x^{*,n}(t)}
=limnn𝒳Γ,n(s)dx,n(s)\displaystyle=\lim_{n\to\infty}\int_{\mathbb{R}^{n}}\mathcal{X}_{\Gamma}\mathcal{M}^{*,n}(s)\text{d}\mathcal{L}_{x^{*,n}(s)}
=n𝒳Γ(s)dx(s),\displaystyle=\int_{\mathbb{R}^{n}}\mathcal{X}_{\Gamma}\mathcal{M}^{*}(s)\text{d}\mathcal{L}_{x^{*}(s)},

where 𝒳Γ\mathcal{X}_{\Gamma} represents the indicator function of Γ\Gamma. This implies that (t)\mathcal{M}^{*}(t) is a x(s)\mathcal{L}_{x^{*}(s)}-martingale. In addition, by the property (a) and (3.3), we get

i,j(t)=i=1m0t[G(x(s),x(s))]ik[G(x(s),x(s))]jkds\displaystyle\left\langle\mathcal{M}^{*}_{i},\mathcal{M}^{*}_{j}\right\rangle(t)=\sum_{i=1}^{m}\int_{0}^{t}[G(x^{*}(s),\mathcal{L}_{x^{*}(s)})]_{ik}[G(x^{*}(s),\mathcal{L}_{x^{*}(s)})]_{jk}\text{d}s

for 1i,jn1\leq i,j\leq n. Based on Theorem II.7.1’ of [26], it can be deduced that there exists an mm-dimensional Brownian motion B(t)B^{*}(t) on an extended probability space (C(+,n),𝒟t,x(s)))(C(\mathbb{R}^{+},\mathbb{R}^{n}),\mathcal{D}_{t},\mathcal{L}_{x^{*}(s)})) such that

(t)=0tG(x(s),x(s))dB(s),\displaystyle\mathcal{M}^{*}(t)=\int_{0}^{t}G(x^{*}(s),\mathcal{L}_{x^{*}(s)})\text{d}B^{*}(s),

i.e.,

x(t)=x0+0tF(x(s),x(s))ds+0tG(x(s),x(s))dB(s),\displaystyle x^{*}(t)=x_{0}+\int_{0}^{t}F(x^{*}(s),\mathcal{L}_{x^{*}(s)})\text{d}s+\int_{0}^{t}G(x^{*}(s),\mathcal{L}_{x^{*}(s)})\text{d}B^{*}(s),

hence x(t)x^{*}(t) is a weak solution to (3.1). The proof is complete. \Box

Acknowledgments

The first author (S. Lu) supported by Graduate Innovation Fund of Jilin University. The second author (X. Yang) was supported by National Natural Science Foundation of China (12071175, 12371191). The third author (Y. Li) was supported by National Basic Research Program of China (2013CB834100), National Natural Science Foundation of China (12071175, 11171132 and 11571065), Project of Science and Technology Development of Jilin Province (2017C028-1 and 20190201302JC) and Natural Science Foundation of Jilin Province (20200201253JC).

Data availability

No data was used for the research described in the article.

References

References

  • [1] Rangel Baldasso, Alan Pereira, and Guilherme Reis. Large deviations for interacting diffusions with path-dependent McKean-Vlasov limit. Ann. Appl. Probab., 32(1):665–695, 2022.
  • [2] Jianhai Bao, Feng-Yu Wang, and Chenggui Yuan. Limit theorems for additive functionals of path-dependent SDEs. Discrete Contin. Dyn. Syst., 40(9):5173–5188, 2020.
  • [3] Viorel Barbu and Michael Röckner. Probabilistic representation for solutions to nonlinear Fokker-Planck equations. SIAM J. Math. Anal., 50(4):4246–4260, 2018.
  • [4] Viorel Barbu and Michael Röckner. From nonlinear Fokker-Planck equations to solutions of distribution dependent SDE. Ann. Probab., 48(4):1902–1920, 2020.
  • [5] Vladimir I. Bogachev, Michael Röckner, and Stanislav V. Shaposhnikov. Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures. J. Funct. Anal., 276(12):3681–3713, 2019.
  • [6] Mireille Bossy and Denis Talay. A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comp., 66(217):157–192, 1997.
  • [7] W. Braun and K. Hepp. The Vlasov dynamics and its fluctuations in the 1/N1/N limit of interacting classical particles. Comm. Math. Phys., 56(2):101–113, 1977.
  • [8] Rainer Buckdahn, Juan Li, and Shige Peng. Mean-field backward stochastic differential equations and related partial differential equations. Stochastic Process. Appl., 119(10):3133–3154, 2009.
  • [9] Rainer Buckdahn, Juan Li, Shige Peng, and Catherine Rainer. Mean-field stochastic differential equations and associated PDEs. Ann. Probab., 45(2):824–878, 2017.
  • [10] E. A. Carlen, E. Gabetta, and G. Toscani. Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Comm. Math. Phys., 199(3):521–546, 1999.
  • [11] Eric A. Carlen. Existence and sample path properties of the diffusions in Nelson’s stochastic mechanics. In Stochastic processes—mathematics and physics (Bielefeld, 1984), volume 1158 of Lecture Notes in Math., pages 25–51. Springer, Berlin, 1986.
  • [12] Xianjin Cheng and Zhenxin Liu. The locally homeomorphic property of McKean-Vlasov SDEs under the global Lipschitz condition. J. Math. Pures Appl. (9), 180:97–121, 2023.
  • [13] Bertrand Cloez and Martin Hairer. Exponential ergodicity for Markov processes with random switching. Bernoulli, 21(1):505–536, 2015.
  • [14] Paolo Dai Pra and Frank den Hollander. McKean-Vlasov limit for interacting random processes in random media. J. Statist. Phys., 84(3-4):735–772, 1996.
  • [15] François Delarue, Daniel Lacker, and Kavita Ramanan. From the master equation to mean field game limit theory: a central limit theorem. Electron. J. Probab., 24:Paper No. 51, 54, 2019.
  • [16] Xiaojie Ding and Huijie Qiao. Euler-Maruyama approximations for stochastic McKean-Vlasov equations with non-Lipschitz coefficients. J. Theoret. Probab., 34(3):1408–1425, 2021.
  • [17] Xiaojie Ding and Huijie Qiao. Stability for stochastic McKean-Vlasov equations with non-Lipschitz coefficients. SIAM J. Control Optim., 59(2):887–905, 2021.
  • [18] Gonçalo dos Reis, William Salkeld, and Julian Tugaut. Freidlin-Wentzell LDP in path space for McKean-Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab., 29(3):1487–1540, 2019.
  • [19] Shizan Fang and Tusheng Zhang. A study of a class of stochastic differential equations with non-Lipschitzian coefficients. Probab. Theory Related Fields, 132(3):356–390, 2005.
  • [20] Nicolas Fournier and Sylvie Méléard. A weak criterion of absolute continuity for jump processes: application to the Boltzmann equation. Bernoulli, 8(4):537–558, 2002.
  • [21] William R. P. Hammersley, David Šiška, and Ł ukasz Szpruch. Weak existence and uniqueness for McKean-Vlasov SDEs with common noise. Ann. Probab., 49(2):527–555, 2021.
  • [22] Wei Hong, Shihu Li, and Wei Liu. Strong convergence rates in averaging principle for slow-fast McKean-Vlasov SPDEs. J. Differential Equations, 316:94–135, 2022.
  • [23] Wei Hong, Shihu Li, Wei Liu, and Xiaobin Sun. Central limit type theorem and large deviation principle for multi-scale McKean-Vlasov SDEs. Probab. Theory Related Fields, 187(1-2):133–201, 2023.
  • [24] Minyi Huang, Peter E. Caines, and Roland P. Malhamé. Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ\epsilon-Nash equilibria. IEEE Trans. Automat. Control, 52(9):1560–1571, 2007.
  • [25] Minyi Huang, Roland P. Malhamé, and Peter E. Caines. Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst., 6(3):221–251, 2006.
  • [26] Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion processes, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, second edition, 1989.
  • [27] Pierre-Emmanuel Jabin and Zhenfu Wang. Quantitative estimates of propagation of chaos for stochastic systems with W1,W^{-1,\infty} kernels. Invent. Math., 214(1):523–591, 2018.
  • [28] M. Kac. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pages 171–197. Univ. California Press, Berkeley-Los Angeles, Calif., 1956.
  • [29] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
  • [30] Alexei Kulik and Michael Scheutzow. Well-posedness, stability and sensitivities for stochastic delay equations: a generalized coupling approach. Ann. Probab., 48(6):3041–3076, 2020.
  • [31] Jean-Michel Lasry and Pierre-Louis Lions. Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris, 343(9):619–625, 2006.
  • [32] Jean-Michel Lasry and Pierre-Louis Lions. Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris, 343(9):619–625, 2006.
  • [33] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Jpn. J. Math., 2(1):229–260, 2007.
  • [34] Mingjie Liang, Mateusz B. Majka, and Jian Wang. Exponential ergodicity for SDEs and McKean-Vlasov processes with Lévy noise. Ann. Inst. Henri Poincaré Probab. Stat., 57(3):1665–1701, 2021.
  • [35] Wei Liu, Liming Wu, and Chaoen Zhang. Long-time behaviors of mean-field interacting particle systems related to McKean-Vlasov equations. Comm. Math. Phys., 387(1):179–214, 2021.
  • [36] Zhenxin Liu and Jun Ma. Existence, uniqueness and exponential ergodicity under Lyapunov conditions for McKean-Vlasov SDEs with Markovian switching. J. Differential Equations, 337:138–167, 2022.
  • [37] H. P. McKean, Jr. A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. U.S.A., 56:1907–1911, 1966.
  • [38] H. P. McKean, Jr. Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), volume Session 7 of Lecture Series in Differential Equations, pages 41–57. Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, Arlington, VA, 1967.
  • [39] Michael Röckner, Xiaobin Sun, and Yingchao Xie. Strong convergence order for slow-fast McKean-Vlasov stochastic differential equations. Ann. Inst. Henri Poincaré Probab. Stat., 57(1):547–576, 2021.
  • [40] Michael Röckner and Xicheng Zhang. Well-posedness of distribution dependent SDEs with singular drifts. Bernoulli, 27(2):1131–1158, 2021.
  • [41] Michael Scheutzow. Periodic behavior of the stochastic Brusselator in the mean-field limit. Probab. Theory Relat. Fields, 72(3):425–462, 1986.
  • [42] Armen Shirikyan. Law of large numbers and central limit theorem for randomly forced PDE’s. Probab. Theory Related Fields, 134(2):215–247, 2006.
  • [43] Alain-Sol Sznitman. Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal., 56(3):311–336, 1984.
  • [44] Alain-Sol Sznitman. Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—1989, volume 1464 of Lecture Notes in Math., pages 165–251. Springer, Berlin, 1991.
  • [45] Feng-Yu Wang. Distribution dependent SDEs for Landau type equations. Stochastic Process. Appl., 128(2):595–621, 2018.
  • [46] Feng-Yu Wang. Distribution dependent reflecting stochastic differential equations. Sci. China Math., 66(11):2411–2456, 2023.
  • [47] Feng-Yu Wang. Exponential ergodicity for non-dissipative McKean-Vlasov SDEs. Bernoulli, 29(2):1035–1062, 2023.
  • [48] Feng-Yu Wang. Exponential ergodicity for singular reflecting McKean-Vlasov SDEs. Stochastic Process. Appl., 160:265–293, 2023.
  • [49] Ya Wang, Fuke Wu, George Yin, and Chao Zhu. Stochastic functional differential equations with infinite delay under non-Lipschitz coefficients: existence and uniqueness, Markov property, ergodicity, and asymptotic log-Harnack inequality. Stochastic Process. Appl., 149:1–38, 2022.
  • [50] Xinping Zhou, Jiamin Xing, Xiaomeng Jiang, and Yong Li. Periodic solutions in distribution of mean-field stochastic differential equations. J. Stat. Phys., 190(2):Paper No. 31, 34, 2023.