This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

McKean SDEs with singular coefficients

Elena Issoglio and Francesco Russo Dipartimento di Matematica ‘G. Peano’, Universitá di Torino [email protected] Unité de Mathématiques appliquées, ENSTA Paris, Institut Polytechnique de Paris [email protected]
(Date: 26th June 2022)
Abstract.

The paper investigates existence and uniqueness for a stochastic differential equation (SDE) depending on the law density of the solution, involving a Schwartz distribution. Those equations, known as McKean SDEs, are interpreted in the sense of a suitable singular martingale problem. A key tool used in the investigation is the study of the corresponding Fokker-Planck equation.

Key words and phrases. Stochastic differential equations; distributional drift; McKean; Martingale problem.

2020 MSC. 60H10; 60H30; 35C99; 35D99; 35K10.

1. Introduction

In this paper we are concerned with the study of singular McKean SDEs of the form

{Xt=X0+0tF(v(s,Xs))b(s,Xs)ds+Wtv(t,) is the law density of Xt,\left\{\begin{array}[]{l}X_{t}=X_{0}+\int_{0}^{t}F(v(s,X_{s}))b(s,X_{s})\mathrm{d}s+W_{t}\vspace{5pt}\\ v(t,\cdot)\text{ is the law density of }X_{t},\end{array}\right. (1)

for some given initial condition X0X_{0} with density v0v_{0}. The terminology McKean refers to the fact that the coefficient of the SDE depends on the law of the solution process itself, while singular reflects the fact that one of the coefficients is a Schwartz distribution. The main aim of this paper is to solve the singular McKean problem (1), that is, to define rigorously the meaning of equation (1) and to find a (unique) solution to the equation. The key novelty is the Schwartz distributional nature of the drift, which is encoded in the term bb.

The problem is dd-dimensional, in particular the process XX takes values in d\mathbb{R}^{d}, the function FF is F:d×nF:\mathbb{R}\to\mathbb{R}^{d\times n}, the term bb is formally b:[0,T]×dnb:[0,T]\times\mathbb{R}^{d}\to\mathbb{R}^{n} and WW is a dd-dimensional Brownian motion, where n,dn,d are two integers. We assume that b(t,)𝒞(β)+(n)b(t,\cdot)\in\mathcal{C}^{(-\beta)+}(\mathbb{R}^{n}) for some 0<β<1/20<\beta<1/2 (see below for the definition of Besov spaces 𝒞β(n)\mathcal{C}^{-\beta}(\mathbb{R}^{n})), which means that b(t,)b(t,\cdot) is a Schwartz distribution and thus the term b(t,Xt)b(t,X_{t}), as well as its product with FF, are only formal at this stage. The function FF is nonlinear.

The term (s,x,v)F(v(s,x))b(s,x)(s,x,v)\mapsto F(v(s,x))b(s,x) in equation (1) is a special case of a general drift (s,x,v)f(s,x,v)(s,x,v)\mapsto f(s,x,v). When ff is a function, equation (1) was studied by several authors. For example [23] studies existence and uniqueness of the solution under several regularity assumptions on the drift, while [26] requires ff to be Lipschitz-continuous with respect to the variable vv, uniformly in time and space, and measurable with respect to time and space. We also mention [2], where the authors obtain existence of the solution when assuming that the drift is a measurable function. For other past contributions see [22].

Different settings of McKean-Vlasov problems have been considered by other authors where the pointwise dependence on the density is replaced by a smoother dependence on the law, typically of Wasserstein type, and the Lipschitz property for the coefficients has been relaxed. From this perspective, the equations are not singular in our sense. For example in [9] the author considers McKean-Vlasov equations with coefficients bb and σ\sigma which depend on the law of the process in a relatively smooth way, but are Hölder-continuous in time and space. Later on in [15] the authors considered SDEs where both the drift and the diffusion coefficient are of McKean type, with a Wasserstein dependence on the law, and where the drift satisfies a Krylov-Röckner LpL^{p}-LqL^{q}-type dependence. Independently [27] considered in particular SDEs with a McKean drift of the type tdb(Xt,y)μXt(dy)t\mapsto\int_{\mathbb{R}^{d}}b(X_{t},y)\mu_{X_{t}}(dy) where μXt\mu_{X_{t}} is the law of XtX_{t}, and bb is some measurable function and σ=2\sigma=\sqrt{2}. In [16], the authors study McKean-Vlasov SDEs with drift discontinuous under Wasserstein distance.

In the literature we also find some contributions on (1) with F1F\equiv 1, i.e. when there is no dependence on the law vv but the drift bb is a Schwartz distribution. In this case equation (1) becomes an SDE with singular drift. Ordinary SDEs with distributional drift were investigated by several authors, starting from [13, 12, 3, 28] in the one-dimensional case. In the multi-dimensional case it was studied by [11] with bb being a Schwartz distribution living in a fractional Sobolev space of negative order (up to 12)-\tfrac{1}{2}). Afterwards, [5] extended the study to a smaller negative order (up to 23-\tfrac{2}{3}) and formulated the problem as a martingale problem. We also mention [21], where the singular SDE is studied as a martingale problem, with the same setting as in the present paper (in particular the drift belongs to a negative Besov space rather than a fractional Sobolev space). Backwards SDEs with similar singular coefficients have also been studied, see [19, 20].

The main analytical tool in the works cited above is an associated singular PDE (either Kolmogorov or Fokker-Planck). In the McKean case, the relevant PDE associated to equation (1) is the nonlinear Fokker-Planck equation

{tv=12Δvdiv(F~(v)b)v(0)=v0,\left\{\begin{array}[]{l}\partial_{t}v=\frac{1}{2}\Delta v-\text{div}(\tilde{F}(v)b)\\ v(0)=v_{0},\end{array}\right. (2)

where

F~(v):=vF(v).\tilde{F}(v):=vF(v). (3)

PDEs with similar (ir)regular coefficients were studied in the past, see for example [11, 17] for the study of singular Kolmogorov equations. One can then use results on existence, uniqueness and continuity of the solution to the PDE (e.g. with respect to the initial condition and the coefficients) to infer results about the stochastic equation. For example in [11], the authors use the singular Kolmogorov PDE to define the meaning of the solution to the SDE and find a unique solution.

Let us remark that the PDEs mentioned above are a classical tool in the study of McKean equations when the dependence on the law density of the process is pointwise, which is the case in the present paper where we have F(v(t,x))F(v(t,x)). There is, however, a large body of literature that studies McKean equations where the drift depends on the law more regularly, typically it is assumed to be Lipschitz-continuous with respect to the Wasserstein metric. In this case the McKean equation is treated with different techniques than the ones explained above, in particular it is treated with probabilistic tools. This is nowadays a well-known approach, for more details see for example the recent books by Carmona and Delarue [6, 7], see also [25, 24].

Our contribution to the literature is twofold. The first and main novel result concerns the notion of solution to the singular McKean equation (1) (introduced in Definition 6.2) and its existence and uniqueness (proved in Theorem 6.5). The second contribution is the study of the singular Fokker-Plank equation (2), in particular we find a unique solution vC([0,T];Cβ+)v\in C([0,T];C^{\beta+}) in the sense of Schwartz distributions, see Theorem 3.8 for existence and uniqueness.

The paper is organised as follows. In Section 2 we introduce the notation and recall some useful results on semigroups and Besov spaces. We also recall briefly some results on the singular martingale problem. In Section 3 we study the singular Fokker-Planck PDE (2). Then we consider a mollified version of the PDE and the SDE in Sections 4 and 5, respectively. Finally in Section 6 we use the mollified PDEs and SDEs and their limits to study (1) and we prove our main theorem of existence and uniqueness of a solution to (1). In Appendix A we recall a useful fractional Gronwall’s inequality. In Appendix B we show a characterization of continuity and compactness in inductive spaces.

2. Setting and useful results

2.1. Notation and definitions

Let us use the notation C0,1:=C0,1([0,T]×d)C^{0,1}:=C^{0,1}([0,T]\times\mathbb{R}^{d}) to indicate the space of jointly continuous functions with gradient in xx uniformly continuous in (t,x)(t,x). By a slight abuse of notation we use the same notation C0,1C^{0,1} for functions which are d\mathbb{R}^{d}-valued. When f:ddf:\mathbb{R}^{d}\to\mathbb{R}^{d} is differentiable, we denote by f\nabla f the matrix given by (f)i,j=ifj(\nabla f)_{i,j}=\partial_{i}f_{j}. When f:df:\mathbb{R}^{d}\to\mathbb{R} we denote the Hessian matrix of ff by Hess(f)(f).

We denote by 𝒮=𝒮(d)\mathcal{S}=\mathcal{S}(\mathbb{R}^{d}) the space of Schwartz functions on d\mathbb{R}^{d} and by 𝒮=𝒮(d)\mathcal{S}^{\prime}=\mathcal{S}^{\prime}(\mathbb{R}^{d}) the space of Schwartz distributions. For γ\gamma\in\mathbb{R} we denote by 𝒞γ=𝒞γ(d)\mathcal{C}^{\gamma}=\mathcal{C}^{\gamma}(\mathbb{R}^{d}) the Besov space or Hölder-Zygmund space and by γ\|\cdot\|_{\gamma} its norm, more precisely

𝒞γ:={f𝒮:fγ:=supj2jγ1(φjf)},\mathcal{C}^{\gamma}:=\left\{f\in\mathcal{S}^{\prime}:\|f\|_{\gamma}:=\sup_{j\in\mathbb{N}}2^{j\gamma}\|\mathcal{F}^{-1}(\varphi_{j}\mathcal{F}f)\|_{\infty}\right\},

where φj\varphi_{j} is a partition of unity and \mathcal{F} denotes the Fourier transform. For more details see for example [1, Section 2.7]. We recall that for γ<γ\gamma^{\prime}<\gamma one has 𝒞γ𝒞γ\mathcal{C}^{\gamma}\subset\mathcal{C}^{\gamma^{\prime}}. If γ+\gamma\in\mathbb{R}^{+}\setminus\mathbb{N} then the space coincides with the classical Hölder space of functions which are γ\left\lfloor{\gamma}\right\rfloor-times differentiable and such that the γ\left\lfloor{\gamma}\right\rfloorth derivative is (γγ)(\gamma-\left\lfloor{\gamma}\right\rfloor)-Hölder continuous. For example if γ(0,1)\gamma\in(0,1) the classical γ\gamma-Hölder norm

f+supxy,|xy|<1|f(x)f(y)||xy|γ,\|f\|_{\infty}+\sup_{x\neq y,|x-y|<1}\frac{|f(x)-f(y)|}{|x-y|^{\gamma}}, (4)

is an equivalent norm in 𝒞γ\mathcal{C}^{\gamma}. With an abuse of notation we use fγ\|f\|_{\gamma} to denote (4). For this and for more details see, for example, [29, Chapter 1] or [1, Section 2.7]. Notice that we use the same notation 𝒞γ\mathcal{C}^{\gamma} to indicate \mathbb{R}-valued functions but also d\mathbb{R}^{d} or d×d\mathbb{R}^{d\times d}-valued functions. It will be clear from the context which space is needed.

We denote by CT𝒞γC_{T}\mathcal{C}^{\gamma} the space of continuous functions on [0,T][0,T] taking values in 𝒞γ\mathcal{C}^{\gamma}, that is CT𝒞γ:=C([0,T];𝒞γ)C_{T}\mathcal{C}^{\gamma}:=C([0,T];\mathcal{C}^{\gamma}). For any given γ\gamma\in\mathbb{R} we denote by 𝒞γ+\mathcal{C}^{\gamma+} and 𝒞γ\mathcal{C}^{\gamma-} the spaces given by

𝒞γ+:=α>γ𝒞α,𝒞γ:=α<γ𝒞α.\mathcal{C}^{\gamma+}:=\cup_{\alpha>\gamma}\mathcal{C}^{\alpha},\qquad\mathcal{C}^{\gamma-}:=\cap_{\alpha<\gamma}\mathcal{C}^{\alpha}.

Notice that 𝒞γ+\mathcal{C}^{\gamma+} is an inductive space. We will also use the spaces CTCγ+:=C([0,T];𝒞γ+)C_{T}C^{\gamma+}:=C([0,T];\mathcal{C}^{\gamma+}), recalling that fCTCγ+f\in C_{T}C^{\gamma+} if and only if there exists α>γ\alpha>\gamma such that fCTCαf\in C_{T}C^{\alpha}, see Lemma B.2 in Appendix B for a proof of the latter fact.

Similarly, we use the metric space CTCγ:=C([0,T];𝒞γ)C_{T}C^{\gamma-}:=C([0,T];\mathcal{C}^{\gamma-}), meaning that fCTCγf\in C_{T}C^{\gamma-} if and only if for any α<γ\alpha<\gamma we have fCTCαf\in C_{T}C^{\alpha}. Notice that if ff is continuous and such that fCT𝒞0+\nabla f\in C_{T}\mathcal{C}^{0+} then fC0,1f\in C^{0,1}.

Let (Pt)t(P_{t})_{t} denote the semigroup generated by 12Δ\tfrac{1}{2}\Delta on 𝒮\mathcal{S}, in particular for all ϕ𝒮\phi\in\mathcal{S} we define (Ptϕ)(x):=dpt(xy)ϕ(y)dy(P_{t}\phi)(x):=\int_{\mathbb{R}^{d}}p_{t}(x-y)\phi(y)\mathrm{d}y, where the kernel pp is the usual heat kernel

pt(z)=1(2πt)d/2exp{|z|2t}.p_{t}(z)=\frac{1}{(2\pi t)^{d/2}}\exp\{-\frac{|z|^{2}}{t}\}. (5)

It is easy to see that Pt:𝒮𝒮P_{t}:\mathcal{S}\to\mathcal{S}. Moreover we can extend it to 𝒮\mathcal{S}^{\prime} by dual pairing (and we denote it with the same notation for simplicity). One has Ptψ,ϕ=ψ,Ptϕ\langle P_{t}\psi,\phi\rangle=\langle\psi,P_{t}\phi\rangle for each ϕ𝒮\phi\in\mathcal{S} and ψ𝒮\psi\in\mathcal{S}^{\prime}, using the fact that the kernel is symmetric.

Lemma 2.1.

Let g:[0,T]𝒮(d)g:[0,T]\to\mathcal{S}^{\prime}(\mathbb{R}^{d}) be continuous and w0𝒮(d)w_{0}\in\mathcal{S}^{\prime}(\mathbb{R}^{d}). The unique (weak) solution of

{tw=12Δw+gw(0)=w0\left\{\begin{array}[]{l}\partial_{t}w=\frac{1}{2}\Delta w+g\\ w(0)=w_{0}\end{array}\right.

is given by

Ptw0+0tPtsg(s)ds,t[0,T].P_{t}w_{0}+\int_{0}^{t}P_{t-s}g(s)\mathrm{d}s,\quad t\in[0,T]. (6)

By weak solution we mean, for every φ𝒮(d)\varphi\in\mathcal{S}(\mathbb{R}^{d}) and t[0,T]t\in[0,T] we have w(t),φ=w0,φ+0tw(s),12Δφds+0tg(s),φds\langle w(t),\varphi\rangle=\langle w_{0},\varphi\rangle+\int_{0}^{t}\langle w(s),\frac{1}{2}\Delta\varphi\rangle\mathrm{d}s+\int_{0}^{t}\langle g(s),\varphi\rangle\mathrm{d}s.

Proof.

The fact that (6) is a solution is done by inspection. The uniqueness is a consequence of Fourier transform. ∎

We denote by Γ\Gamma the usual Gamma function defined as Γ(θ)=0tθ1etdt\Gamma(\theta)=\int_{0}^{\infty}t^{\theta-1}e^{-t}\mathrm{d}t for θ>0\theta>0.

In the whole article the letter cc or CC will denote a generic constant which may change from line to line.

2.2. Some useful results

In the sections below, we are interested in the action of PtP_{t} on elements of Besov spaces 𝒞γ\mathcal{C}^{\gamma}. These estimates are known as Schauder’s estimates (for a proof we refer to [8, Lemma 2.5], see also [14] for similar results).

Lemma 2.2 (Schauder’s estimates).

Let f𝒞γf\in\mathcal{C}^{\gamma} for some γ\gamma\in\mathbb{R}. Then for any θ0\theta\geq 0 there exists a constant cc such that

Ptfγ+2θctθfγ,\|P_{t}f\|_{\gamma+2\theta}\leq ct^{-\theta}\|f\|_{\gamma}, (7)

for all t>0t>0.

Moreover let θ(0,1)\theta\in(0,1). For f𝒞γ+2θf\in\mathcal{C}^{\gamma+2\theta} we have

Ptffγctθfγ+2θ.\|P_{t}f-f\|_{\gamma}\leq ct^{\theta}\|f\|_{\gamma+2\theta}. (8)

Notice that from (8) it readily follows that if f𝒞γ+2θf\in\mathcal{C}^{\gamma+2\theta} for some 0<θ<10<\theta<1, then for t>s>0t>s>0 we have

PtfPsfγc(ts)θfγ+2θ.\|P_{t}f-P_{s}f\|_{\gamma}\leq c(t-s)^{\theta}\|f\|_{\gamma+2\theta}. (9)

In other words, this means that if f𝒞γ+2θf\in\mathcal{C}^{\gamma+2\theta} then PfCT𝒞γP_{\cdot}f\in C_{T}\mathcal{C}^{\gamma} (and in fact it is θ\theta-Hölder continuous in time). We also recall that Bernstein’s inequalities hold (see [1, Lemma 2.1] and [14, Appendix A.1]), that is for γ\gamma\in\mathbb{R} there exists a constant c>0c>0 such that

gγcgγ+1,\|\nabla g\|_{\gamma}\leq c\|g\|_{\gamma+1}, (10)

for all g𝒞1+γg\in\mathcal{C}^{1+\gamma}. Using Schauder’s and Bernstein’s inequalities we can easily obtain a useful estimate on the gradient of the semigroup, as we see below.

Lemma 2.3.

Let γ\gamma\in\mathbb{R} and θ(0,1)\theta\in(0,1). If g𝒞γg\in\mathcal{C}^{\gamma} then for all t>0t>0 we have (Ptg)𝒞γ+2θ1\nabla(P_{t}g)\in\mathcal{C}^{\gamma+2\theta-1} and

(Ptg)γ+2θ1ctθgγ.\|\nabla(P_{t}g)\|_{\gamma+2\theta-1}\leq ct^{-\theta}\|g\|_{\gamma}. (11)

The following is an important estimate which allows to define the so called pointwise product between certain distributions and functions, which is based on Bony’s estimates. For details see [4] or [14, Section 2.1]. Let f𝒞αf\in\mathcal{C}^{\alpha} and g𝒞βg\in\mathcal{C}^{-\beta} with αβ>0\alpha-\beta>0 and α,β>0\alpha,\beta>0. Then the pointwise product fgf\,g is well-defined as an element of 𝒞β\mathcal{C}^{-\beta} and there exists a constant c>0c>0 such that

fgβcfαgβ.\|f\,g\|_{-\beta}\leq c\|f\|_{\alpha}\|g\|_{-\beta}. (12)

Moreover if ff and gg are continuous functions defined on [0,T][0,T] with values in the above Besov spaces, one can easily show that the product is also continuous with values in 𝒞β\mathcal{C}^{-\beta}, and

fgCT𝒞βcfCT𝒞αgCT𝒞β.\|f\,g\|_{C_{T}\mathcal{C}^{-\beta}}\leq c\|f\|_{C_{T}\mathcal{C}^{\alpha}}\|g\|_{C_{T}\mathcal{C}^{-\beta}}. (13)

2.3. Assumptions

We now collect the assumptions on the distributional term bb, the nonlinearity FF and F~\tilde{F} (see (3)) and on the initial condition v0v_{0} that will be used later on in order for PDE (2) to be well-defined and for the McKean-Vlasov problem (1) to be solved.

Assumption 1.

Let 0<β<1/20<\beta<1/2 and bCT𝒞(β)+b\in C_{T}\mathcal{C}^{(-\beta)+}. In particular bCT𝒞βb\in C_{T}\mathcal{C}^{-\beta}.

In the following result we construct a sequence bnb^{n} using the heat semigroup and prove certain properties.

Proposition 2.4.

Let bb as in Assumption 1. Let us define a sequence (bn)(b^{n}) such that, for any fixed t[0,T]t\in[0,T] and for all n1n\geq 1 we have

bn(t,):=ϕnb(t,),b^{n}(t,\cdot):=\phi_{n}\ast b(t,\cdot),

where ϕn(x):=p1/n(x)\phi_{n}(x):=p_{1/n}(x) and pp is the Gaussian kernel defined in (5).

  • (i)

    For each nn, bnb^{n} is globally bounded, together with all its space derivatives.

  • (ii)

    For each nn, tbn(t,)t\mapsto b^{n}(t,\cdot) is continuous in 𝒞γ\mathcal{C}^{\gamma} for all γ>0\gamma>0. In particular bnCT𝒞(β)+b^{n}\in C_{T}\mathcal{C}^{(-\beta)+}.

  • (iii)

    We have the convergence bnbb^{n}\to b in CT𝒞βC_{T}\mathcal{C}^{-\beta}.

Proof.

If ψ𝒮\psi\in\mathcal{S}^{\prime} then ϕnψ=P1/nψ\phi_{n}\ast\psi=P_{1/{n}}\psi, thus we have bn(t,)=P1/nb(t,)b^{n}(t,\cdot)=P_{1/{n}}b(t,\cdot).

  • (i)

    We have

    P1/nb(t)γc(1n)γ+β2b(t)β,\|P_{1/{n}}b(t)\|_{\gamma}\leq c\left(\frac{1}{n}\right)^{-\frac{\gamma+\beta}{2}}\|b(t)\|_{-\beta},

    for any γ>0\gamma>0 by Lemma 2.2.

  • (ii)

    For any t,s[0,T]t,s\in[0,T] we have

    bn(t,)bn(s,)γ=\displaystyle\|b^{n}(t,\cdot)-b^{n}(s,\cdot)\|_{\gamma}= P1/nb(t,)P1/nb(s,)γ\displaystyle\|P_{1/n}b(t,\cdot)-P_{1/n}b(s,\cdot)\|_{\gamma}
    =\displaystyle= P1/n(b(t,)b(s,))γ\displaystyle\|P_{1/n}(b(t,\cdot)-b(s,\cdot))\|_{\gamma}
    \displaystyle\leq c(1n)γ+β2b(t,)b(s,)β,\displaystyle c\left(\frac{1}{n}\right)^{-\frac{\gamma+\beta}{2}}\|b(t,\cdot)-b(s,\cdot)\|_{-\beta},

    having used estimate (7) in Lemma 2.2 (with θ=γ+β2\theta=\frac{\gamma+\beta}{2}). The conclusion now follows.

  • (iii)

    For t[0,T]t\in[0,T] we have, using (8) in Lemma 2.2

    bn(t,)b(t,)β=\displaystyle\|b^{n}(t,\cdot)-b(t,\cdot)\|_{-\beta}= P1/nb(t,)b(t,)β\displaystyle\|P_{1/n}b(t,\cdot)-b(t,\cdot)\|_{-\beta}
    \displaystyle\leq c(1n)ββ2b(t,)β,\displaystyle c\left(\frac{1}{n}\right)^{\frac{\beta-\beta^{\prime}}{2}}\|b(t,\cdot)\|_{-\beta^{\prime}},

    for some β<β\beta^{\prime}<\beta such that b𝒞βb\in\mathcal{C}^{-\beta^{\prime}}, which exists by Assumption 1. Now we take the sup over t[0,T]t\in[0,T] and we have bnbCT𝒞β0\|b^{n}-b\|_{C_{T}\mathcal{C}^{-\beta}}\to 0 as nn\to\infty, since ββ>0\beta-\beta^{\prime}>0.

Assumption 2.

Let FF be Lipschitz and bounded.

Assumption 3.

Let F~(z):=zF(z)\tilde{F}(z):=zF(z) be globally Lipschitz.

We believe that Assumption 3 is unnecessary. Indeed by Assumption 2 one gets that F~\tilde{F} is locally Lipschitz with linear growth. This condition could be sufficient to show that a solution PDE (2) exists, for example using techniques similar to the ones appearing in [18, Proposition 3.1] and [26, Theorem 22]. However we assume here F~\tilde{F} to be Lipschitz to improve the readability of the paper.

Assumption 4.

Let v0𝒞β+v_{0}\in\mathcal{C}^{\beta+}.

Assumption 5.

Let v0v_{0} be a bounded probability density.

2.4. The singular Martingale Problem

We conclude this section with a short recap of useful results from [21], where the authors consider the Martingale Problem for SDEs of the form

Xt=X0+0tB(s,Xs)ds+Wt,X0μ,X_{t}=X_{0}+\int_{0}^{t}B(s,X_{s})\mathrm{d}s+W_{t},\quad X_{0}\sim\mu, (14)

where BB satisfies Assumption 1 (with b=Bb=B) and μ\mu is a given probability measure. Notice that this SDE can be considered as the linear counterpart of the McKean-Vlasov problem (1), which can be obtained for example by ‘fixing’ a suitable function vv and considering B=F(v)bB=F(v)b in the SDE in (1).

First of all, let us recall the definition of the operator \mathcal{L} associated to SDE (14) given in [21]. The operator \mathcal{L} is defined as

:𝒟0{𝒮-valued integrable functions}ff:=f˙+12Δf+fB,\begin{array}[]{lcll}\mathcal{L}:&\mathcal{D}_{\mathcal{L}}^{0}&\to&\{\mathcal{S}^{\prime}\text{-valued integrable functions}\}\\ &f&\mapsto&\mathcal{L}f:=\dot{f}+\frac{1}{2}\Delta f+\nabla f\,B,\end{array} (15)

where

𝒟0:=CTD𝒞β+C1([0,T];𝒮),\mathcal{D}_{\mathcal{L}}^{0}:=C_{T}D\mathcal{C}^{\beta+}\cap C^{1}([0,T];\mathcal{S}^{\prime}),

and D𝒞γ={h:d differentiable such thath𝒞γ}D\mathcal{C}^{\gamma}=\{h:\mathbb{R}^{d}\to\mathbb{R}\text{ differentiable such that}\nabla h\in\mathcal{C}^{\gamma}\}. Here f:[0,T]×df:[0,T]\times\mathbb{R}^{d}\to\mathbb{R} and the function f˙:[0,T]𝒮\dot{f}:[0,T]\to\mathcal{S}^{\prime} is the time-derivative. Note also that fB\nabla f\,B is well-defined using (12) and Assumption 1. The Laplacian Δ\Delta is intended in the sense of distributions. Notice that the identity functions idi(x)=xi\text{id}_{i}(x)=x_{i} for any i=1,,di=1,\ldots,d belong to 𝒟0\mathcal{D}_{\mathcal{L}}^{0} and we have (idi)=bi{\mathcal{L}}(\text{id}_{i})=b_{i}.

Next we give the definition of solution to the martingale problem in [21, Definition 4.3]: a couple (X,)(X,\mathbb{P}) is a solution to the martingale problem with distributional drift BB and initial condition μ\mu (for shortness, solution of MP with drift BB and i.c. μ\mu) if and only if for every f𝒟f\in\mathcal{D}_{\mathcal{L}}

f(t,Xt)f(0,X0)0t(f)(s,Xs)dsf(t,X_{t})-f(0,X_{0})-\int_{0}^{t}(\mathcal{L}f)(s,X_{s})\mathrm{d}s (16)

is a local martingale under \mathbb{P}. The domain 𝒟\mathcal{D}_{\mathcal{L}} is given by

𝒟:={f𝒞T𝒞(1+β)+:gCT𝒞¯c0+ such that f is a weak solution of f=g and f(T)𝒞¯c(1+β)+},\begin{array}[]{ll}\mathcal{D}_{\mathcal{L}}:=&\{f\in\mathcal{C}_{T}\mathcal{C}^{(1+\beta)+}:\exists g\in C_{T}\bar{\mathcal{C}}_{c}^{0+}\text{ such that }\\ &f\text{ is a weak solution of }\mathcal{L}f=g\text{ and }f(T)\in\bar{\mathcal{C}}_{c}^{(1+\beta)+}\},\end{array} (17)

where \mathcal{L} has been defined in (15), and the spaces 𝒞¯cγ+\bar{\mathcal{C}}_{c}^{\gamma+} are defined as 𝒞¯cγ+=α>γ𝒞¯cα\bar{\mathcal{C}}_{c}^{\gamma+}=\cup_{\alpha>\gamma}\bar{\mathcal{C}}_{c}^{\alpha} where 𝒞¯cα\bar{\mathcal{C}}_{c}^{\alpha} is the closure of compactly supported functions of 𝒞α{\mathcal{C}}^{\alpha} with respect to the norm of 𝒞α\mathcal{C}^{\alpha}. Finally we recall that fCT𝒞¯cγ+f\in C_{T}\bar{\mathcal{C}}_{c}^{\gamma+} if and only if there exists α>γ\alpha>\gamma such that fCT𝒞¯cαf\in C_{T}\bar{\mathcal{C}}_{c}^{\alpha}, by Remark B.3 part (ii). We say that the martingale problem with drift BB and i.c. μ\mu admits uniqueness if, whenever we have two solutions (X1,1)(X^{1},\mathbb{P}^{1}) and (X2,2)(X^{2},\mathbb{P}^{2}) with X0iμX^{i}_{0}\sim\mu, i=1,2i=1,2, then the law of X1X^{1} under 1\mathbb{P}^{1} equals the law of X2X^{2} under 2\mathbb{P}^{2}. With this definition at hand, we show in [21, Theorem 4.11] that MP admits existence and uniqueness.

3. Fokker-Planck singular PDE

This section is devoted to the study of the singular Fokker-Planck equation (2), recalled here for ease of reading

{tv=12Δvdiv(F~(v)b)v(0)=v0.\left\{\begin{array}[]{l}\partial_{t}v=\frac{1}{2}\Delta v-\text{div}(\tilde{F}(v)b)\\ v(0)=v_{0}.\end{array}\right.

After introducing the notions of solution for this PDE (weak and mild, which turns out to be equivalent, see Proposition 3.3), we will show that there exists a unique solution in Theorem 3.8 with Banach’s fixed point theorem.

Below we will need mapping properties of the function F~\tilde{F} when viewed as operator acting on 𝒞α\mathcal{C}^{\alpha}, for some α(0,1)\alpha\in(0,1). To this aim, we make a slight abuse of notation and denote by F~\tilde{F} the function when viewed as an operator, that is for f𝒞αf\in\mathcal{C}^{\alpha} we have F~(f):=F~(f())\tilde{F}(f):=\tilde{F}(f(\cdot)). We sometimes omit the brackets and write F~f\tilde{F}f in place of F~(f)\tilde{F}(f). The result below on F~\tilde{F} is taken from [18], Proposition 3.1 and equation (32).

Lemma 3.1 (Issoglio [18]).

Under Assumption 3 and if α(0,1)\alpha\in(0,1) then

  • F~:𝒞α𝒞α\tilde{F}:\mathcal{C}^{\alpha}\to\mathcal{C}^{\alpha} and for all f,g𝒞αf,g\in\mathcal{C}^{\alpha}

    F~fF~gαc(1+fα2+gα2)1/2fgα;\|\tilde{F}f-\tilde{F}g\|_{\alpha}\leq c(1+\|f\|_{\alpha}^{2}+\|g\|_{\alpha}^{2})^{1/2}\|f-g\|_{\alpha};
  • for all f𝒞αf\in\mathcal{C}^{\alpha}, F~fαc(1+fα)\|\tilde{F}f\|_{\alpha}\leq c(1+\|f\|_{\alpha}).

This mapping property allows us to define weak and mild solutions for the singular Fokker-Planck equation.

Definition 3.2.

Let Assumptions 1, 3 and 4 hold and let vCT𝒞β+v\in C_{T}\mathcal{C}^{\beta+}.

  • (i)

    We say that vv is a mild solution for the singular Fokker-Planck equation (2) if the integral equation

    v(t)=Ptv00tPts[div(F~(v(s))b(s))]ds,t[0,T]v(t)=P_{t}v_{0}-\int_{0}^{t}P_{t-s}[\text{{\em div}}(\tilde{F}(v(s))b(s))]\mathrm{d}s,\ t\in[0,T] (18)

    is satisfied.

  • (ii)

    We say that vv is a weak solution for the singular Fokker-Planck equation (2) if for all φ𝒮(d)\varphi\in\mathcal{S}(\mathbb{R}^{d}) and all t[0,T]t\in[0,T] we have

    φ,v(t)=\displaystyle\langle\varphi,v(t)\rangle= φ,v0+0t12Δφ,v(s)ds+0tφ,F~(v)(s)b(s)ds.\displaystyle\langle\varphi,v_{0}\rangle+\int_{0}^{t}\langle\frac{1}{2}\Delta\varphi,v(s)\rangle\mathrm{d}s+\int_{0}^{t}\langle\nabla\varphi,\tilde{F}(v)(s)b(s)\rangle\mathrm{d}s. (19)

Note that the term F~(v)(s)b(s)\tilde{F}(v)(s)b(s) appearing in both items is well-defined as an element of 𝒞β\mathcal{C}^{-\beta} thanks to (12) and Assumption 1 together with Lemma 3.1.

Proposition 3.3.

Let vCT𝒞β+v\in C_{T}\mathcal{C}^{\beta+}. The function vv is a weak solution of PDE (2) if and only if it is a mild solution.

Proof.

This is a consequence of Lemma 2.1 with g(s):=div(F~(v(s))b(s))g(s):=-\text{div}(\tilde{F}(v(s))b(s)). ∎

Let us denote by II the solution map for the mild solution of PDE (2), that is for vCT𝒞αv\in C_{T}\mathcal{C}^{\alpha} for some α(0,1)\alpha\in(0,1) we have

It(v):=Ptv00tPts[div(F~(v(s))b(s))]ds.I_{t}(v):=P_{t}v_{0}-\int_{0}^{t}P_{t-s}[\text{div}(\tilde{F}(v(s))b(s))]\mathrm{d}s.

Then a mild solution of (2) is a solution of v=I(v)v=I(v), in other words it is a fixed point of II.

We present now an a priori bound for mild solutions, if they exist.

Proposition 3.4.

Let Assumptions 1, 3 and 4 hold. Let α(β,1β)\alpha\in(\beta,1-\beta). If vCT𝒞αv\in C_{T}\mathcal{C}^{\alpha} is such that v=I(v)v=I(v), then we have

vCT𝒞αK,\|v\|_{C_{T}\mathcal{C}^{\alpha}}\leq K,

where KK is a constant depending on v0α,bCT𝒞β,T\|v_{0}\|_{\alpha},\|b\|_{C_{T}\mathcal{C}^{-\beta}},T. Moreover KK is an increasing function of bCT𝒞β\|b\|_{C_{T}\mathcal{C}^{-\beta}}.

Proof.

Let

Hs(v):=F~(v(s))b(s)H_{s}(v):=\tilde{F}(v(s))b(s) (20)

for brevity. Using Bernstein’s inequality (10) we get

divHs(v)β1i=1dxiHs(v)β1ci=1dHs(v)β=cdHs(v)β.\|\text{div}H_{s}(v)\|_{-\beta-1}\leq\sum_{i=1}^{d}\|\frac{\partial}{\partial x_{i}}H_{s}(v)\|_{-\beta-1}\leq c\sum_{i=1}^{d}\|H_{s}(v)\|_{-\beta}=cd\|H_{s}(v)\|_{-\beta}.

Then using the definition of HH from (20), pointwise product property (12) (since αβ>0\alpha-\beta>0) and Lemma 3.1 we have

divHs(v)β1cF~(v(s))αb(s)βc(1+v(s)α)b(s)β,\displaystyle\|\text{div}H_{s}(v)\|_{-\beta-1}\leq c\|\tilde{F}(v(s))\|_{\alpha}\|b(s)\|_{-\beta}\leq c(1+\|v(s)\|_{\alpha})\|b(s)\|_{-\beta}, (21)

where we recall that cc is now a constant that changes from line to line. Now using this, together with Schauder’s estimates (Lemma 2.2 with θ:=α+β+12\theta:=\tfrac{\alpha+\beta+1}{2}) and the fact that θ<1\theta<1, for fixed t[0,T]t\in[0,T], one obtains

v(t)α\displaystyle\|v(t)\|_{\alpha} Ptv0α+0tPts[divHs(v)]αds\displaystyle\leq\|P_{t}v_{0}\|_{\alpha}+\int_{0}^{t}\|P_{t-s}[\text{div}H_{s}(v)]\|_{\alpha}\mathrm{d}s
cv0α+0tc(ts)α+β+12divHs(v)β1ds\displaystyle\leq c\|v_{0}\|_{\alpha}+\int_{0}^{t}c(t-s)^{-\frac{\alpha+\beta+1}{2}}\|\text{div}H_{s}(v)\|_{-\beta-1}\mathrm{d}s
cv0α+0tc(ts)α+β+12(1+v(s)α)b(s)βds\displaystyle\leq c\|v_{0}\|_{\alpha}+\int_{0}^{t}c(t-s)^{-\frac{\alpha+\beta+1}{2}}(1+\|v(s)\|_{\alpha})\|b(s)\|_{-\beta}\mathrm{d}s
cv0α+cbCT𝒞β0t(ts)α+β+12(1+v(s)α)ds\displaystyle\leq c\|v_{0}\|_{\alpha}+c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\int_{0}^{t}(t-s)^{-\frac{\alpha+\beta+1}{2}}(1+\|v(s)\|_{\alpha})\mathrm{d}s
cv0α+cbCT𝒞βT1αβ2+cbCT𝒞β0t(ts)α+β+12v(s)αds.\displaystyle\leq c\|v_{0}\|_{\alpha}+c\|b\|_{C_{T}\mathcal{C}^{-\beta}}T^{\frac{1-\alpha-\beta}{2}}+c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\int_{0}^{t}(t-s)^{-\frac{\alpha+\beta+1}{2}}\|v(s)\|_{\alpha}\mathrm{d}s.

Now by a generalised Gronwall’s inequality (see Lemma A.1) we have

v(t)α\displaystyle\|v(t)\|_{\alpha} [cv0α+cbCT𝒞βT1αβ2]Eη(cbCT𝒞βΓ(η)tη),\displaystyle\leq[c\|v_{0}\|_{\alpha}+c\|b\|_{C_{T}\mathcal{C}^{-\beta}}T^{\frac{1-\alpha-\beta}{2}}]E_{\eta}(c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma(\eta)t^{\eta}),

with η=α+β+12+1=1αβ2>0\eta={-\tfrac{\alpha+\beta+1}{2}+1}=\frac{1-\alpha-\beta}{2}>0 and where EηE_{\eta} is the Mittag-Leffler function, see Lemma A.1. Now taking the sup over t[0,T]t\in[0,T] and using the fact that EηE_{\eta} is increasing we get

v\displaystyle\|v CT𝒞α\displaystyle\|_{C_{T}\mathcal{C}^{\alpha}}
[cv0α+cbCT𝒞βT1αβ2]Eη(cbCT𝒞βΓ(1αβ2)T1αβ2)\displaystyle\leq\left[c\|v_{0}\|_{\alpha}+c\|b\|_{C_{T}\mathcal{C}^{-\beta}}T^{\frac{1-\alpha-\beta}{2}}\right]E_{\eta}\left(c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma\left(\frac{1-\alpha-\beta}{2}\right)T^{\frac{1-\alpha-\beta}{2}}\right)
[cv0α+cbCT𝒞βT]Eη(cbCT𝒞βΓ(1)T)\displaystyle\leq\left[c\|v_{0}\|_{\alpha}+c\|b\|_{C_{T}\mathcal{C}^{-\beta}}T\right]E_{\eta}\left(c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma(1)T\right)
=:K.\displaystyle=:K.

This concludes the proof. ∎

We are interested in finding a mild solution of (2) according to Definition 3.2, in the space CT𝒞β+C_{T}\mathcal{C}^{\beta+}. Let us denote by w(t):=v(t)Ptv0w(t):=v(t)-P_{t}v_{0} and by

Jt(w):=0tPts[div(F~(w(s)+Psv0)b(s))]ds.J_{t}(w):=\int_{0}^{t}P_{t-s}[\text{div}(\tilde{F}(w(s)+P_{s}v_{0})b(s))]\mathrm{d}s. (22)

Then the mild formulation (18) is equivalent to

w(t)=Jt(w),w(t)=J_{t}(w), (23)

since Ptv0CT𝒞β+P_{t}v_{0}\in C_{T}\mathcal{C}^{\beta+}.

Then a mild solution of (2) is v(t)=w(t)+Ptv0v(t)=w(t)+P_{t}v_{0} where ww is a solution of (23), in other words ww is a fixed point of the map JJ. For any α\alpha\in\mathbb{R} we introduce a family of equivalent norms in CT𝒞αC_{T}\mathcal{C}^{\alpha} given by

wCT𝒞α(ρ):=supt[0,T]eρtw(t)α.\|w\|^{(\rho)}_{C_{T}\mathcal{C}^{\alpha}}:=\sup_{t\in[0,T]}e^{-\rho t}\|w(t)\|_{\alpha}.

Consider then the ρ\rho-ball in CT𝒞αC_{T}\mathcal{C}^{\alpha} of radius MM, given by

Eρ,Mα:={vCT𝒞α:vCT𝒞α(ρ)M}.E^{\alpha}_{\rho,M}:=\{v\in C_{T}\mathcal{C}^{\alpha}:\|v\|^{(\rho)}_{C_{T}\mathcal{C}^{\alpha}}\leq M\}. (24)

Notice that these sets are closed with respect to the topology of CT𝒞αC_{T}\mathcal{C}^{\alpha}, hence they are F-spaces, see [10, Chapter 2.1], with respect to the metric topology of CT𝒞αC_{T}\mathcal{C}^{\alpha}. The ρ\rho-equivalent norm generates the ρ\rho-equivalent metric with respect to the metric of CT𝒞αC_{T}\mathcal{C}^{\alpha}, given by

dρ(w,z):=w(t)z(t)CT𝒞α(ρ),ρ0,\mathrm{d}_{\rho}(w,z):=\|w(t)-z(t)\|^{(\rho)}_{C_{T}\mathcal{C}^{\alpha}},\qquad\forall\rho\geq 0, (25)

for any w,zCT𝒞αw,z\in C_{T}\mathcal{C}^{\alpha}. Let ρ0>0\rho_{0}>0 and M0>0M_{0}>0 be chosen arbitrarily. The (Eρ0,M0α,dρ)(E^{\alpha}_{\rho_{0},M_{0}},\mathrm{d}_{\rho}) is again an F-space.

In the proofs below we will also use the notation

Gs(w):=F~(w(s)+Psv0)b(s)G_{s}(w):=\tilde{F}(w(s)+P_{s}v_{0})b(s) (26)

for brevity. In order to show that JJ is a contraction, we first show that it maps balls into balls.

Proposition 3.5.

Let Assumptions 1 and 3 hold. Let v0𝒞αv_{0}\in\mathcal{C}^{\alpha} for some α(β,1β)\alpha\in(\beta,1-\beta). Then there exists ρ0\rho_{0} (depending on b,α\|b\|,\alpha and β\beta) and MM_{*} (depending on b,α\|b\|,\alpha, β\beta, ρ0\rho_{0} and v0α\|v_{0}\|_{\alpha}) such that

J:Eρ0,M0αEρ0,M0α,J:E^{\alpha}_{\rho_{0},M_{0}}\to E^{\alpha}_{\rho_{0},M_{0}}, (27)

for any M0MM_{0}\geq M_{*}, where Eρ0,M0αE^{\alpha}_{\rho_{0},M_{0}} have been defined in (24).

Proof.

Let wEρ0,M0αCT𝒞αw\in E^{\alpha}_{\rho_{0},M_{0}}\subset C_{T}\mathcal{C}^{\alpha}, for some ρ0,M0\rho_{0},M_{0} to be specified later. Using the definition of JJ, Schauder’s estimate for the semigroup (Lemma 2.2) and the definition of GG from (26) we have

eρ0tJt(w)α\displaystyle e^{-\rho_{0}t}\|J_{t}(w)\|_{\alpha} 0teρ0tPts[divGs(w)]αds\displaystyle\leq\int_{0}^{t}e^{-\rho_{0}t}\|P_{t-s}[\text{div}G_{s}(w)]\|_{\alpha}\mathrm{d}s (28)
c0teρ0t(ts)α+β+12divGs(w)β1ds.\displaystyle\leq c\int_{0}^{t}e^{-\rho_{0}t}(t-s)^{-\frac{\alpha+\beta+1}{2}}\|\text{div}G_{s}(w)\|_{-\beta-1}\mathrm{d}s.

Now we use Bernstein’s inequality (10) to bound

divGs(w)β1i=1dxiGs(w)β1ci=1dGs(w)β,\|\text{div}G_{s}(w)\|_{-\beta-1}\leq\sum_{i=1}^{d}\|\frac{\partial}{\partial x_{i}}G_{s}(w)\|_{-\beta-1}\leq c\sum_{i=1}^{d}\|G_{s}(w)\|_{-\beta},

and using again the definition of GG from (26), the pointwise product property (12) (since αβ>0\alpha-\beta>0) and Lemma 3.1 we have

divGs(w)β1\displaystyle\|\text{div}G_{s}(w)\|_{-\beta-1} cF~(w(s)+Psv0)αb(s)β\displaystyle\leq c\|\tilde{F}(w(s)+P_{s}v_{0})\|_{\alpha}\|b(s)\|_{-\beta}
c(1+w(s)+Psv0α)b(s)β\displaystyle\leq c(1+\|w(s)+P_{s}v_{0}\|_{\alpha})\|b(s)\|_{-\beta}
c(1+w(s)α+Psv0α)b(s)β.\displaystyle\leq c(1+\|w(s)\|_{\alpha}+\|P_{s}v_{0}\|_{\alpha})\|b(s)\|_{-\beta}. (29)

Now plugging (3) into (28) we get

eρ0tJt(w)α\displaystyle e^{-\rho_{0}t}\|J_{t}(w)\|_{\alpha} (30)
c0teρ0(ts)(ts)α+β+12eρ0s(1+w(s)α+Psv0α)b(s)βds.\displaystyle\leq c\int_{0}^{t}e^{-\rho_{0}(t-s)}(t-s)^{-\frac{\alpha+\beta+1}{2}}e^{-\rho_{0}s}(1+\|w(s)\|_{\alpha}+\|P_{s}v_{0}\|_{\alpha})\|b(s)\|_{-\beta}\mathrm{d}s.

Using the assumption that wEρ0,M0αw\in E^{\alpha}_{\rho_{0},M_{0}} and choosing M0v0αM_{0}\geq\|v_{0}\|_{\alpha} we have that sups[0,T]eρ0s(1+w(s)α+Psv0α)(1+2M0)\sup_{s\in[0,T]}e^{-\rho_{0}s}(1+\|w(s)\|_{\alpha}+\|P_{s}v_{0}\|_{\alpha})\leq(1+2M_{0}) (since PsP_{s} is a contraction) thus (30) gives

eρ0tJt(w)α\displaystyle e^{-\rho_{0}t}\|J_{t}(w)\|_{\alpha} cbCT𝒞β(1+2M0)0teρ0(ts)(ts)α+β+12ds\displaystyle\leq c\|b\|_{C_{T}\mathcal{C}^{-\beta}}(1+2M_{0})\int_{0}^{t}e^{-\rho_{0}(t-s)}(t-s)^{-\frac{\alpha+\beta+1}{2}}\mathrm{d}s
cbCT𝒞β(1+2M0)Γ(θ)ρ0θ,\displaystyle\leq c\|b\|_{C_{T}\mathcal{C}^{-\beta}}(1+2M_{0})\Gamma(\theta)\rho_{0}^{-\theta}, (31)

where

θ:=1αβ2=α+β+12+1\theta:=\frac{1-\alpha-\beta}{2}=-\frac{\alpha+\beta+1}{2}+1

is positive by Assumption 1 and by α(β,1β)\alpha\in(\beta,1-\beta). We want to choose ρ0\rho_{0} and M0M_{0} such that supt[0,T]eρ0tJt(w)αM0\sup_{t\in[0,T]}e^{-\rho_{0}t}\|J_{t}(w)\|_{\alpha}\leq M_{0}, for which it is enough that

cbCT𝒞β(1+2M0)Γ(θ)ρ0θ\displaystyle c\|b\|_{C_{T}\mathcal{C}^{-\beta}}(1+2M_{0})\Gamma(\theta)\rho_{0}^{-\theta} M0\displaystyle\leq M_{0} (32)
\displaystyle\iff
cbCT𝒞βΓ(θ)ρ0θ\displaystyle c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma(\theta)\rho_{0}^{-\theta} M0(12cbCT𝒞βΓ(θ)ρ0θ)\displaystyle\leq M_{0}(1-2c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma(\theta)\rho_{0}^{-\theta}) (33)
\displaystyle\iff
cbCT𝒞βΓ(θ)ρ0θ(12cbCT𝒞βΓ(θ)ρ0θ)\displaystyle\frac{c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma(\theta)\rho_{0}^{-\theta}}{(1-2c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma(\theta)\rho_{0}^{-\theta})} M0,\displaystyle\leq M_{0}, (34)

provided that the denominator is positive. To do so, we pick ρ0\rho_{0} large enough so that

12cbCT𝒞βΓ(θ)ρ0θ>0.1-2c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma(\theta)\rho_{0}^{-\theta}>0. (35)

Then we set

M:=cbCT𝒞βΓ(θ)ρ0θ(12cbCT𝒞βΓ(θ)ρ0θ)v0α,M_{*}:=\frac{c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma(\theta)\rho_{0}^{-\theta}}{\left(1-2c\|b\|_{C_{T}\mathcal{C}^{-\beta}}\Gamma(\theta)\rho_{0}^{-\theta}\right)}\vee\|v_{0}\|_{\alpha},

where ρ0\rho_{0} has been chosen in (35). Then for any M0MM_{0}\geq M_{*}, and with this choice of ρ0\rho_{0} we have indeed that J(w)CT𝒞α(ρ0)M0\|J(w)\|^{(\rho_{0})}_{C_{T}\mathcal{C}^{\alpha}}\leq M_{0} and therefore if wEρ0,M0αw\in E^{\alpha}_{\rho_{0},M_{0}} then J(w)Eρ0,M0αJ(w)\in E^{\alpha}_{\rho_{0},M_{0}} as wanted. ∎

We show below that it is possible to choose ρ\rho large enough such that JJ is a contraction on Eρ0,M0αE^{\alpha}_{\rho_{0},M_{0}} under dρ\mathrm{d}_{\rho}, with ρ0,M0\rho_{0},M_{0} chosen according to Proposition 3.5.

Lemma 3.6.

Let Assumptions 1 and 3 hold. Let v0𝒞αv_{0}\in\mathcal{C}^{\alpha} for some α(β,1β)\alpha\in(\beta,1-\beta). Let JJ be defined in (22). Let ρ0,M0\rho_{0},M_{0} be chosen according to Proposition 3.5. Then there exists a constant CC (depending on T,bCT𝒞β,α,β,ρ0T,\|b\|_{C_{T}\mathcal{C}^{-\beta}},\alpha,\beta,\rho_{0} and M0M_{0}) such that for all w,zEρ0,M0αw,z\in E^{\alpha}_{\rho_{0},M_{0}} it holds

dρ(J(w),J(z))Cρθdρ(w,z),\mathrm{d}_{\rho}(J(w),J(z))\leq C\rho^{-\theta}\mathrm{d}_{\rho}(w,z),

where θ:=1αβ2>0\theta:=\tfrac{1-\alpha-\beta}{2}>0.
In particular, for ρ\rho large enough, we have that JJ is a contraction.

Proof.

Let w,zEρ0,M0αw,z\in E^{\alpha}_{\rho_{0},M_{0}}. Using the definition of dρ\mathrm{d}_{\rho}, of the solution map JJ and of GG as in (26) we have

dρ\displaystyle\mathrm{d}_{\rho} (J(w),J(z))=supt[0,T]eρtJt(w)Jt(z)α\displaystyle(J(w),J(z))=\sup_{t\in[0,T]}e^{-\rho t}\|J_{t}(w)-J_{t}(z)\|_{\alpha}
c0teρt(ts)α+β+12div(Gs(w)Gs(z))β1ds\displaystyle\leq c\int_{0}^{t}e^{-\rho t}(t-s)^{-\frac{\alpha+\beta+1}{2}}\|\text{div}(G_{s}(w)-G_{s}(z))\|_{-\beta-1}\mathrm{d}s
=c0teρ(ts)(ts)α+β+12eρsdiv(Gs(w)Gs(z))β1ds.\displaystyle=c\int_{0}^{t}e^{-\rho(t-s)}(t-s)^{-\frac{\alpha+\beta+1}{2}}e^{-\rho s}\|\text{div}(G_{s}(w)-G_{s}(z))\|_{-\beta-1}\mathrm{d}s. (36)

By Bernstein’s inequality (10), pointwise product property (12), the contraction property of PtP_{t}, local Lipschitz property of F~\tilde{F} from Lemma 3.1 and definition of ρ\rho-equivalent metric we get

eρsdiv\displaystyle e^{-\rho s}\|\text{div} (Gs(w)Gs(z))β1\displaystyle(G_{s}(w)-G_{s}(z))\|_{-\beta-1}
ceρsF~(w(s)Psv0)F~(z(s)Psv0)αb(s)β\displaystyle\leq ce^{-\rho s}\|\tilde{F}(w(s)-P_{s}v_{0})-\tilde{F}(z(s)-P_{s}v_{0})\|_{\alpha}\|b(s)\|_{-\beta}
c(1+w(s)α+z(s)α+2v0α)eρsw(s)z(s)αb(s)β\displaystyle\leq c(1+\|w(s)\|_{\alpha}+\|z(s)\|_{\alpha}+2\|v_{0}\|_{\alpha})e^{-\rho s}\|w(s)-z(s)\|_{\alpha}\|b(s)\|_{-\beta}
c(1+2eρ0TM0+2M0)dρ(w,z)b(s)β,\displaystyle\leq c(1+2e^{\rho_{0}T}M_{0}+2M_{0})\mathrm{d}_{\rho}(w,z)\|b(s)\|_{-\beta}, (37)

having used in the last line the fact that v0αM0\|v_{0}\|_{\alpha}\leq M_{0} by choice of M0M_{0} and that for any wEρ0,M0αw\in E^{\alpha}_{\rho_{0},M_{0}} one has

sups[0,T]w(s)α=sups[0,T]eρ0seρ0sw(s)αeρ0TwCT𝒞α(ρ0)eρ0TM0.\sup_{s\in[0,T]}\|w(s)\|_{\alpha}=\sup_{s\in[0,T]}e^{\rho_{0}s}e^{-\rho_{0}s}\|w(s)\|_{\alpha}\leq e^{\rho_{0}T}\|w\|^{(\rho_{0})}_{C_{T}\mathcal{C}^{\alpha}}\leq e^{\rho_{0}T}M_{0}.

Plugging (3) into (3) and using the Gamma function we get

dρ(J(w),J(z))c(1+2eρ0TM0+2M0)b(s)βdρ(w,z)Γ(θ)ρθ,\mathrm{d}_{\rho}(J(w),J(z))\leq c(1+2e^{\rho_{0}T}M_{0}+2M_{0})\|b(s)\|_{-\beta}\mathrm{d}_{\rho}(w,z)\Gamma(\theta)\rho^{-\theta},

hence setting

C:=c(1+2eρ0TM0+2M0)b(s)βΓ(θ)C:=c(1+2e^{\rho_{0}T}M_{0}+2M_{0})\|b(s)\|_{-\beta}\Gamma(\theta)

we conclude. ∎

We can now state and prove existence and uniqueness of a mild solution vCT𝒞αv\in C_{T}\mathcal{C}^{\alpha} of (2) using the equivalent equation (23).

Proposition 3.7.

Let Assumptions 1 and 3 hold. Let v0𝒞αv_{0}\in\mathcal{C}^{\alpha} for some α(β,1β)\alpha\in(\beta,1-\beta). Then there exists a unique vCT𝒞αv\in C_{T}\mathcal{C}^{\alpha} such that (18) holds.

Proof.

We show existence and uniqueness of ww solution of (23) because this is equivalent to existence and uniqueness of a mild solution vCT𝒞αv\in C_{T}\mathcal{C}^{\alpha} to (2).

To show existence, let ρ0,M0\rho_{0},M_{0} be chosen according to Proposition 3.5. We observe that JJ is a contraction in Eρ0,M0αCT𝒞αE^{\alpha}_{\rho_{0},M_{0}}\subset C_{T}\mathcal{C}^{\alpha} by Lemma 3.6, hence by Banach’s fixed point theorem there exists a unique solution to w=J(w)w=J(w) in Eρ0,M0αCT𝒞αE^{\alpha}_{\rho_{0},M_{0}}\subset C_{T}\mathcal{C}^{\alpha}.

To show uniqueness, let w1,w2CT𝒞αw^{1},w^{2}\in C_{T}\mathcal{C}^{\alpha} be any two solutions of (23). Let ρ0\rho_{0} be chosen according to Proposition 3.5. Then we set Mi:=wiCT𝒞α(ρ0)M_{i}:=\|w^{i}\|_{C_{T}\mathcal{C}^{\alpha}}^{(\rho_{0})} and we choose M0max{M1,M2,M}M_{0}\geq\max\{M_{1},M_{2},M_{*}\}, with MM_{*} from Proposition 3.5, so that wiEρ0,M0αw^{i}\in E^{\alpha}_{\rho_{0},M_{0}}. Thus by the contraction property of JJ we have uniqueness, hence w1=w2w^{1}=w^{2}. ∎

Theorem 3.8.

Let Assumptions 1, 3 and 4 hold. Then there exists a unique mild solution vCT𝒞β+v\in C_{T}\mathcal{C}^{\beta+} of (2).

Proof.

Existence. Since v0𝒞β+v_{0}\in\mathcal{C}^{\beta+} by assumption, there exists α(β,1β)\alpha\in(\beta,1-\beta) such that v0𝒞αv_{0}\in\mathcal{C}^{\alpha}. With such α\alpha by Proposition 3.7 we know that there exists a (unique) mild solution in CT𝒞αC_{T}\mathcal{C}^{\alpha}.

Uniqueness. Given two solutions v1,v2CT𝒞β+v^{1},v^{2}\in C_{T}\mathcal{C}^{\beta+} there exist α1,α2\alpha_{1},\alpha_{2} such that viCT𝒞αiv^{i}\in C_{T}\mathcal{C}^{\alpha^{i}} for i=1,2i=1,2. Then choosing α=min{α1,α2}\alpha=\min\{\alpha^{1},\alpha^{2}\} we have that viCT𝒞αv^{i}\in C_{T}\mathcal{C}^{\alpha} for i=1,2i=1,2 and by uniqueness in CT𝒞αC_{T}\mathcal{C}^{\alpha} from Proposition 3.7 we have that v1=v2v^{1}=v^{2}. ∎

Remark 3.9.

Notice that if we suppose that v0𝒞(1β)v_{0}\in\mathcal{C}^{(1-\beta)-} in place of Assumption 4 one gets that a solution vv exists in CT𝒞(1β)C_{T}\mathcal{C}^{(1-\beta)-}.

4. The regularised PDE and its limit

Let Assumptions 1, 2, 3 and 4 hold throughout this section.

We consider the sequence bnb^{n} introduced in Proposition 2.4. When the term bb is replaced by bnb^{n}, with fixed nn, then we get a smoothed PDE, that is, we get the Fokker-Planck equation

{tvn=12Δvndiv(F~(vn)bn)vn(0)=v0,\left\{\begin{array}[]{l}\partial_{t}v^{n}=\frac{1}{2}\Delta v^{n}-\text{div}(\tilde{F}(v^{n})b^{n})\\ v^{n}(0)=v_{0},\end{array}\right. (38)

where we recall that F~(vn)=vnF(vn)\tilde{F}(v^{n})=v^{n}F(v^{n}). For ease of reading, we recall that the mild solution of (38) is given by an element vnCT𝒞β+v^{n}\in C_{T}\mathcal{C}^{\beta+} such that

vn(t)=Ptv00tPts[div(F~(vn(s))bn(s))]ds.v^{n}(t)=P_{t}v_{0}-\int_{0}^{t}P_{t-s}[\text{div}(\tilde{F}(v^{n}(s))b^{n}(s))]\mathrm{d}s. (39)
Remark 4.1.

We observe that, since bnCT𝒞(β)+b^{n}\in C_{T}\mathcal{C}^{(-\beta)+}, then all results from Section 3 are still valid, in particular the bound from Proposition 3.4 and the existence and uniqueness result from Theorem 3.8 still apply to (38).

At this point we introduce the notation and some useful results on a very similar semilinear PDE studied in [26]. We consider the PDE

{tu(t,x)=12Δu(t,x)div(u(t,x)𝔟(t,x,u(t,x)))u(0,x)=v0(x),\left\{\begin{array}[]{l}\partial_{t}u(t,x)=\frac{1}{2}\Delta u(t,x)-\text{div}(u(t,x)\mathfrak{b}(t,x,u(t,x)))\\ u(0,x)=v_{0}(x),\end{array}\right. (40)

where v0v_{0} is a bounded Borel function. We set

𝔟(t,x,z):=F(z)bn(t,x).\mathfrak{b}(t,x,z):=F(z)b^{n}(t,x). (41)

Thanks to Assumptions 2 and properties of bnb^{n} stated in Proposition 2.4 item (i) we have that the term 𝔟(t,x,z)\mathfrak{b}(t,x,z) is uniformly bounded. Below we recall a mild-type solution, introduced in [26], which we call here semigroup solution. We will show that any semigroup solution is also a mild solution in Proposition 4.5.

Definition 4.2.

We will call a semigroup solution of the PDE (40) a function uL([0,T]×d)u\in L^{\infty}([0,T]\times\mathbb{R}^{d}) that satisfies the integral equation

u(t,x)=\displaystyle u(t,x)= dpt(xy)v0(y)dy\displaystyle\int_{\mathbb{R}^{d}}p_{t}(x-y)v_{0}(y)\mathrm{d}y
j=1d0tdu(s,y)𝔟j(s,y,u(s,y))jpts(xy)dyds,\displaystyle-\sum_{j=1}^{d}\int_{0}^{t}\int_{\mathbb{R}^{d}}u(s,y)\mathfrak{b}_{j}(s,y,u(s,y))\partial_{j}p_{t-s}(x-y)\mathrm{d}y\,\mathrm{d}s, (42)

where pp is the Gaussian heat kernel introduced in (5).

Notice that this definition is inspired by [26, Definition 6], but we modified it here to include the condition uL([0,T]×d)u\in L^{\infty}([0,T]\times\mathbb{R}^{d}), rather than uL1([0,T]×d)u\in L^{1}([0,T]\times\mathbb{R}^{d}) (the latter as in [26], where moreover the solution is called ‘mild solution’). Indeed integrability of uu is sufficient for the integrals in the semigroup solution to make sense, because 𝔟\mathfrak{b} is also bounded and the heat kernel and its derivative are integrable.

The first result we have on (40) is about uniqueness of the semigroup solution in L([0,T]×d)L^{\infty}([0,T]\times\mathbb{R}^{d}). This result is not included in [26], but we were inspired by proofs therein, in particular by the proof of [26, Lemma 20].

Lemma 4.3.

There exists at most one semigroup solution of (40).

Proof.

First of all we remark that since pt(y)p_{t}(y) is the heat kernel then we have two positive constants cp,Cpc_{p},C_{p} such that

|yjpt(y)|Cptqt(y),|\partial_{y_{j}}p_{t}(y)|\leq\frac{C_{p}}{\sqrt{t}}q_{t}(y), (43)

for all j=1,,dj=1,\ldots,d, where qt(y)=(cptπ)d/2ecp|y|2tq_{t}(y)=\left(\frac{c_{p}}{t\pi}\right)^{d/2}e^{-c_{p}\frac{|y|^{2}}{t}} is a Gaussian probability density.

Let us consider two semigroup solutions u1,u2u_{1},u_{2} of (40). We denote by Π(u)\Pi(u) the semigroup solution map, which is the right-hand side of (4.2). Notice that v0L(d)v_{0}\in L^{\infty}(\mathbb{R}^{d}) by Assumption 4, and the function zz𝔟(t,x,z)z\mapsto z\mathfrak{b}(t,x,z) is Lipschitz, uniformly in t,xt,x because F~\tilde{F} is assumed to be Lipschitz in Assumption 3. Using this, together with the bound (43), for fixed t(0,T]t\in(0,T], we get

Π(u1)(t,)Π(u2)(t,)\displaystyle\|\Pi(u_{1})(t,\cdot)-\Pi(u_{2})(t,\cdot)\|_{\infty}
=j=1d0td(u2(s,y)𝔟j(s,y,u1(s,y))u1(s,y)𝔟j(s,y,u2(s,y)))\displaystyle=\Big{\|}\sum_{j=1}^{d}\int_{0}^{t}\int_{\mathbb{R}^{d}}\Big{(}u_{2}(s,y)\mathfrak{b}_{j}(s,y,u_{1}(s,y))-u_{1}(s,y)\mathfrak{b}_{j}(s,y,u_{2}(s,y))\Big{)}
jpts(xy)dyds\displaystyle\qquad\qquad\qquad\qquad\cdot\partial_{j}p_{t-s}(x-y)\mathrm{d}y\,\mathrm{d}s\Big{\|}_{\infty}
C0td|u1(s,y)u2(s,y)|1tsCpqts(xy)dyds\displaystyle\leq C\int_{0}^{t}\int_{\mathbb{R}^{d}}|u_{1}(s,y)-u_{2}(s,y)|\frac{1}{\sqrt{t-s}}C_{p}q_{t-s}(x-y)\mathrm{d}y\,\mathrm{d}s
C0tu1(s,)u2(s,)1tsdsdqts(xy)dy\displaystyle\leq C\int_{0}^{t}\|u_{1}(s,\cdot)-u_{2}(s,\cdot)\|_{\infty}\frac{1}{\sqrt{t-s}}\mathrm{d}s\cdot\int_{\mathbb{R}^{d}}q_{t-s}(x-y)\mathrm{d}y
C0tu1(s,)u2(s,)1tsds.\displaystyle\leq C\int_{0}^{t}\|u_{1}(s,\cdot)-u_{2}(s,\cdot)\|_{\infty}\frac{1}{\sqrt{t-s}}\mathrm{d}s.

Now, by an application of a fractional Gronwall’s inequality (see Lemma A.1) we conclude that u1(t,)u2(t,)0\|u_{1}(t,\cdot)-u_{2}(t,\cdot)\|_{\infty}\leq 0 for all t[0,T]t\in[0,T], so in particular we have

u1u2L([0,T]×d)=0,\|u_{1}-u_{2}\|_{L^{\infty}([0,T]\times\mathbb{R}^{d})}=0,

hence the semigroup solution is unique in L([0,T]×d)L^{\infty}([0,T]\times\mathbb{R}^{d}). ∎

At this point we want to compare the concept of mild solution and that of semigroup solution. Recall that 𝔟(t,x,z)=F(z)bn(t,x)\mathfrak{b}(t,x,z)=F(z)b^{n}(t,x) so in fact PDE (40) is exactly (38). First we state and prove a preparatory lemma, where 𝔣\mathfrak{f} is vector-valued and will be taken to be u(t,x)𝔟(t,x,u(t,x))u(t,x)\mathfrak{b}(t,x,u(t,x)) for fixed tt in the following result.

Lemma 4.4.

Let 𝔣L(d;d)\mathfrak{f}\in L^{\infty}(\mathbb{R}^{d};\mathbb{R}^{d}), t(0,T]t\in(0,T]. Then

Pt(div 𝔣)=j=1dd𝔣j(y)jpt(y)dy,P_{t}(\text{div }\mathfrak{f})=\sum_{j=1}^{d}\int_{\mathbb{R}^{d}}\mathfrak{f}_{j}(y)\partial_{j}p_{t}(\cdot-y)\mathrm{d}y, (44)

almost everywhere.

Proof.

We will show that the left-hand side (LHS) and the right-hand side (RHS) are the same object in 𝒮\mathcal{S}^{\prime}. Notice that the heat kernel pt(x)p_{t}(x) is the same kernel associated to the semigroup PtP_{t}, namely if ϕ𝒮\phi\in\mathcal{S}, then Ptϕ𝒮P_{t}\phi\in\mathcal{S} with Ptϕ(x)=dpt(xy)ϕ(y)dyP_{t}\phi(x)=\int_{\mathbb{R}^{d}}p_{t}(x-y)\phi(y)\mathrm{d}y. We now take the Fourier transform \mathcal{F} in 𝒮\mathcal{S}^{\prime} of both sides. The LHS gives

(Pt(div 𝔣))\displaystyle\mathcal{F}(P_{t}(\text{div }\mathfrak{f})) =(pt(div 𝔣))\displaystyle=\mathcal{F}(p_{t}\ast(\text{div }\mathfrak{f}))
=(pt)(div 𝔣)\displaystyle=\mathcal{F}(p_{t})\mathcal{F}(\text{div }\mathfrak{f})
=j=1d(pt)iξj(𝔣j).\displaystyle=\sum_{j=1}^{d}\mathcal{F}(p_{t})i\xi_{j}\mathcal{F}(\mathfrak{f}_{j}).

The RHS of (44), on the other hand, gives

(j=1dd𝔣j(y)jpt(y)dy)\displaystyle\mathcal{F}(\sum_{j=1}^{d}\int_{\mathbb{R}^{d}}\mathfrak{f}_{j}(y)\partial_{j}p_{t}(\cdot-y)\mathrm{d}y) =j=1d(𝔣jjpt)\displaystyle=\sum_{j=1}^{d}\mathcal{F}(\mathfrak{f}_{j}\ast\partial_{j}p_{t})
=j=1d(𝔣j)(jpt)\displaystyle=\sum_{j=1}^{d}\mathcal{F}(\mathfrak{f}_{j})\mathcal{F}(\partial_{j}p_{t})
=j=1d(𝔣j)iξj(pt).\displaystyle=\sum_{j=1}^{d}\mathcal{F}(\mathfrak{f}_{j})i\xi_{j}\mathcal{F}(p_{t}).

Notice that one should be careful that the products appearing above are classical products of an element of 𝒮\mathcal{S}^{\prime} (like fj\mathcal{F}f_{j}) and an element of 𝒮\mathcal{S} (like ξiξj(pt)(ξ)\xi\mapsto i\xi_{j}\mathcal{F}(p_{t})(\xi)). ∎

We are now ready to prove that any mild solution is a semigroup solution.

Proposition 4.5.

Any mild solution vnv^{n} of (38) is a semigroup solution.

Proof.

Recall that F(z)bn(t,x)=𝔟(t,x,z)F(z)b^{n}(t,x)=\mathfrak{b}(t,x,z) by (41). For vnv^{n} to be a semigroup solution it must be an a.e. bounded function that satisfies (4.2). First we notice that, since vnv^{n} is a mild solution, there exists α>β\alpha>\beta such that vnCT𝒞αL([0,T]×d)v^{n}\in C_{T}\mathcal{C}^{\alpha}\subset L^{\infty}([0,T]\times\mathbb{R}^{d}) so the second term on the RHS of expression (4.2) is well-defined. We recall that by Assumption 2, FF is bounded and by Proposition 2.4 (i) also bnb^{n} is bounded hence 𝔟\mathfrak{b} is also bounded. Moreover by Assumption 4 the initial condition v0𝒞β+L([0,T]×d)v_{0}\in\mathcal{C}^{\beta+}\subset L^{\infty}([0,T]\times\mathbb{R}^{d}) so also the first term on the RHS of expression (4.2) is well-defined.

Now we show that the two terms on the RHS of (39) are equal to the terms on the RHS of (4.2). We start with the initial condition term, which can be written as

(Ptv0)(x)=dpt(xy)v0(y)dy,\displaystyle(P_{t}v_{0})(x)=\int_{\mathbb{R}^{d}}p_{t}(x-y)v_{0}(y)\mathrm{d}y,

since ptp_{t} is the kernel of the semigroup PtP_{t}. For the second term we use Lemma 4.4 with 𝔣=u𝔟\mathfrak{f}=u\mathfrak{b} to get

Pt(div\displaystyle P_{t}(\text{div} [u(t)F(u(t))bn(t,)])=Pt(div[u(t)𝔟(t,u(t))])\displaystyle[u(t)F(u(t))b^{n}(t,\cdot)])=P_{t}(\text{div}[u(t)\mathfrak{b}(t,u(t))])
=j=1d0tdu(s,y)𝔟j(s,y,u(s,y))jpt(y)dyds\displaystyle=\sum_{j=1}^{d}\int_{0}^{t}\int_{\mathbb{R}^{d}}u(s,y)\mathfrak{b}_{j}(s,y,u(s,y))\partial_{j}p_{t}(\cdot-y)\mathrm{d}y\,\mathrm{d}s

and so (4.2) becomes (39), i.e. the mild solution vnv^{n} is also a semigroup solution. ∎

Remark 4.6.

Let nn be fixed. By Theorem 3.8 there is a unique mild solution vnv^{n} of (38) in CT𝒞β+C_{T}\mathcal{C}^{\beta+}.

The next result establishes, in particular, the uniqueness of the solution vv in CT𝒞β+C_{T}\mathcal{C}^{\beta+} and a continuity result with respect to bCT𝒞βb\in C_{T}\mathcal{C}^{-\beta}.

Proposition 4.7.
  • (i)

    Let b1,b2b^{1},b^{2} satisfy Assumption 1. Let v1v^{1} (resp. v2v^{2}) be a mild solution of (2) with b=b1b=b^{1} (resp. b=b2b=b^{2}). For any α(β,1β)\alpha\in(\beta,1-\beta) such that v1,v2CT𝒞αv^{1},v^{2}\in C_{T}\mathcal{C}^{\alpha}, there exists a function α:+×++\ell_{\alpha}:\mathbb{R}^{+}\times\mathbb{R}^{+}\to\mathbb{R}^{+}, increasing in the second variable, such that

    v1(t)v2(t)αα(v0α,b1b2)b1b2CT𝒞β,\|v^{1}(t)-v^{2}(t)\|_{\alpha}\leq\ell_{\alpha}(\|v_{0}\|_{\alpha},\|b^{1}\|\vee\|b^{2}\|)\|b^{1}-b^{2}\|_{C_{T}\mathcal{C}^{-\beta}},

    for all t[0,T]t\in[0,T].

  • (ii)

    Let (bm)m(b^{m})_{m} be a sequence in CT𝒞(β)+C_{T}\mathcal{C}^{(-\beta)+}. Let vmv^{m} be a mild solution of (2) with b=bmb=b^{m} and vv be a mild solution of (2). If bmbb^{m}\to b in CT𝒞βC_{T}\mathcal{C}^{-\beta} then vmvv^{m}\to v in CT𝒞β+C_{T}\mathcal{C}^{\beta+}.

Proof.

Item (i). Let v1v^{1} (resp. v2v^{2}) be a solution in CT𝒞β+C_{T}\mathcal{C}^{\beta+} to (2) with b=b1b=b^{1} (resp. b=b2b=b^{2}); so there exists α(β,1β)\alpha\in(\beta,1-\beta) such that v1,v2CT𝒞αv^{1},v^{2}\in C_{T}\mathcal{C}^{\alpha}. We fix t[0,T]t\in[0,T]. Using Schauder’s estimates and Bernstein’s inequalities, for the difference below we get the bound

v1(t)\displaystyle\|v^{1}(t) v2(t)α=0tPts(div[F~(v1(s))b1(s)F~(v2(s))b2(s)])dsα\displaystyle-v^{2}(t)\|_{\alpha}=\left\|\int_{0}^{t}P_{t-s}\left(\text{div}[\tilde{F}(v^{1}(s))b^{1}(s)-\tilde{F}(v^{2}(s))b^{2}(s)]\right)\mathrm{d}s\right\|_{\alpha}
\displaystyle\leq c0t(ts)α+β+12div[F~(v1(s))b1(s)F~(v2(s))b2(s)]β1ds\displaystyle c\int_{0}^{t}(t-s)^{-\frac{\alpha+\beta+1}{2}}\left\|\text{div}[\tilde{F}(v^{1}(s))b^{1}(s)-\tilde{F}(v^{2}(s))b^{2}(s)]\right\|_{-\beta-1}\mathrm{d}s
\displaystyle\leq c0t(ts)α+β+12F~(v1(s))b1(s)F~(v2(s))b2(s)βds.\displaystyle c\int_{0}^{t}(t-s)^{-\frac{\alpha+\beta+1}{2}}\left\|\tilde{F}(v^{1}(s))b^{1}(s)-\tilde{F}(v^{2}(s))b^{2}(s)\right\|_{-\beta}\mathrm{d}s. (45)

Now, in order to bound the term inside the integral we use the mapping properties of F~\tilde{F} from Lemma 3.1, the property (12) of the pointwise product, and the fact that v1v^{1} and v2v^{2} are mild solutions. We get

F~(v1(s))b1(s)F~(v2(s))b2(s)β\displaystyle\left\|\tilde{F}(v^{1}(s))b^{1}(s)-\tilde{F}(v^{2}(s))b^{2}(s)\right\|_{-\beta}
=\displaystyle= F~(v1(s))b1(s)F~(v2(s))b1(s)+F~(v2(s))b1(s)F~(v2(s))b2(s)β\displaystyle\left\|\tilde{F}(v^{1}(s))b^{1}(s)-\tilde{F}(v^{2}(s))b^{1}(s)+\tilde{F}(v^{2}(s))b^{1}(s)-\tilde{F}(v^{2}(s))b^{2}(s)\right\|_{-\beta}
\displaystyle\leq [F~(v1(s))F~(v2(s))]b1(s)β+F~(v2(s))[b1(s)b2(s)]β\displaystyle\left\|[\tilde{F}(v^{1}(s))-\tilde{F}(v^{2}(s))]b^{1}(s)\right\|_{-\beta}+\left\|\tilde{F}(v^{2}(s))[b^{1}(s)-b^{2}(s)]\right\|_{-\beta}
\displaystyle\leq cF~(v1(s))F~(v2(s))αb1(s)β+cF~(v2(s))αb1(s)b2(s)β\displaystyle c\left\|\tilde{F}(v^{1}(s))-\tilde{F}(v^{2}(s))\right\|_{\alpha}\|b^{1}(s)\|_{-\beta}+c\left\|\tilde{F}(v^{2}(s))\right\|_{\alpha}\|b^{1}(s)-b^{2}(s)\|_{-\beta}
\displaystyle\leq c(1+v1(s)α2+v2(s)α2)1/2v1(s)v2(s)αb1(s)β\displaystyle c\left(1+\|v^{1}(s)\|^{2}_{\alpha}+\|v^{2}(s)\|^{2}_{\alpha}\right)^{1/2}\left\|v^{1}(s)-v^{2}(s)\right\|_{\alpha}\|b^{1}(s)\|_{-\beta}
+c(1+v2(s)α)b1(s)b2(s)β\displaystyle+c(1+\|v^{2}(s)\|_{\alpha})\|b^{1}(s)-b^{2}(s)\|_{-\beta}
\displaystyle\leq c(1+v1CT𝒞α2+v2CT𝒞α2)1/2v1(s)v2(s)αb1CT𝒞β\displaystyle c\left(1+\|v^{1}\|^{2}_{C_{T}\mathcal{C}^{\alpha}}+\|v^{2}\|^{2}_{C_{T}\mathcal{C}^{\alpha}}\right)^{1/2}\|v^{1}(s)-v^{2}(s)\|_{\alpha}\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}}
+c(1+v2CT𝒞α)b1b2CT𝒞β.\displaystyle+c\left(1+\|v^{2}\|_{C_{T}\mathcal{C}^{\alpha}}\right)\|b^{1}-b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}.

At this point we use the a priori bound K1K_{1} for v1v^{1} (resp. K2K_{2} for v2v^{2}) found in Proposition 3.4, which depends on v0α\|v_{0}\|_{\alpha} and b1CT𝒞β\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}} (resp. b2CT𝒞β\|b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}) and is increasing with respect to the latter. Thus we get

F~(v1(s))b1(s)F~(v2(s))b2(s)β\displaystyle\left\|\tilde{F}(v^{1}(s))b^{1}(s)-\tilde{F}(v^{2}(s))b^{2}(s)\right\|_{-\beta}
c(1+K12+K22)1/2v1(s)v2(s)αb1CT𝒞β\displaystyle\leq c\left(1+K_{1}^{2}+K_{2}^{2}\right)^{1/2}\|v^{1}(s)-v^{2}(s)\|_{\alpha}\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}}
+c(1+K2)b1b2CT𝒞β\displaystyle+c\left(1+K_{2}\right)\|b^{1}-b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}
~α(v0α,b1CT𝒞βb2CT𝒞β)v1(s)v2(s)α\displaystyle\leq\tilde{\ell}_{\alpha}\left(\|v_{0}\|_{\alpha},\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}\right)\|v^{1}(s)-v^{2}(s)\|_{\alpha}
+~α(v0α,b1CT𝒞βb2CT𝒞β)b1b2CT𝒞β,\displaystyle+\tilde{\ell}_{\alpha}\left(\|v_{0}\|_{\alpha},\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}\right)\|b^{1}-b^{2}\|_{C_{T}\mathcal{C}^{-\beta}},

where ~α(,)\tilde{\ell}_{\alpha}(\cdot,\cdot) is a function increasing in the second variable. Putting this into (4) we get

v1(t)v2(t)α\displaystyle\|v^{1}(t)-v^{2}(t)\|_{\alpha}
c~α(v0α,b1CT𝒞βb2CT𝒞β)b1b2CT𝒞βT1αβ2\displaystyle\leq c\,\tilde{\ell}_{\alpha}\left(\|v_{0}\|_{\alpha},\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}\right)\|b^{1}-b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}T^{\frac{1-\alpha-\beta}{2}}
+~α(v0α,b1CT𝒞βb2CT𝒞β)0t(ts)α+β+12v1(s)v2(s)αds,\displaystyle+\tilde{\ell}_{\alpha}\left(\|v_{0}\|_{\alpha},\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}\right)\int_{0}^{t}(t-s)^{-\frac{\alpha+\beta+1}{2}}\|v^{1}(s)-v^{2}(s)\|_{\alpha}\mathrm{d}s,

and by a generalised Gronwall’s inequality (see Lemma A.1) we get

v1(t)v2(t)α\displaystyle\|v^{1}(t)-v^{2}(t)\|_{\alpha}
c~α(v0α,b1CT𝒞βb2CT𝒞β)b1b2CT𝒞βT1αβ2\displaystyle\leq c\,\tilde{\ell}_{\alpha}\left(\|v_{0}\|_{\alpha},\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}\right)\|b^{1}-b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}T^{\frac{1-\alpha-\beta}{2}}
×E1αβ2(~α(v0α,b1CT𝒞βb2CT𝒞β)Γ(1αβ2)T1αβ2)\displaystyle\times E_{\frac{1-\alpha-\beta}{2}}\left(\tilde{\ell}_{\alpha}\left(\|v_{0}\|_{\alpha},\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}\right)\Gamma\left(\tfrac{1-\alpha-\beta}{2}\right)T^{\frac{1-\alpha-\beta}{2}}\right)
=:α(v0α,b1CT𝒞βb2CT𝒞β)b1b2CT𝒞β,\displaystyle=:\ell_{\alpha}\left(\|v_{0}\|_{\alpha},\|b^{1}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b^{2}\|_{C_{T}\mathcal{C}^{-\beta}}\right)\|b^{1}-b^{2}\|_{C_{T}\mathcal{C}^{-\beta}},

where α(,)\ell_{\alpha}(\cdot,\cdot) is again a function increasing in the second variable.

Item (ii). Let (bm)m(b^{m})_{m} be a sequence in CT𝒞(β)+C_{T}\mathcal{C}^{(-\beta)+}. Let us assume that vmv^{m} is the unique solution of (2) with b=bmb=b^{m} by Theorem 3.8. Moreover, by Proposition 3.7, such vmv^{m} lives in CT𝒞αC_{T}\mathcal{C}^{\alpha}, where α\alpha depends only on v0v_{0}, hence not on mm. Let vv be the unique solution of (2). We apply Item (i) with b1=bmb^{1}=b^{m} and b2=bb^{2}=b to get

vm(t)v(t)αα(v0α,bmCT𝒞βbCT𝒞β)bmbCT𝒞β.\|v^{m}(t)-v(t)\|_{\alpha}\leq\ell_{\alpha}\left(\|v_{0}\|_{\alpha},\|b^{m}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b\|_{C_{T}\mathcal{C}^{-\beta}}\right)\|b^{m}-b\|_{C_{T}\mathcal{C}^{-\beta}}. (46)

We have supmbmCT𝒞β<\sup_{m}\|b^{m}\|_{C_{T}\mathcal{C}^{-\beta}}<\infty because bmbb^{m}\to b in CT𝒞βC_{T}\mathcal{C}^{-\beta}, and

α(v0α,bmCT𝒞βbCT𝒞β))α(v0α,supmbmCT𝒞βbCT𝒞β))\ell_{\alpha}\left(\|v_{0}\|_{\alpha},\|b^{m}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b\|_{C_{T}\mathcal{C}^{-\beta}})\right)\leq\ell_{\alpha}\left(\|v_{0}\|_{\alpha},\sup_{m}\|b^{m}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b\|_{C_{T}\mathcal{C}^{-\beta}})\right)

because α(v0α,)\ell_{\alpha}(\|v_{0}\|_{\alpha},\cdot) is increasing. Therefore plugging this into (46) we have

vm(t)v(t)αcbmbCT𝒞β,\|v^{m}(t)-v(t)\|_{\alpha}\leq c\|b^{m}-b\|_{C_{T}\mathcal{C}^{-\beta}},

where c:=α(v0α,supmbmCT𝒞βbCT𝒞β)c:=\ell_{\alpha}\left(\|v_{0}\|_{\alpha},\sup_{m}\|b^{m}\|_{C_{T}\mathcal{C}^{-\beta}}\vee\|b\|_{C_{T}\mathcal{C}^{-\beta}}\right). Thus taking the sup over tt we get that vmvv^{m}\to v in CT𝒞αC_{T}\mathcal{C}^{\alpha} if bmbb^{m}\to b in CT𝒞βC_{T}\mathcal{C}^{-\beta}, which implies the convergence of vmvv^{m}\to v in CT𝒞β+C_{T}\mathcal{C}^{\beta+} because α>β\alpha>\beta. ∎

5. The regularised SDEs

In this section we consider the regularised version of the McKean SDE introduced in (1), when bb is replaced by a bnb^{n} defined in Proposition 2.4, for fixed nn. We focus on the SDE

{Xtn=X0+0tF(vn(s,Xsn))bn(s,Xsn)ds+Wtvn(t,) is the law density of Xtn,\left\{\begin{array}[]{l}X^{n}_{t}=X_{0}+\int_{0}^{t}F(v^{n}(s,X^{n}_{s}))b^{n}(s,X^{n}_{s})\mathrm{d}s+W_{t}\vspace{5pt}\\ v^{n}(t,\cdot)\text{ is the law density of }X^{n}_{t},\end{array}\right. (47)

where X0X_{0} is a given random variable distributed according to v0v_{0}. In order to show existence and uniqueness of a solution of (47) and its link to the mild (and semigroup) solution vnv^{n} of (38), we make use of Theorems 12 and 13 from [26], as we see below.

Proposition 5.1.

Let Assumptions 2, 3 and 5 hold. Let (Wt)t[0,T](W_{t})_{t\in[0,T]} be a Brownian motion on some given probability space. Let bn:[0,T]×db^{n}:[0,T]\times\mathbb{R}^{d}\to\mathbb{R} be a bounded Borel function and let X0v0X_{0}\sim v_{0}.

  • (i)

    There exists a couple (Xn,vn)(X^{n},v^{n}) with vnv^{n} bounded, verifying (47).

  • (ii)

    Given two solutions (Xn,vn)(X^{n},v^{n}) and (X^n,v^n)(\hat{X}^{n},\hat{v}^{n}) of (47) with vnv^{n} and v^n\hat{v}^{n} bounded, then (Xn,vn)=(X^n,v^n)(X^{n},v^{n})=(\hat{X}^{n},\hat{v}^{n}).

  • (iii)

    If (Xn,vn)(X^{n},v^{n}) is a solution to (47) with vnv^{n} bounded, then vnv^{n} is a semigroup solution of (40).

Proof.

We observe that (47) is the special case of equation (1) in [26] when Λ=0,b0=0,(ai,j)=I,Φ=I\Lambda=0,b_{0}=0,(a_{i,j})=I,\Phi=I and 𝔲0\mathfrak{u}_{0} has a density v0v_{0} with respect to the Lebesgue measure. Notice that all assumptions in Theorems 12 and 13 are satisfied. Indeed, the drift 𝔟(t,x,z):=F(z)bn(t,x)\mathfrak{b}(t,x,z):=F(z)b^{n}(t,x) is bounded and Lipschitz with respect to zz because FF is Lipschitz and bounded by Assumption 2 and bnb^{n} is bounded by Proposition 2.4 item (i).

Item (i). We apply the result [26, Theorem 13 point 3]. In fact, the authors forgot to emphasize that the vnv^{n} can be chosen to be bounded (contrary to Theorem 13 point 1 where they emphasized it).

Item (ii). We apply the result [26, Theorem 13 point 2].

Item (iii). We apply the result [26, Theorem 12 point 1] to get that vnv^{n} is a weak solution of (40). Under [26, Assumption C]111which postulates uniqueness of weak solutions for tu=Lu,u0=0\partial_{t}u=L^{*}u,u_{0}=0 in the class of measure valued functions, which is true if L=ΔL^{*}=\Delta, see [26, Remark 7]., weak and semigroup solutions are equivalent, see [26, Proposition 16]. ∎

6. Solving the McKean problem

Let Assumptions 1, 2, 3, 4 and 5 be standing assumptions in this section. For ease of reading, we recall the problem at hand, which was illustrated in (1). We want to solve the McKean equation

{Xt=X0+0tF(v(s,Xs))b(s,Xs)ds+Wtv(t,) is the law density of Xt,\left\{\begin{array}[]{l}X_{t}=X_{0}+\int_{0}^{t}F(v(s,X_{s}))b(s,X_{s})\mathrm{d}s+W_{t}\vspace{5pt}\\ v(t,\cdot)\text{ is the law density of }X_{t},\end{array}\right. (48)

for some given initial condition X0v0X_{0}\sim v_{0}. The corresponding Fokker-Planck singular equation (already introduced in (2) and recalled here for ease of reading) is

{tv=12Δvdiv(F~(v)b)v(0)=v0,\left\{\begin{array}[]{l}\partial_{t}v=\frac{1}{2}\Delta v-\text{div}(\tilde{F}(v)b)\\ v(0)=v_{0},\end{array}\right. (49)

where F~(v):=vF(v)\tilde{F}(v):=vF(v), to which we gave a proper meaning and which we solved in Section 3.

Remark 6.1.

In [23] the authors investigate the propagation of chaos for McKean SDE (48) with smooth coefficients and initial condition, using a system of moderately interacting particles. The corresponding system in our singular framework appears to be

dXti,N=\displaystyle\mathrm{d}X_{t}^{i,N}= F(1Nj=1Nϕϵ(Xtj,NXti,N))b(t,Xti,N)dt+dWti,i=1,,N,\displaystyle F\bigg{(}\frac{1}{N}\sum_{j=1}^{N}\phi_{\epsilon}(X^{j,N}_{t}-X^{i,N}_{t})\bigg{)}b(t,X_{t}^{i,N})\mathrm{d}t+\mathrm{d}W^{i}_{t},\quad i=1,\ldots,N,

where ϕϵ\phi_{\epsilon} is a mollifier converging to δ0\delta_{0}.

We observe that the above equations can be considered as a dNdN-dimensional SDE

dXt=B(t,Xt)dt+dWt,\mathrm{d}X_{t}=B(t,X_{t})\mathrm{d}t+\mathrm{d}W_{t},

with singular drift B=(B1,B2,,BN)B=(B_{1},B_{2},\ldots,B_{N})^{\top} where

Bi(t,x1,x2,,xN)=F(1Nj=1Nϕϵ(xtjxti))b(t,xi)B_{i}(t,x^{1},x^{2},\ldots,x^{N})=F\big{(}\frac{1}{N}\sum_{j=1}^{N}\phi_{\epsilon}(x^{j}_{t}-x^{i}_{t})\big{)}b(t,x^{i})

and each xjdx^{j}\in\mathbb{\mathbb{R}}^{d}. This singular SDE is well-defined using [21] (see also [11]) because B(t)C(β)+(dN)B(t)\in C^{(-\beta)+}(\mathbb{R}^{dN}) since b(t)C(β)+(d)b(t)\in C^{(-\beta)+}(\mathbb{R}^{d}) and FϕϵF\circ\phi_{\epsilon} is Lipschitz and bounded (since both FF and ϕϵ\phi_{\epsilon} are Lipschitz and bounded).

We leave the study of this system and its behaviour when NN\to\infty to future research.

Definition 6.2.

A solution (in law) of the McKean problem (48) is a triple (X,,v)(X,\mathbb{P},v) such that \mathbb{P} is a probability measure on some measurable space (Ω,)(\Omega,\mathcal{F}), the function vv is defined on [0,T]×d[0,T]\times\mathbb{R}^{d} and belongs to CT𝒞β+C_{T}\mathcal{C}^{\beta+}, the couple (X,)(X,\mathbb{P}) is a solution to the martingale problem with distributional drift B(t,):=F(v(s,))b(s,)B(t,\cdot):=F(v(s,\cdot))b(s,\cdot), and v(t,)v(t,\cdot) is the law density of XtX_{t}.

We say that the McKean problem (48) admits uniqueness if, whenever we have two solutions (X,,v)(X,\mathbb{P},v) and (X^,^,v^)(\hat{X},\hat{\mathbb{P}},\hat{v}), then v=v^v=\hat{v} in CT𝒞β+C_{T}\mathcal{C}^{\beta+} and the law of XX under \mathbb{P} equals the law of X^\hat{X} under ^\hat{\mathbb{P}}.

Using the tools developed in the previous sections, in Theorem 6.5 we will construct a solution (X,,v)(X,\mathbb{P},v) to the McKean problem (48) and show that this solution is unique. We first recall two useful results from [21]. Let us consider a distributional drift BCT𝒞(β)+B\in C_{T}\mathcal{C}^{(-\beta)+} that satisfies Assumption 1 with b=Bb=B.

The first result concerns convergence in law when the distributional drift BB is approximated by a sequence of smooth functions BnB^{n}. This result is crucial to show existence of the McKean equation.

Proposition 6.3.

(Issoglio-Russo, [21, Theorem 4.16]). Let BB satisfy Assumption 1. Let (Bn)(B^{n}) be a sequence in CT𝒞(β)+C_{T}\mathcal{C}^{(-\beta)+} converging to BB in CT𝒞βC_{T}\mathcal{C}^{-\beta}. Let (X,)(X,\mathbb{P}) (respectively (Xn,n)(X^{n},\mathbb{P}^{n})) be a solution to the (linear) MP with distributional drift BB (respectively BnB^{n}). Then the sequence (Xn,n)(X^{n},\mathbb{P}^{n}) converges in law to (X,)(X,\mathbb{P}). In particular, if BnB^{n} is a bounded function (which also belongs to CT𝒞(β)+C_{T}\mathcal{C}^{(-\beta)+}) and XnX^{n} is a (strong) solution of

Xtn=X0+0tBn(s,Xsn)ds+Wt,X^{n}_{t}=X_{0}+\int_{0}^{t}B^{n}(s,X^{n}_{s})\mathrm{d}s+W_{t},

then XnX^{n} converges to (X,)(X,\mathbb{P}) in law.

The second result is the fact that the law of the solution XX to a (linear) martingale problem with distributional drift BB solves the Fokker-Planck equation in the weak sense. This result is crucial to show uniqueness of the McKean equation.

Proposition 6.4.

(Issoglio-Russo, [21, Theorem 4.14]). Let BB satisfy Assumption 1. Let (X,)(X,\mathbb{P}) be a solution to the martingale problem with distributional drift BB. Let v(t,)v(t,\cdot) be the law density of XtX_{t} and let us assume that vCT𝒞β+v\in C_{T}\mathcal{C}^{\beta+}. Then vv is a weak solution (in the sense of Definition 3.2 part (ii)) of the Fokker-Plank equation

{tv=12Δvdiv(vB)v(0)=v0.\left\{\begin{array}[]{l}\partial_{t}v=\frac{1}{2}\Delta v-\text{\em div}(vB)\\ v(0)=v_{0}.\end{array}\right.

We can now state and prove the main result of this paper.

Theorem 6.5.

Let Assumptions 1, 2, 3, 4 and 5 hold. Then there exists a solution (X,,v)(X,\mathbb{P},v) to the McKean problem (48). Furthermore, the McKean problem admits uniqueness according to Definition 6.2.

Proof.

Existence. Let us consider the sequence (bn)b(b^{n})\to b defined in Proposition 2.4. The corresponding smoothed McKean problem is

{Xtn=X0+0tF(vn(s,Xsn))bn(s,Xsn)ds+Wt,vn(t,) is the law density of Xtn.\left\{\begin{array}[]{l}X^{n}_{t}=X_{0}+\int_{0}^{t}F(v^{n}(s,X^{n}_{s}))b^{n}(s,X^{n}_{s})\mathrm{d}s+W_{t},\vspace{5pt}\\ v^{n}(t,\cdot)\text{ is the law density of }X^{n}_{t}.\end{array}\right. (50)

By Proposition 5.1 part (i) we have a solution (Xn,vn)(X^{n},v^{n}) of (50) where vnv^{n} is bounded and XnX^{n} is a (strong) solution of dXn=Bn(t,Xtn)dt+dWt;X0n=X0\mathrm{d}X^{n}=B^{n}(t,X^{n}_{t})\mathrm{d}t+\mathrm{d}W_{t};X^{n}_{0}=X_{0} on some fixed probability space (Ω,,)(\Omega,\mathcal{F},\mathbb{P}), with Bn:=F(vn)bnB^{n}:=F(v^{n})b^{n}. By Proposition 5.1 part (iii) we have that vnv^{n} is a semigroup solution of (38). On the other hand, we know by Remark 4.1 that a mild solution unu^{n} of the same equation exists. By Proposition 4.5 we know that unu^{n} is a semigroup solution and moreover it is bounded (because it is a mild solution). By uniqueness of semigroup solutions (see Lemma 4.3) we have vn=unv^{n}=u^{n}.

Now we notice that Bn=F(vn)bnB^{n}=F(v^{n})b^{n} converges to B:=F(v)bB:=F(v)b in CT𝒞βC_{T}\mathcal{C}^{-\beta} because of (13), the linearity of the pointwise product, the Lipschitz property of FF, Lemma 3.1, the convergence bnbb^{n}\to b by Proposition 2.4 item (iii) and the convergence vnvv^{n}\to v by Proposition 4.7. By Lemma [21, Lemma 4.14] we know that (Xn,)(X^{n},\mathbb{P}) is also a solution to the MP with distributional drift BnB^{n} and initial condition X0X_{0}, hence applying Proposition 6.3 we have that XnXX^{n}\to X in law (as BnBB^{n}\to B), and since vnv^{n} is the law density of XnX^{n} we have that vv must be the law density of XX.

Uniqueness. Suppose that we have two solutions of the McKean problem (48), (X1,1,v1)(X^{1},\mathbb{P}^{1},v^{1}) and (X2,2,v2)(X^{2},\mathbb{P}^{2},v^{2}). By definition we know that (Xi,i)(X^{i},\mathbb{P}^{i}) is a solution to the (linear) martingale problem with distributional drift Bi:=F(vi)bB^{i}:=F(v^{i})b. Thus by Proposition 6.4 we have that viv^{i} is a weak solution to the Fokker-Planck equation

{tvi=12Δvidiv(viF(vi)b)vi(0)=v0,\left\{\begin{array}[]{l}\partial_{t}v^{i}=\frac{1}{2}\Delta v^{i}-\text{div}(v^{i}F(v^{i})b)\\ v^{i}(0)=v_{0},\end{array}\right.

which is exactly PDE (49). Item (ii) in Proposition 4.7 guarantees uniqueness of the mild solution of (49) and Proposition 3.3 ensures that weak and mild solutions of the Fokker-Planck equation are equivalent, hence v1=v2=:vv^{1}=v^{2}=:v. Note that it is crucial the fact that viCT𝒞β+v^{i}\in C_{T}\mathcal{C}^{\beta+}. This implies that (Xi,i)(X^{i},\mathbb{P}^{i}) are both solutions of the same (linear) martingale problem with distributional drift B:=F(v)bB:=F(v)b, so by uniqueness of the solution of MP (see Section 2.4) we conclude that the law of X1X^{1} under 1\mathbb{P}^{1} equals the law of X2X^{2} under 2\mathbb{P}^{2}. ∎

Appendix A A generalised Gronwall’s inequality

Here we recall a useful generalised Gronwall’s inequality (or fractional Gronwall’s inequality). For a proof see [30, Corollary 2].

Lemma A.1.

Suppose η>0\eta>0, a(t)a(t) is a nonnegative function locally integrable on 0t<T0\leq t<T (some TT\leq\infty) and nondecreasing on [0,T)[0,T). Let g(t)g(t) be a nonnegative, nondecreasing continuous function defined on 0t<T0\leq t<T, g(t)Mg(t)\leq M (constant), and suppose f(t)f(t) is nonnegative and locally integrable on 0t<T0\leq t<T with

f(t)a(t)+g(t)0t(ts)η1f(s)dsf(t)\leq a(t)+g(t)\int_{0}^{t}(t-s)^{\eta-1}f(s)\mathrm{d}s

on this interval. Then

f(t)a(t)Eη(g(t)Γ(η)tη),f(t)\leq a(t)E_{\eta}(g(t)\Gamma(\eta)t^{\eta}),

where EηE_{\eta} is the Mittag-Leffler function defined by Eη(z)=k=0zkΓ(kη+1)E_{\eta}(z)=\sum_{k=0}^{\infty}\frac{z^{k}}{\Gamma(k\eta+1)}.

Remark A.2.

In [18], the end of the proof of Proposition 4.1 incorrectly uses Gronwall’s lemma. The proper argument should instead cite a generalised Gronwall’s inequality, like the one stated above.

Appendix B Compactness and continuity in inductive spaces

This Appendix is devoted to the proof of a continuity result in inductive spaces. We show in two steps that a function belongs to CT𝒞γ+C_{T}\mathcal{C}^{\gamma+} if and only if it belongs to CT𝒞αC_{T}\mathcal{C}^{\alpha} for some α>γ\alpha>\gamma.

The first step is about compactness of sets in inductive spaces 𝒞γ+\mathcal{C}^{\gamma+}.

Lemma B.1.

Let γ>0\gamma>0. A set K𝒞γ+K\subset\mathcal{C}^{\gamma+} is a compact in 𝒞γ+\mathcal{C}^{\gamma+} if and only if there exists α>γ\alpha>\gamma such that K𝒞αK\subset\mathcal{C}^{\alpha} and KK is a compact in 𝒞α\mathcal{C}^{\alpha}.

Proof.

\Rightarrow”. Let K𝒞γ+K\subset\mathcal{C}^{\gamma+} be a compact. For any xKx\in K, we know that xCα(x)x\in C^{\alpha(x)} for some α(x)>γ\alpha(x)>\gamma and we pick an arbitrary open neighbourhood V(x)V(x) in 𝒞α(x)\mathcal{C}^{\alpha(x)}. Thus V(x)V(x) is an open set of 𝒞γ+\mathcal{C}^{\gamma+}. We have KxKV(x)K\subset\cup_{x\in K}V(x), and since KK is compact in 𝒞γ+\mathcal{C}^{\gamma+} there exists a finite subcovering Ki=1NV(xi)K\subset\cup_{i=1}^{N}V(x_{i}). Let α:=mini=1,,Nα(xi)\alpha:=\min_{i=1,\ldots,N}\alpha(x_{i}). Thus K𝒞αK\subset\mathcal{C}^{\alpha}. Next we show that KK is also a compact in 𝒞α\mathcal{C}^{\alpha} for the chosen α\alpha. Let (Oν)ν(O_{\nu})_{\nu} be any open covering of KK in 𝒞α\mathcal{C}^{\alpha}, that is KνOνK\subset\cup_{\nu}O_{\nu}. Each OνO_{\nu} is an open set of 𝒞α\mathcal{C}^{\alpha} thus also of 𝒞γ+\mathcal{C}^{\gamma+}, therefore (Oν)ν(O_{\nu})_{\nu} is also an open covering of 𝒞γ+\mathcal{C}^{\gamma+}, thus there exists a finite covering.

\Leftarrow”. Let KK be a compact in 𝒞α\mathcal{C}^{\alpha}, for some α>γ\alpha>\gamma. The inclusion K𝒞γ+K\subset\mathcal{C}^{\gamma+} is obvious. Now let us take an open covering of KK in 𝒞γ+\mathcal{C}^{\gamma+}, that is KνOνK\subset\cup_{\nu}O_{\nu}, where each OνO_{\nu} is an open set in 𝒞γ+\mathcal{C}^{\gamma+}. Since K𝒞αK\subset\mathcal{C}^{\alpha}, then Kν(Oν𝒞α)K\subset\cup_{\nu}(O_{\nu}\cap\mathcal{C}^{\alpha}). Finally we notice that since OνO_{\nu} is an open set in 𝒞γ+\mathcal{C}^{\gamma+}, by trace topology we have that Oν𝒞αO_{\nu}\cap\mathcal{C}^{\alpha} is an open set of 𝒞α\mathcal{C}^{\alpha} (because 𝒞α\mathcal{C}^{\alpha} is a closed set of 𝒞γ+\mathcal{C}^{\gamma+}). Thus we can extract a finite subcovering in 𝒞α\mathcal{C}^{\alpha}, which will be also a finite subcovering of KK in 𝒞γ+\mathcal{C}^{\gamma+}. ∎

Next we show the continuity result.

Lemma B.2.

Let γ>0\gamma>0. Then CT𝒞γ+=α>γCT𝒞αC_{T}\mathcal{C}^{\gamma+}=\cup_{\alpha>\gamma}C_{T}\mathcal{C}^{\alpha}.

Proof.

The inclusion \supseteq is obvious.
Next we show the inclusion \subseteq. Let f:[0,T]𝒞γ+f:[0,T]\to\mathcal{C}^{\gamma+} be continuous. We have to find α>γ\alpha>\gamma such that fCT𝒞αf\in C_{T}\mathcal{C}^{\alpha}. Let Ef:={f(t),t[0,T]}E_{f}:=\{f(t),t\in[0,T]\}, which is a compact in 𝒞γ+=α>γ𝒞α\mathcal{C}^{\gamma+}=\cup_{\alpha>\gamma}\mathcal{C}^{\alpha} since it is the image of the compact [0,T][0,T] via ff which is continuous. By Lemma B.1 there exists α>γ\alpha>\gamma such that EfE_{f} is a compact in 𝒞α\mathcal{C}^{\alpha}, in particular, f:[0,T]𝒞αf:[0,T]\to\mathcal{C}^{\alpha}. It remains to show that f(tn)f(t0)f(t_{n})\to f(t_{0}) in 𝒞α\mathcal{C}^{\alpha} when tnt0t_{n}\to t_{0}. Since EfE_{f} is compact in 𝒞α\mathcal{C}^{\alpha}, there exists a subsequence tnkt0t_{n_{k}}\to t_{0} such that f(tnk)lf(t_{n_{k}})\to l for some l𝒞αl\in\mathcal{C}^{\alpha}, thus l𝒞γ+l\in\mathcal{C}^{\gamma+}. On the other hand, fCT𝒞γ+f\in C_{T}\mathcal{C}^{\gamma+} means that f(tn)f(t0)f(t_{n})\to f(t_{0}) in 𝒞γ+\mathcal{C}^{\gamma+}. Thus by uniqueness of the limit we have l=f(t0)l=f(t_{0}). ∎

Remark B.3.

By similar arguments as in the proofs of Lemma B.1 and Lemma B.2 we obtain the same characterization for any inductive space of the form E=NENE=\cup_{N\in\mathbb{N}}E_{N}, where ENE_{N} is a Banach space, that is

  • (i)

    KEK\subset E is a compact in EE if and only if there exists NN such that KENK\subset E_{N} and KK is a compact in ENE_{N};

  • (ii)

    CTE=NCTEN.C_{T}E=\cup_{N\in\mathbb{N}}C_{T}E_{N}.

References

  • [1] H. Bahouri, J-Y. Chemin, and R. Danchin. Fourier Analysis and Nonlinear Partial Differential Equations. Springer, 2011.
  • [2] V. Barbu and M. Röckner. Probabilistic representation for solutions to nonlinear Fokker-Planck equations. SIAM J. Math. Anal., 50(4):4246–4260, 2018.
  • [3] R. F. Bass and Z.-Q. Chen. Brownian motion with singular drift. Ann. Probab., 31(2):791–817, 2003.
  • [4] J.-M. Bony. Calcul symbolique et propagation des singularites pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ec. Norm. Super., 14:209–246, 1981.
  • [5] G. Cannizzaro and K. Chouk. Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential. Ann. Probab., 46(3):1710–1763, 2018.
  • [6] R. Carmona and F. Delarue. Probabilistic theory of mean field games with applications I, volume 84 of Probability Theory and Stochastic Modelling. Springer International Publishing, 2018.
  • [7] R. Carmona and F. Delarue. Probabilistic theory of mean field games with applications II, volume 84 of Probability Theory and Stochastic Modelling. Springer International Publishing, 2018.
  • [8] R. Catellier and K. Chouk. Paracontrolled distributions and the 3-dimensional stochastic quantization equation. Ann. Probab., 46(5):2621–2679, 2018.
  • [9] P. E. Chaudru de Raynal. Strong well-posedness of McKean-Vlasov stochastic differential equations with Hölder drift. Stochastic Processes Appl., 130(1):79–107, 2020.
  • [10] N. Dunford and J. T. Schwartz. Linear operators. Part I. Wiley Classics Library. John Wiley & Sons Inc., New York, 1988. General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication.
  • [11] F. Flandoli, E. Issoglio, and F. Russo. Multidimensional SDEs with distributional coefficients. T. Am. Math. Soc., 369:1665–1688, 2017.
  • [12] F. Flandoli, F. Russo, and J. Wolf. Some SDEs with distributional drift. I. General calculus. Osaka J. Math., 40(2):493–542, 2003.
  • [13] F. Flandoli, F. Russo, and J. Wolf. Some SDEs with distributional drift. II. Lyons-Zheng structure, Itô’s formula and semimartingale characterization. Random Oper. Stochastic Equations, 12(2):145–184, 2004.
  • [14] M. Gubinelli, P. Imkeller, and N. Perkowski. Paracontrolled distributions and singular PDEs. Forum of Mathematics, Pi, 3:75 pages, 2015.
  • [15] X. Huang and F.-Yu. Wang. Distribution dependent SDEs with singular coefficients. Stochastic Processes Appl., 129(11):4747–4770, 2019.
  • [16] X. Huang and F.-Yu. Wang. McKean-Vlasov SDEs with drifts discontinuous under Wasserstein distance. Discrete Contin. Dyn. Syst., 41(4):1667–1679, 2021.
  • [17] E. Issoglio. Transport equations with fractal noise - existence, uniqueness and regularity of the solution. J. Analysis and its App., 32(1):37–53, 2013.
  • [18] E. Issoglio. A non-linear parabolic PDE with a distributional coefficient and its applications to stochastic analysis. J. Differential Equations, 267(10):5976–6003, 2019.
  • [19] E. Issoglio and S. Jing. Forward-Backward SDEs with distributional coefficients. Stochastic Processes and their Applications, 130(1):47–78, 2020.
  • [20] E. Issoglio and F. Russo. A Feynman–Kac result via Markov BSDEs with generalised drivers. Bernoulli, 26(1):728–766, 2020.
  • [21] E. Issoglio and F. Russo. A PDE with drift of negative Besov index and related martingale problem. preprint (in preparation), 2022.
  • [22] L. Izydorczyk, N. Oudjane, and F. Russo. McKean Feynman-Kac probabilistic representations of nonlinear partial differential equations. Geometry and Invariance in Stochastic Dynamics. Eds. S. Ugolini et al. Preprint hal-02397045, to appear, 2021.
  • [23] B. Jourdain and S. Méléard. Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. H. Poincaré Probab. Statist., 34(6):727–766, 1998.
  • [24] A. Le Cavil, N. Oudjane, and F. Russo. Particle system algorithm and chaos propagation related to a non-conservative McKean type stochastic differential equations. Stochastics and Partial Differential Equations: Analysis and Computation., pages 1–37, 2016.
  • [25] A. Le Cavil, N. Oudjane, and F. Russo. Probabilistic representation of a class of non-conservative nonlinear partial differential equations. ALEA Lat. Am. J. Probab. Math. Stat, 13(2):1189–1233, 2016.
  • [26] J. Lieber, N. Oudjane, and F. Russo. On the well-posedness of a class of McKean Feynman-Kac equations. Markov Process. Relat. Fields, 25(5):821–862, 2019.
  • [27] M. Röckner and X. Zhang. Well-posedness of distribution dependent SDEs with singular drifts. Bernoulli, 27(2):1131–1158, 2021.
  • [28] F. Russo and G. Trutnau. Some parabolic PDEs whose drift is an irregular random noise in space. Ann. Probab., 35(6):2213–2262, 2007.
  • [29] H. Triebel. Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, volume 11 of EMS Tracts in Mathematics. European Mathematical Society, 2010.
  • [30] H. Ye, J. Gao, and Y. Ding. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl., 328(2):1075–1081, 2007.