This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Maximum Absolute Determinants of Upper Hessenberg Bohemian Matrices

Jonathan P. Keating Mathematical Institute, University of Oxford, Andrew Wiles Building, Oxford, OX2 6GG, UK ([email protected])    Ahmet Abdullah Keleş Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey ([email protected])
Abstract

A matrix is called Bohemian if its entries are sampled from a finite set of integers. We determine the maximum absolute determinant of upper Hessenberg Bohemian Matrices for which the subdiagonal entries are fixed to be 11 and upper triangular entries are sampled from {0,1,,n}\{0,1,\dots,n\}, extending previous results for n=1n=1 and n=2n=2 and proving a recent conjecture of Fasi & Negri Porzio [8]. Furthermore, we generalize the problem to non-integer-valued entries.

keywords:
Upper Hessenberg, Bohemian Matrix, Maximum Absolute Determinant.
{AMS}

11C20, 15A15, 15B36.

1 Introduction

Matrices whose entries are from a small subset of the integers are said to be Bohemian, an abbreviation of BOunded HEight Matrix of integers. These matrices appear in many different contexts, including adjacency matrices of graphs [10], Hadamard matrices [1, 2], random discrete matrices [4] and alternating sign matrices [3]. They have been studied for over a century and remain a subject of active research. The website [7] provides a comprehensive overview of recent results and open problems.

Recently, Chan et al. investigated several properties of the characteristic polynomials of upper Hessenberg Bohemian matrices [5], and Thornton et al. obtained a number of results concerning the distribution of their eigenvalues, characteristic heights, and maximum absolute determinant values [6]. These papers state several conjectures on the values of the determinants of Bohemian matrices [7], many of which have recently been solved and generalised by Massimiliano Fasi and Gian M. N. Porzio [8].

One of these conjectures, which is a refinement of a result of Li Ching [9], was until now lacking a solution that could be generalised. We here provide a generalisable solution for that problem and explore an extension of it. Specifically, we focus on the maximum absolute determinant of upper Hessenberg matrices with fixed subdiagonal entries and a given population [0,t][0,t] of upper triangular entries. Our calculations provide a more comprehensive understanding of the behaviour of the determinants of these kind of matrices and include special cases that had previously been solved by other approaches.

2 Results

In 1993, Ching proved the following theorem.

Theorem 2.1.

The maximum absolute determinant of an n×nn\times n upper-Hessenberg matrix with upper triangular entries from {0,1}\{0,1\} and subdiagonal entries fixed at 11 is given by the Fibonacci sequence. [9]

Recently Fasi and Porzio have established the following theorem, proving a result conjectured by Thornton [7]:

Theorem 2.2.

The maximum absolute determinant of an n×nn\times n upper-Hessenberg matrix with upper triangular entries from {0,1,2}\{0,1,2\} and subdiagonal entries fixed at 11 is given by the following sequence. Let MnM_{n} denote the maximum absolute determinant among these n×nn\times n matrices, then M1=2M_{1}=2, M2=4M_{2}=4, and Mn=2Mn1+Mn2M_{n}=2\cdot M_{n-1}+M_{n-2} for all n3n\geq 3. [8]

It is a natural question what happens if the upper triangular population is {0,1,,n}\{0,1,\dots,n\}. Fasi and Porzio stated the following conjecture in this context.

Conjecture 2.3.

The maximum absolute determinant of an n×nn\times n upper-Hessenberg matrix with upper triangular entries from {0,1,,d}\{0,1,\dots,d\} and subdiagonal entries fixed at 11 is given by the following generalized Fibonacci sequence. Let MnM_{n} denote the maximum absolute determinant among these n×nn\times n matrices, then M1=dM_{1}=d, M2=d2M_{2}=d^{2}, Mn=dMn1+Mn2M_{n}=d\cdot M_{n-1}+M_{n-2} for all n3n\geq 3. [8]

We discuss the following, further generalisation of this problem.

Problem 2.4.

What is the maximum absolute determinant of an n×nn\times n upper-Hessenberg matrix with upper triangular entries drawn from [0,t][0,t], t>0t>0, and subdiagonal entries taking a fixed value ss\in\mathbb{R}?

If ss is negative the problem is relatively straightforward and the result can be stated as the following theorem, whose proof may be found in [8].

Theorem 2.5.

The maximum absolute determinant of an n×nn\times n upper-Hessenberg matrix with upper triangular entries from [0,t][0,t] and subdiagonal entries fixed at s<0s<0 is given by t(ts)n1t\cdot(t-s)^{n-1} for all nn\in\mathbb{N}.

However the proof of this theorem does not extend to s>0s>0.

We here solve Problem 2.4 in various regimes when s>0s>0. The first case we consider is when sts\leq t, the second is t(1+ϵ)stt\cdot(1+\epsilon)\geq s\geq t (where ϵ\epsilon is a sufficiently small positive number depending on the dimension of the matrix) and the third case is s>t45n2s>t\cdot\dfrac{4}{5}\cdot n^{2}. Our main results are contained in the following theorems:

Theorem 2.6.

The maximum absolute determinant of an n×nn\times n upper-Hessenberg matrix with entries from the interval [0,t][0,t] and subdiagonal entries fixed at ss, such that ts>0t\geq s>0, is given by the following sequence. Let MnM_{n} denote the maximum absolute determinant among these n×nn\times n matrices; then M1=tM_{1}=t, M2=t2M_{2}=t^{2} and Mn=tMn1+s2Mn2M_{n}=tM_{n-1}+s^{2}M_{n-2} for all n>2n>2 in \mathbb{Z}.

Remark 2.7.

Note that the determinant is a linear function with respect to each entry. Hence, for the problem of the matrix with maximum absolute determinant, the cases when the upper triangular population is {0,1,,d}\{0,1,\dots,d\} and [0,d][0,d] are equivalent. So, if we set t=dt=d\in\mathbb{N} and s=1s=1, then we prove Conjecture 2.3 as a corollary of Theorem 2.6.

Theorem 2.8.

The maximum absolute determinant of an n×nn\times n upper-Hessenberg matrix with entries from the interval [0,t][0,t], subdiagonal entries fixed at ss and n4n\geq 4 such that t(1+ϵ(n))stt\cdot(1+\epsilon(n))\geq s\geq t where ϵ(n)\epsilon(n) is a sufficiently small positive number depending on nn is given by the following sequence. Let MnM_{n} denote the maximum absolute determinant among these n×nn\times n matrices; then M4=3s2t2M_{4}=3s^{2}t^{2}, M5=s4t+4s2t3M_{5}=s^{4}t+4s^{2}t^{3} and Mn=tMn1+s2Mn2M_{n}=tM_{n-1}+s^{2}M_{n-2} for all n>5n>5 in \mathbb{Z}.

Theorem 2.9.

The maximum absolute determinant of an n×nn\times n upper-Hessenberg matrix with entries from the interval [0,t][0,t] and subdiagonal entries fixed at ss such that st>45n2\dfrac{s}{t}>\dfrac{4}{5}\cdot n^{2} is given by sn1t+n2n12sn3t3s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}.

Throughout this paper we use the following definitions and notation.

Definition 2.10.

The set of all n×nn\times n upper Hessenberg matrices whose subdiagonal entries are fixed at ss and upper triangular entries are from the set PP is denoted by 𝒢sn×n(P)\mathcal{G}_{s}^{n\times n}(P).

Definition 2.11.

For a given n×nn\times n matrix AA, denote the determinant of the bottom-right (n+1k)×(n+1k)(n+1-k)\times(n+1-k) part of AA by Hk(A)H_{k}(A), and for convenience set Hn+1(A)1H_{n+1}(A)\coloneqq 1 for any n×nn\times n matrix AA.

Notation 2.12.

For a given matrix AA, when referring to the matrix itself we use square brackets and when referring to the determinant of AA we use straight brackets. For instance, A=[1211]A=\begin{bmatrix}1&2\\ 1&1\end{bmatrix}, det(A)=|A|=|1211|=1\det(A)=|A|=\begin{vmatrix}1&2\\ 1&1\end{vmatrix}=-1. To avoid confusion, we use abs()\operatorname{abs}(\cdot) for absolute value sometimes.


3 Case I

Firstly we deal with the case ts>0t\geq s>0 of Problem 2.4. To prove Theorem 2.6 we introduce several lemmas. For convenience, set M01M_{0}\coloneqq 1.

Lemma 3.1.

MntMn1M_{n}\geq t\cdot M_{n-1}, n+\forall n\in\mathbb{Z}^{+}.

Proof 3.2.

Suppose that maximum absolute determinant for (n1)×(n1)(n-1)\times(n-1) matrices is attained by a matrix B(n1)×(n1)B_{(n-1)\times(n-1)}. Then the following inequality holds trivially

Mnabs(|t00s0B0|)=tMn1.\displaystyle M_{n}\geq abs\Bigg{(}\begin{vmatrix}\begin{array}[]{c|cccc}t&0&\cdots&&0\\ \hline\cr s&&&&\\ 0&&B&&\\ \vdots&&&&\\ 0&&&&\end{array}\end{vmatrix}\Bigg{)}=t\cdot M_{n-1}.

For the next lemma, we start by writing the determinant for any matrix A𝒢sn×n([0,t])A\in\mathcal{G}_{s}^{n\times n}([0,t]) using Laplace expansion twice, firstly for the first column of the matrix AA and secondly for the first rows of the resulting two matrices.

|A|\displaystyle|A| =|a11a12a13a1(n1)a1nsa22a23a2(n1)a2n0sa33a3(n1)a3n00sa4(n1)a4n000sann|=a11|a22a23a2(n1)a2nsa33a3(n1)a3n0sa4(n1)a4n00sann|s|a12a13a1(n1)a1n)sa33a3(n1)a3n0sa4(n1)a4n00sann|=\displaystyle=\footnotesize\begin{vmatrix}a_{11}&a_{12}&a_{13}&\cdots&a_{1(n-1)}&a_{1n}\\ s&a_{22}&a_{23}&\cdots&a_{2(n-1)}&a_{2n}\\ 0&s&a_{33}&\cdots&a_{3(n-1)}&a_{3n}\\ 0&0&s&\ddots&a_{4(n-1)}&a_{4n}\\ \vdots&\ddots&\ddots&\ddots&\ddots&\vdots\\ 0&0&0&\cdots&s&a_{nn}\end{vmatrix}=a_{11}\begin{vmatrix}a_{22}&a_{23}&\cdots&a_{2(n-1)}&a_{2n}\\ s&a_{33}&\cdots&a_{3(n-1)}&a_{3n}\\ 0&s&\ddots&a_{4(n-1)}&a_{4n}\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ 0&0&\cdots&s&a_{nn}\end{vmatrix}-s\cdot\begin{vmatrix}a_{12}&a_{13}&\cdots&a_{1(n-1)}&a_{1n)}\\ s&a_{33}&\cdots&a_{3(n-1)}&a_{3n}\\ 0&s&\ddots&a_{4(n-1)}&a_{4n}\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ 0&0&\cdots&s&a_{nn}\end{vmatrix}=
=(a11a22sa12)|a33a3n1a3nsa4(n1)a4n0sann|+(1)1(a11a23sa13)|sa34a35a3n0a44a45a4n0sa55a5n00sann|+\displaystyle=(a_{11}a_{22}-s\cdot a_{12})\cdot\footnotesize\begin{vmatrix}a_{33}&\cdots&a_{3n-1}&a_{3n}\\ s&\ddots&a_{4(n-1)}&a_{4n}\\ \vdots&\ddots&\ddots&\vdots\\ 0&\cdots&s&a_{nn}\end{vmatrix}+(-1)^{1}(a_{11}a_{23}-s\cdot a_{13})\cdot\footnotesize\begin{vmatrix}\begin{array}[]{c|cccc}s&a_{34}&a_{35}&\cdots&a_{3n}\\ \hline\cr 0&a_{44}&a_{45}&\cdots&a_{4n}\\ 0&s&a_{55}&\ddots&a_{5n}\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ 0&0&\cdots&s&a_{nn}\end{array}\end{vmatrix}+
+(1)2(a11a24sa14)|sa33a35a3n0sa45a4n00a55a5n00sann|++(1)n2(a11a2nsa1n)|sa33a34a3(n1)0sa44a4(n1)00sa5(n1)000s|=\displaystyle+(-1)^{2}(a_{11}a_{24}-s\cdot a_{14})\cdot\footnotesize\begin{vmatrix}\begin{array}[]{cc|ccc}s&a_{33}&a_{35}&\cdots&a_{3n}\\ 0&s&a_{45}&\cdots&a_{4n}\\ \hline\cr 0&0&a_{55}&\ddots&a_{5n}\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ 0&0&\cdots&s&a_{nn}\end{array}\end{vmatrix}+\cdots+(-1)^{n-2}(a_{11}a_{2n}-s\cdot a_{1n})\cdot\footnotesize\begin{vmatrix}s&a_{33}&a_{34}&\cdots&a_{3(n-1)}\\ 0&s&a_{44}&\cdots&a_{4(n-1)}\\ 0&0&s&\cdots&a_{5(n-1)}\\ \vdots&\ddots&\ddots&\ddots&\vdots\\ 0&0&\cdots&0&s\end{vmatrix}=\hskip 142.26378pt
=[(a11a22sa12)H3(A)(a11a23sa13)H4(A)s]+[(a11a24sa14)H5(A)s2(a11a25sa15)H6(A)s3]+\displaystyle{\scriptstyle=\bigg{[}(a_{11}a_{22}-s\cdot a_{12})H_{3}(A)-(a_{11}a_{23}-s\cdot a_{13})H_{4}(A)\cdot s\bigg{]}+\bigg{[}(a_{11}a_{24}-s\cdot a_{14})H_{5}(A)\cdot s^{2}-(a_{11}a_{25}-s\cdot a_{15})H_{6}(A)\cdot s^{3}\bigg{]}+\cdots}
(3.1) +[(a11a2(n1)sa1(n1))Hn(A)sn3(a11a2nsa1n)Hn+1(A)sn2]\displaystyle{\scriptstyle\cdots+\bigg{[}(a_{11}a_{2(n-1)}-s\cdot a_{1(n-1)})H_{n}(A)\cdot s^{n-3}-(a_{11}a_{2n}-s\cdot a_{1n})H_{n+1}(A)\cdot s^{n-2}\bigg{]}}

(The last term depends on the parity of nn, if nn is even, it is [(a11a2nsa1n)Hn+1(A)sn2]{\scriptstyle\bigg{[}(a_{11}a_{2n}-s\cdot a_{1n})H_{n+1}(A)\cdot s^{n-2}\bigg{]}}.)

Now we state a new lemma which is inspired by the previous expansion.

Lemma 3.3.

For all k in {2,3,,n1}\{2,3,\dots,n-1\} we have the following inequality:

(3.2) |(a11a2ksa1k)Hk+1(A)(a11a2(k+1)sa1(k+1))sHk+2(A)|t2Mnk+ts2Mnk1\bigg{|}(a_{11}a_{2k}-s\cdot a_{1k})\cdot H_{k+1}(A)-(a_{11}a_{2(k+1)}-s\cdot a_{1(k+1)})\cdot s\cdot H_{k+2}(A)\bigg{|}\leq t^{2}\cdot M_{n-k}+ts^{2}\cdot M_{n-k-1}

and also, for the case when nn is even:

(3.3) |(a11a2nsa1n)Hn+1(A)|t2M0\bigg{|}(a_{11}a_{2n}-s\cdot a_{1n})\cdot H_{n+1}(A)\bigg{|}\leq t^{2}\cdot M_{0}

Proof 3.4.

For (3.2), it is enough to show the following:

(3.4) maxx[st,t2],y[st2,s2t]|xHk+1(A)+yHk+2(A)|t2Mnk+ts2Mnk1\smash{\displaystyle\max_{x\in[-st,t^{2}],y\in[-st^{2},s^{2}t]}}|x\cdot H_{k+1}(A)+y\cdot H_{k+2}(A)|\leq t^{2}M_{n-k}+ts^{2}M_{n-k-1}

It suffices to check four extreme cases of xx and yy, i.e,

(x,y){(st,s2t),(st,st2),(t2,s2t),(t2,st2)}(x,y)\in\{(-st,s^{2}t),(-st,-st^{2}),\\ (t^{2},s^{2}t),(t^{2},-st^{2})\}

Using ts>0t\geq s>0, the triangle inequality, the definition of MnM_{n}, and Lemma 3.1 we get the following inequalities for these four cases:

  • 1.

    (x,y)=(st,s2t)(x,y)=(-st,s^{2}t):

    |(st)Hk+1(A)+(s2t)Hk+2(A)|\displaystyle|(-st)H_{k+1}(A)+(s^{2}t)H_{k+2}(A)| (st)|Hk+1(A)|+(s2t)|Hk+2(A)|\displaystyle\leq(st)|H_{k+1}(A)|+(s^{2}t)|H_{k+2}(A)|\leq
    (st)Mnk+(s2t)Mnk1\displaystyle\leq(st)M_{n-k}+(s^{2}t)M_{n-k-1}\leq
    t2Mnk+s2tMnk1\displaystyle\leq t^{2}M_{n-k}+s^{2}tM_{n-k-1}\ \checkmark
  • 2.

    (x,y)=(st,st2)(x,y)=(-st,-st^{2}):

    |(st)Hk+1(A)+(st2)Hk+2(A)|\displaystyle|(-st)H_{k+1}(A)+(-st^{2})H_{k+2}(A)| (st)|Hk+1(A)|+(st2)|Hk+2(A)|\displaystyle\leq(st)|H_{k+1}(A)|+(st^{2})|H_{k+2}(A)|\leq
    (st)Mnk+(st2)Mnk1=\displaystyle\leq(st)M_{n-k}+(st^{2})M_{n-k-1}=
    =(st)Mnk+ts(ts)Mnk1+ts2Mnk1\displaystyle=(st)M_{n-k}+ts(t-s)M_{n-k-1}+ts^{2}M_{n-k-1}\leq
    (st)Mnk+s(ts)Mnk+ts2Mnk1=\displaystyle\leq(st)M_{n-k}+s(t-s)M_{n-k}+ts^{2}M_{n-k-1}=
    =(2tss2)Mnk+ts2Mnk1\displaystyle=(2ts-s^{2})M_{n-k}+ts^{2}M_{n-k-1}\leq
    t2Mnk+ts2Mnk1\displaystyle\leq t^{2}M_{n-k}+ts^{2}M_{n-k-1}\ \checkmark
  • 3.

    (x,y)=(t2,s2t)(x,y)=(t^{2},s^{2}t):

    |(t2)Hk+1(A)+(s2t)Hk+2(A)|\displaystyle|(t^{2})H_{k+1}(A)+(s^{2}t)H_{k+2}(A)| t2|Hk+1(A)|+s2t|Hk+2(A)|\displaystyle\leq t^{2}|H_{k+1}(A)|+s^{2}t|H_{k+2}(A)|\leq
    t2Mnk+s2tMnk1\displaystyle\leq t^{2}M_{n-k}+s^{2}tM_{n-k-1}\ \checkmark
  • 4.

    (x,y)=(t2,st2)(x,y)=(t^{2},-st^{2}):

    |(t2)Hk+1(A)+(st2)Hk+2(A)|=|(t^{2})H_{k+1}(A)+(-st^{2})H_{k+2}(A)|=
    =t2abs(|a(k+1)(k+1)a(k+1)(k+2)a(k+1)nsa(k+2)(k+2)a(k+2)n0sann|s|a(k+2)(k+2)a(k+2)(k+3)a(k+2)nsa(k+3)(k+3)a(k+3)n0sann|)=\displaystyle=t^{2}\cdot\operatorname{abs}\Bigg{(}\begin{vmatrix}a_{(k+1)(k+1)}&a_{(k+1)(k+2)}&\cdots&a_{(k+1)n}\\ s&a_{(k+2)(k+2)}&\cdots&a_{(k+2)n}\\ \vdots&\ddots&\ddots&\vdots\\ 0&\cdots&s&a_{nn}\end{vmatrix}-s\cdot\begin{vmatrix}a_{(k+2)(k+2)}&a_{(k+2)(k+3)}&\cdots&a_{(k+2)n}\\ s&a_{(k+3)(k+3)}&\cdots&a_{(k+3)n}\\ \vdots&\ddots&\ddots&\vdots\\ 0&\cdots&s&a_{nn}\end{vmatrix}\Bigg{)}=
    =t2abs((a(k+1)(k+1)s)Hk+2(A)s|a(k+1)(k+2)a(k+1)(k+3)a(k+1)nsa(k+3)(k+3)a(k+3)n0sann|)\displaystyle=t^{2}\cdot\operatorname{abs}\Bigg{(}\big{(}a_{(k+1)(k+1)}-s\big{)}H_{k+2}(A)-s\cdot\begin{vmatrix}a_{(k+1)(k+2)}&a_{(k+1)(k+3)}&\cdots&a_{(k+1)n}\\ s&a_{(k+3)(k+3)}&\cdots&a_{(k+3)n}\\ \vdots&\ddots&\ddots&\vdots\\ 0&\cdots&s&a_{nn}\end{vmatrix}\Bigg{)}\leq
    t2abs((a(k+1)(k+1)s)Hk+2(A))+t2sabs(|a(k+1)(k+2)a(k+1)(k+3)a(k+1)nsa(k+3)(k+3)a(k+3)n0sann|)\displaystyle\leq t^{2}\cdot\operatorname{abs}\Bigg{(}\big{(}a_{(k+1)(k+1)}-s\big{)}H_{k+2}(A)\Bigg{)}+t^{2}s\cdot\operatorname{abs}\Bigg{(}\begin{vmatrix}a_{(k+1)(k+2)}&a_{(k+1)(k+3)}&\cdots&a_{(k+1)n}\\ s&a_{(k+3)(k+3)}&\cdots&a_{(k+3)n}\\ \vdots&\ddots&\ddots&\vdots\\ 0&\cdots&s&a_{nn}\end{vmatrix}\Bigg{)}\leq
    t2abs((a(k+1)(k+1)s)Hk+2(A))+t2sMnk1=\displaystyle\leq t^{2}\cdot\operatorname{abs}\Bigg{(}\big{(}a_{(k+1)(k+1)}-s\big{)}H_{k+2}(A)\Bigg{)}+t^{2}s\cdot M_{n-k-1}=
    =t2|a(k+1)(k+1)s||Hk+2(A)|+t2sMnk1\displaystyle=t^{2}\cdot\big{|}a_{(k+1)(k+1)}-s\big{|}\cdot\big{|}H_{k+2}(A)\big{|}+t^{2}s\cdot M_{n-k-1}\leq
    t2|a(k+1)(k+1)s|Mnk1+t2sMnk1\displaystyle\leq t^{2}\cdot\big{|}a_{(k+1)(k+1)}-s\big{|}\cdot M_{n-k-1}+t^{2}s\cdot M_{n-k-1}\leq
    t2max{ts,s}Mnk1+t2sMnk1\displaystyle\leq t^{2}\cdot\max\{t-s,s\}\cdot M_{n-k-1}+t^{2}s\cdot M_{n-k-1}\hskip 569.05511pt
    • 4.1

      If ts=max{ts,s}t-s=\max\{t-s,s\}:

      |t2Hk+1(A)st2Hk+2(A)|\displaystyle|t^{2}H_{k+1}(A)-st^{2}H_{k+2}(A)| t2(ts)Mnk1+t2sMnk1=\displaystyle\leq t^{2}\cdot(t-s)\cdot M_{n-k-1}+t^{2}s\cdot M_{n-k-1}=
      =t3Mnk1\displaystyle=t^{3}M_{n-k-1}\leq
      t2Mnk\displaystyle\leq t^{2}M_{n-k}\leq
      t2Mnk+ts2Mnk1\displaystyle\leq t^{2}M_{n-k}+ts^{2}M_{n-k-1}\ \checkmark
    • 4.2

      If s=max{ts,s}s=\max\{t-s,s\}:

      |t2Hk+1(A)st2Hk+2(A)|\displaystyle|t^{2}H_{k+1}(A)-st^{2}H_{k+2}(A)| t2sMnk1+t2sMnk1=\displaystyle\leq t^{2}\cdot s\cdot M_{n-k-1}+t^{2}s\cdot M_{n-k-1}=
      =(2t2sts2)Mnk1+ts2Mnk1\displaystyle=(2t^{2}s-ts^{2})M_{n-k-1}+ts^{2}M_{n-k-1}\leq
      (2tss2)Mnk+ts2Mnk1\displaystyle\leq(2ts-s^{2})M_{n-k}+ts^{2}M_{n-k-1}\leq
      t2Mnk+ts2Mnk1\displaystyle\leq t^{2}M_{n-k}+ts^{2}M_{n-k-1}\ \checkmark

Hence (3.4) is done. And (3.3) is trivial.

Using the triangle inequality and Lemma 3.3 in (3.1) yields the following inequality for MnM_{n}:

(3.5) Mnt2Mn2+ts2Mn3+t2s2Mn4+ts4Mn5+t2s4Mn6+ts6Mn7+M_{n}\leq t^{2}M_{n-2}+ts^{2}M_{n-3}+t^{2}s^{2}M_{n-4}+ts^{4}M_{n-5}+t^{2}s^{4}M_{n-6}+ts^{6}M_{n-7}+\cdots

Note as well that we have M0=1M_{0}=1, M1=tM_{1}=t, M2=t2M_{2}=t^{2}.

Define a new sequence (Kn)n0(K_{n})_{n\geq 0} in the following way: K0=1K_{0}=1, K1=tK_{1}=t, K2=t2K_{2}=t^{2} and Kn=tKn1+s2Kn2K_{n}=tK_{n-1}+s^{2}K_{n-2}, for all n3n\geq 3. We state two simple lemmas concerning this sequence.

Lemma 3.5.

Kn=tKn1+ts2Kn3+ts4Kn5+K_{n}=tK_{n-1}+ts^{2}K_{n-3}+ts^{4}K_{n-5}+\cdots for all n1n\geq 1.

Proof 3.6.

We use induction on nn. For n=1n=1 and n=2n=2, the equality is trivial. It is straightforward to verify that if the statement holds for n{1,2,,k}n\in\{1,2,\dots,k\} and then it holds for n=k+1n=k+1 where k2k\geq 2. By using the induction assumption:

Kk+1=tKk+s2Kk1=tKk+ts2Kk2+ts4Kk4+ts6Kk6+K_{k+1}=tK_{k}+s^{2}K_{k-1}=tK_{k}+ts^{2}K_{k-2}+ts^{4}K_{k-4}+ts^{6}K_{k-6}+\cdots

Lemma 3.7.

Kn=t2Kn2+ts2Kn3+t2s2Kn4+ts4Kn5+K_{n}=t^{2}K_{n-2}+ts^{2}K_{n-3}+t^{2}s^{2}K_{n-4}+ts^{4}K_{n-5}+\cdots for all n2n\geq 2.

Proof 3.8.

For n=2n=2 it is clear. Using Lemma 3.5, for any n3n\geq 3:

Kn\displaystyle K_{n} =tKn1+s2Kn2=\displaystyle=tK_{n-1}+s^{2}K_{n-2}=
=t(tKn2+ts2Kn4+ts4Kn6+)+s2(tKn3+ts2Kn5+ts4Kn7+)=\displaystyle=t\cdot\big{(}tK_{n-2}+ts^{2}K_{n-4}+ts^{4}K_{n-6}+\cdots\big{)}+s^{2}\cdot\big{(}tK_{n-3}+ts^{2}K_{n-5}+ts^{4}K_{n-7}+\cdots\big{)}=
=t2Kn2+ts2Kn3+t2s2Kn4+ts4Kn5+\displaystyle=t^{2}K_{n-2}+ts^{2}K_{n-3}+t^{2}s^{2}K_{n-4}+ts^{4}K_{n-5}+\cdots

Lemma 3.9.

KnMnK_{n}\geq M_{n} for all nn\in\mathbb{N}.

Proof 3.10.

Notice that we already know, by Lemma 3.7 and (3.5), that

K0=M0,K1=M1,K2=M2K_{0}=M_{0},\ K_{1}=M_{1},\ K_{2}=M_{2}
Kn=t2Kn2+ts2Kn3+t2s2Kn4+ts4Kn5+K_{n}=t^{2}K_{n-2}+ts^{2}K_{n-3}+t^{2}s^{2}K_{n-4}+ts^{4}K_{n-5}+\cdots
Mnt2Mn2+ts2Mn3+t2s2Mn4+ts4Mn5+M_{n}\leq t^{2}M_{n-2}+ts^{2}M_{n-3}+t^{2}s^{2}M_{n-4}+ts^{4}M_{n-5}+\cdots

By induction, it is clear that KnMnK_{n}\geq M_{n}, n\forall n\in\mathbb{N}.

Lemma 3.11.

KnMnK_{n}\leq M_{n} for all nn\in\mathbb{N}.

Proof 3.12.

It suffices to give an example A𝒢sn×n([0,t])A\in\mathcal{G}_{s}^{n\times n}([0,t]) for which the absolute determinant value is equal to KnK_{n}. Define an n×nn\times n matrix as follows:

(3.6) Un(s,t)=Un[t0t0st0t0st000st0000t00000st]n×nU_{n}(s,t)=U_{n}\coloneqq\footnotesize\begin{bmatrix}t&0&t&0&\cdots&&\cdots\\ s&t&0&t&\cdots&&\cdots\\ 0&s&t&0&\cdots&&\cdots\\ 0&0&s&t&\ddots&&\cdots\\ \vdots&\ddots&\ddots&\ddots&\ddots&&\vdots\\ 0&0&0&0&\ddots&t&0\\ 0&0&0&0&\cdots&s&t\end{bmatrix}_{n\times n}

i.e., aij=ta_{ij}=t if jij\geq i and jij-i is even; aij=0a_{ij}=0 if j>ij>i and jij-i is odd. Note that |U1|=t=K1|U_{1}|=t=K_{1}, |U2|=t2=K2|U_{2}|=t^{2}=K_{2} and by using Laplace expansion it is easy to see that

(3.7) |Un|=t|Un1|+s2|Un2||U_{n}|=t\cdot|U_{n-1}|+s^{2}|U_{n-2}|

which is the same recurrence relation as for (Kn)n1(K_{n})_{n\geq 1}. Hence, for all positive integers nn, we have Kn=|Un|MnK_{n}=|U_{n}|\leq M_{n}.

As a corollary of Lemma 3.9 and 3.11, Mn=|Un|=KnM_{n}=|U_{n}|=K_{n}. This completes the proof of Theorem 2.6.

QED.

In the next section we discuss what happens when st>0s\geq t>0. We are able to say something in two regimes.

4 Case II

We consider first the case when sts\gtrsim t, i.e., ss is slightly greater than tt.

Define permutation matrices Pn(r)P_{n}^{(r)} and Pn(c)P_{n}^{(c)} in the following way: Let Pn(r)P_{n}^{(r)} be obtained by interchanging the first two rows of the n×nn\times n identity matrix and Pn(c)P_{n}^{(c)} be obtained by interchanging the last two columns of the n×nn\times n identity matrix. And then define Un(r)(s,t)=Un(r),Un(c)(s,t)=Un(c),Un(rc)(s,t)=Un(rc)U_{n}^{(r)}(s,t)=U_{n}^{(r)},\ U_{n}^{(c)}(s,t)=U_{n}^{(c)},\ U_{n}^{(rc)}(s,t)=U_{n}^{(rc)} in 𝒢sn×n({0,t})\mathcal{G}_{s}^{n\times n}(\{0,t\}) for n4n\geq 4 as follows:

Pn(r)Un(r)=[s0t0tt0t0st000st0000t00000st],Un(c)Pn(c)=[t0t0st0t0st000st0000t00000ts]\displaystyle P_{n}^{(r)}\cdot U_{n}^{(r)}=\footnotesize\begin{bmatrix}s&0&t&0&\cdots&&\cdots\\ t&t&0&t&\cdots&&\cdots\\ 0&s&t&0&\cdots&&\cdots\\ 0&0&s&t&\ddots&&\cdots\\ \vdots&\ddots&\ddots&\ddots&\ddots&&\vdots\\ 0&0&0&0&\ddots&t&0\\ 0&0&0&0&\cdots&s&t\end{bmatrix},\ U_{n}^{(c)}\cdot P_{n}^{(c)}=\footnotesize\begin{bmatrix}t&0&t&0&\cdots&&\cdots\\ s&t&0&t&\cdots&&\cdots\\ 0&s&t&0&\cdots&&\cdots\\ 0&0&s&t&\ddots&&\cdots\\ \vdots&\ddots&\ddots&\ddots&\ddots&&\vdots\\ 0&0&0&0&\ddots&t&0\\ 0&0&0&0&\cdots&t&s\end{bmatrix}
(4.1) andPn(r)Un(rc)Pn(c)=[s0t0tt0t0st000st0000t00000ts]\text{and}\ P_{n}^{(r)}\cdot U_{n}^{(rc)}\cdot P_{n}^{(c)}=\footnotesize\begin{bmatrix}s&0&t&0&\cdots&&\cdots\\ t&t&0&t&\cdots&&\cdots\\ 0&s&t&0&\cdots&&\cdots\\ 0&0&s&t&\ddots&&\cdots\\ \vdots&\ddots&\ddots&\ddots&\ddots&&\vdots\\ 0&0&0&0&\ddots&t&0\\ 0&0&0&0&\cdots&t&s\end{bmatrix}

We can determine the relation between the determinants of these matrices and the determinant of UnU_{n} in the following way.

Using the Laplace expansion for the first column of Pn(r)Un(r)P_{n}^{(r)}\cdot U_{n}^{(r)} we obtain

(4.2) abs(|Un(r)|)=abs(|Pn(r)Un(r)|)=s|Un1|+ts|Un2|\operatorname{abs}(|U_{n}^{(r)}|)=\operatorname{abs}\big{(}\big{|}P_{n}^{(r)}\cdot U_{n}^{(r)}\big{|}\big{)}=s\cdot|U_{n-1}|+ts\cdot|U_{n-2}|

and similarly

(4.3) abs(|Un(c)|)=s|Un1|+ts|Un2|\operatorname{abs}(|U_{n}^{(c)}|)=s\cdot|U_{n-1}|+ts\cdot|U_{n-2}|

for all n4n\geq 4. And again using the Laplace expansion for both the first column and the last row of Pn(r)Un(rc)Pn(c)P_{n}^{(r)}\cdot U_{n}^{(rc)}\cdot P_{n}^{(c)} we get

(4.4) |Un(rc)|\displaystyle|U_{n}^{(rc)}| =|Pn(r)Un(rc)Pn(c)|=s2|Un2|+2ts2|Un3|+t2s2|Un4|\displaystyle=\big{|}P_{n}^{(r)}\cdot U_{n}^{(rc)}\cdot P_{n}^{(c)}\big{|}=s^{2}\cdot|U_{n-2}|+2ts^{2}\cdot|U_{n-3}|+t^{2}s^{2}\cdot|U_{n-4}|

for all n4n\geq 4, defining |U0|0|U_{0}|\coloneqq 0 for convenience.

Proposition 4.1.

For the statement of Theorem 2.6, 11 is the exact upper bound for st\dfrac{s}{t}. More explicitly, for any s>ts>t and n4n\geq 4, the matrix that gives the maximum absolute determinant is not UnU_{n}.

Proof 4.2.

If s>ts>t, by (3.7) and (4.4) we have the following when n4n\geq 4:

|Un(rc)|=s2|Un2|+2ts2|Un3|+t2s2|Un4|\displaystyle|U_{n}^{(rc)}|=s^{2}|U_{n-2}|+2ts^{2}|U_{n-3}|+t^{2}s^{2}|U_{n-4}| >s2|Un2|+ts2|Un3|+(t3|Un3|+t2s2|Un4|)=\displaystyle>s^{2}|U_{n-2}|+ts^{2}|U_{n-3}|+\big{(}t^{3}|U_{n-3}|+t^{2}s^{2}|U_{n-4}|\big{)}=
=s2|Un2|+ts2|Un3|+t2|Un2|=\displaystyle=s^{2}|U_{n-2}|+ts^{2}|U_{n-3}|+t^{2}|U_{n-2}|=
(4.5) =s2|Un2|+t|Un1|=|Un|\displaystyle=s^{2}|U_{n-2}|+t|U_{n-1}|=|U_{n}|

That means Theorem 2.6 is not valid for any s>ts>t and n4n\geq 4.

Proposition 4.3.

For any n4n\geq 4, s,t>0s,t>0 consider the matrix in 𝒢sn×n([0,t])\mathcal{G}_{s}^{n\times n}([0,t]) which has the maximum absolute determinant among this set. We call it maximizing matrix. By Theorem 2.6 we know the maximizing matrix for 0<st10<\dfrac{s}{t}\leq 1. Proposition 4.1 shows that the maximizing matrix changes at st=1\dfrac{s}{t}=1. We claim that the maximizing matrix changes from UnU_{n} to Un(rc)U_{n}^{(rc)} at st=1\dfrac{s}{t}=1.

Proof 4.4.

Suppose that for an n4n\geq 4 the maximizing matrix changes from UnU_{n} to a matrix Rn=Rn(s,t)𝒢sn×n([0,t])R_{n}=R_{n}(s,t)\in\mathcal{G}_{s}^{n\times n}([0,t]) at st=1\dfrac{s}{t}=1. Then the absolute value of the determinant of Rn(1,1)R_{n}(1,1) must be equal to the absolute value of the determinant of Un(1,1)U_{n}(1,1). In [9], Li Ching proved that abs(|Rn(1,1)|)=|Un(1,1)|\operatorname{abs}(|R_{n}(1,1)|)=|U_{n}(1,1)| if and only if Rn(1,1){Un(1,1),Un(r)(1,1),Un(c)(1,1),Un(rc)(1,1)}R_{n}(1,1)\in\big{\{}U_{n}(1,1),U_{n}^{(r)}(1,1),U_{n}^{(c)}(1,1),U_{n}^{(rc)}(1,1)\big{\}}. Hence Rn{Un,Un(r),Un(c),Un(rc)}R_{n}\in\big{\{}U_{n},U_{n}^{(r)},U_{n}^{(c)},U_{n}^{(rc)}\big{\}}.

Furthermore, we have the following inequalities for 2t>s>t2t>s>t with n4n\geq 4:

|Un3|(2ts)(st)s+s2(st)2|Un4|>0\displaystyle|U_{n-3}|(2t-s)(s-t)s+s^{2}(s-t)^{2}|U_{n-4}|>0
3ts2|Un3|+(s4+t2s2)|Un4|>(s3+2st2)|Un3|+2ts3|Un4|\displaystyle\Rightarrow 3ts^{2}|U_{n-3}|+(s^{4}+t^{2}s^{2})|U_{n-4}|>(s^{3}+2st^{2})|U_{n-3}|+2ts^{3}|U_{n-4}|
s2|Un2|+2ts2|Un3|+t2s2|Un4|>s|Un1|+ts|Un2|\displaystyle\Rightarrow s^{2}|U_{n-2}|+2ts^{2}|U_{n-3}|+t^{2}s^{2}|U_{n-4}|>s|U_{n-1}|+ts|U_{n-2}|
(4.6) |Un(rc)|>abs(|Un(c)|)=abs(|Un(r)|)\displaystyle\Rightarrow|U_{n}^{(rc)}|>\operatorname{abs}(|U_{n}^{(c)}|)=\operatorname{abs}(|U_{n}^{(r)}|)

by (3.7), (4.2), (4.3) and (4.4).

So, in (4.2) and (4.4) we have shown that for 2>st>12>\dfrac{s}{t}>1 the maximum absolute determinant is attained by Un(rc)U_{n}^{(rc)} among these four matrices. Therefore Rn=Un(rc)R_{n}=U_{n}^{(rc)}.

In view of the fact that Un(rc)U_{n}^{(rc)} has become an important matrix in our investigation, we establish the recurrence relation satisfied by its determinant in the following proposition.

Proposition 4.5.

|U4(rc)|=3s2t2|U_{4}^{(rc)}|=3s^{2}t^{2}, |U5(rc)|=s4t+4s2t3|U_{5}^{(rc)}|=s^{4}t+4s^{2}t^{3} and (|Un(rc)|)n4\big{(}|U_{n}^{(rc)}|\big{)}_{n\geq 4} satisfies the same recurrence relation as MnM_{n}:

(4.7) |Un(rc)|=t|Un1(rc)|+s2|Un2(rc)||U_{n}^{(rc)}|=t\cdot|U_{n-1}^{(rc)}|+s^{2}\cdot|U_{n-2}^{(rc)}|

for any n6n\geq 6.

Proof 4.6.

By substituting (4.4) and using (3.7)

|Un(rc)|\displaystyle|U_{n}^{(rc)}| =s2|Un2|+2ts2|Un3|+t2s2|Un4|=\displaystyle=s^{2}|U_{n-2}|+2ts^{2}|U_{n-3}|+t^{2}s^{2}|U_{n-4}|=
=t(s2|Un3|+2ts2|Un4|+t2s2|Un5|)+s2(s2|Un4|+2ts2|Un5|+t2s2|Un6|)=\displaystyle=t\big{(}s^{2}|U_{n-3}|+2ts^{2}|U_{n-4}|+t^{2}s^{2}|U_{n-5}|\big{)}+s^{2}\big{(}s^{2}|U_{n-4}|+2ts^{2}|U_{n-5}|+t^{2}s^{2}|U_{n-6}|\big{)}=
=t|Un1(rc)|+s2|Un2(rc)|\displaystyle=t\cdot|U_{n-1}^{(rc)}|+s^{2}\cdot|U_{n-2}^{(rc)}|

Remark 4.7.

By Proposition 4.3 we know that Un(rc)U_{n}^{(rc)} has the maximum absolute determinant value in the case 1st1+ϵ(n)1\leq\dfrac{s}{t}\leq 1+\epsilon(n) for sufficiently small ϵ(n)>0\epsilon(n)>0 depending on nn. So, Propositions 4.3 and 4.5 finish the proof of Theorem 2.8.


5 Case III

The third case we consider is when st>0s\gg t>0, i.e. ss is sufficiently larger than tt, depending on nn.

We start with an important observation which illustrates the reason why we are interested in sts\gg t instead of sts\geq t.

Observation 5.1.

The case when st>0s\geq t>0 is excessively general to reach a conclusion on MnM_{n}. More explicitly, for this case, there is no fixed matrix structure that gives the maximum absolute determinant for all values of s>ts>t.

Proof 5.2.

Consider the case when s=100s=100 and t=1t=1 and n=6n=6. By using MATLAB and testing all possible 2212^{21} cases, it is not difficult to check that the maximum absolute determinant for this case is 1000600000010006000000 and this value is attained by only two matrices:

A1=[1100011000111001001110001000010001000100001001],A2=[1110011000011001000110001001100001000100001001]\footnotesize A_{1}=\begin{bmatrix}1&1&0&0&0&1\\ 100&0&1&1&1&0\\ 0&100&1&1&1&0\\ 0&0&100&0&0&1\\ 0&0&0&100&0&1\\ 0&0&0&0&100&1\end{bmatrix},\ A_{2}=\begin{bmatrix}1&1&1&0&0&1\\ 100&0&0&1&1&0\\ 0&100&0&1&1&0\\ 0&0&100&1&1&0\\ 0&0&0&100&0&1\\ 0&0&0&0&100&1\end{bmatrix}

If there is a unique matrix that maximizes the absolute determinant value for all s>ts>t in 𝒢s6×6({0,t})\mathcal{G}_{s}^{6\times 6}(\{0,t\}), then it must be the matrix U6(rc)U_{6}^{(rc)} by Proposition 4.3. Hence U6(rc)(100,1)U_{6}^{(rc)}(100,1) must be the same with either A1A_{1} or A2A_{2}, but clearly it is not. So, the maximizing matrix still depends on the ratio st\dfrac{s}{t}.

The next theorem describes the case st>0s\gg t>0 in Problem 2.4.

Theorem 5.3.

The maximum absolute determinant of an n×nn\times n upper-Hessenberg matrix with entries from the interval [0,t][0,t] and subdiagonal entries fixed at ss such that st>0s\gg t>0 (i.e. ss can be taken sufficiently larger than tt for any case) is given by sn1t+n2n12sn3t3s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}. (We shall go on afterwards to establish a precise lower bound for st\dfrac{s}{t} such that this statement holds.)

Define MnmaxA𝒢sn×n([0,t])abs(|A|)M_{n}\coloneqq\displaystyle\max_{A\in\mathcal{G}_{s}^{n\times n}([0,t])}\operatorname{abs}(|A|) again. The proof is in two parts; the first is giving an example to show that Mnsn1t+n2n12sn3t3M_{n}\geq s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}, and the second showing that this example has the maximum absolute determinant. We start with the first part. Define a matrix VnV_{n} for n2n\geq 2 as follows:

(5.1) Vn[ttttt0s0000t0s000t00s00t00000t0000st]n×nV_{n}\coloneqq\footnotesize\begin{bmatrix}t&t&t&t&\cdots&t&0\\ s&0&0&0&\cdots&0&t\\ 0&s&0&0&\cdots&0&t\\ 0&0&s&0&\cdots&0&t\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots\\ 0&0&0&0&\cdots&0&t\\ 0&0&0&0&\cdots&s&t\end{bmatrix}_{n\times n}
Proposition 5.4.

|Vn|=(1)n(n1)t2sn2|V_{n}|=(-1)^{n}(n-1)t^{2}s^{n-2} for all n2n\geq 2.

Proof 5.5.

For n=2n=2, it is clear. We use induction on nn, specifically, we assume that the statement is valid for n=2,3,,k1n=2,3,\dots,k-1 and show that it then follows for n=kn=k. By using Laplace expansion for the last row, and the induction assumption:

|Vk|=|ttttt0s0000t0s000t00s00t00000t0000st|k×k\displaystyle\footnotesize|V_{k}|=\begin{vmatrix}t&t&t&t&\cdots&t&0\\ s&0&0&0&\cdots&0&t\\ 0&s&0&0&\cdots&0&t\\ 0&0&s&0&\cdots&0&t\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots\\ 0&0&0&0&\cdots&0&t\\ 0&0&0&0&\cdots&s&t\end{vmatrix}_{k\times k} =t|tttttts000000s000000s0000000000000s0|(k1)×(k1)s|Vk1|=\displaystyle=t\cdot\footnotesize\begin{vmatrix}\begin{array}[]{cccccc|c}t&t&t&t&\cdots&t&t\\ \hline\cr s&0&0&0&\cdots&0&0\\ 0&s&0&0&\cdots&0&0\\ 0&0&s&0&\cdots&0&0\\ \vdots&\vdots&\ddots&\ddots&\ddots&\vdots&\vdots\\ 0&0&0&0&\cdots&0&0\\ 0&0&0&0&\cdots&s&0\end{array}\end{vmatrix}_{(k-1)\times(k-1)}-s\cdot|V_{k-1}|=
=t(tsk2(1)k2)s((1)k1(k2)t2sk3)=\displaystyle=t\cdot(ts^{k-2}(-1)^{k-2})-s\cdot((-1)^{k-1}(k-2)t^{2}s^{k-3})=
=t2sk2(1)k+(k2)t2sk2(1)k=\displaystyle=t^{2}s^{k-2}(-1)^{k}+(k-2)t^{2}s^{k-2}(-1)^{k}=
=(1)k(k1)t2sk2\displaystyle=(-1)^{k}(k-1)t^{2}s^{k-2}

Now, we define a new sequence of matrices (Wn)n2(W_{n})_{n\geq 2} depending on the parity of nn.

(5.2) W2k+1[ktttk000ts00ttt00s0ttt000sttt0000s00t0000s0t00st]W2k+2[ktttk+10000ts00tttt00s0tttt000stttt0000s000t0000s00t00st]\footnotesize W_{2k+1}\coloneqq\begin{bmatrix}\makebox[0.0pt][l]{$\smash{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\overbrace{\phantom{\begin{matrix}t&t&\cdots&t\end{matrix}}}^{\text{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}k}}}$}t&t&\cdots&t&\makebox[0.0pt][l]{$\smash{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\overbrace{\phantom{\begin{matrix}0&0&\cdots&0\end{matrix}}}^{\text{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}k}}}$}0&0&\cdots&0&t\\ s&0&\cdots&0&t&t&\cdots&t&0\\ 0&s&\cdots&0&t&t&\cdots&t&0\\ \vdots&&\ddots&&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&s&t&t&\cdots&t&0\\ 0&0&\cdots&0&s&0&\cdots&0&t\\ 0&0&\cdots&0&0&s&\ddots&0&t\\ \vdots&&\ddots&&\ddots&&\ddots&\vdots&\vdots\\ 0&0&\cdots&&\cdots&&\cdots&s&t\end{bmatrix}\ \,\ \ \footnotesize W_{2k+2}\coloneqq\begin{bmatrix}\makebox[0.0pt][l]{$\smash{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\overbrace{\phantom{\begin{matrix}t&t&\cdots&t\end{matrix}}}^{\text{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}k}}}$}t&t&\cdots&t&\makebox[0.0pt][l]{$\smash{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\overbrace{\phantom{\begin{matrix}0&0&0&\cdots&0&t\end{matrix}}}^{\text{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}k+1}}}$}0&0&0&\cdots&0&t\\ s&0&\cdots&0&t&t&t&\cdots&t&0\\ 0&s&\cdots&0&t&t&t&\cdots&t&0\\ \vdots&&\ddots&&\vdots&\vdots&\ddots&\ddots&\vdots&\vdots\\ 0&0&\cdots&s&t&t&t&\cdots&t&0\\ 0&0&\cdots&0&s&0&0&\cdots&0&t\\ 0&0&\cdots&0&0&s&0&\ddots&0&t\\ \vdots&&\ddots&&\ddots&&\ddots&&\vdots&\vdots\\ \vdots&&\ddots&&\ddots&&\ddots&&\vdots&\vdots\\ 0&0&\cdots&&\cdots&&\cdots&&s&t\end{bmatrix}

Notice that W2k+1W_{2k+1} contains a k×kk\times k block full of tt’s whereas W2k+2W_{2k+2} contains a k×(k+1)k\times(k+1) block; and note that if we define W2k+2W_{2k+2} such that it would contain a (k+1)×k(k+1)\times k block of tt’s instead of a k×(k+1)k\times(k+1) block it would not change the determinant value. For later convenience we denote the alternative version W2k+2W_{2k+2}^{\prime}

Proposition 5.6.

|Wn|=n12(s)n3t3s|Wn1||W_{n}|=\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}(-s)^{n-3}t^{3}-s|W_{n-1}| for all n3n\geq 3.

Proof 5.7.

We need to show |W2k+1|=kt3(s)2k2s|W2k||W_{2k+1}|=kt^{3}(-s)^{2k-2}-s|W_{2k}| and |W2k+2|=kt3(s)2k1s|W2k+1||W_{2k+2}|=kt^{3}(-s)^{2k-1}-s|W_{2k+1}|. We are going to show only one, because the proofs in both cases are essentially identical.

Using Laplace expansion for the last row of W2k+2W_{2k+2} (and by iteratively – exactly kk times – doing it to the last row of each the resulting matrices), and by using Proposition 5.4 we get:

|W2k+2|\displaystyle|W_{2k+2}| =tsk(1)k|Vk+1|s|W2k+1|=\displaystyle=t\cdot s^{k}\cdot(-1)^{k}\cdot|V_{k+1}|-s|W_{2k+1}|=
=tsk(1)k(1)k+1kt2sk1s|W2k+1|=\displaystyle=t\cdot s^{k}\cdot(-1)^{k}\cdot(-1)^{k+1}kt^{2}s^{k-1}-s|W_{2k+1}|=
=kt3(s)2k1s|W2k+1|\displaystyle=kt^{3}(-s)^{2k-1}-s|W_{2k+1}|

Proposition 5.8.

|Wn|=(1)n1(sn1t+n2n12sn3t3)|W_{n}|=(-1)^{n-1}\Big{(}s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}\Big{)} for all n3n\geq 3.

Proof 5.9.

Using the previous proposition, this follows straightforwardly by induction.

As a corollary of the last proposition, we have

(5.3) Mnabs(|Wn|)=sn1t+n2n12sn3t3M_{n}\geq\operatorname{abs}(|W_{n}|)=s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}

for all n2n\geq 2.

So the first part of the proof is done. Next, we prove the reverse implication.

Since we are looking for the maximum absolute determinant it suffices to check 𝒢sn×n({0,t})\mathcal{G}_{s}^{n\times n}(\{0,t\}) instead of 𝒢sn×n([0,t])\mathcal{G}_{s}^{n\times n}([0,t]).

Notice that the determinant value of any A𝒢sn×n({0,t})A\in\mathcal{G}_{s}^{n\times n}(\{0,t\}) is a polynomial in ss and tt. More explicitly, the determinant of AA is an element of the following set:

(1)n1sn1t{0,1}+(1)n2sn2t2{0,1,,(n11)}+(1)n3sn3t3{0,,(n12)}++tn{0,1}(-1)^{n-1}s^{n-1}t\cdot\{0,1\}+(-1)^{n-2}s^{n-2}t^{2}\cdot\Big{\{}0,1,\dots,{{n-1}\choose{1}}\Big{\}}+(-1)^{n-3}s^{n-3}t^{3}\cdot\Big{\{}0,\dots,{{n-1}\choose{2}}\Big{\}}+\cdots+t^{n}\cdot\{0,1\}

Recall that we assumed sts\gg t and already know (5.3). Then

Mnsn1t+\displaystyle M_{n}\geq s^{n-1}t+ n2n12sn3t3>sn2t2(n11)+sn4t4(n13)+sn6t6(n15)+=\displaystyle\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}>s^{n-2}t^{2}\cdot{{n-1}\choose{1}}+s^{n-4}t^{4}\cdot{{n-1}\choose{3}}+s^{n-6}t^{6}\cdot{{n-1}\choose{5}}+\cdots=
(5.4) =abs((1)n2sn2t2(n11)+(1)n4sn4t4(n13)+)\displaystyle=\operatorname{abs}\Big{(}(-1)^{n-2}s^{n-2}t^{2}\cdot{{n-1}\choose{1}}+(-1)^{n-4}s^{n-4}t^{4}\cdot{{n-1}\choose{3}}+\cdots\Big{)}

This means that the sign of the determinant which gives the maximum absolute determinant cannot be (1)n2(-1)^{n-2}. So, its sign is (1)n1(-1)^{n-1}.

By (5.3) and using sts\gg t again,

(5.5) Mnsn1t+n2n12sn3t3>sn3t3(n12)+sn5t5(n14)+M_{n}\geq s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}>s^{n-3}t^{3}\cdot{{n-1}\choose{2}}+s^{n-5}t^{5}\cdot{{n-1}\choose{4}}+\cdots

So, the maximum absolute determinant must contain the term sn1ts^{n-1}t, i.e., the maximum absolute determinant is of the form sn1t+s^{n-1}t+\cdots.

Moreover, we also have the following

Mn\displaystyle M_{n} sn1t+n2n12sn3t3>\displaystyle\geq s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}>
(5.6) >sn1t+(1)sn2t2+sn3t3(n12)+sn5t5(n14)+\displaystyle>s^{n-1}t+(-1)s^{n-2}t^{2}+s^{n-3}t^{3}\cdot{{n-1}\choose{2}}+s^{n-5}t^{5}\cdot{{n-1}\choose{4}}+\cdots

This means that the maximum absolute determinant cannot contain the term sn2t2s^{n-2}t^{2}, i.e., the maximum absolute determinant is of the form 1sn1t+0sn2t2+1\cdot s^{n-1}t+0\cdot s^{n-2}t^{2}+\cdots.

Again by sts\gg t and (5.3), we can state:

Mn\displaystyle M_{n} sn1t+n2n12sn3t3>\displaystyle\geq s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}>
(5.7) >sn1t+(n2n121)sn3t3+sn5t5(n14)+sn7t7(n16)+\displaystyle>s^{n-1}t+\Big{(}\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}-1\Big{)}s^{n-3}t^{3}+s^{n-5}t^{5}\cdot{{n-1}\choose{4}}+s^{n-7}t^{7}\cdot{{n-1}\choose{6}}+\cdots

Therefore, the coefficient of sn3t3s^{n-3}t^{3} in the maximum absolute determinant must be at least n2n12\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}.

Lemma 5.10.

For any matrix A𝒢sn×n({0,t})A\in\mathcal{G}_{s}^{n\times n}(\{0,t\}), if the coefficient of sn2t2s^{n-2}t^{2} in |A||A| is zero, then the absolute value of the coefficient of sn3t3s^{n-3}t^{3} is at most n2n12\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}.

Proof 5.11.

Consider the determinant as a polynomial with variable ss. It is easy to see that for

A=[a11a12a13a1(n1)a1nsa22a23a2(n1)a2n0sa33a3(n1)a3n00sa4(n1)a4n000sann],\footnotesize A=\begin{bmatrix}a_{11}&a_{12}&a_{13}&\cdots&a_{1(n-1)}&a_{1n}\\ s&a_{22}&a_{23}&\cdots&a_{2(n-1)}&a_{2n}\\ 0&s&a_{33}&\cdots&a_{3(n-1)}&a_{3n}\\ 0&0&s&\ddots&a_{4(n-1)}&a_{4n}\\ \vdots&\ddots&\ddots&\ddots&\ddots&\vdots\\ 0&0&0&\cdots&s&a_{nn}\end{bmatrix},

the determinant of AA can be expressed as follows:

|A|=\displaystyle|A|= (1)n1sn1a1n+(1)n2sn2(a11a2n+a12a3n+a13a4n++a1(n1)ann)+\displaystyle(-1)^{n-1}s^{n-1}\cdot a_{1n}+(-1)^{n-2}s^{n-2}\cdot\big{(}a_{11}a_{2n}+a_{12}a_{3n}+a_{13}a_{4n}+\cdots+a_{1(n-1)}a_{nn}\big{)}+
(5.8) +(1)n3sn3(1i<j(n1)a1ia(i+1)ja(j+1)n)+\displaystyle+(-1)^{n-3}s^{n-3}\cdot\Big{(}\smash{\displaystyle\sum_{1\leq i<j\leq(n-1)}}{a_{1i}a_{(i+1)j}a_{(j+1)n}}\Big{)}+\cdots

Because the coefficient of sn2s^{n-2} in (5.11) is zero by the assumption of the lemma,

(5.9) a11a2n+a12a3n+a13a4n++a1(n1)ann=0a_{11}a_{2n}+a_{12}a_{3n}+a_{13}a_{4n}+\cdots+a_{1(n-1)}a_{nn}=0
(5.10) a12a3n+a13a4n++a1(n2)a(n1)n=0anda11a2n+a1(n1)ann=0\Rightarrow a_{12}a_{3n}+a_{13}a_{4n}+\cdots+a_{1(n-2)}a_{(n-1)n}=0\ \text{and}\ a_{11}a_{2n}+a_{1(n-1)}a_{nn}=0

Notice that we can express the coefficient of sn3s^{n-3} in (5.11) as follows:

1i<j(n1)a1ia(i+1)ja(j+1)n=\displaystyle\smash{\displaystyle\sum_{1\leq i<j\leq(n-1)}}{a_{1i}a_{(i+1)j}a_{(j+1)n}}=
=a11a22a3n+a11a23a4n+a11a24a5n+a11a25a6n+\displaystyle=\ a_{11}\cdot a_{22}\cdot a_{3n}+a_{11}\cdot a_{23}\cdot a_{4n}+a_{11}\cdot a_{24}\cdot a_{5n}+a_{11}\cdot a_{25}\cdot a_{6n}+\cdots +a11a2(n1)ann+\displaystyle+a_{11}\cdot a_{2(n-1)}\cdot a_{nn}+
+a12a33a4n+a12a34a4n+a12a35a6n+\displaystyle+a_{12}\cdot a_{33}\cdot a_{4n}+a_{12}\cdot a_{34}\cdot a_{4n}+a_{12}\cdot a_{35}\cdot a_{6n}+\cdots +a12a3(n1)ann+\displaystyle+a_{12}\cdot a_{3(n-1)}\cdot a_{nn}+
+a13a44a5n+a13a45a6n+\displaystyle+a_{13}\cdot a_{44}\cdot a_{5n}+a_{13}\cdot a_{45}\cdot a_{6n}+\cdots +a13a4(n1)ann+\displaystyle+a_{13}\cdot a_{4(n-1)}\cdot a_{nn}+
+a14a55a6n+\displaystyle+a_{14}\cdot a_{55}\cdot a_{6n}+\cdots +a14a5(n1)ann+\displaystyle+a_{14}\cdot a_{5(n-1)}\cdot a_{nn}+
\displaystyle\ddots\hskip 28.45274pt \displaystyle\ddots\hskip 28.45274pt\vdots
(5.11) +a1(n2)a(n1)(n1)ann\displaystyle+a_{1(n-2)}\cdot a_{(n-1)(n-1)}\cdot a_{nn}

The first equality at (5.10) means that there are at least n3n-3 zeros among the set

{a12,a13,,a1(n2)}{a3n,a4n,,a(n1)n}\{a_{12},a_{13},\dots,a_{1(n-2)}\}\cup\{a_{3n},a_{4n},\dots,a_{(n-1)n}\}

Suppose that there are k1k_{1} and k2k_{2} zeros in {a12,a13,,a1(n2)}\{a_{12},a_{13},\dots,a_{1(n-2)}\} and {a3n,,a(n1)n}\{a_{3n},\dots,a_{(n-1)n}\} respectively. Note that we can see the expansion (5.11) as an upper triangular half of an (n2)×(n2)(n-2)\times(n-2) chessboard by observing that setting a1i=0a_{1i}=0 corresponds to colouring the ithi^{th} row (from the top) black, and setting ajn=0a_{jn}=0 corresponds to colouring the (nj+1)st(n-j+1)^{st} column (from the right) black for i{2,3,,n2}i\in\{2,3,\dots,n-2\} and j{3,4,,(n1)}j\in\{3,4,\dots,(n-1)\}. (Notice that we do not colour for the cases a11=0a_{11}=0 and ann=0a_{nn}=0) (See Figure 1).

a11a_{11}a39a_{39}a12a_{12}a49a_{49}a13a_{13}a59a_{59}a14a_{14}a69a_{69}a15a_{15}a79a_{79}a16a_{16}a89a_{89}a17a_{17}a99a_{99}
Figure 1: Case n=9n=9 and a14=a16=a17=a49=a79=0a_{14}=a_{16}=a_{17}=a_{49}=a_{79}=0

The number of black squares is less than or equal to the number of zero terms in the expansion (5.11). We know that the total number of colored rows and columns is at least (n3)(n-3) since k1+k2n3k_{1}+k_{2}\geq n-3. It is clear that to minimize the number of the black squares, coloured columns must be the leftmost ones and coloured rows must be lowermost ones, and |k1k2||k_{1}-k_{2}| must be 0 or 11 (depending on the parity of nn). See Figure 2 for the minimizing example in the case n=9n=9.

It is easy to calculate that the minimum number of black squares is at least

(5.12) 2n32n1212=n24n+342\cdot\dfrac{n-3}{2}\cdot\dfrac{n-1}{2}\cdot\dfrac{1}{2}=\dfrac{n^{2}-4n+3}{4}

if nn is odd, and

(5.13) n42n2212+n22n212=n24n+44\dfrac{n-4}{2}\cdot\dfrac{n-2}{2}\cdot\dfrac{1}{2}+\dfrac{n-2}{2}\cdot\dfrac{n}{2}\cdot\dfrac{1}{2}=\dfrac{n^{2}-4n+4}{4}

if nn is even.

Hence, in the expansion (5.11), we know that at least n24n+34\dfrac{n^{2}-4n+3}{4} or n24n+44\dfrac{n^{2}-4n+4}{4} terms are zero. And the number of terms in (5.11), is (n12)=n23n+22{{n-1}\choose{2}}=\dfrac{n^{2}-3n+2}{2}.

a11a_{11}a39a_{39}a12a_{12}a49a_{49}a13a_{13}a59a_{59}a14a_{14}a69a_{69}a15a_{15}a79a_{79}a16a_{16}a89a_{89}a17a_{17}a99a_{99}
Figure 2: Case n=9n=9 and a15=a16=a17=a39=a49=a59=0a_{15}=a_{16}=a_{17}=a_{39}=a_{49}=a_{59}=0

Therefore, by (5.12) and (5.13) the number of nonzero terms in the (5.11) is less than or equal to

(5.14) n23n+22n24n+34=n22n+14=n2n12\dfrac{n^{2}-3n+2}{2}-\dfrac{n^{2}-4n+3}{4}=\dfrac{n^{2}-2n+1}{4}=\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}

if nn is odd, and

(5.15) n23n+22n24n+44=n22n4=n2n12\dfrac{n^{2}-3n+2}{2}-\dfrac{n^{2}-4n+4}{4}=\dfrac{n^{2}-2n}{4}=\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}

if nn is even. As a consequence, by (5.11), (5.14) and (5.15) the absolute value of the coefficient of sn3t3s^{n-3}t^{3} is at most n2n12\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}.

Hence, the maximum absolute determinant is

1sn1t+0sn2t2+n2n12sn3t3+1\cdot s^{n-1}t+0\cdot s^{n-2}t^{2}+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}+\cdots

by (5), the previous lemma and (5).

Now we are going to consider the entries of the matrix that makes the coefficient of sn3t3s^{n-3}t^{3} equal to n2n12\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}.

If nn is odd, say n=2k+1n=2k+1, we have a (2k1)×(2k1)(2k-1)\times(2k-1) half chessboard, and we colour 2k22k-2 rows and columns in total. To make the coefficient n2n12\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}, we colour exactly (k1)(k-1) rows (the lowermost ones) and (k1)(k-1) columns (the leftmost ones). This means we set

(5.16) a1(2k1)=a1(2k2)==a1(k+1)=0a_{1(2k-1)}=a_{1(2k-2)}=\cdots=a_{1(k+1)}=0
(5.17) a3(2k+1)=a4(2k+1)==a(k+1)(2k+1)=0a_{3(2k+1)}=a_{4(2k+1)}=\cdots=a_{(k+1)(2k+1)}=0

Additionally all the nonzero terms in (5.11) must be t3t^{3}, which means

(5.18) a11=a12==a1k=ta_{11}=a_{12}=\cdots=a_{1k}=t
(5.19) a(k+2)(2k+1)=a(k+3)(2k+1)==a(2k+1)(2k+1)=ta_{(k+2)(2k+1)}=a_{(k+3)(2k+1)}=\cdots=a_{(2k+1)(2k+1)}=t
(5.20) aij=tfor all(i,j){2,3,,(k+1)}×{(k+1),(k+2),,(2k)}a_{ij}=t\ \text{for all}\ (i,j)\in\{2,3,\dots,(k+1)\}\times\{(k+1),(k+2),\dots,(2k)\}

because there is a term a1(i1)aija(j+1)(2k+1)a_{1(i-1)}\cdot a_{ij}\cdot a_{(j+1)(2k+1)} that corresponds to a white square in the chessboard representation for each (i,j){2,3,,(k+1)}×{(k+1),(k+2),,(2k)}(i,j)\in\{2,3,\dots,(k+1)\}\times\{(k+1),(k+2),\dots,(2k)\}.

Moreover, recall the second equation at (5.10)\eqref{eq:13} and we already have a11=a(2k+1)(2k+1)=ta_{11}=a_{(2k+1)(2k+1)}=t by (5.18) and (5.19), then

(5.21) a2(2k+1)=a1(2k)=0a_{2(2k+1)}=a_{1(2k)}=0

We already know that the coefficient of sn1s^{n-1} in (5.11) is not zero, so

(5.22) a1(2k+1)=ta_{1(2k+1)}=t

So far we have arrived at the following matrix structure by (5.16)-(5.22)

(5.23) [ktttk000ts???ttt00s??ttt0?00sttt0000s???t0000s??t?00st]\begin{bmatrix}\makebox[0.0pt][l]{$\smash{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\overbrace{\phantom{\begin{matrix}t&t&\cdots&t\end{matrix}}}^{\text{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}k}}}$}t&t&\cdots&t&\makebox[0.0pt][l]{$\smash{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\overbrace{\phantom{\begin{matrix}0&0&\cdots&0\end{matrix}}}^{\text{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}k}}}$}0&0&\cdots&0&t\\ s&?&?&?&t&t&\cdots&t&0\\ 0&s&?&?&t&t&\cdots&t&0\\ \vdots&&\ddots&?&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&s&t&t&\cdots&t&0\\ 0&0&\cdots&0&s&?&?&?&t\\ 0&0&\cdots&0&0&s&?&?&t\\ \vdots&&\ddots&&\ddots&&\ddots&?&\vdots\\ 0&0&\cdots&&\cdots&&\cdots&s&t\end{bmatrix}

For the case when nn is even, we have the same, but according to the choice of the difference between the number of zero terms in the sets {a12,a13,,a1(n2)}\{a_{12},a_{13},\dots,a_{1(n-2)}\} and {a3n,,a(n1)n}\{a_{3n},\dots,a_{(n-1)n}\}, i.e. (k1k2)(k_{1}-k_{2}), as 1-1 or +1+1; we are going to have W2k+2W_{2k+2} or W2k+2W_{2k+2}^{\prime} as defined at (5.2)\eqref{e:10}. From now on, we just consider the odd case, the even case can be done in exactly the same way.

Recall that we know that the maximum absolute determinant is

1sn1t+0sn2t2+n2n12sn3t3+1\cdot s^{n-1}t+0\cdot s^{n-2}t^{2}+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}+\cdots

Because of (5.3) and sts\gg t we have the following inequality,

Mnsn1t+n2n12sn3t3>M_{n}\geq s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}>
(5.24) >sn1t+n2n12sn3t3+(1)sn4t4+sn5t5(n14)+sn7t7(n16)+>s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}+(-1)\cdot s^{n-4}t^{4}+s^{n-5}t^{5}\cdot{{n-1}\choose{4}}+s^{n-7}t^{7}\cdot{{n-1}\choose{6}}+\cdots

Hence, the coefficient of sn4t4s^{n-4}t^{4} must be 0 to have the maximum absolute determinant. Now we are going to show that this fact forces all entries with a question mark in (5.23) to be filled with 0.

Proposition 5.12.

Recall that we have defined VnV_{n} in (5.1). If any of the entries of the triangular block of 0’s in the upper half is tt instead of 0, then the determinant contains the term sn3t3s^{n-3}t^{3}.

Proof 5.13.

Consider the following permutation:

[ttt0stststst]\footnotesize\begin{bmatrix}t&\cdots&&\boxed{t}&\cdots&&\cdots&t&0\\ \boxed{s}&&&\vdots&&&&&t\\ &\boxed{\ddots}&&\vdots&&&&&\\ &&\boxed{\ddots}&\vdots&&&&&\vdots\\ &&&s&\cdots&\boxed{t}&&&\\ &&&&\boxed{\ddots}&\vdots&&&\vdots\\ &&&&&s&\cdots&\cdots&\boxed{t}\\ &&&&&&\boxed{\ddots}&&\vdots\\ &&&&&&&\boxed{s}&t\end{bmatrix}

This permutation gives the term sn3t3s^{n-3}t^{3}, and because all the terms with sn3s^{n-3} have the same sign, sn3t3s^{n-3}t^{3} does not vanish.

Proposition 5.14.

Consider the matrix in (5.23), if there is tt in any of the entries that are filled with a question mark, then the determinant has the term sn4t4s^{n-4}t^{4}.

Proof 5.15.

Let n=2k+1n=2k+1 be odd, the other case can be done by the same way. Suppose that the tt is placed in the top-left triangular block of ??’s WLOG. Then consider the determinant as follows:

|ttt000ts???ttt00s??ttt0?00sttt0000s???t0000s??t?00st|\scriptsize\begin{vmatrix}\begin{array}[]{ccccc|cccc}t&t&\cdots&t&0&0&\cdots&0&t\\ s&?&?&?&t&t&\cdots&t&0\\ 0&s&?&?&t&t&\cdots&t&0\\ \vdots&&\ddots&?&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&s&t&t&\cdots&t&0\\ \hline\cr 0&0&\cdots&0&s&?&?&?&\boxed{t}\\ 0&0&\cdots&0&0&\boxed{s}&?&?&t\\ \vdots&&\ddots&&\ddots&&\boxed{\ddots}&?&\vdots\\ 0&0&\cdots&&\cdots&&\cdots&\boxed{s}&t\end{array}\end{vmatrix}

The determinant of the upper-left (k+1)×(k+1)(k+1)\times(k+1) square contains the term t3sk2t^{3}s^{k-2} by Proposition 5.12. And as we have boxed, there is a permutation that gives a tsk1ts^{k-1} term from the bottom-right square. When we consider these two together we get the term t4s2k3t^{4}s^{2k-3} which is exactly what we are looking for.

As a corollary, we can state that all the entries with question mark must be filled with 0 to have the maximum absolute determinant. Therefore the matrix which has the maximum absolute determinant is the matrix W2k+1W_{2k+1} as we have defined at (5.2).                                                                                QED.

Now we can discuss the condition sts\gg t. We have used this in our proof in the following ways in (5), (5.5), (5), (5) and (5.24). We can rewrite these inequalities setting xstx\coloneqq\dfrac{s}{t}:

(5.25) xn1+n2n12xn3>xn2(n11)+xn4(n13)+xn6(n15)+\displaystyle x^{n-1}+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}x^{n-3}>x^{n-2}\cdot{{n-1}\choose{1}}+x^{n-4}\cdot{{n-1}\choose{3}}+x^{n-6}\cdot{{n-1}\choose{5}}+\cdots
(5.26) xn1+n2n12xn3>xn3(n12)+xn5(n14)+\displaystyle x^{n-1}+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}x^{n-3}>x^{n-3}\cdot{{n-1}\choose{2}}+x^{n-5}\cdot{{n-1}\choose{4}}+\cdots
(5.27) xn2+n2n12xn3>xn3(n12)+xn5(n14)+\displaystyle x^{n-2}+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}x^{n-3}>x^{n-3}\cdot{{n-1}\choose{2}}+x^{n-5}\cdot{{n-1}\choose{4}}+\cdots
(5.28) xn3>xn5(n14)+xn7(n16)+\displaystyle x^{n-3}>x^{n-5}\cdot{{n-1}\choose{4}}+x^{n-7}\cdot{{n-1}\choose{6}}+\cdots
(5.29) xn4>xn5(n14)+xn7(n16)+\displaystyle x^{n-4}>x^{n-5}\cdot{{n-1}\choose{4}}+x^{n-7}\cdot{{n-1}\choose{6}}+\cdots

Note that except in the last inequality, these allow us to take xx asymptotic to n2n^{2}. However, the last one requires n4n^{4}. Fortunately we can overcome this issue using another way to tackle the problem. Recall that we deduced (5.29) from (5.24). Before stating (5.24), we found that the maximum absolute determinant has the form 1sn1t+0sn2t2+n2n12sn3t3+1\cdot s^{n-1}t+0\cdot s^{n-2}t^{2}+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}+\cdots and the matrix with this determinant has the form (5.23)

Lemma 5.16.

Let

A=[ttt000tsa22a2kttt00sttt0akk00sttt0000sa(k+2)(k+2)a(k+2)(2k)t0000sta(2k)(2k)000st],A=\scriptsize\begin{bmatrix}t&t&\cdots&t&0&0&\cdots&0&t\\ s&a_{22}&\cdots&a_{2k}&t&t&\cdots&t&0\\ 0&s&\ddots&\vdots&t&t&\cdots&t&0\\ \vdots&&\ddots&a_{kk}&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&\cdots&s&t&t&\cdots&t&0\\ 0&0&\cdots&0&s&a_{(k+2)(k+2)}&\cdots&a_{(k+2)(2k)}&t\\ 0&0&\cdots&0&0&s&\ddots&\vdots&t\\ \vdots&&\ddots&&\ddots&\ddots&\ddots&a_{(2k)(2k)}&\vdots\\ 0&0&\cdots&&\cdots&\cdots&0&s&t\end{bmatrix},

where A𝒢sn×n({0,t})A\in\mathcal{G}_{s}^{n\times n}(\{0,t\}). And let

(5.30) abs(|A|)=1sn1t+n2n12sn3t3b4sn4t4+b5sn5t5b6sn6t6+\operatorname{abs}(|A|)=1\cdot s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}-b_{4}\cdot s^{n-4}t^{4}+b_{5}\cdot s^{n-5}t^{5}-b_{6}\cdot s^{n-6}t^{6}+\cdots

Then, bmnbm+1b_{m}\cdot n\geq b_{m+1} for all m{4,5,,n1}m\in\{4,5,\dots,n-1\}.

Proof. Recall that in the permutation definition, if we consider the determinant as a function of ss, the absolute value of the coefficient of snls^{n-l} is:

(5.31) 1i1<<il1(n1)a1i1a(i1+1)i2a(i2+1)i3a(il1+1)n\smash{\displaystyle\sum_{1\leq i_{1}<\cdots<i_{l-1}\leq(n-1)}}{a_{1i_{1}}a_{(i_{1}+1)i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{l-1}+1)n}}

Then

(5.32) bmtm=1i1<<im1(n1)a1i1a(i1+1)i2a(i2+1)i3a(im1+1)nb_{m}\cdot t^{m}=\smash{\displaystyle\sum_{1\leq i_{1}<\cdots<i_{m-1}\leq(n-1)}}{a_{1i_{1}}a_{(i_{1}+1)i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m-1}+1)n}}

and

(5.33) bm+1tm+1=1i1<<im(n1)a1i1a(i1+1)i2a(i2+1)i3a(im+1)nb_{m+1}\cdot t^{m+1}=\smash{\displaystyle\sum_{1\leq i_{1}<\cdots<i_{m}\leq(n-1)}}{a_{1i_{1}}a_{(i_{1}+1)i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m}+1)n}}

Clearly some of the terms are going to vanish such as the ones starting with a1(k+1)a_{1(k+1)} because a1(k+1)a_{1(k+1)} is already determined as 0. Now we are going to define a function from non-vanishing terms in (5.33) to non-vanishing terms in (5.32). (From now on we consider them not as numbers, but as sequences of aija_{ij}’s) Define the function

ϕ:Bm+1{a1i1a(i1+1)i2a(i2+1)i3a(im+1)n0|1i1<<im(n1)}\phi:B_{m+1}\coloneqq\Big{\{}a_{1i_{1}}a_{(i_{1}+1)i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m}+1)n}\neq 0\big{|}1\leq i_{1}<\cdots<i_{m}\leq(n-1)\Big{\}}\rightarrow
Bm{a1i1a(i1+1)i2a(i2+1)i3a(im1+1)n0|1i1<<im1(n1)}\leavevmode\nobreak\ \ \hskip 71.13188pt\rightarrow B_{m}\coloneqq\Big{\{}a_{1i_{1}}a_{(i_{1}+1)i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m-1}+1)n}\neq 0\big{|}1\leq i_{1}<\cdots<i_{m-1}\leq(n-1)\Big{\}}

as follows:

  • If i2k(=n12)i_{2}\leq k(=\frac{n-1}{2}), we have a1i20a_{1i_{2}}\neq 0,

    ϕ(a1i1a(i1+1)i2a(i2+1)i3a(im+1)n)a1i2a(i2+1)i3a(i3+1)i4a(im+1)n\phi\big{(}a_{1i_{1}}a_{(i_{1}+1)i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m}+1)n}\big{)}\coloneqq a_{1i_{2}}a_{(i_{2}+1)i_{3}}a_{(i_{3}+1)i_{4}}\cdots a_{(i_{m}+1)n}
  • If i2k+1i_{2}\geq k+1, then im1i2k+1i_{m-1}\geq i_{2}\geq k+1, we have a(im1+1)n0a_{(i_{m-1}+1)n}\neq 0,

    ϕ(a1i1a(i1+1)i2a(im1+1)ima(im+1)n)a1i1a(i1+1)i2a(im2+1)im1a(im1+1)n\phi\big{(}a_{1i_{1}}a_{(i_{1}+1)i_{2}}\cdots a_{(i_{m-1}+1)i_{m}}a_{(i_{m}+1)n}\big{)}\coloneqq a_{1i_{1}}a_{(i_{1}+1)i_{2}}\cdots a_{(i_{m-2}+1)i_{m-1}}a_{(i_{m-1}+1)n}

We are going to show that the preimage of any element in the range has cardinality less than or equal to nn.

Consider the preimage of an arbitrary element in the range of ϕ\phi,

ϕ1[ϕ(a1i1a(i1+1)i2a(im1+1)ima(im+1)n)]\phi^{-1}\Bigg{[}\phi\big{(}a_{1i_{1}}a_{(i_{1}+1)i_{2}}\cdots a_{(i_{m-1}+1)i_{m}}a_{(i_{m}+1)n}\big{)}\Bigg{]}

Define a set P1P_{1}\coloneqq\emptyset if i2k+1i_{2}\geq k+1, otherwise P1P_{1}\coloneqq
{a11a2i2a(i2+1)i3a(im1+1)ima(im+1)n,a12a3i2a(i2+1)i3a(im1+1)ima(im+1)n,\coloneqq\Big{\{}a_{11}a_{2i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m-1}+1)i_{m}}a_{(i_{m}+1)n},a_{12}a_{3i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m-1}+1)i_{m}}a_{(i_{m}+1)n},\dots
,a1(i21)ai2i2a(i2+1)i3a(im1+1)ima(im+1)n}\dots,a_{1(i_{2}-1)}a_{i_{2}i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m-1}+1)i_{m}}a_{(i_{m}+1)n}\Big{\}}

Similarly define P2P_{2}\coloneqq\emptyset if im1ki_{m-1}\leq k, otherwise P2P_{2}\coloneqq
{a1i1a(i1+1)i2a(im2+1)im1a(im1+1)(im1+1)a(im1+2)n,a1i1a(i1+1)i2a(im2+1)im1a(im1+1)(im1+2)a(im1+3)n,\coloneqq\Big{\{}a_{1i_{1}}a_{(i_{1}+1)i_{2}}\cdots a_{(i_{m-2}+1)i_{m-1}}a_{(i_{m-1}+1)(i_{m-1}+1)}a_{(i_{m-1}+2)n},a_{1i_{1}}a_{(i_{1}+1)i_{2}}\cdots a_{(i_{m-2}+1)i_{m-1}}a_{(i_{m-1}+1)(i_{m-1}+2)}a_{(i_{m-1}+3)n},\dots

,a1i1a(i1+1)i2a(i2+1)i3a(im2+1)im1a(im1+1)(n1)ann}\dots,a_{1i_{1}}a_{(i_{1}+1)i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m-2}+1)i_{m-1}}a_{(i_{m-1}+1)(n-1)}a_{nn}\Big{\}}

It is not difficult to see that

ϕ1[ϕ(a1i1a(i1+1)i2a(im1+1)ima(im+1)n)]P1P2\phi^{-1}\Bigg{[}\phi\big{(}a_{1i_{1}}a_{(i_{1}+1)i_{2}}\cdots a_{(i_{m-1}+1)i_{m}}a_{(i_{m}+1)n}\big{)}\Bigg{]}\subseteq P_{1}\cup P_{2}

and for the cardinality of P1P2P_{1}\cup P_{2} we have

|P1P2||P1|+|P2|(k1)+(k1)n|P_{1}\cup P_{2}|\leq|P_{1}|+|P_{2}|\leq(k-1)+(k-1)\leq n

Therefore, we get that the preimage of any element in BmB_{m} has cardinality less than or equal to nn and this means |Bm|n|Bm+1||B_{m}|\cdot n\geq|B_{m+1}|.

Note that:

bmtm=1i1<<im1(n1)a1i1a(i1+1)i2a(i2+1)i3a(im1+1)n=tm|Bm|bm=|Bm|b_{m}\cdot t^{m}=\smash{\displaystyle\sum_{1\leq i_{1}<\cdots<i_{m-1}\leq(n-1)}}{a_{1i_{1}}a_{(i_{1}+1)i_{2}}a_{(i_{2}+1)i_{3}}\cdots a_{(i_{m-1}+1)n}}=t^{m}\cdot|B_{m}|\Rightarrow b_{m}=|B_{m}|

and similarly

bm+1=|Bm+1|b_{m+1}=|B_{m+1}|

Hence

bm+1=|Bm+1|n|Bm|=nbm     \hskip 159.3356ptb_{m+1}=|B_{m+1}|\leq n\cdot|B_{m}|=n\cdot b_{m}\hskip 153.6447pt\leavevmode\nobreak\ \vbox{\hrule\hbox{\vrule height=5.59721pt\hskip 3.44444pt\vrule}\hrule}

As a corollary of Lemma 5.16, we can write the following inequality for (5.30) if stn\dfrac{s}{t}\geq n:

abs(|A|)\displaystyle\operatorname{abs}(|A|) =1sn1t+n2n12sn3t3b4sn4t4+b5sn5t5b6sn6t6+=\displaystyle=1\cdot s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}-b_{4}\cdot s^{n-4}t^{4}+b_{5}\cdot s^{n-5}t^{5}-b_{6}\cdot s^{n-6}t^{6}+\cdots=
=sn1t+n2n12sn3t3sn5t4(sb4tb5)sn7t6(sb6tb7)+\displaystyle=s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}-s^{n-5}t^{4}\big{(}s\cdot b_{4}-t\cdot b_{5}\big{)}-s^{n-7}t^{6}\big{(}s\cdot b_{6}-t\cdot b_{7}\big{)}+\cdots\leq
sn1t+n2n12sn3t3sn5t4(sb4tnb4)sn7t6(sb6tnb6)+=\displaystyle\leq s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}-s^{n-5}t^{4}\big{(}s\cdot b_{4}-t\cdot n\cdot b_{4}\big{)}-s^{n-7}t^{6}\big{(}s\cdot b_{6}-t\cdot n\cdot b_{6}\big{)}+\cdots=
=sn1t+n2n12sn3t3sn5t5b4(stn)sn7t7b6(stn)+\displaystyle=s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}-s^{n-5}t^{5}b_{4}\big{(}\dfrac{s}{t}-n\big{)}-s^{n-7}t^{7}b_{6}\big{(}\dfrac{s}{t}-n\big{)}+\cdots\leq
(5.34) sn1t+n2n12sn3t3\displaystyle\leq s^{n-1}t+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}s^{n-3}t^{3}

So having stn\dfrac{s}{t}\geq n is sufficient for the last case, namely (5.29) is not a requirement anymore if stn\dfrac{s}{t}\geq n. Then there are four inequalities left that we still need to deal with: (5.25)-(5.28).

Lemma 5.17.

If st=x>1cosh1(2)n2\dfrac{s}{t}=x>\dfrac{1}{\cosh^{-1}(2)}\cdot n^{2} these inequalities hold for n2n\geq 2.

Proof 5.18.

Start with the first one, (5.25), we know that

32n<1cosh1(2)n2<x,\dfrac{3}{2}\cdot n<\dfrac{1}{\cosh^{-1}(2)}\cdot n^{2}<x\ ,

then

xn2(n11)+xn4(n13)+xn6(n15)+\displaystyle x^{n-2}{{n-1}\choose{1}}+x^{n-4}{{n-1}\choose{3}}+x^{n-6}{{n-1}\choose{5}}+\cdots\ <xn2n+xn4n33!+xn6n55!+<\displaystyle<\ x^{n-2}\cdot n+x^{n-4}\cdot\dfrac{n^{3}}{3!}+x^{n-6}\cdot\dfrac{n^{5}}{5!}+\cdots\ <
<23xn1+(23)3xn13!+(23)5xn15!+<\displaystyle<\ \dfrac{2}{3}\cdot x^{n-1}+\big{(}\dfrac{2}{3}\big{)}^{3}\cdot\dfrac{x^{n-1}}{3!}+\big{(}\dfrac{2}{3}\big{)}^{5}\cdot\dfrac{x^{n-1}}{5!}+\cdots\ <
<23xn1(1+13!+15!+)<\displaystyle<\ \dfrac{2}{3}\cdot x^{n-1}\cdot\big{(}1+\dfrac{1}{3!}+\dfrac{1}{5!}+\cdots\big{)}\ <
<23xn1sinh(1)<xn1<\displaystyle<\ \dfrac{2}{3}\cdot x^{n-1}\cdot\sinh(1)\ <\ x^{n-1}\ <
<xn1+n2n12xn3\displaystyle<\ x^{n-1}+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}x^{n-3}\ \checkmark

For the second one (5.26), use the first inequality (5.25),

xn1+n2n12xn3\displaystyle x^{n-1}+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}x^{n-3} >xn2(n11)+xn4(n13)+xn6(n15)+>\displaystyle>x^{n-2}{{n-1}\choose{1}}+x^{n-4}{{n-1}\choose{3}}+x^{n-6}{{n-1}\choose{5}}+\cdots\ >
>xn3n(n11)+xn5n(n13)+>\displaystyle>\ x^{n-3}\cdot n\cdot{{n-1}\choose{1}}+x^{n-5}\cdot n\cdot{{n-1}\choose{3}}+\cdots>
>xn3(n12)+xn5(n14)+\displaystyle>x^{n-3}\cdot{{n-1}\choose{2}}+x^{n-5}\cdot{{n-1}\choose{4}}+\cdots\ \checkmark

For the third case (5.27),

xn3(n12)+xn5(n14)+<xn3n22!+xn5n44!+xn7n66!+\displaystyle x^{n-3}\cdot{{n-1}\choose{2}}+x^{n-5}\cdot{{n-1}\choose{4}}+\cdots\ <\ x^{n-3}\cdot\dfrac{n^{2}}{2!}+x^{n-5}\cdot\dfrac{n^{4}}{4!}+x^{n-7}\cdot\dfrac{n^{6}}{6!}+\cdots\ <\displaystyle<
<xn2(cosh1(2))12!+xn3(cosh1(2))24!+xn4(cosh1(2))36!+\displaystyle<\ x^{n-2}\cdot\dfrac{(\cosh^{-1}(2))^{1}}{2!}+x^{n-3}\cdot\dfrac{(\cosh^{-1}(2))^{2}}{4!}+x^{n-4}\cdot\dfrac{(\cosh^{-1}(2))^{3}}{6!}+\cdots\ <\displaystyle<
<xn2(cosh1(2))22!+xn3(cosh1(2))44!+xn4(cosh1(2))66!+\displaystyle<\ x^{n-2}\cdot\dfrac{(\cosh^{-1}(2))^{2}}{2!}+x^{n-3}\cdot\dfrac{(\cosh^{-1}(2))^{4}}{4!}+x^{n-4}\cdot\dfrac{(\cosh^{-1}(2))^{6}}{6!}+\cdots\ <\displaystyle<
<xn2(cosh1(2))22!+xn2(cosh1(2))44!+xn2(cosh1(2))66!+\displaystyle<\ x^{n-2}\cdot\dfrac{(\cosh^{-1}(2))^{2}}{2!}+x^{n-2}\cdot\dfrac{(\cosh^{-1}(2))^{4}}{4!}+x^{n-2}\cdot\dfrac{(\cosh^{-1}(2))^{6}}{6!}+\cdots\ <\displaystyle<
<xn2[cosh(cosh1(2))1]=xn2<xn2+n2n12xn3\displaystyle<\ x^{n-2}\cdot\bigg{[}\cosh\big{(}\cosh^{-1}(2)\big{)}-1\bigg{]}\ =\ x^{n-2}\ <\ x^{n-2}+\Big{\lfloor}\dfrac{n}{2}\Big{\rfloor}\Big{\lfloor}\dfrac{n-1}{2}\Big{\rfloor}x^{n-3}\ \displaystyle\checkmark

And for the last inequality (5.28),

xn5(n14)+xn7(n16)+\displaystyle x^{n-5}\cdot{{n-1}\choose{4}}+x^{n-7}\cdot{{n-1}\choose{6}}+\cdots\ <xn5n44!+xn7n66!+<\displaystyle<\ x^{n-5}\cdot\dfrac{n^{4}}{4!}+x^{n-7}\cdot\dfrac{n^{6}}{6!}+\cdots\ <
<xn3(cosh1(2))24!+xn4(cosh1(2))36!+<\displaystyle<x^{n-3}\cdot\dfrac{(\cosh^{-1}(2))^{2}}{4!}+x^{n-4}\cdot\dfrac{(\cosh^{-1}(2))^{3}}{6!}+\cdots\ <
<xn3(cosh1(2))44!+xn4(cosh1(2))66!+<\displaystyle<x^{n-3}\cdot\dfrac{(\cosh^{-1}(2))^{4}}{4!}+x^{n-4}\cdot\dfrac{(\cosh^{-1}(2))^{6}}{6!}+\cdots\ <
<xn3(cosh1(2))44!+xn3(cosh1(2))66!+<\displaystyle<x^{n-3}\cdot\dfrac{(\cosh^{-1}(2))^{4}}{4!}+x^{n-3}\cdot\dfrac{(\cosh^{-1}(2))^{6}}{6!}+\cdots\ <
<xn3[cosh(cosh1(2))1]=xn3\displaystyle<x^{n-3}\cdot\bigg{[}\cosh\big{(}\cosh^{-1}(2)\big{)}-1\bigg{]}\ =\ x^{n-3}\ \checkmark

Remark 5.19.

For simplicity we can write 45\dfrac{4}{5} instead of 1cosh1(2)\dfrac{1}{\cosh^{-1}(2)} since we are not interested in the strict lower bound. Thus Theorem 5.3 and Lemma 5.17 finish the proof of Theorem 2.9.

Remark 5.20.

The lower bound in Theorem 2.9 is not sharp, but it is clear from the inequality (5.28) that it is asymptotic to n2n^{2} for our proof to hold.


6 Concluding Remarks

We found the maximum absolute determinants (and the matrices giving the corresponding values) for the cases st>45n2\dfrac{s}{t}>\dfrac{4}{5}\cdot n^{2} (Theorem 2.9) and 0st10\leq\dfrac{s}{t}\leq 1 (Theorem 2.6); in addition we already know the case st0\dfrac{s}{t}\leq 0 (Theorem 2.5). Furthermore we showed that 11 is the exact upper bound of st\dfrac{s}{t} for Theorem 2.6 (Proposition 4.1), and found the first maximizing matrix after st=1\dfrac{s}{t}=1 (Proposition 4.3) with the recurrence relation satisfied by its absolute determinant value (Proposition 4.5). Nevertheless, for the most part the problem as to what happens if 1<st<45n21<\dfrac{s}{t}<\dfrac{4}{5}\cdot n^{2} still remains open. Note that as st\dfrac{s}{t} goes to 11 from 45n2\dfrac{4}{5}\cdot n^{2}, the matrix which gives the maximum absolute determinant changes from having a localized to a much more uniform structure. In view of these observations, further investigations might be based on the following questions:

  • 1.

    Which matrices maximize the absolute determinant as st\dfrac{s}{t} goes to 11 from n2n^{2}, in other words, what are the transition forms?

  • 2.

    It is reasonable to work on the case s=2s=2 and t=1t=1 as a first step to understanding the transition form. Is Un(rc)U_{n}^{(rc)} the maximizing matrix in this case when n4n\geq 4?

  • 3.

    How many times do transitions occur depending on the size of the matrices?

  • 4.

    We know that for n4n\geq 4 the first transition occurs at st=1\dfrac{s}{t}=1 from UnU_{n} to Un(rc)U_{n}^{(rc)}. When does the second transition occur, in other words what is the maximum possible value of ϵ(n)\epsilon(n) in Remark 4.7?

  • 5.

    What should be the precise lower bound in Theorem 5.3? Is it asymptotic to n2n^{2}?

  • 6.

    When do other transitions occur?

  • 7.

    Note that the number of tt’s in the matrices UnU_{n} (3.6), Un(rc)U_{n}^{(rc)} (4.1) and WnW_{n} (5.2) are equal. Is it true that for any fixed nn, all maximizing matrices have the same number of tt’s?

  • 8.

    Moreover, there is no alternating sign among the nonzero permutations in the determinants for any of these three matrices. Is this condition valid for all maximizing matrices?

Acknowledgements

We thank Professor N. J. Higham for drawing our attention to questions concerning Bohemian Matrices. The work reported here was carried out as part of an undergraduate summer research project by Mr Ahmet Abdullah Keleş at the University of Bristol, June–July 2019. Mr Keleş is grateful for financial support and the hospitality of the School of Mathematics at the University of Bristol during his visit. JPK was supported by a Royal Society Wolfson Research Merit Award, EPSRC Programme Grant EP/K034383/1 LMF: LL-Functions and Modular Forms, and by ERC Advanced Grant 740900 (LogCorRM).

References

  • [1] Sylvester J. J. “Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers.” Philos Mag. 1867; 34: 461-475.
  • [2] Hadamard J. “Resolution d’une question relative aux determinants.” Bull Sci Math. 1893; 17: 240– 246.
  • [3] Bressoud, D. Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cambridge, England: Cambridge University Press, 1999.
  • [4] Vu V. “Random discrete matrices.” Bolyai Soc Math Stud 17 (2008), 257-280.
  • [5] Chan, E. Y. S., Corless. R. M., Gonzalez-Vega, L., Sendra, J. R., Sendra, J. and Thornton, S.E. “Bohemian Upper Hessenberg Matrices.” arXiv:1809.10653, September 2018.
  • [6] Thornton, Steven E. “Algorithms for Bohemian Matrices” (2019). Electronic Thesis and Dissertation Repository. 6069. https://ir.lib.uwo.ca/etd/6069
  • [7] Thornton, Steven E. “The Characteristic Polynomial Database.” published electronically at http://bohemianmatrices.com/cpdb, 08.07.2019.
  • [8] Fasi, Massimiliano and Negri Porzio, Gian Maria. “Determinants of Normalized Bohemian Upper Hessemberg Matrices.” MIMS EPrint 2019.7, Manchester Institute for Mathematical Sciences, The University of Manchester, UK, 2019. To appear in Electron. J. Linear Algebra.
  • [9] Ching L. “The maximum determinant of an n×nn\times n lower Hessenberg (0,1)(0,1) matrix.” Linear Algebra and its Applications, 183 (1993): 147-153.
  • [10] Harary, F. “The determinant of the adjacency matrix of a graph.” SIAM Rev., 4 (1962): 202-210.