This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Maz’ya’s Φ\Phi-inequalities on domains

Dmitriy Stolyarov Supported by Russian Science Foundation grant N 19-71-10023
Abstract

We find necessary and sufficient conditions on the function Φ\Phi for the inequality

|ΩΦ(Kf)|fL1(d)p\Big{|}\int_{\Omega}\Phi(K*f)\Big{|}\lesssim\|f\|_{L_{1}(\mathbb{R}^{d})}^{p}

to be true. Here KK is a positively homogeneous of order αd\alpha-d, possibly vector valued, kernel, Φ\Phi is a pp-homogeneous function, and p=d/(dα)p=d/(d-\alpha). The domain Ωd\Omega\subset\mathbb{R}^{d} is either bounded with C1,βC^{1,\beta} smooth boundary for some β>0\beta>0 or a halfspace in d\mathbb{R}^{d}. As a corollary, we describe the positively homogeneous of order d/(d1)d/(d-1) functions Φ:d\Phi\colon\mathbb{R}^{d}\to\mathbb{R} that are suitable for the bound

|ΩΦ(u)|Ω|Δu|.\Big{|}\int_{\Omega}\Phi(\nabla u)\Big{|}\lesssim\int_{\Omega}|\Delta u|.

1 Introduction

This paper contains development of the theory of Maz’ya’s Φ\Phi-inequalities given in [11] and [12]. These inequalities might be thought of as corrections of the invalid endpoint Hardy–Littlewood–Sobolev inequality

Iα[f]Lp(d)fL1(d),p=ddα.{\|\operatorname{I}_{\alpha}[f]\|_{L_{p}(\mathbb{R}^{d})}\lesssim\|f\|_{L_{1}(\mathbb{R}^{d})},\qquad p=\frac{d}{d-\alpha}.} (1.1)

The symbol Iα\operatorname{I}_{\alpha} denotes the Riesz potential of order α\alpha:

Iα[f]=cd,αdf(y)|xy|dα𝑑y,fC0(d).{\operatorname{I}_{\alpha}[f]=c_{d,\alpha}\int\limits_{\mathbb{R}^{d}}\frac{f(y)}{|x-y|^{d-\alpha}}\,dy,\qquad f\in C_{0}^{\infty}(\mathbb{R}^{d}).} (1.2)

For the classical Hardy–Littlewood–Sobolev inequality and its applications, see the original paper [7] or modern presentation in Subsection VIII.4.2\mathrm{VIII}.4.2 of [9]. The counterexample to (1.1) is provided by a sequence of functions ff approximating a delta measure. Linear corrections of the Hardy–Littlewood–Sobolev inequality at the endpoint are sometimes called Bourgain–Brezis inequalities. Usually, one adds translation and dilation invariant constraints for the function ff that exclude the delta measures. We refer the reader to the pioneering paper [1], to more recent studies [3][10][14], and to the surveys [8] and [15].

In [4], Vladimir Maz’ya suggested a modification of the Hardy–Littlewood–Sobolev inequality for p=1p=1 that allowed substitution of a delta measure (see also Problem 5.15.1 in the problem book [5] as well). He conjectured that the inequality

|dΦ(u(x))𝑑x|ΔuL1(d)d/(d1){\Big{|}\int\limits_{\mathbb{R}^{d}}\Phi(\nabla u(x))\,dx\Big{|}\lesssim\|\Delta u\|_{L_{1}(\mathbb{R}^{d})}^{d/(d-1)}} (1.3)

holds true for all smooth compactly supported functions uu with a uniform constant, provided the positively d/(d1)d/(d-1) homogeneous function Φ:d\Phi\colon\mathbb{R}^{d}\to\mathbb{R} satisfies the cancellation condition

Sd1Φ(ζ)𝑑σ(ζ)=0.{\int\limits_{S^{d-1}}\Phi(\zeta)\,d\sigma(\zeta)=0.} (1.4)

By σ\sigma we denote the Hausdorff measure on the unit sphere. The necessity of this condition follows from substitution of uu that mimics the fundamental solution of the Laplace equation, i.e. Δu\Delta u mimics a delta measure (see Section 2 below for details on such arguments). By a positively qq-homogeneous function we mean a function Ψ\Psi defined on a Euclidean space such that Ψ(λy)=λqΨ(y)\Psi(\lambda y)=\lambda^{q}\Psi(y) for any yy and any λ+\lambda\in\mathbb{R}_{+}. Note that the inequality (1.3) is non-linear; there is no hint to convexity in it as well. The cases where p=2p=2 and Φ\Phi is a quadratic form were considered in [6], with sharp constants established. Maz’ya’s conjecture was proved in [11]. We cite the main result of that paper.

Theorem 1.1.

Let dd be a natural number and let α(0,d)\alpha\in(0,d). Assume the kernel K:dK\colon\mathbb{R}^{d}\to\mathbb{R}^{\ell} is positively (αd)(\alpha-d)-homogeneous and Lipschitz on the unit sphere. Assume the function Φ:\Phi\colon\mathbb{R}^{\ell}\to\mathbb{R} is positively pp-homogeneous, p=d/(dα)p=d/(d-\alpha), and Lipschitz on the unit sphere. The inequality

|dΦ(Kf(x))𝑑x|fL1(d)p{\Big{|}\int\limits_{\mathbb{R}^{d}}\Phi\Big{(}K*f(x)\Big{)}\,dx\Big{|}\lesssim\|f\|_{L_{1}(\mathbb{R}^{d})}^{p}} (1.5)

holds true for all smooth compactly supported functions ff with zero mean if and only if

Sd1Φ(K(ζ))𝑑σ(ζ)=0andSd1Φ(K(ζ))𝑑σ(ζ)=0.{\int\limits_{S^{d-1}}\Phi(K(\zeta))\,d\sigma(\zeta)=0\quad\text{and}\quad\int\limits_{S^{d-1}}\Phi(-K(\zeta))\,d\sigma(\zeta)=0.} (1.6)

Theorem 1.1 implies Maz’ya’s conjecture (1.3) via the representation

u(x)=cdd(xy)Δu(y)|xy|d𝑑y,uC0(d),{\nabla u(x)=c_{d}\int\limits_{\mathbb{R}^{d}}\frac{(x-y)\Delta u(y)}{|x-y|^{d}}\,dy,\qquad u\in C_{0}^{\infty}(\mathbb{R}^{d}),} (1.7)

here cdc_{d} is a certain constant. The classical Sobolev inequalities are valid for functions on domains. Since the companion Bourgain–Brezis inequalities were adjusted to this setting in [2] and [3], it is also desirable to find analogs of Maz’ya’s Φ\Phi inequalities for functions on domains. Here the main results are. In these theorems, we assume that K:dK\colon\mathbb{R}^{d}\to\mathbb{R}^{\ell} and Φ:\Phi\colon\mathbb{R}^{\ell}\to\mathbb{R} are Lipschitz on the unit sphere and positively (αd)(\alpha-d) and pp homogeneous, respectively. We always have the homogeneity relation p=d/(dα)p=d/(d-\alpha). The number β\beta belongs to (0,1)(0,1).

Theorem 1.2.

Let Ωd\Omega\subset\mathbb{R}^{d} be a bounded domain whose boundary is C1,βC^{1,\beta} smooth. The inequality

|ΩΦ(Kf(x))𝑑x|fL1(d)p{\Big{|}\int\limits_{\Omega}\Phi\Big{(}K*f(x)\Big{)}\,dx\Big{|}\lesssim\|f\|_{L_{1}(\mathbb{R}^{d})}^{p}} (1.8)

holds true for any bounded compactly supported function ff on d\mathbb{R}^{d} if and only if for any ξSd1\xi\in S^{d-1}

ζSd1,ζ,ξ>0Φ(K(ζ))𝑑σ(ζ)=0andζSd1,ζ,ξ>0Φ(K(ζ))𝑑σ(ζ)=0.{\int\limits_{\genfrac{}{}{0.0pt}{-2}{\zeta\in S^{d-1},}{\langle{\zeta},{\xi}\rangle>0}}\Phi(K(\zeta))\,d\sigma(\zeta)=0\quad\text{and}\quad\int\limits_{\genfrac{}{}{0.0pt}{-2}{\zeta\in S^{d-1},}{\langle{\zeta},{\xi}\rangle>0}}\Phi(-K(\zeta))\,d\sigma(\zeta)=0.} (1.9)

We note that the new cancellation condition (1.9) implies (1.6). The main difference of the Φ\Phi-inequalities from classical estimates in the spirit of Sobolev is that there is no monotonicity of the estimated quantity with respect to domain. In other words, it is completely unclear how to bound ΩΦ(Kf)\int_{\Omega}\Phi(K*f) with dΦ(Kf)\int_{\mathbb{R}^{d}}\Phi(K*f); seemingly, there are no such bounds. In the classical case, however, Ω|f|pd|f|p\int_{\Omega}|f|^{p}\leq\int_{\mathbb{R}^{d}}|f|^{p}.

We have also considered the case where Ω\Omega is a half-space.

Theorem 1.3.

Fix ξSd1\xi\in S^{d-1}. Let Ω={xdx,ξ>0}\Omega=\{{x\in\mathbb{R}^{d}}\mid{\langle{x},{\xi}\rangle>0}\}. The inequality

|ΩΦ(Kf(x))𝑑x|fL1(d)p{\Big{|}\int\limits_{\Omega}\Phi\Big{(}K*f(x)\Big{)}\,dx\Big{|}\lesssim\|f\|_{L_{1}(\mathbb{R}^{d})}^{p}} (1.10)

holds true for any bounded compactly supported function ff on d\mathbb{R}^{d} with zero mean if and only if (1.6) and (1.9) hold true (with the specific vector ξ\xi).

The requirement that the boundary of Ω\Omega is C1,βC^{1,\beta} smooth in Theorem 1.2 means the following. In a neighborhood of any boundary point, Ω\Omega coincides with the subgraph of a differentiable function whose gradient is β\beta-Hölder. In particular, if we choose the coordinates in the way that in a neighborhood of the origin

Ω={xdxdh(x1,x2,,xd1)},h(0)=0, and h(0)=0,{\Omega=\{{x\in\mathbb{R}^{d}}\mid{x_{d}\geq h(x_{1},x_{2},\ldots,x_{d-1})}\},\quad h(0)=0,\text{ and }\nabla h(0)=0,} (1.11)

then

|h(y)|C|y|1+β{|h(y)|\leq C|y|^{1+\beta}} (1.12)

for sufficiently small yd1y\in\mathbb{R}^{d-1} and an absolute constant C=C(Ω)C=C(\Omega).

The assumption that ff has zero mean appearing in the Theorems 1.1 and 1.3 is necessary, since without them KfK*f decays as |x|αd|x|^{\alpha-d} at infinity, and there is no hope for the bound in question unless we regularize the integral on the left hand side of the inequality; this requirement might be thought of as a condition of compact support for functions in Sobolev inequalities. The proofs of the two theorems above rely on the circle of ideas developed in [11] and [12] and form, in a sense, a natural continuation of that papers. We also present corollaries in the spirit of the original Maz’ya’s setting (1.3).

Corollary 1.1.

Let Φ:d\Phi\colon\mathbb{R}^{d}\to\mathbb{R} be a positively d/(d1)d/(d-1)-homogeneous function whose restriction to the unit sphere is Lipschitz. Assume for any ξd{0}\xi\in\mathbb{R}^{d}\setminus\{0\} the cancellation condition

ζSd1,ζ,ξ>0Φ(ζ)𝑑σ(ζ)=0{\int\limits_{\genfrac{}{}{0.0pt}{-2}{\zeta\in S^{d-1},}{\langle{\zeta},{\xi}\rangle>0}}\Phi(\zeta)\,d\sigma(\zeta)=0} (1.13)

holds true. Then, for any bounded domain Ω\Omega with smooth boundary and any smooth function u:Ω¯u\colon\bar{\Omega}\to\mathbb{R}, the estimate

|ΩΦ(u(x))𝑑x|ΔuL1(Ω)+unL1(Ω){\Big{|}\int\limits_{\Omega}\Phi(\nabla u(x))\,dx\Big{|}\lesssim\|\Delta u\|_{L_{1}(\Omega)}+\Big{\|}\frac{\partial u}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)}} (1.14)

is also true with a uniform constant.

We have used the notation Ω¯\bar{\Omega} to denote the closure of Ω\Omega. The boundary Ω\partial\Omega is equipped with the Hausdorff measure of dimension d1d-1. The second summand on the right hand side of (1.14) is unavoidable as it can be seen from considering harmonic functions uu.

Corollary 1.2.

Let Φ:d\Phi\colon\mathbb{R}^{d}\to\mathbb{R} be a positively d/(d1)d/(d-1)-homogeneous function whose restriction to the unit sphere is Lipschitz. Let ξSd1\xi\in S^{d-1}. Assume the cancellation condition

ζSd1,ζ,ξ>0Φ(ζ)𝑑σ(ζ)=0{\int\limits_{\genfrac{}{}{0.0pt}{-2}{\zeta\in S^{d-1},}{\langle{\zeta},{\xi}\rangle>0}}\Phi(\zeta)\,d\sigma(\zeta)=0} (1.15)

holds true. Then, the estimate

|ΩΦ(u(x))𝑑x|ΔuL1(Ω)+unL1(Ω){\Big{|}\int\limits_{\Omega}\Phi(\nabla u(x))\,dx\Big{|}\lesssim\|\Delta u\|_{L_{1}(\Omega)}+\Big{\|}\frac{\partial u}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)}} (1.16)

is also true for any compactly supported smooth function u:Ωu\colon\Omega\to\mathbb{R} with a uniform constant, where Ω\Omega is the halfspace {xdx,ξ>0}\{{x\in\mathbb{R}^{d}}\mid{\langle{x},{\xi}\rangle>0}\}.

Remark 1.3.

The cancellation conditions in the two corollaries above are not only sufficient, but also necessary. The proof of this assertion is similar to the proofs of necessity in Theorems 1.2 and 1.3 presented in Section 2 below.

Remark 1.4.

Though the smoothness assumptions on the boundary of Ω\Omega in Corollary 1.1 seem superfluous, our proof uses the theory of pseudodifferential operators, and so we do not see and immediate way to remove them.

While Corollary 1.2 follows from Theorem 1.3 almost immediately, the derivation of Corollary 1.1 from Theorem 1.2 requires some efforts. The strategy is to extend uu to a compactly supported function on d\mathbb{R}^{d} in such a way that the L1L_{1}-norm of the Laplacian is controlled by the right hand side of (1.14) and then apply Theorem 1.2 via (1.7). A similar strategy was used in [3] in the context of classical Bourgain–Brezis inequalities. Here we need a specific extension theorem, see Proposition 5.1.

In the forthcoming Section 2, we prove the necessity of cancellation conditions in Theorems 1.2 and 1.3. Section 3 is devoted to reduction of our inequalities to Theorem 3.1 below; the latter theorem might be informally thought of as the Besov space version of Maz’ya’s inequalities. Section 4 contains the proof of the latter theorem. The concluding Section 5 finishes the proofs of Theorems 1.2 and 1.3 and provides derivation Corollaries 1.1 and 1.2.

I wish to thank Vladimir Maz’ya for asking me the question that motivated the paper (the question was whether Corollary 1.1 holds true). I am also grateful to Alexander Nazarov, Mikhail Novikov, Bogdan Raiţă, and Alexander Tyulenev for discussions concerning extension of smooth functions (results around Proposition 5.1).

2 Necessity

We first verify the necessity of (1.9) in Theorem 1.2 and then explain the modifications needed to justify necessity in Theorem 1.3.

Let ξSd1\xi\in S^{d-1}. Choose a point zξΩz_{\xi}\in\partial\Omega such that the inward pointing normal vector to Ω\partial\Omega at zξz_{\xi} equals ξ\xi. For example, we may choose zξz_{\xi} as follows: let it be the point zclΩz\in\operatorname{cl}\Omega such that z,ξ\langle{z},{\xi}\rangle is the smallest among all zΩz\in\Omega. By rotating and shifting Ω\Omega, we may, without loss of generality, assume ξ=(0,0,,0,1)\xi=(0,0,\ldots,0,1) and zξz_{\xi} is the origin.

Let f0f_{0} be a smooth function with unit integral supported in the unit ball. Consider its dilations fnf_{n}:

fn(x)=ndf(nx),xd,n.{f_{n}(x)=n^{d}f(nx),\qquad x\in\mathbb{R}^{d},\ n\in\mathbb{N}.} (2.1)

We will be using the homogeneity relation

Kfn(x)=ndαKf(nx),xd,{K*f_{n}(x)=n^{d-\alpha}K*f(nx),\qquad x\in\mathbb{R}^{d},} (2.2)

and the asymptotic formula

Kf(x)=K(x)+O(|x|αd1),x.{K*f(x)=K(x)+O(|x|^{\alpha-d-1}),\qquad x\to\infty.} (2.3)

This formula follows from the homogeneity and smoothness assumptions on the kernel KK. Recall Lemma 6.56.5 in [11]:

|Φ(a+b)Φ(a)||a|p1|b|,provided2|b||a|,a,b.{\big{|}\Phi(a+b)-\Phi(a)\big{|}\lesssim|a|^{p-1}|b|,\qquad\text{provided}\quad 2|b|\leq|a|,\quad a,b\in\mathbb{R}^{\ell}.} (2.4)

Then, by (2.3) and (2.4),

Φ(Kf(x))=Φ(K(x))+O(|K(x)|p1|x|αd1)=Φ(K(x))+O(|x|d1),x.{\Phi(K*f(x))=\Phi(K(x))+O\Big{(}|K(x)|^{p-1}|x|^{\alpha-d-1}\Big{)}=\Phi(K(x))+O\Big{(}|x|^{-d-1}\Big{)},\qquad x\to\infty.} (2.5)

We plug the function xfn(x1,x2,,xd1,xd2/n)x\mapsto f_{n}(x_{1},x_{2},\ldots,x_{d-1},x_{d}-2/n) into (1.8); note that such a function is supported in Ω\Omega provided nn is sufficiently large. Then, by (2.2), the left hand side of (1.8) equals

|nΩΦ(Kf(x1,x2,,xd1,xd2))𝑑x|.{\Big{|}\int\limits_{n\Omega}\Phi(K*f(x_{1},x_{2},\ldots,x_{d-1},x_{d}-2))\,dx\Big{|}.} (2.6)

Let Br(x)B_{r}(x) be the open Euclidean ball of radius rr centered at xx. Note that KfK*f is a continuous function. Therefore, by the asymptotic formula (2.5), the integral (2.6) differs by a uniformly (w.r.t. nn) bounded quantity from

|nΩB4(0)Φ(K(x))𝑑x|.{\Big{|}\int\limits_{n\Omega\setminus B_{4}(0)}\Phi(K(x))\,dx\Big{|}.} (2.7)

Now let

I=ζSd1ζd>0Φ(K(ζ))𝑑σ(ζ);M=ζSd1|Φ(K(ζ))|𝑑σ(ζ).{\operatorname{I}=\int\limits_{\genfrac{}{}{0.0pt}{-2}{\zeta\in S^{d-1}}{\zeta_{d}>0}}\Phi(K(\zeta))\,d\sigma(\zeta);\qquad\operatorname{M}=\int\limits_{\zeta\in S^{d-1}}\Big{|}\Phi(K(\zeta))\Big{|}\,d\sigma(\zeta).} (2.8)

We wish to show I=0\operatorname{I}=0, this will prove the necessity of the first identity in (1.9) (the necessity of the second is obtained by plugging a similar function generated by ff whose integral is 1-1). We rewrite (2.7) using a change of variables and homogeneity:

nΩB4(0)Φ(K(x))𝑑x=4rd1Sd1nrΩΦ(K(rζ))𝑑σ(ζ)𝑑r=4r1Sd1nrΩΦ(K(ζ))𝑑σ(ζ)𝑑r.{\int\limits_{n\Omega\setminus B_{4}(0)}\Phi(K(x))\,dx=\int\limits_{4}^{\infty}r^{d-1}\!\!\!\int\limits_{S^{d-1}\cap\frac{n}{r}\Omega}\Phi(K(r\zeta))\,d\sigma(\zeta)\,dr=\int\limits_{4}^{\infty}r^{-1}\!\!\!\int\limits_{S^{d-1}\cap\frac{n}{r}\Omega}\Phi(K(\zeta))\,d\sigma(\zeta)\,dr.} (2.9)

Note that, in fact, the domain of integration for the outer integral is bounded by ndiamΩn\operatorname{diam}\Omega, we will use this fact slightly later. Let

Ψ(ρ)=Sd1ρ1ΩΦ(K(ζ))𝑑σ(ζ),ρ(0,).{\Psi(\rho)=\!\!\!\!\int\limits_{S^{d-1}\cap\rho^{-1}\Omega}\!\!\!\Phi(K(\zeta))\,d\sigma(\zeta),\qquad\rho\in(0,\infty).} (2.10)

This function satisfies the bounds for all ρ(0,)\rho\in(0,\infty); the second formula follows from (1.12). Let γ(0,1)\gamma\in(0,1) be a parameter. Then, (2.9) equals

4r1Ψ(r/n)𝑑r=4nγr1Ψ(r/n)𝑑r+nγO(n)r1Ψ(r/n)𝑑r.{\int\limits_{4}^{\infty}r^{-1}\Psi(r/n)\,dr=\int\limits_{4}^{n^{\gamma}}r^{-1}\Psi(r/n)\,dr+\int\limits_{n^{\gamma}}^{O(n)}r^{-1}\Psi(r/n)\,dr.} (2.11)

The absolute value of the second integral is bounded by M(1γ)logn+O(1)\operatorname{M}(1-\gamma)\log n+O(1) by (LABEL:eq211), whereas the first equals Iγlogn+O(1+n(γ1)β)\operatorname{I}\gamma\log n+O(1+n^{(\gamma-1)\beta}) via (LABEL:eq212). If I0\operatorname{I}\neq 0, we may choose γ\gamma such that the whole integral tends to infinity as nn\to\infty, which contradicts the initial inequality. We have proved necessity in Theorem 1.2.

To prove necessity in Theorem 1.3, we follow a similar route. Without loss of generality, we may assume ξ=(0,0,,1)\xi=(0,0,\ldots,1) and plug the function

xfn(x1,x2,,xd1,xd1/n)f(x1,x2,,xd1,xd1){x\mapsto f_{n}(x_{1},x_{2},\ldots,x_{d-1},x_{d}-1/n)-f(x_{1},x_{2},\ldots,x_{d-1},x_{d}-1)} (2.12)

into (1.10). We need to subtract the second term to obtain a function with zero mean. Applying the tricks we have used to pass from (1.8) to the uniform boundedness of (2.7) to remove the contribution of the second term to the left hand side of the inequality, we arrive at the integral

||x|<nxd>0Φ(K(x))𝑑x|.{\Big{|}\int\limits_{\genfrac{}{}{0.0pt}{-2}{|x|<n}{x_{d}>0}}\Phi(K(x))\,dx\Big{|}.} (2.13)

The uniform boundedness (w.r.t nn) of this integral leads to (1.9) via the same change of variable.

The necessity of (1.6) in Theorem 1.3 is proved by considering the function

xfn(x1,x2,,xd1,xd1)f(x1,x2,,xd1,xd1).{x\mapsto f_{n}(x_{1},x_{2},\ldots,x_{d-1},x_{d}-1)-f(x_{1},x_{2},\ldots,x_{d-1},x_{d}-1).} (2.14)

3 Preliminary estimates

We split the kernel into parts:

Kn(x)={K(x),|x|[2n1,2n);0,otherwise.{K_{n}(x)=\begin{cases}K(x),\qquad&|x|\in[2^{-n-1},2^{-n});\\ 0,\qquad&\text{otherwise}.\end{cases}} (3.1)

Then, K=nKnK=\sum_{n}K_{n} and Kn(x)=2(dα)nK0(2nx)K_{n}(x)=2^{(d-\alpha)n}K_{0}(2^{n}x). We will also use the notation

Kn(x)=knKk(x).{K_{\leq n}(x)=\sum\limits_{k\leq n}K_{k}(x).} (3.2)

The condition (1.6) implies

dΦ(Kn(x))𝑑x=dΦ(Kn(x))𝑑x=0,{\int\limits_{\mathbb{R}^{d}}\Phi(K_{n}(x))\,dx=\int\limits_{\mathbb{R}^{d}}\Phi(-K_{n}(x))\,dx=0,} (3.3)

while (1.9) yields

x,ξ0Φ(Kn(x))𝑑x=x,ξ0Φ(Kn(x))𝑑x=0.{\int\limits_{\langle{x},{\xi}\rangle\geq 0}\!\!\!\Phi(K_{n}(x))\,dx=\!\!\!\int\limits_{\langle{x},{\xi}\rangle\geq 0}\!\!\!\Phi(-K_{n}(x))\,dx=0.} (3.4)

The following lemma is a simpler variation of Lemma 2.42.4 in [11].

Lemma 3.1.

Let p[1,)p\in[1,\infty). If Ω\Omega is a bounded domain, then

Ω|K0f(x)|p𝑑xfL1(d)p,fL1(d).{\int\limits_{\Omega}|K_{\leq 0}*f(x)|^{p}\,dx\lesssim\|f\|_{L_{1}(\mathbb{R}^{d})}^{p},\qquad f\in L_{1}(\mathbb{R}^{d}).} (3.5)
Proof.

The inequality follows from

K0fLK0LfL1fL1,{\|K_{\leq 0}*f\|_{L_{\infty}}\leq\|K_{\leq 0}\|_{L_{\infty}}\|f\|_{L_{1}}\lesssim\|f\|_{L_{1}},} (3.6)

and the boundedness of Ω\Omega. ∎

The function p:+×+\mathcal{M}_{p}\colon\mathbb{R}_{+}\times\mathbb{R}_{+}\to\mathbb{R} originated in [12] in this context and played the pivotal role in [11] (see formulas (2.17)(2.17) and (5.4)(5.4) of that paper):

p(x,y)={min(xp1y,xyp1),p(1,2];12(xp1y+xyp1),p(2,),x0,y0.{\mathcal{M}_{p}(x,y)=\begin{cases}\min(x^{p-1}y,xy^{p-1}),\qquad&p\in(1,2];\\ \frac{1}{2}(x^{p-1}y+xy^{p-1}),\qquad&p\in(2,\infty),\end{cases}\qquad x\geq 0,y\geq 0.} (3.7)

The lemma below is completely similar to Lemma 2.62.6 in [11], we omit its proof.

Lemma 3.2.

The inequality

|ΩΦ(Kn+1f)Φ(Knf)||ΩΦ(Kn+1f)|+Ωp(|Knf|,|Kn+1f|){\Big{|}\int\limits_{\Omega}\Phi(K_{\leq n+1}*f)-\Phi(K_{\leq n}*f)\Big{|}\lesssim\Big{|}\int\limits_{\Omega}\Phi(K_{n+1}*f)\Big{|}+\int\limits_{\Omega}\mathcal{M}_{p}\Big{(}|K_{\leq n}*f|,|K_{n+1}*f|\Big{)}} (3.8)

holds true for any bounded compactly supported ff and nn\in\mathbb{N}.

Since p\mathcal{M}_{p} is a non-negative function, the estimate

nΩp(|Knf|,|Kn+1f|)fL1(d)p{\sum\limits_{n\in\mathbb{Z}}\int\limits_{\Omega}\mathcal{M}_{p}\Big{(}|K_{\leq n}*f|,|K_{n+1}*f|\Big{)}\lesssim\|f\|_{L_{1}(\mathbb{R}^{d})}^{p}} (3.9)

follows from Theorem 2.32.3 in [11]. A companion estimate cannot be reduced to Theorem 2.22.2 in [11] since now we need more cancellation conditions on the kernel KK.

Theorem 3.1.

Assume Ω\Omega is a bounded domain with C1,βC^{1,\beta}-smooth boundary and (1.9) holds true. Then,

n|ΩΦ(Knf(x))𝑑x|fL1p{\sum\limits_{n\in\mathbb{Z}}\Big{|}\int\limits_{\Omega}\Phi(K_{n}*f(x))\,dx\Big{|}\lesssim\|f\|_{L_{1}}^{p}} (3.10)

for any compactly supported bounded ff.

4 Sufficiency: proof of Theorem 3.1

Let {Qk,j}\{Q_{k,j}\} be the grid of dyadic cubes:

Qk,j=i=1d[2kji,2k(ji+1)),j=(j1,j2,,jd)d,k.{Q_{k,j}=\prod_{i=1}^{d}\big{[}2^{-k}j_{i},2^{-k}(j_{i}+1)\big{)},\qquad j=(j_{1},j_{2},\ldots,j_{d})\in\mathbb{Z}^{d},\ k\in\mathbb{Z}.} (4.1)

If QQ is a cube, c(Q)c(Q) denotes its center, (Q)\ell(Q) its sidelength, and λQ\lambda Q is the cube with center c(Q)c(Q) and sidelength λ(Q)\lambda\ell(Q)λ>0\lambda>0.

Definition 4.1.

We say that a cube QQ is a boundary cube, provided (d+2)QΩ(d+2)Q\cap\partial\Omega\neq\varnothing. The collection of all boundary cubes is denoted by 𝔅\mathfrak{B}.

Lemma 4.2.

Let QQ be a dyadic cube of generation nnQ𝔅Q\notin\mathfrak{B}. Let ff be a summable function supported in QQ. Then,

|ΩΦ(Knf(x))𝑑x|2nfL1(Q)p1infcQQ|xc||f(x)|𝑑x.{\Big{|}\int\limits_{\Omega}\Phi(K_{n}*f(x))\,dx\Big{|}\lesssim 2^{n}\|f\|_{L_{1}(Q)}^{p-1}\inf\limits_{c\in Q}\int\limits_{Q}|x-c||f(x)|\,dx.} (4.2)
Proof.

The function KnfK_{n}*f is supported in (d+2)Q(d+2)Q. Since Q𝔅Q\notin\mathfrak{B}, either (d+2)QΩ=(d+2)Q\cap\Omega=\varnothing, or (d+2)QΩ(d+2)Q\subset\Omega. In the first case, the integral on the left hand side of (4.2) vanishes. In the other case,

ΩΦ(Knf(x))𝑑x=dΦ(Knf(x))𝑑x.{\int\limits_{\Omega}\Phi(K_{n}*f(x))\,dx=\int\limits_{\mathbb{R}^{d}}\Phi(K_{n}*f(x))\,dx.} (4.3)

The desired inequality follows from Corollary 3.23.2 in [11] and the observation that

infcQd|xc||f(x)|𝑑x=infcdd|xc||f(x)|𝑑x{\inf\limits_{c\in Q}\int\limits_{\mathbb{R}^{d}}|x-c||f(x)|\,dx=\inf\limits_{c\in\mathbb{R}^{d}}\int\limits_{\mathbb{R}^{d}}|x-c||f(x)|\,dx} (4.4)

since suppfQ\operatorname{supp}f\subset Q. ∎

Lemma 4.3.

Let QQ be a boundary dyadic cube of generation n0n\geq 0. Let ff be supported in QQ. Then,

|ΩΦ(Knf(x))𝑑x|2nfL1(Q)p1infcΩQ|xc||f(x)|𝑑x+2βnfL1(Q)p.{\Big{|}\int\limits_{\Omega}\Phi(K_{n}*f(x))\,dx\Big{|}\lesssim 2^{n}\|f\|_{L_{1}(Q)}^{p-1}\inf\limits_{c\in\partial\Omega}\int\limits_{Q}|x-c||f(x)|\,dx+2^{-\beta n}\|f\|_{L_{1}(Q)}^{p}.} (4.5)
Proof.

Let yΩy\in\partial\Omega be an arbitrary point. Then,

|ΩΦ(Knf(x))𝑑x||ΩΦ(Knf(x))𝑑xΩΦ(Kn(xy)f)𝑑x|+|ΩΦ(Kn(xy)f)𝑑x|.{\Big{|}\int\limits_{\Omega}\Phi(K_{n}*f(x))\,dx\Big{|}\\ \leq\bigg{|}\int\limits_{\Omega}\Phi(K_{n}*f(x))\,dx-\int\limits_{\Omega}\Phi\Big{(}K_{n}(x-y)\cdot\int f\Big{)}\,dx\bigg{|}+\bigg{|}\int\limits_{\Omega}\Phi\Big{(}K_{n}(x-y)\cdot\int f\Big{)}\,dx\bigg{|}.} (4.8)

For specific yΩy\in\partial\Omega, the first summand is bounded by 2nfL1(Q)p1infcΩQ|xc||f(x)|𝑑x2^{n}\|f\|_{L_{1}(Q)}^{p-1}\inf_{c\in\partial\Omega}\int_{Q}|x-c||f(x)|\,dx similar to the proof of Lemma 3.13.1 in [11] and we only need to show that

supyΩ|ΩΦ(Kn(xy))𝑑x|2βn.{\sup\limits_{y\in\partial\Omega}\Big{|}\int\limits_{\Omega}\Phi(K_{n}(x-y))\,dx\Big{|}\lesssim 2^{-\beta n}.} (4.9)

Fix yΩy\in\partial\Omega and introduce ξ=ny\xi=\vec{\mathrm{n}}_{y} — the inward pointing normal to Ω\partial\Omega at the point yy. Then,

|ΩΦ(Kn(xy))𝑑x||x:xy,ξ0Φ(Kn(xy))𝑑x|+xΩ,xy,ξ0|Kn(xy)|p𝑑x+xΩ,xy,ξ0|Kn(xy)|p𝑑x.{\Big{|}\int\limits_{\Omega}\Phi(K_{n}(x-y))\,dx\Big{|}\leq\Big{|}\!\!\!\int\limits_{\genfrac{}{}{0.0pt}{-2}{x\colon\!\langle{x-y},{\xi}\rangle}{\geq 0}}\!\!\!\!\!\!\Phi(K_{n}(x-y))\,dx\Big{|}+\!\!\!\!\!\!\int\limits_{\genfrac{}{}{0.0pt}{-2}{x\notin\Omega,}{\langle{x-y},{\xi}\rangle\geq 0}}\!\!\!|K_{n}(x-y)|^{p}\,dx+\!\!\!\!\!\!\int\limits_{\genfrac{}{}{0.0pt}{-2}{x\in\Omega,}{\langle{x-y},{\xi}\rangle\leq 0}}\!\!\!|K_{n}(x-y)|^{p}\,dx.} (4.10)

The first summand is zero by (3.4). To bound the second and the third summands, we use (1.12) and note that the volume of the domains of integration is O(2(d+β)n)O(2^{-(d+\beta)n}), while the integrands do not exceed 2p(dα)n2^{p(d-\alpha)n} in absolute value. Therefore, the second and the third terms are O(2βn)O(2^{-\beta n}) as desired. ∎

We formulate an analog of Theorem 3.13.1 in [11].

Theorem 4.1.

For any n0n\geq 0, the inequality

|ΩΦ(Kn+1f)|2njd3Qn,j𝔅fL1(3Qn,j)p1infcn,j3Qn,j|xcn,j||f(x)|𝑑x+2njd3Qn,j𝔅fL1(3Qn,j)p1infcn,jΩ3Qn,j|xcn,j||f(x)|𝑑x+2βnjd3Qn,j𝔅fL1(3Qn,j)p{\Big{|}\int\limits_{\Omega}\Phi(K_{n+1}*f)\Big{|}\lesssim 2^{n}\!\!\!\sum\limits_{\genfrac{}{}{0.0pt}{-2}{j\in\mathbb{Z}^{d}}{3Q_{n,j}\notin\mathfrak{B}}}\!\!\!\|f\|_{L_{1}(3Q_{n,j})}^{p-1}\inf\limits_{c_{n,j}}\!\!\!\int\limits_{3Q_{n,j}}\!\!\!|x-c_{n,j}||f(x)|\,dx\\ +2^{n}\!\!\!\sum\limits_{\genfrac{}{}{0.0pt}{-2}{j\in\mathbb{Z}^{d}}{3Q_{n,j}\in\mathfrak{B}}}\!\!\!\|f\|_{L_{1}(3Q_{n,j})}^{p-1}\inf\limits_{c_{n,j}\in\partial\Omega}\!\!\!\int\limits_{3Q_{n,j}}\!\!\!|x-c_{n,j}||f(x)|\,dx+2^{-\beta n}\!\!\!\sum\limits_{\genfrac{}{}{0.0pt}{-2}{j\in\mathbb{Z}^{d}}{3Q_{n,j}\in\mathfrak{B}}}\!\!\!\|f\|_{L_{1}(3Q_{n,j})}^{p}} (4.13)

holds true.

Theorem 4.1 is derived from Lemmas 4.2 and 4.3 in the same way as Theorem 3.13.1 in [11] is deduced from Lemma 3.13.1 of that paper. We will provide a slight simplification of the argument.

Proof of Theorem 4.1.

Recall that Kn+1K_{n+1} is supported in the ball of radius 2n12^{-n-1}. We split the whole space into the strips

Πj={xd|x1[2nj,2n(j+1))},j.{\Pi_{j}=\Big{\{}{x\in\mathbb{R}^{d}}\,\Big{|}\;{x_{1}\in[2^{-n}j,2^{-n}(j+1))}\Big{\}},\qquad j\in\mathbb{Z}.} (4.14)

Let fj=fχΠjf_{j}=f\chi_{\Pi_{j}}. We observe a useful pointwise identity

Φ(Kn+1f)=jΦ(Kn+1(fj+fj+1))jΦ(Kn+1fj),{\Phi(K_{n+1}*f)=\sum\limits_{j\in\mathbb{Z}}\Phi(K_{n+1}*(f_{j}+f_{j+1}))-\sum\limits_{j\in\mathbb{Z}}\Phi(K_{n+1}*f_{j}),} (4.15)

which leads to the bound

|ΩΦ(Kn+1f)|j|ΩΦ(Kn+1(fj+fj+1))|+j|ΩΦ(Kn+1fj)|.{\Big{|}\int\limits_{\Omega}\Phi(K_{n+1}*f)\Big{|}\leq\sum\limits_{j\in\mathbb{Z}}\Big{|}\int\limits_{\Omega}\Phi(K_{n+1}*(f_{j}+f_{j+1}))\Big{|}+\sum\limits_{j\in\mathbb{Z}}\Big{|}\int\limits_{\Omega}\Phi(K_{n+1}*f_{j})\Big{|}.} (4.16)

Performing a similar splitting procedure for the other (d1)(d-1) coordinates, we bound the integral on the left hand side of (4.13) with

|ΩΦ(Kn+1f~)|,{\sum\Big{|}\int\limits_{\Omega}\Phi(K_{n+1}*\tilde{f})\Big{|},} (4.17)

where each function f~\tilde{f} is supported in a cube 3Qn,j3Q_{n,j} for some jj, and each cube 3Qn,j3Q_{n,j} is chosen by at most 2d2^{d} functions f~\tilde{f}. We also note that each f~\tilde{f} is nothing but ff multiplied by an indicator. Thus, the desired bound indeed follows from Lemmas 4.2 and 4.3. ∎

Thus, the proof of Theorem 3.1 is naturally split into three estimates:

(4.18)

The estimate (LABEL:eq410) was proved in [11], see formula (4.11)(4.11) of that paper. The proof of (LABEL:eq412) is relatively simple:

n02βnjd3Qn,j𝔅fL1(3Qn,j)pn02βnfL1(d)pfL1(d)p.{\sum\limits_{n\geq 0}2^{-\beta n}\!\!\!\sum\limits_{\genfrac{}{}{0.0pt}{-2}{j\in\mathbb{Z}^{d}}{3Q_{n,j}\in\mathfrak{B}}}\!\!\!\|f\|_{L_{1}(3Q_{n,j})}^{p}\lesssim\sum\limits_{n\geq 0}2^{-\beta n}\|f\|_{L_{1}(\mathbb{R}^{d})}^{p}\lesssim\|f\|_{L_{1}(\mathbb{R}^{d})}^{p}.} (4.19)

It remains to justify (4.18). Let QQ be a cube. By 𝔻m(Q)\mathbb{D}_{m}(Q) we mean the collection of all dyadic subcubes of generation mm of the cube QQ (QQ itself is of generation 0). Consider the quantity

EQ,m𝒃[f]=Q𝔅Q𝔻m(Q)(Q|f(x)|𝑑x)p,{\mathrm{E}^{\boldsymbol{b}}_{Q,m}[f]=\sum\limits_{\genfrac{}{}{0.0pt}{-2}{Q^{\prime}\in\mathfrak{B}}{Q^{\prime}\in\mathbb{D}_{m}(Q)}}\Big{(}\int\limits_{Q^{\prime}}|f(x)|\,dx\Big{)}^{p},} (4.20)

which is the boundary modification of the quantity

EQ,m[f]=Q𝔻m(Q)(Q|f(x)|𝑑x)p,{\mathrm{E}_{Q,m}[f]=\sum\limits_{Q^{\prime}\in\mathbb{D}_{m}(Q)}\Big{(}\int\limits_{Q^{\prime}}|f(x)|\,dx\Big{)}^{p},} (4.21)

which played an important role in [11]. Note that EQ,1𝒃[f]EQ,0𝒃[f]\mathrm{E}^{\boldsymbol{b}}_{Q^{\prime},1}[f]\leq\mathrm{E}^{\boldsymbol{b}}_{Q^{\prime},0}[f] for any cube QQ^{\prime}; here we use that a parent of a boundary cube is also a boundary cube. In particular, EQ,m+1𝒃[f]EQ,m𝒃[f]\mathrm{E}^{\boldsymbol{b}}_{Q,m+1}[f]\leq\mathrm{E}^{\boldsymbol{b}}_{Q,m}[f] for any m0m\geq 0. Therefore,

m0(EQ,m𝒃[f]EQ,m+1𝒃[f])fL1(Q)p,{\sum\limits_{m\geq 0}\big{(}\mathrm{E}^{\boldsymbol{b}}_{Q,m}[f]-\mathrm{E}^{\boldsymbol{b}}_{Q,m+1}[f]\big{)}\leq\|f\|_{L_{1}(Q)}^{p},} (4.22)

and all the summands in this sum are non-negative.

Lemma 4.4.

Fix some ε(0,1/2)\varepsilon\in(0,1/2). Let QQ be a boundary cube. Then,

fL1(Q)p1(Q)infcΩQ|xc||f(x)|𝑑xm0(1ε)m(EQ,m𝒃[f]EQ,m+1𝒃[f]).{\frac{\|f\|_{L_{1}(Q)}^{p-1}}{\ell(Q)}\inf\limits_{c\in\partial\Omega}\int\limits_{Q}|x-c||f(x)|\,dx\lesssim\sum\limits_{m\geq 0}(1-\varepsilon)^{m}\Big{(}\mathrm{E}^{\boldsymbol{b}}_{Q,m}[f]-\mathrm{E}^{\boldsymbol{b}}_{Q,m+1}[f]\Big{)}.} (4.23)

This lemma is similar to Lemma 4.24.2 in [11], the proof is also similar. We provide it for completeness. Lemma 6.66.6 from [11] says

(j=1nzj)pj=1nzjp(j=1nzj)p1minijizj{\Big{(}\sum\limits_{j=1}^{n}z_{j}\Big{)}^{p}-\sum\limits_{j=1}^{n}z_{j}^{p}\gtrsim\Big{(}\sum\limits_{j=1}^{n}z_{j}\Big{)}^{p-1}\min\limits_{i}\sum\limits_{j\neq i}z_{j}} (4.24)

for any collection of non-negative numbers zjz_{j}. We will need a slight modification.

Lemma 4.5.

Let z1,z2,,znz_{1},z_{2},\ldots,z_{n}, and ZZ be non-negative numbers. Then,

(Z+j=1nzj)pj=1nzjp(Z+j=1nzj)p1(Z+minijizj).{\Big{(}Z+\sum\limits_{j=1}^{n}z_{j}\Big{)}^{p}-\sum\limits_{j=1}^{n}z_{j}^{p}\gtrsim\Big{(}Z+\sum\limits_{j=1}^{n}z_{j}\Big{)}^{p-1}\Big{(}Z+\min\limits_{i}\sum\limits_{j\neq i}z_{j}\Big{)}.} (4.25)
Proof.

Without loss of generality, let z1z_{1} be the largest of the zjz_{j}. Consider two cases: z1Zz_{1}\geq Z and Z>z1Z>z_{1}.

The first case follows from (4.24) (applied to all the numbers z1,z2,,znz_{1},z_{2},\ldots,z_{n}, and ZZ):

(Z+j=1nzj)p1(Z+minijizj)(Z+j=1nzj)pj=1nzjpZp(Z+j=1nzj)pj=1nzjp.{\Big{(}Z+\sum\limits_{j=1}^{n}z_{j}\Big{)}^{p-1}\Big{(}Z+\min\limits_{i}\sum\limits_{j\neq i}z_{j}\Big{)}\lesssim\Big{(}Z+\sum\limits_{j=1}^{n}z_{j}\Big{)}^{p}-\sum\limits_{j=1}^{n}z_{j}^{p}-Z^{p}\leq\Big{(}Z+\sum\limits_{j=1}^{n}z_{j}\Big{)}^{p}-\sum\limits_{j=1}^{n}z_{j}^{p}.} (4.26)

For the second case, we may, having in mind the homogeneity of the inequality in question, assume without loss of generality that Z=1Z=1 and, therefore zj<1z_{j}<1 for j=1,2,,nj=1,2,\ldots,n. We note that in such a case the left hand side of (4.25) is at least 11 (by Hölder’s inequalty), whereas the right hand side does not exceed (n+1)p(n+1)^{p}. ∎

Proof of Lemma 4.4.

We will construct the cubes RmR_{m} starting with R0=QR_{0}=Q. Assume R0,R1,,RmR_{0},R_{1},\ldots,R_{m} are already constructed. Then, we define Rm+1R_{m+1} by the rules

Rm+1𝔻1(Rm),Rm+1𝔅,Rm+1|f(x)|𝑑x=maxR𝔻1(Rm)𝔅R|f(x)|𝑑x.{R_{m+1}\in\mathbb{D}_{1}(R_{m}),\ R_{m+1}\in\mathfrak{B},\quad\int\limits_{R_{m+1}}|f(x)|\,dx=\max\limits_{R\in\mathbb{D}_{1}(R_{m})\cap\mathfrak{B}}\int\limits_{R}|f(x)|\,dx.} (4.27)

In other words, if the boundary cube RmR_{m} has kids that are also boundary cubes, we choose the one among them that has the maximal possible mass. Note that there may be no boundary cubes in 𝔻1(Rm)\mathbb{D}_{1}(R_{m}). In such a case, the process terminates (this means, in particular, that the initial cube QQ does not intersect Ω\Omega). Let c0c_{0} be the common point of the cubes RmR_{m} if there are infinitely many of them, or the closest point of Ω\partial\Omega to the smallest of the cubes if there is only a finite number of cubes. Then,

mxRm|xc0|2m(Q).{\forall m\ \forall x\in R_{m}\qquad|x-c_{0}|\lesssim 2^{-m}\ell(Q).} (4.28)

Pick a small number δ\delta to be chosen later. Now let MM be the smallest possible non-negative integer number mm such that

Rm+1|f(x)|𝑑x<(1δ)Rm|f(x)|dx.{\int\limits_{R_{m+1}}|f(x)|\,dx<(1-\delta)\int\limits_{R_{m}}|f(x)|\,dx.} (4.29)

If such a number mm does not exist, then we set M=M=\infty. We estimate

Q|xc0|(Q)|f(x)|𝑑x(4.28)RM+12M1|f(x)|𝑑x+m=0MRmRm+12m|f(x)|𝑑x.{\int\limits_{Q}\frac{|x-c_{0}|}{\ell(Q)}|f(x)|\,dx\stackrel{{\scriptstyle\scriptscriptstyle{\eqref{BoundaryDistance}}}}{{\lesssim}}\!\!\!\int\limits_{R_{M+1}}2^{-M-1}|f(x)|\,dx+\sum\limits_{m=0}^{M}\int\limits_{R_{m}\setminus R_{m+1}}2^{-m}|f(x)|\,dx.} (4.30)

The choice of MM allows to disregard the first summand since it is bounded by the second one (the multiplicative constant is O(1/δ)O(1/\delta), however, this does not harm since we will fix δ\delta momentarily). By the choice of MM,

fL1(Q)(1δ)mfL1(Rm),m=0,1,,M.{\|f\|_{L_{1}(Q)}\leq(1-\delta)^{-m}\|f\|_{L_{1}(R_{m})},\qquad m=0,1,\ldots,M.} (4.31)

Thus,

fL1(Q)p1(Q)infcΩQ|xc||f(x)|𝑑x(4.30),(4.31)m=0M(1δ)m(p1)fL1(Rm)p1RmRm+12m|f(x)|𝑑x.{\frac{\|f\|_{L_{1}(Q)}^{p-1}}{\ell(Q)}\inf\limits_{c\in\partial\Omega}\int\limits_{Q}|x-c||f(x)|\,dx\stackrel{{\scriptstyle\scriptscriptstyle{\eqref{eq428},\eqref{eq429}}}}{{\lesssim}}\sum\limits_{m=0}^{M}(1-\delta)^{-m(p-1)}\|f\|_{L_{1}(R_{m})}^{p-1}\!\!\!\int\limits_{R_{m}\setminus R_{m+1}}\!\!\!2^{-m}|f(x)|\,dx.} (4.32)

Let R1,R2,,RnR^{\prime}_{1},R^{\prime}_{2},\ldots,R^{\prime}_{n} be the kids of RmR_{m} that are boundary cubes; let Rm+1=R1R_{m+1}=R^{\prime}_{1}. We apply Lemma 4.5 with with Z=RmjRj|f|Z=\int_{R_{m}\setminus\cup_{j}R^{\prime}_{j}}|f|, and zj=Rj|f|z_{j}=\int_{R^{\prime}_{j}}|f|. Then, the right hand side in (4.32) is bounded by

m=0M2m(1δ)m(p1)(ERm,0𝒃[f]ERm,1𝒃[f])m0(1ε)m(EQ,m𝒃[f]EQ,m+1𝒃[f]),{\sum\limits_{m=0}^{M}2^{-m}(1-\delta)^{-m(p-1)}\big{(}\mathrm{E}^{\boldsymbol{b}}_{R_{m},0}[f]-\mathrm{E}^{\boldsymbol{b}}_{R_{m},1}[f]\big{)}\leq\sum\limits_{m\geq 0}(1-\varepsilon)^{m}\Big{(}\mathrm{E}^{\boldsymbol{b}}_{Q,m}[f]-\mathrm{E}^{\boldsymbol{b}}_{Q,m+1}[f]\Big{)},} (4.33)

provided (1ε)12(1δ)(p1)(1-\varepsilon)\geq\frac{1}{2}(1-\delta)^{-(p-1)} (this defines the choice of δ\delta). ∎

Proof of Theorem 3.1..

By Theorem 4.1, it suffices to justify (LABEL:eq410), (4.18), and (LABEL:eq412), of which only (4.18) remains unverified. Without loss of generality, we may assume Ω\Omega lies inside a dyadic cube QQ of generation 0. The three lattice theorem (see the explanation right after formula (4.11)(4.11) in [11]) says we may replace the cubes 3Qn,j3Q_{n,j} with simply Qn,jQ_{n,j} in our estimates. We apply Lemma 4.4 to each of the dyadic cubes on the left hand side of (4.18) and obtain

n02njdQn,j𝔅fL1(Qn,j)p1infcn,jΩQn,j|xcn,j||f(x)|𝑑xn0jdQn,j𝔅m0(1ε)m(EQn,j,m𝒃[f]EQn,j,m+1𝒃[f])=k0(lk(1ε)l)(EQ,k𝒃[f]EQ,k+1𝒃[f])(5.1)fL1(Q)p.{\sum\limits_{n\geq 0}2^{n}\!\!\!\sum\limits_{\genfrac{}{}{0.0pt}{-2}{j\in\mathbb{Z}^{d}}{Q_{n,j}\in\mathfrak{B}}}\!\!\!\|f\|_{L_{1}(Q_{n,j})}^{p-1}\inf\limits_{c_{n,j}\in\partial\Omega}\!\!\!\int\limits_{Q_{n,j}}\!\!\!|x-c_{n,j}||f(x)|\,dx\\ \lesssim\sum\limits_{n\geq 0}\!\!\!\sum\limits_{\genfrac{}{}{0.0pt}{-2}{j\in\mathbb{Z}^{d}}{Q_{n,j}\in\mathfrak{B}}}\!\!\!\sum\limits_{m\geq 0}(1-\varepsilon)^{m}\big{(}\mathrm{E}^{\boldsymbol{b}}_{Q_{n,j},m}[f]-\mathrm{E}^{\boldsymbol{b}}_{Q_{n,j},m+1}[f]\big{)}=\\ \sum\limits_{k\geq 0}\Big{(}\sum\limits_{l\leq k}(1-\varepsilon)^{l}\Big{)}\big{(}\mathrm{E}^{\boldsymbol{b}}_{Q,k}[f]-\mathrm{E}^{\boldsymbol{b}}_{Q,k+1}[f]\big{)}\stackrel{{\scriptstyle\scriptscriptstyle{\eqref{Telescopic}}}}{{\lesssim}}\|f\|_{L_{1}(Q)}^{p}.} (4.37)

5 End of proof and concluding remarks

Proof of Theorem 1.2.

We have already proved necessity of (1.9) (see Section 2). Assume now (1.9) holds. Then, (1.6) holds as well. We wish to prove (1.8). Fix some compactly supported bounded function ff. We start with the bound

|ΩΦ(Kf)|n0|ΩΦ(Kn+1f)Φ(Knf)|+|ΩΦ(K0f)|,{\Big{|}\int\limits_{\Omega}\Phi(K*f)\Big{|}\leq\sum\limits_{n\geq 0}\Big{|}\int\limits_{\Omega}\Phi(K_{\leq n+1}*f)-\Phi(K_{\leq n}*f)\Big{|}+\Big{|}\int\limits_{\Omega}\Phi(K_{\leq 0}*f)\Big{|},} (5.1)

which is true since Φ(Kn+1f)Φ(Kf)\Phi(K_{\leq n+1}*f)\to\Phi(K*f) pointwise, and this sequence of functions is uniformly bounded (recall ff is bounded and has compact support). The second summand on the right hand side of the above inequality was estimated in Lemma 3.1. The series in the first summand is bounded with the help of Lemma 3.2, inequality (3.9), and Theorem 3.1. ∎

Proof of Theorem 1.3.

We have already proved necessity of (1.9) (see Section 2). Let us prove sufficiency. Without loss of generality, ξ=(0,0,,,0,1)\xi=(0,0,,\ldots,0,1), (1.9) holds true with this particular ξ\xi and (1.6) is true as well. By dilation invariance of the problem, we may also assume that ff is supported in the unit ball. We apply the same telescopic summation trick (5.1).

In this case, we need the condition f=0\int f=0 to bound the second term in (5.1); this is done with the help of Lemma 2.42.4 in [11]. To bound the series, we apply Lemma 3.2, use (3.9), and only need to justify a version of Theorem 3.1 for the case where Ω\Omega is the halfspace. Specifically, we need to prove

n|xd>0Φ(Knf(x))𝑑x|fL1(d)p.{\sum\limits_{n\in\mathbb{Z}}\Big{|}\int\limits_{x_{d}>0}\Phi(K_{n}*f(x))\,dx\Big{|}\lesssim\|f\|_{L_{1}(\mathbb{R}^{d})}^{p}.} (5.2)

In fact, the proof in this case is the same as in the case of bounded Ω\Omega (recall ff is supported in the unit ball and all the functions fKnf*K_{n} are supported in the ball of radius two centered at the origin), however, in Lemma 4.3, we will use (1.9) only for ξ=(0,0,,0,1)\xi=(0,0,\ldots,0,1) since there are no other normal vectors to the boundary. ∎

Proof of Corollary 1.2..

Without loss of generality, let ξ=(0,0,,0,1)\xi=(0,0,\ldots,0,1). Consider the symmetric extension of the function uu:

u~(x)={u(x),xd0;u(x),xd<0.{\tilde{u}(x)=\begin{cases}u(x),\quad&x_{d}\geq 0;\\ u(-x),\quad&x_{d}<0.\end{cases}} (5.3)

The function u~\tilde{u} is then compactly supported and its distributional gradient satisfies

Δu~𝕄2(Ω|Δu(x)|𝑑x+d1|uxd(x1,x2,,xd1,0)|𝑑x1𝑑x2𝑑xd1).{\big{\|}\Delta\tilde{u}\big{\|}_{\mathbb{M}}\leq 2\Big{(}\int\limits_{\Omega}\big{|}\Delta u(x)\big{|}\,dx+\int\limits_{\mathbb{R}^{d-1}}\Big{|}\frac{\partial u}{\partial x_{d}}(x_{1},x_{2},\ldots,x_{d-1},0)\Big{|}\,dx_{1}\,dx_{2}\ldots dx_{d-1}\Big{)}.} (5.4)

The norm 𝕄\|\cdot\|_{\mathbb{M}} is the total variation of a (signed) measure. We apply Theorem 1.3 to the function Δu~\Delta\tilde{u} in the role of ff (the details about substituting a measure instead of an L1L_{1} function into Theorem 1.3 are left to the reader; note that here u~\nabla\tilde{u} is a uniformly bounded function). More specifically, we use (1.7) and represent u~\nabla\tilde{u} as KfK*f, where K(ζ)=cdζK(\zeta)=c_{d}\zetaζSd1\zeta\in S^{d-1}, and f=Δu~f=\Delta\tilde{u}. It remains to say that the cancellation condition (1.9) reduces to (1.15) in this case. ∎

The proof of Corollary 1.1 is based on several results about harmonic functions. Though they seem to be folklore, the author did not manage to find transparent references and provides some details of proofs.

Proposition 5.1.

Let Ω\Omega be a bounded subdomain of d\mathbb{R}^{d} with smooth boundary. For any smooth function uu on Ω¯\bar{\Omega} there exists a continuous compactly supported function v:dv\colon\mathbb{R}^{d}\to\mathbb{R} such that v=u\nabla v=\nabla u on Ω\Omega and

Δv𝕄ΔuL1(Ω)+unL1(Ω);{\|\Delta v\|_{\mathbb{M}}\lesssim\|\Delta u\|_{L_{1}(\Omega)}+\Big{\|}\frac{\partial u}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)};} (5.5)

the implicit multiplicative constant in the inequality above does not depend on the particular choice of uu.

Lemma 5.2.

Let F:ΩF\colon\Omega\to\mathbb{R} be a harmonic function continuous up to the boundary, let ff be its boundary values. Let u:Ωu\colon\Omega\to\mathbb{R} be another function with the same boundary values ff. Then,

FnL1(Ω)ΔuL1(Ω)+unL1(Ω).{\Big{\|}\frac{\partial F}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)}\leq\|\Delta u\|_{L_{1}(\Omega)}+\Big{\|}\frac{\partial u}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)}.} (5.6)
Proof.

Fix small ε>0\varepsilon>0. Let φ\varphi be a smooth function on Ω\partial\Omega such that φL1\|\varphi\|_{L_{\infty}}\leq 1 and

FnL1(Ω)(1+ε)ΩφFn.{\Big{\|}\frac{\partial F}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)}\leq(1+\varepsilon)\int\limits_{\partial\Omega}\varphi\,\frac{\partial F}{\partial n}.} (5.7)

Let Φ:Ω\Phi\colon\Omega\to\mathbb{R} be the solution of the Dirichlet problem with the boundary data φ\varphi. Then, by Green’s formula

ΩφFn=ΩfΦn=Ωφun+ΩΔuΦ.{\int\limits_{\partial\Omega}\varphi\,\frac{\partial F}{\partial n}=-\int\limits_{\partial\Omega}f\,\frac{\partial\Phi}{\partial n}=-\int\limits_{\partial\Omega}\varphi\,\frac{\partial u}{\partial n}+\int\limits_{\Omega}\Delta u\,\Phi.} (5.8)

By the maximum principle, ΦL1\|\Phi\|_{L_{\infty}}\leq 1. Therefore, by the above,

ΩφFnΔuL1(Ω)+unL1(Ω).{\int\limits_{\partial\Omega}\varphi\,\frac{\partial F}{\partial n}\leq\|\Delta u\|_{L_{1}(\Omega)}+\Big{\|}\frac{\partial u}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)}.} (5.9)

It remains to take arbitrarily small ε\varepsilon. ∎

Proof of Proposition 5.1..

We consider the Dirichlet problem on the domain dΩ\mathbb{R}^{d}\setminus\Omega with the boundary data u|Ωu|_{\partial\Omega} (see §23\S 23 and §26\S 26 in [16] for the correct conditions at infinity). Denote its solution by UU. We claim that

Ω|Un|ΔuL1(Ω)+unL1(Ω).{\int\limits_{\partial\Omega}\Big{|}\frac{\partial U}{\partial n}\Big{|}\lesssim\|\Delta u\|_{L_{1}(\Omega)}+\Big{\|}\frac{\partial u}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)}.} (5.10)

We hope that identical notation for the inward and outward pointing normal vectors does not lead to ambiguity. Let us assume this bound for a while and construct the desired function vv. Let ΩBR/2(0)\Omega\subset B_{R/2}(0). Denote by \mathcal{R} the spherical layer B2R(0)BR(0)B_{2R}(0)\setminus B_{R}(0). We will need the standard bound

UL()Ω|Un|.{\|\nabla U\|_{L_{\infty}(\mathcal{R})}\lesssim\int\limits_{\partial\Omega}\Big{|}\frac{\partial U}{\partial n}\Big{|}.} (5.11)

Let Ψ\Psi be a smooth function that equals 11 on BR(0)B_{R}(0) and zero outside B2R(0)B_{2R}(0); set

W(x)={U(x),xΩ;u(x),xΩ,{W(x)=\begin{cases}U(x),\qquad&x\notin\Omega;\\ u(x),\qquad&x\in\Omega,\end{cases}} (5.12)

and finally define vv by the rule

v(x)=(W(x)W(x0))Ψ(x),xd,{v(x)=(W(x)-W(x_{0}))\Psi(x),\qquad x\in\mathbb{R}^{d},} (5.13)

where x0x_{0} is an arbitrary point in \mathcal{R}. Then,

Δv(x)=(W(x)W(x0))ΔΨ(x)+2W(x),Ψ(x)+ΔW(x)Ψ(x).{\Delta v(x)=(W(x)-W(x_{0}))\Delta\Psi(x)+2\langle{\nabla W(x)},{\nabla\Psi(x)}\rangle+\Delta W(x)\Psi(x).} (5.14)

Let us estimate the total variation of each summand individually:

  1. 1)
    d|W(x)W(x0)||ΔΨ(x)|𝑑x|W(x)W(x0)|𝑑x|U(x)|𝑑x(5.11),(5.10)ΔuL1(Ω)+unL1(Ω);{\int\limits_{\mathbb{R}^{d}}|W(x)-W(x_{0})||\Delta\Psi(x)|\,dx\lesssim\int\limits_{\mathcal{R}}|W(x)-W(x_{0})|\,dx\lesssim\int\limits_{\mathcal{R}}|\nabla U(x)|\,dx\\ \stackrel{{\scriptstyle\scriptscriptstyle{\eqref{StandardBound},\eqref{DNBound}}}}{{\lesssim}}\|\Delta u\|_{L_{1}(\Omega)}+\Big{\|}\frac{\partial u}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)};} (5.17)
  2. 2)
    d|W(x),Ψ(x)|𝑑x|U(x)|𝑑xΔuL1(Ω)+unL1(Ω);{\int\limits_{\mathbb{R}^{d}}\Big{|}\langle{\nabla W(x)},{\nabla\Psi(x)}\rangle\Big{|}\,dx\lesssim\int\limits_{\mathcal{R}}|\nabla U(x)|\,dx\lesssim\|\Delta u\|_{L_{1}(\Omega)}+\Big{\|}\frac{\partial u}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)};} (5.18)
  3. 3)
    ΨΔW𝕄Ω|Δu(x)|𝑑x+Ω|un|+Ω|Un|ΔuL1(Ω)+unL1(Ω).{\big{\|}\Psi\Delta W\big{\|}_{\mathbb{M}}\leq\int\limits_{\Omega}|\Delta u(x)|\,dx+\int\limits_{\partial\Omega}\Big{|}\frac{\partial u}{\partial n}\Big{|}+\int\limits_{\partial\Omega}\Big{|}\frac{\partial U}{\partial n}\Big{|}\lesssim\|\Delta u\|_{L_{1}(\Omega)}+\Big{\|}\frac{\partial u}{\partial n}\Big{\|}_{L_{1}(\partial\Omega)}.} (5.19)

Thus, it remains to prove (5.10). Let DNout\operatorname{DN}_{\mathrm{out}} and DNin\operatorname{DN}_{\mathrm{in}} be the outer and inner Dirichlet-to-Neumann operators. By Subsection 7.107.10 in [13], both these are pseudodifferential elliptic operators of order 11; their principal symbols are equal to ΔΩ\sqrt{\Delta_{\partial\Omega}}, where ΔΩ\Delta_{\partial\Omega} is a (positive) Laplacian on Ω\partial\Omega (for example, the Laplace–Beltrami operator). In the light of Lemma 5.2, the inequality (5.10) may be restated as

DNoutfL1(Ω)DNinfL1(Ω),wheref=u|Ω.{\|\operatorname{DN}_{\mathrm{out}}f\|_{L_{1}(\partial\Omega)}\lesssim\|\operatorname{DN}_{\mathrm{in}}f\|_{L_{1}(\partial\Omega)},\quad\text{where}\ f=u|_{\partial\Omega}.} (5.20)

By the information above, DNin\operatorname{DN}_{\mathrm{in}} admits a left parametrix, which has the principal symbol (ΔΩ)1(\sqrt{\Delta_{\partial\Omega}})^{-1}. By and the standard calculus of pseudodifferential operators (Subsections 7.37.3 and 7.47.4 of [13]), this implies

DNoutf=DNinf+ErDNinf,{\operatorname{DN}_{\mathrm{out}}f=\operatorname{DN}_{\mathrm{in}}f+\mathrm{Er}\operatorname{DN}_{\mathrm{in}}f,} (5.21)

where Er\mathrm{Er} is a pseudodifferential operator of order 1-1; since Ω\partial\Omega is compact, it maps L1L_{1} to itself. The inequaltiy (5.10) is proved. ∎

Proof of Corollary 1.1..

We apply Proposition 5.1 and construct the function vv. Then, by (1.7), u(x)=KΔv(x)\nabla u(x)=K*\Delta v(x) for xΩx\in\Omega, for K(ζ)=cdζK(\zeta)=c_{d}\zetaζSd1\zeta\in S^{d-1}. It remains to apply Theorem 1.2. ∎

References

  • [1] Jean Bourgain and Haïm Brezis. New estimates for the Laplacian, the div-curl, and related Hodge systems. C. R. Math. Acad. Sci. Paris, 338(7):539–543, 2004.
  • [2] Franz Gmeineder and Bogdan Raiţă. Embeddings for 𝔸\mathbb{A}-weakly differentiable functions on domains. J. Funct. Anal., 277(12):108278, 33, 2019.
  • [3] Franz Gmeineder, Bogdan Raiţă, and Jean Van Schaftingen. Boundary ellipticity and limiting L1\rm L^{1}-estimates on halfspaces. Adv. Math., 439:Paper No. 109490, 25, 2024.
  • [4] Vladimir Maz’ya. Estimates for differential operators of vector analysis involving L1L^{1}-norm. J. Eur. Math. Soc. (JEMS), 12(1):221–240, 2010.
  • [5] Vladimir Maz’ya. Seventy five (thousand) unsolved problems in analysis and partial differential equations. Integral Equations Operator Theory, 90(2):Paper No. 25, 44, 2018.
  • [6] Vladimir Maz’ya and Tatyana Shaposhnikova. A collection of sharp dilation invariant integral inequalities for differentiable functions. In Sobolev spaces in mathematics. I, volume 8 of Int. Math. Ser. (N. Y.), pages 223–247. Springer, New York, 2009.
  • [7] S. Soboleff. Sur un théorème d’analyse fonctionnelle. Rec. Math. Moscou, n. Ser., 4:471–497, 1938.
  • [8] Daniel Spector. New directions in harmonic analysis on L1L^{1}. Nonlinear Anal., 192:111685, 20, 2020.
  • [9] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.
  • [10] D. M. Stolyarov. Hardy-Littlewood-Sobolev inequality for p=1p=1. Mat. Sb., 213(6):125–174, 2022.
  • [11] Dmitriy Stolyarov. Fractional integration of measures: Maz​ya​s Φ{\Phi}-inequalities. https://arxiv.org/abs/2109.08014, to appear in Annali della Scuola normale superiore di Pisa.
  • [12] Dmitriy Stolyarov. On Maz​ya​s Φ\Phi-inequalities for martingale fractional integration and their Bellman functions. Michigan Mathematical Journal, 74(3):509 – 526, 2024.
  • [13] Michael E. Taylor. Partial differential equations. II, volume 116 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996. Qualitative studies of linear equations.
  • [14] Jean Van Schaftingen. Limiting Sobolev inequalities for vector fields and canceling linear differential operators. J. Eur. Math. Soc. (JEMS), 15(3):877–921, 2013.
  • [15] Jean Van Schaftingen. Limiting Bourgain-Brezis estimates for systems of linear differential equations: theme and variations. J. Fixed Point Theory Appl., 15(2):273–297, 2014.
  • [16] V. S. Vladimirov. Equations of mathematical physics, volume 3 of Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1971. Translated from the Russian by Audrey Littlewood.

St. Petersburg State University, Department of Mathematics and Computer Science;

d.m.stolyarov at spbu dot ru.