This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Matrix representations of linear transformations on bicomplex space

Anjali [email protected] Department of Applied Mathematics, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India Fahed Zulfeqarr [email protected] Department of Applied Mathematics, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India Akhil Prakash [email protected] Department of Mathematics, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India  and  Prabhat Kumar [email protected] Department of Applied Mathematics, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India
Abstract.

An algebraic investigation on bicomplex numbers is carried out here. Particularly matrices and linear maps defined on them are discussed. A new kind of cartesian product, referred to as an idempotent product, is introduced and studied. The elements of this space are linear maps of a special form. These linear maps are examined with respect to usual notions like kernel, range, and singularity. Their matrix representation is also discussed.

Key words and phrases:
Bicomplex Numbers, Conjugation, Vector Space and Linear transformation.
IMS Mathematics Subject Classification:
Primary 15A04, 15A30; Secondary 30G35

Introduction

The theory of bicomplex numbers has been a thrust area of current research in mathematics. It has evolved a lot in the recent past. Several researchers (see [1, 2, 3, 5, 6, 9, 10, 11, 12, 13]) have contributed a lot to the field. They have been working in different directions to analyze their properties and to create concepts consistent with a unified approach to the multivariate theory of complex numbers. In this process, some concepts like bicomplex topology [14], differentiability and analyticity of bicomplex function [8], power series, bicomplex matrices, bicomplex Riemann zeta function and Dirichlet series, integrability, Cauchy’s theory, etc., have been established with necessary modifications. Also, we have followed some of the results and symbols from the existing literature on the fundamental concepts from the book [8] on bicomplex functions.

In section 1, bicomplex numbers and some basic algebraic structures built on them are introduced and discussed. The section also stresses the role of the idempotent representation of bicomplex numbers in their study. A new kind of cartesian product, known as an idempotent product, is defined and discussed. The space becomes a central object of investigation. In section 2, we have revised bicomplex complex linear operator and also we have defined bicomplex linear transformation in this section.

Section 3 deals with matrices and linear maps defined on bicomplex space. It connects bicomplex matrices with elements of an idempotent product. The last section focuses on how the elements of the idempotent product behave for kernel, range, invertibility, and singularity. It renders some results of their matrix representation.

1. Preliminaries and Notations

This section introduces bicomplex numbers. It deals with basic notions such as idempotent representation and the cartesian product of bicomplex space. It presents some fundamental results on bicomplex numbers.

Bicomplex numbers: A bicomplex number is an element of the form :

ξ=u1+i1u2+i2u3+i1i2u4,uk,  1k4,withi1i2=i2i1,i12=i22=1.\displaystyle\xi={u}_{1}+{i}_{1}{u}_{2}+{i}_{2}{u}_{3}+{i}_{1}{i}_{2}{u}_{4},\;\;{u}_{k}\in\mathbb{R},\;\;1\leqslant k\leqslant 4,\;\;\mbox{with}\;\;\;{i}_{1}{i}_{2}\ =\ {i}_{2}{i}_{1},\;\;{i}_{1}^{2}={i}_{2}^{2}=-1.

The set of all bicomplex numbers is denoted by 2\displaystyle\mathbb{C}_{2} and is referred to as the bicomplex space. The symbols 1,0\displaystyle\mathbb{C}_{1},\;\mathbb{C}_{0}, for convenience, denote the set of all complex numbers and the set of all real numbers respectively. The bicomplex space 2\displaystyle\mathbb{C}_{2} can be described in the following two ways:

2\displaystyle\displaystyle\mathbb{C}_{2} \displaystyle\displaystyle\coloneqq {u1+i1u2+i2u3+i1i2u4:u1,u2,u3,u40},and\displaystyle\displaystyle\{{u}_{1}+{i}_{1}{u}_{2}+{i}_{2}{u}_{3}+{i}_{1}{i}_{2}{u}_{4}\;:\;{u}_{1},{u}_{2},{u}_{3},{u}_{4}\in\mathbb{C}_{0}\},and
2\displaystyle\displaystyle\mathbb{C}_{2} \displaystyle\displaystyle\coloneqq {z1+i2z2:z1,z21}.\displaystyle\displaystyle\{{z}_{1}+{i}_{2}{z}_{2}\;:\;{z}_{1},{z}_{2}\in\mathbb{C}_{1}\}.

2\displaystyle\mathbb{C}_{2} contains zero-divisors and hence it is not a field but an algebra over 1\displaystyle\mathbb{C}_{1}. There are exactly four idempotent elements in 2\displaystyle\mathbb{C}_{2}, viz., 0,1,e1,e2\displaystyle 0,1,e_{1},e_{2} where e1,e2\displaystyle e_{1},e_{2} represent two nontrivial idempotent elements defined as follows:

e1(1+i1i2)2ande2(1i1i2)2.\displaystyle e_{1}\coloneqq\frac{(1+i_{1}i_{2})}{2}\quad\mbox{and}\quad e_{2}\coloneqq\frac{(1-i_{1}i_{2})}{2}.

Notice that  e1+e2=1\displaystyle e_{1}+e_{2}=1  and  e1e2=e2e1=0\displaystyle e_{1}e_{2}=e_{2}e_{1}=0. Linear independence of these elements over 1\displaystyle\mathbb{C}_{1} gives rise to a new representation of all bicomplex numbers known as idempotent representation.

Idempotent representation of bicomplex numbers: Every bicomplex number ξ=z1+i2z2\displaystyle\xi={z}_{1}+{i}_{2}{z}_{2} can be uniquely represented as the complex combination of elements e1\displaystyle e_{1} and e2\displaystyle e_{2} in the following form

ξ=(z1i1z2)e1+(z1+i1z2)e2,\displaystyle\xi=(z_{1}-i_{1}z_{2})e_{1}+(z_{1}+i_{1}z_{2})e_{2},

where complex numbers (z1i1z2)\displaystyle(z_{1}-i_{1}z_{2}) and (z1+i1z2)\displaystyle(z_{1}+i_{1}z_{2}) are called idempotent components of ξ\displaystyle\xi and will be denoted by ξ\displaystyle\xi^{-} and ξ+\displaystyle\xi^{+} respectively. Therefore the number ξ=z1+i2z2\displaystyle\xi={z}_{1}+{i}_{2}{z}_{2} can also be written as ξ=ξe1+ξ+e2\displaystyle\xi=\xi^{-}e_{1}+\xi^{+}e_{2}, where ξ=z1i1z2\displaystyle\xi^{-}=z_{1}-i_{1}z_{2} and ξ+=z1+i1z2\displaystyle\xi^{+}=z_{1}+i_{1}z_{2}.

Remark 1.1.

The idempotent representation of product of elements ξ,η2\displaystyle\xi,\eta\in\mathbb{C}_{2} can be seen easily to be as:

ξη=(ξη)e1+(ξ+η+)e2.\displaystyle\xi\cdot\eta=\left(\xi^{-}\eta^{-}\right)e_{1}+\left(\xi^{+}\eta^{+}\right)e_{2}.

Cartesian product: The n\displaystyle n-times cartesian product of 2\displaystyle\mathbb{C}_{2} is represented by 2n\displaystyle\mathbb{C}_{2}^{n} and consisting of all n\displaystyle n-tuples of bicomplex numbers of the form  (ξ1,ξ2,,ξn)\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{n}), where ξi2;i=1,2,,n\displaystyle\xi_{i}\in\mathbb{C}_{2};\;i=1,2,\ldots,n. That is,

2n{(ξ1,ξ2,,ξn):ξi2;i=1,2,,n}.\displaystyle{\mathbb{C}}_{2}^{n}\eqqcolon\{(\xi_{1},\xi_{2},\ldots,\xi_{n}):\;\xi_{i}\in\mathbb{C}_{2};\;i=1,2,\ldots,n\}.

Furthermore, using idempotent representation, we can also express every element of 2n\displaystyle\mathbb{C}_{2}^{n} uniquely as:

(ξ1,ξ2,,ξn)=(ξ1,ξ2,,ξn)e1+(ξ1+,ξ2+,,ξn+)e2\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{n})=(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})e_{1}+(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})e_{2}

such that (ξ1,ξ2,,ξn)\displaystyle(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-}) and (ξ1+,ξ2+,,ξn+)\displaystyle(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+}) are n-tuples of complex numbers from the space 1n\displaystyle\mathbb{C}_{1}^{n}.

Remark 1.2.

Some remarks can be easily made here.

  1. (1)

    Comparison between elements of 2n\displaystyle\mathbb{C}_{2}^{n} can be done by the following rules :

    (ξ1,ξ2,,ξn)=(η1,η2,,ηn)\displaystyle\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{n})=(\eta_{1},\eta_{2},\ldots,\eta_{n}) \displaystyle\displaystyle\Longleftrightarrow ξi=ηii\displaystyle\displaystyle\xi_{i}=\eta_{i}\quad\forall\;i
    \displaystyle\displaystyle\Longleftrightarrow ξi=ηi&ξi+=ηi+i\displaystyle\displaystyle\xi^{-}_{i}=\eta^{-}_{i}\;\&\;\;\xi^{+}_{i}=\eta^{+}_{i}\;\;\forall\;i
    i.e.,(ξ1,ξ2,,ξn)=(η1,η2,,ηn)\displaystyle\displaystyle i.e.,\;\;(\xi_{1},\xi_{2},\ldots,\xi_{n})=(\eta_{1},\eta_{2},\ldots,\eta_{n}) \displaystyle\displaystyle\Longleftrightarrow ξi=ηi&ξi+=ηi+i.\displaystyle\displaystyle\xi^{-}_{i}=\eta^{-}_{i}\;\&\;\;\xi^{+}_{i}=\eta^{+}_{i}\;\;\forall\;i.
  2. (2)

    Generally, we know that if F\displaystyle F^{\prime} is a sub-field of a field F then Fn(F)\displaystyle F^{n}(F^{\prime}) forms a vector space. We have the result that 2\displaystyle\mathbb{C}_{2} is not a field so the above result does not give us any proof that the 2n(1)\displaystyle\mathbb{C}_{2}^{n}(\mathbb{C}_{1}) is a vector space. It is not hard to see that 2n\displaystyle\mathbb{C}_{2}^{n} forms a vector space over 1\displaystyle\mathbb{C}_{1} with respect to usual addition and scalar multiplication. This immediately yields that the dimension of 2n\displaystyle\mathbb{C}_{2}^{n} over C1\displaystyle C_{1} is 2n\displaystyle 2n, i.e., we have

    dim(2n)=2n=2dim(1n).\displaystyle\dim(\mathbb{C}_{2}^{n})=2n=2\cdot\dim(\mathbb{C}_{1}^{n}).
  3. (3)

    Furthermore for an element (ξ1,ξ2,,ξn)2n\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{n})\in\mathbb{C}_{2}^{n}, we define a scalar product in 2n\displaystyle\mathbb{C}_{2}^{n} with elements e1,e2\displaystyle e_{1},\;e_{2} by the rules:

    e1(ξ1,ξ2,,ξn)=(ξ1,ξ2,,ξn)e1\displaystyle\displaystyle e_{1}\cdot(\xi_{1},\xi_{2},\ldots,\xi_{n})=(\xi_{1},\xi_{2},\ldots,\xi_{n})e_{1} \displaystyle\displaystyle\eqqcolon (ξ1e1,ξ2e1,,ξne1)=(ξ1e1,ξ2e1,,ξne1),and\displaystyle\displaystyle(\xi_{1}e_{1},\xi_{2}e_{1},\ldots,\xi_{n}e_{1})=(\xi_{1}^{-}e_{1},\xi_{2}^{-}e_{1},\ldots,\xi_{n}^{-}e_{1}),and
    e2(ξ1,ξ2,,ξn)=(ξ1,ξ2,,ξn)e2\displaystyle\displaystyle e_{2}\cdot(\xi_{1},\xi_{2},\ldots,\xi_{n})=(\xi_{1},\xi_{2},\ldots,\xi_{n})e_{2} \displaystyle\displaystyle\eqqcolon (ξ1e2,ξ2e2,,ξne2)=(ξ1+e2,ξ2+e2,,ξn+e2).\displaystyle\displaystyle(\xi_{1}e_{2},\xi_{2}e_{2},\ldots,\xi_{n}e_{2})=(\xi_{1}^{+}e_{2},\xi_{2}^{+}e_{2},\ldots,\xi_{n}^{+}e_{2}).

    It follows that naturally extends to a scalar product in 2n\displaystyle\mathbb{C}_{2}^{n} over 2\displaystyle\mathbb{C}_{2} and hence to a product in 2n\displaystyle\mathbb{C}_{2}^{n} as follows:

    η(ξ1,ξ2,,ξn)\displaystyle\displaystyle\eta\cdot(\xi_{1},\xi_{2},\ldots,\xi_{n}) =\displaystyle\displaystyle= (ηξ1,ηξ2,,ηξn),and\displaystyle\displaystyle(\eta\xi_{1},\eta\xi_{2},\ldots,\eta\xi_{n}),and
    (ξ1,ξ2,,ξn)(η1,η2,,ηn)\displaystyle\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{n})\cdot(\eta_{1},\eta_{2},\ldots,\eta_{n}) =\displaystyle\displaystyle= (ξ1η1,,ξnηn).\displaystyle\displaystyle(\xi_{1}\eta_{1},\cdots,\xi_{n}\eta_{n}).

    It makes 2n\displaystyle\mathbb{C}_{2}^{n} not just to be a 2\displaystyle\mathbb{C}_{2}-module but also to be a 1\displaystyle\mathbb{C}_{1}-algebra.

Cartesian idempotent product: A new kind of cartesian product in bicomplex spaces is hereby introduced which will be referred to as idempotent product which will be dealt and analysed in later part of this article. This helps us to switch from complex case to bicomplex case.
Formally speaking, for any subsets  S1,S21n\displaystyle S_{1},S_{2}\subseteq\mathbb{C}_{1}^{n}, their idempotent product, denoted as S1×eS2\displaystyle S_{1}\times_{e}S_{2} is defined to be a subset of 2n\displaystyle\mathbb{C}_{2}^{n} given as

(1) S1×eS2{e1x+e2y:xS1,yS2}.\displaystyle\displaystyle S_{1}\times_{e}S_{2}\eqqcolon\{e_{1}x+e_{2}y:x\in S_{1},y\in S_{2}\}.

In the same manner, for any subsets  H1,H22m×n\displaystyle H_{1},H_{2}\subseteq\mathbb{C}_{2}^{m\times n}, their idempotent product, denoted as H1×eH2\displaystyle H_{1}\times_{e}H_{2} is defined to be a subset of 2m×n\displaystyle\mathbb{C}_{2}^{m\times n} given as

(2) H1×eH2{e1A+e2B:AH1,BH2}.\displaystyle\displaystyle H_{1}\times_{e}H_{2}\eqqcolon\{e_{1}A+e_{2}B:A\in H_{1},B\in H_{2}\}.

Similarly for any non-empty subsets A1,A2\displaystyle A_{1},A_{2} of the space of  1\displaystyle\mathbb{C}_{1}-linear maps, Hom(1n,1m)\displaystyle\text{Hom}(\mathbb{C}_{1}^{n},\mathbb{C}_{1}^{m}), their idempotent product, written as A1×eA2\displaystyle A_{1}\times_{e}A_{2}, is defined to be a subset of Hom(2n,2m)\displaystyle\text{Hom}(\mathbb{C}_{2}^{n},\mathbb{C}_{2}^{m}) given as

(3) A1×eA2{e1T1+e2T2:T1A1,T2A2}.\displaystyle\displaystyle A_{1}\times_{e}A_{2}\eqqcolon\{e_{1}T_{1}+e_{2}T_{2}:\;T_{1}\in A_{1},T_{2}\in A_{2}\}.

This induces a new formulation of bicomplex space 2n\displaystyle\mathbb{C}_{2}^{n} as  2n=1n×e1n\displaystyle\mathbb{C}_{2}^{n}=\mathbb{C}_{1}^{n}\times_{e}\mathbb{C}_{1}^{n}, for all n1\displaystyle n\geqslant 1. Also we get 2m×n=1m×n×e1m×n\displaystyle\mathbb{C}_{2}^{m\times n}=\mathbb{C}_{1}^{m\times n}\times_{e}\mathbb{C}_{1}^{m\times n}. We will later give a meaning to the elements of A1×eA2\displaystyle A_{1}\times_{e}A_{2}.

2. Bicomplex linear operator and bicomplex linear transformation

In this section, we summarize bicomplex linear operator and we refer the reader to [4, 7] for further details. Also, we have defined bicomplex linear transformation. Let V\displaystyle V be a module over bicomplex space and Let T:VV\displaystyle T\colon V\to V be a map such that

T(u+v)=T(u)+T(v)andT(αv)=αT(v)α2andu,vV.\displaystyle\displaystyle T(u+v)=T(u)+T(v)\quad\mbox{and}\quad T(\alpha v)=\alpha T(v)\quad\forall\alpha\in\mathbb{C}_{2}\quad\mbox{and}\quad u,v\in V.

Then we say that T\displaystyle T is a bicomplex linear operator on V\displaystyle V. The set End(V)\displaystyle End(V) of linear operator on V\displaystyle V forms a bicomplex - module by defining

(T+S)(v)\displaystyle\displaystyle(T+S)(v) =\displaystyle\displaystyle= T(v)+S(v)T,SEnd(V)\displaystyle\displaystyle T(v)+S(v)\quad\forall\quad T,S\in End(V)
(αT)(v)\displaystyle\displaystyle(\alpha T)(v) =\displaystyle\displaystyle= α(T(v))TEnd(V),α2\displaystyle\displaystyle\alpha(T(v))\quad\forall\quad T\in End(V),\alpha\in\mathbb{C}_{2}

Let us set V1=e1V={e1v:vv}\displaystyle V_{1}=e_{1}V=\{e_{1}v:v\in v\}. Any element vV\displaystyle v\in V can be written as

v=(e1+e2)v=e1v+e2v=v1+v2=e1v1+e2v2,wherev1=e1v,v2=e2v\displaystyle\displaystyle v=(e_{1}+e_{2})v=e_{1}v+e_{2}v=v_{1}+v_{2}=e_{1}v_{1}+e_{2}v_{2},\quad\mbox{where}\quad v_{1}=e_{1}v,v_{2}=e_{2}v

It is evident that V=V1V2\displaystyle V=V_{1}\oplus V_{2}. We can define the operators T1,T2\displaystyle T_{1},T_{2} as

T1(v)=e1T(v),T2(v)=e2T(v)\displaystyle\displaystyle T_{1}(v)=e_{1}T(v),T_{2}(v)=e_{2}T(v)

where T1:VV1\displaystyle T_{1}\colon V\to V_{1} and T2:VV2\displaystyle T_{2}\colon V\to V_{2}

Remark 2.1.

The following properties hold

  1. (1)

    The operators T1\displaystyle T_{1} and T2\displaystyle T_{2} are bicomlex linear

  2. (2)

    we get the decomposition T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2}

  3. (3)

    The action T\displaystyle T on V\displaystyle V can be decomposed as fellows
    T(v)=e1T1(v1)+e2T2(v2)\displaystyle T(v)=e_{1}T_{1}(v_{1})+e_{2}T_{2}(v_{2}), where v=e1v1+e2v2V\displaystyle v=e_{1}v_{1}+e_{2}v_{2}\in V

  4. (4)

    The operator Tk:VkVk;k=1,2\displaystyle T_{k}\colon V_{k}\to V_{k};k=1,2

Definition 2.2.

(Bicomplex linear transformation) If V\displaystyle V and V\displaystyle V^{\prime} is a module over 2\displaystyle\mathbb{C}_{2} and let T:VV\displaystyle T\colon V\to V^{\prime} be a map such that

T(u+v)\displaystyle\displaystyle T(u+v) =\displaystyle\displaystyle= T(u)+T(v)\displaystyle\displaystyle T(u)+T(v)
T(αu)\displaystyle\displaystyle T(\alpha u) =\displaystyle\displaystyle= αT(u)α2andu,vV\displaystyle\displaystyle\alpha T(u)\quad\forall\quad\alpha\in\mathbb{C}_{2}\quad\mbox{and}\quad u,v\in V

then we say that T\displaystyle T is a bicomplex linear transformation from V to V’

As previously, we can define the sets V1,V2,V1,V2\displaystyle V_{1},V_{2},V^{\prime}_{1},V^{\prime}_{2} and the linear transformation T1\displaystyle T_{1} and T2\displaystyle T_{2} here as well

V1=e1V,V2=e2V,V1=e1VandV2=e2V\displaystyle V_{1}=e_{1}V,\quad V_{2}=e_{2}V,\quad V^{\prime}_{1}=e_{1}V^{\prime}\quad\mbox{and}\quad V^{\prime}_{2}=e_{2}V^{\prime}

Any element vV\displaystyle v\in V and vV\displaystyle v^{\prime}\in V^{\prime} can be written as

v=e1v1+e2v2,v=e1v1+e2v2wherevi=eiv,vi=eivi=1,2\displaystyle v=e_{1}v_{1}+e_{2}v_{2},\quad v^{\prime}=e_{1}v^{\prime}_{1}+e_{2}v^{\prime}_{2}\quad\mbox{where}\quad v_{i}=e_{i}v,v^{\prime}_{i}=e_{i}v^{\prime}\forall i=1,2

Also it is evident that V=V1V2\displaystyle V=V_{1}\oplus V_{2} and V=V1V2\displaystyle V^{\prime}=V^{\prime}_{1}\oplus V^{\prime}_{2}. The linear transformation T1:VV1\displaystyle T_{1}\colon V\to V^{\prime}_{1} and T2:VV2\displaystyle T_{2}\colon V\to V^{\prime}_{2} will be

T1(v)=e1T(v)andT2(v)=e2T(v)\displaystyle T_{1}(v)=e_{1}T(v)\quad\mbox{and}\quad T_{2}(v)=e_{2}T(v)
Remark 2.3.

We can easily prove the following properties

  1. (1)

    The linear transformation T1\displaystyle T_{1} and T2\displaystyle T_{2} are bicomplex linear.

  2. (2)

    We get the decomposition T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2}

  3. (3)

    The action T\displaystyle T on V\displaystyle V can be decomposed as fellows

    T(v)=e1T1(v1)+e2T2(v2);v=e1v1+e2v2V\displaystyle T(v)=e_{1}T_{1}(v_{1})+e_{2}T_{2}(v_{2});\quad v=e_{1}v_{1}+e_{2}v_{2}\in V
  4. (4)

    The linear transformation Tk:VkVk;k=1,2\displaystyle T_{k}\colon V_{k}\to V^{\prime}_{k};k=1,2

particularly if we set V=2n\displaystyle V=\mathbb{C}_{2}^{n} and V=2m\displaystyle V^{\prime}=\mathbb{C}_{2}^{m} then V1=e11n,V2=e21n\displaystyle V_{1}=e_{1}\mathbb{C}_{1}^{n},V_{2}=e_{2}\mathbb{C}_{1}^{n} and V1=e11m,V2=e21m\displaystyle V^{\prime}_{1}=e_{1}\mathbb{C}_{1}^{m},V^{\prime}_{2}=e_{2}\mathbb{C}_{1}^{m}. In this case T:2n2m\displaystyle T\colon\mathbb{C}_{2}^{n}\to\mathbb{C}_{2}^{m} is a bicomplex linear transformation. Also, T1:2ne11m\displaystyle T_{1}\colon\mathbb{C}_{2}^{n}\to e_{1}\mathbb{C}_{1}^{m} and T2:2ne21m\displaystyle T_{2}\colon\mathbb{C}_{2}^{n}\to e_{2}\mathbb{C}_{1}^{m} specially, T1:e11ne11m\displaystyle T_{1}\colon e_{1}\mathbb{C}_{1}^{n}\to e_{1}\mathbb{C}_{1}^{m} and T2:e21ne21m\displaystyle T_{2}\colon e_{2}\mathbb{C}_{1}^{n}\to e_{2}\mathbb{C}_{1}^{m} are bicomplex linear transformation.

Remark 2.4.

If (ξ1,ξ2,,ξn)2n\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{n})\in\mathbb{C}_{2}^{n} and

(4) T(ξ1,ξ2,,ξn)=(η1,η2,,ηm)\displaystyle\displaystyle T(\xi_{1},\xi_{2},\ldots,\xi_{n})=(\eta_{1},\eta_{2},\ldots,\eta_{m})

As T\displaystyle T is linear with respect to bicomplex numbers then

e1T(ξ1,ξ2,,ξn)+e2T(ξ1+,ξ2+,,ξn+)=e1(η1,η2,,ηm)+e2(η1+,η2+,,ηm+)\displaystyle\displaystyle e_{1}T(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})+e_{2}T(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})=e_{1}(\eta_{1}^{-},\eta_{2}^{-},\ldots,\eta_{m}^{-})+e_{2}(\eta_{1}^{+},\eta_{2}^{+},\ldots,\eta_{m}^{+})
(5) T(ξ1,ξ2,,ξn)=(η1,η2,,ηm)\displaystyle\displaystyle\Rightarrow T(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})=(\eta_{1}^{-},\eta_{2}^{-},\ldots,\eta_{m}^{-})

That is

(6) e1T(ξ1,ξ2,,ξn)\displaystyle\displaystyle e_{1}T(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-}) =\displaystyle\displaystyle= e1(η1,η2,,ηm)\displaystyle\displaystyle e_{1}(\eta_{1}^{-},\eta_{2}^{-},\ldots,\eta_{m}^{-})
(7) andT[e1(ξ1,ξ2,,ξn)]\displaystyle\displaystyle\mbox{and}\quad T[e_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})] =\displaystyle\displaystyle= e1(η1,η2,,ηm)\displaystyle\displaystyle e_{1}(\eta_{1}^{-},\eta_{2}^{-},\ldots,\eta_{m}^{-})

Also, by using definition 2.2, (6)\displaystyle(6) and (7)\displaystyle(7), we have

T1[e1(ξ1,ξ2,,ξn)]\displaystyle\displaystyle T_{1}[e_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})] =\displaystyle\displaystyle= e1T[e1(ξ1,ξ2,,ξn)]\displaystyle\displaystyle e_{1}T[e_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})]
=\displaystyle\displaystyle= e1e1(η1,η2,,ηm)\displaystyle\displaystyle e_{1}e_{1}(\eta_{1}^{-},\eta_{2}^{-},\ldots,\eta_{m}^{-})
(8) T1[e1(ξ1,ξ2,,ξn)]\displaystyle\displaystyle\therefore\quad T_{1}[e_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})] =\displaystyle\displaystyle= e1(η1,η2,,ηm)\displaystyle\displaystyle e_{1}(\eta_{1}^{-},\eta_{2}^{-},\ldots,\eta_{m}^{-})
=\displaystyle\displaystyle= e1T(ξ1,ξ2,,ξn)\displaystyle\displaystyle e_{1}T(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})
=\displaystyle\displaystyle= T1(ξ1,ξ2,,ξn)\displaystyle\displaystyle T_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})
=\displaystyle\displaystyle= e1(η1,η2,,ηm)\displaystyle\displaystyle e_{1}(\eta_{1}^{-},\eta_{2}^{-},\ldots,\eta_{m}^{-})

Now

T1(ξ1,ξ2,,ξn)\displaystyle\displaystyle T_{1}(\xi_{1},\xi_{2},\ldots,\xi_{n}) =\displaystyle\displaystyle= e1T(ξ1,ξ2,,ξn)\displaystyle\displaystyle e_{1}T(\xi_{1},\xi_{2},\ldots,\xi_{n})
=\displaystyle\displaystyle= e1(η1,η2,,ηm)\displaystyle\displaystyle e_{1}(\eta_{1},\eta_{2},\ldots,\eta_{m})
(9) T1(ξ1,ξ2,,ξn)\displaystyle\displaystyle\therefore\quad T_{1}(\xi_{1},\xi_{2},\ldots,\xi_{n}) =\displaystyle\displaystyle= e1(η1,η2,,ηm)\displaystyle\displaystyle e_{1}(\eta_{1}^{-},\eta_{2}^{-},\ldots,\eta_{m}^{-})

\displaystyle\therefore from (6),(7),(8)\displaystyle(6),(7),(8) and (9)

T1(ξ1,ξ2,,ξn)\displaystyle\displaystyle T_{1}(\xi_{1},\xi_{2},\ldots,\xi_{n}) =\displaystyle\displaystyle= e1(η1,η2,,ηm)\displaystyle\displaystyle e_{1}(\eta_{1}^{-},\eta_{2}^{-},\ldots,\eta_{m}^{-})
=\displaystyle\displaystyle= e1T(ξ1,ξ2,,ξn)\displaystyle\displaystyle e_{1}T(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})
=\displaystyle\displaystyle= T[e1(ξ1,ξ2,,ξn)]\displaystyle\displaystyle T[e_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})]
=\displaystyle\displaystyle= T1[e1(ξ1,ξ2,,ξn)]\displaystyle\displaystyle T_{1}[e_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})]
=\displaystyle\displaystyle= T1(ξ1,ξ2,,ξn)\displaystyle\displaystyle T_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})

Similarly

T2(ξ1,ξ2,,ξn)\displaystyle\displaystyle T_{2}(\xi_{1},\xi_{2},\ldots,\xi_{n}) =\displaystyle\displaystyle= e2(η1+,η2+,,ηm+)\displaystyle\displaystyle e_{2}(\eta_{1}^{+},\eta_{2}^{+},\ldots,\eta_{m}^{+})
=\displaystyle\displaystyle= e2T(ξ1+,ξ2+,,ξn+)\displaystyle\displaystyle e_{2}T(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})
=\displaystyle\displaystyle= T[e2(ξ1+,ξ2+,,ξn+)]\displaystyle\displaystyle T[e_{2}(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})]
=\displaystyle\displaystyle= T2[e2(ξ1+,ξ2+,,ξn+)]\displaystyle\displaystyle T_{2}[e_{2}(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})]
=\displaystyle\displaystyle= T2(ξ1+,ξ2+,,ξn+)\displaystyle\displaystyle T_{2}(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})

It is worth noting here that if T:2n2m\displaystyle T\colon\mathbb{C}_{2}^{n}\to\mathbb{C}_{2}^{m} is a bicomplex linear transformation then we get the bicomplex linear transformation T1:e11ne11m\displaystyle T_{1}\colon e_{1}\mathbb{C}_{1}^{n}\to e_{1}\mathbb{C}_{1}^{m} and T2:e21ne21m\displaystyle T_{2}\colon e_{2}\mathbb{C}_{1}^{n}\to e_{2}\mathbb{C}_{1}^{m} and vice versa. This notation is possible because T\displaystyle T is linear with respect to bicomplex numbers. Furthermore, we have defined another map in definition 3.2\displaystyle 3.2 for which this notion is not true because the map define in there is not linear with respect to bicomplex numbers.

3. Bicomplex Matrices and Linear transformations

This section focuses on bicomplex matrices and linear maps defined on the space 2n\displaystyle\mathbb{C}_{2}^{n}. It connects both these notions like the ordinary ones on complex numbers.

A bicomplex matrix of order m×n\displaystyle m\times n is denoted by  [ξij]m×n\displaystyle[\xi_{ij}]_{m\times n}, ξij2\displaystyle\xi_{ij}\in\mathbb{C}_{2}  or simply by [ξij]\displaystyle[\xi_{ij}] if there is no confusion. We let the set of all bicomplex matrices of order m×n\displaystyle m\times n be denoted by 2m×n\displaystyle\mathbb{C}_{2}^{m\times n}, i.e., we have

(10) 2m×n{[ξij]:ξij2;i=1,2,,m,j=1,2,,n}.\displaystyle\displaystyle\mathbb{C}_{2}^{m\times n}\eqqcolon\Big{\{}[\xi_{ij}]:\;\xi_{ij}\in\mathbb{C}_{2};\;i=1,2,\ldots,m,\;j=1,2,\ldots,n\Big{\}}.

The usual matrix addition and scalar multiplication makes the space 2m×n\displaystyle\mathbb{C}_{2}^{m\times n} to be a vector space over the field 1\displaystyle\mathbb{C}_{1}. Further each bicomplex matrix [ξij]\displaystyle[\xi_{ij}] can be uniquely written as

(11) [ξij]=e1[ξij]+e2[ξij+],\displaystyle\displaystyle[\xi_{ij}]=e_{1}\ [\xi^{-}_{ij}]\ +\ e_{2}\ [\xi^{+}_{ij}],

where [ξij],[ξij+]\displaystyle[\xi^{-}_{ij}],\;[\xi^{+}_{ij}] are complex matrices of order m×n\displaystyle m\times n. From this, it follows easily that

(12) dim(2m×n)=2dim(1m×n)=2mn.\displaystyle\displaystyle\dim(\mathbb{C}_{2}^{m\times n})=2\cdot\dim(\mathbb{C}_{1}^{m\times n})=2mn.

We now come to linear maps, i.e., linear maps on bicomplex spaces. As we know that Hom(1n,1m)\displaystyle\text{Hom}(\mathbb{C}_{1}^{n},\mathbb{C}_{1}^{m}) represents the set of all 1\displaystyle\mathbb{C}_{1}-linear maps from 1n\displaystyle\mathbb{C}_{1}^{n} to 1m\displaystyle\mathbb{C}_{1}^{m} so does Hom(2n,2m)\displaystyle\text{Hom}(\mathbb{C}_{2}^{n},\mathbb{C}_{2}^{m}). However we simplify these notations to our comfort.

Remark 3.1.

For brevity and convenience, we denote the set of all 1\displaystyle\mathbb{C}_{1}-linear maps from 1n\displaystyle\mathbb{C}_{1}^{n} to 1m\displaystyle\mathbb{C}_{1}^{m} by L1nm\displaystyle L_{1}^{nm}, instead of Hom(1n,1m)\displaystyle\text{Hom}(\mathbb{C}_{1}^{n},\mathbb{C}_{1}^{m}) and set of all 1\displaystyle\mathbb{C}_{1}-linear maps from 2n\displaystyle\mathbb{C}_{2}^{n} to 2m\displaystyle\mathbb{C}_{2}^{m} by L2nm\displaystyle L_{2}^{nm}. Clearly both L1nm\displaystyle L_{1}^{nm} and L2nm\displaystyle L_{2}^{nm} are vector spaces over 1\displaystyle\mathbb{C}_{1}. Hence, we can see that

(13) dim(L1nm)=mnanddim(L2nm)=dimC2ndimC2m=2n2m=4mn.\displaystyle\displaystyle\dim(L_{1}^{nm})=mn\;\;\mbox{and}\;\;\dim(L_{2}^{nm})=\dim C_{2}^{n}\cdot\dim C_{2}^{m}=2n\cdot 2m=4mn.

It is evident that L1nm\displaystyle L_{1}^{nm}=Hom(1n,1m)\displaystyle\text{Hom}(\mathbb{C}_{1}^{n},\mathbb{C}_{1}^{m}) is isomorphic to 1m×n\displaystyle\mathbb{C}_{1}^{m\times n} as 1\displaystyle\mathbb{C}_{1} is a field but here we have 2\displaystyle\mathbb{C}_{2} is not a field so we cannot say that L2nm\displaystyle L_{2}^{nm}=Hom(2n,2m)\displaystyle\text{Hom}(\mathbb{C}_{2}^{n},\mathbb{C}_{2}^{m}) and 2m×n\displaystyle\mathbb{C}_{2}^{m\times n} are isomorphic. (12) and (13) follow that L2nm\displaystyle L_{2}^{nm} is not isomorphic to 2m×n\displaystyle\mathbb{C}_{2}^{m\times n}. Moreover 2m×n\displaystyle\mathbb{C}_{2}^{m\times n} is a proper subspace of L2nm\displaystyle L_{2}^{nm} in isomorphic sense. So we try to find a subset of L2nm\displaystyle L_{2}^{nm} which is isomorphic to 2m×n\displaystyle\mathbb{C}_{2}^{m\times n}. Thus the following definition.

Definition 3.2.

For any given T1,T2L1nm\displaystyle T_{1},T_{2}\in L_{1}^{nm}, we define a map f:2n2m\displaystyle f\colon\mathbb{C}_{2}^{n}\to\mathbb{C}_{2}^{m} by the following rule:

f(ξ1,ξ2,,ξn)e1T1(ξ1,ξ2,,ξn)+e2T2(ξ1+,ξ2+,,ξn+).\displaystyle f(\xi_{1},\xi_{2},\ldots,\xi_{n})\eqqcolon e_{1}\cdot{T}_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})+e_{2}\cdot{T}_{2}(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+}).

One can notice that  f\displaystyle f  is a 1\displaystyle\mathbb{C}_{1}-linear map. This  f\displaystyle f  is defined as e1T1+e2T2\displaystyle e_{1}T_{1}+e_{2}T_{2}. Therefore, the set of all such linear maps is the idempotent product L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}, i.e., we have

(14) L1nm×eL1nm\displaystyle\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm} \displaystyle\displaystyle\eqqcolon {e1T1+e2T2L2nm:T1,T2L1nm}.\displaystyle\displaystyle\left\{\;e_{1}T_{1}+e_{2}T_{2}\in L_{2}^{nm}:\;\;T_{1},T_{2}\in L_{1}^{nm}\right\}.
(ξ1,ξ2,,ξn)1n\displaystyle(\xi_{1}^{-},\xi_{2}^{-},\cdots,\xi_{n}^{-})\in\mathbb{C}_{1}^{n} T1(ξ1,ξ2,,ξn)1m\displaystyle T_{1}(\xi_{1}^{-},\xi_{2}^{-},\cdots,\xi_{n}^{-})\in\mathbb{C}_{1}^{m} (ξ1,ξ2,,ξn)2n\displaystyle(\xi_{1},\xi_{2},\cdots,\xi_{n})\in\mathbb{C}_{2}^{n} e1T1(ξ1,ξ2,,ξn)\displaystyle e_{1}T_{1}(\xi_{1}^{-},\xi_{2}^{-},\cdots,\xi_{n}^{-}) + e2T2(ξ1+,ξ2+,,ξn+)\displaystyle e_{2}T_{2}(\xi_{1}^{+},\xi_{2}^{+},\cdots,\xi_{n}^{+}) L1×eL1\displaystyle\in L_{1}\times_{e}L_{1} (ξ1+,ξ2+,,ξn+)1n\displaystyle(\xi_{1}^{+},\xi_{2}^{+},\cdots,\xi_{n}^{+})\in\mathbb{C}_{1}^{n} T2(ξ1+,ξ2+,,ξn+)1m\displaystyle T_{2}(\xi_{1}^{+},\xi_{2}^{+},\cdots,\xi_{n}^{+})\in\mathbb{C}_{1}^{m} T1\displaystyle T_{1}e1T1+e2T2\displaystyle e_{1}T_{1}+e_{2}T_{2}T2\displaystyle T_{2}
Figure 1. Diagram showing the idempotent components of T1\displaystyle T_{1} and T2\displaystyle T_{2} which are compatible with the idempotent components (ξ1,ξ2,,ξn)\displaystyle(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-}) and (ξ1+,ξ2+,,ξn+)\displaystyle(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})

It is a routine matter to check that the idempotent product L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm} is a subspace of L2nm\displaystyle L_{2}^{nm}. This follows easily from the following proposition.

Proposition 3.3.

Let T,SL1nm×eL1nm\displaystyle T,S\in L_{1}^{nm}\times_{e}L_{1}^{nm} be any elements such that T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2} and S=e1S1+e2S2\displaystyle S=e_{1}S_{1}+e_{2}S_{2}. Then, we have

  1. (1)

    T+S=e1(T1+S1)+e2(T2+S2)\displaystyle T+S=e_{1}(T_{1}+S_{1})+e_{2}(T_{2}+S_{2})

  2. (2)

    αT=e1(αT1)+e2(αT2);α1\displaystyle\alpha T=e_{1}(\alpha T_{1})+e_{2}(\alpha T_{2});\quad\forall\alpha\in\mathbb{C}_{1}

The following theorem contains some basic properties of the elements of L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}.

Theorem 3.4.

(Properties) Let T=e1T1+e2T2,S=e1S1+e2S2\displaystyle T=e_{1}T_{1}+e_{2}T_{2},\;S=e_{1}S_{1}+e_{2}S_{2} be any two elements of L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}. Then, we have

  1. (1)

    T=0\displaystyle T=0 if and only ifT1=0,T2=0\displaystyle T_{1}=0,T_{2}=0

  2. (2)

    T=S\displaystyle T=S if and only ifT1=S1,T2=S2\displaystyle T_{1}=S_{1},T_{2}=S_{2}

  3. (3)

    ST=e1(S1T1)+e2(S2T2)\displaystyle S\circ T=e_{1}(S_{1}\circ T_{1})+e_{2}(S_{2}\circ T_{2}), wherever composition defined.

The next theorem deals with the dimension of L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}.

Theorem 3.5.

The dimension of L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm} is equal to  2dimL1nm\displaystyle 2\cdot\dim L_{1}^{nm}

Proof.

As we know that dimL1nm=mn\displaystyle\dim L_{1}^{nm}=mn. So we take 1={Tj:j=1,2,,mn}\displaystyle\mathcal{B}_{1}=\{T_{j}:\;j=1,2,\cdots,mn\} as a basis for L1nm\displaystyle L_{1}^{nm}. This yields a collection 2={eiTj:i=1,2&j=1,2,,mn}\displaystyle\mathcal{B}_{2}=\{e_{i}T_{j}:i=1,2\;\&\;j=1,2,\cdots,mn\} of elements of L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}. We assert that 2\displaystyle\mathcal{B}_{2} is a basis for L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}. For any SL1nm×eL1nm\displaystyle S\in L_{1}^{nm}\times_{e}L_{1}^{nm} there are S1,S2L1nm\displaystyle S_{1},S_{2}\in L_{1}^{nm} such that S=e1S1+e2S2\displaystyle S=e_{1}S_{1}+e_{2}S_{2}. Since  <1>=L1nm\displaystyle<{\mathcal{B}_{1}}>=L_{1}^{nm}, there exist αj,βj1;j=1,2,,mn\displaystyle\alpha_{j},\beta_{j}\in\mathbb{C}_{1};\;j=1,2,\ldots,mn such that

S1=j=1mnαjTj\displaystyle\displaystyle S_{1}=\sum_{j=1}^{mn}\alpha_{j}T_{j} and S2=j=1mnβjTj\displaystyle\displaystyle S_{2}=\sum_{j=1}^{mn}\beta_{j}T_{j}
S=j=1mne1(αjTj)+j=1mne2(βjTj)\displaystyle\displaystyle\Rightarrow\quad S=\sum_{j=1}^{mn}e_{1}(\alpha_{j}T_{j})+\sum_{j=1}^{mn}e_{2}(\beta_{j}T_{j}) =\displaystyle\displaystyle= j=1mnαj(e1Tj)+j=1mnβj(e2Tj)\displaystyle\displaystyle\sum_{j=1}^{mn}\alpha_{j}(e_{1}T_{j})+\sum_{j=1}^{mn}\beta_{j}(e_{2}T_{j})
S<2>\displaystyle\displaystyle\Rightarrow\quad S\in<\mathcal{B}_{2}>\;\; \displaystyle\displaystyle\Rightarrow <2>=L2×eL2.\displaystyle\displaystyle\;<\mathcal{B}_{2}>\;=L_{2}\times_{e}L_{2}.

Furthermore, if we consider

j=1mnαj(e1Tj)+j=1mnβ1(e2Ti)=0e1j=1mn(αjTj)+e2j=1mn(βjTj)=0.\displaystyle\sum_{j=1}^{mn}\alpha_{j}(e_{1}T_{j})+\sum_{j=1}^{mn}\beta_{1}(e_{2}T_{i})=0\quad\Rightarrow\quad e_{1}\sum_{j=1}^{mn}(\alpha_{j}T_{j})+e_{2}\sum_{j=1}^{mn}(\beta_{j}T_{j})=0.

Using property (1) of theorem 3.4, we get

j=1mn(αjTj)=0&j=1mn(β1Tj)=0αj=0=βjj.\displaystyle\sum_{j=1}^{mn}(\alpha_{j}T_{j})=0\quad\&\quad\sum_{j=1}^{mn}(\beta_{1}T_{j})=0\;\Rightarrow\;\alpha_{j}=0=\beta_{j}\;\;\forall\;j.

Hence, 2\displaystyle\mathcal{B}_{2} is linearly independent set. Hence the result follows. ∎

Remark 3.6.

(13) and theorem 3.5 show that L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm} is a proper subspace of L2nm\displaystyle L_{2}^{nm}. It is clear that 2m×n=1m×n×e1m×n\displaystyle\mathbb{C}_{2}^{m\times n}=\mathbb{C}_{1}^{m\times n}\times_{e}\mathbb{C}_{1}^{m\times n} and 2n=1n×e1n\displaystyle\mathbb{C}_{2}^{n}=\mathbb{C}_{1}^{n}\times_{e}\mathbb{C}_{1}^{n}. But Hom(2n,2m)Hom(1n,1m)×eHom(1n,1m)\displaystyle\text{Hom}(\mathbb{C}_{2}^{n},\mathbb{C}_{2}^{m})\neq\text{Hom}(\mathbb{C}_{1}^{n},\mathbb{C}_{1}^{m})\times_{e}\text{Hom}(\mathbb{C}_{1}^{n},\mathbb{C}_{1}^{m}). In fact, Hom(1n,1m)×eHom(1n,1m)Hom(2n,2m)\displaystyle\text{Hom}(\mathbb{C}_{1}^{n},\mathbb{C}_{1}^{m})\times_{e}\text{Hom}(\mathbb{C}_{1}^{n},\mathbb{C}_{1}^{m})\subset\text{Hom}(\mathbb{C}_{2}^{n},\mathbb{C}_{2}^{m}). This will help us to defining one - one correspondence between bicomplex matrix and linear map.

4. Relationship between bicomplex linear map and matrix

The studying of 1\displaystyle\mathbb{C}_{1}-linear maps is equivalent to that of complex matrices. Is the same true for a bicomplex matrix? In this section we work on it in the context of bicomplex matrix. Let us suppose that V\displaystyle V and V\displaystyle V^{\prime} be two vector space of dimension n\displaystyle n and m\displaystyle m respectively, over the field F\displaystyle F. Also we have \displaystyle\mathcal{B} and \displaystyle\mathcal{B^{\prime}} are two ordered bases of vector space V\displaystyle V and V\displaystyle V^{\prime} respectively. Then the vector spaces Hom(V,V)(F)\displaystyle{\text{Hom}({V,V^{\prime}})}(F) and Fm×n(F)\displaystyle F^{m\times n}(F) are isomorphic two each other. If T\displaystyle T is any linear map in Hom(V,V)\displaystyle\text{Hom}({V,V^{\prime}}) then the matrix representation of T\displaystyle T with respect two ordered bases \displaystyle\mathcal{B} and \displaystyle\mathcal{B^{\prime}} corresponds to a unique matrix in Fm×n(F)\displaystyle F^{m\times n}(F) and vice-versa. This unique correspondence help us to solving system of equation and to find rank, nullity , eigen value ,eigen vector , characteristic polynomial and minimal polynomial.

If we assume that the field is a set of complex number then for any complex matrix of order m×n\displaystyle m\times n there will be a unique linear map from vector spaces V\displaystyle V to V\displaystyle V^{\prime}. The vector space V\displaystyle V and V\displaystyle V^{\prime} can be substitute by vector space 1n\displaystyle\mathbb{C}_{1}^{n} and 1m\displaystyle\mathbb{C}_{1}^{m} because of V\displaystyle V and 1n\displaystyle\mathbb{C}_{1}^{n}, V\displaystyle V^{\prime} and 1m\displaystyle\mathbb{C}_{1}^{m} have same dimension. So whenever we want to study on complex matrix of order m×n\displaystyle m\times n then we can study its corresponding linear map T:1n1m\displaystyle T\colon\mathbb{C}_{1}^{n}\to\mathbb{C}_{1}^{m} to get the information about concern matrix. This analogous concept can not be define for a bicomplex matrix of order m×n\displaystyle m\times n and the linear map T:2n2m\displaystyle T\colon\mathbb{C}_{2}^{n}\to\mathbb{C}_{2}^{m}. As we know 2\displaystyle\mathbb{C}_{2} is not a field so a matrix representation of any linear map can not give a bicomplex matrix and 3.1 shows that L2nm\displaystyle L_{2}^{nm} is not isomorphic to 2m×n\displaystyle\mathbb{C}_{2}^{m\times n}. In the same manner the matrix representation of the linear map T:2n2m\displaystyle T\colon\mathbb{C}_{2}^{n}\to\mathbb{C}_{2}^{m} will be a complex matrix of order 2m×2n\displaystyle 2m\times 2n. So using the traditional approach of a matrix representation of a linear map we can not develop the analogous concept for a bicomplex matrix and the linear map T\displaystyle T.

To do away this problem we define a new approach called ”Idempotent method” for matrix representation of a linear map.

Definition 4.1.

(Idempotent method) Let 1,2\displaystyle\mathcal{B}_{1},\mathcal{B}_{2} be the ordered bases for 1n\displaystyle\mathbb{C}_{1}^{n} and 1m\displaystyle\mathbb{C}_{1}^{m} respectively. Then for any linear map TL1nm×eL1nm\displaystyle T\in L_{1}^{nm}\times_{e}L_{1}^{nm} so that T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2} for some T1,T2L1nm\displaystyle T_{1},T_{2}\in L_{1}^{nm}, the matrix representation of T\displaystyle T with respect to these bases is defined as

(15) [T]21e1[T1]21+e2[T2]21.\displaystyle\displaystyle[T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}\eqqcolon e_{1}[T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+e_{2}[T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}.

This new approach will help us to find the solution of a system of equations of bicomplex variables and we can define the rank, nullity, eigenvalue, eigenvector, characteristic polynomial, and minimal polynomial for a bicomplex matrix. Here we have not used T\displaystyle T as defined in definition 2.2\displaystyle 2.2. The reason behind this is that the T1\displaystyle T_{1} and T2\displaystyle T_{2} corresponding to T\displaystyle T defined in definition 2.2\displaystyle 2.2 are bicomplex linear transformations from e11ne11m\displaystyle e_{1}\mathbb{C}_{1}^{n}\to e_{1}\mathbb{C}_{1}^{m} and e21ne21m\displaystyle e_{2}\mathbb{C}_{1}^{n}\to e_{2}\mathbb{C}_{1}^{m} respectively. So, the definition 2.2\displaystyle 2.2 is not more useful for our study.

Remark 4.2.

In the special case when 1n=1m\displaystyle\mathbb{C}_{1}^{n}=\mathbb{C}_{1}^{m}, the matrix representation of the operator T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2} with respect to basis \displaystyle\mathcal{B} for 1n\displaystyle\mathbb{C}_{1}^{n} is simplified to [T]\displaystyle[T]_{\mathcal{B}} from [T]\displaystyle[T]^{\mathcal{B}}_{\mathcal{B}}. Thus, we have

(16) [T]=e1[T1]+e2[T2].\displaystyle\displaystyle[T]_{\mathcal{B}}=e_{1}[T_{1}]_{\mathcal{B}}+e_{2}[T_{2}]_{\mathcal{B}}.
Example 4.3.

Let T1,T2:1213\displaystyle T_{1},T_{2}\colon\mathbb{C}_{1}^{2}\to\mathbb{C}_{1}^{3} be linear maps defined as

T1(a,b)=(a,a+b,b)andT2(a,b)=(ab,b,a)(a,b)12.\displaystyle T_{1}(a,b)=(a,a+b,b)\quad\mbox{and}\quad T_{2}(a,b)=(a-b,b,a)\quad\forall\;(a,b)\in\mathbb{C}_{1}^{2}.

Let 1={(1,1),(1,0)}\displaystyle\mathcal{B}_{1}=\{(1,1),(1,0)\} and 2={(1,0,1),(1,1,0),(0,0,1)}\displaystyle\mathcal{B}_{2}=\{(1,0,1),(1,1,0),(0,0,1)\} be the ordered bases for 12\displaystyle\mathbb{C}_{1}^{2} and 13\displaystyle\mathbb{C}_{1}^{3} respectively. This gives

[T1]21=[102120]\displaystyle\displaystyle\left[T_{1}\right]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}=\begin{bmatrix}-1&0\\ 2&1\\ 2&0\end{bmatrix} and [T2]21=[111020]\displaystyle\displaystyle\left[T_{2}\right]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}=\begin{bmatrix}-1&1\\ 1&0\\ 2&0\end{bmatrix}
e1[T1]21+e2[T2]21\displaystyle\displaystyle\Rightarrow\quad e_{1}[T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+e_{2}[T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}} =\displaystyle\displaystyle= e1[102120]+e2[111020]=[1e22e1+e2e120].\displaystyle\displaystyle e_{1}\begin{bmatrix}-1&0\\ 2&1\\ 2&0\end{bmatrix}+e_{2}\begin{bmatrix}-1&1\\ 1&0\\ 2&0\end{bmatrix}=\begin{bmatrix}-1&e_{2}\\ 2e_{1}+e_{2}&e_{1}\\ 2&0\end{bmatrix}.

Therefore, the matrix representation of linear transformation T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2} with respect to 1,2\displaystyle\mathcal{B}_{1},\;\mathcal{B}_{2} is given by

[T]21=[1e22e1+e2e120]\displaystyle[T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}=\begin{bmatrix}-1&e_{2}\\ 2e_{1}+e_{2}&e_{1}\\ 2&0\end{bmatrix}.

Next we show that the matrix representation as defined in (4.1) behaves well with respect to both the operations in L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}.

Theorem 4.4.

Let T=e1T1+e2T2,S=e1S1+e2S2\displaystyle T=e_{1}T_{1}+e_{2}T_{2},\ S=e_{1}S_{1}+e_{2}S_{2} be any two elements of L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm} and let 1,2\displaystyle\mathcal{B}_{1},\mathcal{B}_{2} be the ordered bases of  1n\displaystyle\mathbb{C}_{1}^{n} and 1m\displaystyle\mathbb{C}_{1}^{m} respectively. Then

  1. (1)

    [T+S]21=[T]21+[S]21\displaystyle[T+S]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}=[T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+[S]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}

  2. (2)

    [αT]21=α[T]21α1\displaystyle[\alpha T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}=\alpha[T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}\forall\ \alpha\in\mathbb{C}_{1}

Proof.

By definition 4.1 and using proposition 3.3, it follows that

[T+S]21\displaystyle\displaystyle[T+S]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}} =\displaystyle\displaystyle= e1[T1+S1]21+e2[T2+S2]21\displaystyle\displaystyle e_{1}[T_{1}+S_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+e_{2}[T_{2}+S_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}
=\displaystyle\displaystyle= e1([T1]21+[S1]21)+e2([T2]21+[S2]21)\displaystyle\displaystyle e_{1}{\left([T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+[S_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}\right)+e_{2}\left([T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+[S_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}\right)}
=\displaystyle\displaystyle= (e1[T1]21+e2[T2]21)+(e1[S1]21+e2[S2]21)\displaystyle\displaystyle\left(e_{1}[T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+e_{2}[T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}\right)+\left(e_{1}[S_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+e_{2}[S_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}\right)
=\displaystyle\displaystyle= [T]21+[S]21.\displaystyle\displaystyle[T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+[S]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}.

For the second part, proposition 3.3 gives that

[αT]21\displaystyle\displaystyle[\alpha T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}} =\displaystyle\displaystyle= e1[αT1]21+e2[αT2]21\displaystyle\displaystyle e_{1}[\alpha T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+e_{2}[\alpha T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}
=\displaystyle\displaystyle= e1(α[T1]21)+e2(α[T2]21)\displaystyle\displaystyle e_{1}\left(\alpha[T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}\right)+e_{2}\left(\alpha[T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}\right)
=\displaystyle\displaystyle= α(e1[T1]21+e2[T2]21)\displaystyle\displaystyle\alpha\left(e_{1}[T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+e_{2}[T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}\right)
=\displaystyle\displaystyle= α[T]21.\displaystyle\displaystyle\alpha[T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}.\hskip 216.81pt

This completes the proof. ∎

Theorem 4.5.

The space  L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm} and  2m×n\displaystyle\mathbb{C}_{2}^{m\times n} are isomorphic.

Proof.

let T=e1T1+e2T2L1nm×eL1nm\displaystyle T=e_{1}T_{1}+e_{2}T_{2}\in L_{1}^{nm}\times_{e}L_{1}^{nm}. Define a function F:L1nm×eL1nm2m×n\displaystyle F\colon L_{1}^{nm}\times_{e}L_{1}^{nm}\to\mathbb{C}_{2}^{m\times n} such that

F(T)=[T]21.\displaystyle F(T)=[T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}.

It is an easy exercise to show that F\displaystyle F is one -one onto linear map. Moreover in view of (12) and theorem 3.5, the vector spaces 2m×n\displaystyle\mathbb{C}_{2}^{m\times n} and L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm} have the same dimension over the field 1\displaystyle\mathbb{C}_{1}. So they are isomorphic. ∎

As per the definition of idempotent product given in (1), we have

(17) kerT1×ekerT2\displaystyle\displaystyle\ker T_{1}\times_{e}\ker T_{2} \displaystyle\displaystyle\eqqcolon {e1z+e2w2n:zkerT1,wkerT2},\displaystyle\displaystyle\{e_{1}z+e_{2}w\in\mathbb{C}_{2}^{n}\;:\;z\in\ker T_{1},\;w\in\ker T_{2}\},
(18) Im T1×eIm T2\displaystyle\displaystyle\text{Im }T_{1}\times_{e}\text{Im }T_{2} \displaystyle\displaystyle\eqqcolon {e1z+e2w2m:zIm T1wIm T2}.\displaystyle\displaystyle\{e_{1}z+e_{2}w\in\mathbb{C}_{2}^{m}\;:\;z\in\text{Im }T_{1}\;w\in\text{Im }T_{2}\}.

The next theorem connect both kernel and range of of the element of L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm} with the kernels and ranges of their components.

Theorem 4.6.

Let TL1nm×eL1nm\displaystyle T\in L_{1}^{nm}\times_{e}L_{1}^{nm} so that T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2} for some T1,T2L1nm\displaystyle T_{1},T_{2}\in L_{1}^{nm}. Then, we have

  1. (1)

    ker(e1T1+e2T2)=kerT1×ekerT2\displaystyle\ker(e_{1}T_{1}+e_{2}T_{2})=\ker T_{1}\times_{e}\ker T_{2}

  2. (2)

    Im (e1T1+e2T2)=Im T1×eIm T2\displaystyle\text{Im }(e_{1}T_{1}+e_{2}T_{2})=\text{Im }T_{1}\times_{e}\text{Im }T_{2}

Proof.

Let (ξ1,ξ2,,ξn)ker(e1T1+e2T2)\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{n})\in\ker(e_{1}T_{1}+e_{2}T_{2}). Then (e1T1+e2T2)(ξ1,ξ2,,ξn)=0\displaystyle\left(e_{1}T_{1}+e_{2}T_{2}\right)(\xi_{1},\xi_{2},\ldots,\xi_{n})=0. Using definition 3.2 and from the part (1) of proposition 3.4, it will follows that

(e1T1+e2T2)(ξ1,ξ2,,ξn)\displaystyle\displaystyle\left(e_{1}T_{1}+e_{2}T_{2}\right)(\xi_{1},\xi_{2},\ldots,\xi_{n}) =\displaystyle\displaystyle= e1T1(ξ1,ξ2,,ξn)+e2T2(ξ1+,ξ2+,,ξn+)=0\displaystyle\displaystyle e_{1}\cdot{T}_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})+e_{2}\cdot{T}_{2}(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})=0
T1(ξ1,ξ2,,ξn)=0\displaystyle\displaystyle\Leftrightarrow\quad{T}_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})=0 &\displaystyle\displaystyle{\&} T2(ξ1+,ξ2+,,ξn+)=0\displaystyle\displaystyle{T}_{2}(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})=0
(ξ1,ξ2,,ξn)kerT1\displaystyle\displaystyle\Leftrightarrow\quad(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})\in\ker{T}_{1} &\displaystyle\displaystyle{\&} (ξ1+,ξ2+,,ξn+)kerT2\displaystyle\displaystyle(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})\in\ker{T}_{2}
(ξ1,ξ2,,ξn)\displaystyle\displaystyle\Leftrightarrow\quad(\xi_{1},\xi_{2},\ldots,\xi_{n})\in kerT1×ekerT2.\displaystyle\displaystyle\ker T_{1}\times_{e}\ker T_{2}.

For the secondly part, consider (ξ1,ξ2,,ξm)Im T1×eIm T2\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{m})\in\text{Im }T_{1}\times_{e}\text{Im }T_{2}, then we have

(ξ1,ξ2,,ξm)Im T1\displaystyle\displaystyle(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{m}^{-})\in\text{Im }T_{1} and\displaystyle\displaystyle and (ξ1+,ξ2+,,ξm+)Im T2\displaystyle\displaystyle(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{m}^{+})\in\text{Im }T_{2}
(z1,z2,,zn)\displaystyle\displaystyle\Rightarrow\quad\exists\quad(z_{1},z_{2},\ldots,z_{n}) , (w1,w2,,wn)1n\displaystyle\displaystyle(w_{1},w_{2},\ldots,w_{n})\in\mathbb{C}_{1}^{n}
such thatT1(z1,z2,,zn)=(ξ1,ξ2,,ξm)\displaystyle\displaystyle\mbox{such that}\quad T_{1}(z_{1},z_{2},\ldots,z_{n})=(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{m}^{-}) and\displaystyle\displaystyle and T2(w1,w2,,wn)=(ξ1+,ξ2+,,ξm+)\displaystyle\displaystyle T_{2}(w_{1},w_{2},\ldots,w_{n})=(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{m}^{+})
So,e1(ξ1,ξ2,,ξm)+e2(ξ1+,ξ2+,,ξm+)\displaystyle\displaystyle\mbox{So},\quad e_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{m}^{-})+e_{2}(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{m}^{+}) \displaystyle\displaystyle\in Im (e1T1+e2T2)\displaystyle\displaystyle\text{Im }(e_{1}T_{1}+e_{2}T_{2})
HenceIm T1×eIm T2\displaystyle\displaystyle\mbox{Hence}\quad\text{Im }T_{1}\times_{e}\text{Im }T_{2} \displaystyle\displaystyle\subseteq Im (e1T1+e2T2).\displaystyle\displaystyle\text{Im }(e_{1}T_{1}+e_{2}T_{2}).

Conversely suppose e1T1(ξ1,ξ2,,ξn)+e2T2(ξ1+,ξ2+,,ξn+)Im (e1T1+e2T2)\displaystyle e_{1}T_{1}(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{n}^{-})+e_{2}T_{2}(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{n}^{+})\in\text{Im }(e_{1}T_{1}+e_{2}T_{2}), for some (ξ1,ξ2,,ξn)2n\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{n})\in\mathbb{C}_{2}^{n}. This follows that Im (e1T1+e2T2)Im T1×eIm T2\displaystyle\text{Im }(e_{1}T_{1}+e_{2}T_{2})\subseteq\text{Im }T_{1}\times_{e}\text{Im }T_{2}. Hence, the equality holds. ∎

Next result exhibits a relation between the rank of  TL1nm×L1nm\displaystyle T\in L_{1}^{nm}\times L_{1}^{nm} with the ranks of its components.

Theorem 4.7.

Let TL1nm×L1nm\displaystyle T\in L_{1}^{nm}\times L_{1}^{nm} so that T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2} for some T1,T2L1nm\displaystyle T_{1},T_{2}\in L_{1}^{nm}. Then,

dimIm T=dimIm T1+dimIm T2.\displaystyle\displaystyle\dim\text{Im }{T}=\dim\text{Im }{T_{1}}+\dim\text{Im }{T_{2}}.

In other words, that rank of T\displaystyle T is sum of the ranks of its own components.

Proof.

Let 1={zi:i==1,2,,p},2={wj:j=1,2,,q}\displaystyle\mathcal{B}_{1}=\{z_{i}:i==1,2,\ldots,p\},\mathcal{B}_{2}=\{w_{j}:j=1,2,\ldots,q\} be the bases for Im T1\displaystyle\text{Im }{T_{1}} , Im T2\displaystyle\text{Im }{T_{2}} respectively. Consider the collection ={e1zi,e2wj}\displaystyle\mathcal{B}=\{e_{1}z_{i},e_{2}w_{j}\} of  p+q\displaystyle p+q  elements of 2\displaystyle\mathbb{C}_{2}. Notice that <>Im T\displaystyle<\mathcal{B}>\quad\subseteq\text{Im }{T}. If we take (ξ1,ξ2,,ξm)Im T\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{m})\in\text{Im }{T}, then from theorem 4.6, it follows that

(ξ1,ξ2,,ξm)Im T1\displaystyle\displaystyle(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{m}^{-})\in\text{Im }T_{1} and (ξ1+,ξ2+,,ξm+)Im T2\displaystyle\displaystyle(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{m}^{+})\in\text{Im }T_{2}
(ξ1,ξ2,,ξm)=i=1pαizi\displaystyle\displaystyle\Rightarrow\quad(\xi_{1}^{-},\xi_{2}^{-},\ldots,\xi_{m}^{-})=\sum_{i=1}^{p}\alpha_{i}z_{i} and (ξ1+,ξ2+,,ξm+)=j=1qβjwj,for someαi,βj1\displaystyle\displaystyle(\xi_{1}^{+},\xi_{2}^{+},\ldots,\xi_{m}^{+})=\sum_{j=1}^{q}\beta_{j}w_{j},\quad\mbox{for some}\quad\alpha_{i},\beta_{j}\in\mathbb{C}_{1}
(ξ1,ξ2,,ξm)\displaystyle\displaystyle\Rightarrow\quad(\xi_{1},\xi_{2},\ldots,\xi_{m}) =\displaystyle\displaystyle= e1i=1pαizi+e2j=1qβjwj\displaystyle\displaystyle e_{1}\sum_{i=1}^{p}\alpha_{i}z_{i}+e_{2}\sum_{j=1}^{q}\beta_{j}w_{j}
=\displaystyle\displaystyle= i=1pαi(e1zi)+j=1qβj(e2wj).\displaystyle\displaystyle\sum_{i=1}^{p}\alpha_{i}(e_{1}z_{i})+\sum_{j=1}^{q}\beta_{j}(e_{2}w_{j}).

This implies (ξ1,ξ2,,ξm)<>\displaystyle(\xi_{1},\xi_{2},\ldots,\xi_{m})\in\;<\mathcal{B}>. We thus have Im T=<>.\displaystyle\text{Im }{T}=<\mathcal{B}>. Furthermore, if we consider

i=1pαi(e1zi)\displaystyle\displaystyle\sum_{i=1}^{p}\alpha_{i}(e_{1}z_{i}) +\displaystyle\displaystyle+ j=1qβj(e2wj)=0\displaystyle\displaystyle\sum_{j=1}^{q}\beta_{j}(e_{2}w_{j})=0
e1(i=1pαizi)\displaystyle\displaystyle\Rightarrow\quad e_{1}\left(\sum_{i=1}^{p}\alpha_{i}z_{i}\right) +\displaystyle\displaystyle+ e2(j=1qβjwj)=0\displaystyle\displaystyle e_{2}\left(\sum_{j=1}^{q}\beta_{j}w_{j}\right)=0
i=1pαizi=0\displaystyle\displaystyle\Rightarrow\quad\sum_{i=1}^{p}\alpha_{i}z_{i}=0 and j=1qβjwj=0\displaystyle\displaystyle\sum_{j=1}^{q}\beta_{j}w_{j}=0
αi=0=βj,\displaystyle\displaystyle\Rightarrow\quad\alpha_{i}=0=\beta_{j}, i,j.\displaystyle\displaystyle\forall\ i,j.

This forces \displaystyle\mathcal{B} to be linearly independent and hence \displaystyle\mathcal{B} becomes a basis for Im T\displaystyle\text{Im }{T}. As we know rank T=dimIm T\displaystyle\text{rank }T=\dim\text{Im }{T}, this implies

rank T\displaystyle\displaystyle\text{rank }{T} =\displaystyle\displaystyle= no. of elements of set=p+q\displaystyle\displaystyle\mbox{no. of elements of set}\ \mathcal{B}=p+q
rank T\displaystyle\displaystyle\Rightarrow\quad\text{rank }{T} =\displaystyle\displaystyle= dimIm T1+dimIm T2\displaystyle\displaystyle\dim\text{Im }T_{1}\ +\ \dim\text{Im }T_{2}
=\displaystyle\displaystyle= rank T1+rank T2.\displaystyle\displaystyle\text{rank }\ T_{1}\ +\ \text{rank }\ T_{2}.

Using rank-nullity theorem, one can deduce the same analogous result for nullity of linear map T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2}..

Corollary 4.8.

For any T=T=e1T1+e2T2L1nm×L1nm\displaystyle T=T=e_{1}T_{1}+e_{2}T_{2}\in L_{1}^{nm}\times L_{1}^{nm}, we have

dimkerT\displaystyle\displaystyle\dim\ker T =\displaystyle\displaystyle= dimkerT1+dimkerT2.\displaystyle\displaystyle\dim\ker T_{1}+\dim\ker T_{2}.

Hence, in other words, nullity of T\displaystyle T is sum of nullity of its components.

Invertible and non-singular linear maps: We now examine the invertibility and non-singularity of linear maps of the space L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}. For article to be self-contained, these notions are first defined here.

Definition 4.9.

Let V,W\displaystyle V,W be any two finite dimensional vector spaces over the same field. A linear map T:VW\displaystyle T\colon V\to W is said to be

  • invertible if there exists a linear map S:WV\displaystyle S\colon W\to V such that ST=IV\displaystyle S\circ T=I_{V} and TS=IW\displaystyle T\circ S=I_{W}. In other words, T\displaystyle T is invertible if and only if T\displaystyle T is bijective.

  • non-singular if kerT={0}\displaystyle\ker T=\{0\}, equivalently if T\displaystyle T is injective.

Remark 4.10.

For invertible linear map T\displaystyle T, the linear map S\displaystyle S given in the above definition is called the inverse of T\displaystyle T. In case the inverse exists it is unique, so we can denote it by T1\displaystyle T^{-1}. Also notice that an invertible linear map is an isomorphism so that the dimensions of V\displaystyle V and W\displaystyle W must be same, i.e., dimV=dimW\displaystyle\dim V=\dim W.

The following theorem asserts that idempotent product behaves well with respect to these notions.

Theorem 4.11.

Let T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2} be an element of L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}. Then, we have

  1. (1)

    T\displaystyle T is a invertible if and only if both T1,T2\displaystyle T_{1},T_{2} are invertible. Further in this case, we have following

    (e1T1+e2T2)1=e1T11+e2T21.\displaystyle(e_{1}T_{1}+e_{2}T_{2})^{-1}=e_{1}T_{1}^{-1}+e_{2}T_{2}^{-1}.
  2. (2)

    T\displaystyle T is non-singular if and only if both T1,T2\displaystyle T_{1},T_{2} are non-singular.

Proof.

Suppose T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2} is invertible. Then there exists a linear map  S=e1S1+e2S2\displaystyle S=e_{1}S_{1}+e_{2}S_{2} such that

ST=TS\displaystyle\displaystyle S\circ T=T\circ S =\displaystyle\displaystyle= I2n\displaystyle\displaystyle I_{\mathbb{C}_{2}^{n}}
S1T1=T1S1=I1n\displaystyle\displaystyle\Leftrightarrow\quad S_{1}\circ T_{1}=T_{1}\circ S_{1}=I_{\mathbb{C}_{1}^{n}} and S2T2=T2S2=I1n\displaystyle\displaystyle S_{2}\circ T_{2}=T_{2}\circ S_{2}=I_{\mathbb{C}_{1}^{n}}
S1is the inverse ofT1\displaystyle\displaystyle\Leftrightarrow\quad S_{1}\ \mbox{is the inverse of}\ T_{1}\ and S2is the inverse ofT2\displaystyle\displaystyle\ S_{2}\ \mbox{is the inverse of}\ T_{2}
T1andT2are invertible.\displaystyle\displaystyle\Leftrightarrow\quad T_{1}\;\mbox{and}\;T_{2}\;\mbox{are invertible}.

Clearly, S=T1\displaystyle S=T^{-1} if and only if S1=T11\displaystyle S_{1}=T_{1}^{-1} and S2=T21\displaystyle S_{2}=T_{2}^{-1}. This implies that (e1T1+e2T2)1=e1T11+e2T21.\displaystyle(e_{1}T_{1}+e_{2}T_{2})^{-1}=e_{1}T_{1}^{-1}+e_{2}T_{2}^{-1}. Now for the second part, we first assume that e1T1+e2T2\displaystyle e_{1}T_{1}+e_{2}T_{2} is non-singular. Then, by using theorem 4.6, we have

\displaystyle\displaystyle\Leftrightarrow ker(e1T1+e2T2)={0}\displaystyle\displaystyle\ker(e_{1}T_{1}+e_{2}T_{2})=\{0\}
\displaystyle\displaystyle\Leftrightarrow ker(T1)={0},ker(T2)={0}\displaystyle\displaystyle\ker(T_{1})=\{0\},\;\ker(T_{2})=\{0\}
\displaystyle\displaystyle\Leftrightarrow T1,T2are non-singular.\displaystyle\displaystyle T_{1},T_{2}\;\;\mbox{are non-singular}.

This completes the proof. ∎

The following theorem generalizes the result of C1\displaystyle C_{1}-linear maps to the elements of L1nm×eL1nm\displaystyle L_{1}^{nm}\times_{e}L_{1}^{nm}.

Theorem 4.12.

Let T=e1T1+e2T2:2n2m,S=e1S1+e2S2:2m2k\displaystyle T=e_{1}T_{1}+e_{2}T_{2}\colon\mathbb{C}_{2}^{n}\to\mathbb{C}_{2}^{m},\ S=e_{1}S_{1}+e_{2}S_{2}\colon\mathbb{C}_{2}^{m}\to\mathbb{C}_{2}^{k} be the linear maps. Suppose that 1,2\displaystyle{\mathcal{B}_{1}},{\mathcal{B}_{2}} and 3\displaystyle{\mathcal{B}_{3}} are the ordered bases for 1n,1m\displaystyle\mathbb{C}_{1}^{n},\mathbb{C}_{1}^{m} and 1k\displaystyle\mathbb{C}_{1}^{k} respectively. Then, we have

[ST]31=[S]32[T]21.\displaystyle\left[S\circ T\right]^{\mathcal{B}_{1}}_{\mathcal{B}_{3}}=[S]^{\mathcal{B}_{2}}_{\mathcal{B}_{3}}\cdot[T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}.
Proof.

By using theorem 3.4 and definition 4.1, it follows

[ST]31\displaystyle\displaystyle\left[S\circ T\right]^{\mathcal{B}_{1}}_{\mathcal{B}_{3}} =\displaystyle\displaystyle= [(e1S1+e2S2)(e1T1+e2T2)]31\displaystyle\displaystyle[(e_{1}S_{1}+e_{2}S_{2})\circ(e_{1}T_{1}+e_{2}T_{2})]^{\mathcal{B}_{1}}_{\mathcal{B}_{3}}
=\displaystyle\displaystyle= [e1(S1T1)+e2(S2T2)]31\displaystyle\displaystyle[e_{1}(S_{1}\circ T_{1})+e_{2}(S_{2}\circ T_{2})]^{\mathcal{B}_{1}}_{\mathcal{B}_{3}}
=\displaystyle\displaystyle= e1[S1T1]31+e2[S2T2]31\displaystyle\displaystyle e_{1}[S_{1}\circ T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{3}}+e_{2}[S_{2}\circ T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{3}}
=\displaystyle\displaystyle= e1[S1]32[T1]21+e2[S2]32[T2]31\displaystyle\displaystyle e_{1}[S_{1}]^{\mathcal{B}_{2}}_{\mathcal{B}_{3}}\cdot[T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+e_{2}[S_{2}]^{\mathcal{B}_{2}}_{\mathcal{B}_{3}}\cdot[T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{3}}
=\displaystyle\displaystyle= (e1[S1]32+e2[S2]32)(e1[T1]21+e2[T2]21)\displaystyle\displaystyle(e_{1}[S_{1}]^{\mathcal{B}_{2}}_{\mathcal{B}_{3}}+e_{2}[S_{2}]^{\mathcal{B}_{2}}_{\mathcal{B}_{3}})\cdot(e_{1}[T_{1}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}+e_{2}[T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}})
=\displaystyle\displaystyle= [e1S1+e2S2]32[e1T1+e2T2]21\displaystyle\displaystyle[e_{1}S_{1}+e_{2}S_{2}]^{\mathcal{B}_{2}}_{\mathcal{B}_{3}}\ \cdot[e_{1}T_{1}+e_{2}T_{2}]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}
=\displaystyle\displaystyle= [S]32[T]21.\displaystyle\displaystyle[S]^{\mathcal{B}_{2}}_{\mathcal{B}_{3}}\cdot[T]^{\mathcal{B}_{1}}_{\mathcal{B}_{2}}.

This completes the theorem. ∎

Remark 4.13.

As a special case in above theorem, if we take 2m=2n=2k\displaystyle\mathbb{C}_{2}^{m}=\mathbb{C}_{2}^{n}=\mathbb{C}_{2}^{k} and \displaystyle\mathcal{B} as a basis, then we get

(19) [ST]=[S][T].\displaystyle\displaystyle[S\circ T]_{\mathcal{B}}=[S]_{\mathcal{B}}\cdot[T]_{\mathcal{B}}.

Invertible and non-singular bicomplex matrices: We now discuss the invertibility and non-singularity of bicomplex matrix of the space 2n×n\displaystyle\mathbb{C}_{2}^{n\times n}. First we define them here.

Definition 4.14.

A bicomplex square matrix A2n×n\displaystyle A\in\mathbb{C}_{2}^{n\times n} is said to be

  • invertible if there exists a matrix B2n×n\displaystyle B\in\mathbb{C}_{2}^{n\times n} such that AB=BA=In\displaystyle A\cdot B=B\cdot A=I_{n}.

  • non-singular if detA\displaystyle\det A is a non-singular element of 2\displaystyle\mathbb{C}_{2}.

Remark 4.15.

Every square matrix A2n×n\displaystyle A\in\mathbb{C}_{2}^{n\times n}, like bicomplex number, can also be written uniquely as A=e1A1+e2A2\displaystyle A=e_{1}A_{1}+e_{2}A_{2}, where A1,A21n×n\displaystyle A_{1},A_{2}\in\mathbb{C}_{1}^{n\times n} are complex square matrices. With this representation of bicomplex matrices, we have (cf. [8, exercise 6.8])

  1. (1)

    A\displaystyle A is invertible if and only if A1,A2\displaystyle A_{1},A_{2} are invertible.

  2. (2)

    A\displaystyle A is non-singular if and only if A1,A2\displaystyle A_{1},A_{2} are non-singular.

Theorem 4.16.

Let TL1nm×eL1nm\displaystyle T\in L_{1}^{nm}\times_{e}L_{1}^{nm} and \displaystyle\mathcal{B} be a basis for 1n\displaystyle\mathbb{C}_{1}^{n}. Then, the linear map T\displaystyle T is invertible if and only if the matrix  [T]\displaystyle[T]_{\mathcal{B}}  is invertible.

Proof.

Let T=e1T1+e2T2\displaystyle T=e_{1}T_{1}+e_{2}T_{2} is invertible. This implies that T1\displaystyle T^{-1} exists. From Part (1) of theorem 4.11, it follows that  T1=e1T11+e2T21\displaystyle T^{-1}=e_{1}T_{1}^{-1}+e_{2}T_{2}^{-1}. We thus have

TT1\displaystyle\displaystyle T\circ T^{-1} =\displaystyle\displaystyle= I2n\displaystyle\displaystyle I_{\mathbb{C}_{2}^{n}}
[TT1]\displaystyle\displaystyle\therefore\quad[T\circ T^{-1}]_{\mathcal{B}} =\displaystyle\displaystyle= In\displaystyle\displaystyle I_{n}
[T][T1]\displaystyle\displaystyle{[T]}_{\mathcal{B}}\cdot[T^{-1}]_{\mathcal{B}} =\displaystyle\displaystyle= In(from remark 4.13).\displaystyle\displaystyle I_{n}\quad\mbox{(from remark \ref{specialcase2})}.

Hence, [T]\displaystyle[T]_{\mathcal{B}} is invertible.
Conversely suppose [T]\displaystyle[T]_{\mathcal{B}} is invertible. By using part (1) of remark 4.15, we have

[T1],[T2]are invertible\displaystyle\displaystyle[T_{1}]_{\mathcal{B}},[T_{2}]_{\mathcal{B}}\ \mbox{are invertible}
\displaystyle\displaystyle\Rightarrow T1,T2are invertible\displaystyle\displaystyle\quad T_{1},T_{2}\ \mbox{are invertible}
\displaystyle\displaystyle\Rightarrow Tis invertible.\displaystyle\displaystyle\quad T\ \mbox{is invertible}.

This completes the theorem. ∎

References

  • [1] Daniel Alpay, Izchak Lewkowicz, and Mihaela Vajiac, Interpolation with symmetry and a herglotz theorem in the bicomplex setting, Journal of Mathematical Analysis and Applications 524 (2023), no. 2, 127201.
  • [2] Daniel Alpay, Maria Elena Luna-Elizarrarás, Michael Shapiro, and Daniele C Struppa, Basics of functional analysis with bicomplex scalars, and bicomplex schur analysis, Springer Science & Business Media, 2014.
  • [3] Cinzia Cerroni, From the theory of “congeneric surd equations” to “segre’s bicomplex numbers”, Historia Mathematica 44 (2017), no. 3, 232–251.
  • [4] Fabrizio Colombo, Irene Sabadini, and Daniele C Struppa, Bicomplex holomorphic functional calculus, Mathematische Nachrichten 287 (2014), no. 10, 1093–1105.
  • [5] Michiji Futagawa, On the theory of functions of a quaternary variable, Tohoku Mathematical Journal, First Series 29 (1928), 175–222.
  • [6] by same author, On the theory of functions of a quaternary variable (part ii), Tohoku Mathematical Journal, First Series 35 (1932), 69–120.
  • [7] Romesh Kumar and Kulbir Singh, Bicomplex linear operators on bicomplex hilbert spaces and littlewood’s subordination theorem, Advances in Applied Clifford Algebras 25 (2015), no. 3, 591–610.
  • [8] G Baley Price, An introduction to multicomplex spaces and functions, CRC Press, 2018.
  • [9] James D Riley, Contributions to the theory of functions of a bicomplex variable, Tohoku Mathematical Journal, Second Series 5 (1953), no. 2, 132–165.
  • [10] Friedrich Ringleb, Beiträge zur funktionentheorie in hyperkomplexen systemen i, Rendiconti del Circolo Matematico di Palermo (1884-1940) 57 (1933), no. 1, 311–340.
  • [11] Dominic Rochon and Michael Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, fasc. math 11 (2004), no. 71, 110.
  • [12] Rajiv K Srivastava, Bicomplex numbers: analysis and applications, Mathematics Student-India 72 (2003), no. 1-4, 69–88.
  • [13] by same author, Certain topological aspects of bicomplex space, Bull. Pure & Appl. Math 2 (2008), no. 2, 222–234.
  • [14] Rajiv K Srivastava and Sukhdev Singh, On bicomplex nets and their confinements, Amer. J. of Math. and Stat 1 (2011), no. 1, 8–16.