This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Matching the BB-meson quasidistribution amplitude in the RI/MOM scheme

Ji Xu 111[email protected] School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China    Xi-Ruo Zhang 222[email protected] School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China
Abstract

Within the framework of large momentum effective theory (LaMET), the light-cone distribution amplitude of BB-meson in heavy-quark effective theory (HQET) can be extracted from lattice calculations of quasidistribution amplitude through hard-collinear factorization formula. This quasiquantity can be renormalized in a regularization-independent momentum subtraction scheme (RI/MOM). In this work, we derive the matching coefficient which connects the renormalized quasiditribution amplitude in the RI/MOM scheme and standard LCDA in the MS¯\overline{\textrm{MS}} scheme at one-loop accuracy. Our numerical analysis approves of the feasibility of RI/MOM scheme for renormalizing BB-meson quasidistribution amplitude. These results will be crucial for exploring the partonic structure of heavy-quark hadrons.

I Introduction

BB-meson light-cone distribution amplitudes (LCDAs) in heavy-quark effective theory (HQET) are the most basic objects about the structure of this hadron with which the QCD factorization theorems of exclusive BB-meson decay become experimentally verifiable Grozin:1996pq ; Beneke:1999br ; Beneke:2000wa ; Beneke:2001at ; Becher:2005fg . Defined as the light-cone matrix elements of the nonlocal HQET quark-gluon operators, they describe the nonperturbative strong interaction dynamics of the BB-meson system. Although there have been many progresses in perturbative calculations concerning BB-meson decays in recent years Wang:2016beq ; Wang:2016qii ; Feldmann:2014ika ; Bell:2013tfa ; Galda:2022dhp ; Deng:2021zoi ; Zhao:2019elu ; Yao:2022zom , our limited knowledge of BB-meson LCDAs has become the major stumbling block for precision predictions of the BB-meson decay observables. Therefore currently, the point significant in BB physics is improving the accuracy of BB-meson LCDAs.

Despite its importance, calculating LCDAs from first principles of quantum chromodynamics (QCD) has been a challenge. Model-independent properties of the leading-twist BB-meson LCDA ϕB+(ω,μ)\phi_{B}^{+}(\omega,\mu) and its first inverse moment λB1(μ)\lambda_{B}^{-1}(\mu) have received considerable amount of attention lately Lange:2003ff ; Braun:2019wyx ; Lee:2005gza ; Wang:2018wfj ; Beneke:2018wjp . By contrast, nonperturbative determinations of ϕB+(ω,μ)\phi_{B}^{+}(\omega,\mu) have been mainly performed in the framework of QCD sum rules (QCDSR) or Dyson-Schwinger equation (DSE) Braun:2003wx ; Gao:2014bca , whereas both theories have their own drawbacks. For the former, it lies in the fact that the light-cone separation between the effective heavy-quark field and the light antiquark field needs to be sufficiently small to guarantee the validity of the local operator product expansion (OPE) for the HQET correlation function under discussion. For the latter, the DSEs are essentially equations of motion corresponding to the Green’s function whose solution requires accurate knowledge of the BB-meson wave function. Therefore, it is then evident that determining the momentum dependence of BB-meson LCDAs with model-independent techniques is of top priority in BB physics. Being nonperturbative in nature, LCDAs intrinsically contain low energy degrees of freedom thus cannot be evaluated in perturbation theory. Nonperturbative methods such as lattice QCD offers an alternative way out. However, the dependence of LCDA correlator on the light-cone coordinate makes it essentially unfeasible to be directly calculated on the lattice which is constructed in Euclidean space with imaginary time.

A promising approach to circumvent this problem has been proposed under the name of large momentum effective theory (LaMET) Ji:2013dva ; Ji:2014gla . The essential strategy of this novel proposal resides in the construction of a time-independent quasiquantity which, on the one hand, can be readily computed on a Euclidean lattice and, on the other hand, approaches the original hadronic distribution amplitude on the light-cone under Lorentz boost. The fairly encouraging results from the state-of-art computations of the nucleon PDFs and the light-meson distribution amplitudes evidently demonstrate that the LaMET formalism allows for a bright future to systematically compute a wide range of “parton observables” with the demanding computational resources and the tremendous development of new techniques and algorithms Ji:2015qla ; Xiong:2015nua ; Li:2016amo ; Ishikawa:2016znu ; Monahan:2016bvm ; Constantinou:2017sej ; Ji:2017oey ; Jia:2017uul ; Wang:2017qyg ; Stewart:2017tvs ; Wang:2017eel ; Xu:2018mpf ; Xu:2018eii ; Radyushkin:2018nbf ; Zhang:2018diq ; Li:2018tpe ; Liu:2019urm ; Liu:2018tox ; Ji:2020brr ; Hua:2022kcm ; Hua:2022wop ; Hua:2020gnw ; Ji:2020ect ; Cichy:2018mum ; Bhat:2022zrw ; Egerer:2021ymv ; Alexandrou:2020uyt ; Alexandrou:2020zbe ; Bhattacharya:2020xlt ; Su:2022fiu . In view of the significance of BB-meson LCDAs and the validity of LaMET, proposing approaches to determine BB-meson LCDAs in the frame of LaMET is a matter to which people should attach much more attentions and there have been some preliminary researches Wang:2019msf ; Kawamura:2018gqz ; Xu:2022krn .

Based on LaMET, the procedure of calculating BB-meson LCDA from lattice QCD can be divided into three steps. 1. Lattice simulation on the BB-meson quasidistribution amplitude; 2. Renormalizing the quasidistribution amplitude in a specific scheme; 3. Matching the renormalized quasidistribution amplitude to LCDA which is usually renormalized in the MS¯\overline{\textrm{MS}} scheme. In this paper, we focus on the second and third steps. With increasing computational resources, the renormalization process will be a key factor to improve the precision of BB-meson quasidistribution amplitude. The authors in Wang:2019msf constructed the quasidistribution amplitude φB+(ξ,μ)\varphi_{B}^{+}(\xi,\mu) and renormalized it in the MS¯\overline{\textrm{MS}} scheme. One of the standard methods to renormalize operators in lattice QCD is regularization-independent momentum subtraction (RI/MOM) scheme which essentially belongs to momentum subtraction schemes in quantum field theory. As a nonperturbative method, it has proven to be practical in the frame of LaMET and gained great popularity in recent years Alexandrou:2017huk ; Chen:2017mzz ; Lin:2017ani ; Green:2017xeu (see Radyushkin:2017cyf ; Orginos:2017kos ; Braun:2018brg ; Li:2020xml for other practical approaches). The multiplicative renormalizability of the constructed quasi-HQET operator to all orders in perturbation theory has been demonstrated, which enables a nonperturbative renormalization such as RI/MOM scheme. This is a crucial step in the application of extracting BB-meson LCDA in lattice. After being renormalized in RI/MOM scheme, then the BB-meson quasidistribution amplitude can be matched onto the usual BB-meson LCDA through factorization formula. A perturbative matching coefficient appearing in the formula that converts the BB-meson quasidistribution amplitude in the RI/MOM scheme to BB-meson LCDA in the MS¯\overline{\textrm{MS}} scheme is not available yet. One of the main motives in this paper is to calculating this coefficient at one-loop accuracy.

Our work is an extension of a series of previous works. The BB-meson quasidistribution amplitude φB+(ξ,μ)\varphi_{B}^{+}(\xi,\mu) renormalized in the RI/MOM scheme and the perturbative matching coefficient entering the hard-collinear factorization formula will be presented. Since the renormalized matrix elements in the RI/MOM scheme are independent on UV regularization choices, we carry out this matching calculation with dimensional regularization for convenience. These results will be crucial to exploring the partonic structure of heavy-quark hadrons in the static limit.

The rest of this paper is organized as follows: In Sec. II, the leading twist (twist-2) LCDA and quasi-DA as well as the RI/MOM scheme will be briefly reviewed. Then in Sec. III, we present the factorization formula, followed by the calculation of the renormalized quasidistribution amplitude and the derived matching coefficient. In Sec. IV we analyze these results and give perspectives for lattice calculations, a numerical comparison between the BB-meson quasidistribution amplitude obtained in the RI/MOM scheme and a modeled BB-meson LCDA would be presented. We conclude in Sec. V. A few more details about calculation of renormalized quasidistribution amplitude are left to Appendix.

II BB-meson (quasi)Distribution amplitudes and RI/MOM scheme

The momentum space distribution function of leading-twist LCDA ϕB+(ω,μ)\phi_{B}^{+}(\omega,\mu) can be deduced from Fourier transformation of its form in coordinate space Braun:2003wx

ϕB+(ω,μ)=12π+𝑑ηein¯vωηϕ~B+(ηiϵ,μ),\displaystyle\phi_{B}^{+}(\omega,\mu)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}d\eta\,e^{i\bar{n}\cdot v\omega\eta}\tilde{\phi}_{B}^{+}(\eta-i\epsilon,\mu)\,, (1)

here n¯\bar{n} is the light-cone coordinate with n¯2=0\bar{n}^{2}=0, and ϕ~B+(η,μ)\tilde{\phi}_{B}^{+}(\eta,\mu) is the leading-twist LCDA in coordinate space with the definition

0|(q¯Wc)(ηn¯)n¯/γ5(Wchv)(0)|B¯(v)=if~B(μ)mBϕ~B+(η,μ).\displaystyle\langle 0|(\bar{q}W_{c})(\eta\bar{n})\bar{n}\hskip-4.49997pt/\gamma_{5}(W_{c}^{\dagger}h_{v})(0)|\bar{B}(v)\rangle=i\tilde{f}_{B}(\mu)m_{B}\tilde{\phi}_{B}^{+}(\eta,\mu)\,. (2)

The soft light-cone Wilson line is given by Wc(ηn¯)=P{Exp[igsη𝑑xn¯A(xn¯)]}W_{c}(\eta\bar{n})=\mathrm{P}\left\{\operatorname{Exp}\left[ig_{s}\int_{-\infty}^{\eta}dx\,\bar{n}\!\cdot\!A(x\bar{n})\right]\right\} and f~B(μ)\tilde{f}_{B}(\mu) is the static decay constant of BB-meson Beneke:2005gs .

We will employ the following definition of BB-meson quasidistribution amplitude

if~B(μ~)mBφB+(ξ,μ~)=+dτ2πeinzvξτ0|(q¯Wc)(τnz)n/zγ5(Wchv)(0)|B¯(v).\displaystyle i\tilde{f}_{B}(\tilde{\mu})m_{B}\varphi_{B}^{+}(\xi,\tilde{\mu})=\int_{-\infty}^{+\infty}\frac{d\tau}{2\pi}e^{in_{z}\cdot v\xi\tau}\langle 0|(\bar{q}W_{c})(\tau n_{z})n\hskip-4.49997pt/_{z}\gamma_{5}(W_{c}^{\dagger}h_{v})(0)|\bar{B}(v)\rangle\,. (3)

Here μ~\tilde{\mu} is a renormalization scale for the quasidistribution amplitude whose definition depends on the renormalization scheme we choose. One can see that φB+(ξ,μ~)\varphi_{B}^{+}(\xi,\tilde{\mu}) is constructed by the spatial correlation function of two collinear (effective) quark fields with nz=(0,0,0,1)n_{z}=(0,0,0,1) and we will work in a Lorentz boosted frame of the BB-meson in which n¯vnv\bar{n}\cdot v\gg n\cdot v and set vμ=0v_{\perp\mu}=0. Unlike the BB-meson LCDA defined in Eq. (1), which is invariant under a boost along the zz direction, the quasidistribution amplitude changes dynamically under such a boost, which is encoded in its nontrivial dependence on the heavy quark velocity vv.

It is of vital importance to show that the nonlocal matrix element in Eq. (3) will renormalize multiplicatively to all orders in perturbation theory applying the lattice regularization scheme since this feature will facilitate the lattice QCD simulation substantially. Wang:2019msf has demonstrated this multiplicative renormalizability which enables the RI/MOM scheme to be utilized in the BB-meson quasidistribution amplitude φB+(ξ,μ~)\varphi_{B}^{+}(\xi,\tilde{\mu}). Following the strategy in Liu:2019urm ; Liu:2018tox , the RI/MOM renormalization factor ZOMZ_{\textrm{OM}} is determined nonperturbatively on lattice by imposing the condition that the quantum corrections of the correlator in an off-shell quark state vanish at scales k2=μR2k^{2}=-\mu_{R}^{2} and kz=kRzk^{z}=k_{R}^{z}

ZOM1(τ,kRz,μR,Λ)0|(q¯Wc)(τnz)n/zγ5(Wchv)(0)|bq¯(k)|kz=kRzk2=μR2\displaystyle Z_{\textrm{OM}}^{-1}(\tau,k_{R}^{z},\mu_{R},\Lambda)\left.\langle 0|(\bar{q}W_{c})(\tau n_{z})n\hskip-4.49997pt/_{z}\gamma_{5}(W_{c}^{\dagger}h_{v})(0)|b\,\bar{q}(k)\rangle\right|_{\stackrel{{\scriptstyle k^{2}=-\mu_{R}^{2}}}{{k^{z}=k_{R}^{z}}}}
=0|(q¯Wc)(τnz)n/zγ5(Wchv)(0)|bq¯(kR)|tree,\displaystyle=\left.\langle 0|(\bar{q}W_{c})(\tau n_{z})n\hskip-4.49997pt/_{z}\gamma_{5}(W_{c}^{\dagger}h_{v})(0)|b\,\bar{q}(k_{R})\rangle\right|_{\textrm{tree}}\,, (4)

here μR\mu_{R} is the renormalization scale. For convenience we would simply denote {μ~}={k2=μR2,kz=kRz}\{\tilde{\mu}\}=\{k^{2}=-\mu_{R}^{2},k^{z}=k_{R}^{z}\} in the rest of the article. It should be stressed that the renormalization condition is applied to the matrix element, not to the quasidistribution itself. In order to get the renormalized quasidistribution, one needs to Fourier transform this matrix element afterwards. The operator in Eq. (II) is not O(4)O(4) covariant, therefore in addition to μR\mu_{R}, one needs another scale parameter kRzk_{R}^{z} to pin down the renormalization condition. Λ\Lambda denotes the UV cutoff, in the case of dimensional regularization Λ=1/ϵ\Lambda=1/\epsilon.

We denote the bare correlator for the BB-meson on the lattice

h~B(τ,kz,1/ϵ)=0|(q¯sWc)(τnz)n/zγ5(Wchv)(0)|bq¯(k),\displaystyle\tilde{h}_{B}\left(\tau,k^{z},1/\epsilon\right)=\langle 0|(\bar{q}_{s}W_{c})\left(\tau n_{z}\right)n\hskip-4.49997pt/_{z}\gamma_{5}(W_{c}^{\dagger}h_{v})(0)|b\,\bar{q}(k)\rangle\,, (5)

which is renormalized as

h~R(τ,kz,{μ~})=ZOM1(τ,{μ~},1/ϵ)h~B(τ,kz,1/ϵ).\displaystyle\tilde{h}_{R}\left(\tau,k^{z},\{\tilde{\mu}\}\right)=Z_{\textrm{OM}}^{-1}(\tau,\{\tilde{\mu}\},1/\epsilon)\,\tilde{h}_{B}\left(\tau,k^{z},1/\epsilon\right)\,. (6)

One advantage of RI/MOM scheme is that although the bare matrix element and the renormalization factor ZOMZ_{\textrm{OM}} depend on the choice of regularization scheme, the renormalized matrix element does not. Besides, the logarithmic UV divergence related to self energy of quark and the linear divergence arises from the self energy of Wilson line have been delicately discussed in Stewart:2017tvs . All the UV cutoff dependence cancel out in Eq. (6) due to the multiplicative renormalizability of quasidistribution amplitude.

Afterwards, by Fourier transforming the renormalized matrix element h~R(τ,kz,{μ~})\tilde{h}_{R}\left(\tau,k^{z},\{\tilde{\mu}\}\right) to momentum space, one can work out the RI/MOM matching coefficient. This issue will be elaborately discussed in the next section.

III Matching between Quasidistribution amplitude and Light-cone Distribution Amplitude

We now proceed to determine the perturbative matching coefficient that converts the renormalized BB-meson quasidistribution amplitude in RI/MOM scheme to renormalized BB-meson LCDA in MS¯\overline{\textrm{MS}} scheme. Following the construction in Wang:2019msf , the hard-collinear factorization formula is

φB+(ξ,μ~)=0𝑑ωH(ξ,ω,nzv,μ,{μ~})ϕB+(ω,μ)+𝒪(ΛQCDnzvξ).\displaystyle\varphi_{B}^{+}(\xi,\tilde{\mu})=\int_{0}^{\infty}d\omega\,H\left(\xi,\omega,n_{z}\!\cdot\!v,\mu,\{\tilde{\mu}\}\right)\phi_{B}^{+}(\omega,\mu)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{n_{z}\!\cdot\!v\,\xi}\right)\,. (7)

For convenience, we subsequently denote nzvn_{z}\!\cdot\!v as vzv^{z} in the rest of this paper. The matching coefficient HH denotes the difference of UV behavior between the quasiquantity and the light-cone one which is highly nontrivial due to the different presence of the UV cutoff (one can resort to recent reviews Cichy:2018mum ; Ji:2020ect for more details). But thanks to the asymptotic freedom, this difference can be calculated by perturbation theory in QCD which makes it possible to extract light-cone parton physics from quasiquantities. Notably, the matching coefficient HH depends on the choice of renormalization scheme of quasidistribution amplitude.

To determine the matching coefficient at one-loop level, we replace the BB-meson state with a heavy bb quark plus an off-shell light quark state in Eq. (2) and Eq. (3). Then the matrix elements with the quark state as the initial state can be calculated in perturbation theory. We carry out the calculation using the off-shellness of the light quark as an IR regulator and dimensional regularization with d=42ϵd=4-2\epsilon as the UV regulator.

The one-loop corrections to the quasidistribution amplitude of φB+(ξ,μ~)\varphi_{B}^{+}(\xi,\tilde{\mu}) are shown in Fig. 1.

Refer to caption
Figure 1: One-loop corrections to the quasidistribution amplitude φB+(ξ,μ)\varphi_{B}^{+}(\xi,\mu): the effective HQET bottom quark is represented by the double line, and the spacelike Wilson line is indicated by the dashed line.

The result at tree level is φB+(0)(ξ)=δ(ξk~)\varphi_{B}^{+(0)}(\xi)=\delta(\xi-\tilde{k}) where k~kz/vz\tilde{k}\equiv k^{z}/v^{z}. We denote the result of bare quasidsitribution amplitude at one-loop as φB,bare+(1)(ξ,μ)\varphi_{B,\textrm{bare}}^{+(1)}(\xi,\mu) which has been calculated in Wang:2019msf

φB,bare+(1)(ξ,μ)=\displaystyle\varphi_{B,\textrm{bare}}^{+(1)}(\xi,\mu)= αsCF4π{(1k~(ξk~)(k~+2ξlnξk~ξ))+[2k~ξ]+[1ξk~(1ϵln4+lnμ2vz2(k~ξ)2)]ξ<01k~(ξk~)(2ξk~2ln4k~2vz2k2)+[2k~ξ]+[1ξk~(1ϵln4+lnμ2vz2(k~ξ)2)]0<ξ<k~1k~(ξk~)(k~2ξlnξξk~)+[2ξk~]+[(1ϵ+ln4+2lnvz2+lnμ2vz2(ξk~)2)]ξ>k~\displaystyle\frac{\alpha_{s}C_{F}}{4\pi}\left\{\begin{aligned} &\bigg{(}\frac{1}{\tilde{k}(\xi-\tilde{k})}(-\tilde{k}+2\xi\ln\frac{-\xi}{\tilde{k}-\xi})\bigg{)}+\left[\frac{2}{\tilde{k}-\xi}\right]_{\oplus}\\ &+\left[\frac{1}{\xi-\tilde{k}}\bigg{(}\frac{1}{\epsilon}-\ln 4+\ln\frac{\mu^{2}}{v^{z2}(\tilde{k}-\xi)^{2}}\bigg{)}\right]_{\oplus}&\xi<0\\ &\frac{1}{\tilde{k}(\xi-\tilde{k})}\bigg{(}2\xi-\tilde{k}-2\ln\frac{4\tilde{k}^{2}v^{z2}}{-k^{2}}\bigg{)}+\left[\frac{2}{\tilde{k}-\xi}\right]_{\oplus}\\ &+\left[\frac{1}{\xi-\tilde{k}}\bigg{(}\frac{1}{\epsilon}-\ln 4+\ln\frac{\mu^{2}}{v^{z2}(\tilde{k}-\xi)^{2}}\bigg{)}\right]_{\oplus}&0<\xi<\tilde{k}\\ &\frac{1}{\tilde{k}(\xi-\tilde{k})}\bigg{(}\tilde{k}-2\xi\ln\frac{\xi}{\xi-\tilde{k}}\bigg{)}+\left[\frac{2}{\xi-\tilde{k}}\right]_{\oplus}\\ &+\left[\bigg{(}\frac{1}{\epsilon}+\ln 4+2\ln v^{z2}+\ln\frac{\mu^{2}}{v^{z2}(\xi-\tilde{k})^{2}}\bigg{)}\right]_{\oplus}&\xi>\tilde{k}\\ \end{aligned}\right.
+αsCF4πf(a)δ(ξk~).\displaystyle+\frac{\alpha_{s}C_{F}}{4\pi}f(a)\,\delta(\xi-\tilde{k})\,. (8)

Here, we assign vμ=(v0,0,0,vz)v^{\mu}=\left(v^{0},0,0,v^{z}\right) with vz1v^{z}\gg 1. Applying the default power counting scheme one can readily identify that the hard correction from the one-loop box diagram (image (d)) in Fig. 1 is power suppressed. Recall that we have used the off-shellness of light quark k2-k^{2} as IR regulator, this logarithmic IR singularities would cancel between the quasidistribution amplitude and LCDA, leaving the matching coefficient HH independent on k2-k^{2}, as it should be.

The plus distribution is defined by (with a>1a>1)

{F(ξ,ω)}=F(ξ,ω)δ(ξω)0aξ𝑑tF(ξ,t),\displaystyle\left\{{F}(\xi,\omega)\right\}_{\oplus}={F}(\xi,\omega)-\delta(\xi-\omega)\,\int_{0}^{a\,\xi}\,dt\,{F}(\xi,t)\,, (9)

the subtraction scheme dependent term in Eq. (III)

f(a)\displaystyle f(a) =\displaystyle= 1ϵ(1+ln(4(a1)vz2))2π23+4(ln2)2+ln128a1+(lna1)2\displaystyle-\frac{1}{\epsilon}\Big{(}1+\ln\left(4(a-1)v^{z2}\right)\Big{)}-2-\frac{\pi^{2}}{3}+4\left(\ln 2\right)^{2}+\ln\frac{128}{a-1}+(\ln a-1)^{2} (10)
+2lna+lnvz2(3+2ln4+lnvz2)+ln(4vz2)(3ln(a1)2lna)\displaystyle+2\ln a+\ln v^{z2}(3+2\ln 4+\ln v^{z2})+\ln(4v^{z2})(3\ln(a-1)-2\ln a)
+HPL[{,+},1]2lnk2k~2(1+lna1a)+lnξ2μ2(1+ln(4(a1)vz2))\displaystyle+\operatorname{HPL}[\{-,+\},-1]-2\ln\frac{-k^{2}}{\tilde{k}^{2}}\left(1+\ln\frac{a-1}{a}\right)+\ln\frac{\xi^{2}}{\mu^{2}}\Big{(}1+\ln(4(a-1)v^{z2})\Big{)}

will compensate the same scheme dependence of the newly introduced plus distribution for the convolution of the hard function HH with a smooth test function. An advantage of introducing the above mentioned plus function is that it allows to implement both the ultraviolet and infrared subtractions for the perturbative matching procedure simultaneously.

Having the bare result at hand, we next discuss the RI/MOM renormalization of φB+(ξ,μ~)\varphi_{B}^{+}(\xi,\tilde{\mu}). The renormalized correlator h~R(τ,kz,{μ~})\tilde{h}_{R}\left(\tau,k^{z},\{\tilde{\mu}\}\right) has been already given in Eq. (6), which is to be Fourier transformed into the ξ\xi space to obtain the distribution ~(ξ,kz,{μ~})\tilde{\mathcal{F}}(\xi,k^{z},\{\tilde{\mu}\}):

~(ξ,kz,{μ~})=dτ2πeivzξτh~R(τ,kz,{μ~}).\displaystyle\tilde{\mathcal{F}}(\xi,k^{z},\{\tilde{\mu}\})=\int\frac{d\tau}{2\pi}e^{iv^{z}\xi\tau}\,\tilde{h}_{R}\left(\tau,k^{z},\{\tilde{\mu}\}\right)\,. (11)

𝒱~(kz,{μ~})\tilde{\mathcal{V}}(k^{z},\{\tilde{\mu}\}) is the local correspondence of ~(ξ,kz,{μ~})\tilde{\mathcal{F}}(\xi,k^{z},\{\tilde{\mu}\}) which is given by h~R\tilde{h}_{R} at τ=0\tau=0,

𝒱~(kz,{μ~})=h~R(τ=0,kz,{μ~}).\displaystyle\tilde{\mathcal{V}}(k^{z},\{\tilde{\mu}\})=\tilde{h}_{R}\left(\tau=0,k^{z},\{\tilde{\mu}\}\right)\,. (12)

With ~(ξ,kz,{μ~})\tilde{\mathcal{F}}(\xi,k^{z},\{\tilde{\mu}\}) and 𝒱~(kz,{μ~})\tilde{\mathcal{V}}(k^{z},\{\tilde{\mu}\}) calculated on the lattice, the BB-meson quasidistribution amplitude can be obtained

φB+(ξ,μ~)=vzdτ2πeivzξτh~R(τ,kz,{μ~})h~R(τ=0,kz,{μ~}).\displaystyle\varphi_{B}^{+}(\xi,\tilde{\mu})=v^{z}\int\frac{d\tau}{2\pi}e^{iv^{z}\xi\tau}\,\frac{\tilde{h}_{R}\left(\tau,k^{z},\{\tilde{\mu}\}\right)}{\tilde{h}_{R}\left(\tau=0,k^{z},\{\tilde{\mu}\}\right)}\,. (13)

The calculation procedure of the renormalization factor ZOMZ_{\textrm{OM}} is similar to the previous one in Wang:2019msf but a bit more complicated, since the Feynman diagrams in Fig. 1 are calculated at a specific scale {μ~}\{\tilde{\mu}\}. We then proceed to derive the expression of renormalized quasidistribution amplitude φB+(ξ,μ~)\varphi_{B}^{+}(\xi,\tilde{\mu}) from Eq. (13). Taking advantage of Eq. (6), we have

φB+(ξ,μ~)=vzdτ2πeivzξτZOM1(τ,{μ~},1/ϵ)ZOM1(0,{μ~},1/ϵ)h~B(τ,kz,1/ϵ)h~B(0,kz,1/ϵ).\displaystyle\varphi_{B}^{+}(\xi,\tilde{\mu})=v^{z}\int\frac{d\tau}{2\pi}e^{iv^{z}\xi\tau}\,\frac{Z_{\textrm{OM}}^{-1}(\tau,\{\tilde{\mu}\},1/\epsilon)}{Z_{\textrm{OM}}^{-1}(0,\{\tilde{\mu}\},1/\epsilon)}~{}\frac{\tilde{h}_{B}(\tau,k^{z},1/\epsilon)}{\tilde{h}_{B}(0,k^{z},1/\epsilon)}\,. (14)

The renormalization constant is determined by the renormalization condition in Eq. (II)

ZOM1(τ,{μ~},1/ϵ)ZOM1(0,{μ~},1/ϵ)h~B(τ,{μ~},1/ϵ)h~B(0,{μ~},1/ϵ)\displaystyle\frac{Z_{\textrm{OM}}^{-1}(\tau,\{\tilde{\mu}\},1/\epsilon)}{Z_{\textrm{OM}}^{-1}(0,\{\tilde{\mu}\},1/\epsilon)}~{}\frac{\tilde{h}_{B}(\tau,\{\tilde{\mu}\},1/\epsilon)}{\tilde{h}_{B}(0,\{\tilde{\mu}\},1/\epsilon)} =\displaystyle= h~B(τ,{μ~},1/ϵ)h~B(0,{μ~},1/ϵ)|tree=eikRzτ,\displaystyle\left.\frac{\tilde{h}_{B}(\tau,\{\tilde{\mu}\},1/\epsilon)}{\tilde{h}_{B}(0,\{\tilde{\mu}\},1/\epsilon)}\right|_{\textrm{tree}}=e^{-ik_{R}^{z}\tau}\,, (15)

in which

h~B(τ,{μ~},1/ϵ)h~B(0,{μ~},1/ϵ)=𝑑ξeiτvzξφB,CT+(ξ,{μ~}).\displaystyle\frac{\tilde{h}_{B}(\tau,\{\tilde{\mu}\},1/\epsilon)}{\tilde{h}_{B}(0,\{\tilde{\mu}\},1/\epsilon)}=\int d\xi^{\prime}e^{-i\tau v^{z}\xi^{\prime}}\varphi_{B,\textrm{CT}}^{+}(\xi^{\prime},\{\tilde{\mu}\})\,. (16)

Here φB,CT+\varphi_{B,\textrm{CT}}^{+} is the additive counterterm contribution of quasidistribution amplitude, as will be clearly seen subsequently. Substitute Eq. (16) into Eq. (15), one immediately obtain the ratio of nonlocal and local renormalization constants at one loop

(ZOM1(τ,{μ~},1/ϵ)ZOM1(0,{μ~},1/ϵ))(1)=𝑑ξeiτ(vzξkRz)φB,CT+(1)(ξ,{μ~}),\displaystyle\left(\frac{Z_{\textrm{OM}}^{-1}(\tau,\{\tilde{\mu}\},1/\epsilon)}{Z_{\textrm{OM}}^{-1}(0,\{\tilde{\mu}\},1/\epsilon)}\right)^{(1)}=-\int d\xi^{\prime}e^{-i\tau(v^{z}\xi^{\prime}-k_{R}^{z})}\varphi_{B,\textrm{CT}}^{+(1)}(\xi^{\prime},\{\tilde{\mu}\})\,, (17)

as well as (ZOM1(τ,{μ~})ZOM1(0,{μ~}))(0)=1\left(\frac{Z_{\textrm{OM}}^{-1}(\tau,\{\tilde{\mu}\})}{Z_{\textrm{OM}}^{-1}(0,\{\tilde{\mu}\})}\right)^{(0)}=1 at tree level.

Finally, the renormalized quasidistribution amplitude in Eq. (14) can be expanded at one-loop order

φB+(1)(ξ,μ~)\displaystyle\varphi_{B}^{+(1)}(\xi,\tilde{\mu}) =\displaystyle= vzdτ2πeivzξτ{(ZOM1(τ,{μ~},1/ϵ)ZOM1(0,{μ~},1/ϵ))(1)(h~(τ,kz)h~(0,kz))(0)\displaystyle v^{z}\int\frac{d\tau}{2\pi}e^{iv^{z}\xi\tau}\,\Bigg{\{}\left(\frac{Z_{\textrm{OM}}^{-1}(\tau,\{\tilde{\mu}\},1/\epsilon)}{Z_{\textrm{OM}}^{-1}(0,\{\tilde{\mu}\},1/\epsilon)}\right)^{(1)}\left(\frac{\tilde{h}(\tau,k^{z})}{\tilde{h}(0,k^{z})}\right)^{(0)} (18)
+(ZOM1(τ,{μ~})ZOM1(0,{μ~}))(0)(h~B(τ,kz,1/ϵ)h~B(0,kz,1/ϵ))(1)}\displaystyle+\left(\frac{Z_{\textrm{OM}}^{-1}(\tau,\{\tilde{\mu}\})}{Z_{\textrm{OM}}^{-1}(0,\{\tilde{\mu}\})}\right)^{(0)}\left(\frac{\tilde{h}_{B}(\tau,k^{z},1/\epsilon)}{\tilde{h}_{B}(0,k^{z},1/\epsilon)}\right)^{(1)}\Bigg{\}}
=\displaystyle= vzdτ2πeivzξτ𝑑ξeiτ(vzξkRz)φB,CT+(1)(ξ,{μ~})eikzτ+φB,bare+(1)(ξ,kz)\displaystyle-v^{z}\int\frac{d\tau}{2\pi}e^{iv^{z}\xi\tau}\,\int d\xi^{\prime}e^{-i\tau(v^{z}\xi^{\prime}-k_{R}^{z})}\varphi_{B,\textrm{CT}}^{+(1)}(\xi^{\prime},\{\tilde{\mu}\})e^{-ik^{z}\tau}+\varphi_{B,\textrm{bare}}^{+(1)}(\xi,k^{z})
=\displaystyle= φB,bare+(1)(ξ,kz)φB,CT+(1)(ξ+k~Rk~,rR).\displaystyle\varphi_{B,\textrm{bare}}^{+(1)}(\xi,k^{z})-\varphi_{B,\textrm{CT}}^{+(1)}(\xi+\tilde{k}_{R}-\tilde{k},r_{R})\,.

Here k~RkRz/vz\tilde{k}_{R}\equiv k_{R}^{z}/v^{z} and we define the dimensionless ratio

rRμR2kRz2.\displaystyle r_{R}\equiv\frac{\mu_{R}^{2}}{k_{R}^{z2}}\,. (19)

It is worth stressing the difference between rRr_{R} and ρk2/kz2\rho\equiv-k^{2}/k^{z2}. As indicated, we keep k2-k^{2} small as the IR regulator, i.e., ρ1\rho\ll 1. Thus we can identify the logarithmic IR divergences by Taylor expanding in ρ\rho, making the calculation much more convenient. However, the renormalization scale μR\mu_{R} is not necessarily small, this makes Taylor expansion in rRr_{R} unfeasible when calculating the renormalized quasidistribution amplitude, i.e., calculating the counterterm of bare quasidistribution amplitude. More pertinent details on this issue can be found in Appendix.

Next we consider the BB-meson LCDA ϕB+(ω,μ)\phi_{B}^{+}(\omega,\mu) whose IR divergence is regulated by the same light quark off-shellness k2-k^{2}. With the definition in Eq. (1), one can get the renormalized ϕB+(ω,μ)\phi_{B}^{+}(\omega,\mu) at one-loop in the MS¯\overline{\textrm{MS}} scheme:

ϕB+(1)(ω,μ)=\displaystyle\phi_{B}^{+(1)}(\omega,\mu)= αsCF2π{0ω<0[ω(ωk~)k~lnμ2k~2ω(k~ω)(k2)]0<ω<k~[1ωk~lnμ2(ωk~)2]ω>k~\displaystyle\frac{\alpha_{s}C_{F}}{2\pi}\left\{\begin{aligned} &0&\omega<0\\ &\left[-\frac{\omega}{(\omega-\tilde{k})\tilde{k}}\ln\frac{\mu^{2}\tilde{k}^{2}}{\omega(\tilde{k}-\omega)(-k^{2})}\right]_{\oplus}&0<\omega<\tilde{k}\\ &\left[\frac{1}{\omega-\tilde{k}}\ln\frac{\mu^{2}}{(\omega-\tilde{k})^{2}}\right]_{\oplus}&\omega>\tilde{k}\\ \end{aligned}\right.
\displaystyle- αsCF2π[2+5π224+12(ln(a1))2+(lna)2+Li2(1a)\displaystyle\frac{\alpha_{s}C_{F}}{2\pi}\Bigg{[}-2+\frac{5\pi^{2}}{24}+\frac{1}{2}\left(\ln(a-1)\right)^{2}+(\ln a)^{2}+\operatorname{Li}_{2}(1-a)
+\displaystyle+ (lna1)ln(μ2k2)ln(a1)ln(aμ2k2)+(lnωμ)2]δ(ωk~).\displaystyle(\ln a-1)\ln\left(-\frac{\mu^{2}}{k^{2}}\right)-\ln(a-1)\ln\left(-\frac{a\mu^{2}}{k^{2}}\right)+\left(\ln\frac{\omega}{\mu}\right)^{2}\Bigg{]}\delta(\omega-\tilde{k})\,. (20)

The results shown in Eq. (III) and Eq. (III) do not contain the contribution of box diagram, since the collinear contribution to the bare quasidistribution amplitude in box diagram is precisely reproduced by the corresponding diagram for the BB-meson LCDA at one-loop, i.e., in unphysical region (ξ<0\xi<0), the contribution of box diagram on quasiquantity is suppressed by 1/vz21/v_{z}^{2}, and in physical region (ω>0\omega>0), the contributions on both quasiquantity and LCDA are exactly same. As for the counterterm in box diagram on quasidistribution amplitude in the RI/MOM scheme, as long as we work in the region vz2ξ1/rRv^{z2}\xi\gg 1/r_{R}, the contribution can be disregarded. In fact, it has also been demonstrated that the box diagram does not contribute in the pseudo distribution approach neither Zhao:2020bsx .

Considering the hard-collinear factorization formula in Eq. (7), the matching coefficient HH is then determined by the difference between the momentum space quasiditribution amplitude and LCDA. Expanding φB+(ξ,μ~),ϕB+(ω,μ)\varphi_{B}^{+}(\xi,\tilde{\mu}),\,\phi_{B}^{+}(\omega,\mu) and H(ξ,ω,vz,μ,{μ~})H\left(\xi,\omega,v^{z},\mu,\{\tilde{\mu}\}\right) in series of αsn\alpha_{s}^{n}. Up to one-loop level,

φB+(ξ,μ~)\displaystyle\varphi^{+}_{B}(\xi,\tilde{\mu}) =\displaystyle= δ(ξk~)+φB+(1)(ξ,μ~)+𝒪(α2),\displaystyle\delta(\xi-\tilde{k})+\varphi^{+(1)}_{B}(\xi,\tilde{\mu})+\mathcal{O}(\alpha^{2})\,,
ϕB+(ω,μ)\displaystyle\phi_{B}^{+}(\omega,\mu) =\displaystyle= δ(ωk~)+ϕB+(1)(ω,μ)+𝒪(α2),\displaystyle\delta(\omega-\tilde{k})+\phi_{B}^{+(1)}(\omega,\mu)+\mathcal{O}(\alpha^{2})\,,
H(ξ,ω,vz,μ,{μ~})\displaystyle H(\xi,\omega,v^{z},\mu,\{\tilde{\mu}\}) =\displaystyle= δ(ξω)+H(1)(ξ,ω,vz,μ,{μ~})+𝒪(α2).\displaystyle\delta(\xi-\omega)+H^{(1)}(\xi,\omega,v^{z},\mu,\{\tilde{\mu}\})+\mathcal{O}(\alpha^{2})\,. (21)

Substituting the expressions above into Eq. (7),

H(1)(ξ,ω,vz,μ,{μ~})|ωk~=φB+(1)(ξ,μ~)ϕB+(1)(ω,μ)|ωξ.\displaystyle\left.H^{(1)}(\xi,\omega,v^{z},\mu,\{\tilde{\mu}\})\right|_{\omega\to\tilde{k}}=\varphi^{+(1)}_{B}(\xi,\tilde{\mu})-\left.\phi_{B}^{+(1)}(\omega,\mu)\right|_{\omega\to\xi}\,. (22)

The renormalized φB+(1)(ξ,μ~)\varphi^{+(1)}_{B}(\xi,\tilde{\mu}) and ϕB+(1)(ω,μ)\phi_{B}^{+(1)}(\omega,\mu) have already been calculated, therefore the matching coefficient can be derived from Eq. (22),

H(ξ,ω,vz,μ,{μ~})=δ(ξω)+g1(ξ,ω,μ)g2(ξ,ω,{μ~})+αsCF4πlnvz(3+4lna1a)δ(ξω),\displaystyle H(\xi,\omega,v^{z},\mu,\{\tilde{\mu}\})=\delta(\xi-\omega)+g_{1}(\xi,\omega,\mu)-g_{2}(\xi,\omega,\{\tilde{\mu}\})+\frac{\alpha_{s}C_{F}}{4\pi}\ln v^{z}\left(3+4\ln\frac{a-1}{a}\right)\delta(\xi-\omega)\,,

where

g1(ξ,ω,μ)=\displaystyle g_{1}(\xi,\omega,\mu)= αsCF4π{1ω(ωξ)(ω2ξlnξωξ)ξ<0[1ω(ωξ)(ω2ξ+2ξln4vz2ξ(ωξ)μ2)]0<ξ<ω[1ω(ωξ)(ω+2ωlnμ2(ξω)2+2ξlnξξω)]ξ>ω,\displaystyle\frac{\alpha_{s}C_{F}}{4\pi}\left\{\begin{aligned} &\frac{1}{\omega(\omega-\xi)}\left(\omega-2\xi\ln\frac{-\xi}{\omega-\xi}\right)&\xi<0\\ &\left[\frac{1}{\omega(\omega-\xi)}\left(\omega-2\xi+2\xi\ln\frac{4v^{z2}\xi(\omega-\xi)}{\mu^{2}}\right)\right]_{\oplus}&0<\xi<\omega\\ &\left[\frac{1}{\omega(\omega-\xi)}\left(-\omega+2\omega\ln\frac{\mu^{2}}{(\xi-\omega)^{2}}+2\xi\ln\frac{\xi}{\xi-\omega}\right)\right]_{\oplus}&\xi>\omega\\ \end{aligned}\right.\,, (24)

and

g2(ξ,ω,{μ~})=\displaystyle g_{2}(\xi,\omega,\{\tilde{\mu}\})= αsCF4π{1ωξξ<ωk~R[12kRz1rR(ωξ)(21rR(kRz+2vz(ξω))(4vz(ξω)kRz(rR4))ln221rRrRrR)]ωk~R<ξ<ω[1ωξ]ξ>ω,\displaystyle\frac{\alpha_{s}C_{F}}{4\pi}\left\{\begin{aligned} &-\frac{1}{\omega-\xi}&\xi<\omega-\tilde{k}_{R}\\ &\Bigg{[}\frac{1}{2k_{R}^{z}\sqrt{1-r_{R}}(\omega-\xi)}\bigg{(}-2\sqrt{1-r_{R}}(k_{R}^{z}+2v^{z}(\xi-\omega))\\ &-\big{(}4v^{z}(\xi-\omega)-k_{R}^{z}(r_{R}-4)\big{)}\ln\frac{2-2\sqrt{1-r_{R}}-r_{R}}{r_{R}}\bigg{)}\Bigg{]}_{\oplus}&\omega-\tilde{k}_{R}<\xi<\omega\\ &\left[\frac{1}{\omega-\xi}\right]_{\oplus}&\xi>\omega\\ \end{aligned}\right.\,, (25)

As expected, HH does not depend on the IR regulator k2-k^{2} since the logarithmic IR singularities cancel between the quasidstribution amplitude and the LCDA. The 𝒪(1/vz2)\mathcal{O}(1/v^{z2}) contributions to the matching coefficient HH are dropped, the vzv^{z} expansion is subtle thus should be treated carefully and systematically. One can tell that the expression of HH is more complicated than the one in Wang:2019msf where the quasidistribution amplitude is renormalized in the MS¯\overline{\textrm{MS}} scheme, this is natural since the renormalization condition in RI/MOM has introduced new momentum scales {μ~}\{\tilde{\mu}\}. In Sec. IV we will make comparison between these two matching coefficients.

IV Perspectives for Lattice Calculations

We discuss the perspectives for lattice calculations based on numerical analysis. An important step in obtaining the BB-meson LCDA in bHQET based upon LaMET is to perform the lattice simulation of the quasidistribution amplitude φB+(ξ,μ~)\varphi_{B}^{+}(\xi,\tilde{\mu}) in the moving BB-meson frame with vz1v^{z}\gg 1. To this end, it will be instructive to study how the matching coefficient in Eq. (III) changes the LCDA, helping people understand the characteristic feature of φB+(ξ,μ~)\varphi_{B}^{+}(\xi,\tilde{\mu}). We start with a well known phenomenological model of ϕB+(ω,μ)\phi_{B}^{+}(\omega,\mu) motivated by the HQET sum rule calculation Grozin:1996pq

ϕB+(ω,μ=1.5GeV)=ωω02eω/ω0,\displaystyle\phi_{B}^{+}(\omega,\mu=1.5~{}\mathrm{GeV})=\frac{\omega}{\omega_{0}^{2}}e^{-\omega/\omega_{0}}\,, (26)

here the reference value of the logarithmic inverse moment ω0=350MeV\omega_{0}=350~{}\mathrm{MeV} is taken for illustration purposes. With the expression of ϕB+(ω,μ)\phi_{B}^{+}(\omega,\mu) above and the factorization formula in Eq. (7), we can depict the shape of quasidistribution amplitude φB+(ξ,μ~)\varphi_{B}^{+}(\xi,\tilde{\mu}). For our study, we set the default values kRz=2GeV,μ=1.5GeV,rR=2k_{R}^{z}=2~{}\textrm{GeV},\,\mu=1.5~{}\textrm{GeV},\,r_{R}=2. The factorization formula in Eq. (7) requires a large vzv^{z} in order to suppress the 𝒪(1/vz2)\mathcal{O}(1/v^{z2}) corrections, here we take vz=10v^{z}=10. Fig. 2 shows comparisons between the RI/MOM quasidistribution amplitude (blue dashed line), the MS¯\overline{\textrm{MS}} quasidistribution amplitude (orange dashed line) and the modeled LCDA of BB-meson (red solid line). One can see that both RI/MOM and MS¯\overline{\textrm{MS}} quasidistribution amplitudes are close to the BB-meson LCDA, and the radiative tail at large and negative momentum ξ\xi developed in MS¯\overline{\textrm{MS}} quasidistribution amplitude does not emerge in RI/MOM quasidistribution amplitude, which is encouraging on account of the convergence of perturbation theory in RI/MOM scheme. In addition, in contrast to the quasiparton distribution function in Stewart:2017tvs , no peaks arise in the momentum region ξ0\xi\leq 0.

Refer to caption
Figure 2: The shapes of the BB-meson quasidistribution amplitude φB+(ξ=ω,kRz=2.0GeV,rR=2)\varphi_{B}^{+}(\xi\!=\!\omega,k_{R}^{z}\!=\!2.0\,{\rm GeV},r_{R}\!=\!2) in bHQET obtained from the hard-collinear factorization theorem in Eq. (7) and from the nonperturbative model of ϕB+(ω,μ=1.5GeV)\phi_{B}^{+}(\omega,\mu\!=\!1.5\,{\rm GeV}) presented in Eq. (26). The red solid line represents the nonperturbative model of ϕB+\phi_{B}^{+}, the corresponding quasidistribution amplitudes φB+\varphi_{B}^{+} normalized in the MS¯\overline{\textrm{MS}} and RI/MOOM schemes are presented respectively (orange dashed and blue dashed lines). The shadow region of |ω|200MeV|\omega|\leq 200~{}{\rm MeV} is excluded due to inapplicability of the hard-collinear factorization formula for |vzω|2.0GeV|v^{z}\omega|\leq 2.0~{}{\rm GeV}.

Next we consider the dependence of RI/MOM quasidistribution amplitude on rRr_{R} and kRzk_{R}^{z}. We fix kRz=2GeV,μ=1.5GeV,vz=10k_{R}^{z}=2~{}\textrm{GeV},\mu=1.5~{}\textrm{GeV},v^{z}=10 and vary the parameter rR={1.5, 4, 12}r_{R}=\{1.5,\,4,\,12\} in the left panel of Fig. 3. One can tell the quasidistribution amplitude is pretty sensitive to the variation of rRr_{R}. It seems that with larger rRr_{R}, the quasidistribution amplitude moves away from LCDA. In the right panel of Fig. 3 we vary kRz={1, 2, 4}GeVk_{R}^{z}=\{1,\,2,\,4\}~{}\textrm{GeV} with fixed value of rR=2,μ=1.5GeV,vz=10r_{R}=2,\mu=1.5~{}\textrm{GeV},v^{z}=10.

Refer to caption
Refer to caption
Figure 3: Comparisons between the LCDA and the quasidistribution amplitude obtained at different rRr_{R}s (left panel) and kRzk_{R}^{z}s (right panel).

Finally we discuss the dependence on the heavy quark velocity vzv^{z}. We hold kRz=2GeV,μ=1.5GeV,rR=2k_{R}^{z}=2~{}\textrm{GeV},\mu=1.5~{}\textrm{GeV},r_{R}=2 and vary vz={3, 10, 20}v^{z}=\{3,\,10,\,20\} in Fig. 4. The differences between quasidistribution amplitudes depicted with different vzv^{z} reduce rapidly as ω\omega increases. When ω>0.8\omega>0.8, the three lines almost merged into one, simliar feature has also been observed in the study of quasiparton distribution function depicted with different PzP^{z} Stewart:2017tvs , which suggests the RI/MOM scheme a promising approach with favourable convergence at large ω\omega.

Refer to caption
Figure 4: Comparisons between the LCDA and the quasidistribution amplitude obtained at vz=3v^{z}=3 (orange dashed), vz=10v^{z}=10 (blue dashed) and vz=20v^{z}=20 (purple dashed).

In conclusion, the numerical analysis in this section indicates that the RI/MOM scheme is suitable for renormalizing BB-meson quasidistribution amplitude. The derived one-loop matching coefficient yields only a relatively small effect on the modeled BB-meson LCDA, which bring more confidence about extracting BB-meson LCDA perturbatively and model-independently in the future. It should be stressed here that our major objective is to explore the opportunity of accessing the light-cone dynamics of the BB-meson leading-twist distribution amplitude by simulating the RI/MOM quasidistribution amplitude on the lattice, it is a rather preliminary attempt. Actually, the numerical simulations of such quasidistribution amplitudes are still at an exploratory stage, even for the ones suitable for the determination of the light-meson distribution amplitude. Improved methodologies to control both the statistical errors and the systematic uncertainties are called for, as well as further development of new algorithms and computing techniques on the lattice (see Ji:2020ect ; Cichy:2018mum ; Alexandrou:2019lfo ; Zhang:2019qiq for details on lattice calculation). We would also like to remind the readers here that a hybrid renormalization procedure has been proposed for quasiparton distribution function recently, which utilizes the advantages of RI/MOM and ratio schemes at short and large distances simultaneously Ji:2020brr . The study of the feasibility of this renormalization procedure applied to BB-meson quasidistribution amplitude deserves more attention.

V Conclusion

LaMET theory has provided a natural way to calculate parton distributions in an interval of momentum scales, similar to extracting parton distributions from experimental data at finite energies. Within the framework of LaMET, we have derived the matching coefficient which connects the renormalized quasiditribution amplitude in the RI/MOM scheme and standard LCDA in the MS¯\overline{\textrm{MS}} scheme. Our numerical analysis indicates that the one-loop matching has nice UV convergence and reasonable magnitude as a perturbative correction, which shows the theoretical uncertainty caused by perturbative matching is controllable, thus making the RI/MOM scheme feasible in lattice applications. We believe that our result has the potential to considerably improve the convenience and accuracy of extracting BB-meson LCDA from quasiquantities, hence to promote the development for the first-principle determination of the highly desired BB-meson LCDA, which is undoubtedly of the highest importance for exploring the delicate flavor structure of the SM and beyond at LHCb and Belle II experiments.

To further increase the accuracy of our results, one can study the yet unavailable higher order perturbative corrections to the short-distance matching coefficient and construct the subleading-power factorization formula for the quasidistribution amplitude, which we would like to leave for future works.

Acknowledgements

We thank Prof. Wei Wang for careful reading of the manuscript and suggestions. We are also grateful to Dr. Shuai Zhao for inspiring discussions and valuable comments on the renormalization process of BB-meson quasidistribution amplitude. J.X. and X.R.Z are supported by National Natural Science Foundation of China under Grant No. 12105247 and 12047545, the China Postdoctoral Science Foundation under Grant No. 2021M702957.

Appendix A Renormalization of BB-meson quasidistribution amplitude

First, consider the amplitude of heavy-quark sail diagram (image (b) in Fig. 1)

φB,bare+(b)(ξ,μ)\displaystyle\varphi_{B,\textrm{bare}}^{+(b)}(\xi,\mu) =\displaystyle= igs2CFμ~2ϵvzddq(2π)d1qz1q21vq(δ(ξk~+qz)δ(ξk~)).\displaystyle ig_{s}^{2}C_{F}\tilde{\mu}^{2\epsilon}v^{z}\int\frac{d^{d}q}{(2\pi)^{d}}\frac{1}{q^{z}}\frac{1}{q^{2}}\frac{1}{v\cdot q}\Big{(}\delta(\xi-\tilde{k}+q^{z})-\delta(\xi-\tilde{k})\Big{)}\,. (27)

Here the delta functions δ(ξk~+qz)\delta(\xi-\tilde{k}+q^{z}) and δ(ξk~)\delta(\xi-\tilde{k}) in the parenthesis in Eq. (27) come from the Fourier transformation with respect to the variable τ\tau in the “real” and “virtual” diagrams respectively. Notably, all the kk dependence comes from delta function, the other part of the integrand is independent on kzk^{z} or ρk2/kz2\rho\equiv-k^{2}/k^{z2}, indicating the corresponding counterterm φB,CT+(b)(ξ+k~Rk~,rR)\varphi_{B,\textrm{CT}}^{+(b)}(\xi+\tilde{k}_{R}-\tilde{k},r_{R}) in Eq. (18) remains unchanged when the RI/MOM renormalization condition is imposed at the specific scale {μ~}\{\tilde{\mu}\},

φB,CT+(b)(ξ+k~Rk~,rR)\displaystyle\varphi_{B,\textrm{CT}}^{+(b)}(\xi+\tilde{k}_{R}-\tilde{k},r_{R}) =\displaystyle= igs2CFμ~2ϵvzddq(2π)d1qz1q21vq(δ(ξk~+qz)δ(ξk~)).\displaystyle ig_{s}^{2}C_{F}\tilde{\mu}^{2\epsilon}v^{z}\int\frac{d^{d}q}{(2\pi)^{d}}\frac{1}{q^{z}}\frac{1}{q^{2}}\frac{1}{v\cdot q}\Big{(}\delta(\xi-\tilde{k}+q^{z})-\delta(\xi-\tilde{k})\Big{)}\,. (28)

Therefore, the contribution of heavy-quark sail diagram cancels out after renormalization. This feature which raises in the RI/MOM BB-meson quasiditribution amplitude considerably simplifies our calculation and facilitates a relatively small effect of the final one-loop matching coefficient. Similar cancelation also appears in the Wilson line self-energy diagram (image (c) in Fig. 1),

φB,bare+(c)(ξ,μ)\displaystyle\varphi_{B,\textrm{bare}}^{+(c)}(\xi,\mu) =\displaystyle= igs2CFμ~2ϵddq(2π)d1q21qz2(δ(ξk~+qz)δ(ξk~)).\displaystyle-ig_{s}^{2}C_{F}\tilde{\mu}^{2\epsilon}\int\frac{d^{d}q}{(2\pi)^{d}}\frac{1}{q^{2}}\frac{1}{q^{z2}}\Big{(}\delta(\xi-\tilde{k}+q^{z})-\delta(\xi-\tilde{k})\Big{)}\,. (29)

Once again, the integrand except for the delta function in Eq. (29) is independent on kzk^{z} or ρ\rho, indicating the contributions of the bare term and counterterm cancel out after RI/MOM renormalization.

As for the box diagram (image (d) in Fig. 1), the result of bare quasidistribution amplitude reads

φB,bare+(d)(ξ,μ)\displaystyle\varphi_{B,\textrm{bare}}^{+(d)}(\xi,\mu) =\displaystyle= αsCF2π{ξk~(k~ξ)lnξξk~θ(ξk~)+ξk~(k~ξ)lnk2k~2θ(0<ξ<k~)+(0)θ(ξ<0)}\displaystyle\frac{\alpha_{s}C_{F}}{2\pi}\left\{-\frac{\xi}{\tilde{k}(\tilde{k}-\xi)}\ln\frac{\xi}{\xi-\tilde{k}}\theta(\xi-\tilde{k})+\frac{\xi}{\tilde{k}(\tilde{k}-\xi)}\ln\frac{-k^{2}}{\tilde{k}^{2}}\theta(0<\xi<\tilde{k})+(0)\,\theta(\xi<0)\right\} (30)
+𝒪(1/vz2).\displaystyle+\mathcal{O}\left(1/v^{z2}\right)\,.

It is worth noting that the contribution to the bare quasidistribution amplitude in box diagram at physical region (θ(ξk~)\theta(\xi-\tilde{k}) and θ(0<ξ<k~)\theta(0<\xi<\tilde{k})) is exactly same as the corresponding box diagram for the BB-meson LCDA, and the contribution at unphysical region (ξ<0\xi<0) is suppressed by 1/vz21/v_{z}^{2} (the contribution of BB-meson LCDA at unphysical region is 0). Besides, the box diagram does not introduce any UV divergence, therefore despite of its intricate form, the corresponding counterterm on quasidistribution amplitude provides only finite terms which is of order O(1/vz2)O(1/v^{z2}). Summarize the above, the box diagram does not contribute to the matching coefficient within 𝒪(1/vz0)\mathcal{O}(1/v^{z0}) accuracy. In fact, it has already been shown in Wang:2019msf ; Xu:2022krn that the box diagram does not contribute both in the LaMET and pseudo distribution approaches.

Finally we consider the light-quark sail diagram (image (a) in Fig. 1). Write down the expression for the bare quasidistribution amplitude

φB,bare+(a)(ξ,μ)\displaystyle\varphi_{B,\textrm{bare}}^{+(a)}(\xi,\mu) =\displaystyle= igs2CF(μ~)2ϵddq(2π)d1qz1q21(q+k)2(kz(ρ2)qzqt1ρ)\displaystyle-ig_{s}^{2}C_{F}(\tilde{\mu})^{2\epsilon}\int\frac{d^{d}q}{(2\pi)^{d}}\frac{1}{q^{z}}\frac{1}{q^{2}}\frac{1}{(q+k)^{2}}\left(k^{z}(\rho-2)-q^{z}-q^{t}\sqrt{1-\rho}\right) (31)
×(δ(ξk~qz)δ(ξk~)).\displaystyle\times\Big{(}\delta(\xi-\tilde{k}-q^{z})-\delta(\xi-\tilde{k})\Big{)}\,.

We have utilized a projection operator to deal with the Dirac matrix v¯(k)Γuv(pb)Tr[1+2Mbγ5Γ]\bar{v}(k)\Gamma u_{v}\left(p_{b}\right)\rightarrow\operatorname{Tr}\left[\frac{1+\not{v}}{2}M_{b}\not{v}\gamma_{5}\not{k}\Gamma\right]. In addition to the delta function, the other part of the integrand in Eq. (31) has kk dependence. The result of bare amplitude reads has already been calculated in Wang:2019msf .

As for the counterterm in RI/MOM scheme, it is determined by setting k2=μR2k^{2}=-\mu_{R}^{2} and kz=kRzk^{z}=k_{R}^{z}.

φB,CT+(a)(ξ+k~Rk~,rR)\displaystyle\varphi_{B,\textrm{CT}}^{+(a)}(\xi+\tilde{k}_{R}-\tilde{k},r_{R}) =\displaystyle= igs2CF(μ~)2ϵddq(2π)d1qz1q21(q+kR)2(kRz(rR2)qzqt1rR)\displaystyle-ig_{s}^{2}C_{F}(\tilde{\mu})^{2\epsilon}\int\frac{d^{d}q}{(2\pi)^{d}}\frac{1}{q^{z}}\frac{1}{q^{2}}\frac{1}{(q+k_{R})^{2}}\left(k_{R}^{z}(r_{R}-2)-q^{z}-q^{t}\sqrt{1-r_{R}}\right) (32)
×(δ(ξk~qz)δ(ξk~)).\displaystyle\times\Big{(}\delta(\xi-\tilde{k}-q^{z})-\delta(\xi-\tilde{k})\Big{)}\,.

The rRr_{R} is not necessarily small, this makes Taylor expansion in rRr_{R} unfeasible in calculation. After introducing Feynman parameter α\alpha and integrating the d1d-1 dimensions of integral momentum qq, we have

φB,CT+(a)(ξ+k~Rk~,rR)\displaystyle\varphi_{B,\textrm{CT}}^{+(a)}(\xi+\tilde{k}_{R}-\tilde{k},r_{R}) =\displaystyle= 2αsCF8π3201𝑑α+𝑑qzeγEϵμ2ϵ(qz+kRz(2+α(rR1)rR))Γ(12+ϵ)qz(qz2+2kRzqzα+kRz2α(α+rRαrR))12+ϵ\displaystyle-\frac{2\alpha_{s}C_{F}}{8\pi^{\frac{3}{2}}}\int_{0}^{1}\!\!d\alpha\!\!\int_{-\infty}^{+\infty}\!\!dq^{z}\frac{e^{\gamma_{E}\epsilon}\mu^{2\epsilon}(q^{z}+k_{R}^{z}(2+\alpha(r_{R}-1)-r_{R}))\Gamma(\frac{1}{2}+\epsilon)}{q^{z}\left(q^{z2}+2k_{R}^{z}q^{z}\alpha+k_{R}^{z2}\alpha(\alpha+r_{R}-\alpha r_{R})\right)^{\frac{1}{2}+\epsilon}} (33)
×(δ(ξk~qz)δ(ξk~)).\displaystyle\times\Big{(}\delta(\xi-\tilde{k}-q^{z})-\delta(\xi-\tilde{k})\Big{)}\,.

Subsequently we integrate out α\alpha and qzq^{z} and get the result of this counterterm which will be incorporated into the final result of renormalized quasidistribution amplitude in Eq. (34) below.

With all these results shown above at one-loop, the renormalized quasidistribution amplitude can be written down,

φB+(ξ,μ~)\displaystyle\varphi_{B}^{+}(\xi,\tilde{\mu}) =\displaystyle= δ(ξk~)+h1(ξ,k~)h2(ξ,{μ~})+αsCF4πlnvz(3+4lna1a)δ(ξk~),\displaystyle\delta(\xi-\tilde{k})+h_{1}(\xi,\tilde{k})-h_{2}(\xi,\{\tilde{\mu}\})+\frac{\alpha_{s}C_{F}}{4\pi}\ln v^{z}\left(3+4\ln\frac{a-1}{a}\right)\delta(\xi-\tilde{k})\,, (34)

where

h1(ξ,k~)=\displaystyle h_{1}(\xi,\tilde{k})= αsCF4π{1k~(ξk~)(k~+2ξlnξk~ξ)ξ<0[1k~(ξk~)(2ξk~2ξln4k~2vz2k2)]0<ξ<k~[1k~(ξk~)(k~2ξlnξξk~)]ξ>k~,\displaystyle\frac{\alpha_{s}C_{F}}{4\pi}\left\{\begin{aligned} &\frac{1}{\tilde{k}(\xi-\tilde{k})}\left(-\tilde{k}+2\xi\ln\frac{-\xi}{\tilde{k}-\xi}\right)&\xi<0\\ &\left[\frac{1}{\tilde{k}(\xi-\tilde{k})}\left(2\xi-\tilde{k}-2\xi\ln\frac{4\tilde{k}^{2}v^{z2}}{-k^{2}}\right)\right]_{\oplus}&0<\xi<\tilde{k}\\ &\left[\frac{1}{\tilde{k}(\xi-\tilde{k})}\left(\tilde{k}-2\xi\ln\frac{\xi}{\xi-\tilde{k}}\right)\right]_{\oplus}&\xi>\tilde{k}\\ \end{aligned}\right.\,, (35)

and

h2(ξ,{μ~})=\displaystyle h_{2}(\xi,\{\tilde{\mu}\})= αsCF4π{1ξk~ξ<k~k~R[12kRz1rR(k~ξ)(21rR(kRz+2vz(ξk~))+(kRz(rR4)+4vz(k~ξ))ln221rRrRrR)]k~k~R<ξ<k~[1ξk~]ξ>k~.\displaystyle\frac{\alpha_{s}C_{F}}{4\pi}\left\{\begin{aligned} &\frac{1}{\xi-\tilde{k}}&\xi<\tilde{k}-\tilde{k}_{R}\\ &\Bigg{[}\frac{1}{2k_{R}^{z}\sqrt{1-r_{R}}(\tilde{k}-\xi)}\bigg{(}-2\sqrt{1-r_{R}}(k_{R}^{z}+2v^{z}(\xi-\tilde{k}))\\ &+\big{(}k_{R}^{z}(r_{R}-4)+4v^{z}(\tilde{k}-\xi)\big{)}\ln\frac{2-2\sqrt{1-r_{R}}-r_{R}}{r_{R}}\bigg{)}\Bigg{]}_{\oplus}&\tilde{k}-\tilde{k}_{R}<\xi<\tilde{k}\\ &\left[-\frac{1}{\xi-\tilde{k}}\right]_{\oplus}&\xi>\tilde{k}\\ \end{aligned}\right.\,. (36)

Bringing the renormalized quasidistribution amplitude φB+(ξ,μ~)\varphi_{B}^{+}(\xi,\tilde{\mu}) in Eq. (34) and the renormalized LCDA ϕB+(ω,μ)\phi_{B}^{+}(\omega,\mu) in Eq. (III) into Eq. (22), we get the expected matching coefficient in Eq. (III).

References

  • (1) A. G. Grozin and M. Neubert, Phys. Rev. D 55, 272-290 (1997) doi:10.1103/PhysRevD.55.272 [arXiv:hep-ph/9607366 [hep-ph]].
  • (2) M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Phys. Rev. Lett. 83, 1914-1917 (1999) doi:10.1103/PhysRevLett.83.1914 [arXiv:hep-ph/9905312 [hep-ph]].
  • (3) M. Beneke and T. Feldmann, Nucl. Phys. B 592, 3-34 (2001) doi:10.1016/S0550-3213(00)00585-X [arXiv:hep-ph/0008255 [hep-ph]].
  • (4) M. Beneke, T. Feldmann and D. Seidel, Nucl. Phys. B 612, 25-58 (2001) doi:10.1016/S0550-3213(01)00366-2 [arXiv:hep-ph/0106067 [hep-ph]].
  • (5) T. Becher, R. J. Hill and M. Neubert, Phys. Rev. D 72, 094017 (2005) doi:10.1103/PhysRevD.72.094017 [arXiv:hep-ph/0503263 [hep-ph]].
  • (6) Y. M. Wang, Nucl. Part. Phys. Proc. 285-286, 75-80 (2017) doi:10.1016/j.nuclphysbps.2017.03.014 [arXiv:1609.09813 [hep-ph]].
  • (7) Y. M. Wang, JHEP 09, 159 (2016) doi:10.1007/JHEP09(2016)159 [arXiv:1606.03080 [hep-ph]].
  • (8) T. Feldmann, B. O. Lange and Y. M. Wang, Phys. Rev. D 89, no.11, 114001 (2014) doi:10.1103/PhysRevD.89.114001 [arXiv:1404.1343 [hep-ph]].
  • (9) G. Bell, T. Feldmann, Y. M. Wang and M. W. Y. Yip, JHEP 11, 191 (2013) doi:10.1007/JHEP11(2013)191 [arXiv:1308.6114 [hep-ph]].
  • (10) A. M. Galda, M. Neubert and X. Wang, [arXiv:2203.08202 [hep-ph]].
  • (11) H. Deng, J. Gao, L. Y. Li, C. D. Lü, Y. L. Shen and C. X. Yu, Phys. Rev. D 103, no.7, 076004 (2021) doi:10.1103/PhysRevD.103.076004 [arXiv:2101.01344 [hep-ph]].
  • (12) S. Zhao, Phys. Rev. D 101, no.7, 071503 (2020) doi:10.1103/PhysRevD.101.071503 [arXiv:1910.03470 [hep-ph]].
  • (13) D. H. Yao, X. Liu, Z. T. Zou, Y. Li and Z. J. Xiao, [arXiv:2202.10010 [hep-ph]].
  • (14) B. O. Lange and M. Neubert, Phys. Rev. Lett. 91, 102001 (2003) doi:10.1103/PhysRevLett.91.102001 [arXiv:hep-ph/0303082 [hep-ph]].
  • (15) V. M. Braun, Y. Ji and A. N. Manashov, Phys. Rev. D 100, no.1, 014023 (2019) doi:10.3204/PUBDB-2019-02451 [arXiv:1905.04498 [hep-ph]].
  • (16) S. J. Lee and M. Neubert, Phys. Rev. D 72, 094028 (2005) doi:10.1103/PhysRevD.72.094028 [arXiv:hep-ph/0509350 [hep-ph]].
  • (17) Y. M. Wang and Y. L. Shen, JHEP 05, 184 (2018) doi:10.1007/JHEP05(2018)184 [arXiv:1803.06667 [hep-ph]].
  • (18) M. Beneke, V. M. Braun, Y. Ji and Y. B. Wei, JHEP 07, 154 (2018) doi:10.1007/JHEP07(2018)154 [arXiv:1804.04962 [hep-ph]].
  • (19) V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, Phys. Rev. D 69, 034014 (2004) doi:10.1103/PhysRevD.69.034014 [arXiv:hep-ph/0309330 [hep-ph]].
  • (20) F. Gao, L. Chang, Y. X. Liu, C. D. Roberts and S. M. Schmidt, Phys. Rev. D 90, no.1, 014011 (2014) doi:10.1103/PhysRevD.90.014011 [arXiv:1405.0289 [nucl-th]].
  • (21) X. Ji, Phys. Rev. Lett. 110, 262002 (2013) doi:10.1103/PhysRevLett.110.262002 [arXiv:1305.1539 [hep-ph]].
  • (22) X. Ji, Sci. China Phys. Mech. Astron. 57, 1407-1412 (2014) doi:10.1007/s11433-014-5492-3 [arXiv:1404.6680 [hep-ph]].
  • (23) X. Ji, A. Schäfer, X. Xiong and J. H. Zhang, Phys. Rev. D 92, 014039 (2015) doi:10.1103/PhysRevD.92.014039 [arXiv:1506.00248 [hep-ph]].
  • (24) X. Xiong and J. H. Zhang, Phys. Rev. D 92, no.5, 054037 (2015) doi:10.1103/PhysRevD.92.054037 [arXiv:1509.08016 [hep-ph]].
  • (25) H. n. Li, Phys. Rev. D 94, no.7, 074036 (2016) doi:10.1103/PhysRevD.94.074036 [arXiv:1602.07575 [hep-ph]].
  • (26) T. Ishikawa, Y. Q. Ma, J. W. Qiu and S. Yoshida, [arXiv:1609.02018 [hep-lat]].
  • (27) C. Monahan and K. Orginos, JHEP 03, 116 (2017) doi:10.1007/JHEP03(2017)116 [arXiv:1612.01584 [hep-lat]].
  • (28) M. Constantinou and H. Panagopoulos, Phys. Rev. D 96, no.5, 054506 (2017) doi:10.1103/PhysRevD.96.054506 [arXiv:1705.11193 [hep-lat]].
  • (29) X. Ji, J. H. Zhang and Y. Zhao, Phys. Rev. Lett. 120, no.11, 112001 (2018) doi:10.1103/PhysRevLett.120.112001 [arXiv:1706.08962 [hep-ph]].
  • (30) Y. Jia, S. Liang, L. Li and X. Xiong, JHEP 11, 151 (2017) doi:10.1007/JHEP11(2017)151 [arXiv:1708.09379 [hep-ph]].
  • (31) W. Wang, S. Zhao and R. Zhu, Eur. Phys. J. C 78, no.2, 147 (2018) doi:10.1140/epjc/s10052-018-5617-3 [arXiv:1708.02458 [hep-ph]].
  • (32) I. W. Stewart and Y. Zhao, Phys. Rev. D 97, no.5, 054512 (2018) doi:10.1103/PhysRevD.97.054512 [arXiv:1709.04933 [hep-ph]].
  • (33) W. Wang and S. Zhao, JHEP 05, 142 (2018) doi:10.1007/JHEP05(2018)142 [arXiv:1712.09247 [hep-ph]].
  • (34) J. Xu, Q. A. Zhang and S. Zhao, Phys. Rev. D 97, no.11, 114026 (2018) doi:10.1103/PhysRevD.97.114026 [arXiv:1804.01042 [hep-ph]].
  • (35) S. S. Xu, L. Chang, C. D. Roberts and H. S. Zong, Phys. Rev. D 97, no.9, 094014 (2018) doi:10.1103/PhysRevD.97.094014 [arXiv:1802.09552 [nucl-th]].
  • (36) A. V. Radyushkin, Phys. Lett. B 788, 380-387 (2019) doi:10.1016/j.physletb.2018.11.047 [arXiv:1807.07509 [hep-ph]].
  • (37) J. H. Zhang, X. Ji, A. Schäfer, W. Wang and S. Zhao, Phys. Rev. Lett. 122, no.14, 142001 (2019) doi:10.1103/PhysRevLett.122.142001 [arXiv:1808.10824 [hep-ph]].
  • (38) Z. Y. Li, Y. Q. Ma and J. W. Qiu, Phys. Rev. Lett. 122, no.6, 062002 (2019) doi:10.1103/PhysRevLett.122.062002 [arXiv:1809.01836 [hep-ph]].
  • (39) Y. S. Liu, W. Wang, J. Xu, Q. A. Zhang, J. H. Zhang, S. Zhao and Y. Zhao, Phys. Rev. D 100, no.3, 034006 (2019) doi:10.1103/PhysRevD.100.034006 [arXiv:1902.00307 [hep-ph]].
  • (40) Y. S. Liu, W. Wang, J. Xu, Q. A. Zhang, S. Zhao and Y. Zhao, Phys. Rev. D 99, no.9, 094036 (2019) doi:10.1103/PhysRevD.99.094036 [arXiv:1810.10879 [hep-ph]].
  • (41) X. Ji, Y. Liu, A. Schäfer, W. Wang, Y. B. Yang, J. H. Zhang and Y. Zhao, Nucl. Phys. B 964, 115311 (2021) doi:10.1016/j.nuclphysb.2021.115311 [arXiv:2008.03886 [hep-ph]].
  • (42) J. Hua, M. H. Chu, J. C. He, X. Ji, A. Schäfer, Y. Su, P. Sun, W. Wang, J. Xu and Y. B. Yang, et al. [arXiv:2201.09173 [hep-lat]].
  • (43) J. Hua et al. [Lattice Parton (LPC)], PoS LATTICE2021, 322 (2022) doi:10.22323/1.396.0322
  • (44) J. Hua et al. [Lattice Parton], Phys. Rev. Lett. 127, no.6, 062002 (2021) doi:10.1103/PhysRevLett.127.062002 [arXiv:2011.09788 [hep-lat]].
  • (45) X. Ji, Y. S. Liu, Y. Liu, J. H. Zhang and Y. Zhao, Rev. Mod. Phys. 93, no.3, 035005 (2021) doi:10.1103/RevModPhys.93.035005 [arXiv:2004.03543 [hep-ph]].
  • (46) K. Cichy and M. Constantinou, Adv. High Energy Phys. 2019, 3036904 (2019) doi:10.1155/2019/3036904 [arXiv:1811.07248 [hep-lat]].
  • (47) M. Bhat, W. Chomicki, K. Cichy, M. Constantinou, J. R. Green and A. Scapellato, [arXiv:2205.07585 [hep-lat]].
  • (48) C. Egerer et al. [HadStruc], JHEP 11, 148 (2021) doi:10.1007/JHEP11(2021)148 [arXiv:2107.05199 [hep-lat]].
  • (49) C. Alexandrou, M. Constantinou, K. Hadjiyiannakou, K. Jansen and F. Manigrasso, Phys. Rev. Lett. 126, no.10, 102003 (2021) doi:10.1103/PhysRevLett.126.102003 [arXiv:2009.13061 [hep-lat]].
  • (50) C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato and F. Steffens, Phys. Rev. Lett. 125, no.26, 262001 (2020) doi:10.1103/PhysRevLett.125.262001 [arXiv:2008.10573 [hep-lat]].
  • (51) S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A. Scapellato and F. Steffens, Phys. Rev. D 102, no.3, 034005 (2020) doi:10.1103/PhysRevD.102.034005 [arXiv:2005.10939 [hep-ph]].
  • (52) Y. Su, J. Holligan, X. Ji, F. Yao, J. H. Zhang and R. Zhang, [arXiv:2209.01236 [hep-ph]].
  • (53) W. Wang, Y. M. Wang, J. Xu and S. Zhao, Phys. Rev. D 102, no.1, 011502 (2020) doi:10.1103/PhysRevD.102.011502 [arXiv:1908.09933 [hep-ph]].
  • (54) H. Kawamura and K. Tanaka, PoS RADCOR2017, 076 (2018) doi:10.22323/1.290.0076
  • (55) J. Xu, X. R. Zhang and S. Zhao, Phys. Rev. D 106, no.1, L011503 (2022) doi:10.1103/PhysRevD.106.L011503 [arXiv:2202.13648 [hep-ph]].
  • (56) C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, H. Panagopoulos and F. Steffens, Nucl. Phys. B 923, 394-415 (2017) doi:10.1016/j.nuclphysb.2017.08.012 [arXiv:1706.00265 [hep-lat]].
  • (57) J. W. Chen, T. Ishikawa, L. Jin, H. W. Lin, Y. B. Yang, J. H. Zhang and Y. Zhao, Phys. Rev. D 97, no.1, 014505 (2018) doi:10.1103/PhysRevD.97.014505 [arXiv:1706.01295 [hep-lat]].
  • (58) H. W. Lin et al. [LP3], Phys. Rev. D 98, no.5, 054504 (2018) doi:10.1103/PhysRevD.98.054504 [arXiv:1708.05301 [hep-lat]].
  • (59) J. Green, K. Jansen and F. Steffens, Phys. Rev. Lett. 121, no.2, 022004 (2018) doi:10.1103/PhysRevLett.121.022004 [arXiv:1707.07152 [hep-lat]].
  • (60) A. V. Radyushkin, Phys. Rev. D 96, no.3, 034025 (2017) doi:10.1103/PhysRevD.96.034025 [arXiv:1705.01488 [hep-ph]].
  • (61) K. Orginos, A. Radyushkin, J. Karpie and S. Zafeiropoulos, Phys. Rev. D 96, no.9, 094503 (2017) doi:10.1103/PhysRevD.96.094503 [arXiv:1706.05373 [hep-ph]].
  • (62) V. M. Braun, A. Vladimirov and J. H. Zhang, Phys. Rev. D 99, no.1, 014013 (2019) doi:10.1103/PhysRevD.99.014013 [arXiv:1810.00048 [hep-ph]].
  • (63) Z. Y. Li, Y. Q. Ma and J. W. Qiu, Phys. Rev. Lett. 126, no.7, 072001 (2021) doi:10.1103/PhysRevLett.126.072001 [arXiv:2006.12370 [hep-ph]].
  • (64) M. Beneke and D. Yang, Nucl. Phys. B 736, 34-81 (2006) doi:10.1016/j.nuclphysb.2005.11.027 [arXiv:hep-ph/0508250 [hep-ph]].
  • (65) S. Zhao and A. V. Radyushkin, Phys. Rev. D 103, no.5, 054022 (2021) doi:10.1103/PhysRevD.103.054022 [arXiv:2006.05663 [hep-ph]].
  • (66) C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato and F. Steffens, Phys. Rev. D 99, no.11, 114504 (2019) doi:10.1103/PhysRevD.99.114504 [arXiv:1902.00587 [hep-lat]].
  • (67) R. Zhang, Z. Fan, R. Li, H. W. Lin and B. Yoon, Phys. Rev. D 101, no.3, 034516 (2020) doi:10.1103/PhysRevD.101.034516 [arXiv:1909.10990 [hep-lat]].