This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

[1]\fnmSri \surMaryani

\equalcont

These authors contributed equally to this work.

[1]\orgdivDepartment of Mathematics, \orgnameFaculty of Mathematics and Natural Sciences, Jenderal Soedirman University, \orgaddress\streetKarangwangkal, \cityPurwokerto, \postcode53123, \stateCentral Java, \countryIndonesia

2]\orgdivDepartment of Mathematical and System Engineering, \orgnameFaculty of Engineering, Shizuoka University, \orgaddress\street3-5-1 Johoku, Naka-ku, \cityHamamatsu-shi, \postcode432-8561, \stateShizuoka, \countryJapan

{\mathcal{R}}-bounded operator families arising from a compressible fluid model of Korteweg type with surface tension in the half-space

[email protected]    \fnmMiho \surMurata [email protected] * [
Abstract

In this paper, we consider a resolvent problem arising from the free boundary value problem for the compressible fluid model of Korteweg type, which is called as the Navier-Stokes-Korteweg system, with surface tension in the half-space. The Navier-Stokes-Korteweg system is known as a diffuse interface model for liquid-vapor two-phase flows. Our purpose is to show the {\mathcal{R}}-boundedness for the solution operator families of the resolvent problem, which gives us the maximal regularity estimates in the LpL_{p}-in-time and LqL_{q}-in-space setting by applying the Weis’s operator valued Fourier multiplier theorem [32].

keywords:
Free boundary value problem, Navier-Stokes-Korteweg system, Surface tension, {\mathcal{R}}-bounded, Half-space
pacs:
[

MSC Classification]35Q35, 76N10

1 Introduction

1.1 Model

Let +N{\mathbb{R}}^{N}_{+} and 0N{\mathbb{R}}^{N}_{0} be the upper half-space and its boundary for N2N\geq 2, respectively; namely,

+N\displaystyle{\mathbb{R}}^{N}_{+} ={x=(x,xN)xN1,xN>0},\displaystyle=\{x=(x^{\prime},x_{N})\mid x^{\prime}\in{\mathbb{R}}^{N-1},x_{N}>0\},
0N\displaystyle{\mathbb{R}}^{N}_{0} ={x=(x,xN)xN1,xN=0},\displaystyle=\{x=(x^{\prime},x_{N})\mid x^{\prime}\in{\mathbb{R}}^{N-1},x_{N}=0\},

where x=(x1,,xN1)x^{\prime}=(x_{1},\ldots,x_{N-1}). In this paper, we consider the following resolvent problem arising from a compressible fluid model of Korteweg type in the half-space with taking the surface tension in account.

{λρ+ρdiv𝐮=din +N,ρλ𝐮Div{𝐒(𝐮)(γρκΔ)ρ𝐈}=𝐟in +N,{𝐒(𝐮)(γρκΔ)ρ𝐈}𝐧σΔh𝐧=𝐠on 0N,𝐧ρ=kon 0N,λh𝐮𝐧=ζon 0N,\left\{\begin{aligned} &\lambda\rho+\rho_{*}{\rm div}\,{\mathbf{u}}=d&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\rho_{*}\lambda{\mathbf{u}}-{\rm Div}\,\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}={\mathbf{f}}&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}{\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}={\mathbf{g}}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\rho=k&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda h-{\mathbf{u}}\cdot{\mathbf{n}}=\zeta&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\end{aligned}\right. (1)

where λ\lambda is the resolvent parameter varying in the sectorial region

Σϵ,λ0={λ{0}|argλ|<πϵ,|λ|λ0}\Sigma_{\epsilon,\lambda_{0}}=\{\lambda\in{\mathbb{C}}\setminus\{0\}\mid|\arg\lambda|<\pi-\epsilon,|\lambda|\geq\lambda_{0}\}

for 0<ϵ<π/20<\epsilon<\pi/2 and λ00\lambda_{0}\geq 0; ρ=ρ(x)\rho=\rho(x), x=(x1,,xN)x=(x_{1},\ldots,x_{N}) and 𝐮=𝐮(x)=(u1(x),,uN(x))𝖳{\mathbf{u}}={\mathbf{u}}(x)=(u_{1}(x),\ldots,u_{N}(x))^{\mathsf{T}}***𝐀𝖳{\mathbf{A}}^{\mathsf{T}}denotes the transpose of 𝐀{\mathbf{A}}. are unknown density field and velocity field, respectively; h=h(x)h=h(x) is an unknown function on 0N{\mathbb{R}}^{N}_{0} obtained by linearization of the kinematic equation, Δh=j=1N1j2h\Delta^{\prime}h=\sum^{N-1}_{j=1}\partial_{j}^{2}h; 𝐧=(0,,0,1)𝖳{\mathbf{n}}=(0,\ldots,0,-1)^{\mathsf{T}} is the unit outer normal to 0N{\mathbb{R}}^{N}_{0}; ρ,κ,σ>0\rho_{*},\kappa,\sigma>0 and γ\gamma_{*}\in{\mathbb{R}} are constants; the right members d=d(x)d=d(x), 𝐟=𝐟(x)=(f1(x),,fN(x))𝖳{\mathbf{f}}={\mathbf{f}}(x)=(f_{1}(x),\ldots,f_{N}(x))^{\mathsf{T}}, 𝐠=𝐠(x)=(g1(x),,gN(x))𝖳{\mathbf{g}}={\mathbf{g}}(x)=(g_{1}(x),\ldots,g_{N}(x))^{\mathsf{T}}, k=k(x)k=k(x), and ζ=ζ(x)\zeta=\zeta(x) are given functions. The viscous stress tensor 𝐒(𝐮){\mathbf{S}}({\mathbf{u}}) is given by

𝐒(𝐮)\displaystyle{\mathbf{S}}({\mathbf{u}}) =μ𝐃(𝐮)+(νμ)div𝐮𝐈,\displaystyle=\mu{\mathbf{D}}({\mathbf{u}})+(\nu-\mu){\rm div}\,{\mathbf{u}}{\mathbf{I}},

where μ>0\mu>0 and ν>0\nu>0 are the viscosity coefficients, 𝐃(𝐮){\mathbf{D}}({\mathbf{u}}) denotes the deformation tensor whose (j,k)(j,k) components are Djk(𝐮)=juk+kujD_{jk}({\mathbf{u}})=\partial_{j}u_{k}+\partial_{k}u_{j} with j=/xj\partial_{j}=\partial/\partial x_{j}. For any vector of functions 𝐯=(v1,,vN)𝖳{\mathbf{v}}=(v_{1},\ldots,v_{N})^{\mathsf{T}}, we set div𝐯=j=1Njvj{\rm div}\,{\mathbf{v}}=\sum_{j=1}^{N}\partial_{j}v_{j} with j=/xj\partial_{j}=\partial/\partial x_{j}, and also for any N×NN\times N matrix field 𝐋{\mathbf{L}} with (j,k)th(j,k)^{\rm th} components LjkL_{jk}, the quantity Div𝐋{\rm Div}\,{\mathbf{L}} is an NN-vector with jthj^{\rm th} component k=1NkLjk\sum_{k=1}^{N}\partial_{k}L_{jk}; 𝐈=(δij)1i,jN{\mathbf{I}}=(\delta_{ij})_{1\leq i,j\leq N} is the N×NN\times N identity matrix.

A diffuse interface model for liquid-vapor two-phase flows was introduced by Korteweg [15] based on Van der Waals’s idea [31] and derived rigorously by Dunn and Serrin [5]. There are many results for the following whole space problem:

{tρ+div(ρ𝐮)=0in Nt>0,ρ(t𝐮+𝐮𝐮)=Div(𝐒(𝐮)+𝐊(ρ)P(ρ)𝐈)in Nt>0,(ρ,𝐮)|t=0=(ρ0,𝐮0)in N,\left\{\begin{aligned} &\partial_{t}\rho+{\rm div}\,(\rho{\mathbf{u}})=0&&\quad\text{in ${\mathbb{R}}^{N}$, $t>0$},\\ &\rho(\partial_{t}{\mathbf{u}}+{\mathbf{u}}\cdot\nabla{\mathbf{u}})={\rm Div}\,({\mathbf{S}}({\mathbf{u}})+{\mathbf{K}}(\rho)-P(\rho){\mathbf{I}})&&\quad\text{in ${\mathbb{R}}^{N}$, $t>0$},\\ &(\rho,{\mathbf{u}})|_{t=0}=(\rho_{0},{\mathbf{u}}_{0})&&\quad\text{in ${\mathbb{R}}^{N}$},\end{aligned}\right. (2)

where t=/t\partial_{t}=\partial/\partial t, tt is the time variable. Here 𝐊(ρ){\mathbf{K}}(\rho) is the Korteweg stress tensor given by

𝐊(ρ)\displaystyle{\mathbf{K}}(\rho) =κ2(Δρ2|ρ|2)𝐈κρρ,\displaystyle=\frac{\kappa}{2}(\Delta\rho^{2}-|\nabla\rho|^{2}){\mathbf{I}}-\kappa\nabla\rho\otimes\nabla\rho,

where κ\kappa is the capillary coefficient; ρρ\nabla\rho\otimes\nabla\rho denotes an N×NN\times N matrix with (j,k)th(j,k)^{\rm th} component (jρ)(kρ)(\partial_{j}\rho)(\partial_{k}\rho) for ρ=(1ρ,,Nρ)𝖳\nabla\rho=(\partial_{1}\rho,\dots,\partial_{N}\rho)^{\mathsf{T}}; P(ρ)P(\rho) is the pressure field satisfying a CC^{\infty} function defined on ρ0\rho\geq 0; ρ0\rho_{0} and 𝐮0{\mathbf{u}}_{0} are given initial data.

We refer to mathematical results on system (2). Bresch, Desjardins, and Lin [1] proved the existence of global weak solution, and then Haspot improved their result in [7]. Hattori and Li [8, 9] first showed the local and global unique existence of the strong solution in Sobolev space. Hou, Peng, and Zhu [10] improved the results [8, 9] when the total energy is small. Danchin and Desjardins [3] proved the local and global existence and uniqueness of the solution in critical Besov space. Chikami and Kobayashi [2] improved the result [3]. In particular, in the case P(ρ)=0P^{\prime}(\rho_{*})=0 for some constant ρ\rho_{*}, they proved the global estimates under an additional low frequency assumption to control a pressure term. For the whole space problem in the case P(ρ)=0P^{\prime}(\rho_{*})=0, we also refer to Kobayashi and Tsuda [13]; Kobayashi and the second author [14]. Large time behavior of solutions was established by Wang and Tan [30], Tan and Wang [27], Tan, Wang, and Xu [28], and Tan and Zhang [29] in L2L_{2}-setting; the second author and Shibata [20] in LpL_{p}-LqL_{q} setting. For the optimality of decay estimates in the LpL^{p} critical framework, we refer to Kawashima, Shibata, and Xu [11].

Regarding boundary value problems, the system (2) was studied in a domain Ω\Omega with the boundary condition:

𝐮=0,𝐧ρ=0on Γ.{\mathbf{u}}=0,\quad{\mathbf{n}}\cdot\nabla\rho=0\quad\text{on $\Gamma$.} (3)

Kotschote [16] proved the existence and uniqueness of strong solutions in both bounded and exterior domains locally in time in the LpL_{p}-setting. He also considered a non-isothermal case for Newtonian and Non-Newtonian fluids in [17, 18]. Moreover, he proved the global existence and exponential decay estimates of strong solutions in a bounded domain for small initial data in [19]. Saito [21] proved the existence of {\mathcal{R}}-bounded solution operator families for the large resolvent parameter, and then he obtained the maximal LpL_{p}-LqL_{q} regularity for the linearized problem in uniform C3C^{3} domains and a generation of continuous analytic semigroup associated with the linearized problem. Concerning the resolvent estimates with small resolvent parameter, Kobayashi, the second author, and Saito [12] proved the resolvent estimate for λ+¯={zRez0}\lambda\in\overline{{\mathbb{C}}_{+}}=\{z\in{\mathbb{C}}\mid\operatorname{Re}z\geq 0\} in a bounded domain under the condition that the pressure P(ρ)P(\rho) satisfies not only P(ρ)0P^{\prime}(\rho_{*})\geq 0 but also P(ρ)<0P^{\prime}(\rho_{*})<0, and then they obtained a global solvability. Moreover, they proved the resolvent estimate for λ+¯\lambda\in\overline{{\mathbb{C}}_{+}} with |λ|δ|\lambda|\geq\delta for any δ>0\delta>0 in an exterior domain if P(ρ)0P^{\prime}(\rho_{*})\geq 0.

On the other hand, we are interested in a free boundary value problem with the surface tension; namely, the domain Ω\Omega and the boundary condition (3) are replaced by a time-dependent domain Ωt\Omega_{t} and

{(𝐒(𝐮)+𝐊(ρ)P(ρ)𝐈)𝐧t=P(ρ)𝐧t+σ(H(Γt)H(Γ0))𝐧ton Γtt>0,𝐧tρ=0on Γtt>0,VΓt=𝐮𝐧ton Γtt>0,\left\{\begin{aligned} &({\mathbf{S}}({\mathbf{u}})+{\mathbf{K}}(\rho)-P(\rho){\mathbf{I}}){\mathbf{n}}_{t}=-P(\rho_{*}){\mathbf{n}}_{t}+\sigma(H(\Gamma_{t})-H(\Gamma_{0})){\mathbf{n}}_{t}&&\quad\text{on $\Gamma_{t}$, $t>0$},\\ &{\mathbf{n}}_{t}\cdot\nabla\rho=0&&\quad\text{on $\Gamma_{t}$, $t>0$},\\ &V_{\Gamma_{t}}={\mathbf{u}}\cdot{\mathbf{n}}_{t}&&\quad\text{on $\Gamma_{t}$, $t>0$},\end{aligned}\right. (4)

where 𝐧t{\mathbf{n}}_{t} is the unit outer normal; σ\sigma is the coefficient of the surface tension; H(Γt)H(\Gamma_{t}) is the N1N-1-fold mean curvature on Γt\Gamma_{t}; Γ0\Gamma_{0} is the boundary of the given initial domain Ω0\Omega_{0}. The third equation of (4) is called the kinematic equation, where VΓtV_{\Gamma_{t}} is the velocity of the evolution of free surface Γt\Gamma_{t} in the direction of 𝐧t{\mathbf{n}}_{t}.

Since Ωt\Omega_{t} is unknown, we transform Ωt\Omega_{t} to the fixed domain Ω0\Omega_{0} by the so-called Hanzawa transform [6], and then the system of the linearized equations in Ω\Omega is given by the following forms:

{tρ+ρdiv𝐮=din Ω0t>0,ρt𝐮Div(𝐒(𝐮)+κρΔρ)+P(ρ)ρ=𝐟in Ω0t>0,(𝐒(𝐮)+κρΔρP(ρ)ρ𝐈)𝐧σ(ΔΓ0+𝐁)h𝐧=𝐠on Γ0t>0,𝐧ρ=kon Γ0t>0,th𝐮𝐧=ζon Γ0t>0,(ρ,𝐮)|t=0=(ρ0,𝐮0)in Ω0,\left\{\begin{aligned} &\partial_{t}\rho+\rho_{*}{\rm div}\,{\mathbf{u}}=d&&\quad\text{in $\Omega_{0}$, $t>0$},\\ &\rho_{*}\partial_{t}{\mathbf{u}}-{\rm Div}\,({\mathbf{S}}({\mathbf{u}})+\kappa\rho_{*}\Delta\rho)+P^{\prime}(\rho_{*})\nabla\rho={\mathbf{f}}&&\quad\text{in $\Omega_{0}$, $t>0$},\\ &({\mathbf{S}}({\mathbf{u}})+\kappa\rho_{*}\Delta\rho-P^{\prime}(\rho_{*})\rho{\mathbf{I}}){\mathbf{n}}-\sigma(\Delta_{\Gamma_{0}}+{\mathbf{B}})h{\mathbf{n}}={\mathbf{g}}&&\quad\text{on $\Gamma_{0}$, $t>0$},\\ &{\mathbf{n}}\cdot\nabla\rho=k&&\quad\text{on $\Gamma_{0}$, $t>0$},\\ &\partial_{t}h-{\mathbf{u}}\cdot{\mathbf{n}}=\zeta&&\quad\text{on $\Gamma_{0}$, $t>0$},\\ &(\rho,{\mathbf{u}})|_{t=0}=(\rho_{0},{\mathbf{u}}_{0})&&\quad\text{in $\Omega_{0}$},\end{aligned}\right. (5)

where ΔΓ0\Delta_{\Gamma_{0}} is the Laplace-Beltrami operator on Γ0\Gamma_{0}; the right member (d,𝐟,𝐠,k,ζ)(d,{\mathbf{f}},{\mathbf{g}},k,\zeta), initial data (ρ0,𝐮0)(\rho_{0},{\mathbf{u}}_{0}), and 𝐁{\mathbf{B}} are given functions. Since 𝐁{\mathbf{B}} can be treated by the perturbation method, we consider the linearized problem (5) excluding 𝐁{\mathbf{B}}, then we have the resolvent problem (1) by the Laplace transform if Ω0=+N\Omega_{0}={\mathbb{R}}^{N}_{+} and Γ0=0N\Gamma_{0}={\mathbb{R}}^{N}_{0}.

Concerning a free boundary value problem, Saito [22] considered the resolvent problem arising from a free boundary value problem without surface tension in +N{\mathbb{R}}^{N}_{+}; namely, σ=0\sigma=0 in (4). He constructed {\mathcal{R}}-bounded operator families satisfying the resolvent problems in N{\mathbb{R}}^{N} and +N{\mathbb{R}}^{N}_{+}.

In this paper, we discuss the existence of the {\mathcal{R}}-bounded operator families for the resolvent problem (1). Once we obtain {\mathcal{R}}-boundedness for the solution operator families, we can consider the maximal LpL_{p}-LqL_{q} regularity for the linearized problem by the Weis’s operator valued Fourier multiplier theorem [32], which is the key estimate when we consider the local solvability for the nonlinear problem in the maximal LpL_{p}-LqL_{q} regularity class. Here we introduce the definition of {\mathcal{R}}-boundedness of operator families.

Definition 1.

Let XX and YY be Banach spaces, and let (X,Y){\mathcal{L}}(X,Y) be the set of all bounded linear operators from XX into YY. A family of operators 𝒯(X,Y){\mathcal{T}}\subset{\mathcal{L}}(X,Y) is called {\mathcal{R}}-bounded on (X,Y){\mathcal{L}}(X,Y), if there exist constants C>0C>0 and p[1,)p\in[1,\infty) such that for any nn\in{\mathbb{N}}, {Tj}j=1n𝒯\{T_{j}\}_{j=1}^{n}\subset{\mathcal{T}}, {fj}j=1nX\{f_{j}\}_{j=1}^{n}\subset X and sequences {rj}j=1n\{r_{j}\}_{j=1}^{n} of independent, symmetric, {1,1}\{-1,1\}-valued random variables on [0,1][0,1], we have the inequality:

{01j=1nrj(u)TjfjYpdu}1/pC{01j=1nrj(u)fjXpdu}1/p.\bigg{\{}\int_{0}^{1}\|\sum_{j=1}^{n}r_{j}(u)T_{j}f_{j}\|_{Y}^{p}\,du\bigg{\}}^{1/p}\leq C\bigg{\{}\int^{1}_{0}\|\sum_{j=1}^{n}r_{j}(u)f_{j}\|_{X}^{p}\,du\biggr{\}}^{1/p}.

The smallest such CC is called {\mathcal{R}}-bound of 𝒯{\mathcal{T}}, which is denoted by (X,Y)(𝒯){\mathcal{R}}_{{\mathcal{L}}(X,Y)}({\mathcal{T}}).

Concerning {\mathcal{R}}-boundedness, we introduce the following lemma proved by [4, Proposition 3.4].

Lemma 1.

1{\rm 1} Let XX and YY be Banach spaces, and let 𝒯{\mathcal{T}} and 𝒮{\mathcal{S}} be {\mathcal{R}}-bounded families in (X,Y){\mathcal{L}}(X,Y). Then 𝒯+𝒮={T+ST𝒯,S𝒮}{\mathcal{T}}+{\mathcal{S}}=\{T+S\mid T\in{\mathcal{T}},S\in{\mathcal{S}}\} is also {\mathcal{R}}-bounded family in (X,Y){\mathcal{L}}(X,Y) and

(X,Y)(𝒯+𝒮)(X,Y)(𝒯)+(X,Y)(𝒮).{\mathcal{R}}_{{\mathcal{L}}(X,Y)}({\mathcal{T}}+{\mathcal{S}})\leq{\mathcal{R}}_{{\mathcal{L}}(X,Y)}({\mathcal{T}})+{\mathcal{R}}_{{\mathcal{L}}(X,Y)}({\mathcal{S}}).

2{\rm 2} Let XX, YY and ZZ be Banach spaces and let 𝒯{\mathcal{T}} and 𝒮{\mathcal{S}} be {\mathcal{R}}-bounded families in (X,Y){\mathcal{L}}(X,Y) and (Y,Z){\mathcal{L}}(Y,Z), respectively. Then 𝒮𝒯={STT𝒯,S𝒮}{\mathcal{S}}{\mathcal{T}}=\{ST\mid T\in{\mathcal{T}},S\in{\mathcal{S}}\} is also an {\mathcal{R}}-bounded family in (X,Z){\mathcal{L}}(X,Z) and

(X,Z)(𝒮𝒯)(X,Y)(𝒯)(Y,Z)(𝒮).{\mathcal{R}}_{{\mathcal{L}}(X,Z)}({\mathcal{S}}{\mathcal{T}})\leq{\mathcal{R}}_{{\mathcal{L}}(X,Y)}({\mathcal{T}}){\mathcal{R}}_{{\mathcal{L}}(Y,Z)}({\mathcal{S}}).

1.2 Notation

We summarize several symbols and functional spaces used throughout the paper. Let {\mathbb{N}}, {\mathbb{R}} and {\mathbb{C}} denote the sets of all natural numbers, real numbers, and complex numbers, respectively. We use boldface letters, e.g. 𝐮{\mathbf{u}} to denote vector-valued functions.

For scalar function ff and NN-vector functions 𝐠{\mathbf{g}}, we set

f\displaystyle\nabla f =(1f,,Nf)𝖳,\displaystyle=(\partial_{1}f,\ldots,\partial_{N}f)^{\mathsf{T}}, 2f\displaystyle\enskip\nabla^{2}f =(ijf)1i,jN,\displaystyle=(\partial_{i}\partial_{j}f)_{1\leq i,j\leq N},
3f\displaystyle\nabla^{3}f ={ijkfi,j,k=1,,N},\displaystyle=\{\partial_{i}\partial_{j}\partial_{k}f\mid i,j,k=1,\ldots,N\},
𝐠\displaystyle\nabla{\mathbf{g}} =(igj)1i,jN,\displaystyle=(\partial_{i}g_{j})_{1\leq i,j\leq N}, 2𝐠\displaystyle\enskip\nabla^{2}{\mathbf{g}} ={ijgki,j,k=1,,N},\displaystyle=\{\partial_{i}\partial_{j}g_{k}\mid i,j,k=1,\ldots,N\},

where i=/xi\partial_{i}=\partial/\partial x_{i}.

Let 0={0}{\mathbb{N}}_{0}={\mathbb{N}}\cup\{0\}. For multi-index α=(α1,,αN1)0N1\alpha^{\prime}=(\alpha_{1},\ldots,\alpha_{N-1})\in{\mathbb{N}}_{0}^{N-1} and scalar function f=f(ξ1,,ξN1)f=f(\xi_{1},\ldots,\xi_{N-1}),

ξαf=|α|ξ1α1ξN1αN1f,|α|=α1++αN1.\partial^{\alpha^{\prime}}_{\xi^{\prime}}f=\frac{\partial^{|\alpha^{\prime}|}}{\partial\xi_{1}^{\alpha_{1}}\cdots\partial\xi_{N-1}^{\alpha_{N-1}}}f,\quad|\alpha^{\prime}|=\alpha_{1}+\cdots+\alpha_{N-1}.

For complex valued functions f=f(x)f=f(x) and g=g(x)g=g(x); NN-vector functions 𝐟=(f1(x),,fN(x)){\mathbf{f}}=(f_{1}(x),\ldots,f_{N}(x)) and 𝐠=(g1(x),,gN(x)){\mathbf{g}}=(g_{1}(x),\ldots,g_{N}(x)), the inner products (f,g)+N(f,g)_{{\mathbb{R}}^{N}_{+}}, (f,g)0N(f,g)_{{\mathbb{R}}^{N}_{0}}, (𝐟,𝐠)+N({\mathbf{f}},{\mathbf{g}})_{{\mathbb{R}}^{N}_{+}}, and (𝐟,𝐠)0N({\mathbf{f}},{\mathbf{g}})_{{\mathbb{R}}^{N}_{0}} are defined by

(f,g)+N\displaystyle(f,g)_{{\mathbb{R}}^{N}_{+}} =+Nf(x)g(x)¯𝑑x,\displaystyle=\int_{{\mathbb{R}}^{N}_{+}}f(x)\overline{g(x)}\,dx, (f,g)0N\displaystyle(f,g)_{{\mathbb{R}}^{N}_{0}} =0Nf(x)g(x)¯𝑑x,\displaystyle=\int_{{\mathbb{R}}^{N}_{0}}f(x)\overline{g(x)}\,dx^{\prime},
(𝐟,𝐠)+N\displaystyle({\mathbf{f}},{\mathbf{g}})_{{\mathbb{R}}^{N}_{+}} =j=1N(fj,gj)+N,\displaystyle=\sum^{N}_{j=1}(f_{j},g_{j})_{{\mathbb{R}}^{N}_{+}}, (𝐟,𝐠)0N\displaystyle({\mathbf{f}},{\mathbf{g}})_{{\mathbb{R}}^{N}_{0}} =j=1N(fj,gj)0N,\displaystyle=\sum^{N}_{j=1}(f_{j},g_{j})_{{\mathbb{R}}^{N}_{0}},

where g(x)¯\overline{g(x)} is the complex conjugate of g(x)g(x).

For Banach spaces XX and YY, (X,Y){\mathcal{L}}(X,Y) denotes the set of all bounded linear operators from XX into YY, (X){\mathcal{L}}(X) is the abbreviation of (X,X){\mathcal{L}}(X,X), and Hol(U,(X,Y))\rm{Hol}\,(U,{\mathcal{L}}(X,Y)) denotes the set of all (X,Y){\mathcal{L}}(X,Y) valued holomorphic functions defined on a domain UU in {\mathbb{C}}.

For any 1<q<1<q<\infty, mm\in{\mathbb{N}}, Lq(+N)L_{q}({\mathbb{R}}^{N}_{+}) and Hqm(+N)H_{q}^{m}({\mathbb{R}}^{N}_{+}) denote the usual Lebesgue space and Sobolev space; while Lq(+N)\|\cdot\|_{L_{q}({\mathbb{R}}^{N}_{+})}, Hqm(+N)\|\cdot\|_{H_{q}^{m}({\mathbb{R}}^{N}_{+})} denote their norms, respectively; Wqm+s(0N)=(Hqm(0N),Hqm+1(0N))s,qW^{m+s}_{q}({\mathbb{R}}^{N}_{0})=(H^{m}_{q}({\mathbb{R}}^{N}_{0}),H^{m+1}_{q}({\mathbb{R}}^{N}_{0}))_{s,q} for m0m\in{\mathbb{N}}_{0} and 0<s<10<s<1, where (,)s,q(\cdot,\cdot)_{s,q} denotes the real interpolation functor; C((a,b))C^{\infty}((a,b)) denotes the set of all CC^{\infty} functions defined on (a,b)(a,b). The dd-product space of XX is defined by Xd={f=(f,,fd)fiX(i=1,,d)}X^{d}=\{f=(f,\ldots,f_{d})\mid f_{i}\in X\,(i=1,\ldots,d)\}, while its norm is denoted by X\|\cdot\|_{X} instead of Xd\|\cdot\|_{X^{d}} for the sake of simplicity.

For the Banach space X, we also denote the usual Lebesgue space and Sobolev space of XX-valued functions defined on time interval II by Lp(I,X)L_{p}(I,X) and Hpm(I,X)H^{m}_{p}(I,X) with mm\in{\mathbb{N}}; while Lp(I,X)\|\cdot\|_{L_{p}(I,X)}, Hpm(I,X)\|\cdot\|_{H_{p}^{m}(I,X)} denote their norms, respectively.

Let γ1\gamma\geq 1. Set

Lp,γ(,X)\displaystyle L_{p,\gamma}({\mathbb{R}},X) ={f(t)Lp,loc(,X)eγtf(t)Lp(,X)},\displaystyle=\{f(t)\in L_{p,{\rm loc}}({\mathbb{R}},X)\mid e^{-\gamma t}f(t)\in L_{p}({\mathbb{R}},X)\},
Lp,γ,0(,X)\displaystyle L_{p,\gamma,0}({\mathbb{R}},X) ={f(t)Lp,γ(,X)f(t)=0(t<0)},\displaystyle=\{f(t)\in L_{p,\gamma}({\mathbb{R}},X)\mid f(t)=0\enskip(t<0)\},
Hp,γm(,X)\displaystyle H^{m}_{p,\gamma}({\mathbb{R}},X) ={f(t)Lp,γ(,X)eγttjf(t)Lp(I,X)(j=1,,m)},\displaystyle=\{f(t)\in L_{p,\gamma}({\mathbb{R}},X)\mid e^{-\gamma t}\partial_{t}^{j}f(t)\in L_{p}(I,X)\enskip(j=1,\ldots,m)\},
Hp,γ,0m(,X)\displaystyle H^{m}_{p,\gamma,0}({\mathbb{R}},X) =Hp,γm(,X)Lp,γ,0(,X).\displaystyle=H^{m}_{p,\gamma}({\mathbb{R}},X)\cap L_{p,\gamma,0}({\mathbb{R}},X).

Let {\mathcal{L}} and 1{\mathcal{L}}^{-1} denote the Laplace transform and the Laplace inverse transform, respectively, which are defined by

[f](λ)=eλtf(t)𝑑t,1[g](t)=12πeλtg(τ)𝑑τ{\mathcal{L}}[f](\lambda)=\int_{{\mathbb{R}}}e^{-\lambda t}f(t)\,dt,\quad{\mathcal{L}}^{-1}[g](t)=\frac{1}{2\pi}\int_{{\mathbb{R}}}e^{\lambda t}g(\tau)\,d\tau

with λ=γ+iτ\lambda=\gamma+i\tau\in{\mathbb{C}}. Given s0s\geq 0 and XX-valued function f(t)f(t), we set

(Λγsf)(t)=1[λs[f](λ)](t).(\Lambda^{s}_{\gamma}f)(t)={\mathcal{L}}^{-1}[\lambda^{s}{\mathcal{L}}[f](\lambda)](t).

The Bessel potential space of XX-valued functions of order ss is defined by the following:

Hp,γs(,X)\displaystyle H^{s}_{p,\gamma}({\mathbb{R}},X) ={fLp(,X)eγt(Λγsf)(t)Lp(,X)},\displaystyle=\{f\in L_{p}({\mathbb{R}},X)\mid e^{-\gamma t}(\Lambda_{\gamma}^{s}f)(t)\in L_{p}({\mathbb{R}},X)\},
Hp,γ,0s(,X)\displaystyle H^{s}_{p,\gamma,0}({\mathbb{R}},X) ={fHp,γs(,X)f(t)=0(t<0)}.\displaystyle=\{f\in H^{s}_{p,\gamma}({\mathbb{R}},X)\mid f(t)=0\enskip(t<0)\}.

The letter CC denotes generic constants and the constant Ca,b,C_{a,b,\ldots} depends on a,b,a,b,\ldots. The values of constants CC and Ca,b,C_{a,b,\ldots} may change from line to line.

This paper is organized as follows. In the next section, we state the main theorem concerning the {\mathcal{R}}-bounded operator families arising from the free boundary value problem for the compressible fluid model of Korteweg type with surface tension. Section 3 and Section 4 prove the main theorem. As preliminaries, we study the reduced resolvent problem by using the result for the Navier-Stokes-Korteweg system without surface tension. Section 5 proves the existence of the {\mathcal{R}}-bounded operator families for the system containing lower-order derivatives. As an application of the main theorem, Section 6 proves the maximal LpL_{p}-LqL_{q} regularity for the linearized equations.

2 Main theorem

Let us consider the following rescaled problem:

{λρ+div𝐮=din +N,λ𝐮Div{𝐒(𝐮)(γκΔ)ρ𝐈}=𝐟in +N,{𝐒(𝐮)(γκΔ)ρ𝐈}𝐧σΔh𝐧=𝐠on 0N,𝐧ρ=kon 0N,λh𝐮𝐧=ζon 0N,\left\{\begin{aligned} &\lambda\rho+{\rm div}\,{\mathbf{u}}=d&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\lambda{\mathbf{u}}-{\rm Div}\,\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\kappa\Delta)\rho{\mathbf{I}}\}={\mathbf{f}}&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\kappa\Delta)\rho{\mathbf{I}}\}{\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}={\mathbf{g}}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\rho=k&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda h-{\mathbf{u}}\cdot{\mathbf{n}}=\zeta&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\end{aligned}\right. (6)

where we have replaced in (1) (ρ,μ,ν,κ,σ)(\rho,\mu,\nu,\kappa,\sigma) with (ρρ,ρμ,ρν,κ/ρ,ρσ)(\rho_{*}\rho,\rho_{*}\mu,\rho_{*}\nu,\kappa/\rho_{*},\rho_{*}\sigma). Hereafter, we mainly consider the system (6) in the case γ=0\gamma_{*}=0; namely,

{λρ+div𝐮=din +N,λ𝐮Div(𝐒(𝐮)+κΔρ𝐈)=𝐟in +N,(𝐒(𝐮)+κΔρ𝐈)𝐧σΔh𝐧=𝐠on 0N,𝐧ρ=kon 0N,λh𝐮𝐧=ζon 0N.\left\{\begin{aligned} &\lambda\rho+{\rm div}\,{\mathbf{u}}=d&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\lambda{\mathbf{u}}-{\rm Div}\,({\mathbf{S}}({\mathbf{u}})+\kappa\Delta\rho{\mathbf{I}})={\mathbf{f}}&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &({\mathbf{S}}({\mathbf{u}})+\kappa\Delta\rho{\mathbf{I}}){\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}={\mathbf{g}}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\rho=k&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda h-{\mathbf{u}}\cdot{\mathbf{n}}=\zeta&\quad&\text{on ${\mathbb{R}}^{N}_{0}$}.\end{aligned}\right. (7)

Note that the result for (6) in the case γ\gamma_{*}\in{\mathbb{R}} can be obtained by the result in the case γ=0\gamma_{*}=0. We discuss it in more detail in Sec. 5 below.

Let 𝐅=(d,𝐟,𝐠,k,ζ){\mathbf{F}}=(d,{\mathbf{f}},{\mathbf{g}},k,\zeta). To state the main theorem, we define a function space for the right member 𝐅{\mathbf{F}} as

Xq(+N)=Hq1(+N)×Lq(+N)N×Hq1(+N)N×Hq2(+N)×Wq21/q(0N).X_{q}({\mathbb{R}}^{N}_{+})=H^{1}_{q}({\mathbb{R}}^{N}_{+})\times L_{q}({\mathbb{R}}^{N}_{+})^{N}\times H^{1}_{q}({\mathbb{R}}^{N}_{+})^{N}\times H^{2}_{q}({\mathbb{R}}^{N}_{+})\times W^{2-1/q}_{q}({\mathbb{R}}^{N}_{0}).

For 𝐅Xq(+n){\mathbf{F}}\in X_{q}({\mathbb{R}}^{n}_{+}), we set

𝒳q(+N)\displaystyle{\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}) =Hq1(+N)×Lq(+N)𝒩×Wq21/q(0N),𝒩=N+N2+N+N2+N+1,\displaystyle=H^{1}_{q}({\mathbb{R}}^{N}_{+})\times L_{q}({\mathbb{R}}^{N}_{+})^{\mathcal{N}}\times W^{2-1/q}_{q}({\mathbb{R}}^{N}_{0}),\quad{\mathcal{N}}=N+N^{2}+N+N^{2}+N+1,
λ𝐅\displaystyle{\mathcal{F}}_{\lambda}{\mathbf{F}} =(d,𝐟,𝐠,λ1/2𝐠,2k,λ1/2k,λk,ζ)𝒳q(+N).\displaystyle=(d,{\mathbf{f}},\nabla{\mathbf{g}},\lambda^{1/2}{\mathbf{g}},\nabla^{2}k,\nabla\lambda^{1/2}k,\lambda k,\zeta)\in{\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}).

Moreover, we define symbols for the solution (ρ,𝐮,h)(\rho,{\mathbf{u}},h) of (7) as

𝔄q(+N)\displaystyle{\mathfrak{A}}_{q}({\mathbb{R}}^{N}_{+}) =Lq(+N)N3+N2×Hq1(+N),\displaystyle=L_{q}({\mathbb{R}}^{N}_{+})^{N^{3}+N^{2}}\times H^{1}_{q}({\mathbb{R}}^{N}_{+}), λρ\displaystyle{\mathcal{R}}_{\lambda}\rho =(3ρ,λ1/22ρ,λρ),\displaystyle=(\nabla^{3}\rho,\lambda^{1/2}\nabla^{2}\rho,\lambda\rho),
𝔅q(+N)\displaystyle{\mathfrak{B}}_{q}({\mathbb{R}}^{N}_{+}) =Lq(+N)N3+N2+N,\displaystyle=L_{q}({\mathbb{R}}^{N}_{+})^{N^{3}+N^{2}+N}, 𝒮λ𝐮\displaystyle{\mathcal{S}}_{\lambda}{\mathbf{u}} =(2𝐮,λ1/2𝐮,λ𝐮),\displaystyle=(\nabla^{2}{\mathbf{u}},\lambda^{1/2}\nabla{\mathbf{u}},\lambda{\mathbf{u}}),
q(0N)\displaystyle{\mathfrak{C}}_{q}({\mathbb{R}}^{N}_{0}) =Wq31/q(0N)×Wq21/q(0N),\displaystyle=W^{3-1/q}_{q}({\mathbb{R}}^{N}_{0})\times W^{2-1/q}_{q}({\mathbb{R}}^{N}_{0}), 𝒯λh\displaystyle{\mathcal{T}}_{\lambda}h =(h,λh).\displaystyle=(h,\lambda h).

To describe the sectorial region, we also set an angle due to analysis for the whole space problem (cf. [22, Sec. 2]). Let α\alpha be a constant given by

α=(μ+ν2κ)21κ,\alpha=\left(\frac{\mu+\nu}{2\kappa}\right)^{2}-\frac{1}{\kappa},

and let ϵ~[0,π/2)\tilde{\epsilon}_{*}\in[0,\pi/2) be an angle defined as

ϵ~={0(α0),arg(μ+ν2κ+i|α|)(α<0).\tilde{\epsilon}_{*}=\left\{\begin{aligned} &0&(\alpha\geq 0),\\ &\arg\left(\frac{\mu+\nu}{2\kappa}+i\sqrt{|\alpha|}\right)&(\alpha<0).\end{aligned}\right. (8)

Our main result for the system (7) is as follows.

Theorem 1.

Let 1<q<1<q<\infty. Assume that μ\mu, ν\nu, κ\kappa, and σ\sigma are positive constants satisfying

α0,κμν.\alpha\neq 0,\quad\kappa\neq\mu\nu. (9)

Then there is a constant ϵ(ϵ~,π/2)\epsilon_{*}\in(\tilde{\epsilon}_{*},\pi/2) such that for any ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) there exists a constant λ01\lambda_{0}\geq 1 such that the following assertions hold true:

1{\rm 1} For any λΣϵ,λ0\lambda\in\Sigma_{\epsilon,\lambda_{0}} there exist operator families

𝒜0(λ)Hol(Σϵ,λ0,(𝒳q(+N),Hq3(+N)))\displaystyle{\mathcal{A}}_{0}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),H^{3}_{q}({\mathbb{R}}^{N}_{+})))
0(λ)Hol(Σϵ,λ0,(𝒳q(+N),Hq2(+N)N)),\displaystyle{\mathcal{B}}_{0}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),H^{2}_{q}({\mathbb{R}}^{N}_{+})^{N})),
𝒞0(λ)Hol(Σϵ,λ0,(𝒳q(+N),Wq31/q(0N)))\displaystyle{\mathcal{C}}_{0}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),W^{3-1/q}_{q}({\mathbb{R}}^{N}_{0})))

such that for any 𝐅=(d,𝐟,𝐠,k,ζ)Xq(+N){\mathbf{F}}=(d,{\mathbf{f}},{\mathbf{g}},k,\zeta)\in X_{q}({\mathbb{R}}^{N}_{+}),

ρ=𝒜0(λ)λ𝐅,𝐮=0(λ)λ𝐅,h=𝒞0(λ)λ𝐅\rho={\mathcal{A}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}},\quad{\mathbf{u}}={\mathcal{B}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}},\quad h={\mathcal{C}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}

are unique solutions of the problem (7).

2{\rm 2} There exists a positive constant rr such that

(𝒳q(+N),𝔄q(+N))({(ττ)nλ𝒜0(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{A}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{R}}_{\lambda}{\mathcal{A}}_{0}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r, (10)
(𝒳q(+N),𝔅q(+N))({(ττ)n𝒮λ0(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{B}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{S}}_{\lambda}{\mathcal{B}}_{0}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r,
(𝒳q(+N),q(0N))({(ττ)n𝒯λ𝒞0(λ)λΣϵ,λ0})r\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{C}}_{q}({\mathbb{R}}^{N}_{0}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{T}}_{\lambda}{\mathcal{C}}_{0}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r

for n=0,1n=0,1. Here above constants λ0\lambda_{0} and rr depend solely on NN, qq, ϵ\epsilon, μ\mu, ν\nu, κ\kappa, and σ\sigma.

Theorem 1 can be proved by the following theorem, which will be discussed in Sec. 3 and Sec. 4 below.

Theorem 2.

Let 1<q<1<q<\infty. Assume that μ\mu, ν\nu, κ\kappa, and σ\sigma are positive constants satisfying (9). Let ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) for ϵ\epsilon_{*} given in Theorem 1. Set

Yq(+N)\displaystyle Y_{q}({\mathbb{R}}^{N}_{+}) =Hq1(+N)×Lq(+N)N×Hq1(+N)N×Hq2(+N)×Hq2(+N),\displaystyle=H^{1}_{q}({\mathbb{R}}^{N}_{+})\times L_{q}({\mathbb{R}}^{N}_{+})^{N}\times H^{1}_{q}({\mathbb{R}}^{N}_{+})^{N}\times H^{2}_{q}({\mathbb{R}}^{N}_{+})\times H^{2}_{q}({\mathbb{R}}^{N}_{+}),
𝒴q(+N)\displaystyle{\mathcal{Y}}_{q}({\mathbb{R}}^{N}_{+}) =Hq1(+N)×Lq(+N)𝒩×Hq2(+N),𝒩=N+N2+N+N2+N+1,\displaystyle=H^{1}_{q}({\mathbb{R}}^{N}_{+})\times L_{q}({\mathbb{R}}^{N}_{+})^{\mathcal{N}}\times H^{2}_{q}({\mathbb{R}}^{N}_{+}),\quad{\mathcal{N}}=N+N^{2}+N+N^{2}+N+1,
~q(+N)\displaystyle\tilde{\mathfrak{C}}_{q}({\mathbb{R}}^{N}_{+}) =Hq3(+N)×Hq2(+N).\displaystyle=H^{3}_{q}({\mathbb{R}}^{N}_{+})\times H^{2}_{q}({\mathbb{R}}^{N}_{+}).

Then there exists a constant λ01\lambda_{0}\geq 1 such that the following assertions hold true:

1{\rm 1} For any λΣϵ,λ0\lambda\in\Sigma_{\epsilon,\lambda_{0}} there exist operator families

𝒜(λ)Hol(Σϵ,λ0,(𝒴q(+N),Hq3(+N)))\displaystyle{\mathcal{A}}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{Y}}_{q}({\mathbb{R}}^{N}_{+}),H^{3}_{q}({\mathbb{R}}^{N}_{+})))
(λ)Hol(Σϵ,λ0,(𝒴q(+N),Hq2(+N)N)),\displaystyle{\mathcal{B}}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{Y}}_{q}({\mathbb{R}}^{N}_{+}),H^{2}_{q}({\mathbb{R}}^{N}_{+})^{N})),
𝒞(λ)Hol(Σϵ,λ0,(𝒴q(+N),Hq3(+N)))\displaystyle{\mathcal{C}}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{Y}}_{q}({\mathbb{R}}^{N}_{+}),H^{3}_{q}({\mathbb{R}}^{N}_{+})))

such that for any 𝐅=(d,𝐟,𝐠,k,ζ)Yq(+N){\mathbf{F}}=(d,{\mathbf{f}},{\mathbf{g}},k,\zeta)\in Y_{q}({\mathbb{R}}^{N}_{+}),

ρ=𝒜(λ)λ𝐅,𝐮=(λ)λ𝐅,h=𝒞(λ)λ𝐅\rho={\mathcal{A}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}},\quad{\mathbf{u}}={\mathcal{B}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}},\quad h={\mathcal{C}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}

are solutions of problem (7).

2{\rm 2} There exists a positive constant rr such that

(𝒴q(+N),𝔄q(+N))({(ττ)nλ𝒜(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{Y}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{A}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{R}}_{\lambda}{\mathcal{A}}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r,
(𝒴q(+N),𝔅q(+N))({(ττ)n𝒮λ(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{Y}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{B}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{S}}_{\lambda}{\mathcal{B}}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r,
(𝒴q(+N),~q(+N))({(ττ)n𝒯λ𝒞(λ)λΣϵ,λ0})r\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{Y}}_{q}({\mathbb{R}}^{N}_{+}),\tilde{\mathfrak{C}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{T}}_{\lambda}{\mathcal{C}}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r

for n=0,1n=0,1. Here, above constants λ0\lambda_{0} and rr depend solely on NN, qq, ϵ\epsilon, μ\mu, ν\nu, κ\kappa, and σ\sigma.

Admitting Theorem 2, we prove Theorem 1.

proof of Theorem 1.

Let 𝐅Xq(+N){\mathbf{F}}\in X_{q}({\mathbb{R}}^{N}_{+}). Note that there exist linear mappings

𝒯:Hqn(+N)Wqn1/q(0N),:Wqn1/q(0N)Hqn(+N){\mathcal{T}}:H^{n}_{q}({\mathbb{R}}^{N}_{+})\to W^{n-1/q}_{q}({\mathbb{R}}^{N}_{0}),\quad{\mathcal{E}}:W^{n-1/q}_{q}({\mathbb{R}}^{N}_{0})\to H^{n}_{q}({\mathbb{R}}^{N}_{+})

such that 𝒯fWqn1/q(0N)CfWqn(+N)\|{\mathcal{T}}f\|_{W^{n-1/q}_{q}({\mathbb{R}}^{N}_{0})}\leq C\|f\|_{W^{n}_{q}({\mathbb{R}}^{N}_{+})} and gWqn(+N)CgWqn1/q(0N)\|{\mathcal{E}}g\|_{W^{n}_{q}({\mathbb{R}}^{N}_{+})}\leq C\|g\|_{W^{n-1/q}_{q}({\mathbb{R}}^{N}_{0})} for n=2,3n=2,3 (cf. [25, Proposition 9.5.4]). For 𝐅Xq(+N){\mathbf{F}}\in X_{q}({\mathbb{R}}^{N}_{+}), we define operator ~\tilde{\mathcal{E}} as ~λ𝐅=(d,𝐟,𝐠,λ1/2𝐠,2k,λ1/2k,λk,ζ)𝒴q(+N)\tilde{\mathcal{E}}{\mathcal{F}}_{\lambda}{\mathbf{F}}=(d,{\mathbf{f}},\nabla{\mathbf{g}},\lambda^{1/2}{\mathbf{g}},\nabla^{2}k,\nabla\lambda^{1/2}k,\lambda k,{\mathcal{E}}\zeta)\in{\mathcal{Y}}_{q}({\mathbb{R}}^{N}_{+}). Setting 𝒜0(λ)=𝒜(λ)~{\mathcal{A}}_{0}(\lambda)={\mathcal{A}}(\lambda)\tilde{\mathcal{E}}, 0(λ)=(λ)~{\mathcal{B}}_{0}(\lambda)={\mathcal{B}}(\lambda)\tilde{\mathcal{E}}, and 𝒞0(λ)=𝒯𝒞(λ)~{\mathcal{C}}_{0}(\lambda)={\mathcal{T}}{\mathcal{C}}(\lambda)\tilde{\mathcal{E}}, Theorem 2 implies the existence of solutions to (7) and 𝒜0(λ){\mathcal{A}}_{0}(\lambda), 0(λ){\mathcal{B}}_{0}(\lambda), and 𝒞0(λ){\mathcal{C}}_{0}(\lambda) satisfy (10).

The uniqueness of the solution to (7) follows from the existence theorem of the dual problem. In fact, we assume that (ρ,𝐮,h)(\rho,{\mathbf{u}},h) satisfies the following system, which is (7) with the right member (d,𝐟,𝐠,h,ζ)(d,{\mathbf{f}},{\mathbf{g}},h,\zeta) vanishing.

{λρ+div𝐮=0in +N,λ𝐮Div(𝐒(𝐮)+κΔρ𝐈)=0in +N,(𝐒(𝐮)+κΔρ𝐈)𝐧σΔh𝐧=0on 0N,𝐧ρ=0on 0N,λh𝐮𝐧=0on 0N.\left\{\begin{aligned} &\lambda\rho+{\rm div}\,{\mathbf{u}}=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\lambda{\mathbf{u}}-{\rm Div}\,({\mathbf{S}}({\mathbf{u}})+\kappa\Delta\rho{\mathbf{I}})=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &({\mathbf{S}}({\mathbf{u}})+\kappa\Delta\rho{\mathbf{I}}){\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\rho=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda h-{\mathbf{u}}\cdot{\mathbf{n}}=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$}.\end{aligned}\right. (11)

For any λΣϵ,λ0\lambda\in\Sigma_{\epsilon,\lambda_{0}}, 𝚽C0(+N)N{\mathbf{\Phi}}\in C^{\infty}_{0}({\mathbb{R}}^{N}_{+})^{N}, there exist a solution (θ,𝐯,k)Hq3(+N)×Hq2(+N)N×Wq31/q(+N)(\theta,{\mathbf{v}},k)\in H^{3}_{q^{\prime}}({\mathbb{R}}^{N}_{+})\times H^{2}_{q^{\prime}}({\mathbb{R}}^{N}_{+})^{N}\times W^{3-1/q^{\prime}}_{q^{\prime}}({\mathbb{R}}^{N}_{+}) such that

{λ¯θ+div𝐯=0in +N,λ¯𝐯Div(𝐒(𝐯)+κΔθ𝐈)=𝚽in +N,(𝐒(𝐯)+κΔθ𝐈)𝐧σΔk𝐧=0on 0N,𝐧θ=0on 0N,λ¯k𝐯𝐧=0on 0N.\left\{\begin{aligned} &\bar{\lambda}\theta+{\rm div}\,{\mathbf{v}}=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\bar{\lambda}{\mathbf{v}}-{\rm Div}\,({\mathbf{S}}({\mathbf{v}})+\kappa\Delta\theta{\mathbf{I}})={\mathbf{\Phi}}&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &({\mathbf{S}}({\mathbf{v}})+\kappa\Delta\theta{\mathbf{I}}){\mathbf{n}}-\sigma\Delta^{\prime}k{\mathbf{n}}=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\theta=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\bar{\lambda}k-{\mathbf{v}}\cdot{\mathbf{n}}=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$}.\end{aligned}\right.

Note the facts that

i,j=1N+Njui(𝐒(𝐯)ij+Δθδij)¯dx=i,j=1N+N(𝐒(𝐮)ij+Δρδij)jvi¯𝑑x,\sum^{N}_{i,j=1}\int_{{\mathbb{R}}^{N}_{+}}\partial_{j}u_{i}\overline{({\mathbf{S}}({\mathbf{v}})_{ij}+\Delta\theta\delta_{ij})}\,dx=\sum^{N}_{i,j=1}\int_{{\mathbb{R}}^{N}_{+}}({\mathbf{S}}({\mathbf{u}})_{ij}+\Delta\rho\delta_{ij})\overline{\partial_{j}v_{i}}\,dx,

where we have used 𝐒(𝐮)ij=μ(iuj+juj)+(νμ)div𝐮δij{\mathbf{S}}({\mathbf{u}})_{ij}=\mu(\partial_{i}u_{j}+\partial_{j}u_{j})+(\nu-\mu){\rm div}\,{\mathbf{u}}\delta_{ij} and the boundary condition 𝐧ρ=𝐧θ=0{\mathbf{n}}\cdot\nabla\rho={\mathbf{n}}\cdot\nabla\theta=0. Then we have

(𝐮,𝚽)+N\displaystyle({\mathbf{u}},{\mathbf{\Phi}})_{{\mathbb{R}}^{N}_{+}} =(𝐮,λ¯𝐯Div(𝐒(𝐯)+κΔθ𝐈))+N\displaystyle=({\mathbf{u}},\bar{\lambda}{\mathbf{v}}-{\rm Div}\,({\mathbf{S}}({\mathbf{v}})+\kappa\Delta\theta{\mathbf{I}}))_{{\mathbb{R}}^{N}_{+}}
=(λ𝐮,𝐯)+N(𝐮,(𝐒(𝐯)+κΔθ𝐈)𝐧)0N+i,j=1N+Njui(𝐒(𝐯)ij+κΔθδij)¯dx\displaystyle=(\lambda{\mathbf{u}},{\mathbf{v}})_{{\mathbb{R}}^{N}_{+}}-({\mathbf{u}},({\mathbf{S}}({\mathbf{v}})+\kappa\Delta\theta{\mathbf{I}}){\mathbf{n}})_{{\mathbb{R}}^{N}_{0}}+\sum^{N}_{i,j=1}\int_{{\mathbb{R}}^{N}_{+}}\partial_{j}u_{i}\overline{({\mathbf{S}}({\mathbf{v}})_{ij}+\kappa\Delta\theta\delta_{ij})}\,dx
=(Div(𝐒(𝐮)+κΔρ𝐈),𝐯)+N(𝐮,σΔk𝐧)0N+i,j=1N+N(𝐒(𝐮)ij+κΔρδij)jvi¯𝑑x\displaystyle=({\rm Div}\,({\mathbf{S}}({\mathbf{u}})+\kappa\Delta\rho{\mathbf{I}}),{\mathbf{v}})_{{\mathbb{R}}^{N}_{+}}-({\mathbf{u}},\sigma\Delta^{\prime}k{\mathbf{n}})_{{\mathbb{R}}^{N}_{0}}+\sum^{N}_{i,j=1}\int_{{\mathbb{R}}^{N}_{+}}({\mathbf{S}}({\mathbf{u}})_{ij}+\kappa\Delta\rho\delta_{ij})\overline{\partial_{j}v_{i}}\,dx
=((𝐒(𝐮)+κΔρ𝐈)𝐧,𝐯)0N(𝐮,σΔk𝐧)0N=(σΔh,𝐯𝐧)0N(𝐮𝐧,σΔk)0N\displaystyle=(({\mathbf{S}}({\mathbf{u}})+\kappa\Delta\rho{\mathbf{I}}){\mathbf{n}},{\mathbf{v}})_{{\mathbb{R}}^{N}_{0}}-({\mathbf{u}},\sigma\Delta^{\prime}k{\mathbf{n}})_{{\mathbb{R}}^{N}_{0}}=(\sigma\Delta^{\prime}h,{\mathbf{v}}\cdot{\mathbf{n}})_{{\mathbb{R}}^{N}_{0}}-({\mathbf{u}}\cdot{\mathbf{n}},\sigma\Delta^{\prime}k)_{{\mathbb{R}}^{N}_{0}}
=(σΔh,λ¯k)0N(λh,σΔk)0N=(σΔh,λ¯k)0N(σΔh,λ¯k)0N\displaystyle=(\sigma\Delta^{\prime}h,\bar{\lambda}k)_{{\mathbb{R}}^{N}_{0}}-(\lambda h,\sigma\Delta^{\prime}k)_{{\mathbb{R}}^{N}_{0}}=(\sigma\Delta^{\prime}h,\bar{\lambda}k)_{{\mathbb{R}}^{N}_{0}}-(\sigma\Delta^{\prime}h,\bar{\lambda}k)_{{\mathbb{R}}^{N}_{0}}
=0\displaystyle=0

for arbitrary 𝚽{\mathbf{\Phi}}, which implies that 𝐮=0{\mathbf{u}}=0 in +N{\mathbb{R}}^{N}_{+}. Then by the last equation of (11) we have h=0h=0 on 0N{\mathbb{R}}^{N}_{0} because λ0\lambda\neq 0. Furthermore, the first equation of (11) implies that λρ=0\lambda\rho=0, then we have ρ=0\rho=0 in +N{\mathbb{R}}^{N}_{+} by λ0\lambda\neq 0. This completes the proof of Theorem 1. ∎

3 The main idea and preliminaries

3.1 The main idea

Assume that (θ,𝐯)(\theta,{\mathbf{v}}) and (ω,𝐰,h)(\omega,{\mathbf{w}},h) satisfy the following systems, respectively.

{λθ+div𝐯=din +N,λ𝐯Div(𝐒(𝐯)+κΔθ𝐈)=𝐟in +N,(𝐒(𝐯)+κΔθ𝐈)𝐧=𝐠on 0N,𝐧θ=kon 0N,\left\{\begin{aligned} &\lambda\theta+{\rm div}\,{\mathbf{v}}=d&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\lambda{\mathbf{v}}-{\rm Div}\,({\mathbf{S}}({\mathbf{v}})+\kappa\Delta\theta{\mathbf{I}})={\mathbf{f}}&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &({\mathbf{S}}({\mathbf{v}})+\kappa\Delta\theta{\mathbf{I}}){\mathbf{n}}={\mathbf{g}}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\theta=k&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\end{aligned}\right. (12)
{λω+div𝐰=0in +N,λ𝐰Div(𝐒(𝐰)+κΔω𝐈)=0in +N,(𝐒(𝐰)+κΔω𝐈)𝐧σΔh𝐧=0on 0N,𝐧ω=0on 0N,λh𝐰𝐧=ζ+𝐯𝐧on 0N.\left\{\begin{aligned} &\lambda\omega+{\rm div}\,{\mathbf{w}}=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\lambda{\mathbf{w}}-{\rm Div}\,({\mathbf{S}}({\mathbf{w}})+\kappa\Delta\omega{\mathbf{I}})=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &({\mathbf{S}}({\mathbf{w}})+\kappa\Delta\omega{\mathbf{I}}){\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\omega=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda h-{\mathbf{w}}\cdot{\mathbf{n}}=\zeta+{\mathbf{v}}\cdot{\mathbf{n}}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$}.\end{aligned}\right. (13)

Setting ρ=θ+ω\rho=\theta+\omega and 𝐮=𝐯+𝐰{\mathbf{u}}={\mathbf{v}}+{\mathbf{w}}, we see that (ρ,𝐮,h)(\rho,{\mathbf{u}},h) satisfies (7). The system (12) was studied by [22, Theorem 1.3] as follows.

Proposition 3.

Let 1<q<1<q<\infty and λ0>0\lambda_{0}>0. Assume that μ\mu, ν\nu, and κ\kappa are positive constants satisfying (9); ϵ~\tilde{\epsilon}_{*} is a constant given by (8). Set

Zq(+N)\displaystyle Z_{q}({\mathbb{R}}^{N}_{+}) =Hq1(+N)×Lq(+N)N×Hq1(+N)N×Hq2(+N),\displaystyle=H^{1}_{q}({\mathbb{R}}^{N}_{+})\times L_{q}({\mathbb{R}}^{N}_{+})^{N}\times H^{1}_{q}({\mathbb{R}}^{N}_{+})^{N}\times H^{2}_{q}({\mathbb{R}}^{N}_{+}),
𝐆\displaystyle{\mathbf{G}} =(d,𝐟,𝐠,k)Zq(+N),\displaystyle=(d,{\mathbf{f}},{\mathbf{g}},k)\in Z_{q}({\mathbb{R}}^{N}_{+}),
𝒵q(+N)\displaystyle{\mathcal{Z}}_{q}({\mathbb{R}}^{N}_{+}) =Hq1(+N)×Lq(+N)𝒩,𝒩=N+N2+N+N2+N+1,\displaystyle=H^{1}_{q}({\mathbb{R}}^{N}_{+})\times L_{q}({\mathbb{R}}^{N}_{+})^{\mathcal{N}},\quad{\mathcal{N}}=N+N^{2}+N+N^{2}+N+1,
𝒢λ𝐆\displaystyle{\mathcal{G}}_{\lambda}{\mathbf{G}} =(d,𝐟,𝐠,λ1/2𝐠,2k,λ1/2k,λk)𝒵q(+N).\displaystyle=(d,{\mathbf{f}},\nabla{\mathbf{g}},\lambda^{1/2}{\mathbf{g}},\nabla^{2}k,\nabla\lambda^{1/2}k,\lambda k)\in{\mathcal{Z}}_{q}({\mathbb{R}}^{N}_{+}).

Then there is a constant ϵ(ϵ~,π/2)\epsilon_{*}\in(\tilde{\epsilon}_{*},\pi/2) such that for any ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) the following assertions hold true:

1{\rm 1} For any λΣϵ,λ0\lambda\in\Sigma_{\epsilon,\lambda_{0}} there exist operator families

𝒜1(λ)Hol(Σϵ,λ0,(𝒵q(+N),Hq3(+N)))\displaystyle{\mathcal{A}}_{1}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{Z}}_{q}({\mathbb{R}}^{N}_{+}),H^{3}_{q}({\mathbb{R}}^{N}_{+})))
1(λ)Hol(Σϵ,λ0,(𝒵q(+N),Hq2(+N)N))\displaystyle{\mathcal{B}}_{1}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{Z}}_{q}({\mathbb{R}}^{N}_{+}),H^{2}_{q}({\mathbb{R}}^{N}_{+})^{N}))

such that for any 𝐅=(d,𝐟,𝐠,k)Zq(+N){\mathbf{F}}=(d,{\mathbf{f}},{\mathbf{g}},k)\in Z_{q}({\mathbb{R}}^{N}_{+}),

ρ=𝒜1(λ)𝒢λ𝐆,𝐮=1(λ)𝒢λ𝐆\rho={\mathcal{A}}_{1}(\lambda){\mathcal{G}}_{\lambda}{\mathbf{G}},\quad{\mathbf{u}}={\mathcal{B}}_{1}(\lambda){\mathcal{G}}_{\lambda}{\mathbf{G}}

are unique solutions of problem (12).

2{\rm 2} There exists a positive constant rr such that

(𝒵q(+N),𝔄q(+N))({(ττ)nλ𝒜1(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{Z}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{A}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{R}}_{\lambda}{\mathcal{A}}_{1}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r,
(𝒵q(+N),𝔅q(+N))({(ττ)n𝒮λ1(λ)λΣϵ,λ0})r\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{Z}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{B}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{S}}_{\lambda}{\mathcal{B}}_{1}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r

for n=0,1n=0,1. Here, above constant rr depend solely on NN, qq, ϵ\epsilon, λ0\lambda_{0}, μ\mu, ν\nu, κ\kappa, and σ\sigma.

Remark 1.

The constant ϵ\epsilon_{*} will be determined in Lemma 5 3{\rm 3} below.

In view of Prop 3, it suffices to consider the following system arising (13).

{λρ+div𝐮=0in +N,λ𝐮μΔ𝐮νdiv𝐮κΔρ=0in +N,{μ𝐃(𝐮)+(νμ)div𝐮𝐈+κΔρ𝐈}𝐧σΔh𝐧=0on 0N,𝐧ρ=0on 0N,λh𝐮𝐧=ηon 0N,\left\{\begin{aligned} &\lambda\rho+{\rm div}\,{\mathbf{u}}=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\lambda{\mathbf{u}}-\mu\Delta{\mathbf{u}}-\nu\nabla{\rm div}\,{\mathbf{u}}-\kappa\Delta\nabla\rho=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\{\mu{\mathbf{D}}({\mathbf{u}})+(\nu-\mu){\rm div}\,{\mathbf{u}}{\mathbf{I}}+\kappa\Delta\rho{\mathbf{I}}\}{\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\rho=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda h-{\mathbf{u}}\cdot{\mathbf{n}}=\eta&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\end{aligned}\right. (14)

where we have used Div𝐒(𝐮)=μΔ𝐮+νdiv𝐮{\rm Div}\,{\mathbf{S}}({\mathbf{u}})=\mu\Delta{\mathbf{u}}+\nu\nabla{\rm div}\,{\mathbf{u}}. For (14), we will prove the following result from the next subsection.

Proposition 4.

Let 1<q<1<q<\infty. Assume that μ\mu, ν\nu, κ\kappa, and σ\sigma are positive constants satisfying (9). Let ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) for ϵ\epsilon_{*} given in Proposition 3. Then there exists a constant λ01\lambda_{0}\geq 1 such that the following assertions hold true:

1{\rm 1} For any λΣϵ,λ0\lambda\in\Sigma_{\epsilon,\lambda_{0}} there exist operator families

𝒜2(λ)Hol(Σϵ,λ0,(Hq2(+N),Hq3(+N)))\displaystyle{\mathcal{A}}_{2}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}(H^{2}_{q}({\mathbb{R}}^{N}_{+}),H^{3}_{q}({\mathbb{R}}^{N}_{+}))) (15)
2(λ)Hol(Σϵ,λ0,(Hq2(+N),Hq2(+N)N)),\displaystyle{\mathcal{B}}_{2}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}(H^{2}_{q}({\mathbb{R}}^{N}_{+}),H^{2}_{q}({\mathbb{R}}^{N}_{+})^{N})),
𝒞2(λ)Hol(Σϵ,λ0,(Hq2(+N),Hq3(+N)))\displaystyle{\mathcal{C}}_{2}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}(H^{2}_{q}({\mathbb{R}}^{N}_{+}),H^{3}_{q}({\mathbb{R}}^{N}_{+})))

such that for any ηHq2(+N)\eta\in H^{2}_{q}({\mathbb{R}}^{N}_{+}),

ρ=𝒜2(λ)η,𝐮=2(λ)η,h=𝒞2(λ)η\rho={\mathcal{A}}_{2}(\lambda)\eta,\quad{\mathbf{u}}={\mathcal{B}}_{2}(\lambda)\eta,\quad h={\mathcal{C}}_{2}(\lambda)\eta

are solutions of problem (14).

2{\rm 2} There exists a positive constant rr such that

(Hq2(+N),𝔄q(+N))({(ττ)nλ𝒜2(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}(H^{2}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{A}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{R}}_{\lambda}{\mathcal{A}}_{2}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r, (16)
(Hq2(+N),𝔅q(+N))({(ττ)n𝒮λ2(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}(H^{2}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{B}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{S}}_{\lambda}{\mathcal{B}}_{2}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r,
(Hq2(+N),~q(+N))({(ττ)n𝒯λ𝒞2(λ)λΣϵ,λ0})r\displaystyle{\mathcal{R}}_{{\mathcal{L}}(H^{2}_{q}({\mathbb{R}}^{N}_{+}),\tilde{\mathfrak{C}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{T}}_{\lambda}{\mathcal{C}}_{2}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r

for n=0,1n=0,1. Here, above constants λ0\lambda_{0} and rr depend solely on NN, qq, ϵ\epsilon, μ\mu, ν\nu, κ\kappa, and σ\sigma.

Let us point out that Theorem 2 is obtained by Proposition 3 and Proposition 4.

Proof of Theorem 2.

Set 𝐯𝐧=vN=1N(λ)𝒢λ𝐆{\mathbf{v}}\cdot{\mathbf{n}}=-v_{N}=-{\mathcal{B}}_{1N}(\lambda){\mathcal{G}}_{\lambda}{\mathbf{G}}. In view of (13) and Proposition 4, we also set

𝒜3(λ)λ𝐅\displaystyle{\mathcal{A}}_{3}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}} =𝒜2(λ)(ζ1N(λ)𝒢λ𝐆),\displaystyle={\mathcal{A}}_{2}(\lambda)(\zeta-{\mathcal{B}}_{1N}(\lambda){\mathcal{G}}_{\lambda}{\mathbf{G}}),
3(λ)λ𝐅\displaystyle{\mathcal{B}}_{3}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}} =2(λ)(ζ1N(λ)𝒢λ𝐆),\displaystyle={\mathcal{B}}_{2}(\lambda)(\zeta-{\mathcal{B}}_{1N}(\lambda){\mathcal{G}}_{\lambda}{\mathbf{G}}),
𝒞(λ)λ𝐅\displaystyle{\mathcal{C}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}} =𝒞2(λ)(ζ1N(λ)𝒢λ𝐆),\displaystyle={\mathcal{C}}_{2}(\lambda)(\zeta-{\mathcal{B}}_{1N}(\lambda){\mathcal{G}}_{\lambda}{\mathbf{G}}),

and then ω=𝒜3(λ)λ𝐅\omega={\mathcal{A}}_{3}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}, 𝐰=3(λ)λ𝐅{\mathbf{w}}={\mathcal{B}}_{3}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}, and h=𝒞(λ)λ𝐅h={\mathcal{C}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}} satisfy (13). Define operator families 𝒜(λ){\mathcal{A}}(\lambda) and (λ){\mathcal{B}}(\lambda) as 𝒜(λ)λ𝐅=𝒜1(λ)λ𝐅+𝒜3(λ)λ𝐅{\mathcal{A}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}={\mathcal{A}}_{1}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}+{\mathcal{A}}_{3}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}} and (λ)λ𝐅=1(λ)λ𝐅+3(λ)λ𝐅{\mathcal{B}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}={\mathcal{B}}_{1}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}+{\mathcal{B}}_{3}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}. Then we see that 𝒜(λ){\mathcal{A}}(\lambda), (λ){\mathcal{B}}(\lambda), and 𝒞(λ){\mathcal{C}}(\lambda) are the desired operator families by Proposition 3, Proposition 4, and Lemma 1. ∎

Therefore, our main task is to show Proposition 4.

3.2 Solution formulas

The system (14) is equivalent to

{λρ+div𝐮=0in +N,λ𝐮μΔ𝐮νdiv𝐮κΔρ=0in +N,μ(juN+Nuj)=0on 0N,2μNuN+(νμ)div𝐮+κΔρσΔh=0on 0N,Nρ=0on 0N,λh+uN=ηon 0N\left\{\begin{aligned} &\lambda\rho+{\rm div}\,{\mathbf{u}}=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\lambda{\mathbf{u}}-\mu\Delta{\mathbf{u}}-\nu\nabla{\rm div}\,{\mathbf{u}}-\kappa\Delta\nabla\rho=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\mu(\partial_{j}u_{N}+\partial_{N}u_{j})=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &2\mu\partial_{N}u_{N}+(\nu-\mu){\rm div}\,{\mathbf{u}}+\kappa\Delta\rho-\sigma\Delta^{\prime}h=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\partial_{N}\rho=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda h+u_{N}=\eta&\quad&\text{on ${\mathbb{R}}^{N}_{0}$}\end{aligned}\right. (17)

for j=1,,N1j=1,\ldots,N-1. In this subsection, we calculate the solution formulas for (17). For this purpose, we define the partial Fourier transform with respect to x=(x1,,xN1)x^{\prime}=(x_{1},\ldots,x_{N-1}) and its inverse transform as

u^=u^(xN)=N1eixξu(x,xN)𝑑x,\displaystyle\hat{u}=\hat{u}(x_{N})=\int_{{\mathbb{R}}^{N-1}}e^{-ix^{\prime}\cdot\xi^{\prime}}u(x^{\prime},x_{N})\,dx^{\prime},
ξ1[v(ξ,xN)](x)=1(2π)N1N1eixξv(ξ,xN)𝑑ξ.\displaystyle{\mathcal{F}}^{-1}_{\xi^{\prime}}[v(\xi^{\prime},x_{N})](x^{\prime})=\frac{1}{(2\pi)^{N-1}}\int_{{\mathbb{R}}^{N-1}}e^{ix^{\prime}\cdot\xi^{\prime}}v(\xi^{\prime},x_{N})\,d\xi^{\prime}.

Set φ=div𝐮\varphi={\rm div}\,{\mathbf{u}}. Applying the partial Fourier transform to (17), we have

{λρ^+φ^=0,xN>0,λu^jμ(N2|ξ|2)u^jνiξjφ^κiξj(N2|ξ|2)ρ^=0,xN>0,λu^Nμ(N2|ξ|2)u^NνNφ^κN(N2|ξ|2)ρ^=0,xN>0,μ(iξju^N(0)+Nu^j(0))=0,2μNu^N(0)+(νμ)φ^(0)+κ(N2|ξ|2)ρ^(0)+σ|ξ|2h^(0)=0,Nρ^(0)=0,λh^(0)+u^N(0)=η^(0).\left\{\begin{aligned} &\lambda\hat{\rho}+\hat{\varphi}=0,&x_{N}>0,\\ &\lambda\hat{u}_{j}-\mu(\partial_{N}^{2}-|\xi^{\prime}|^{2})\hat{u}_{j}-\nu i\xi_{j}\hat{\varphi}-\kappa i\xi_{j}(\partial_{N}^{2}-|\xi^{\prime}|^{2})\hat{\rho}=0,&x_{N}>0,\\ &\lambda\hat{u}_{N}-\mu(\partial_{N}^{2}-|\xi^{\prime}|^{2})\hat{u}_{N}-\nu\partial_{N}\hat{\varphi}-\kappa\partial_{N}(\partial_{N}^{2}-|\xi^{\prime}|^{2})\hat{\rho}=0,&x_{N}>0,\\ &\mu(i\xi_{j}\hat{u}_{N}(0)+\partial_{N}\hat{u}_{j}(0))=0,\\ &2\mu\partial_{N}\hat{u}_{N}(0)+(\nu-\mu)\hat{\varphi}(0)+\kappa(\partial_{N}^{2}-|\xi^{\prime}|^{2})\hat{\rho}(0)+\sigma|\xi^{\prime}|^{2}\hat{h}(0)=0,\\ &\partial_{N}\hat{\rho}(0)=0,\\ &\lambda\hat{h}(0)+\hat{u}_{N}(0)=\hat{\eta}(0).\end{aligned}\right. (18)

To represent a solution, we set and recall the following notations:

s1=s+,s2=s,s±={μ+ν2κ±α(α>0),μ+ν2κ±i|α|(α<0),α=(μ+ν2κ)21κ0,\displaystyle s_{1}=s_{+},\quad s_{2}=s_{-},\quad s_{\pm}=\left\{\begin{aligned} &\frac{\mu+\nu}{2\kappa}\pm\sqrt{\alpha}\enskip(\alpha>0),\\ &\frac{\mu+\nu}{2\kappa}\pm i\sqrt{|\alpha|}\enskip(\alpha<0),\end{aligned}\right.\quad\alpha=\left(\frac{\mu+\nu}{2\kappa}\right)^{2}-\frac{1}{\kappa}\neq 0, (19)
ωλ=|ξ|2+μ1λ,tj=|ξ|2+sjλ,\displaystyle\omega_{\lambda}=\sqrt{|\xi^{\prime}|^{2}+\mu^{-1}\lambda},\quad t_{j}=\sqrt{|\xi^{\prime}|^{2}+s_{j}\lambda},
𝔩j(ξ,λ)=μ2λtj(tj+ωλ)(t22+t2t1+t12|ξ|2)\displaystyle\mathfrak{l}_{j}(\xi^{\prime},\lambda)=\mu^{-2}\lambda t_{j}(t_{j}+\omega_{\lambda})(t_{2}^{2}+t_{2}t_{1}+t_{1}^{2}-|\xi^{\prime}|^{2})
+4ωλ|ξ|2{sjtjωλ(tj+ωλ)(sjμ1)t1t2(t2+t1)},\displaystyle\qquad+4\omega_{\lambda}|\xi^{\prime}|^{2}\{s_{j}t_{j}\omega_{\lambda}(t_{j}+\omega_{\lambda})-(s_{j}-\mu^{-1})t_{1}t_{2}(t_{2}+t_{1})\},
𝔞(ξ,λ)=κ1(t2+t1)s2s1,\displaystyle{\mathfrak{a}}(\xi^{\prime},\lambda)=\frac{\kappa^{-1}(t_{2}+t_{1})}{s_{2}-s_{1}},
𝔭j(ξ,λ)=(4sj3μ1)ωλ+μ1tj,𝔮j(ξ,λ)=(2sjμ1)ωλ+μ1tj,\displaystyle{\mathfrak{p}}_{j}(\xi^{\prime},\lambda)=(4s_{j}-3\mu^{-1})\omega_{\lambda}+\mu^{-1}t_{j},\quad{\mathfrak{q}}_{j}(\xi^{\prime},\lambda)=(2s_{j}-\mu^{-1})\omega_{\lambda}+\mu^{-1}t_{j},
0(xN)=et2xNet1xNt2t1,j(xN)=etjxNeωλxNt2t1\displaystyle{\mathcal{M}}_{0}(x_{N})=\frac{e^{-t_{2}x_{N}}-e^{-t_{1}x_{N}}}{t_{2}-t_{1}},\quad{\mathcal{M}}_{j}(x_{N})=\frac{e^{-t_{j}x_{N}}-e^{-\omega_{\lambda}x_{N}}}{t_{2}-t_{1}}

for j=1,2j=1,2. Here we note that s1s2=κ1s_{1}s_{2}=\kappa^{-1}. Thanks to [22, Sec.5], the solution formulas for ρ^\hat{\rho}, u^j\hat{u}_{j}, and u^N\hat{u}_{N} satisfying (18) are written by h^(0)\hat{h}(0) as follows:

ρ^(xN)\displaystyle\hat{\rho}(x_{N}) =t1s1s2(t1+ωλ)(ωλ2+|ξ|2)μ𝔩1(ξ,λ)et1xNσ|ξ|2h^(0)\displaystyle=\frac{t_{1}s_{1}s_{2}(t_{1}+\omega_{\lambda})(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})}{\mu\mathfrak{l}_{1}(\xi^{\prime},\lambda)}e^{-t_{1}x_{N}}\sigma|\xi^{\prime}|^{2}\hat{h}(0)
+s1s2t12(t1+ωλ)(ωλ2+|ξ|2)μ𝔩1(ξ,λ)0(xN)σ|ξ|2h^(0),\displaystyle\enskip+\frac{s_{1}s_{2}t_{1}^{2}(t_{1}+\omega_{\lambda})(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})}{\mu\mathfrak{l}_{1}(\xi^{\prime},\lambda)}{\mathcal{M}}_{0}(x_{N})\sigma|\xi^{\prime}|^{2}\hat{h}(0), (20)
u^j(xN)\displaystyle\hat{u}_{j}(x_{N}) =iξj2μωλ2eωλxNσ|ξ|2h^(0)\displaystyle=\frac{i\xi_{j}}{2\mu\omega_{\lambda}^{2}}e^{-\omega_{\lambda}x_{N}}\sigma|\xi^{\prime}|^{2}\hat{h}(0)
+l=12(1)l+1iξjt1t2(ωλ2+|ξ|2)𝔞(ξ,λ)𝔭l(ξ,λ)2μωλ2sl𝔩l(ξ,λ)eωλxNσ|ξ|2h^(0)\displaystyle\enskip+\sum^{2}_{l=1}\frac{(-1)^{l+1}i\xi_{j}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2}){\mathfrak{a}}(\xi^{\prime},\lambda){\mathfrak{p}}_{l}(\xi^{\prime},\lambda)}{2\mu\omega_{\lambda}^{2}s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)}e^{-\omega_{\lambda}x_{N}}\sigma|\xi^{\prime}|^{2}\hat{h}(0)
l=12(1)l+1iξjt1t2(ωλ2+|ξ|2)s1s2(tl+ωλ)μsl𝔩l(ξ,λ)l(xN)σ|ξ|2h^(0),\displaystyle\enskip-\sum^{2}_{l=1}\frac{(-1)^{l+1}i\xi_{j}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})s_{1}s_{2}(t_{l}+\omega_{\lambda})}{\mu s_{l}\mathfrak{l}_{l}(\xi,\lambda)}{\mathcal{M}}_{l}(x_{N})\sigma|\xi^{\prime}|^{2}\hat{h}(0), (21)
u^N(xN)\displaystyle\hat{u}_{N}(x_{N}) =12μωλeωλxNσ|ξ|2h^(0)\displaystyle=\frac{1}{2\mu\omega_{\lambda}}e^{-\omega_{\lambda}x_{N}}\sigma|\xi^{\prime}|^{2}\hat{h}(0)
+l=12(1)l+1t1t2(ωλ2+|ξ|2)𝔞(ξ,λ)𝔮l(ξ,λ)2μωλsl𝔩l(ξ,λ)eωλxNσ|ξ|2h^(0)\displaystyle\enskip+\sum^{2}_{l=1}\frac{(-1)^{l+1}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2}){\mathfrak{a}}(\xi^{\prime},\lambda){\mathfrak{q}}_{l}(\xi^{\prime},\lambda)}{2\mu\omega_{\lambda}s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)}e^{-\omega_{\lambda}x_{N}}\sigma|\xi^{\prime}|^{2}\hat{h}(0)
+l=12(1)l+1t1t2(ωλ2+|ξ|2)s1s2tl(tl+ωλ)μsl𝔩l(ξ,λ)l(xN)σ|ξ|2h^(0)\displaystyle\enskip+\sum^{2}_{l=1}\frac{(-1)^{l+1}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})s_{1}s_{2}t_{l}(t_{l}+\omega_{\lambda})}{\mu s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)}{\mathcal{M}}_{l}(x_{N})\sigma|\xi^{\prime}|^{2}\hat{h}(0) (22)

for j=1,,N1j=1,\ldots,N-1. Set xN=0x_{N}=0 in (22), then we have

u^N(0)=12μωλσ|ξ|2h^(0)+l=12(1)l+1t1t2(ωλ2+|ξ|2)𝔞(ξ,λ)𝔮l(ξ,λ)2μωλsl𝔩l(ξ,λ)σ|ξ|2h^(0).\hat{u}_{N}(0)=\frac{1}{2\mu\omega_{\lambda}}\sigma|\xi^{\prime}|^{2}\hat{h}(0)+\sum^{2}_{l=1}\frac{(-1)^{l+1}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2}){\mathfrak{a}}(\xi^{\prime},\lambda){\mathfrak{q}}_{l}(\xi^{\prime},\lambda)}{2\mu\omega_{\lambda}s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)}\sigma|\xi^{\prime}|^{2}\hat{h}(0). (23)

Substituting (23) into the last equation of (18) yields that

h^(0)=𝔪(ξ,λ)η^(0),\hat{h}(0)={\mathfrak{m}}(\xi^{\prime},\lambda)\hat{\eta}(0), (24)

where

𝔪(ξ,λ)\displaystyle{\mathfrak{m}}(\xi^{\prime},\lambda) =2μωλκ1𝔩1(ξ,λ)𝔩2(ξ,λ)𝐌(ξ,λ),\displaystyle=\frac{2\mu\omega_{\lambda}\kappa^{-1}\mathfrak{l}_{1}(\xi^{\prime},\lambda)\mathfrak{l}_{2}(\xi^{\prime},\lambda)}{{\mathbf{M}}(\xi^{\prime},\lambda)},
𝐌(ξ,λ)\displaystyle{\mathbf{M}}(\xi^{\prime},\lambda) =2μωλλκ1𝔩1(ξ,λ)𝔩2(ξ,λ)\displaystyle=2\mu\omega_{\lambda}\lambda\kappa^{-1}\mathfrak{l}_{1}(\xi^{\prime},\lambda)\mathfrak{l}_{2}(\xi^{\prime},\lambda)
+σ|ξ|2κ1𝔩1(ξ,λ)𝔩2(ξ,λ)\displaystyle\enskip+\sigma|\xi^{\prime}|^{2}\kappa^{-1}\mathfrak{l}_{1}(\xi^{\prime},\lambda)\mathfrak{l}_{2}(\xi^{\prime},\lambda) (25)
+σ|ξ|2t1t2(ωλ2+|ξ|2)𝔞(ξ,λ)(s2𝔩2(ξ,λ)𝔮1(ξ,λ)s1𝔩1(ξ,λ)𝔮2(ξ,λ)).\displaystyle\enskip+\sigma|\xi^{\prime}|^{2}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2}){\mathfrak{a}}(\xi^{\prime},\lambda)(s_{2}\mathfrak{l}_{2}(\xi^{\prime},\lambda){\mathfrak{q}}_{1}(\xi^{\prime},\lambda)-s_{1}\mathfrak{l}_{1}(\xi^{\prime},\lambda){\mathfrak{q}}_{2}(\xi^{\prime},\lambda)).

Inserting (24) into (20), (21), and (22), we have solution formulas for (17) as follows:

ρ\displaystyle\rho =ξ1[t1s1s2(t1+ωλ)(ωλ2+|ξ|2)μ𝔩1(ξ,λ)σ|ξ|2𝔪(ξ,λ)et1xNη^(0)](x)\displaystyle={\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\frac{t_{1}s_{1}s_{2}(t_{1}+\omega_{\lambda})(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})}{\mu\mathfrak{l}_{1}(\xi^{\prime},\lambda)}\sigma|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda)e^{-t_{1}x_{N}}\hat{\eta}(0)\right](x^{\prime}) (26)
+ξ1[s1s2t12(t1+ωλ)(ωλ2+|ξ|2)μ𝔩1(ξ,λ)σ|ξ|2𝔪(ξ,λ)0(xN)η^(0)](x),\displaystyle\enskip+{\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\frac{s_{1}s_{2}t_{1}^{2}(t_{1}+\omega_{\lambda})(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})}{\mu\mathfrak{l}_{1}(\xi^{\prime},\lambda)}\sigma|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda){\mathcal{M}}_{0}(x_{N})\hat{\eta}(0)\right](x^{\prime}),
uj\displaystyle u_{j} =ξ1[iξj2μωλ2σ|ξ|2𝔪(ξ,λ)eωλxNη^(0)](x)\displaystyle={\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\frac{i\xi_{j}}{2\mu\omega_{\lambda}^{2}}\sigma|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda)e^{-\omega_{\lambda}x_{N}}\hat{\eta}(0)\right](x^{\prime})
+l=12ξ1[(1)l+1iξjt1t2(ωλ2+|ξ|2)𝔞(ξ,λ)𝔭l(ξ,λ)2μωλ2sl𝔩l(ξ,λ)σ|ξ|2𝔪(ξ,λ)eωλxNη^(0)](x)\displaystyle\enskip+\sum^{2}_{l=1}{\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\frac{(-1)^{l+1}i\xi_{j}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2}){\mathfrak{a}}(\xi^{\prime},\lambda){\mathfrak{p}}_{l}(\xi^{\prime},\lambda)}{2\mu\omega_{\lambda}^{2}s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)}\sigma|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda)e^{-\omega_{\lambda}x_{N}}\hat{\eta}(0)\right](x^{\prime})
l=12ξ1[(1)l+1iξjt1t2(ωλ2+|ξ|2)s1s2(tl+ωλ)μsl𝔩l(ξ,λ)σ|ξ|2𝔪(ξ,λ)l(xN)η^(0)](x),\displaystyle\enskip-\sum^{2}_{l=1}{\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\frac{(-1)^{l+1}i\xi_{j}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})s_{1}s_{2}(t_{l}+\omega_{\lambda})}{\mu s_{l}\mathfrak{l}_{l}(\xi,\lambda)}\sigma|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda){\mathcal{M}}_{l}(x_{N})\hat{\eta}(0)\right](x^{\prime}),
uN\displaystyle u_{N} =ξ1[12μωλσ|ξ|2𝔪(ξ,λ)eωλxNη^(0)](x)\displaystyle={\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\frac{1}{2\mu\omega_{\lambda}}\sigma|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda)e^{-\omega_{\lambda}x_{N}}\hat{\eta}(0)\right](x^{\prime})
+l=12ξ1[(1)l+1t1t2(ωλ2+|ξ|2)𝔞(ξ,λ)𝔮l(ξ,λ)2μωλsl𝔩l(ξ,λ)σ|ξ|2𝔪(ξ,λ)eωλxNη^(0)](x)\displaystyle\enskip+\sum^{2}_{l=1}{\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\frac{(-1)^{l+1}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2}){\mathfrak{a}}(\xi^{\prime},\lambda){\mathfrak{q}}_{l}(\xi^{\prime},\lambda)}{2\mu\omega_{\lambda}s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)}\sigma|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda)e^{-\omega_{\lambda}x_{N}}\hat{\eta}(0)\right](x^{\prime})
+l=12ξ1[(1)l+1t1t2(ωλ2+|ξ|2)s1s2tl(tl+ωλ)μsl𝔩l(ξ,λ)σ|ξ|2𝔪(ξ,λ)l(xN)η^(0)](x)\displaystyle\enskip+\sum^{2}_{l=1}{\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\frac{(-1)^{l+1}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})s_{1}s_{2}t_{l}(t_{l}+\omega_{\lambda})}{\mu s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)}\sigma|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda){\mathcal{M}}_{l}(x_{N})\hat{\eta}(0)\right](x^{\prime})

for j=1,,N1j=1,\ldots,N-1. We will discuss {\mathcal{R}}-boundedness using the solution formulas in Sec. 4 below. As the end of the subsection, we verify that 𝐌(ξ,λ)1{\mathbf{M}}(\xi^{\prime},\lambda)^{-1} is well-defined by the following lemma.

Lemma 2.

Assume that μ\mu, ν\nu, κ\kappa, and σ\sigma are positive constants satisfying (9). Then 𝐌(ξ,λ)0{\mathbf{M}}(\xi^{\prime},\lambda)\neq 0 for any (ξ,λ)(N1{0})×(+¯{0})(\xi^{\prime},\lambda)\in({\mathbb{R}}^{N-1}\setminus\{0\})\times(\overline{{\mathbb{C}}_{+}}\setminus\{0\}), where +¯={zRez0}\overline{{\mathbb{C}}_{+}}=\{z\in{\mathbb{C}}\mid\operatorname{Re}z\geq 0\}.

Proof.

Let us suppose contradiction that 𝐌(ξ,λ)=0{\mathbf{M}}(\xi^{\prime},\lambda)=0 for some (ξ,λ)N1×(+¯{0})(\xi^{\prime},\lambda)\in{\mathbb{R}}^{N-1}\times(\overline{{\mathbb{C}}_{+}}\setminus\{0\}), then (18) with η=0\eta=0 has a non-trivial solution. This implies that there exist h(0)0h(0)\neq 0 and (ρ(xN),𝐮(xN))(0,𝟎)(\rho(x_{N}),{\mathbf{u}}(x_{N}))\neq(0,\bf 0) for xN>0x_{N}>0 sufficiently smooth and decaying exponentially as xNx_{N}\to\infty such that

λρ(xN)+φ(xN)=0,\displaystyle\lambda\rho(x_{N})+\varphi(x_{N})=0, (27)
λuj(xN)μ(N2|ξ|2)uj(xN)νiξjφ(xN)κiξj(N2|ξ|2)ρ(xN)=0,\displaystyle\lambda u_{j}(x_{N})-\mu(\partial_{N}^{2}-|\xi^{\prime}|^{2})u_{j}(x_{N})-\nu i\xi_{j}\varphi(x_{N})-\kappa i\xi_{j}(\partial_{N}^{2}-|\xi^{\prime}|^{2})\rho(x_{N})=0, (28)
λuN(xN)μ(N2|ξ|2)uN(xN)νNφ(xN)κN(N2|ξ|2)ρ(xN)=0,\displaystyle\lambda u_{N}(x_{N})-\mu(\partial_{N}^{2}-|\xi^{\prime}|^{2})u_{N}(x_{N})-\nu\partial_{N}\varphi(x_{N})-\kappa\partial_{N}(\partial_{N}^{2}-|\xi^{\prime}|^{2})\rho(x_{N})=0, (29)
μ(iξjuN(0)+Nuj(0))=0,\displaystyle\mu(i\xi_{j}u_{N}(0)+\partial_{N}u_{j}(0))=0, (30)
2μNuN(0)+(νμ)φ(0)+κ(N2|ξ|2)ρ(0)+σ|ξ|2h(0)=0,\displaystyle 2\mu\partial_{N}u_{N}(0)+(\nu-\mu)\varphi(0)+\kappa(\partial_{N}^{2}-|\xi^{\prime}|^{2})\rho(0)+\sigma|\xi^{\prime}|^{2}h(0)=0, (31)
Nρ(0)=0,\displaystyle\partial_{N}\rho(0)=0, (32)
λh(0)+uN(0)=0,\displaystyle\lambda h(0)+u_{N}(0)=0, (33)

where φ(xN)=j=1N1iξjuj(xN)+NuN(xN)\varphi(x_{N})=\sum_{j=1}^{N-1}i\xi_{j}u_{j}(x_{N})+\partial_{N}u_{N}(x_{N}). Let (a,b)=0a(xN)b(xN)¯𝑑xN(a,b)=\int^{\infty}_{0}a(x_{N})\overline{b(x_{N})}\,dx_{N} and a=(a,a)\|a\|=\sqrt{(a,a)} for functions a=a(xN)a=a(x_{N}), b=b(xN)b=b(x_{N}) in +{\mathbb{R}}_{+}, and let Φ=Nφ2+|ξ|2φ2\Phi=\|\partial_{N}\varphi\|^{2}+|\xi^{\prime}|^{2}\|\varphi\|^{2}.

First, we prove

λJ=1NuJ2+μj,k=1N1iξkuj2+μj=1N1iξjuj2+2μNuN2\displaystyle\lambda\sum^{N}_{J=1}\|u_{J}\|^{2}+\mu\sum^{N-1}_{j,k=1}\|i\xi_{k}u_{j}\|^{2}+\mu\left\|\sum^{N-1}_{j=1}i\xi_{j}u_{j}\right\|^{2}+2\mu\|\partial_{N}u_{N}\|^{2} (34)
+μj=1N1Nuj+iξjuN2+(νμ)φ2+κ|λ|2λ¯Φ+λ¯σ|ξ|2|h(0)|2=0.\displaystyle\quad+\mu\sum^{N-1}_{j=1}\|\partial_{N}u_{j}+i\xi_{j}u_{N}\|^{2}+(\nu-\mu)\|\varphi\|^{2}+\frac{\kappa}{|\lambda|^{2}}\bar{\lambda}\Phi+\bar{\lambda}\sigma|\xi^{\prime}|^{2}|h(0)|^{2}=0.

Employing the same calculation as in the proof of [22, Lemma 3.4], (28) and (29) can be written as

λuj(xN)μk=1N1iξk(iξkuj(xN)+iξjuk(xN))μN(Nuj(xN)+iξjuN(xN))\displaystyle\lambda u_{j}(x_{N})-\mu\sum^{N-1}_{k=1}i\xi_{k}(i\xi_{k}u_{j}(x_{N})+i\xi_{j}u_{k}(x_{N}))-\mu\partial_{N}(\partial_{N}u_{j}(x_{N})+i\xi_{j}u_{N}(x_{N}))
(νμ)iξjφ(xN)κiξj(N2|ξ|2)ρ(xN)=0,\displaystyle\quad-(\nu-\mu)i\xi_{j}\varphi(x_{N})-\kappa i\xi_{j}(\partial_{N}^{2}-|\xi^{\prime}|^{2})\rho(x_{N})=0, (35)
λuN(xN)μk=1N1iξk(iξkuN(xN)+Nuk(xN))2μN2uN(xN)\displaystyle\lambda u_{N}(x_{N})-\mu\sum^{N-1}_{k=1}i\xi_{k}(i\xi_{k}u_{N}(x_{N})+\partial_{N}u_{k}(x_{N}))-2\mu\partial_{N}^{2}u_{N}(x_{N})
(νμ)Nφ(xN)κN(N2|ξ|2)ρ(xN)=0.\displaystyle\quad-(\nu-\mu)\partial_{N}\varphi(x_{N})-\kappa\partial_{N}(\partial_{N}^{2}-|\xi^{\prime}|^{2})\rho(x_{N})=0. (36)

Multiplying (35) and (36) by uj(xN)¯\overline{u_{j}(x_{N})} and uN(xN)¯\overline{u_{N}(x_{N})}, respectively, integrating with respect to xNx_{N}, and using integration by parts with (30) and (31), we have

λuj2+μk=1N1(iξkuj+iξjuk,iξkuj)+μ(NuN+iξjuN,Nuj)\displaystyle\lambda\|u_{j}\|^{2}+\mu\sum^{N-1}_{k=1}(i\xi_{k}u_{j}+i\xi_{j}u_{k},i\xi_{k}u_{j})+\mu(\partial_{N}u_{N}+i\xi_{j}u_{N},\partial_{N}u_{j})
+(νμ)(φ,iξjuj)+κ((N2|ξ|2)ρ,iξjuj)=0,\displaystyle\quad+(\nu-\mu)(\varphi,i\xi_{j}u_{j})+\kappa((\partial_{N}^{2}-|\xi^{\prime}|^{2})\rho,i\xi_{j}u_{j})=0,
λuN2+μk=1N1(iξkuN+Nuk,iξkuN)+2μNuN2\displaystyle\lambda\|u_{N}\|^{2}+\mu\sum^{N-1}_{k=1}(i\xi_{k}u_{N}+\partial_{N}u_{k},i\xi_{k}u_{N})+2\mu\|\partial_{N}u_{N}\|^{2}
+(νμ)(φ,NuN)+κ((N2|ξ|2)ρ,NuN)+λ¯σ|ξ|2|h(0)|2=0,\displaystyle\quad+(\nu-\mu)(\varphi,\partial_{N}u_{N})+\kappa((\partial_{N}^{2}-|\xi^{\prime}|^{2})\rho,\partial_{N}u_{N})+\bar{\lambda}\sigma|\xi^{\prime}|^{2}|h(0)|^{2}=0, (37)

where we have used (33) to obtain the last term of the left-hand side of (37). Summing the above equations, applying integration by parts with (32), and using (27), we have

λJ=1NuJ2+μj,k=1N1(iξkuj+iξjuk,iξkuj)+μj=1N1(Nuj+iξjuN,Nuj)\displaystyle\lambda\sum^{N}_{J=1}\|u_{J}\|^{2}+\mu\sum^{N-1}_{j,k=1}(i\xi_{k}u_{j}+i\xi_{j}u_{k},i\xi_{k}u_{j})+\mu\sum^{N-1}_{j=1}(\partial_{N}u_{j}+i\xi_{j}u_{N},\partial_{N}u_{j})
+μk=1N1(iξkuN+Nuk,iξkuN)+2μNuN2+(νμ)φ2+κλΦ+λ¯σ|ξ|2|h(0)|2=0.\displaystyle\quad+\mu\sum^{N-1}_{k=1}(i\xi_{k}u_{N}+\partial_{N}u_{k},i\xi_{k}u_{N})+2\mu\|\partial_{N}u_{N}\|^{2}+(\nu-\mu)\|\varphi\|^{2}+\frac{\kappa}{\lambda}\Phi+\bar{\lambda}\sigma|\xi^{\prime}|^{2}|h(0)|^{2}=0.

Noting that

j,k=1N1(iξkuj+iξjuk,iξkuj)=j,k=1N1iξkuj2+j=1N1iξjuj2,\displaystyle\sum^{N-1}_{j,k=1}(i\xi_{k}u_{j}+i\xi_{j}u_{k},i\xi_{k}u_{j})=\sum^{N-1}_{j,k=1}\|i\xi_{k}u_{j}\|^{2}+\left\|\sum^{N-1}_{j=1}i\xi_{j}u_{j}\right\|^{2},
j=1N1(Nuj+iξjuN,Nuj)+k=1N1(iξkuN+Nuk,iξkuN)=j=1N1Nuj+iξjuN2,\displaystyle\sum^{N-1}_{j=1}(\partial_{N}u_{j}+i\xi_{j}u_{N},\partial_{N}u_{j})+\sum^{N-1}_{k=1}(i\xi_{k}u_{N}+\partial_{N}u_{k},i\xi_{k}u_{N})=\sum^{N-1}_{j=1}\|\partial_{N}u_{j}+i\xi_{j}u_{N}\|^{2},

we have (34).

Next, we prove the contradiction. For this purpose, we take the real part and imaginary part of (34) as follows:

(Reλ)J=1NuJ2+μj,k=1N1iξkuj2+μj=1N1iξjuj2+2μNuN2\displaystyle(\operatorname{Re}\lambda)\sum^{N}_{J=1}\|u_{J}\|^{2}+\mu\sum^{N-1}_{j,k=1}\|i\xi_{k}u_{j}\|^{2}+\mu\left\|\sum^{N-1}_{j=1}i\xi_{j}u_{j}\right\|^{2}+2\mu\|\partial_{N}u_{N}\|^{2}
μj=1N1Nuj+iξjuN2+(νμ)φ2+κ|λ|2(Reλ)Φ+(Reλ)σ|ξ|2|h(0)|2=0,\displaystyle\quad\mu\sum^{N-1}_{j=1}\|\partial_{N}u_{j}+i\xi_{j}u_{N}\|^{2}+(\nu-\mu)\|\varphi\|^{2}+\frac{\kappa}{|\lambda|^{2}}(\operatorname{Re}\lambda)\Phi+(\operatorname{Re}\lambda)\sigma|\xi^{\prime}|^{2}|h(0)|^{2}=0, (38)
(Imλ)(J=1NuJ2κ|λ|2Φσ|ξ|2|h(0)|2)=0.\displaystyle(\operatorname{Im}\lambda)\left(\sum^{N}_{J=1}\|u_{J}\|^{2}-\frac{\kappa}{|\lambda|^{2}}\Phi-\sigma|\xi^{\prime}|^{2}|h(0)|^{2}\right)=0. (39)

Combining (38) and

φ2j,k=1N1iξkuj2+j=1N1iξjuj2+2NuN2,\|\varphi\|^{2}\leq\sum^{N-1}_{j,k=1}\|i\xi_{k}u_{j}\|^{2}+\left\|\sum^{N-1}_{j=1}i\xi_{j}u_{j}\right\|^{2}+2\|\partial_{N}u_{N}\|^{2},

we have

(Reλ)J=1NuJ2+μj=1N1Nuj+iξjuN2+νφ2+κ|λ|2(Reλ)Φ+(Reλ)σ|ξ|2|h(0)|20.(\operatorname{Re}\lambda)\sum^{N}_{J=1}\|u_{J}\|^{2}+\mu\sum^{N-1}_{j=1}\|\partial_{N}u_{j}+i\xi_{j}u_{N}\|^{2}+\nu\|\varphi\|^{2}+\frac{\kappa}{|\lambda|^{2}}(\operatorname{Re}\lambda)\Phi+(\operatorname{Re}\lambda)\sigma|\xi^{\prime}|^{2}|h(0)|^{2}\leq 0.

Thus, since Reλ0\operatorname{Re}\lambda\geq 0, we have φ=0\varphi=0, which implies that ρ=0\rho=0 for λ+¯{0}\lambda\in\overline{{\mathbb{C}}_{+}}\setminus\{0\} by (27). Combining φ=0\varphi=0 and (38), we have

0=j,k=1N1iξkuj2=|ξ|2j=1N1uj2,0=\sum^{N-1}_{j,k=1}\|i\xi_{k}u_{j}\|^{2}=-|\xi^{\prime}|^{2}\sum^{N-1}_{j=1}\|u_{j}\|^{2},

furnishes uj=0u_{j}=0 for j=1,,N1j=1,\ldots,N-1 if ξ0\xi^{\prime}\neq 0. Since j=1N1Nuj+iξjuN2=0\sum^{N-1}_{j=1}\|\partial_{N}u_{j}+i\xi_{j}u_{N}\|^{2}=0, we also have

0=j=1N1iξjuN2=|ξ|2uN2,0=\sum^{N-1}_{j=1}\|i\xi_{j}u_{N}\|^{2}=-|\xi^{\prime}|^{2}\|u_{N}\|^{2},

then we have uN=0u_{N}=0 if ξ0\xi^{\prime}\neq 0. Moreover, h(0)=0h(0)=0 follows from (38) when Reλ>0\operatorname{Re}\lambda>0. Note that Imλ0\operatorname{Im}\lambda\neq 0 when Reλ=0\operatorname{Re}\lambda=0, then (39) implies that h(0)=0h(0)=0 for (ξ,λ)(N1{0})×(+¯{0})(\xi^{\prime},\lambda)\in({\mathbb{R}}^{N-1}\setminus\{0\})\times(\overline{{\mathbb{C}}_{+}}\setminus\{0\}) because Φ=0\Phi=0 follows from φ=0\varphi=0.

Summing up, we have ρ=0\rho=0, 𝐮=𝟎{\mathbf{u}}=\bf 0, and h(0)=0h(0)=0, which contradicts (18) with η=0\eta=0 has a non-trivial solution when ξN1{0}\xi^{\prime}\in{\mathbb{R}}^{N-1}\setminus\{0\}, λ+¯{0}\lambda\in\overline{{\mathbb{C}}_{+}}\setminus\{0\}. ∎

3.3 Preliminary results

In this subsection, we prepare the estimates and recall some results to show the existence of the {\mathcal{R}}-bounded operator families. First, we introduce the definition of the class of symbols.

Definition 2.

Let Λ\Lambda\subset{\mathbb{C}}, and let m(ξ,λ)m(\xi^{\prime},\lambda) be a function defined on Λ\Lambda that is infinitely many times differentiable with respect to ξ\xi^{\prime} and analytic with respect to λ\lambda.

1{\rm 1} m(ξ,λ)m(\xi^{\prime},\lambda) is called multiplier of order ss with type 11, denoted by m𝐌s1(Λ)m\in{\mathbf{M}}^{1}_{s}(\Lambda), if there exists a real number ss such that for any multi-index α=(α1,,αN1)𝐍0N1\alpha^{\prime}=(\alpha_{1},\ldots,\alpha_{N-1})\in{\mathbf{N}}^{N-1}_{0} and (ξ,λ)(N1{0})×Λ(\xi^{\prime},\lambda)\in({\mathbb{R}}^{N-1}\setminus\{0\})\times\Lambda

|ξα((ττ)nm(ξ,λ))|C(|λ|1/2+|ξ|)s|α|(n=0,1)|\partial^{\alpha^{\prime}}_{\xi^{\prime}}((\tau\partial_{\tau})^{n}m(\xi^{\prime},\lambda))|\leq C(|\lambda|^{1/2}+|\xi^{\prime}|)^{s-|\alpha^{\prime}|}\quad(n=0,1)

with some constant C=Cs,α,ΛC=C_{s,\alpha^{\prime},\Lambda}.

2{\rm 2} m(ξ,λ)m(\xi^{\prime},\lambda) is called multiplier of order ss with type 22, denoted by m𝐌s2(Λ)m\in{\mathbf{M}}^{2}_{s}(\Lambda), if there exists a real number ss such that for any multi-index α=(α1,,αN1)𝐍0N1\alpha^{\prime}=(\alpha_{1},\ldots,\alpha_{N-1})\in{\mathbf{N}}^{N-1}_{0} and (ξ,λ)(N1{0})×Λ(\xi^{\prime},\lambda)\in({\mathbb{R}}^{N-1}\setminus\{0\})\times\Lambda

|ξα((ττ)nm(ξ,λ))|C(|λ|1/2+|ξ|)s|ξ||α|(n=0,1)|\partial^{\alpha^{\prime}}_{\xi^{\prime}}((\tau\partial_{\tau})^{n}m(\xi^{\prime},\lambda))|\leq C(|\lambda|^{1/2}+|\xi^{\prime}|)^{s}|\xi^{\prime}|^{-|\alpha^{\prime}|}\quad(n=0,1)

with some constant C=Cs,α,ΛC=C_{s,\alpha^{\prime},\Lambda}.

Remark 2.

Let s1,s2s_{1},s_{2}\in{\mathbb{R}}, λ00\lambda_{0}\geq 0, and ϵ(0,π/2)\epsilon\in(0,\pi/2). For mj𝐌sj1(Λ)m_{j}\in{\mathbf{M}}^{1}_{s_{j}}(\Lambda) (j=1,2)(j=1,2), we have m1m2𝐌s1+s21(Λ)m_{1}m_{2}\in{\mathbf{M}}^{1}_{s_{1}+s_{2}}(\Lambda).

In the next section, we will use the following corollary and lemmas to show {\mathcal{R}}-boundedness for operator families. Lemma 3 was proved by [22, Lemma 4.8] and Lemma 4 was proved by [24, Lemma 3.5.16].

Lemma 3.

Let 1<q<1<q<\infty, λ00\lambda_{0}\geq 0, ϵ1(0,π/2)\epsilon_{1}\in(0,\pi/2), and ϵ2(ϵ~,π/2)\epsilon_{2}\in(\tilde{\epsilon}_{*},\pi/2) for ϵ~\tilde{\epsilon}_{*} given in (8). For

k(ξ,λ)𝐌11(Σϵ1,λ0),l(ξ,λ)𝐌11(Σϵ2,λ0),m(ξ,λ)𝐌21(Σϵ2,λ0),k(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{1}(\Sigma_{\epsilon_{1},\lambda_{0}}),\quad l(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{1}(\Sigma_{\epsilon_{2},\lambda_{0}}),\quad m(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{2}(\Sigma_{\epsilon_{2},\lambda_{0}}),

we define operators K(λ)K(\lambda), L(λ)L(\lambda), and Mj(λ)M_{j}(\lambda) (j=0,1,2)(j=0,1,2) by

[K(λ)f](x)\displaystyle[K(\lambda)f](x) =0ξ1[k(ξ,λ)eωλ(xN+yN)f^(ξ,yN)](x)𝑑yN\displaystyle=\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[k(\xi^{\prime},\lambda)e^{-\omega_{\lambda}(x_{N}+y_{N})}\hat{f}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N} (λΣϵ1,λ0),\displaystyle(\lambda\in\Sigma_{\epsilon_{1},\lambda_{0}}),
[L(λ)f](x)\displaystyle[L(\lambda)f](x) =0ξ1[l(ξ,λ)et1(xN+yN)f^(ξ,yN)](x)𝑑yN\displaystyle=\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[l(\xi^{\prime},\lambda)e^{-t_{1}(x_{N}+y_{N})}\hat{f}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N} (λΣϵ2,λ0),\displaystyle(\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}),
[Mj(λ)f](x)\displaystyle[M_{j}(\lambda)f](x) =0ξ1[m(ξ,λ)j(xN+yN)f^(ξ,yN)](x)𝑑yN\displaystyle=\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[m(\xi^{\prime},\lambda){\mathcal{M}}_{j}(x_{N}+y_{N})\hat{f}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N} (λΣϵ2,λ0).\displaystyle(\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}).

Then we have

(Lq(+N))({(ττ)nK(λ)λΣϵ1,λ0})k,\displaystyle{\mathcal{R}}_{{\mathcal{L}}(L_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}K(\lambda)\mid\lambda\in\Sigma_{\epsilon_{1},\lambda_{0}}\})\leq k,
(Lq(+N))({(ττ)nL(λ)λΣϵ2,λ0})l,\displaystyle{\mathcal{R}}_{{\mathcal{L}}(L_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}L(\lambda)\mid\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}\})\leq l,
(Lq(+N))({(ττ)nMj(λ)λΣϵ2,λ0})mj\displaystyle{\mathcal{R}}_{{\mathcal{L}}(L_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}M_{j}(\lambda)\mid\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}\})\leq m_{j}

for n=0,1n=0,1, where kk is some constant depending on ϵ1,λ0,μ,ν,κ,N,q\epsilon_{1},\lambda_{0},\mu,\nu,\kappa,N,q and l,mjl,m_{j} are some constants depending on ϵ2,λ0,μ,ν,κ,N,q\epsilon_{2},\lambda_{0},\mu,\nu,\kappa,N,q.

Lemma 3 implies that the following corollary.

Corollary 1.

Let 1<q<1<q<\infty, λ0>0\lambda_{0}>0, ϵ1(0,π/2)\epsilon_{1}\in(0,\pi/2), and ϵ2(ϵ~,π/2)\epsilon_{2}\in(\tilde{\epsilon}_{*},\pi/2) for ϵ~\tilde{\epsilon}_{*} given in (8).

1{\rm 1} For

k(ξ,λ)𝐌11(Σϵ1,λ0),m(ξ,λ)𝐌01(Σϵ2,λ0),k(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{-1}(\Sigma_{\epsilon_{1},\lambda_{0}}),\quad m(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{0}(\Sigma_{\epsilon_{2},\lambda_{0}}),

we define operators K(λ)K(\lambda) and Ml(λ)M_{l}(\lambda) (l=1,2)(l=1,2) by

[K(λ)f](x)\displaystyle[K(\lambda)f](x) =0ξ1[k(ξ,λ)eωλ(xN+yN)f^(ξ,yN)](x)𝑑yN\displaystyle=\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[k(\xi^{\prime},\lambda)e^{-\omega_{\lambda}(x_{N}+y_{N})}\hat{f}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N} (λΣϵ1,λ0),\displaystyle(\lambda\in\Sigma_{\epsilon_{1},\lambda_{0}}),
[Ml(λ)f](x)\displaystyle[M_{l}(\lambda)f](x) =0ξ1[m(ξ,λ)l(xN+yN)f^(ξ,yN)](x)𝑑yN\displaystyle=\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[m(\xi^{\prime},\lambda){\mathcal{M}}_{l}(x_{N}+y_{N})\hat{f}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N} (λΣϵ2,λ0).\displaystyle(\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}).

Then we have

(Lq(+N),Hq2j(+N))({(ττ)nλj/2K(λ)λΣϵ1,λ0})k,\displaystyle{\mathcal{R}}_{{\mathcal{L}}(L_{q}({\mathbb{R}}^{N}_{+}),H^{2-j}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}\lambda^{j/2}K(\lambda)\mid\lambda\in\Sigma_{\epsilon_{1},\lambda_{0}}\})\leq k,
(Lq(+N),Hq2j(+N))({(ττ)nλj/2Ml(λ)λΣϵ2,λ0})ml\displaystyle{\mathcal{R}}_{{\mathcal{L}}(L_{q}({\mathbb{R}}^{N}_{+}),H^{2-j}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}\lambda^{j/2}M_{l}(\lambda)\mid\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}\})\leq m_{l}

for j=0,1,2j=0,1,2, n=0,1n=0,1, where kk is some constant depending on ϵ1,λ0,μ,ν,κ,N,q\epsilon_{1},\lambda_{0},\mu,\nu,\kappa,N,q and mlm_{l} are some constants depending on ϵ2,λ0,μ,ν,κ,N,q\epsilon_{2},\lambda_{0},\mu,\nu,\kappa,N,q.

2{\rm 2} For

l(ξ,λ)𝐌21(Σϵ2,λ0),m(ξ,λ)𝐌11(Σϵ2,λ0),l(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{-2}(\Sigma_{\epsilon_{2},\lambda_{0}}),\quad m(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{-1}(\Sigma_{\epsilon_{2},\lambda_{0}}),

we define operators L(λ)L(\lambda) and M0(λ)M_{0}(\lambda) by

[L(λ)f](x)\displaystyle[L(\lambda)f](x) =0ξ1[l(ξ,λ)et1(xN+yN)f^(ξ,yN)](x)𝑑yN\displaystyle=\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[l(\xi^{\prime},\lambda)e^{-t_{1}(x_{N}+y_{N})}\hat{f}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N} (λΣϵ2,λ0),\displaystyle(\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}),
[M0(λ)f](x)\displaystyle[M_{0}(\lambda)f](x) =0ξ1[m(ξ,λ)0(xN+yN)f^(ξ,yN)](x)𝑑yN\displaystyle=\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[m(\xi^{\prime},\lambda){\mathcal{M}}_{0}(x_{N}+y_{N})\hat{f}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N} (λΣϵ2,λ0).\displaystyle(\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}).

Then we have

(Lq(+N),Hq3j(+N))({(ττ)nλj/2L(λ)λΣϵ2,λ0})l,\displaystyle{\mathcal{R}}_{{\mathcal{L}}(L_{q}({\mathbb{R}}^{N}_{+}),H^{3-j}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}\lambda^{j/2}L(\lambda)\mid\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}\})\leq l,
(Lq(+N),Hq3j(+N))({(ττ)nλj/2M0(λ)λΣϵ2,λ0})m0\displaystyle{\mathcal{R}}_{{\mathcal{L}}(L_{q}({\mathbb{R}}^{N}_{+}),H^{3-j}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}\lambda^{j/2}M_{0}(\lambda)\mid\lambda\in\Sigma_{\epsilon_{2},\lambda_{0}}\})\leq m_{0}

for j=0,1,2j=0,1,2, n=0,1n=0,1, where ll and m0m_{0} are some constants depending on ϵ2,λ0,μ,ν,κ,N,q\epsilon_{2},\lambda_{0},\mu,\nu,\kappa,N,q.

Lemma 4.

Let 1<q<1<q<\infty and j=1,2j=1,2, and let Λ\Lambda be a domain in {\mathbb{C}}. Let φ\varphi and ψ\psi be two C0((2,2))C^{\infty}_{0}((-2,2)) functions. For m(ξ,λ)𝐌02(Λ)m(\xi^{\prime},\lambda)\in{\mathbf{M}}^{2}_{0}(\Lambda), we define operators Φj(λ)\Phi_{j}(\lambda) by

[Φ1(λ)f](x)\displaystyle[\Phi_{1}(\lambda)f](x) =φ(xN)0ξ1[m(ξ,λ)e|ξ|(xN+yN)ψ(yN)f^(ξ,yN)](x)𝑑yN,\displaystyle=\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[m(\xi^{\prime},\lambda)e^{-|\xi^{\prime}|(x_{N}+y_{N})}\psi(y_{N})\hat{f}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N},
[Φ2(λ)f](x)\displaystyle[\Phi_{2}(\lambda)f](x) =φ(xN)0ξ1[m(ξ,λ)|ξ|e|ξ|(xN+yN)ψ(yN)f^(ξ,yN)](x)𝑑yN.\displaystyle=\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[m(\xi^{\prime},\lambda)|\xi^{\prime}|e^{-|\xi^{\prime}|(x_{N}+y_{N})}\psi(y_{N})\hat{f}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N}.

Then we have

(Lq(+N))({(ττ)nΦj(λ)λΛ})rj,\displaystyle{\mathcal{R}}_{{\mathcal{L}}(L_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}\Phi_{j}(\lambda)\mid\lambda\in\Lambda\})\leq r_{j},

for n=0,1n=0,1, and some constant rjr_{j} depending on Λ,φ,ψ,N,q\Lambda,\varphi,\psi,N,q.

Next, we recall the class of several symbols proved by Shibata and Shimizu [23, Lemma 5.2] and Saito [22, Corollary 4.7], in order to apply the above lemmas, where these symbols are defined in (19).

Lemma 5.

Let ss\in{\mathbb{R}}. The following assertions hold true.

1{\rm 1} Let ϵ(0,π/2)\epsilon\in(0,\pi/2). Then we have

ωλs𝐌s1(Σϵ,0).\omega_{\lambda}^{s}\in{\mathbf{M}}^{1}_{s}(\Sigma_{\epsilon,0}).

2{\rm 2} Let ϵ(ϵ~,π/2)\epsilon\in(\tilde{\epsilon}_{*},\pi/2). Then we have

tjs𝐌s1(Σϵ,0),𝔭j(ξ,λ),𝔮j(ξ,λ)𝐌11(Σϵ,0),𝔞(ξ,λ)𝐌11(Σϵ,0)t^{s}_{j}\in{\mathbf{M}}^{1}_{s}(\Sigma_{\epsilon,0}),\quad{\mathfrak{p}}_{j}(\xi^{\prime},\lambda),{\mathfrak{q}}_{j}(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{1}(\Sigma_{\epsilon,0}),\quad{\mathfrak{a}}(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{1}(\Sigma_{\epsilon,0})

for j=1,2j=1,2.

3{\rm 3} There is a constant ϵ(ϵ~,π/2)\epsilon_{*}\in(\tilde{\epsilon}_{*},\pi/2) such that for any ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2)

𝔩j(ξ,λ)s𝐌6s1(Σϵ,0)\mathfrak{l}_{j}(\xi^{\prime},\lambda)^{s}\in{\mathbf{M}}^{1}_{6s}(\Sigma_{\epsilon,0}) (40)

for j=1,2j=1,2.

The lower bound of 𝐌(ξ,λ){\mathbf{M}}(\xi^{\prime},\lambda) is obtained by Lemma 5, where 𝐌(ξ,λ){\mathbf{M}}(\xi^{\prime},\lambda) is defined in (25).

Lemma 6.

Let ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) for the same constant ϵ\epsilon_{*} as in (40). There exists a positive constant CC and λ0>0\lambda_{0}>0 such that

|𝐌(ξ,λ)|C(|λ|+|ξ|)(|λ|1/2+|ξ|)13|{\mathbf{M}}(\xi^{\prime},\lambda)|\geq C(|\lambda|+|\xi|)(|\lambda|^{1/2}+|\xi^{\prime}|)^{13} (41)

for any (ξ,λ)(N1{0})×Σϵ,λ0(\xi^{\prime},\lambda)\in({\mathbb{R}}^{N-1}\setminus\{0\})\times\Sigma_{\epsilon,\lambda_{0}}. Here λ0\lambda_{0} and CC depend on ϵ\epsilon, μ\mu, ν\nu, κ\kappa, and σ\sigma.

Proof.

First, we consider the case that |ξ|/|λ|r|\xi^{\prime}|/|\lambda|\leq r for (ξ,λ)N1×Σϵ,0(\xi^{\prime},\lambda)\in{\mathbb{R}}^{N-1}\times\Sigma_{\epsilon,0} for some sufficiently small positive number rr determined below. Lemma 5 implies that there exist constants CC and cc such that

|𝐌(ξ,λ)|\displaystyle|{\mathbf{M}}(\xi^{\prime},\lambda)| 2μ|ωλ||λ|κ1|𝔩1(ξ,λ)||𝔩2(ξ,λ)|\displaystyle\geq 2\mu|\omega_{\lambda}||\lambda|\kappa^{-1}|\mathfrak{l}_{1}(\xi^{\prime},\lambda)||\mathfrak{l}_{2}(\xi^{\prime},\lambda)|
σ|ξ|2κ1|𝔩1(ξ,λ)||𝔩2(ξ,λ)|\displaystyle\enskip-\sigma|\xi^{\prime}|^{2}\kappa^{-1}|\mathfrak{l}_{1}(\xi^{\prime},\lambda)||\mathfrak{l}_{2}(\xi^{\prime},\lambda)|
σ|ξ|2|t1||t2|(|ωλ2|+|ξ|2)|𝔞(ξ,λ)||s2||𝔩2(ξ,λ)||𝔮1(ξ,λ)|\displaystyle\enskip-\sigma|\xi^{\prime}|^{2}|t_{1}||t_{2}|(|\omega_{\lambda}^{2}|+|\xi|^{2})|{\mathfrak{a}}(\xi^{\prime},\lambda)||s_{2}||\mathfrak{l}_{2}(\xi^{\prime},\lambda)||{\mathfrak{q}}_{1}(\xi^{\prime},\lambda)|
σ|ξ|2|t1||t2|(|ωλ2|+|ξ|2)|𝔞(ξ,λ)||s1||𝔩1(ξ,λ)||𝔮2(ξ,λ)|\displaystyle\enskip-\sigma|\xi^{\prime}|^{2}|t_{1}||t_{2}|(|\omega_{\lambda}^{2}|+|\xi|^{2})|{\mathfrak{a}}(\xi^{\prime},\lambda)||s_{1}||\mathfrak{l}_{1}(\xi^{\prime},\lambda)||{\mathfrak{q}}_{2}(\xi^{\prime},\lambda)|
c|λ|(|λ|1/2+|ξ|)13{1C|λ|1(|λ|1/2+|ξ|)1|ξ|2}\displaystyle\geq c|\lambda|(|\lambda|^{1/2}+|\xi^{\prime}|)^{13}\{1-C|\lambda|^{-1}(|\lambda|^{1/2}+|\xi^{\prime}|)^{-1}|\xi^{\prime}|^{2}\}
c|λ|(|λ|1/2+|ξ|)13(1Cr)\displaystyle\geq c|\lambda|(|\lambda|^{1/2}+|\xi^{\prime}|)^{13}(1-Cr)

provided |ξ|r|λ||\xi^{\prime}|\leq r|\lambda|, then we have chosen rr sufficiently small that 1Cr>1/21-Cr>1/2, which furnishes (41) for any (ξ,λ)(N1{0})×Σϵ,0(\xi^{\prime},\lambda)\in({\mathbb{R}}^{N-1}\setminus\{0\})\times\Sigma_{\epsilon,0}.

Next, we consider the case that |ξ|/|λ|r|\xi^{\prime}|/|\lambda|\geq r for (ξ,λ)N1×Σϵ,λ0(\xi^{\prime},\lambda)\in{\mathbb{R}}^{N-1}\times\Sigma_{\epsilon,\lambda_{0}}. Note that |ξ|r|λ|1/2λ01/2|\xi^{\prime}|\geq r|\lambda|^{1/2}\lambda_{0}^{1/2}, then choosing λ0\lambda_{0} large enough, we have

tj=|ξ|(1+O(λ01/2)),ωλ=|ξ|(1+O(λ01/2)).t_{j}=|\xi^{\prime}|(1+O(\lambda_{0}^{-1/2})),\quad\omega_{\lambda}=|\xi^{\prime}|(1+O(\lambda_{0}^{-1/2})).

Thus, we also have

𝔩j(ξ,λ)\displaystyle\mathfrak{l}_{j}(\xi^{\prime},\lambda) =8μ1|ξ|6(1+O(λ01/2)),\displaystyle=8\mu^{-1}|\xi^{\prime}|^{6}(1+O(\lambda_{0}^{-1/2})),
𝔞(ξ,λ)\displaystyle{\mathfrak{a}}(\xi^{\prime},\lambda) =2κ1s2s1|ξ|(1+O(λ01/2)),\displaystyle=\frac{2\kappa^{-1}}{s_{2}-s_{1}}|\xi^{\prime}|(1+O(\lambda_{0}^{-1/2})),
𝔮j(ξ,λ)\displaystyle{\mathfrak{q}}_{j}(\xi^{\prime},\lambda) =2sj|ξ|(1+O(λ01/2)),\displaystyle=2s_{j}|\xi^{\prime}|(1+O(\lambda_{0}^{-1/2})),

furnishes that there exists a positive constant KK such that

|𝐌(ξ,λ)64μ2κ1|ξ|13(2μλ+σ|ξ|)64μ2κ1|ξ|13(2μλ+σ|ξ|)|Kλ01/2\left|\frac{{\mathbf{M}}(\xi^{\prime},\lambda)-64\mu^{-2}\kappa^{-1}|\xi^{\prime}|^{13}(2\mu\lambda+\sigma|\xi^{\prime}|)}{64\mu^{-2}\kappa^{-1}|\xi^{\prime}|^{13}(2\mu\lambda+\sigma|\xi^{\prime}|)}\right|\leq K\lambda_{0}^{-1/2}

for |λ|λ0|\lambda|\geq\lambda_{0} and sufficient large λ0\lambda_{0}. Therefore, we have

|𝐌(ξ,λ)|\displaystyle|{\mathbf{M}}(\xi^{\prime},\lambda)| 64μ2κ1|ξ|13|2μλ+σ|ξ||64μ2κ1|ξ|13(2μ|λ|+σ|ξ|)Kλ01/2\displaystyle\geq 64\mu^{-2}\kappa^{-1}|\xi^{\prime}|^{13}\left|2\mu\lambda+\sigma|\xi^{\prime}|\right|-64\mu^{-2}\kappa^{-1}|\xi^{\prime}|^{13}(2\mu|\lambda|+\sigma|\xi^{\prime}|)K\lambda_{0}^{-1/2}
64sin(ϵ/2)μ2κ1|ξ|13(2μ|λ|+σ|ξ|)64μ2κ1|ξ|13(2μ|λ|+σ|ξ|)Kλ01/2.\displaystyle\geq 64\sin(\epsilon/2)\mu^{-2}\kappa^{-1}|\xi^{\prime}|^{13}(2\mu|\lambda|+\sigma|\xi^{\prime}|)-64\mu^{-2}\kappa^{-1}|\xi^{\prime}|^{13}(2\mu|\lambda|+\sigma|\xi^{\prime}|)K\lambda_{0}^{-1/2}.

Choosing λ0>0\lambda_{0}>0 so large that sin(ϵ/2)/2Kλ01/20\sin(\epsilon/2)/2-K\lambda_{0}^{-1/2}\geq 0, we have

|𝐌(ξ,λ)|32(sinϵ/2)μ2κ1|ξ|13(2μ|λ|+σ|ξ|).|{\mathbf{M}}(\xi^{\prime},\lambda)|\geq 32(\sin\epsilon/2)\mu^{-2}\kappa^{-1}|\xi^{\prime}|^{13}(2\mu|\lambda|+\sigma|\xi^{\prime}|).

Then (41) holds true provided by |ξ|r|λ||\xi^{\prime}|\geq r|\lambda|. This completes the proof of Lemma 6. ∎

Note that |ξ|2𝐌21(Σϵ,0)|\xi^{\prime}|^{2}\in{\mathbf{M}}^{1}_{2}(\Sigma_{\epsilon,0}). The following corollary is proved by Bell’s formula, Lemma 5, and Lemma 6.

Corollary 2.

Let ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) for the same constant ϵ\epsilon_{*} as in (40). Then there exist some constants λ0>0\lambda_{0}>0 and CC such that for any multi-index α0N1\alpha^{\prime}\in{\mathbb{N}}^{N-1}_{0} and (ξ,λ)(N1{0})×Σϵ,λ0(\xi^{\prime},\lambda)\in({\mathbb{R}}^{N-1}\setminus\{0\})\times\Sigma_{\epsilon,\lambda_{0}}

|ξα((ττ)n𝐌(ξ,λ)1)|C(|λ|+|ξ|)1(|λ|1/2+|ξ|)13|α|,|\partial^{\alpha^{\prime}}_{\xi^{\prime}}((\tau\partial_{\tau})^{n}{\mathbf{M}}(\xi^{\prime},\lambda)^{-1})|\leq C(|\lambda|+|\xi^{\prime}|)^{-1}(|\lambda|^{1/2}+|\xi^{\prime}|)^{-13-|\alpha^{\prime}|},

where CC depend on ϵ\epsilon, α\alpha^{\prime}, μ\mu, ν\nu, κ\kappa, and σ\sigma.

Lemma 5 and Corollary 2 imply that the following corollary.

Corollary 3.

Let ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) for the same constant ϵ\epsilon_{*} as in (40). Then there exist some constants λ01\lambda_{0}\geq 1 and CC such that for any multi-index α0N1\alpha^{\prime}\in{\mathbb{N}}^{N-1}_{0} and (ξ,λ)(N1{0})×Σϵ,λ0(\xi^{\prime},\lambda)\in({\mathbb{R}}^{N-1}\setminus\{0\})\times\Sigma_{\epsilon,\lambda_{0}}

|ξα((ττ)n𝔪(ξ,λ))|C(|λ|+|ξ|)1(|λ|1/2+|ξ|)|α|,|\partial^{\alpha^{\prime}}_{\xi^{\prime}}((\tau\partial_{\tau})^{n}{\mathfrak{m}}(\xi^{\prime},\lambda))|\leq C(|\lambda|+|\xi^{\prime}|)^{-1}(|\lambda|^{1/2}+|\xi^{\prime}|)^{-|\alpha^{\prime}|},

where CC depend on ϵ\epsilon, α\alpha^{\prime}, μ\mu, ν\nu, κ\kappa, and σ\sigma.

4 The proof of Proposition 4

In this section, we prove (16), which is the {\mathcal{R}}-boundedness for the operators 𝒜2(λ){\mathcal{A}}_{2}(\lambda), 2(λ){\mathcal{B}}_{2}(\lambda), and 𝒞2(λ){\mathcal{C}}_{2}(\lambda) arising from solution formulas (26) and (24) for (17). Note that (15) in Proposition 4 1{\rm 1} is obtained by (16) due to Definition 1. For Z{ωλ,t1,|ξ|}Z\in\{\omega_{\lambda},t_{1},|\xi^{\prime}|\}, let us review the Volevich trick, which is the following equalities:

eZxNη^(ξ,0)\displaystyle e^{-Zx_{N}}\hat{\eta}(\xi^{\prime},0) =0ZeZ(xN+yN)η^(ξ,yN)𝑑yN0eZ(xN+yN)Nη^(ξ,yN)𝑑yN,\displaystyle=\int^{\infty}_{0}Ze^{-Z(x_{N}+y_{N})}\hat{\eta}(\xi,y_{N})\,dy_{N}-\int^{\infty}_{0}e^{-Z(x_{N}+y_{N})}\widehat{\partial_{N}\eta}(\xi^{\prime},y_{N})\,dy_{N}, (42)
l(xN)η^(ξ,0)\displaystyle{\mathcal{M}}_{l}(x_{N})\hat{\eta}(\xi^{\prime},0) =0tll(xN+yN)η^(ξ,yN)𝑑yN+0𝔯leωλ(xN+yN)η^(ξ,yN)𝑑yN\displaystyle=\int^{\infty}_{0}t_{l}{\mathcal{M}}_{l}(x_{N}+y_{N})\hat{\eta}(\xi,y_{N})\,dy_{N}+\int^{\infty}_{0}{\mathfrak{r}}_{l}e^{-\omega_{\lambda}(x_{N}+y_{N})}\hat{\eta}(\xi^{\prime},y_{N})\,dy_{N}
0l(xN+yN)Nη^(ξ,yN)𝑑yN,\displaystyle\enskip-\int^{\infty}_{0}{\mathcal{M}}_{l}(x_{N}+y_{N})\widehat{\partial_{N}\eta}(\xi^{\prime},y_{N})\,dy_{N},
0(xN)η^(ξ,0)\displaystyle{\mathcal{M}}_{0}(x_{N})\hat{\eta}(\xi^{\prime},0) =0t20(xN+yN)η^(ξ,yN)𝑑yN+0et1(xN+yN)η^(ξ,yN)𝑑yN\displaystyle=\int^{\infty}_{0}t_{2}{\mathcal{M}}_{0}(x_{N}+y_{N})\hat{\eta}(\xi,y_{N})\,dy_{N}+\int^{\infty}_{0}e^{-t_{1}(x_{N}+y_{N})}\hat{\eta}(\xi^{\prime},y_{N})\,dy_{N}
00(xN+yN)Nη^(ξ,yN)𝑑yN,\displaystyle\enskip-\int^{\infty}_{0}{\mathcal{M}}_{0}(x_{N}+y_{N})\widehat{\partial_{N}\eta}(\xi^{\prime},y_{N})\,dy_{N},

where l=1,2l=1,2 and we have used

Nl(zN)\displaystyle\partial_{N}{\mathcal{M}}_{l}(z_{N}) =tll(zN)𝔯l(ξ,λ)eωλzN,𝔯l(ξ,λ)=(slμ1)(t2+t1)(s2s1)(tl+ωλ),\displaystyle=-t_{l}{\mathcal{M}}_{l}(z_{N})-{\mathfrak{r}}_{l}(\xi^{\prime},\lambda)e^{-\omega_{\lambda}z_{N}},\quad{\mathfrak{r}}_{l}(\xi^{\prime},\lambda)=\frac{(s_{l}-\mu^{-1})(t_{2}+t_{1})}{(s_{2}-s_{1})(t_{l}+\omega_{\lambda})},
N0(zN)\displaystyle\partial_{N}{\mathcal{M}}_{0}(z_{N}) =t20(zN)et1zN\displaystyle=-t_{2}{\mathcal{M}}_{0}(z_{N})-e^{-t_{1}z_{N}}

for zN>0z_{N}>0, which is obtained by (19).

4.1 The {\mathcal{R}}-boundedness for 𝒜2(λ){\mathcal{A}}_{2}(\lambda)

Recall the solution formula (26):

ρ=ξ1[ϑ1|ξ|2𝔪(ξ,λ)et1xNη^(0)](x)+ξ1[ϑ2|ξ|2𝔪(ξ,λ)0(xN)η^(0)](x),\rho={\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\vartheta_{1}|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda)e^{-t_{1}x_{N}}\hat{\eta}(0)\right](x^{\prime})+{\mathcal{F}}^{-1}_{\xi^{\prime}}\left[\vartheta_{2}|\xi^{\prime}|^{2}{\mathfrak{m}}(\xi^{\prime},\lambda){\mathcal{M}}_{0}(x_{N})\hat{\eta}(0)\right](x^{\prime}),

with

ϑ1(ξ,λ)\displaystyle\vartheta_{1}(\xi^{\prime},\lambda) =t1s1s2(t1+ωλ)(ωλ2+|ξ|2)μ𝔩1(ξ,λ),\displaystyle=\frac{t_{1}s_{1}s_{2}(t_{1}+\omega_{\lambda})(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})}{\mu\mathfrak{l}_{1}(\xi^{\prime},\lambda)},
ϑ2(ξ,λ)\displaystyle\vartheta_{2}(\xi^{\prime},\lambda) =s1s2t12(t1+ωλ)(ωλ2+|ξ|2)μ𝔩1(ξ,λ).\displaystyle=\frac{s_{1}s_{2}t_{1}^{2}(t_{1}+\omega_{\lambda})(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})}{\mu\mathfrak{l}_{1}(\xi^{\prime},\lambda)}.

In view of (42) and |ξ|2=k=1N1(iξk)2|\xi^{\prime}|^{2}=-\sum^{N-1}_{k=1}(i\xi_{k})^{2}, we set

ρ=𝒜2(λ)η=𝒜21(λ)(Δη)+𝒜22(λ)(Nη),\displaystyle\rho={\mathcal{A}}_{2}(\lambda)\eta={\mathcal{A}}_{2}^{1}(\lambda)(-\Delta^{\prime}\eta)+{\mathcal{A}}_{2}^{2}(\lambda)(\nabla^{\prime}\partial_{N}\eta),

where

𝒜21(λ)(Δη)\displaystyle{\mathcal{A}}_{2}^{1}(\lambda)(-\Delta^{\prime}\eta) =0ξ1[ϑ1(ξ,λ)𝔪(ξ,λ)t1et1(xN+yN)(Δ)η^(ξ,yN)](x)𝑑yN\displaystyle=\int_{0}^{\infty}{\mathcal{F}}^{-1}_{\xi^{\prime}}[\vartheta_{1}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)t_{1}e^{-t_{1}(x_{N}+y_{N})}\widehat{(-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N}
+0ξ1[ϑ2(ξ,λ)𝔪(ξ,λ)t20(xN+yN)(Δ)η^(ξ,yN)](x)𝑑yN\displaystyle\enskip+\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[\vartheta_{2}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)t_{2}{\mathcal{M}}_{0}(x_{N}+y_{N})\widehat{(-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N}
+0ξ1[ϑ2(ξ,λ)𝔪(ξ,λ)et1(xN+yN)(Δ)η^(ξ,yN)](x)𝑑yN,\displaystyle\enskip+\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[\vartheta_{2}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)e^{-t_{1}(x_{N}+y_{N})}\widehat{(-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N},
𝒜22(λ)(Nη)\displaystyle{\mathcal{A}}_{2}^{2}(\lambda)(\nabla^{\prime}\partial_{N}\eta) =k=1N10ξ1[ϑ1(ξ,λ)𝔪(ξ,λ)iξket1(xN+yN)kNη^(ξ,yN)](x)𝑑yN\displaystyle=\sum_{k=1}^{N-1}\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[\vartheta_{1}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)i\xi_{k}e^{-t_{1}(x_{N}+y_{N})}\widehat{\partial_{k}\partial_{N}\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N}
+k=1N10ξ1[ϑ2(ξ,λ)𝔪(ξ,λ)iξk0(xN+yN)kNη^(ξ,yN)](x)𝑑yN.\displaystyle\enskip+\sum_{k=1}^{N-1}\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[\vartheta_{2}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)i\xi_{k}{\mathcal{M}}_{0}(x_{N}+y_{N})\widehat{\partial_{k}\partial_{N}\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N}.

Lemma 5 and Remark 2 imply that for any ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) for the same constant ϵ\epsilon_{*} as in (40)

ϑ1(ξ,λ)𝐌21(Σϵ,0),ϑ2(ξ,λ)𝐌11(Σϵ,0).\vartheta_{1}(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{-2}(\Sigma_{\epsilon,0}),\quad\vartheta_{2}(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{-1}(\Sigma_{\epsilon,0}).

Then by Lemma 5 and Corollary 3, together with Leibniz’s rule, there exists λ01\lambda_{0}\geq 1 such that

ϑ2(ξ,λ)𝔪(ξ,λ)t2,ϑ2(ξ,λ)𝔪(ξ,λ)iξk\displaystyle\vartheta_{2}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)t_{2},\enskip\vartheta_{2}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)i\xi_{k} 𝐌11(Σϵ,λ0),\displaystyle\in{\mathbf{M}}^{1}_{-1}(\Sigma_{\epsilon,\lambda_{0}}),
ϑ1(ξ,λ)𝔪(ξ,λ)t1,ϑ1(ξ,λ)𝔪(ξ,λ)iξk,ϑ2(ξ,λ)𝔪(ξ,λ),\displaystyle\vartheta_{1}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)t_{1},\enskip\vartheta_{1}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)i\xi_{k},\enskip\vartheta_{2}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda), 𝐌21(Σϵ,λ0)\displaystyle\in{\mathbf{M}}^{1}_{-2}(\Sigma_{\epsilon,\lambda_{0}})

for k=1,,N1k=1,\ldots,N-1. By using Corollary 1 2{\rm 2}, it implies that 𝒜2(λ){\mathcal{A}}_{2}(\lambda) satisfies (16).

4.2 The {\mathcal{R}}-boundedness for 2(λ){\mathcal{B}}_{2}(\lambda)

The solution formulas (26) for (17) implies that

uJ=ξ1[nJ1(ξ,λ)𝔪(ξ,λ)eωλxN|ξ|2η^(0)](x)+l=12ξ1[nJ2l(ξ,λ)𝔪(ξ,λ)l(xN)|ξ|2η^(0)](x),u_{J}={\mathcal{F}}^{-1}_{\xi^{\prime}}[n_{J1}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)e^{-\omega_{\lambda}x_{N}}|\xi^{\prime}|^{2}\hat{\eta}(0)](x^{\prime})+\sum^{2}_{l=1}{\mathcal{F}}^{-1}_{\xi^{\prime}}[n_{J2}^{l}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda){\mathcal{M}}_{l}(x_{N})|\xi^{\prime}|^{2}\hat{\eta}(0)](x^{\prime}),

where

nj1(ξ,λ)\displaystyle n_{j1}(\xi^{\prime},\lambda) =iξj2μωλ2+l=12(1)l+1iξjt1t2(ωλ2+|ξ|2)𝔞(ξ,λ)𝔭l(ξ,λ)2μωλ2sl𝔩l(ξ,λ),\displaystyle=\frac{i\xi_{j}}{2\mu\omega_{\lambda}^{2}}+\sum^{2}_{l=1}\frac{(-1)^{l+1}i\xi_{j}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2}){\mathfrak{a}}(\xi^{\prime},\lambda){\mathfrak{p}}_{l}(\xi^{\prime},\lambda)}{2\mu\omega_{\lambda}^{2}s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)},
nj2l(ξ,λ)\displaystyle n_{j2}^{l}(\xi^{\prime},\lambda) =(1)liξjt1t2(ωλ2+|ξ|2)s1s2(tl+ωλ)μsl𝔩l(ξ,λ),\displaystyle=\frac{(-1)^{l}i\xi_{j}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})s_{1}s_{2}(t_{l}+\omega_{\lambda})}{\mu s_{l}\mathfrak{l}_{l}(\xi,\lambda)},
nN1(ξ,λ)\displaystyle n_{N1}(\xi^{\prime},\lambda) =12μωλ+l=12(1)l+1t1t2(ωλ2+|ξ|2)𝔞(ξ,λ)𝔮l(ξ,λ)2μωλsl𝔩l(ξ,λ),\displaystyle=\frac{1}{2\mu\omega_{\lambda}}+\sum^{2}_{l=1}\frac{(-1)^{l+1}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2}){\mathfrak{a}}(\xi^{\prime},\lambda){\mathfrak{q}}_{l}(\xi^{\prime},\lambda)}{2\mu\omega_{\lambda}s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)},
nN2l(ξ,λ)\displaystyle n_{N2}^{l}(\xi^{\prime},\lambda) =(1)l+1t1t2(ωλ2+|ξ|2)s1s2tl(tl+ωλ)μsl𝔩l(ξ,λ)\displaystyle=\frac{(-1)^{l+1}t_{1}t_{2}(\omega_{\lambda}^{2}+|\xi^{\prime}|^{2})s_{1}s_{2}t_{l}(t_{l}+\omega_{\lambda})}{\mu s_{l}\mathfrak{l}_{l}(\xi^{\prime},\lambda)}

for J=1,,NJ=1,\ldots,N, j=1,,N1j=1,\ldots,N-1. Repeat the same method as in subsection 4.1. Set

uJ=2J(λ)η=2J1(λ)(Δη)+2J2(λ)(Nη),\displaystyle u_{J}={\mathcal{B}}_{2J}(\lambda)\eta={\mathcal{B}}_{2J}^{1}(\lambda)(-\Delta^{\prime}\eta)+{\mathcal{B}}_{2J}^{2}(\lambda)(\nabla^{\prime}\partial_{N}\eta),

where

2J1(λ)(Δη)\displaystyle{\mathcal{B}}_{2J}^{1}(\lambda)(-\Delta^{\prime}\eta) =0ξ1[nJ1𝔪(ξ,λ)ωλeωλ(xN+yN)(Δ)η^(ξ,yN)](x)𝑑yN\displaystyle=\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[n_{J1}{\mathfrak{m}}(\xi^{\prime},\lambda)\omega_{\lambda}e^{-\omega_{\lambda}(x_{N}+y_{N})}\widehat{(-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N}
+l=120ξ1[nJ2l𝔪(ξ,λ)tll(xN+yN)(Δ)η^(ξ,yN)](x)𝑑yN\displaystyle\enskip+\sum_{l=1}^{2}\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[n_{J2}^{l}{\mathfrak{m}}(\xi^{\prime},\lambda)t_{l}{\mathcal{M}}_{l}(x_{N}+y_{N})\widehat{(-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N}
+l=120ξ1[nJ2l𝔪(ξ,λ)𝔯l(ξ,λ)eωλ(xN+yN)(Δ)η^(ξ,yN)](x)𝑑yN,\displaystyle\enskip+\sum_{l=1}^{2}\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[n_{J2}^{l}{\mathfrak{m}}(\xi^{\prime},\lambda){\mathfrak{r}}_{l}(\xi,\lambda)e^{-\omega_{\lambda}(x_{N}+y_{N})}\widehat{(-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N},
2J2(λ)(Nη)\displaystyle{\mathcal{B}}_{2J}^{2}(\lambda)(\nabla^{\prime}\partial_{N}\eta) =k=1N10ξ1[nJ1𝔪(ξ,λ)iξkeωλ(xN+yN)kNη^(ξ,yN)](x)𝑑yN\displaystyle=\sum_{k=1}^{N-1}\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[n_{J1}{\mathfrak{m}}(\xi^{\prime},\lambda)i\xi_{k}e^{-\omega_{\lambda}(x_{N}+y_{N})}\widehat{\partial_{k}\partial_{N}\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N}
+k=1N1l=120ξ1[nJ2l𝔪(ξ,λ)iξkl(xN+yN)kNη^(ξ,yN)](x)𝑑yN\displaystyle\enskip+\sum_{k=1}^{N-1}\sum_{l=1}^{2}\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[n_{J2}^{l}{\mathfrak{m}}(\xi^{\prime},\lambda)i\xi_{k}{\mathcal{M}}_{l}(x_{N}+y_{N})\widehat{\partial_{k}\partial_{N}\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N}

for J=1,,NJ=1,\ldots,N. Lemma 5 and Remark 2 imply that for any ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) for the same constant ϵ\epsilon_{*} as in (40)

nJ1(ξ,λ)𝐌11(Σϵ,0),nJ2l(ξ,λ),𝔯l(ξ,λ)𝐌01(Σϵ,0)n_{J1}(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{-1}(\Sigma_{\epsilon,0}),\quad n_{J2}^{l}(\xi^{\prime},\lambda),\enskip{\mathfrak{r}}_{l}(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{0}(\Sigma_{\epsilon,0})

for J=0,,NJ=0,\ldots,N, l=1,2l=1,2. Then by Lemma 5 and Corollary 3, together with Leibniz’s rule, there exists λ01\lambda_{0}\geq 1 such that

nJ1(ξ,λ)𝔪(ξ,λ)ωλ,nJ2l(ξ,λ)𝔪(ξ,λ)𝔯l(ξ,λ),nJ1𝔪(ξ,λ)iξk\displaystyle n_{J1}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)\omega_{\lambda},\enskip n_{J2}^{l}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda){\mathfrak{r}}_{l}(\xi,\lambda),\enskip n_{J1}{\mathfrak{m}}(\xi^{\prime},\lambda)i\xi_{k} 𝐌11(Σϵ,λ0)\displaystyle\in{\mathbf{M}}^{1}_{-1}(\Sigma_{\epsilon,\lambda_{0}})
nJ2l(ξ,λ)𝔪(ξ,λ)tl,nJ2l(ξ,λ)𝔪(ξ,λ)iξk\displaystyle n_{J2}^{l}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)t_{l},\enskip n_{J2}^{l}(\xi^{\prime},\lambda){\mathfrak{m}}(\xi^{\prime},\lambda)i\xi_{k} 𝐌01(Σϵ,λ0)\displaystyle\in{\mathbf{M}}^{1}_{0}(\Sigma_{\epsilon,\lambda_{0}})

for J=0,,NJ=0,\ldots,N, k=0,,N1k=0,\ldots,N-1, and l=1,2l=1,2. Thus Corollary 1 1{\rm 1} implies that 2(λ){\mathcal{B}}_{2}(\lambda) satisfies (16).

4.3 The {\mathcal{R}}-boundedness for 𝒞2(λ){\mathcal{C}}_{2}(\lambda)

In view of (24), we set hh as follows:

h(x)=(𝒞2(λ)η)(x)=φ(xN)ξ1[𝔪(ξ,λ)e|ξ|xNη^(ξ,0)](x)h(x)=({\mathcal{C}}_{2}(\lambda)\eta)(x)=\varphi(x_{N}){\mathcal{F}}^{-1}_{\xi^{\prime}}[{\mathfrak{m}}(\xi^{\prime},\lambda)e^{-|\xi^{\prime}|x_{N}}\hat{\eta}(\xi^{\prime},0)](x^{\prime}) (43)

for x=(x,xN)+Nx=(x^{\prime},x_{N})\in{\mathbb{R}}^{N}_{+}, where φ(xN)C0()\varphi(x_{N})\in C^{\infty}_{0}({\mathbb{R}}) equals to 11 for xN(1,1)x_{N}\in(-1,1) and 0 for xN[2,2]x_{N}\notin[-2,2]. Applying the Volevich trick (42) to (43), we have

h(x)=(𝒞2(λ)η)(x)=(𝒞21(λ)η)(x)+(𝒞22(λ)η)(x),h(x)=({\mathcal{C}}_{2}(\lambda)\eta)(x)=({\mathcal{C}}_{2}^{1}(\lambda)\eta)(x)+({\mathcal{C}}_{2}^{2}(\lambda)\eta)(x),

where

(𝒞21(λ)η)(x)\displaystyle({\mathcal{C}}_{2}^{1}(\lambda)\eta)(x) =φ(xN)0ξ1[𝔪(ξ,λ)|ξ|e|ξ|(xN+yN)φ(yN)η^(ξ,yN)](x)𝑑yN,\displaystyle=\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[{\mathfrak{m}}(\xi^{\prime},\lambda)|\xi^{\prime}|e^{-|\xi^{\prime}|(x_{N}+y_{N})}\varphi(y_{N})\hat{\eta}(\xi^{\prime},y_{N})](x^{\prime})\,dy_{N},
(𝒞22(λ)η)(x)\displaystyle({\mathcal{C}}_{2}^{2}(\lambda)\eta)(x) =φ(xN)0ξ1[𝔪(ξ,λ)e|ξ|(xN+yN)N(φ(yN)η^(ξ,yN))](x)𝑑yN.\displaystyle=-\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}[{\mathfrak{m}}(\xi^{\prime},\lambda)e^{-|\xi^{\prime}|(x_{N}+y_{N})}\partial_{N}(\varphi(y_{N})\hat{\eta}(\xi^{\prime},y_{N}))](x^{\prime})\,dy_{N}.

First, we consider the {\mathcal{R}}-boundedness for λj𝒞2(λ)\lambda^{j}{\mathcal{C}}_{2}(\lambda) for j=0,1j=0,1. Corollary 3 implies that for any ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) for the same constant ϵ\epsilon_{*} as in (40), there exists λ01\lambda_{0}\geq 1 such that λj𝔪(ξ,λ)𝐌01(Σϵ,λ0)𝐌02(Σϵ,λ0)\lambda^{j}{\mathfrak{m}}(\xi^{\prime},\lambda)\in{\mathbf{M}}^{1}_{0}(\Sigma_{\epsilon,\lambda_{0}})\subset{\mathbf{M}}^{2}_{0}(\Sigma_{\epsilon,\lambda_{0}}) for j=0,1j=0,1, then Lemma 4 gives us there exists a positive constant rr such that

(Lq(+N))({(ττ)nλj𝒞21(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}(L_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}\lambda^{j}{\mathcal{C}}_{2}^{1}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r, (44)
(Hq1(+N),Lq(+N))({(ττ)nλj𝒞22(λ)λΣϵ,λ0})r\displaystyle{\mathcal{R}}_{{\mathcal{L}}(H^{1}_{q}({\mathbb{R}}^{N}_{+}),L_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}\lambda^{j}{\mathcal{C}}_{2}^{2}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r

for n=0,1n=0,1, j=0,1j=0,1.

Next, we consider the {\mathcal{R}}-boundedness for λjxαNk𝒞2(λ)\lambda^{j}\partial_{x^{\prime}}^{\alpha^{\prime}}\partial_{N}^{k}{\mathcal{C}}_{2}(\lambda) for j=0,1j=0,1 and 1|α|+k3j1\leq|\alpha^{\prime}|+k\leq 3-j. In this case, we use

1=1+|ξ|21+|ξ|2=11+|ξ|2l=1N1iξl1+|ξ|2iξl.1=\frac{1+|\xi^{\prime}|^{2}}{1+|\xi^{\prime}|^{2}}=\frac{1}{1+|\xi^{\prime}|^{2}}-\sum^{N-1}_{l=1}\frac{i\xi_{l}}{1+|\xi^{\prime}|^{2}}i\xi_{l}.

For j=0,1j=0,1, |α|=1|\alpha^{\prime}|=1, and k=0k=0, we have

(λjxα𝒞21(λ)η)(x)\displaystyle(\lambda^{j}\partial_{x^{\prime}}^{\alpha^{\prime}}{\mathcal{C}}_{2}^{1}(\lambda)\eta)(x) =φ(xN)0ξ1[𝔪(ξ,λ)λj(iξ)α|ξ|1+|ξ|2\displaystyle=\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}|\xi^{\prime}|}{1+|\xi^{\prime}|^{2}}
×e|ξ|(xN+yN)φ(yN)(1Δ)η^(ξ,yN)](x)dyN,\displaystyle\hskip 80.0pt\times e^{-|\xi^{\prime}|(x_{N}+y_{N})}\varphi(y_{N})\widehat{(1-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})\Big{]}(x^{\prime})\,dy_{N},
(λjxα𝒞22(λ)η)(x)\displaystyle(\lambda^{j}\partial_{x^{\prime}}^{\alpha^{\prime}}{\mathcal{C}}_{2}^{2}(\lambda)\eta)(x) =φ(xN)0ξ1[𝔪(ξ,λ)λj(iξ)α(1+|ξ|2)|ξ|\displaystyle=-\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}}{(1+|\xi^{\prime}|^{2})|\xi^{\prime}|}
×|ξ|e|ξ|(xN+yN)N(φ(yN)η^(ξ,yN))](x)dyN\displaystyle\hskip 80.0pt\times|\xi^{\prime}|e^{-|\xi^{\prime}|(x_{N}+y_{N})}\partial_{N}(\varphi(y_{N})\hat{\eta}(\xi^{\prime},y_{N}))\Big{]}(x^{\prime})\,dy_{N}
+l=1N1φ(xN)0ξ1[𝔪(ξ,λ)λj(iξ)α(iξl)(1+|ξ|2)\displaystyle\enskip+\sum^{N-1}_{l=1}\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}(i\xi_{l})}{(1+|\xi^{\prime}|^{2})}
×e|ξ|(xN+yN)N(φ(yN)lη^(ξ,yN))](x)dyN.\displaystyle\hskip 80.0pt\times e^{-|\xi^{\prime}|(x_{N}+y_{N})}\partial_{N}(\varphi(y_{N})\widehat{\partial_{l}\eta}(\xi^{\prime},y_{N}))\Big{]}(x^{\prime})\,dy_{N}.

Furthermore, for j=0,1j=0,1, |α|=0|\alpha^{\prime}|=0, and k=1k=1, we have

(λjN𝒞21(λ)η)(x)\displaystyle(\lambda^{j}\partial_{N}{\mathcal{C}}_{2}^{1}(\lambda)\eta)(x) =(Nφ)(xN)0ξ1[𝔪(ξ,λ)λj1+|ξ|2\displaystyle=(\partial_{N}\varphi)(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}}{1+|\xi^{\prime}|^{2}}
×|ξ|e|ξ|(xN+yN)φ(yN)(1Δ)η^(ξ,yN)](x)dyN\displaystyle\hskip 80.0pt\times|\xi^{\prime}|e^{-|\xi^{\prime}|(x_{N}+y_{N})}\varphi(y_{N})\widehat{(1-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})\Big{]}(x^{\prime})\,dy_{N}
φ(xN)0ξ1[𝔪(ξ,λ)λj|ξ|21+|ξ|2e|ξ|(xN+yN)φ(yN)(1Δ)η^(ξ,yN)](x)𝑑yN,\displaystyle\enskip-\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}|\xi^{\prime}|^{2}}{1+|\xi^{\prime}|^{2}}e^{-|\xi^{\prime}|(x_{N}+y_{N})}\varphi(y_{N})\widehat{(1-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})\Big{]}(x^{\prime})\,dy_{N},
(λjN𝒞22(λ)η)(x)\displaystyle(\lambda^{j}\partial_{N}{\mathcal{C}}_{2}^{2}(\lambda)\eta)(x) =(Nφ)(xN)0ξ1[𝔪(ξ,λ)λj1+|ξ|2e|ξ|(xN+yN)N(φ(yN)η^(ξ,yN))](x)𝑑yN\displaystyle=-(\partial_{N}\varphi)(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}}{1+|\xi^{\prime}|^{2}}e^{-|\xi^{\prime}|(x_{N}+y_{N})}\partial_{N}(\varphi(y_{N})\hat{\eta}(\xi^{\prime},y_{N}))\Big{]}(x^{\prime})\,dy_{N}
+l=1N1(Nφ)(xN)0ξ1[𝔪(ξ,λ)λj(iξl)(1+|ξ|2)|ξ|\displaystyle\enskip+\sum^{N-1}_{l=1}(\partial_{N}\varphi)(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi_{l})}{(1+|\xi^{\prime}|^{2})|\xi^{\prime}|}
×|ξ|e|ξ|(xN+yN)N(φ(yN)lη^(ξ,yN))](x)dyN\displaystyle\hskip 80.0pt\times|\xi^{\prime}|e^{-|\xi^{\prime}|(x_{N}+y_{N})}\partial_{N}(\varphi(y_{N})\widehat{\partial_{l}\eta}(\xi^{\prime},y_{N}))\Big{]}(x^{\prime})\,dy_{N}
+φ(xN)0ξ1[𝔪(ξ,λ)λj1+|ξ|2|ξ|e|ξ|(xN+yN)N(φ(yN)η^(ξ,yN))](x)𝑑yN\displaystyle\enskip+\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}}{1+|\xi^{\prime}|^{2}}|\xi^{\prime}|e^{-|\xi^{\prime}|(x_{N}+y_{N})}\partial_{N}(\varphi(y_{N})\hat{\eta}(\xi^{\prime},y_{N}))](x^{\prime})\,dy_{N}
l=1N1φ(xN)0ξ1[𝔪(ξ,λ)λj|ξ|(iξl)1+|ξ|2e|ξ|(xN+yN)N(φ(yN)lη^(ξ,yN))](x)𝑑yN.\displaystyle\enskip-\sum^{N-1}_{l=1}\varphi(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}|\xi^{\prime}|(i\xi_{l})}{1+|\xi^{\prime}|^{2}}e^{-|\xi^{\prime}|(x_{N}+y_{N})}\partial_{N}(\varphi(y_{N})\widehat{\partial_{l}\eta}(\xi^{\prime},y_{N}))\Big{]}(x^{\prime})\,dy_{N}.

Then by Corollary 3 and Leibiz’s rule, there exists λ01\lambda_{0}\geq 1 such that

𝔪(ξ,λ)λj(iξ)α|ξ|1+|ξ|2,𝔪(ξ,λ)λj(iξ)α(1+|ξ|2)|ξ|,𝔪(ξ,λ)λj(iξ)α(iξl)1+|ξ|2,𝔪(ξ,λ)λj1+|ξ|2,\displaystyle{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}|\xi^{\prime}|}{1+|\xi^{\prime}|^{2}},\enskip{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}}{(1+|\xi^{\prime}|^{2})|\xi^{\prime}|},\enskip{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}(i\xi_{l})}{1+|\xi^{\prime}|^{2}},\enskip{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}}{1+|\xi^{\prime}|^{2}},
𝔪(ξ,λ)λj|ξ|21+|ξ|2,𝔪(ξ,λ)λj(iξl)(1+|ξ|2)|ξ|,𝔪(ξ,λ)λj|ξ|(iξl)1+|ξ|2\displaystyle{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}|\xi^{\prime}|^{2}}{1+|\xi^{\prime}|^{2}},\enskip{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi_{l})}{(1+|\xi^{\prime}|^{2})|\xi^{\prime}|},\enskip{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}|\xi^{\prime}|(i\xi_{l})}{1+|\xi^{\prime}|^{2}}

are class of 𝐌02(Σϵ,λ0){\mathbf{M}}^{2}_{0}(\Sigma_{\epsilon,\lambda_{0}}) for j=0,1j=0,1 and l=1,N1l=1,\ldots N-1. On the other hand, for j=0,1j=0,1 and 2|α|+k3j2\leq|\alpha^{\prime}|+k\leq 3-j, we have

(λjxαNk𝒞21(λ)η)(x)\displaystyle(\lambda^{j}\partial_{x^{\prime}}^{\alpha^{\prime}}\partial_{N}^{k}{\mathcal{C}}_{2}^{1}(\lambda)\eta)(x) =k1+k2=k(kk1)(Nk1φ)(xN)0ξ1[𝔪(ξ,λ)λj(iξ)α(|ξ|)k21+|ξ|2\displaystyle=\sum_{k_{1}+k_{2}=k}\dbinom{k}{k_{1}}(\partial_{N}^{k_{1}}\varphi)(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}(-|\xi^{\prime}|)^{k_{2}}}{1+|\xi^{\prime}|^{2}}
×|ξ|e|ξ|(xN+yN)φ(yN)(1Δ)η^(ξ,yN)](x)dyN,\displaystyle\hskip 80.0pt\times|\xi^{\prime}|e^{-|\xi^{\prime}|(x_{N}+y_{N})}\varphi(y_{N})\widehat{(1-\Delta^{\prime})\eta}(\xi^{\prime},y_{N})\Big{]}(x^{\prime})\,dy_{N},
(λjxαNk𝒞22(λ)η)(x)\displaystyle(\lambda^{j}\partial_{x^{\prime}}^{\alpha^{\prime}}\partial_{N}^{k}{\mathcal{C}}_{2}^{2}(\lambda)\eta)(x) =k1+k2=k(kk1)(Nk1φ)(xN)0ξ1[𝔪(ξ,λ)λj(iξ)α(|ξ|)k21+|ξ|2\displaystyle=-\sum_{k_{1}+k_{2}=k}\dbinom{k}{k_{1}}(\partial_{N}^{k_{1}}\varphi)(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}(-|\xi^{\prime}|)^{k_{2}}}{1+|\xi^{\prime}|^{2}}
×e|ξ|(xN+yN)N(φ(yN)η^(ξ,yN))](x)dyN\displaystyle\hskip 80.0pt\times e^{-|\xi^{\prime}|(x_{N}+y_{N})}\partial_{N}(\varphi(y_{N})\hat{\eta}(\xi^{\prime},y_{N}))\Big{]}(x^{\prime})\,dy_{N}
+l=1N1k1+k2=k(kk1)(Nk1φ)(xN)0ξ1[𝔪(ξ,λ)λj(iξ)α(|ξ|)k2(iξl)(1+|ξ|2)|ξ|\displaystyle\enskip+\sum_{l=1}^{N-1}\sum_{k_{1}+k_{2}=k}\dbinom{k}{k_{1}}(\partial_{N}^{k_{1}}\varphi)(x_{N})\int^{\infty}_{0}{\mathcal{F}}^{-1}_{\xi^{\prime}}\Big{[}{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}(-|\xi^{\prime}|)^{k_{2}}(i\xi_{l})}{(1+|\xi^{\prime}|^{2})|\xi^{\prime}|}
×|ξ|e|ξ|(xN+yN)N(φ(yN)lη^(ξ,yN))](x)dyN,\displaystyle\hskip 80.0pt\times|\xi^{\prime}|e^{-|\xi^{\prime}|(x_{N}+y_{N})}\partial_{N}(\varphi(y_{N})\widehat{\partial_{l}\eta}(\xi^{\prime},y_{N}))\Big{]}(x^{\prime})\,dy_{N},

then Corollary 3 and Leibiz’s rule implies that there exists λ01\lambda_{0}\geq 1 satisfying

𝔪(ξ,λ)λj(iξ)α(|ξ|)k21+|ξ|2,𝔪(ξ,λ)λj(iξ)α(|ξ|)k2(iξl)(1+|ξ|2)|ξ|𝐌02(Σϵ,λ0).{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}(-|\xi^{\prime}|)^{k_{2}}}{1+|\xi^{\prime}|^{2}},\enskip{\mathfrak{m}}(\xi^{\prime},\lambda)\frac{\lambda^{j}(i\xi^{\prime})^{\alpha^{\prime}}(-|\xi^{\prime}|)^{k_{2}}(i\xi_{l})}{(1+|\xi^{\prime}|^{2})|\xi^{\prime}|}\in{\mathbf{M}}^{2}_{0}(\Sigma_{\epsilon,\lambda_{0}}).

Therefore Lemma 4 gives us there exists a positive constant rr such that

(Hq2(+N),Lq(+N))({(ττ)nλjxαNk𝒞2a(λ)λΣϵ,λ0})r\displaystyle{\mathcal{R}}_{{\mathcal{L}}(H^{2}_{q}({\mathbb{R}}^{N}_{+}),L_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}\lambda^{j}\partial_{x^{\prime}}^{\alpha^{\prime}}\partial_{N}^{k}{\mathcal{C}}_{2}^{a}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r (45)

for n=0,1n=0,1, j=0,1j=0,1, 1|α|+k3j1\leq|\alpha^{\prime}|+k\leq 3-j and a=1,2a=1,2. Combining (44) and (45), the operator 𝒞2(λ){\mathcal{C}}_{2}(\lambda) satisfies (16). This completes the proof of Proposition 4.

5 The result for the case γ\gamma_{*}\in{\mathbb{R}}

Assume that γ\gamma_{*}\in{\mathbb{R}} and μ\mu, ν\nu, κ\kappa, and σ\sigma satisfy the same condition (9) as in Theorem 1. We recall that the following resolvent problem.

{λρ+ρdiv𝐮=din +N,ρλ𝐮Div{𝐒(𝐮)(γρκΔ)ρ𝐈}=𝐟in +N,{𝐒(𝐮)(γρκΔ)ρ𝐈}𝐧σΔh𝐧=𝐠on 0N,𝐧ρ=kon 0N,λh𝐮𝐧=ζon 0N.\left\{\begin{aligned} &\lambda\rho+\rho_{*}{\rm div}\,{\mathbf{u}}=d&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\rho_{*}\lambda{\mathbf{u}}-{\rm Div}\,\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}={\mathbf{f}}&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}{\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}={\mathbf{g}}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\rho=k&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda h-{\mathbf{u}}\cdot{\mathbf{n}}=\zeta&\quad&\text{on ${\mathbb{R}}^{N}_{0}$}.\end{aligned}\right. (46)

Note that (46) is equivalent to (7) if γ=0\gamma_{*}=0. Using Theorem 1, we also obtain the existence of {\mathcal{R}}-bounded operator families for (46) as follows.

Theorem 5.

Let 1<q<1<q<\infty. Assume that μ,ν,κ,σ>0\mu,\nu,\kappa,\sigma>0, and γ\gamma_{*}\in{\mathbb{R}} are constants satisfying (9). Let ϵ(ϵ,π/2)\epsilon\in(\epsilon_{*},\pi/2) for ϵ\epsilon_{*} given in Theorem 1. Then there exists a constant λ01\lambda_{0}\geq 1 such that the following assertions hold true:

1{\rm 1} For any λΣϵ,λ0\lambda\in\Sigma_{\epsilon,\lambda_{0}} there exist operator families

𝒜γ(λ)Hol(Σϵ,λ0,(𝒳q(+N),Hq3(+N)))\displaystyle{\mathcal{A}}_{\gamma_{*}}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),H^{3}_{q}({\mathbb{R}}^{N}_{+})))
γ(λ)Hol(Σϵ,λ0,(𝒳q(+N),Hq2(+N)N)),\displaystyle{\mathcal{B}}_{\gamma_{*}}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),H^{2}_{q}({\mathbb{R}}^{N}_{+})^{N})),
𝒞γ(λ)Hol(Σϵ,λ0,(𝒳q(+N),Wq31/q(0N)))\displaystyle{\mathcal{C}}_{\gamma_{*}}(\lambda)\in{\rm Hol}(\Sigma_{\epsilon,\lambda_{0}},{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),W^{3-1/q}_{q}({\mathbb{R}}^{N}_{0})))

such that for any 𝐅=(d,𝐟,𝐠,k,ζ)Xq(+N){\mathbf{F}}=(d,{\mathbf{f}},{\mathbf{g}},k,\zeta)\in X_{q}({\mathbb{R}}^{N}_{+}),

ρ=𝒜γ(λ)λ𝐅,𝐮=γ(λ)λ𝐅,h=𝒞γ(λ)λ𝐅\rho={\mathcal{A}}_{\gamma_{*}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}},\quad{\mathbf{u}}={\mathcal{B}}_{\gamma_{*}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}},\quad h={\mathcal{C}}_{\gamma_{*}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}

are unique solutions of problem (46).

2{\rm 2} There exists a positive constant rr such that

(𝒳q(+N),𝔄q(+N))({(ττ)nλ𝒜γ(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{A}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{R}}_{\lambda}{\mathcal{A}}_{\gamma_{*}}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r, (47)
(𝒳q(+N),𝔅q(+N))({(ττ)n𝒮λγ(λ)λΣϵ,λ0})r,\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{B}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{S}}_{\lambda}{\mathcal{B}}_{\gamma_{*}}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r,
(𝒳q(+N),q(+N))({(ττ)n𝒯λ𝒞γ(λ)λΣϵ,λ0})r\displaystyle{\mathcal{R}}_{{\mathcal{L}}({\mathcal{X}}_{q}({\mathbb{R}}^{N}_{+}),{\mathfrak{C}}_{q}({\mathbb{R}}^{N}_{+}))}(\{(\tau\partial_{\tau})^{n}{\mathcal{T}}_{\lambda}{\mathcal{C}}_{\gamma_{*}}(\lambda)\mid\lambda\in\Sigma_{\epsilon,\lambda_{0}}\})\leq r

for n=0,1n=0,1. Here, above constants λ0\lambda_{0} and rr depend solely on NN, qq, ϵ\epsilon, μ\mu, ν\nu, κ\kappa, γ\gamma_{*} and σ\sigma.

Proof.

For 𝐅=(d,𝐟,𝐠,k,η)Xq(+N){\mathbf{F}}=(d,{\mathbf{f}},{\mathbf{g}},k,\eta)\in X_{q}({\mathbb{R}}^{N}_{+}), Theorem 1 implies that ρ=𝒜0(λ)λ𝐅\rho={\mathcal{A}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}, 𝐮=0(λ)λ𝐅{\mathbf{u}}={\mathcal{B}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}, and h=𝒞0(λ)λ𝐅h={\mathcal{C}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}} satisfy

{λρ+div𝐮=din +N,λ𝐮Div{𝐒(𝐮)(γκΔ)ρ𝐈}=𝐟+γ𝒜0(λ)λ𝐅in +N,{𝐒(𝐮)(γρκΔ)ρ𝐈}𝐧σΔh𝐧=𝐠γ(𝒜0(λ)λ𝐅)𝐧on 0N,𝐧ρ=kon 0N,λh𝐮𝐧=ζon 0N.\left\{\begin{aligned} &\lambda\rho+{\rm div}\,{\mathbf{u}}=d&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\lambda{\mathbf{u}}-{\rm Div}\,\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\kappa\Delta)\rho{\mathbf{I}}\}={\mathbf{f}}+\gamma_{*}\nabla{\mathcal{A}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}{\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}={\mathbf{g}}-\gamma_{*}({\mathcal{A}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}){\mathbf{n}}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\rho=k&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda h-{\mathbf{u}}\cdot{\mathbf{n}}=\zeta&\quad&\text{on ${\mathbb{R}}^{N}_{0}$}.\end{aligned}\right.

Denote

𝒟(λ)𝐅\displaystyle{\mathcal{D}}(\lambda){\mathbf{F}} =(0,γ𝒜0(λ)λ𝐅,γ(𝒜0(λ)λ𝐅)𝐧,0,0),\displaystyle=(0,-\gamma_{*}\nabla{\mathcal{A}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}},\gamma_{*}({\mathcal{A}}_{0}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}){\mathbf{n}},0,0),

Employing the same method as in [22, Sec.6], we see that the existence of the inverse operator (I𝒟(λ))1(Xq(+N))(I-{\mathcal{D}}(\lambda))^{-1}\in{\mathcal{L}}(X_{q}({\mathbb{R}}^{N}_{+})), and then we can construct the solution to (46):

ρ=𝒜0(λ)λ(I𝒟(λ))1𝐅,𝐮=0(λ)λ(I𝒟(λ))1𝐅,h=𝒞0(λ)λ(I𝒟(λ))1𝐅.\rho={\mathcal{A}}_{0}(\lambda){\mathcal{F}}_{\lambda}(I-{\mathcal{D}}(\lambda))^{-1}{\mathbf{F}},\quad{\mathbf{u}}={\mathcal{B}}_{0}(\lambda){\mathcal{F}}_{\lambda}(I-{\mathcal{D}}(\lambda))^{-1}{\mathbf{F}},\quad h={\mathcal{C}}_{0}(\lambda){\mathcal{F}}_{\lambda}(I-{\mathcal{D}}(\lambda))^{-1}{\mathbf{F}}.

Furthermore, setting 𝒜γ(λ)λ𝐅=𝒜0(λ)λ(I𝒟(λ))1𝐅{\mathcal{A}}_{\gamma_{*}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}={\mathcal{A}}_{0}(\lambda){\mathcal{F}}_{\lambda}(I-{\mathcal{D}}(\lambda))^{-1}{\mathbf{F}}, γ(λ)λ𝐅=0(λ)λ(I𝒟(λ))1𝐅{\mathcal{B}}_{\gamma_{*}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}={\mathcal{B}}_{0}(\lambda){\mathcal{F}}_{\lambda}(I-{\mathcal{D}}(\lambda))^{-1}{\mathbf{F}}, 𝒞γ(λ)λ𝐅=𝒞0(λ)λ(I𝒟(λ))1𝐅{\mathcal{C}}_{\gamma_{*}}(\lambda){\mathcal{F}}_{\lambda}{\mathbf{F}}={\mathcal{C}}_{0}(\lambda){\mathcal{F}}_{\lambda}(I-{\mathcal{D}}(\lambda))^{-1}{\mathbf{F}} for 𝐅Xq(+N){\mathbf{F}}\in X_{q}({\mathbb{R}}^{N}_{+}), the operators 𝒜γ(λ){\mathcal{A}}_{\gamma_{*}}(\lambda), γ(λ){\mathcal{B}}_{\gamma_{*}}(\lambda), and 𝒞γ(λ){\mathcal{C}}_{\gamma_{*}}(\lambda) satisfy (47) by (10) and Lemma 1. The uniqueness of solutions to (46) also follow from (10) with n=0n=0 by using the same manner as in [22, Sec.6]. This completes the proof of Theorem 5.

6 Maximal LpL_{p}-LqL_{q} regularity

In this section, we consider the following linearized problems:

{tρ+ρdiv𝐮=0in +N×(0,),ρt𝐮Div{𝐒(𝐮)(γρκΔ)ρ𝐈}=0in +N×(0,),{𝐒(𝐮)(γρκΔ)ρ𝐈}𝐧σΔh𝐧=0on 0N×(0,),𝐧ρ=0on 0N×(0,),th𝐮𝐧=0on 0N×(0,),(ρ,𝐮,h)|t=0=(ρ0,𝐮0,h0)in +N,\left\{\begin{aligned} &\partial_{t}\rho+\rho_{*}{\rm div}\,{\mathbf{u}}=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}\times(0,\infty)$},\\ &\rho_{*}\partial_{t}{\mathbf{u}}-{\rm Div}\,\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}=0&\quad&\text{in ${\mathbb{R}}^{N}_{+}\times(0,\infty)$},\\ &\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}{\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}\times(0,\infty)$},\\ &{\mathbf{n}}\cdot\nabla\rho=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}\times(0,\infty)$},\\ &\partial_{t}h-{\mathbf{u}}\cdot{\mathbf{n}}=0&\quad&\text{on ${\mathbb{R}}^{N}_{0}\times(0,\infty)$},\\ &(\rho,{\mathbf{u}},h)|_{t=0}=(\rho_{0},{\mathbf{u}}_{0},h_{0})&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\end{aligned}\right. (48)
{tρ+ρdiv𝐮=din +N×(0,),ρt𝐮Div{𝐒(𝐮)(γρκΔ)ρ𝐈}=𝐟in +N×(0,),{𝐒(𝐮)(γρκΔ)ρ𝐈}𝐧σΔh𝐧=𝐠on 0N×(0,),𝐧ρ=kon 0N×(0,),th𝐮𝐧=ζon 0N×(0,),(ρ,𝐮,h)|t=0=(0,0,0)in +N.\left\{\begin{aligned} &\partial_{t}\rho+\rho_{*}{\rm div}\,{\mathbf{u}}=d&\quad&\text{in ${\mathbb{R}}^{N}_{+}\times(0,\infty)$},\\ &\rho_{*}\partial_{t}{\mathbf{u}}-{\rm Div}\,\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}={\mathbf{f}}&\quad&\text{in ${\mathbb{R}}^{N}_{+}\times(0,\infty)$},\\ &\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}{\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}={\mathbf{g}}&\quad&\text{on ${\mathbb{R}}^{N}_{0}\times(0,\infty)$},\\ &{\mathbf{n}}\cdot\nabla\rho=k&\quad&\text{on ${\mathbb{R}}^{N}_{0}\times(0,\infty)$},\\ &\partial_{t}h-{\mathbf{u}}\cdot{\mathbf{n}}=\zeta&\quad&\text{on ${\mathbb{R}}^{N}_{0}\times(0,\infty)$},\\ &(\rho,{\mathbf{u}},h)|_{t=0}=(0,0,0)&\quad&\text{in ${\mathbb{R}}^{N}_{+}$}.\end{aligned}\right. (49)

First, we consider (48) in the semigroup setting. Let

𝒳q(+N)=Hq1(+N)×Lq(+N)N×Wq21/q(0N){\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})=H^{1}_{q}({\mathbb{R}}^{N}_{+})\times L_{q}({\mathbb{R}}^{N}_{+})^{N}\times W^{2-1/q}_{q}({\mathbb{R}}^{N}_{0})

with the norm

(ρ,𝐮,h)𝒳q(+N)=ρHq1(+N)+𝐮Lq(+N)+hWq21/q(0N)\|(\rho,{\mathbf{u}},h)\|_{{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})}=\|\rho\|_{H^{1}_{q}({\mathbb{R}}^{N}_{+})}+\|{\mathbf{u}}\|_{L_{q}({\mathbb{R}}^{N}_{+})}+\|h\|_{W^{2-1/q}_{q}({\mathbb{R}}^{N}_{0})}

and let 𝒜{\mathcal{A}}, 𝒟(𝒜){\mathcal{D}}({\mathcal{A}}), and 𝒟(𝒜)\|\cdot\|_{{\mathcal{D}}({\mathcal{A}})} be an operator, its domain, and the norm with

𝒟q(𝒜)\displaystyle{\mathcal{D}}_{q}({\mathcal{A}}) ={(ρ,𝐮,h)(Hq3(+N)×Hq2(+N)N×Wq31/q(0N)\displaystyle=\{(\rho,{\mathbf{u}},h)\in(H^{3}_{q}({\mathbb{R}}^{N}_{+})\times H^{2}_{q}({\mathbb{R}}^{N}_{+})^{N}\times W^{3-1/q}_{q}({\mathbb{R}}^{N}_{0})
{𝐒(𝐮)(γρκΔ)ρ𝐈}𝐧σΔh𝐧=0,𝐧ρ=0on 0N},\displaystyle\qquad\mid\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\}{\mathbf{n}}-\sigma\Delta^{\prime}h{\mathbf{n}}=0,\enskip{\mathbf{n}}\cdot\nabla\rho=0\enskip\text{on ${\mathbb{R}}^{N}_{0}$}\},
(ρ,𝐮,h)𝒟q(𝒜)\displaystyle\|(\rho,{\mathbf{u}},h)\|_{{\mathcal{D}}_{q}({\mathcal{A}})} =ρHq3(+N)+𝐮Hq2(+N)+hWq31/q(0N),\displaystyle=\|\rho\|_{H^{3}_{q}({\mathbb{R}}^{N}_{+})}+\|{\mathbf{u}}\|_{H^{2}_{q}({\mathbb{R}}^{N}_{+})}+\|h\|_{W^{3-1/q}_{q}({\mathbb{R}}^{N}_{0})},
𝒜(ρ,𝐮,h)\displaystyle{\mathcal{A}}(\rho,{\mathbf{u}},h) =(ρdiv𝐮,ρ1Div{𝐒(𝐮)(γρκΔ)ρ𝐈},𝐮𝐧)for (ρ,𝐮,h)𝒟q(𝒜).\displaystyle=(\rho_{*}{\rm div}\,{\mathbf{u}},\enskip\rho_{*}^{-1}{\rm Div}\,\{{\mathbf{S}}({\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\rho{\mathbf{I}}\},\enskip{\mathbf{u}}\cdot{\mathbf{n}})\enskip\text{for $(\rho,{\mathbf{u}},h)\in{\mathcal{D}}_{q}({\mathcal{A}})$}.

Then setting 𝐔=(ρ,𝐮,h){\mathbf{U}}=(\rho,{\mathbf{u}},h) and 𝐔0=(ρ0,𝐮0,h0){\mathbf{U}}_{0}=(\rho_{0},{\mathbf{u}}_{0},h_{0}), (48) can be written by

t𝐔𝒜𝐔=0in +N×0N, for t(0,),𝐔|t=0=𝐔0.\partial_{t}{\mathbf{U}}-{\mathcal{A}}{\mathbf{U}}=0\enskip\text{in ${\mathbb{R}}^{N}_{+}\times{\mathbb{R}}^{N}_{0}$, for $t\in(0,\infty)$},\quad{\mathbf{U}}|_{t=0}={\mathbf{U}}_{0}.

Theorem 5 implies that the resolvent set ρ(𝒜)\rho({\mathcal{A}}) contains Σϵ,λ0\Sigma_{\epsilon,\lambda_{0}}. Furthermore, since Definition 1 with n=1n=1 implies the uniform boundedness of the operator family 𝒯{\mathcal{T}}, the solution 𝐔{\mathbf{U}} of the following equation

λ𝐔𝒜𝐔=𝐅in +N×0N\lambda{\mathbf{U}}-{\mathcal{A}}{\mathbf{U}}={\mathbf{F}}\enskip\text{in ${\mathbb{R}}^{N}_{+}\times{\mathbb{R}}^{N}_{0}$}

satisfies the resolvent estimate:

|λ|𝐔𝒳q(+N)+𝐔𝒟q(+N)Cr𝐅𝒳q(+N)|\lambda|\|{\mathbf{U}}\|_{{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})}+\|{\mathbf{U}}\|_{{\mathcal{D}}_{q}({\mathbb{R}}^{N}_{+})}\leq C_{r}\|{\mathbf{F}}\|_{{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})} (50)

for any λΣϵ,λ0\lambda\in\Sigma_{\epsilon,\lambda_{0}} and 𝐅𝒳q(+N){\mathbf{F}}\in{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}). Thus the generation of an analytic semigroup follows from standard analytic semigroup arguments.

Theorem 6.

Let 1<q<1<q<\infty. Assume that μ,ν,κ,σ>0\mu,\nu,\kappa,\sigma>0, and γ\gamma_{*}\in{\mathbb{R}} are constants satisfying (9). Then, the operator 𝒜{\mathcal{A}} generates an analytic semigroup {T(t)}t0\{T(t)\}_{t\geq 0} on 𝒳q(+N){\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}). Moreover, there exist constants γ01\gamma_{0}\geq 1 and Cq,N,γ0>0C_{q,N,\gamma_{0}}>0 such that {T(t)}t0\{T(t)\}_{t\geq 0} satisfies the estimates:

T(t)(ρ0,𝐮0,h0)𝒳q(+N)\displaystyle\|T(t)(\rho_{0},{\mathbf{u}}_{0},h_{0})\|_{{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})} Cq,N,γ0eγ0t(ρ0,𝐮0,h0)𝒳q(+N),\displaystyle\leq C_{q,N,\gamma_{0}}e^{\gamma_{0}t}\|(\rho_{0},{\mathbf{u}}_{0},h_{0})\|_{{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})},
tT(t)(ρ0,𝐮0,h0)𝒳q(+N)\displaystyle\|\partial_{t}T(t)(\rho_{0},{\mathbf{u}}_{0},h_{0})\|_{{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})} Cq,N,γ0eγ0tt1(ρ0,𝐮0,h0)𝒳q(+N),\displaystyle\leq C_{q,N,\gamma_{0}}e^{\gamma_{0}t}t^{-1}\|(\rho_{0},{\mathbf{u}}_{0},h_{0})\|_{{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})},
tT(t)(ρ0,𝐮0,h0)𝒳q(+N)\displaystyle\|\partial_{t}T(t)(\rho_{0},{\mathbf{u}}_{0},h_{0})\|_{{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})} Cq,N,γ0eγ0t(ρ0,𝐮0,h0)𝒟q(𝒜)\displaystyle\leq C_{q,N,\gamma_{0}}e^{\gamma_{0}t}\|(\rho_{0},{\mathbf{u}}_{0},h_{0})\|_{{\mathcal{D}}_{q}({\mathcal{A}})}

for any t>0t>0.

Now we state the maximal LpL_{p}-LqL_{q} regularity estimates for (48). Let

𝒟q,p(+N)=(𝒳q(+N),𝒟q(𝒜))11/p,p{\mathcal{D}}_{q,p}({\mathbb{R}}^{N}_{+})=({\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}),{\mathcal{D}}_{q}({\mathcal{A}}))_{1-1/p,p}

with (ρ,𝐮,h)𝒟q,p(+N)=ρBq,p32/p(+N)+𝐮Bq,p2(11/p)(+N)+hBq,p31/q1/p(0N)\|(\rho,{\mathbf{u}},h)\|_{{\mathcal{D}}_{q,p}({\mathbb{R}}^{N}_{+})}=\|\rho\|_{B^{3-2/p}_{q,p}({\mathbb{R}}^{N}_{+})}+\|{\mathbf{u}}\|_{B^{2(1-1/p)}_{q,p}({\mathbb{R}}^{N}_{+})}+\|h\|_{B^{3-1/q-1/p}_{q,p}({\mathbb{R}}^{N}_{0})}. Combining Theorem 6 with a real interpolation method (cf. Shibata and Shimizu [26, Proof of Theorem 3.9]), we have the following result.

Theorem 7.

Let 1<p,q<1<p,q<\infty. Assume that μ,ν,κ,σ>0\mu,\nu,\kappa,\sigma>0, and γ\gamma_{*}\in{\mathbb{R}} are constants satisfying (9). Then for any (ρ0,𝐮0,h0)𝒟q,p(+N)(\rho_{0},{\mathbf{u}}_{0},h_{0})\in{\mathcal{D}}_{q,p}({\mathbb{R}}^{N}_{+}), (48) admits a unique solution (ρ,𝐮,h)=T(t)(ρ0,𝐮0,h0)(\rho,{\mathbf{u}},h)=T(t)(\rho_{0},{\mathbf{u}}_{0},h_{0}) possessing the estimate:

eγtt(ρ,𝐮,h)Lp(+,𝒳q(+N))+eγt(ρ,𝐮,h)Lp(+,𝒟q(+N))\displaystyle\|e^{-\gamma t}\partial_{t}(\rho,{\mathbf{u}},h)\|_{L_{p}({\mathbb{R}}_{+},{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}))}+\|e^{-\gamma t}(\rho,{\mathbf{u}},h)\|_{L_{p}({\mathbb{R}}_{+},{\mathcal{D}}_{q}({\mathbb{R}}^{N}_{+}))} (51)
Cp,q,N,γ0(ρ0,𝐮0,h0)𝒟q,p(+N)\displaystyle\leq C_{p,q,N,\gamma_{0}}\|(\rho_{0},{\mathbf{u}}_{0},h_{0})\|_{{\mathcal{D}}_{q,p}({\mathbb{R}}^{N}_{+})}

for any γγ0\gamma\geq\gamma_{0}.

Second, we consider (49). To prove the maximal LpL_{p}-LqL_{q} regularity for (49), the key tool is the Weis’s operator valued Fourier multiplier theorem. Let 𝒟(,X){\mathcal{D}}({\mathbb{R}},X) and 𝒮(,X){\mathcal{S}}({\mathbb{R}},X) be the set of all XX valued CC^{\infty} functions having compact support and the Schwartz space of rapidly decreasing XX valued functions, respectively, while 𝒮(,X)=(𝒮(),X){\mathcal{S}}^{\prime}({\mathbb{R}},X)={\mathcal{L}}({\mathcal{S}}({\mathbb{R}}),X). Given ML1,loc(\{0},(X,Y))M\in L_{1,\rm{loc}}({\mathbb{R}}\backslash\{0\},{\mathcal{L}}(X,Y)), we define the operator TM:1𝒟(,X)𝒮(,Y)T_{M}:{\mathcal{F}}^{-1}{\mathcal{D}}({\mathbb{R}},X)\rightarrow{\mathcal{S}}^{\prime}({\mathbb{R}},Y) by

TMϕ=1[M[ϕ]],([ϕ]𝒟(,X)).\displaystyle T_{M}\phi={\mathcal{F}}^{-1}[M{\mathcal{F}}[\phi]],\quad({\mathcal{F}}[\phi]\in{\mathcal{D}}({\mathbb{R}},X)). (52)
Theorem 8 (Weis [32]).

Let XX and YY be two UMD Banach spaces and 1<p<1<p<\infty. Let MM be a function in C1(\{0},(X,Y))C^{1}({\mathbb{R}}\backslash\{0\},{\mathcal{L}}(X,Y)) such that

(X,Y)({M(τ)τ\{0}})β1<,\displaystyle{\mathcal{R}}_{{\mathcal{L}}(X,Y)}(\{M(\tau)\mid\tau\in{\mathbb{R}}\backslash\{0\}\})\leq\beta_{1}<\infty,
(X,Y)({τM(τ)τ\{0}})β2<\displaystyle{\mathcal{R}}_{{\mathcal{L}}(X,Y)}(\{\tau M^{\prime}(\tau)\mid\tau\in{\mathbb{R}}\backslash\{0\}\})\leq\beta_{2}<\infty

with some constants β1\beta_{1} and β2\beta_{2}. Then, the operator TMT_{M} defined in (52) is extended to a bounded linear operator from Lp(,X)L_{p}({\mathbb{R}},X) into Lp(,Y)L_{p}({\mathbb{R}},Y). Moreover, denoting this extension by TMT_{M}, we have

TM(Lp(,X),Lp(,Y))C(β1+β2)\displaystyle\|T_{M}\|_{{\mathcal{L}}(L_{p}({\mathbb{R}},X),L_{p}({\mathbb{R}},Y))}\leq C(\beta_{1}+\beta_{2})

for some positive constant CC depending on pp, XX and YY.

To state the maximal LpL_{p}-LqL_{q} regularity for (49), we introduce the following notation:

p,q,γ={(d,𝐟,𝐠,k,ζ)\displaystyle{\mathcal{F}}_{p,q,\gamma}=\{(d,{\mathbf{f}},{\mathbf{g}},k,\zeta)\mid dLp,γ,0(,Hq1(+N)),𝐟Lp,γ,0(,Lq(+N)N),\displaystyle d\in L_{p,\gamma,0}({\mathbb{R}},H^{1}_{q}({\mathbb{R}}^{N}_{+})),\enskip{\mathbf{f}}\in L_{p,\gamma,0}({\mathbb{R}},L_{q}({\mathbb{R}}^{N}_{+})^{N}),
𝐠Lp,γ,0(,Hq1(+N)N)Hp,γ,01/2(,Lq(+N)N),\displaystyle{\mathbf{g}}\in L_{p,\gamma,0}({\mathbb{R}},H^{1}_{q}({\mathbb{R}}^{N}_{+})^{N})\cap H^{1/2}_{p,\gamma,0}({\mathbb{R}},L_{q}({\mathbb{R}}^{N}_{+})^{N}),
kHp,γ,01(,Lq(+N))Lp,γ,0(,Hq2(+N)),\displaystyle k\in H^{1}_{p,\gamma,0}({\mathbb{R}},L_{q}({\mathbb{R}}^{N}_{+}))\cap L_{p,\gamma,0}({\mathbb{R}},H^{2}_{q}({\mathbb{R}}^{N}_{+})),
ζLp,γ,0(,Wq21/q(0N))}\displaystyle\zeta\in L_{p,\gamma,0}({\mathbb{R}},W^{2-1/q}_{q}({\mathbb{R}}^{N}_{0}))\}

with the norm

(d,𝐟,𝐠,k,ζ)p,q,γ\displaystyle\|(d,{\mathbf{f}},{\mathbf{g}},k,\zeta)\|_{{\mathcal{F}}_{p,q,\gamma}}
=eγtdLp(,Hq1(+N))+eγt(𝐟,Λγ1/2𝐠)Lp(,Lq(+N))+eγt𝐠Lp(,Hq1(+N))\displaystyle\enskip=\|e^{-\gamma t}d\|_{L_{p}({\mathbb{R}},H^{1}_{q}({\mathbb{R}}^{N}_{+}))}+\|e^{-\gamma t}({\mathbf{f}},\Lambda^{1/2}_{\gamma}{\mathbf{g}})\|_{L_{p}({\mathbb{R}},L_{q}({\mathbb{R}}^{N}_{+}))}+\|e^{-\gamma t}{\mathbf{g}}\|_{L_{p}({\mathbb{R}},H^{1}_{q}({\mathbb{R}}^{N}_{+}))}
+eγt(tk,Λ1/2k)Lp(,Lq(0N))+eγtkLp(,Hq2(0N))+eγtζLp(,Wq21/q(0N)).\displaystyle\enskip+\|e^{-\gamma t}(\partial_{t}k,\Lambda^{1/2}\nabla k)\|_{L_{p}({\mathbb{R}},L_{q}({\mathbb{R}}^{N}_{0}))}+\|e^{-\gamma t}k\|_{L_{p}({\mathbb{R}},H^{2}_{q}({\mathbb{R}}^{N}_{0}))}+\|e^{-\gamma t}\zeta\|_{L_{p}({\mathbb{R}},W^{2-1/q}_{q}({\mathbb{R}}^{N}_{0}))}.
Theorem 9.

Let 1<p,q<1<p,q<\infty. Assume that μ,ν,κ,σ>0\mu,\nu,\kappa,\sigma>0, and γ\gamma_{*}\in{\mathbb{R}} are constants satisfying (9). Then there exists a constant γ11\gamma_{1}\geq 1 such that for any (d,𝐟,𝐠,k,ζ)p,q,γ(d,{\mathbf{f}},{\mathbf{g}},k,\zeta)\in{\mathcal{F}}_{p,q,\gamma}, (49) admits a unique solution (ρ,𝐮,h)(\rho,{\mathbf{u}},h) with

ρLp,γ1,0(,Hq3(+N))Hp,γ1,01(,Hq1(+N)),\displaystyle\rho\in L_{p,\gamma_{1},0}({\mathbb{R}},H^{3}_{q}({\mathbb{R}}^{N}_{+}))\cap H^{1}_{p,\gamma_{1},0}({\mathbb{R}},H^{1}_{q}({\mathbb{R}}^{N}_{+})),
𝐮Lp,γ1,0(,Hq2(+N)N)Hp,γ1,01(,Lq(+N)N),\displaystyle{\mathbf{u}}\in L_{p,\gamma_{1},0}({\mathbb{R}},H^{2}_{q}({\mathbb{R}}^{N}_{+})^{N})\cap H^{1}_{p,\gamma_{1},0}({\mathbb{R}},L_{q}({\mathbb{R}}^{N}_{+})^{N}),
hLp,γ1,0(,Wq31/q(0N))Hp,γ1,01(,Wq21/q(0N)),\displaystyle h\in L_{p,\gamma_{1},0}({\mathbb{R}},W^{3-1/q}_{q}({\mathbb{R}}^{N}_{0}))\cap H^{1}_{p,\gamma_{1},0}({\mathbb{R}},W^{2-1/q}_{q}({\mathbb{R}}^{N}_{0})),

possessing the estimate

eγttρLp(,Hq1(+N))+j=03eγtΛj/2ρLp(,Hq3j(+N))\displaystyle\|e^{-\gamma t}\partial_{t}\rho\|_{L_{p}({\mathbb{R}},H^{1}_{q}({\mathbb{R}}^{N}_{+}))}+\sum_{j=0}^{3}\|e^{-\gamma t}\Lambda^{j/2}\rho\|_{L_{p}({\mathbb{R}},H^{3-j}_{q}({\mathbb{R}}^{N}_{+}))} (53)
+eγtt𝐮Lp(,Lq(+N))+j=02eγtΛj/2𝐮Lp(,Hq2j(+N))\displaystyle+\|e^{-\gamma t}\partial_{t}{\mathbf{u}}\|_{L_{p}({\mathbb{R}},L_{q}({\mathbb{R}}^{N}_{+}))}+\sum_{j=0}^{2}\|e^{-\gamma t}\Lambda^{j/2}{\mathbf{u}}\|_{L_{p}({\mathbb{R}},H^{2-j}_{q}({\mathbb{R}}^{N}_{+}))}
+eγtthLp(,Wq21/q(0N))+eγthLp(,Wq31/q(0N))\displaystyle+\|e^{-\gamma t}\partial_{t}h\|_{L_{p}({\mathbb{R}},W^{2-1/q}_{q}({\mathbb{R}}^{N}_{0}))}+\|e^{-\gamma t}h\|_{L_{p}({\mathbb{R}},W^{3-1/q}_{q}({\mathbb{R}}^{N}_{0}))}
C(d,𝐟,𝐠,k,ζ)p,q,γ\displaystyle\leq C\|(d,{\mathbf{f}},{\mathbf{g}},k,\zeta)\|_{{\mathcal{F}}_{p,q,\gamma}}

for any γγ1\gamma\geq\gamma_{1} with some constant CC depending on NN, pp, qq, and γ1\gamma_{1}.

Proof.

Let γ1>max{λ0,γ0}\gamma_{1}>\max\{\lambda_{0},\gamma_{0}\}, where λ0\lambda_{0} and γ0\gamma_{0} are the same constants as in Theorem 5 and Theorem 7, respectively. Let 𝐅=(d,𝐟,𝐠,k,ζ)p,q,γ{\mathbf{F}}=(d,{\mathbf{f}},{\mathbf{g}},k,\zeta)\in{\mathcal{F}}_{p,q,\gamma} for γγ1\gamma\geq\gamma_{1}. Applying Laplace transform to (49) yields

{λρ^+ρdiv𝐮^=d^in +N,ρλ𝐮^Div{𝐒(𝐮^)(γρκΔ)ρ^𝐈}=𝐟^in +N,{𝐒(𝐮^)(γρκΔ)ρ^𝐈}𝐧σΔh^𝐧=𝐠^on 0N,𝐧ρ^=k^on 0N,λh^𝐮^𝐧=ζ^on 0N,\left\{\begin{aligned} &\lambda\hat{\rho}+\rho_{*}{\rm div}\,\hat{\mathbf{u}}=\hat{d}&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\rho_{*}\lambda\hat{\mathbf{u}}-{\rm Div}\,\{{\mathbf{S}}(\hat{\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\hat{\rho}{\mathbf{I}}\}=\hat{\mathbf{f}}&\quad&\text{in ${\mathbb{R}}^{N}_{+}$},\\ &\{{\mathbf{S}}(\hat{\mathbf{u}})-(\gamma_{*}-\rho_{*}\kappa\Delta)\hat{\rho}{\mathbf{I}}\}{\mathbf{n}}-\sigma\Delta^{\prime}\hat{h}{\mathbf{n}}=\hat{\mathbf{g}}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &{\mathbf{n}}\cdot\nabla\hat{\rho}=\hat{k}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ &\lambda\hat{h}-\hat{\mathbf{u}}\cdot{\mathbf{n}}=\hat{\zeta}&\quad&\text{on ${\mathbb{R}}^{N}_{0}$},\\ \end{aligned}\right. (54)

where we have set f^=[f]\hat{f}={\mathcal{L}}[f]. Let 𝐅λ=(d,𝐟,𝐠,Λ1/2𝐠,2k,Λ1/2k,tk,ζ){\mathbf{F}}_{\lambda}=(d,{\mathbf{f}},\nabla{\mathbf{g}},\Lambda^{1/2}{\mathbf{g}},\nabla^{2}k,\Lambda^{1/2}\nabla k,\partial_{t}k,\zeta). Theorem 5 yields that

[𝐔]=(ρ^,𝐮^,h^)=(𝒜γ(λ)𝐅^λ,γ(λ)𝐅^λ,𝒞γ(λ)𝐅^λ){\mathcal{L}}[{\mathbf{U}}]=(\hat{\rho},\hat{\mathbf{u}},\hat{h})=({\mathcal{A}}_{\gamma_{*}}(\lambda)\widehat{\mathbf{F}}_{\lambda},{\mathcal{B}}_{\gamma_{*}}(\lambda)\widehat{\mathbf{F}}_{\lambda},{\mathcal{C}}_{\gamma_{*}}(\lambda)\widehat{\mathbf{F}}_{\lambda}) (55)

is a solution of (54) for λ=γ+iτ\lambda=\gamma+i\tau\in{\mathbb{C}} with γγ1\gamma\geq\gamma_{1} and τ\tau\in{\mathbb{R}}. Here we note that since 𝐅λ=0{\mathbf{F}}_{\lambda}=0 if t<0t<0, 𝐅^λ\widehat{\mathbf{F}}_{\lambda} is holomorphic for λ\lambda if γγ1\gamma\geq\gamma_{1}, thus the representation (55) is independent of γ\gamma by Cauchy’s theorem. Therefore the solution of (49) has the form:

𝐔=(ρ,𝐮,h)=(1[𝒜γ(λ)𝐅^λ],1[γ(λ)𝐅^λ],1[𝒞γ(λ)𝐅^λ]).{\mathbf{U}}=(\rho,{\mathbf{u}},h)=({\mathcal{L}}^{-1}[{\mathcal{A}}_{\gamma_{*}}(\lambda)\widehat{\mathbf{F}}_{\lambda}],{\mathcal{L}}^{-1}[{\mathcal{B}}_{\gamma_{*}}(\lambda)\widehat{\mathbf{F}}_{\lambda}],{\mathcal{L}}^{-1}[{\mathcal{C}}_{\gamma_{*}}(\lambda)\widehat{\mathbf{F}}_{\lambda}]). (56)

Note that the Laplace transform {\mathcal{L}} and the Laplace inverse transform 1{\mathcal{L}}^{-1} are written by Fourier transform {\mathcal{F}} and Fourier inverse transform 1{\mathcal{F}}^{-1} in {\mathbb{R}} as

[f](λ)=[eγtf(t)](τ),1[g](t)=eγt1[g(τ)](t),{\mathcal{L}}[f](\lambda)={\mathcal{F}}[e^{-\gamma t}f(t)](\tau),\quad{\mathcal{L}}^{-1}[g](t)=e^{\gamma t}{\mathcal{F}}^{-1}[g(\tau)](t),

where λ=γ+iτ\lambda=\gamma+i\tau\in{\mathbb{C}}. Thus (56) is rewritten as

eγt𝐔=(1[𝒜γ(λ)[eγt𝐅λ]],1[γ(λ)[eγt𝐅λ]],1[𝒞γ(λ)[eγt𝐅λ]]).e^{-\gamma t}{\mathbf{U}}=({\mathcal{F}}^{-1}[{\mathcal{A}}_{\gamma_{*}}(\lambda){\mathcal{F}}[e^{-\gamma t}{\mathbf{F}}_{\lambda}]],{\mathcal{F}}^{-1}[{\mathcal{B}}_{\gamma_{*}}(\lambda){\mathcal{F}}[e^{-\gamma t}{\mathbf{F}}_{\lambda}]],{\mathcal{F}}^{-1}[{\mathcal{C}}_{\gamma_{*}}(\lambda){\mathcal{F}}[e^{-\gamma t}{\mathbf{F}}_{\lambda}]]).

By Theorem 5 and Theorem 8, we have (53) for any γγ1\gamma\geq\gamma_{1}.

Next, we verify (ρ,𝐮,h)=(0,0,0)(\rho,{\mathbf{u}},h)=(0,0,0) if t<0t<0. Note that

γ𝐔=(1[(γ/λ)λ𝒜γ(λ)𝐅^λ],1[(γ/λ)λγ(λ)𝐅^λ],1[(γ/λ)λ𝒞γ(λ)𝐅^λ]).\gamma{\mathbf{U}}=({\mathcal{L}}^{-1}[(\gamma/\lambda)\lambda{\mathcal{A}}_{\gamma_{*}}(\lambda)\widehat{\mathbf{F}}_{\lambda}],{\mathcal{L}}^{-1}[(\gamma/\lambda)\lambda{\mathcal{B}}_{\gamma_{*}}(\lambda)\widehat{\mathbf{F}}_{\lambda}],{\mathcal{L}}^{-1}[(\gamma/\lambda)\lambda{\mathcal{C}}_{\gamma_{*}}(\lambda)\widehat{\mathbf{F}}_{\lambda}]).

Since |(ττ)γ/λ|1|(\tau\partial_{\tau})^{\ell}\gamma/\lambda|\leq 1 for λΣϵ,λ0\lambda\in\Sigma_{\epsilon,\lambda_{0}}, we have

γ𝐔Lp((,0),𝒳q(+N))\displaystyle\gamma\|{\mathbf{U}}\|_{L_{p}((-\infty,0),{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}))} γeγt𝐔Lp(,𝒳q(+N))γeγ1t𝐔Lp(,𝒳q(+N))\displaystyle\leq\gamma\|e^{-\gamma t}{\mathbf{U}}\|_{L_{p}({\mathbb{R}},{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}))}\leq\gamma\|e^{-\gamma_{1}t}{\mathbf{U}}\|_{L_{p}({\mathbb{R}},{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}))}
C𝐅p,q,γ1\displaystyle\leq C\|{\mathbf{F}}\|_{{\mathcal{F}}_{p,q,\gamma_{1}}}

for any γγ1\gamma\geq\gamma_{1}, which follows from [4, Proposition 3.6]. Thus letting γ\gamma\to\infty yields that 𝐔Lp((,0),𝒳q(+N))=0\|{\mathbf{U}}\|_{L_{p}((-\infty,0),{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}))}=0. By trace theorem in theory of real interpolation, 𝐔C(,Bq,p32/p(+N)×Bq,p2(11/p)(+N)×Bq,p31/q1/p(0N)){\mathbf{U}}\in C({\mathbb{R}},B^{3-2/p}_{q,p}({\mathbb{R}}^{N}_{+})\times B^{2(1-1/p)}_{q,p}({\mathbb{R}}^{N}_{+})\times B^{3-1/q-1/p}_{q,p}({\mathbb{R}}^{N}_{0})), therefore we have 𝐔(,t)=0{\mathbf{U}}(\cdot,t)=0 for t<0t<0, which implies that 𝐔{\mathbf{U}} satisfies the initial condition.

Finally, we prove the uniqueness of solutions. Let us consider the homogeneous equation:

t𝐔𝒜𝐔=0in +N×0N, for t(0,),𝐔|t=0=0.\partial_{t}{\mathbf{U}}-{\mathcal{A}}{\mathbf{U}}=0\enskip\text{in ${\mathbb{R}}^{N}_{+}\times{\mathbb{R}}^{N}_{0}$, for $t\in(0,\infty)$},\quad{\mathbf{U}}|_{t=0}=0. (57)

By Theorem 7, we know that (57) has a solution 𝐔{\mathbf{U}} with

eγ0t𝐔Hp1((0,),𝒳q(+N))Lp((0,),𝒟q(𝒜)).e^{-\gamma_{0}t}{\mathbf{U}}\in H^{1}_{p}((0,\infty),{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}))\cap L_{p}((0,\infty),{\mathcal{D}}_{q}({\mathcal{A}})). (58)

Let 𝐕{\mathbf{V}} be the zero extension of 𝐔{\mathbf{U}} to t<0t<0. Then (57) implies that 𝐕{\mathbf{V}} satisfies

t𝐕𝒜𝐕=0in +N×0N, for t.\partial_{t}{\mathbf{V}}-{\mathcal{A}}{\mathbf{V}}=0\enskip\text{in ${\mathbb{R}}^{N}_{+}\times{\mathbb{R}}^{N}_{0}$, for $t\in{\mathbb{R}}$}.

For any λ\lambda\in{\mathbb{C}} with Reλ=γγ1\operatorname{Re}\lambda=\gamma\geq\gamma_{1}, we set

𝐔^(λ)=eλt𝐕(t)𝑑t=0eλt𝐔(t)𝑑t.\widehat{\mathbf{U}}(\lambda)=\int^{\infty}_{-\infty}e^{-\lambda t}{\mathbf{V}}(t)\,dt=\int^{\infty}_{0}e^{-\lambda t}{\mathbf{U}}(t)\,dt.

Hölder inequality and (58) implies that

𝐔^(λ)𝒟q(𝒜)\displaystyle\|\widehat{\mathbf{U}}(\lambda)\|_{{\mathcal{D}}_{q}({\mathcal{A}})} (0e(γγ0)tp𝑑t)1/peγ0t𝐔Lp((0,),𝒟q(𝒜))\displaystyle\leq\left(\int^{\infty}_{0}e^{-(\gamma-\gamma_{0})tp^{\prime}}\,dt\right)^{1/p^{\prime}}\|e^{-\gamma_{0}t}{\mathbf{U}}\|_{L_{p}((0,\infty),{\mathcal{D}}_{q}({\mathcal{A}}))}
={(γγ0)p}1/peγ0t𝐔Lp((0,),𝒟q(𝒜)).\displaystyle=\{(\gamma-\gamma_{0})p^{\prime}\}^{-1/p^{\prime}}\|e^{-\gamma_{0}t}{\mathbf{U}}\|_{L_{p}((0,\infty),{\mathcal{D}}_{q}({\mathcal{A}}))}.

Since λU^=0eλtt𝐔dt\lambda\widehat{U}=\int^{\infty}_{0}e^{-\lambda t}\partial_{t}{\mathbf{U}}\,dt, we also have

λ𝐔^(λ)𝒳q(+N)\displaystyle\|\lambda\widehat{\mathbf{U}}(\lambda)\|_{{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+})} {(γγ0)p}1/peγ0tt𝐔Lp((0,),𝒳q(+N)).\displaystyle\leq\{(\gamma-\gamma_{0})p^{\prime}\}^{-1/p^{\prime}}\|e^{-\gamma_{0}t}\partial_{t}{\mathbf{U}}\|_{L_{p}((0,\infty),{\mathscr{X}}_{q}({\mathbb{R}}^{N}_{+}))}.

Therefore 𝐔^𝒟q(𝒜)\widehat{\mathbf{U}}\in{\mathcal{D}}_{q}({\mathcal{A}}) satisfies the resolvent problem:

λ𝐔^𝒜𝐔^=0in +N×0N.\lambda\widehat{\mathbf{U}}-{\mathcal{A}}\widehat{\mathbf{U}}=0\enskip\text{in ${\mathbb{R}}^{N}_{+}\times{\mathbb{R}}^{N}_{0}$}. (59)

Theorem 5 implies that (59) has a unique solution for λΣϵ,λ0\lambda\in\Sigma_{\epsilon,\lambda_{0}}, thus we have 𝐔^(λ)=0\widehat{\mathbf{U}}(\lambda)=0 for any λ\lambda\in{\mathbb{C}} with γγ1\gamma\geq\gamma_{1}. Applying the Laplace inverse transform to 𝐔^(λ)=0\widehat{\mathbf{U}}(\lambda)=0, we have 𝐕(t)=0{\mathbf{V}}(t)=0 for tt\in{\mathbb{R}}. Therefore we have 𝐔(t)=0{\mathbf{U}}(t)=0 for t>0t>0, which shows the uniqueness of (57). This completes the proof of Theorem 9. ∎

7 Conclusion

In this article, we consider {\mathcal{R}}-boundedness of the solution operator families of the generalized resolvent problem for Korteweg type with surface tension in the half-space case. This {\mathcal{R}}-boundedness can be a potential tool to investigate the maximal LpL_{p}-LqL_{q} regularity using Weis’s operator valued multiplier theorem. For future research, it can be analyze the local well-posedness of the model problem based on the result of the paper.

\bmhead

Acknowledgments

The first author thank to Institute of Research and Community services for the support through International Research Collaboration (IRC)’s scheme 2023 contract number 27.55/UN23.37/PT.01.03/II/2023. The second author is partially supported by JSPS Grants-in-Aid for Early-Career Scientists 21K13819 and Grants-in-Aid for Scientific Research (B) 22H01134.

Declarations

  • Conflict of interest There is no conflict of interests in this article

  • Ethics approval Not applicable

  • Authors’ contributions All authors have been personally and actively involved in substantial work leading to the paper, and will take public responsibility for its content. Moreover, all authors are contributed equally in this work.

References

  • [1] D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations, 28 (2003) 843–868.
  • [2] N. Chikami and T. Kobayashi, Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces, J. Math. Fluid Mech., 21 (2019), no. 2, Art. 31.
  • [3] R. Danchin, B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. Inst. Henri Poincare Anal. Nonlinear, 18 (2001) 97–133.
  • [4] R. Denk, M. Hieber and J. Prüß, {\mathcal{R}}-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Memoirs of AMS. Vol 166. No. 788. 2003.
  • [5] J. E. Dunn and J. Serrin, On the thermomechanics of interstital working, Arch. Ration. Mech. Anal., 88 (1985) 95–133.
  • [6] E. Hanzawa, Classical solutions of the Stefan problem, Tohoku Math. J. 33 (1981) 297–335.
  • [7] B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011) 223–249.
  • [8] H. Hattori, D. Li, Solutions for two dimensional systems for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994) 85–98.
  • [9] H. Hattori, D. Li, Golobal solutions of a high dimensional systems for Korteweg materials, J. Math. Anal. Appl., 198 (1996) 84–97.
  • [10] X. Hou, H. Peng and C. Zhu, Global classical solutions to the 3D Navier-Stokes-Korteweg equations with small initial energy, Anal. Appl., 16 (1) (2018) 55–84.
  • [11] S. Kawashima, Y. Shibata, J. Xu, The LpL_{p} energy methods and decay for the compressible Navier–Stokes equations with capillarity, J. Math. Pures Appl. 9 (154) (2021) 146–184 .
  • [12] T. Kobayashi, M. Murata, and H. Saito, Resolvent estimates for the compressible fluid model of Korteweg type and their application J. Math. Fluid Mech., 24 (1) (2022) Paper No.12.
  • [13] T. Kobayashi and K. Tsuda, Global existence and time decay estimate of solutions to the compressible Navier-Stokes-Korteweg system under critical condition. Asymptot. Anal., 121 (2) (2021) 195–-217.
  • [14] T. Kobayashi and M. Murata, The global well-posedness of the compressible fluid model of Korteweg type for the critical case Differ. Integral Equ., 34(5/6), (2021) 245–-264.
  • [15] D. J. Korteweg, Sur la forme que prennent les équations du mouvement des fluides si lfon tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarite dans lfhypothése dfune variation continue de la densité, Archives Néerlandaises des sciences exactes et naturelles, (1901) 1–24.
  • [16] M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (4) (2008) 679–696.
  • [17] M. Kotschote, Strong well-posedness for a Korteweg-type model for the dynamics of a compressible non-isothermal fluid, J. Math. Fluid Mech. 12 (4) (2010) 473–-484.
  • [18] M. Kotschote, Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg type, SIAM J. Math. Anal. 44(1), (2012) 74–101.
  • [19] M. Kotschote, Existence and time-asymptotics of global strong solutions to dynamic Korteweg models, Indiana Univ. Math. J. 63 (2014) 21–51.
  • [20] M. Murata and Y. Shibata, The global well-posedness for the compressible fluid model of Korteweg type, SIAM J. Math. Anal., 52 (6) (2020) 6313–6337.
  • [21] H. Saito, On the maximal LpL_{p}-LqL_{q} regularity for a compressible fluid model of Korteweg type on general domains, J. Differential Equations, 268 (6) (2020) 2802–2851.
  • [22] H. Saito, Compressible fluid model of Korteweg Type with free boundary condition: model problem, Funk. Ekvac., 62 (2019) 337–386.
  • [23] Y. Shibata and S. Shimizu, On the maximal LpL_{p}-LqL_{q} regularity of the Stokes problem with first order boundary condition; model problems, J. Math. Soc. Japan, 64 (2012), 561–626. Funk. Ekvac., 62 (2019) 337–386.
  • [24] Y. Shibata, {\mathcal{R}} boundedness, maximal regularity and free boundary problems for the Navier Stokes equations, Mathematical analysis of the Navier-Stokes equations, Lecture Notes in Math., 2254, Fond. CIME/CIME Found. Subser., Springer, (2020) 193–462.
  • [25] Y. Shibata, On {\mathcal{R}}-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations, Springer Proceedings in Mathematics &\& Statistics, vol.183 (Mathematical Fluid Dynamics, Present and Future, Tokyo, 2016), 203–285.
  • [26] Y. Shibata and S. Shimizu, On the LpL_{p}-LqL_{q} maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math. 615 (2008), 157–209.
  • [27] Z. Tan, H. Q. Wang, Large time behavior of solutions to the isentropic compressible fluid models of Korteweg type in 3{\mathbb{R}}^{3}, Commun. Math. Sci. 10 (4) (2012) 1207–1223.
  • [28] Z. Tan, H. Q. Wang, and J. K. Xu, Global existence and optimal L2L^{2} decay rate for the strong solutions to the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 390 (2012) 181–187.
  • [29] Z. Tan and R. Zhang, Optimal decay rates of the compressible fluid models of Korteweg type, Z. Angew. Math. Phys. 65 (2014) 279–300.
  • [30] Y. J. Wang, Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011) 256–271.
  • [31] J. D. Van der Waals, Théorie thermodynamique de la capillarité, dans lfhypothése dfune variation continue de la densité. , Archives Néerlandaises des sciences exactes et naturelles XXVIII (1893) 121–209.
  • [32] L. Weis, Operator-valued Fourier multiplier theorems and maximal LpL_{p}-regularity. Math. Ann. 319 (2001) 735–758.