This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

[1]\fnmYuhang \surLi

\equalcont

These authors contributed equally to this work.

1]\orgdivSchool of Mathematics, \orgnameJilin University, \orgaddress \cityChangchun, \postcode130012, \stateJilin Province, \countryChina

Maximum principle for discrete-time control systems driven by fractional noises and related backward stochastic difference equations

\fnmYuecai \surHan [email protected]    [email protected] [
Abstract

In this paper, the optimal control for discrete-time systems driven by fractional noises is studied. A stochastic maximum principle is obtained by introducing a backward stochastic difference equation contains both fractional noises and the constructed white noises. The solution of the backward stochastic difference equations is also investigated. As an application, the linear quadratic case is considered to illustrate the main results.

keywords:
Maximum principle, discrete-time system, fractional noise, backward stochastic difference equations

1 Introduction

From last century, stochastic maximum principle (SMP) and backward stochastic differential equations (BSDEs) are studied popularly to deal with optimal control problems of stochastic systems. For SMP, some original works refer to [1, 2, 3]. Right up to 1990, Peng [4] obtain the stochastic maximum principle for a general control system, where the control domain could be non-convex and the diffusion term contains control process. Then SMP for many different control problems are investigated, such as near-optimal control [5], doubly stochastic control systems [6, 7], mean-field optimal control [8, 9] and delayed control problems [10, 11]. For BSDEs, as the adjoint equation in SMP, it is originated from Bismut [12]. In 1990, Pardoux and Peng [13] prove the existence and uniqueness of the solution of nonlinear BSDEs. Then some related early works refer to [14, 15].

For SMP for discrete-time systems, the original work is by Lin and Zhang [16], a type of backward stochastic difference equations (BSΔ\DeltaEs) is introduced as adjoint equation. Based on this work, much progress has been made by researchers. Discrete-time stochastic games are studied by Wu and Zhang [17]. Dong et al. obtain the SMP for discrete-time systems with mean-field [18] and delay [19]. Ji and Zhang investigate the infinite horizon recursive optimal control and infinite horizon BSΔ\DeltaE. But as we known, there are poorly works consider the discrete-time control problems with fractional noises or other “colored noises”.

In this paper, motivated by stochastic optimal control of continuous systems driven by fractional Brownian motion (FBM), we concern the discrete-time optimal control for systems driven by fractional noises. Let H(0, 1)H\in(0,\,1) be a fixed constant, which is called Hurst parameter. The mm-dimensional FBM BtH=(B1H(t),,BmH(t)),t[0,T]B_{t}^{H}=\left(B_{1}^{H}(t),\cdots,B_{m}^{H}(t)\right),t\in[0,T] is a continuous, mean 0 Gaussian process with the covariance

𝔼[BiH(t)BjH(s)]=12δij(t2H+s2H|ts|2H),\displaystyle\mathbb{E}[B_{i}^{H}(t)B_{j}^{H}(s)]=\frac{1}{2}\delta_{ij}(t^{2H}+s^{2H}-|t-s|^{2H}),

i,j=1,,mi,\,j=1,\dots,m. Moreover, the FBM could be generated by a standard Brownian motion through

BjH(t)=0tZH(t,s)𝑑Bj(s),1jm,\displaystyle B_{j}^{H}(t)=\int_{0}^{t}Z_{H}(t,\,s)dB_{j}(s),\quad 1\leq j\leq m,

for some explicit functions ZH(,)Z_{H}(\cdot,\cdot). For control problem of continuous systems driven by FBM, Han et al. [20] firstly obtain the maximum principle for general systems. Some other related works refer to [21, 22, 23].

For our problem, the state equation is

{Xn+1=Xn+b(n,Xn,un)+σ(n,Xn,un)ξnH, 0nN1,X0=x,\displaystyle\left\{\begin{array}[]{ll}X_{n+1}=X_{n}+b(n,X_{n},u_{n})+\sigma(n,X_{n},u_{n})\xi_{n}^{H},\,0\leq n\leq N-1,\\ X_{0}=x,\end{array}\right.

to minimize the cost function

J(u)=𝔼[n=0N1l(n,Xn,un)+Φ(XN)].\displaystyle J(u)=\mathbb{E}\left[\sum_{n=0}^{N-1}l(n,X_{n},u_{n})+\Phi(X_{N})\right].

Here ξH\xi^{H} is called a fractional noise describe by the increment of a FBM.

To obtain the stochastic maximum principle, the following BSΔ\DeltaE is introduced as adjoint equation:

{pn+qnηn=pn+1+bx(n+1)pn+1+b(n+1,n+1)σx(n+1)qn+1+lx(n+1)+σx(n+1)pn+1ξn+1H,pN=Φx(XN),qN=0,\displaystyle\left\{\begin{array}[]{ll}p_{n}+q_{n}\eta_{n}=p_{n+1}+b_{x}^{*}(n+1)p_{n+1}+b(n+1,n+1)\sigma_{x}^{*}(n+1)q_{n+1}\\ \qquad\qquad\qquad+l_{x}^{*}(n+1)+\sigma_{x}^{*}(n+1)p_{n+1}\xi_{n+1}^{H},\\ p_{N}=\Phi_{x}(X^{*}_{N}),\\ q_{N}=0,\end{array}\right. (1.5)

where η\eta is a Gaussian white noises constructed by ξH\xi^{H}.

Remark 1.

Our techniques can also be used in control problem with some other noises ω\omega, such as AR(p) or MA(q) model. Indeed, we just need the following two conditions are equivalent:

(i):𝔼[(k=0na1(n,k)ωk)(l=0ma2(m,l)ωl)]=0\mathbb{E}\left[\left(\sum_{k=0}^{n}a_{1}(n,k)\omega_{k}\right)\cdot\left(\sum_{l=0}^{m}a_{2}(m,l)\omega_{l}\right)\right]=0.

(ii):k=0na1(n,k)ωk\sum_{k=0}^{n}a_{1}(n,k)\omega_{k} and l=0ma2(m,l)ωl\sum_{l=0}^{m}a_{2}(m,l)\omega_{l} are independent.

For all determined functions a1,a2a_{1},a_{2} and m,n+m,n\in\mathbb{Z}^{+}.

A difficulty is that it is hard to estimate the L2L^{2}_{\mathcal{F}}-norm for X,p,qX,p,q and the variation equation appears in section 3, because of the dependence of ξH\xi^{H} and its coefficient. We deal with this with more complex calculations, then we prove the uniqueness of the state SΔ\DeltaE and adjoint BSΔ\DeltaE, and obtain the maximum principle.

The rest of this paper is organized as follows. In section 2, we introduce the BSΔ\DeltaE driven by both fractional noise and white noise, and prove the existence and the uniqueness of the solution of this type of BSΔ\DeltaE. In section 3, we obtain the stochastic maximum principle by proving the existence and uniqueness of the state SΔ\DeltaE and showing the convergence of the variation equation. In section 4, the linear quadratic case is investigated to illustrate the main results.

2 Backward stochastic difference equations

Let (Ω,,{n}n+,P)(\Omega,\mathcal{F},\{\mathcal{F}_{n}\}_{n\in\mathbb{Z}^{+}},P) be a filtered probability space, 0\mathcal{F}_{0}\subset\mathcal{F} be a sub σ\sigma-algebra. {ξnH}n+\{\xi_{n}^{H}\}_{n\in\mathbb{Z}^{+}} is a sequence of fractional noises described by the increment of a mm-dimensional fractional Brownian motion, namely, ξnH=BH(n+1)BH(n)\xi_{n}^{H}=B^{H}(n+1)-B^{H}(n). Define the filtration 𝔽=(n)0nN\mathbb{F}=(\mathcal{F}_{n})_{0\leq n\leq N} by n=0σ(ξ0H,ξ1H,,ξn1H)\mathcal{F}_{n}=\mathcal{F}_{0}\lor\sigma(\xi^{H}_{0},\xi_{1}^{H},...,\xi_{n-1}^{H}).

Denote by Lβ(n;n)L^{\beta}(\mathcal{F}_{n};\mathbb{R}^{n}), or Lβ(n)L^{\beta}(\mathcal{F}_{n}) for simplify, the set of all n\mathcal{F}_{n}-measurable random variables XX taking values in n\mathbb{R}^{n}, such that 𝔼Xβ<+\mathbb{E}\|X\|^{\beta}<+\infty. Denote by Lβ(0,T;n)L^{\beta}_{\mathcal{F}}(0,T;\mathbb{R}^{n}), or Lβ(0,T)L^{\beta}_{\mathcal{F}}(0,T) for simplify, the set of all n\mathcal{F}_{n}-adapted process X=(Xn)n+X=(X_{n})_{n\in\mathbb{Z}^{+}} such that

Xβ=(n=0N𝔼Xnβ)1β<+.\displaystyle\|X_{\cdot}\|_{\beta}=\left(\sum_{n=0}^{N}\mathbb{E}\|X_{n}\|^{\beta}\right)^{\frac{1}{\beta}}<+\infty.

Then we consider the following BSΔ\DeltaE ,

{Yn+Znηn=Yn+1+f(t,Yn+1,Zn+1)+g(t,Yn+1,Zn+1)ξn+1H,YN=y,\displaystyle\left\{\begin{array}[]{ll}Y_{n}+Z_{n}\eta_{n}=Y_{n+1}+f(t,Y_{n+1},Z_{n+1})+g(t,Y_{n+1},Z_{n+1})\xi_{n+1}^{H},\\ Y_{N}=y,\end{array}\right. (2.3)

where yL2a(N)y\in L^{2a}(\mathcal{F}_{N}) for some a>1a>1, and ηnn+1\eta_{n}\in\mathcal{F}_{n+1}, which will be defined in the following lemma, is a sequence of independent Gaussian random variables generated by {ξnH}\{\xi_{n}^{H}\}. We also assume the following conditions for f,gf,g:

  1. (H2.1)

    ff and gg are adapted processes: f(,y,z),g(,y,z)L2a(1,N)f(\cdot,y,z),g(\cdot,y,z)\in L^{2a}_{\mathcal{F}}(1,N) for all yn,zn×my\in\mathbb{R}^{n},z\in\mathbb{R}^{n\times m}.

  2. (H2.2)

    There are some constants L>0L>0, such that

    |f(n,y1,z1)f(n,y2,z2)|\displaystyle|f(n,y_{1},z_{1})-f(n,y_{2},z_{2})| +|g(n,y1,z1)g(n,y2,z2)|L(|y1y2|+|z1z2|),\displaystyle+|g(n,y_{1},z_{1})-g(n,y_{2},z_{2})|\leq L\left(|y_{1}-y_{2}|+|z_{1}-z_{2}|\right),
    n[1,N],y1,y2n,z1,z2n×m.\displaystyle\forall n\in[1,N],\quad y_{1},y_{2}\in\mathbb{R}^{n},\quad z_{1},z_{2}\in\mathbb{R}^{n\times m}.
  3. (H2.3)

    There exists a N\mathcal{F}_{N}-measurable functions f1,g1f_{1},g_{1}, such that f(N,y,z)=f1(y)f(N,y,z)=f_{1}(y) and g(N,y,z)=g1(y)g(N,y,z)=g_{1}(y) for all y,zy,z.

Then we show the construction and properties of {ηn}\{\eta_{n}\}.

Lemma 1.

Let a(,)a(\cdot,\cdot) is given by a(i1,j1)=(B1)ija(i-1,j-1)=(B^{-1})_{ij}, where B=(bij)B=(b_{ij}) is given by

bij=𝟏{ji}ρ(i,j)k=0j2bi,k+1bj,k+1bjj.\displaystyle b_{ij}=\mathbf{1}_{\{j\leq i\}}\frac{\rho(i,j)-\sum_{k=0}^{j-2}b_{i,k+1}b_{j,k+1}}{b_{jj}}. (2.4)

Then ηn=k=0na(n,k)ξmH\eta_{n}=\sum_{k=0}^{n}a(n,k)\xi_{m}^{H} is a sequence of independent Gaussian random variables such that ηn\eta_{n} is n+1\mathcal{F}_{n+1}-measurable but independent with n\mathcal{F}_{n}.

Proof.

From the properties of fractional Brownian motion, we know

(ξ0H,ξ1H,,ξN1H)T𝒩(0N×1,ΣN×N),\displaystyle\left(\xi_{0}^{H},\xi_{1}^{H},...,\xi_{N-1}^{H}\right)^{T}\sim\mathcal{N}\left(0_{N\times 1},\Sigma_{N\times N}\right),

where Σij=ρ(i1,j1)\Sigma_{ij}=\rho(i-1,j-1). So that there exists invertible matrix AA such that

(η0H,η1H,,ηN1H)T=A(ξ0H,ξ1H,,ξN1H)T𝒩(0N×1,IN×N).\displaystyle\left(\eta_{0}^{H},\eta_{1}^{H},...,\eta_{N-1}^{H}\right)^{T}=A\left(\xi_{0}^{H},\xi_{1}^{H},...,\xi_{N-1}^{H}\right)^{T}\sim\mathcal{N}\left(0_{N\times 1},I_{N\times N}\right). (2.5)

Notice that AA is not unique, we choose the lower triangular one since ηn\eta_{n} is n\mathcal{F}_{n}-measurable. But it is hard to obtain AA directly, we determine B=A1B=A^{-1} at first by checking bijb_{ij} satisfy equality (2.4).

Let b(i1,j1)=bijb(i-1,j-1)=b_{ij}, rewrite (2.5) as

B(η0H,η1H,,ηN1H)T=(ξ0H,ξ1H,,ξN1H)T,\displaystyle B\left(\eta_{0}^{H},\eta_{1}^{H},...,\eta_{N-1}^{H}\right)^{T}=\left(\xi_{0}^{H},\xi_{1}^{H},...,\xi_{N-1}^{H}\right)^{T},

or

ξnH=j=1Nbn+1,jηj=k=0N1b(n,k)ηk.\displaystyle\xi_{n}^{H}=\sum_{j=1}^{N}b_{n+1,j}\eta_{j}=\sum_{k=0}^{N-1}b(n,k)\eta_{k}.

Since ηk\eta_{k} is k+1\mathcal{F}_{k+1}-measurable and independent with k\mathcal{F}_{k}, b(n,k)=0b(n,k)=0 for k>nk>n. Then let 𝔼[ξnξm]=k=0mb(n,k)b(m,k)=ρ(n,m)\mathbb{E}\left[\xi_{n}\xi_{m}\right]=\sum_{k=0}^{m}b(n,k)b(m,k)=\rho(n,m) for mnm\leq n, we obtain the induction formula for b(,)b(\cdot,\cdot):

b(n,m)=ρ(n,m)k=0m1b(n,k)b(m,k)b(m,m),\displaystyle b(n,m)=\frac{\rho(n,m)-\sum_{k=0}^{m-1}b(n,k)b(m,k)}{b(m,m)},

which equally to (2.4). ∎

Remark 2.

It is clear that {ξn}\{\xi_{n}\} and {ηn}\{\eta_{n}\} generate the same filtration, namely, σ(ξ0,ξ1,,ξn)=σ(η0,η1,,ηn)\sigma(\xi_{0},\xi_{1},...,\xi_{n})=\sigma(\eta_{0},\eta_{1},...,\eta_{n}) for 0nN10\leq n\leq N-1.

Then we show the solvability of BSΔ\DeltaE (2.3).

Theorem 1.

Assume that assumptions (H2.1)-(H2.3) hold. Then BSΔ\DeltaE (2.3) has a unique solution.

Proof.

We first define YN1Y_{N-1} by constructing

Mn=𝔼[y+f1(y)+g1(y)ξNH|n].\displaystyle M_{n}=\mathbb{E}\left[y+f_{1}(y)+g_{1}(y)\xi_{N}^{H}|\mathcal{F}_{n}\right].

Through the Lipschitz’s condition, Hölder’s inequality and the fact yL(N)y\in L(\mathcal{F}_{N}), we have

𝔼|Mn|2aδ\displaystyle\mathbb{E}|M_{n}|^{2a\delta} 𝔼|y+f1(y)+g1(y)ξNH|2aδ\displaystyle\leq\mathbb{E}\left|y+f_{1}(y)+g_{1}(y)\xi_{N}^{H}\right|^{2a\delta}
C[𝔼|y|2aδ+𝔼|f(N,0,0)|2aδ]\displaystyle\leq C\left[\mathbb{E}|y|^{2a\delta}+\mathbb{E}|f(N,0,0)|^{2a\delta}\right]
+C[(𝔼|y|2a)δ+(𝔼|g(N,0,0)|2a)δ](𝔼|ξN|2aδ11δ)1δ\displaystyle\quad+C\left[\left(\mathbb{E}|y|^{2a}\right)^{\delta}+\left(\mathbb{E}|g(N,0,0)|^{2a}\right)^{\delta}\right]\left(\mathbb{E}|\xi_{N}|^{2a\delta\frac{1}{1-\delta}}\right)^{1-\delta}
<+,\displaystyle<+\infty, (2.6)

for δ(1a,1)\delta\in(\frac{1}{a},1). Then it is a straightforward result that 𝔼|Mn|2(𝔼|Mn|2aδ)1aδ<+\mathbb{E}|M_{n}|^{2}\leq\left(\mathbb{E}|M_{n}|^{2a\delta}\right)^{\frac{1}{a\delta}}<+\infty, so that MnM_{n} is a square integrable martingale. Similar to formula (2.5) of , there exists a unique adapted process ZZ, such that

Mn=M0+k=0n1Zkηk,0nN.\displaystyle M_{n}=M_{0}+\sum_{k=0}^{n-1}Z_{k}\eta_{k},\quad 0\leq n\leq N.

Rewrite the above equality as

MN1+ZN1ηN1=y+f1(y)+g1(y)ξNH,\displaystyle M_{N-1}+Z_{N-1}\eta_{N-1}=y+f_{1}(y)+g_{1}(y)\xi_{N}^{H},

which shows YN1=MN1Y_{N-1}=M_{N-1}. Multiply ηN1\eta_{N-1} on both side and take 𝔼[|N1]\mathbb{E}[\cdot|\mathcal{F}_{N-1}], we obtain ZN1Z_{N-1} by

ZN1=𝔼[ηN1[y+f1(y)+g1(y)ξNH]|N1].\displaystyle Z_{N-1}=\mathbb{E}\left[\eta_{N-1}[y+f_{1}(y)+g_{1}(y)\xi_{N}^{H}]|\mathcal{F}_{N-1}\right].

Similar to formula (2), we have 𝔼|ZN1|2aδ<+\mathbb{E}|Z_{N-1}|^{2a\delta}<+\infty. Up to now, we obtain the unique pair (YN1,ZN1)L2aδ(T1)×L2aδ(T1)(Y_{N-1},Z_{N-1})\in L^{2a\delta}(\mathcal{F}_{T-1})\times L^{2a\delta}(\mathcal{F}_{T-1}).

Then by induction, for all 0nN20\leq n\leq N-2, if (Yn+1,Zn+1)L2b(n+1)×L2b(n+1)(Y_{n+1},Z_{n+1})\in L^{2b}(\mathcal{F}_{n+1})\times L^{2b}(\mathcal{F}_{n+1}) for some b>1b>1. Define

M~k=𝔼[Yn+1+f(n+1,Yn+1,Zn+1)+g(n+1,Yn+1,Zn+1)ξn+1H|k]\displaystyle\tilde{M}_{k}=\mathbb{E}\left[Y_{n+1}+f(n+1,Y_{n+1},Z_{n+1})+g(n+1,Y_{n+1},Z_{n+1})\xi_{n+1}^{H}|\mathcal{F}_{k}\right]

for 0kn+10\leq k\leq n+1. Then we show M~kL2bδ(k)\tilde{M}_{k}\in L^{2b\delta}(\mathcal{F}_{k}):

𝔼|M~k|2bδ\displaystyle\mathbb{E}|\tilde{M}_{k}|^{2b\delta} =𝔼|Yn+1+f(n+1,Yn+1,Zn+1)+g(n+1,Yn+1,Zn+1)ξn+1H|2bδ\displaystyle=\mathbb{E}\left|Y_{n+1}+f(n+1,Y_{n+1},Z_{n+1})+g(n+1,Y_{n+1},Z_{n+1})\xi_{n+1}^{H}\right|^{2b\delta}
C[𝔼|Yn+1|2bδ+𝔼|Zn+1|2bδ+𝔼|f(n+1,0,0)|2bδ]\displaystyle\leq C\left[\mathbb{E}|Y_{n+1}|^{2b\delta}+\mathbb{E}|Z_{n+1}|^{2b\delta}+\mathbb{E}|f(n+1,0,0)|^{2b\delta}\right]
+C[𝔼|Yn+1|2bδ+𝔼|Zn+1|2bδ+𝔼|g(n+1,0,0)|2bδ](𝔼|ξN1|2bδ11δ)1δ\displaystyle\quad+C\left[\mathbb{E}|Y_{n+1}|^{2b\delta}+\mathbb{E}|Z_{n+1}|^{2b\delta}+\mathbb{E}|g(n+1,0,0)|^{2b\delta}\right]\left(\mathbb{E}|\xi_{N-1}|^{2b\delta\frac{1}{1-\delta}}\right)^{1-\delta}
<+.\displaystyle<+\infty.

Let Yn=M~nY_{n}=\tilde{M}_{n} and

Zn=𝔼[ηn[Yn+1+f(n+1,Yn+1,Zn+1)+g(n+1,Yn+1,Zn+1)ξn+1H]|n],\displaystyle Z_{n}=\mathbb{E}\left[\eta_{n}\left[Y_{n+1}+f(n+1,Y_{n+1},Z{n+1})+g(n+1,Y_{n+1},Z_{n+1})\xi_{n+1}^{H}\right]|\mathcal{F}_{n}\right],

which implies

Yn+Znηn=Yn+1+f(t,Yn+1,Zn+1)+g(t,Yn+1,Zn+1)ξn+1H.\displaystyle Y_{n}+Z_{n}\eta_{n}=Y_{n+1}+f(t,Y_{n+1},Z_{n+1})+g(t,Y_{n+1},Z_{n+1})\xi_{n+1}^{H}.

Choosing δ[a1/N,1)\delta\in[a^{-1/N},1), we obtain the unique process pair (Y,Z)L2(0,N)×L2(0,N1)(Y,Z)\in L^{2}_{\mathcal{F}}(0,N)\times L^{2}_{\mathcal{F}}(0,N-1). ∎

3 A maximum principle

In this section, we study the optimal control problem for discrete-time systems driven by fractional noises. Let (Ω,,{n}n+,P)(\Omega,\mathcal{F},\{\mathcal{F}_{n}\}_{n\in\mathbb{Z}^{+}},P) be a filtered probability space, 0\mathcal{F}_{0}\subset\mathcal{F} be a sub σ\sigma-algebra and 𝔽=(n)0nN\mathbb{F}=(\mathcal{F}_{n})_{0\leq n\leq N} be the filtration defined by n=0σ(ξ0H,ξ1H,,ξn1H)\mathcal{F}_{n}=\mathcal{F}_{0}\lor\sigma(\xi^{H}_{0},\xi_{1}^{H},...,\xi_{n-1}^{H}). The state equation is

{Xn+1=Xn+b(n,Xn,un)+σ(n,Xn,un)ξnH, 0nN1,X0=x,\displaystyle\left\{\begin{array}[]{ll}X_{n+1}=X_{n}+b(n,X_{n},u_{n})+\sigma(n,X_{n},u_{n})\xi_{n}^{H},\,0\leq n\leq N-1,\\ X_{0}=x,\end{array}\right. (3.3)

with the cost function

J(u)=𝔼[n=0N1l(n,Xn,un)+Φ(XN)].\displaystyle J(u)=\mathbb{E}\left[\sum_{n=0}^{N-1}l(n,X_{n},u_{n})+\Phi(X_{N})\right]. (3.4)

Here xL2a(0)x\in L^{2a}(\mathcal{F}_{0}) is independent with {ξn}\{\xi_{n}\}, b(n,x,u)b(n,x,u) and σ(n,x,u)\sigma(n,x,u) are measurable functions on [0,N1]×𝐑d×𝐑k[0,N-1]\times\mathbf{R}^{d}\times\mathbf{R}^{k} with values in 𝐑d\mathbf{R}^{d} and 𝐑d×m\mathbf{R}^{d\times m}, respectively. l(n,x,u)l(n,x,u) and Φ(x)\Phi(x) be measurable functions on [0,N1]×𝐑d×𝐑k[0,N-1]\times\mathbf{R}^{d}\times\mathbf{R}^{k} and 𝐑d\mathbf{R}^{d}, respectively, with values in 𝐑\mathbf{R}.

Denote by 𝕌\mathbb{U} the set of progressively measurable process u=(un)0nN1=(u_{n})_{0\leq n\leq N-1} taking values in a given closed-convex set Uk\textbf{U}\subset\mathbb{R}^{k} and satisfying 𝔼n=0N1|un|2a<+\mathbb{E}\sum_{n=0}^{N-1}|u_{n}|^{2a}<+\infty. The problem is to find an optimal control u𝕌u^{*}\in\mathbb{U} to minimized the cost function, i.e.,

J(u)=infu𝕌J(u).\displaystyle J(u^{*})=\inf_{u\in\mathbb{U}}J(u).

To simplify the notation without losing the generality, we assume that d=k=m=1d=k=m=1. We give the following assumptions:

  1. (H3.1)

    bb and σ\sigma are adapted processes: b(,x,u),σ(,y,z)L2a(0,N1)b(\cdot,x,u),\sigma(\cdot,y,z)\in L^{2a}_{\mathcal{F}}(0,N-1) for all x,ux,u\in\mathbb{R}.

  2. (H3.2)

    b(n,x,u),σ(n,x,u)b(n,x,u),\sigma(n,x,u) are differential w.r.t (x,u)(x,u) and there exists some constants L>0L>0, such that

    |ϕ(n,x1,u1)\displaystyle|\phi(n,x_{1},u_{1})-\ ϕ(n,x2,u2)|L(|x1x2|+|u1u2|),\displaystyle\phi(n,x_{2},u_{2})|\leq L\left(|x_{1}-x_{2}|+|u_{1}-u_{2}|\right),
    n[0,N1],x1,x2,u1,u2,\displaystyle\forall n\in[0,N-1],\quad\forall x_{1},x_{2},u_{1},u_{2}\in\mathbb{R},

    for ϕ=b,σ,bx,σx,bu,σu.\phi=b,\sigma,b_{x},\sigma_{x},b_{u},\sigma_{u}.

  3. (H3.3)

    l(n,x,u),Φ(x)l(n,x,u),\Phi(x) are differential w.r.t (x,u)(x,u) and

    |lx(n,x,u)|+|Φx(x)|L(1+|x|+|u|),n[0,N1],x,u.\displaystyle|l_{x}(n,x,u)|+|\Phi_{x}(x)|\leq L(1+|x|+|u|),\quad\forall n\in[0,N-1],\,x,u\in\mathbb{R}.
  4. (H3.4)

    b(N,x,u)=σ(N,x,u)=l(N,x,u)=0,b(N,x,u)=\sigma(N,x,u)=l(N,x,u)=0, for all (x,u)(x,u).

Then we show the solvability of the state equation.

Lemma 2.

Assume that assumptions (H3.1)-(H3.4) hold and u𝕌u\in\mathbb{U}, then SΔ\DeltaE (3.3) has a unique solution XL2(0,N)X\in L_{\mathcal{F}}^{2}(0,N).

Proof.

Since xL2a(0)x\in L^{2a}(\mathcal{F}_{0}), by assumptions (3.1) and (3.2), we have

𝔼|X1|2aδ\displaystyle\mathbb{E}|X_{1}|^{2a\delta} C𝔼[|x|2aδ+|f(0,0,0)|2aδ+|g(0,0,0)|2aδ|ξ0H|2aδ+|x|2aδ|ξ0H|2aδ]\displaystyle\leq C\mathbb{E}\left[|x|^{2a\delta}+|f(0,0,0)|^{2a\delta}+|g(0,0,0)|^{2a\delta}|\xi_{0}^{H}|^{2a\delta}+|x|^{2a\delta}|\xi_{0}^{H}|^{2a\delta}\right]
C[(𝔼|x|2a)δ+(𝔼|f(0,0,0)|2a)δ]\displaystyle\leq C\left[\left(\mathbb{E}|x|^{2a}\right)^{\delta}+\left(\mathbb{E}|f(0,0,0)|^{2a}\right)^{\delta}\right]
+C[(𝔼|x|2a)δ+(𝔼|g(0,0,0)|2a)δ]×(𝔼|ξ0H|2aδ1δ)1δ\displaystyle\quad+C\left[\left(\mathbb{E}|x|^{2a}\right)^{\delta}+\left(\mathbb{E}|g(0,0,0)|^{2a}\right)^{\delta}\right]\times\left(\mathbb{E}|\xi_{0}^{H}|^{\frac{2a\delta}{1-\delta}}\right)^{1-\delta}
<+.\displaystyle<+\infty.

for some C>0C>0 and δ[a1/N,1)\delta\in[a^{-1/N},1).

Then, by induction, if XnL2aδn(n)X_{n}\in L^{2a\delta^{n}}(\mathcal{F}_{n}), we show XnL2aδn+1(n+1)L2a(n+1),n=0,1,,N1X_{n}\in L^{2a\delta^{n+1}}(\mathcal{F}_{n+1})\subset L^{2a}(\mathcal{F}_{n+1}),n=0,1,...,N-1:

𝔼|Xn+1|2aδn+1\displaystyle\mathbb{E}|X_{n+1}|^{2a\delta^{n+1}} C𝔼[|Xn|2aδn+1+|f(n,0,0)|2aδn+1+|g(n,0,0)|2aδn+1|ξ0H|2aδn+1]\displaystyle\leq C\mathbb{E}\left[|X_{n}|^{2a\delta^{n+1}}+|f(n,0,0)|^{2a\delta^{n+1}}+|g(n,0,0)|^{2a\delta^{n+1}}|\xi_{0}^{H}|^{2a\delta^{n+1}}\right]
+C𝔼[|Xn|2aδn+1|ξ0H|2aδn+1]\displaystyle\quad+C\mathbb{E}\left[|X_{n}|^{2a\delta^{n+1}}|\xi_{0}^{H}|^{2a\delta^{n+1}}\right]
C𝔼[|Xn|2aδn+1+|f(0,0,0)|2aδn+1]\displaystyle\leq C\mathbb{E}\left[|X_{n}|^{2a\delta^{n+1}}+|f(0,0,0)|^{2a\delta^{n+1}}\right]
+C[(𝔼|x|2aδn)δ+(𝔼|g(0,0,0)|2aδn)δ]×(𝔼|ξ0H|2aδn+11δ)1δ\displaystyle\quad+C\left[\left(\mathbb{E}|x|^{2a\delta^{n}}\right)^{\delta}+\left(\mathbb{E}|g(0,0,0)|^{2a\delta^{n}}\right)^{\delta}\right]\times\left(\mathbb{E}|\xi_{0}^{H}|^{\frac{2a\delta^{n+1}}{1-\delta}}\right)^{1-\delta}
<+.\displaystyle<+\infty.

Thus, the solution of (3.3) in L2(0,N)L^{2}_{\mathcal{F}}(0,N).

Uniqueness. Let X~\tilde{X} and XX be two solutions of SΔ\DeltaE (3.3), so that 𝔼|X~0X0|2a=0\mathbb{E}|\tilde{X}_{0}-X_{0}|^{2a}=0. If 𝔼|X~nXn|2aδn=0\mathbb{E}|\tilde{X}_{n}-X_{n}|^{2a\delta^{n}}=0, we have

𝔼|X~n+1Xn+1|2aδn+1\displaystyle\mathbb{E}|\tilde{X}_{n+1}-X_{n+1}|^{2a\delta^{n+1}}\leq C𝔼[|X~nXn|2aδn+1+|X~nXn|2aδn+1|ξnH|2aδn+1]\displaystyle C\mathbb{E}\left[|\tilde{X}_{n}-X_{n}|^{2a\delta^{n+1}}+|\tilde{X}_{n}-X_{n}|^{2a\delta^{n+1}}|\xi_{n}^{H}|^{2a\delta^{n+1}}\right]
\displaystyle\leq C𝔼|X~nXn|2aδn+1+C(𝔼|X~nXn|2aδn)δ×(𝔼|ξnH|2aδn+11δ)1δ\displaystyle C\mathbb{E}|\tilde{X}_{n}-X_{n}|^{2a\delta^{n+1}}+C\left(\mathbb{E}|\tilde{X}_{n}-X_{n}|^{2a\delta^{n}}\right)^{\delta}\times\left(\mathbb{E}|\xi_{n}^{H}|^{\frac{2a\delta^{n+1}}{1-\delta}}\right)^{1-\delta}
=\displaystyle= 0,\displaystyle 0,

for n=0,1,,N1n=0,1,...,N-1. Then we conclude n=0N𝔼|X~nXn|2=0\sum_{n=0}^{N}\mathbb{E}|\tilde{X}_{n}-X_{n}|^{2}=0, which shows the solution is unique. ∎

Remark 3.

Indeed, we could obtain the unique solution of SΔ\DeltaE (3.3) in Lβ(0,N)L^{\beta}_{\mathcal{F}}(0,N) for β(2,2a)\beta\in(2,2a) as long as we take δ(β2aN,1).\delta\in\left(\sqrt[N]{\frac{\beta}{2a}},1\right).

For any u𝕌u\in\mathbb{U} and ε(0,1)\varepsilon\in(0,1), let

unε=(1ε)un+εun:=un+εvn.\displaystyle u_{n}^{\varepsilon}=(1-\varepsilon)u^{*}_{n}+\varepsilon u_{n}:=u^{*}_{n}+\varepsilon v_{n}.

Denote

ϕ(n)=ϕ(n,Xn,un),\displaystyle\phi^{*}(n)=\phi(n,X^{*}_{n},u^{*}_{n}),
ϕε(n)=ϕ(n,Xnε,unε)\displaystyle\phi^{\varepsilon}(n)=\phi(n,X^{\varepsilon}_{n},u^{\varepsilon}_{n})

for ϕ=b,σ,l,bx,σx,lx,bu,σu,lu\phi=b,\sigma,l,b_{x},\sigma_{x},l_{x},b_{u},\sigma_{u},l_{u}.

Define the variation equation by

{Vn+1=Vn+bx(n)Vn+buvn+[σx(n)Vn+σu(n)vn]ξnH, 0nN1,V0=0.\displaystyle\left\{\begin{array}[]{ll}V_{n+1}=V_{n}+b_{x}^{*}(n)V_{n}+b_{u}^{*}v_{n}+\left[\sigma_{x}^{*}(n)V_{n}+\sigma_{u}^{*}(n)v_{n}\right]\xi_{n}^{H},\,0\leq n\leq N-1,\\ V_{0}=0.\end{array}\right.

Then we have the following convergence result.

Lemma 3.

Let XεX^{\varepsilon}, XX^{*} be the corresponding state equation to uεu^{\varepsilon}, uu^{*}, respectively. Then we have

n=0N𝔼|XnεXn|2O(ε2),\displaystyle\sum_{n=0}^{N}\mathbb{E}|X_{n}^{\varepsilon}-X^{*}_{n}|^{2}\leq O(\varepsilon^{2}), (3.5)

and

limε0n=0N𝔼|XnεXnεVn|2=0.\displaystyle\lim_{\varepsilon\to 0}\sum_{n=0}^{N}\mathbb{E}\left|\frac{X^{\varepsilon}_{n}-X^{*}_{n}}{\varepsilon}-V_{n}\right|^{2}=0. (3.6)
Proof.

The proof of (3.5) follows lemma 2, if 𝔼|XnεXn|2aδn=O(ε2aδn)\mathbb{E}|X_{n}^{\varepsilon}-X_{n}^{*}|^{2a\delta^{n}}=O\left(\varepsilon^{2a\delta^{n}}\right), then

𝔼|Xn+1εXn+1|2aδn+1\displaystyle\mathbb{E}|X^{\varepsilon}_{n+1}-X^{*}_{n+1}|^{2a\delta^{n+1}}\leq C𝔼[|XnεXn|2aδn+1+|XnεXn|2aδn+1|ξnH|2aδn+1]\displaystyle C\mathbb{E}\left[|X^{\varepsilon}_{n}-X^{*}_{n}|^{2a\delta^{n+1}}+|X^{\varepsilon}_{n}-X^{*}_{n}|^{2a\delta^{n+1}}|\xi_{n}^{H}|^{2a\delta^{n+1}}\right]
\displaystyle\leq C(𝔼|XnεXn|2aδn)δ+C(𝔼|XnεXn|2aδn)δ×(𝔼|ξnH|2aδn+11δ)1δ\displaystyle C\left(\mathbb{E}|X^{\varepsilon}_{n}-X^{*}_{n}|^{2a\delta^{n}}\right)^{\delta}+C\left(\mathbb{E}|X^{\varepsilon}_{n}-X^{*}_{n}|^{2a\delta^{n}}\right)^{\delta}\times\left(\mathbb{E}|\xi_{n}^{H}|^{\frac{2a\delta^{n+1}}{1-\delta}}\right)^{1-\delta}
=\displaystyle= O(ε2aδn+1).\displaystyle O\left(\varepsilon^{2a\delta^{n+1}}\right).

So that

n=0N𝔼|XnεXn|2n=0N(𝔼|XnεXn|2aδn)1aδn=O(ε2).\displaystyle\sum_{n=0}^{N}\mathbb{E}|X^{\varepsilon}_{n}-X^{*}_{n}|^{2}\leq\sum_{n=0}^{N}\left(\mathbb{E}|X^{\varepsilon}_{n}-X^{*}_{n}|^{2a\delta^{n}}\right)^{\frac{1}{a\delta^{n}}}=O(\varepsilon^{2}).

Denote X^ε=XεXεV\hat{X}^{\varepsilon}=\frac{X^{\varepsilon}-X^{*}}{\varepsilon}-V, it follows

X^n+1ε=\displaystyle\hat{X}^{\varepsilon}_{n+1}= X^nε+bε(n)b(n)εbx(n)Vnbu(n)vn\displaystyle\hat{X}^{\varepsilon}_{n}+\frac{b^{\varepsilon}(n)-b^{*}(n)}{\varepsilon}-b_{x}^{*}(n)V_{n}-b_{u}^{*}(n)v_{n}
+[σε(n)σ(n)εσx(n)Vnσu(n)vn]ξnH\displaystyle+\left[\frac{\sigma^{\varepsilon}(n)-\sigma^{*}(n)}{\varepsilon}-\sigma_{x}^{*}(n)V_{n}-\sigma_{u}^{*}(n)v_{n}\right]\xi_{n}^{H}
=\displaystyle= [1+bx(n)]Xnε^+b~xε(n)bx(n)ε[XnεXn]+[b~uε(n)bu(n)]vn\displaystyle[1+b_{x}^{*}(n)]\hat{X^{\varepsilon}_{n}}+\frac{\tilde{b}_{x}^{\varepsilon}(n)-b^{*}_{x}(n)}{\varepsilon}[X^{\varepsilon}_{n}-X^{*}_{n}]+[\tilde{b}_{u}^{\varepsilon}(n)-b^{*}_{u}(n)]v_{n}
+[σx(n)Xnε^+σ~xε(n)σx(n)ε[XnεXn]+[σ~uε(n)σu(n)]vn]ξnH,\displaystyle+\left[\sigma_{x}^{*}(n)\hat{X^{\varepsilon}_{n}}+\frac{\tilde{\sigma}_{x}^{\varepsilon}(n)-\sigma^{*}_{x}(n)}{\varepsilon}[X^{\varepsilon}_{n}-X^{*}_{n}]+[\tilde{\sigma}_{u}^{\varepsilon}(n)-\sigma^{*}_{u}(n)]v_{n}\right]\xi^{H}_{n},

where

ϕ~ε(n)=01ϕ(n,Xn+θ(XnεXn),un+θεvn)𝑑θ,\displaystyle\tilde{\phi}^{\varepsilon}(n)=\int_{0}^{1}\phi(n,X^{*}_{n}+\theta(X^{\varepsilon}_{n}-X^{*}_{n}),u^{*}_{n}+\theta\varepsilon v_{n})d\theta,

for ϕ=bx,bu,σx,σu\phi=b_{x},b_{u},\sigma_{x},\sigma_{u}. Then

𝔼|X^n+1ε|2aδn+1\displaystyle\mathbb{E}\left|\hat{X}^{\varepsilon}_{n+1}\right|^{2a\delta^{n+1}}\leq C𝔼|X^nε|2aδn+1+C𝔼b~uε(n)bu(n)2aδn+1|vn|2aδn+1\displaystyle C\mathbb{E}\left|\hat{X}^{\varepsilon}_{n}\right|^{2a\delta^{n+1}}+C\mathbb{E}\|\tilde{b}_{u}^{\varepsilon}(n)-b^{*}_{u}(n)\|^{2a\delta^{n+1}}|v_{n}|^{2a\delta^{n+1}}
+C𝔼b~xε(n)bx(n)2aδn+1|ε1(XnεXn)|2aδn+1\displaystyle+C\mathbb{E}\|\tilde{b}_{x}^{\varepsilon}(n)-b^{*}_{x}(n)\|^{2a\delta^{n+1}}\left|\varepsilon^{-1}(X^{\varepsilon}_{n}-X^{*}_{n})\right|^{2a\delta^{n+1}}
+C𝔼[|X^nε|2aδn+1+σ~uε(n)σu(n)2aδn+1|vn|2aδn+1\displaystyle+C\mathbb{E}\Bigg{[}\left|\hat{X}^{\varepsilon}_{n}\right|^{2a\delta^{n+1}}+\|\tilde{\sigma}_{u}^{\varepsilon}(n)-\sigma^{*}_{u}(n)\|^{2a\delta^{n+1}}|v_{n}|^{2a\delta^{n+1}}
+σ~xε(n)σx(n)2aδn+1|ε1(XnεXn)|2aδn+1]|ξnH|2aδn+1\displaystyle\qquad+\|\tilde{\sigma}_{x}^{\varepsilon}(n)-\sigma^{*}_{x}(n)\|^{2a\delta^{n+1}}\left|\varepsilon^{-1}(X^{\varepsilon}_{n}-X^{*}_{n})\right|^{2a\delta^{n+1}}\Bigg{]}\left|\xi_{n}^{H}\right|^{2a\delta^{n+1}}
\displaystyle\leq C[(𝔼|X^nε|2aδn)δ+o(1)]×[1+(𝔼|ξnH|2aδn+11δ)1δ].\displaystyle C\left[\left(\mathbb{E}\left|\hat{X}^{\varepsilon}_{n}\right|^{2a\delta^{n}}\right)^{\delta}+o(1)\right]\times\left[1+\left(\mathbb{E}|\xi_{n}^{H}|^{\frac{2a\delta^{n+1}}{1-\delta}}\right)^{1-\delta}\right].

Since 𝔼|X^0ε|2a=0\mathbb{E}|\hat{X}^{\varepsilon}_{0}|^{2a}=0, by induction, we have

limε0𝔼|X^nε|2aδn=0,n=0,1,,N,\displaystyle\lim_{\varepsilon\to 0}\mathbb{E}\left|\hat{X}^{\varepsilon}_{n}\right|^{2a\delta^{n}}=0,\quad\forall n=0,1,...,N,

which complete the proof of (3.6). ∎

Then we give the stochastic maximum principle for control system (3.3), (3.4).

Theorem 2.

Let assumptions (3.1)-(3.3) hold, u,Xu^{*},X^{*} be the optimal control and the corresponding state process. Let (p,q)(p,q) be the solution to the following BSΔ\DeltaE:

{pn+qnηn=pn+1+bx(n+1)pn+1+b(n+1,n+1)σx(n+1)qn+1+lx(n+1)+σx(n+1)pn+1ξn+1H,pN=Φx(XN),qN=0.\displaystyle\left\{\begin{array}[]{ll}p_{n}+q_{n}\eta_{n}=p_{n+1}+b_{x}^{*}(n+1)p_{n+1}+b(n+1,n+1)\sigma_{x}^{*}(n+1)q_{n+1}\\ \qquad\qquad\qquad+l_{x}^{*}(n+1)+\sigma_{x}^{*}(n+1)p_{n+1}\xi_{n+1}^{H},\\ p_{N}=\Phi_{x}(X^{*}_{N}),\\ q_{N}=0.\end{array}\right. (3.11)

Then the following inequality holds:

[bu(n)pn+σu(n)pnk=0n1c(n,k)ξkH+b(n,n)σu(n)qn+lu(n)](unun)0,\displaystyle\left[b_{u}^{*}(n)p_{n}+\sigma_{u}^{*}(n)p_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}+b(n,n)\sigma_{u}^{*}(n)q_{n}+l_{u}^{*}(n)\right]\cdot(u_{n}-u^{*}_{n})\geq 0,

a.s., for all n[0,N1],u𝕌n\in[0,N-1],u\in\mathbb{U}. Here c(n,k)=l=0n1b(n,l)a(l,k)c(n,k)=\sum_{l=0}^{n-1}b(n,l)a(l,k) and a(,),b(,)a(\cdot,\cdot),b(\cdot,\cdot) are given by lemma 1.

Proof.

According to the assumptions (H3.1)-(H3.2) and remark 3, it is easy to check BSΔ\DeltaE (3.11) satisfies (H2.1)-(H2.3), so that BSΔ\DeltaE (3.11) has a unique solution.

Trough lemma 3, it is easy to show the directional derivative of JJ is

ddεJ(u+εv)|ε=0=𝔼[n=0N1[lx(n)Vn+lu(n)vn]+Φx(XN)VN].\displaystyle\frac{d}{d\varepsilon}J(u^{*}+\varepsilon v)\Big{|}_{\varepsilon=0}=\mathbb{E}\left[\sum_{n=0}^{N-1}\left[l_{x}^{*}(n)V_{n}+l_{u}^{*}(n)v_{n}\right]+\Phi_{x}(X^{*}_{N})V_{N}\right]. (3.12)

Consider

Δ(pnVn)=\displaystyle\Delta(p_{n}V_{n})= pn+1Vn+1pnVn\displaystyle p_{n+1}V_{n+1}-p_{n}V_{n}
=\displaystyle= Vn+1[bx(n+1)pn+1+b(n+1,n+1)σx(n+1)qn+1\displaystyle-V_{n+1}\big{[}b_{x}^{*}(n+1)p_{n+1}+b(n+1,n+1)\sigma_{x}^{*}(n+1)q_{n+1}
+lx(n+1)+σx(n+1)pn+1ξn+1H]\displaystyle\qquad\qquad+l_{x}^{*}(n+1)+\sigma_{x}^{*}(n+1)p_{n+1}\xi_{n+1}^{H}\big{]}
+Vn+1qnηn+pn[bx(n)Vn+bu(n)vn]\displaystyle+V_{n+1}q_{n}\eta_{n}+p_{n}\left[b_{x}^{*}(n)V_{n}+b_{u}^{*}(n)v_{n}\right]
+pn[σx(n)Vn+σu(n)vn]ξnH\displaystyle+p_{n}\left[\sigma_{x}^{*}(n)V_{n}+\sigma_{u}^{*}(n)v_{n}\right]\xi_{n}^{H}
=\displaystyle= [bx(n+1)pn+1Vn+1bx(n)pnVn]\displaystyle-\left[b_{x}^{*}(n+1)p_{n+1}V_{n+1}-b_{x}^{*}(n)p_{n}V_{n}\right]
[σx(n+1)pn+1Vn+1ξn+1Hσx(n)pnVnξnH]\displaystyle-\left[\sigma_{x}^{*}(n+1)p_{n+1}V_{n+1}\xi_{n+1}^{H}-\sigma_{x}^{*}(n)p_{n}V_{n}\xi_{n}^{H}\right]
[b(n+1,n+1)σx(n+1)qn+1Vn+1σx(n)qnVnηnξnH]\displaystyle-\left[b(n+1,n+1)\sigma_{x}^{*}(n+1)q_{n+1}V_{n+1}-\sigma_{x}^{*}(n)q_{n}V_{n}\eta_{n}\xi_{n}^{H}\right]
+[Vn+b(n)Vn]qnηn+σu(n)qnvnηnξnH\displaystyle+\left[V_{n}+b^{*}(n)V_{n}\right]q_{n}\eta_{n}+\sigma_{u}^{*}(n)q_{n}v_{n}\eta_{n}\xi_{n}^{H}
lx(n+1)Vn+1+bu(n)pnvn+σu(n)pnvnξnH.\displaystyle-l_{x}^{*}(n+1)V_{n+1}+b_{u}^{*}(n)p_{n}v_{n}+\sigma_{u}^{*}(n)p_{n}v_{n}\xi_{n}^{H}. (3.13)

Notice that

𝔼([Vn+b(n)Vn]qnηn)=𝔼([Vn+b(n)Vn]qn𝔼[ηn|n])=0,\displaystyle\mathbb{E}\left(\left[V_{n}+b^{*}(n)V_{n}\right]q_{n}\eta_{n}\right)=\mathbb{E}\left(\left[V_{n}+b^{*}(n)V_{n}\right]q_{n}\mathbb{E}\left[\eta_{n}|\mathcal{F}_{n}\right]\right)=0,

and

𝔼[σx(n)qnVnηnξnH]=\displaystyle\mathbb{E}\left[\sigma_{x}^{*}(n)q_{n}V_{n}\eta_{n}\xi_{n}^{H}\right]= 𝔼[σx(n)qnVn𝔼(ηnξnH|n)]\displaystyle\mathbb{E}\left[\sigma_{x}^{*}(n)q_{n}V_{n}\mathbb{E}\left(\eta_{n}\xi_{n}^{H}|\mathcal{F}_{n}\right)\right]
=\displaystyle= 𝔼[σx(n)qnVn𝔼(ηnk=0nb(n,k)ηk|n)]\displaystyle\mathbb{E}\left[\sigma_{x}^{*}(n)q_{n}V_{n}\mathbb{E}\left(\eta_{n}\sum_{k=0}^{n}b(n,k)\eta_{k}|\mathcal{F}_{n}\right)\right]
=\displaystyle= 𝔼[σx(n)qnVnk=0n1b(n,k)ηk𝔼(ηn|n)]\displaystyle\mathbb{E}\left[\sigma_{x}^{*}(n)q_{n}V_{n}\sum_{k=0}^{n-1}b(n,k)\eta_{k}\mathbb{E}\left(\eta_{n}|\mathcal{F}_{n}\right)\right]
+𝔼[σx(n)qnVn𝔼(b(n,n)ηn2|n)]\displaystyle+\mathbb{E}\left[\sigma_{x}^{*}(n)q_{n}V_{n}\mathbb{E}\left(b(n,n)\eta_{n}^{2}|\mathcal{F}_{n}\right)\right]
=\displaystyle= 𝔼[b(n,n)σx(n)qnVn],\displaystyle\mathbb{E}\left[b(n,n)\sigma_{x}^{*}(n)q_{n}V_{n}\right], (3.14)

so take summation and expectation of equation (3), we have

𝔼[gx(XN)VN]=\displaystyle\mathbb{E}\left[g_{x}(X_{N}^{*})V_{N}\right]= n=0N1Δ(pnVn)\displaystyle\sum_{n=0}^{N-1}\Delta(p_{n}V_{n})
=\displaystyle= 𝔼[bx(N)pNVNbx(0)p0V0]\displaystyle-\mathbb{E}[b_{x}^{*}(N)p_{N}V_{N}-b_{x}^{*}(0)p_{0}V_{0}]
𝔼[σx(N)pNVNξNHσx(0)p0V0ξ0H]\displaystyle-\mathbb{E}[\sigma_{x}^{*}(N)p_{N}V_{N}\xi_{N}^{H}-\sigma_{x}^{*}(0)p_{0}V_{0}\xi_{0}^{H}]
𝔼[b(N,N)σx(N)qNVNσx(0)q0V0ξ0H]\displaystyle-\mathbb{E}[b(N,N)\sigma_{x}^{*}(N)q_{N}V_{N}-\sigma_{x}^{*}(0)q_{0}V_{0}\xi_{0}^{H}]
𝔼n=1Nlx(n)Vn+𝔼n=0N1bu(n)pnvn\displaystyle-\mathbb{E}\sum_{n=1}^{N}l_{x}^{*}(n)V_{n}+\mathbb{E}\sum_{n=0}^{N-1}b_{u}^{*}(n)p_{n}v_{n}
+𝔼n=0N1[σu(n)pnvnξnH]+𝔼n=0N1[σu(n)qnvnηnξnH]\displaystyle+\mathbb{E}\sum_{n=0}^{N-1}[\sigma_{u}^{*}(n)p_{n}v_{n}\xi_{n}^{H}]+\mathbb{E}\sum_{n=0}^{N-1}[\sigma_{u}^{*}(n)q_{n}v_{n}\eta_{n}\xi_{n}^{H}]
=\displaystyle= 𝔼n=0N1lx(n)Vn+𝔼n=0N1bu(n)pnvn\displaystyle-\mathbb{E}\sum_{n=0}^{N-1}l_{x}^{*}(n)V_{n}+\mathbb{E}\sum_{n=0}^{N-1}b_{u}^{*}(n)p_{n}v_{n}
+𝔼n=0N1[σu(n)pnvnξnH]+𝔼n=0N1[σu(n)qnvnηnξnH],\displaystyle+\mathbb{E}\sum_{n=0}^{N-1}[\sigma_{u}^{*}(n)p_{n}v_{n}\xi_{n}^{H}]+\mathbb{E}\sum_{n=0}^{N-1}[\sigma_{u}^{*}(n)q_{n}v_{n}\eta_{n}\xi_{n}^{H}], (3.15)

since bx(N)=σx(N)=lx(N)=V0=0b_{x}^{*}(N)=\sigma_{x}^{*}(N)=l_{x}^{*}(N)=V_{0}=0. ∎

Substitute equation (3) to (3.12), it follows

ddεJ(u+εv)|ε=0\displaystyle\frac{d}{d\varepsilon}J(u^{*}+\varepsilon v)\Big{|}_{\varepsilon=0}
=𝔼n=0N1[bu(n)pn+σu(n)pnξnH+σu(n)qnηnξnH+lu(n)]vn\displaystyle=\mathbb{E}\sum_{n=0}^{N-1}\left[b_{u}^{*}(n)p_{n}+\sigma_{u}^{*}(n)p_{n}\xi_{n}^{H}+\sigma_{u}^{*}(n)q_{n}\eta_{n}\xi_{n}^{H}+l_{u}^{*}(n)\right]\cdot v_{n} (3.16)

Notice that, similar to equation (3),

𝔼[σu(n)qnηnξnH]=𝔼[b(n,n)σu(n)qn],\displaystyle\mathbb{E}\left[\sigma_{u}^{*}(n)q_{n}\eta_{n}\xi_{n}^{H}\right]=\mathbb{E}\left[b(n,n)\sigma_{u}^{*}(n)q_{n}\right],

and

𝔼[σu(n)pnξnH]=\displaystyle\mathbb{E}\left[\sigma_{u}^{*}(n)p_{n}\xi_{n}^{H}\right]= 𝔼[σu(n)pn𝔼(l=0nb(n,l)ηlH|n)]\displaystyle\mathbb{E}\left[\sigma_{u}^{*}(n)p_{n}\mathbb{E}\left(\sum_{l=0}^{n}b(n,l)\eta_{l}^{H}|\mathcal{F}_{n}\right)\right]
=\displaystyle= 𝔼[σu(n)pn𝔼(l=0n1k=0lb(n,l)a(l,k)ξkH|n)]\displaystyle\mathbb{E}\left[\sigma_{u}^{*}(n)p_{n}\mathbb{E}\left(\sum_{l=0}^{n-1}\sum_{k=0}^{l}b(n,l)a(l,k)\xi_{k}^{H}|\mathcal{F}_{n}\right)\right]
+𝔼[σu(n)pnb(n,n)𝔼(ηn|n)]\displaystyle+\mathbb{E}\left[\sigma_{u}^{*}(n)p_{n}b(n,n)\mathbb{E}\left(\eta_{n}|\mathcal{F}_{n}\right)\right]
:=\displaystyle:= 𝔼[σu(n)pnk=0n1c(n,k)ξkH],\displaystyle\mathbb{E}\left[\sigma_{u}^{*}(n)p_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}\right],

through equation (3) and the fact ddεJ(u+εv)|ε=00\frac{d}{d\varepsilon}J(u^{*}+\varepsilon v)\Big{|}_{\varepsilon=0}\geq 0, we conclude

𝔼n=0N1[bu(n)pn+σu(n)pnk=0n1c(n,k)ξkH+b(n,n)σu(n)qn+lu(n)]vn0.\displaystyle\mathbb{E}\sum_{n=0}^{N-1}\left[b_{u}^{*}(n)p_{n}+\sigma_{u}^{*}(n)p_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}+b(n,n)\sigma_{u}^{*}(n)q_{n}+l_{u}^{*}(n)\right]\cdot v_{n}\geq 0.

By the arbitrary of vv, we have

𝔼{𝟏𝒜[bu(n)pn+σu(n)pnk=0n1c(n,k)ξkH+b(n,n)σu(n)qn+lu(n)]vn}0,\displaystyle\mathbb{E}\left\{\mathbf{1}_{\mathcal{A}}\left[b_{u}^{*}(n)p_{n}+\sigma_{u}^{*}(n)p_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}+b(n,n)\sigma_{u}^{*}(n)q_{n}+l_{u}^{*}(n)\right]\cdot v_{n}\right\}\geq 0,

for all n[0,N1],𝒜nn\in[0,N-1],\,\mathcal{A}\in\mathcal{F}_{n}, which implies

[bu(n)pn+σu(n)pnk=0n1c(n,k)ξkH+b(n,n)σu(n)qn+lu(n)](unun)0.\displaystyle\left[b_{u}^{*}(n)p_{n}+\sigma_{u}^{*}(n)p_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}+b(n,n)\sigma_{u}^{*}(n)q_{n}+l_{u}^{*}(n)\right]\cdot(u_{n}-u^{*}_{n})\geq 0.
Remark 4.

If the optimal control process (un)0nN1(u_{n}^{*})_{0\leq n\leq N-1} takes values in the interior of the 𝕌\mathbb{U}, it implies

bu(n)pn+σu(n)pnk=0n1c(n,k)ξkH+b(n,n)σu(n)qn+lu(n)=0,a.s.\displaystyle b_{u}^{*}(n)p_{n}+\sigma_{u}^{*}(n)p_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}+b(n,n)\sigma_{u}^{*}(n)q_{n}+l_{u}^{*}(n)=0,\quad a.s.

for all n[0,N1]n\in[0,N-1]. Thus, we obtain the optimal system:

{Xn+1=Xn+b(n,Xn,un)+σ(n,Xn,un)ξnH,pn+qnηn=pn+1+bx(n+1)pn+1+b(n+1,n+1)σx(n+1)qn+1+lx(n+1)+σx(n+1)pn+1ξn+1H,X0=x,pN=Φx(XN),qN=0,bx(N)=σx(N)=lx(N)=0,bu(n)pn+σu(n)pnk=0n1c(n,k)ξkH+b(n,n)σu(n)qn+lu(n)=0.\displaystyle\left\{\begin{array}[]{ll}X_{n+1}=X_{n}+b(n,X_{n},u_{n})+\sigma(n,X_{n},u_{n})\xi_{n}^{H},\\ \\ p_{n}+q_{n}\eta_{n}=p_{n+1}+b_{x}^{*}(n+1)p_{n+1}+b(n+1,n+1)\sigma_{x}^{*}(n+1)q_{n+1}\\ \\ \qquad\qquad\qquad+l_{x}^{*}(n+1)+\sigma_{x}^{*}(n+1)p_{n+1}\xi_{n+1}^{H},\\ \\ X_{0}=x,\\ \\ p_{N}=\Phi_{x}(X^{*}_{N}),\\ \\ q_{N}=0,\\ \\ b_{x}^{*}(N)=\sigma_{x}^{*}(N)=l_{x}^{*}(N)=0,\\ \\ b_{u}^{*}(n)p_{n}+\sigma_{u}^{*}(n)p_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}+b(n,n)\sigma_{u}^{*}(n)q_{n}+l_{u}^{*}(n)=0.\end{array}\right. (3.32)
Corollary 1.

If ξH\xi^{H} is white noise (H=1/2H=1/2), then it is easy to check

a(n,k)=b(n,k)={1,ifn=k,0,ifnk,a(n,k)=b(n,k)=\left\{\begin{aligned} &1,\ \ {\rm if}\ n=k,\\ &0,\ \ {\rm if}\ n\neq k,\end{aligned}\right.

so that c(n,k)=0,k=0,1,,n1c(n,k)=0,\,k=0,1,...,n-1. Moreover, consider the adjoint BSΔ\DeltaE, pp and qq are given by

pn=𝔼[pn+1+\displaystyle p_{n}=\mathbb{E}\Big{[}p_{n+1}+ bx(n+1)pn+1+b(n+1,n+1)σx(n+1)qn+1\displaystyle b_{x}^{*}(n+1)p_{n+1}+b(n+1,n+1)\sigma_{x}^{*}(n+1)q_{n+1}
+lx(n+1)+σx(n+1)pn+1ξn+1H|n]\displaystyle+l_{x}^{*}(n+1)+\sigma_{x}^{*}(n+1)p_{n+1}\xi_{n+1}^{H}|\mathcal{F}_{n}\Big{]}
=𝔼[pn+1+\displaystyle=\mathbb{E}\Big{[}p_{n+1}+ bx(n+1)pn+1+σx(n+1)qn+1+lx(n+1)|n],\displaystyle b_{x}^{*}(n+1)p_{n+1}+\sigma_{x}^{*}(n+1)q_{n+1}+l_{x}^{*}(n+1)|\mathcal{F}_{n}\Big{]},

and

qn=𝔼[ηn[pn+1+\displaystyle q_{n}=\mathbb{E}\Big{[}\eta_{n}\big{[}p_{n+1}+ bx(n+1)pn+1+σx(n+1)qn+1+lx(n+1)]|n].\displaystyle b_{x}^{*}(n+1)p_{n+1}+\sigma_{x}^{*}(n+1)q_{n+1}+l_{x}^{*}(n+1)\big{]}|\mathcal{F}_{n}\Big{]}.

We can also write the adjoint equation (p,q)(p,q) as

{pn+qnηn=pn+1+bx(n+1)pn+1+σx(n+1)qn+1+lx(n+1),pN=Φx(XN),qN=0.\displaystyle\left\{\begin{array}[]{ll}p_{n}+q_{n}\eta_{n}=p_{n+1}+b_{x}^{*}(n+1)p_{n+1}+\sigma_{x}^{*}(n+1)q_{n+1}+l_{x}^{*}(n+1),\\ p_{N}=\Phi_{x}(X^{*}_{N}),\\ q_{N}=0.\end{array}\right.

The condition for optimal control is

bu(n)pn+σu(n)qn+lu(n)=0,a.s.n=0,1,,N1,\displaystyle b_{u}^{*}(n)p_{n}+\sigma_{u}^{*}(n)q_{n}+l_{u}^{*}(n)=0,\quad a.s.\quad n=0,1,...,N-1,

which is same to the results obtained in [16]

4 Application to linear quadratic control

In this section, we consider the following linear quadratic (LQ) optimal control problem, the state equation is

{Xn+1=Xn+AnXn+Bnun+[CnXn+Dnun]ξnH, 0nN1,X0=x,\displaystyle\left\{\begin{array}[]{ll}X_{n+1}=X_{n}+A_{n}X_{n}+B_{n}u_{n}+\left[C_{n}X_{n}+D_{n}u_{n}\right]\xi_{n}^{H},\,0\leq n\leq N-1,\\ X_{0}=x,\end{array}\right. (4.3)

with the cost function

J(u)=12𝔼[n=0N1(QnXn2+Rnun2)+GXN2],\displaystyle J(u)=\frac{1}{2}\mathbb{E}\left[\sum_{n=0}^{N-1}\left(Q_{n}X_{n}^{2}+R_{n}u^{2}_{n}\right)+GX_{N}^{2}\right], (4.4)

where Qn,G0Q_{n},G\geq 0 and Rn>0R_{n}>0 for n=0,1,,N1n=0,1,...,N-1.

According to the optimal system (3.32), the adjoint equation is

{pn+qnηn=pn+1+An+1pn+1+b(n+1,n+1)Cn+1qn+1+Qn+1Xn+1+Cn+1pn+1ξn+1H,pN=GXN,qN=0,AN=CN=QN=0.\displaystyle\left\{\begin{array}[]{ll}p_{n}+q_{n}\eta_{n}=p_{n+1}+A_{n+1}p_{n+1}+b(n+1,n+1)C_{n+1}q_{n+1}\\ \qquad\qquad\qquad+Q_{n+1}X^{*}_{n+1}+C_{n+1}p_{n+1}\xi_{n+1}^{H},\\ p_{N}=GX^{*}_{N},\\ q_{N}=0,\\ A_{N}=C_{N}=Q_{N}=0.\end{array}\right. (4.10)

The optimal control should satisfy

Bnpn+Dnpnk=0n1c(n,k)ξkH+b(n,n)Dnqn+Rnun=0,\displaystyle B_{n}p_{n}+D_{n}p_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}+b(n,n)D_{n}q_{n}+R_{n}u_{n}^{*}=0,

i.e.,

un=Rn1[Bnpn+Dnpnk=0n1c(n,k)ξkH+b(n,n)Dnqn].\displaystyle u_{n}^{*}=-R_{n}^{-1}\left[B_{n}p_{n}+D_{n}p_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}+b(n,n)D_{n}q_{n}\right]. (4.11)
Theorem 3.

Let (p,q)(p,q) be the solution of BSΔ\DeltaE (4.10). Then function (4.11) is the unique optimal control for control problem (4.14), (4.4).

Proof.

Let us show the sufficiency of the optimal control first. Assume that u𝕌u\in\mathbb{U} is any other admissible control, {Xn}\{X_{n}\} is the corresponding state process, denote ΔXn=XnXn\Delta X_{n}=X_{n}-X_{n}^{*} and Δun=unun\Delta u_{n}=u_{n}-u^{*}_{n}, then

{ΔXn+1=ΔXn+AnΔXn+BnΔun+[CnΔXn+DnΔun]ξnHΔX0=0,\displaystyle\left\{\begin{array}[]{ll}\Delta X_{n+1}=\Delta X_{n}+A_{n}\Delta X_{n}+B_{n}\Delta u_{n}+[C_{n}\Delta X_{n}+D_{n}\Delta u_{n}]\xi_{n}^{H}\\ \Delta X_{0}=0,\end{array}\right. (4.14)

and

pn+1ΔXn+1pnΔXn\displaystyle p_{n+1}\Delta X_{n+1}-p_{n}\Delta X_{n}
=\displaystyle= ΔXn+1[An+1pn+1+b(n+1,n+1)Cn+1qn+1\displaystyle-\Delta X_{n+1}\big{[}A_{n+1}p_{n+1}+b(n+1,n+1)C_{n+1}q_{n+1}
+Qn+1Xn+1+Cn+1pn+1ξn+1H]\displaystyle\qquad\qquad+Q_{n+1}X^{*}_{n+1}+C_{n+1}p_{n+1}\xi_{n+1}^{H}\big{]}
+ΔXn+1qnηn+pn[AnΔXn+BnΔun]\displaystyle+\Delta X_{n+1}q_{n}\eta_{n}+p_{n}\left[A_{n}\Delta X_{n}+B_{n}\Delta u_{n}\right]
+pn[CnΔXn+DnΔun]ξnH\displaystyle+p_{n}\left[C_{n}\Delta X_{n}+D_{n}\Delta u_{n}\right]\xi_{n}^{H}
=\displaystyle= [An+1pn+1ΔXn+1AnpnΔXn]\displaystyle-\left[A_{n+1}p_{n+1}\Delta X_{n+1}-A_{n}p_{n}\Delta X_{n}\right]
[Cn+1pn+1ΔXn+1ξn+1HCnpnΔXnξnH]\displaystyle-\left[C_{n+1}p_{n+1}\Delta X_{n+1}\xi_{n+1}^{H}-C_{n}p_{n}\Delta X_{n}\xi_{n}^{H}\right]
[b(n+1,n+1)Cn+1qn+1ΔXn+1CnqnΔXnηnξnH]\displaystyle-\left[b(n+1,n+1)C_{n+1}q_{n+1}\Delta X_{n+1}-C_{n}q_{n}\Delta X_{n}\eta_{n}\xi_{n}^{H}\right]
Qn+1Xn+1ΔXn+1+BnpnΔun+DnpnΔunξnH\displaystyle-Q_{n+1}X^{*}_{n+1}\Delta X_{n+1}+B_{n}p_{n}\Delta u_{n}+D_{n}p_{n}\Delta u_{n}\xi_{n}^{H}
+DnqnΔunηnξnH.\displaystyle+D_{n}q_{n}\Delta u_{n}\eta_{n}\xi_{n}^{H}.

So that

𝔼(GXNΔXN)\displaystyle\mathbb{E}\left(GX^{*}_{N}\Delta X_{N}\right)
=\displaystyle= n=0N1𝔼[Qn+1Xn+1ΔXn+1+BnpnΔun+DnpnΔunξnH+DnqnΔunηnξnH]\displaystyle\sum_{n=0}^{N-1}\mathbb{E}\Big{[}-Q_{n+1}X^{*}_{n+1}\Delta X_{n+1}+B_{n}p_{n}\Delta u_{n}+D_{n}p_{n}\Delta u_{n}\xi_{n}^{H}+D_{n}q_{n}\Delta u_{n}\eta_{n}\xi_{n}^{H}\Big{]}
=\displaystyle= n=0N1𝔼[Qn+1Xn+1ΔXn+1+BnpnΔun\displaystyle\sum_{n=0}^{N-1}\mathbb{E}\Big{[}-Q_{n+1}X^{*}_{n+1}\Delta X_{n+1}+B_{n}p_{n}\Delta u_{n}
+DnpnΔunk=0n1c(n,k)ξkH+b(n,n)DnqnΔunηn]\displaystyle\qquad\qquad+D_{n}p_{n}\Delta u_{n}\sum_{k=0}^{n-1}c(n,k)\xi_{k}^{H}+b(n,n)D_{n}q_{n}\Delta u_{n}\eta_{n}\Big{]}
=\displaystyle= n=0N1𝔼[QnXnΔXnRnunΔun].\displaystyle\sum_{n=0}^{N-1}\mathbb{E}\Big{[}-Q_{n}X^{*}_{n}\Delta X_{n}-R_{n}u^{*}_{n}\Delta u_{n}\Big{]}.

Then

J(u)J(u)=\displaystyle J(u)-J(u^{*})= 12𝔼[n=0N1(Qn(Xn2Xn2)+Rn(un2un2))+G(XN2XN2)]\displaystyle\frac{1}{2}\mathbb{E}\left[\sum_{n=0}^{N-1}\left(Q_{n}(X_{n}^{2}-X_{n}^{*2})+R_{n}(u^{2}_{n}-u_{n}^{*2})\right)+G\left(X_{N}^{2}-X_{N}^{*2}\right)\right]
\displaystyle\geq 𝔼[n=0N1(QnXnΔXn+RnunΔun)+GXNΔXN]\displaystyle\mathbb{E}\left[\sum_{n=0}^{N-1}\left(Q_{n}X_{n}^{*}\Delta X_{n}+R_{n}u^{*}_{n}\Delta u_{n}\right)+GX_{N}^{*}\Delta X_{N}\right]
=\displaystyle= 0,\displaystyle 0,

which shows uu^{*} is an optimal control.

Then we show uniqueness of the optimal control. Let both ut,1u_{t}^{*,1} and ut,2u_{t}^{*,2} are optimal control processes, Xt1X_{t}^{1} and Xt2X_{t}^{2} are corresponding state processes, respectively. It is easy to check Xt1+Xt22\frac{X_{t}^{1}+X_{t}^{2}}{2} is the corresponding state process to ut,1+ut,22\frac{u_{t}^{*,1}+u_{t}^{*,2}}{2}. Assume that there exists constants θ>0,α0\theta>0,\alpha\geq 0, such that RtθR_{t}\geq\theta and

J(ut,1)=J(ut,2)=α.\displaystyle J(u_{t}^{*,1})=J(u_{t}^{*,2})=\alpha.

Using a2+b2=2[(a+b2)2+(ab2)2]a^{2}+b^{2}=2\left[(\frac{a+b}{2})^{2}+(\frac{a-b}{2})^{2}\right], we have that

2α=\displaystyle 2\alpha= J(u,1)+J(u,2)\displaystyle J(u^{*,1})+J(u^{*,2})
=\displaystyle= 12𝔼n=0N1[Qn(Xn1Xn1+Xn2Xn2)+Rn(un,1un,1+un,2un,2)]\displaystyle\frac{1}{2}\mathbb{E}\sum_{n=0}^{N-1}\Big{[}Q_{n}(X_{n}^{1}X_{n}^{1}+X_{n}^{2}X_{n}^{2})+R_{n}(u_{n}^{*,1}u_{n}^{*,1}+u_{n}^{*,2}u_{n}^{*,2})\Big{]}
+12𝔼G(XN1XN1+XN2XN2)\displaystyle+\frac{1}{2}\mathbb{E}G(X_{N}^{1}X_{N}^{1}+X_{N}^{2}X_{N}^{2})
\displaystyle\geq 𝔼n=0N1[Qn(Xn1+Xn22)2+Rn(un,1+un,22)2]\displaystyle\mathbb{E}\sum_{n=0}^{N-1}\left[Q_{n}\Big{(}\frac{X_{n}^{1}+X_{n}^{2}}{2}\Big{)}^{2}+R_{n}\Big{(}\frac{u_{n}^{*,1}+u_{n}^{*,2}}{2}\Big{)}^{2}\right]
+𝔼G(XN1+XN22)2+𝔼n=0N1Rn(un,1un,22)2\displaystyle+\mathbb{E}G\Big{(}\frac{X_{N}^{1}+X_{N}^{2}}{2}\Big{)}^{2}+\mathbb{E}\sum_{n=0}^{N-1}R_{n}\Big{(}\frac{u_{n}^{*,1}-u_{n}^{*,2}}{2}\Big{)}^{2}
=\displaystyle= 2J(u,1+u,22)+𝔼n=0N1Rn(un,1un,22)2\displaystyle 2J\Big{(}\frac{u^{*,1}+u^{*,2}}{2}\Big{)}+\mathbb{E}\sum_{n=0}^{N-1}R_{n}\Big{(}\frac{u_{n}^{*,1}-u_{n}^{*,2}}{2}\Big{)}^{2}
\displaystyle\geq 2α+θ4𝔼n=0N1|ut,1ut,2|2.\displaystyle 2\alpha+\frac{\theta}{4}\mathbb{E}\sum_{n=0}^{N-1}|u_{t}^{*,1}-u_{t}^{*,2}|^{2}.

Thus, we have

𝔼n=0N1|ut,1ut,2|2=0,\displaystyle\mathbb{E}\sum_{n=0}^{N-1}|u_{t}^{*,1}-u_{t}^{*,2}|^{2}=0,

which shows the uniqueness of the optimal control.

5 Acknowledgments

This work was supported by National Key R&\&D Program of China (Grant number 2023YFA1009200) and National Science Foundation of China (Grant numbers 12471417).

References

  • \bibcommenthead
  • Kushner [1972] Kushner, H.: Necessary conditions for continuous parameter stochastic optimization problems. SIAM Journal on Control 10(3), 550–565 (1972)
  • Bismut [1978] Bismut, J.-M.: An introductory approach to duality in optimal stochastic control. SIAM review 20(1), 62–78 (1978)
  • Bensoussan [2006] Bensoussan, A.: Lectures on stochastic control. In: Nonlinear Filtering and Stochastic Control: Proceedings of the 3rd 1981 Session of the Centro Internazionale Matematico Estivo (CIME), Held at Cortona, July 1–10, 1981, pp. 1–62. Springer, ??? (2006)
  • Peng [1990] Peng, S.: A general stochastic maximum principle for optimal control problems. SIAM Journal on control and optimization 28(4), 966–979 (1990)
  • Zhou [1998] Zhou, X.Y.: Stochastic near-optimal controls: necessary and sufficient conditions for near-optimality. SIAM Journal on Control and Optimization 36(3), 929–947 (1998)
  • Han et al. [2010] Han, Y., Peng, S., Wu, Z.: Maximum principle for backward doubly stochastic control systems with applications. SIAM Journal on Control and Optimization 48(7), 4224–4241 (2010)
  • Zhang and Shi [2011] Zhang, L., Shi, Y.: Maximum principle for forward-backward doubly stochastic control systems and applications. ESAIM: Control, Optimisation and Calculus of Variations 17(4), 1174–1197 (2011)
  • Li [2012] Li, J.: Stochastic maximum principle in the mean-field controls. Automatica 48(2), 366–373 (2012)
  • Yong [2013] Yong, J.: Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM journal on Control and Optimization 51(4), 2809–2838 (2013)
  • Chen and Wu [2010] Chen, L., Wu, Z.: Maximum principle for the stochastic optimal control problem with delay and application. Automatica 46(6), 1074–1080 (2010)
  • Yu [2012] Yu, Z.: The stochastic maximum principle for optimal control problems of delay systems involving continuous and impulse controls. Automatica 48(10), 2420–2432 (2012)
  • Bismut [1973] Bismut, J.-M.: Conjugate convex functions in optimal stochastic control. Journal of Mathematical Analysis and Applications 44(2), 384–404 (1973)
  • Pardoux and Peng [1990] Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Systems & control letters 14(1), 55–61 (1990)
  • Peng [1993] Peng, S.: Backward stochastic differential equations and applications to optimal control. Applied Mathematics and Optimization 27(2), 125–144 (1993)
  • El Karoui et al. [1997] El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Mathematical finance 7(1), 1–71 (1997)
  • Lin and Zhang [2014] Lin, X., Zhang, W.: A maximum principle for optimal control of discrete-time stochastic systems with multiplicative noise. IEEE Transactions on automatic control 60(4), 1121–1126 (2014)
  • Wu and Zhang [2022] Wu, Z., Zhang, F.: Maximum principle for discrete-time stochastic optimal control problem and stochastic game. Mathematical Control & Related fields 12(2) (2022)
  • Dong et al. [2022] Dong, B., Nie, T., Wu, Z.: Maximum principle for discrete-time stochastic control problem of mean-field type. Automatica 144, 110497 (2022)
  • Dong et al. [2023] Dong, B., Nie, T., Wu, Z.: A maximum principle for discrete-time stochastic optimal control problem with delay. Systems & Control Letters 181, 105631 (2023)
  • Han et al. [2013] Han, Y., Hu, Y., Song, J.: Maximum principle for general controlled systems driven by fractional brownian motions. Applied Mathematics &\& Optimization 67(2), 279–322 (2013)
  • Hu and Zhou [2005] Hu, Y., Zhou, X.: Stochastic control for linear systems driven by fractional noises. SIAM Journal on Control and Optimization 43(6), 2245–2277 (2005)
  • Hu and Peng [2009] Hu, Y., Peng, S.: Backward stochastic differential equation driven by fractional brownian motion. SIAM Journal on Control and Optimization 48(3), 1675–1700 (2009)
  • Sun [2021] Sun, Y.: A stochastic maximum principle for general controlled systems driven by fractional Brownian motions. Journal of Mathematical Analysis and Applications 497(1), 124854 (2021)