This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mass spectrum of 11^{--} heavy quarkonium

Zheng Zhao [email protected]    Kai Xu [email protected] School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand China-Thailand Joint Research Center of Physics, Harbin Engineering University, People’s Republic of China and Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand    Ayut Limphirat [email protected] School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand China-Thailand Joint Research Center of Physics, Harbin Engineering University, People’s Republic of China and Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand    Warintorn Sreethawong [email protected] School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand    Nattapat Tagsinsit    Attaphon Kaewsnod School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand    Xuyang Liu School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand School of Physics, Liaoning University, Shenyang 110036, China    Khanchai Khosonthongkee School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand    Sampart Cheedket Department of Physics, School of Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand    Yupeng Yan [email protected] School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand China-Thailand Joint Research Center of Physics, Harbin Engineering University, People’s Republic of China and Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
Abstract

We calculate the masses and leptonic decay widths of the bottomonium bb¯b\bar{b} and charmonium cc¯c\bar{c} states in a constituent quark model where the Cornell-like potential and spin-dependent interaction are employed, with all model parameters predetermined by studying ground and first radial excited states of S- and P-wave heavy quarkonium mesons. By comparing the theoretical predictions for JPC=1J^{PC}=1^{--} quarkonium states with experimental data and considering possible mixtures of nSnS and (n1)D(n-1)D states, we provide tentative assignments for all observed JPC=1J^{PC}=1^{--} heavy quarkonia. The work suggests that the Υ\Upsilon(10860) and Υ\Upsilon(11020) are bb¯b\bar{b} 5S4D5S-4D mixture states, and the ψ\psi(4360) and ψ\psi(4415) are largely 4S4S and 3D3D cc¯c\bar{c} states respectively. The ψ\psi(4230) may not be accommodated with the conventional meson picture in the present work.

I Introduction

Over 20 charmoniumlike and bottomoniumlike XYZ states have been observed in the past two decades. The charged states (Z states), which might be good exotic state candidates in the tetraquark or molecule picture, have inspired extensive interests of theorists in revealing their underlying structures Chen et al. (2016). However, distinguishing the real exotic neutral X and Y states from conventional meson states is still a challenging work, and underlying structures of X and Y states are still wildly discussed and debated in the past decade Eichten et al. (2008); Liu et al. (2019).

The exotic states with JPC=1J^{PC}=1^{--}, also known as Y states, are named Υ\Upsilon in the bottomonium region, and ψ\psi in the charmonium region according to the latest PDG (Particle Data Group) naming scheme Workman et al. (2022). It is significant to separate these exotic neutral states from conventional meson picture before treating them in other exotic pictures.

In the bottomonium region, the PDG states Υ\Upsilon(9460), Υ\Upsilon(10023), Υ\Upsilon(10355), and Υ\Upsilon(10579) are assigned to be Υ\Upsilon(1S) to Υ\Upsilon(4S) respectively Workman et al. (2022). Meanwhile, in the charmonium region, the J/ψJ/\psi, ψ\psi(3686), ψ\psi(3770), ψ\psi(4040), ψ\psi(4160) are assigned to be ψ(1S)\psi(1S), ψ(2S)\psi(2S) Workman et al. (2022), ψ(1D)\psi(1D) Zhang (2007); Li and Chao (2009); Segovia et al. (2008a); Barnes et al. (2005), ψ(3S)\psi(3S) Zhang (2007); Li and Chao (2009); Segovia et al. (2008a); Barnes et al. (2005), and ψ(2D)\psi(2D) Zhang (2007); Li and Chao (2009); Segovia et al. (2008a); Barnes et al. (2005) respectively. Theoretical pictures of cc¯c\bar{c} bound states including S-D mixings Li and Chao (2009); Shah et al. (2012); Wang et al. (2019); Wang and Liu (2023), hybrid charmonium cc¯gc\bar{c}g Liu et al. (2012); Luo and Liu (2006); Zhu (2005), compact tetraquark (qcq¯c¯)\left(qc\bar{q}\bar{c}\right) Maiani et al. (2005); Drenska et al. (2009); Ebert et al. (2008), and molecule (qc¯)(q¯c)\left(q\bar{c}\right)\left(\bar{q}c\right) Chiu and Hsieh (2006); Ding (2009); Close and Downum (2009); Close et al. (2010) have been proposed for studying the higher excited states, ψ\psi(4230), ψ\psi(4360), ψ\psi(4660), and Y(4500)Y(4500) observed by BESIII recently Ablikim et al. (2022).

Meanwhile, experimental new values of mass and leptonic decay width have been reported for these JPC=1J^{PC}=1^{--} states, and the understanding of these states has been also improved since many theoretical works have been done. However, theoretical predictions of leptonic widths for higher excited states are still not consistent with the latest experimental data Shah et al. (2012); Godfrey and Moats (2015); Wang et al. (2018); Segovia et al. (2016); Li and Chao (2009); Segovia et al. (2008a); Barnes et al. (2005); Barnes (2004); Mutuk (2018). All established heavy quarkonium states with JPC=1J^{PC}=1^{--} are listed in Table 1, with experimental data of mass and leptonic decay width from PDG Workman et al. (2022), and also with assignments from cited theoretical works. We briefly review the model of those works here and discuss their results in Sec. III.

Masses and leptonic widths of heavy quarkonium are estimated in a Martin-like potential model where a non-Coulombic power law potential is employed Shah et al. (2012). Different parameters are applied for bottomonium and charmonium mesons.

In Refs Godfrey and Moats (2015); Wang et al. (2018), masses and decay properties of excited bottomonium states are studied in a relativized quark model (Godfrey-Isgur model) developed from Refs. Godfrey and Isgur (1985); Godfrey (1985); Godfrey and Isgur (1986); Godfrey (2004, 2005) where a Cornell-like potential is employed. Masses, radiative transitions, annihilation decays, hadronic transitions and production cross sections of excited bottomonium states are evaluated.

Bottomonium mass spectrum, electromagnetic, strong and hadronic decays are also studied in a non-relativistic quark model Segovia et al. (2016) developed from Vijande et al. (2005) and their previous work Segovia et al. (2008b).

Charmonium spectrum, and electromagnetic decays are estimated in a non-relativistic model with a coulomb potential plus a screened linear potential Li and Chao (2009), and also are studied in a constituent quark model with a screened confinement potential Segovia et al. (2008a). In Ref Barnes et al. (2005), higher charmonium mass spectra are calculated in a non-relativistic model with a Cornell-like potential, and the corresponding leptonic widths are estimated in Ref Barnes (2004).

Table 1: Mass and leptonic decay width of bottomoium and charmonium 11^{--} states from PDG Workman et al. (2022), and their assignments from cited sources.
State Mexp(MeV)M^{exp}{\rm(MeV)} Γexp(keV)\Gamma^{exp}{\rm(keV)} Assignment
Υ\Upsilon(1S) 94609460 1.340±0.0181.340\pm 0.018 1S bb¯b\bar{b} Workman et al. (2022)
Υ\Upsilon(2S) 1002310023 0.612±0.0110.612\pm 0.011 2S bb¯b\bar{b} Workman et al. (2022)
Υ\Upsilon(3S) 1035510355 0.443±0.0080.443\pm 0.008 3S bb¯b\bar{b} Workman et al. (2022)
Υ\Upsilon(4S) 1057910579 0.272±0.0290.272\pm 0.029 4S bb¯b\bar{b} Workman et al. (2022)
Υ\Upsilon(10860) 10885.21.6+2.610885.2^{+2.6}_{-1.6} 0.31±0.070.31\pm 0.07 5S bb¯b\bar{b} Godfrey and Moats (2015); Wang et al. (2018); Segovia et al. (2016); Deng et al. (2017); Dong et al. (2020)
Υ\Upsilon(11020) 11000±411000\pm 4 0.13±0.030.13\pm 0.03 6S Godfrey and Moats (2015); Wang et al. (2018); Segovia et al. (2016); Deng et al. (2017); Dong et al. (2020)
7S bb¯b\bar{b} Shah et al. (2012)
ψ\psi(1S) 30973097 5.55±0.145.55\pm 0.14 1S cc¯c\bar{c} Workman et al. (2022)
ψ\psi(2S) 36863686 2.33±0.042.33\pm 0.04 2S cc¯c\bar{c} Workman et al. (2022)
ψ\psi(3770) 37733773 0.26±0.020.26\pm 0.02 1D cc¯c\bar{c} Liu et al. (2012); Zhang (2007); Li and Chao (2009); Segovia et al. (2008a); Barnes et al. (2005)
ψ\psi(4040) 4039±14039\pm 1 0.86±0.070.86\pm 0.07 3S cc¯c\bar{c} Zhang (2007); Segovia et al. (2008a); Li and Chao (2009); Barnes et al. (2005)
ψ\psi(4160) 4191±54191\pm 5 0.48±0.220.48\pm 0.22 2D cc¯c\bar{c} Zhang (2007); Segovia et al. (2008a); Li and Chao (2009); Barnes et al. (2005)
ψ\psi(4230) 4230±84230\pm 8 4S cc¯c\bar{c} Llanes-Estrada (2005); Li and Chao (2009); Shah et al. (2012)
3D cc¯c\bar{c} Zhang (2007); Dai et al. (2015)
cc¯gc\bar{c}g Liu et al. (2012); Luo and Liu (2006); Zhu (2005)
(qcq¯c¯)\left(qc\bar{q}\bar{c}\right) Maiani et al. (2005); Drenska et al. (2009); Ebert et al. (2008)
(qc¯)(q¯c)\left(q\bar{c}\right)\left(\bar{q}c\right) Chiu and Hsieh (2006); Ding (2009); Close and Downum (2009); Close et al. (2010)
ψ\psi(4360) 4368±134368\pm 13 4S cc¯c\bar{c} Segovia et al. (2008a), 3D cc¯c\bar{c} Li and Chao (2009)
ψ\psi(4415) 4421±44421\pm 4 0.58±0.070.58\pm 0.07 4S cc¯c\bar{c} Zhang (2007), 3D cc¯c\bar{c} Segovia et al. (2008a)
5S cc¯c\bar{c} Li and Chao (2009); Shah et al. (2012)
ψ\psi(4660) 4643±94643\pm 9 5S cc¯c\bar{c} Segovia et al. (2008a); Ding et al. (2008)
6S cc¯c\bar{c} Li and Chao (2009); Shah et al. (2012)

In this work, we apply a model developed from Ref. Zhao et al. (2021a, 2022) to predict the masses and leptonic decay widths of higher excited 11^{--} bottomonium bb¯b\bar{b} and charmonium cc¯c\bar{c} states. By considering possible S-D mixtures, and comparing the theoretical results with experimental data, we present possible conventional meson interpretation for the higher excited 11^{--} heavy quarkonium states. The states which can not be accommodated in the present picture will be studied in our future work by applying exotic pictures.

The paper is organized as follows. In Sec. II, a constituent quark model Zhao et al. (2021a, b, 2022); Xu et al. (2019, 2020) is developed to include a spin-dependent interaction Schoberl (1986) for studying higher orbital excited quarkonium states. In Sec. III, theoretical masses and leptonic decay widths of the 11^{--} heavy quarkonium states are calculated and compared with experimental data. Tentative assignments for higher excited heavy quarkonium states are suggested in S-D mixture picture. A summary is given in Sec. IV.

II THEORETICAL MODEL

The non-relativistic Hamiltonian for studying the meson system takes the form,

H\displaystyle H =H0+HSD,\displaystyle=H_{0}+H_{SD}, (1)

with

H0\displaystyle H_{0} =Mave+p22mr+(ArBr),\displaystyle=M_{ave}+\frac{p^{2}}{2m_{r}}+(Ar-\frac{B}{r}),
HSD\displaystyle H_{SD} =CSS(r)σ1σ2+CLS(r)LS+CT(r)S12,\displaystyle=C_{SS}(r)\vec{\sigma}_{1}\cdot\vec{\sigma}_{2}+C_{LS}(r)\vec{L}\cdot\vec{S}+C_{T}(r)S_{12}, (2)

where H0H_{0} is taken from the previous work Zhao et al. (2021a, 2022, b). r\vec{r} is the relative coordinate between the two quarks, MaveM_{ave} is the spin-averaged mass taken from experimental data Workman et al. (2022), and mrm_{r} stands for the reduced quark mass taking the form m1m2/(m1+m2)m_{1}m_{2}/(m_{1}+m_{2}). In the work, we employ mc=1270MeVm_{c}=1270\ {\rm MeV} and mb=4180MeVm_{b}=4180\ {\rm MeV} Workman et al. (2022). L\vec{L}, S\vec{S}, and J\vec{J} are the operators of orbital angular momentum, total spin, and total angular momentum, respectively. The tensor operator S12S_{12} is defined as S12=(3(σ1r)(σ2r)σ1σ2)S_{12}=(3(\vec{\sigma}_{1}\cdot r)(\vec{\sigma}_{2}\cdot r)-\vec{\sigma}_{1}\cdot\vec{\sigma}_{2}).

CSS(r)C_{SS}(r), CLS(r)C_{LS}(r), and CT(r)C_{T}(r) in Eq. (II) are derived by following the Breit-Fermi interaction, that is,

CSS(r)\displaystyle C_{SS}(r) =16mi2ΔVV(r)=2Bσ3eσ2r23πmi2,\displaystyle=\frac{1}{6m_{i}^{2}}\Delta V_{V}(r)=\frac{2B{\sigma}^{3}e^{-{\sigma}^{2}r^{2}}}{3\sqrt{\pi}m_{i}^{2}},
CLS(r)\displaystyle C_{LS}(r) =12mi21r[3dVV(r)drdVS(r)dr]\displaystyle=\frac{1}{2m_{i}^{2}}\frac{1}{r}[3\frac{dV_{V}(r)}{dr}-\frac{dV_{S}(r)}{dr}]
=A2mi21r3Bσπmi2eσ2r2r2+3B2mi2Erf[σr]r3,\displaystyle=-\frac{A}{2m_{i}^{2}}\frac{1}{r}-\frac{3B\sigma}{\sqrt{\pi}m_{i}^{2}}\frac{e^{-{\sigma}^{2}r^{2}}}{r^{2}}+\frac{3B}{2m_{i}^{2}}\frac{Erf[\sigma r]}{r^{3}},
CT(r)\displaystyle C_{T}(r) =112mi2[1rdVV(r)drd2VV(r)dr2]\displaystyle=\frac{1}{12m_{i}^{2}}[\frac{1}{r}\frac{dV_{V}(r)}{dr}-\frac{d^{2}V_{V}(r)}{dr^{2}}]
=Bσeσ2r22πmi2r2Bσ3eσ2r23πmi2+BErf[σr]4mi2r3,\displaystyle=-\frac{B\sigma e^{-{\sigma}^{2}r^{2}}}{2\sqrt{\pi}m_{i}^{2}r^{2}}-\frac{B{\sigma}^{3}e^{-{\sigma}^{2}r^{2}}}{3\sqrt{\pi}m_{i}^{2}}+\frac{BErf[\sigma r]}{4m_{i}^{2}r^{3}}, (3)

Note that we have employed VV(r)=BErf[σr]/rV_{V}(r)=-B\,Erf[\sigma r]/r and VS(r)=ArV_{S}(r)=Ar, taken from Ref. Schoberl (1986).

σi\vec{\sigma}_{i} in Eq. (II) are quark spin operators, and the contribution of σiσj\vec{\sigma}_{i}\cdot\vec{\sigma}_{j} is 3-3 for S=0S=0 and +1+1 for S=1S=1 mesons. The matrix elements of LS\vec{L}\cdot\vec{S} and S12S_{12} in the |JMLS|JMLS\rangle basis read

LS=[J(J+1)L(L+1)S(S+1)]/2,\displaystyle\langle\vec{L}\cdot\vec{S}\rangle=[J(J+1)-L(L+1)-S(S+1)]/2,
S12={2L2L+3J=L+1+2J=L2(L+1)2L1J=L1\displaystyle\langle S_{12}\rangle=\left\{\begin{array}[]{ll}-\frac{2L}{2L+3}&\textrm{$J=L+1$}\\ +2&\textrm{$J=L$}\\ -\frac{2(L+1)}{2L-1}&\textrm{$J=L-1$}\end{array}\right. (7)

The tensor operator S12S_{12} has non-vanishing matrix elements between the two orbital parts of spin-triplet states.

The string tension coefficient AA and Coulomb coefficient BB in Cornell potential V(r)=ArB/rV(r)=Ar-B/r may take different values when AA and BB are fitted to charmonium and bottomonium experimental data. This indicates that AA and BB might be flavor dependent parameters. Inspired by lattice QCD studies Kawanai and Sasaki (2011); Ikeda and Iida (2012), AA and BB are proposed to be mass dependent coupling parameters. For more detailed discussion, one may refer to Ref. Zhao et al. (2021a). The hyperfine coefficient σ\sigma is also proposed to be mass dependent Schoberl (1986).

In this work, parameters AA, BB and σ\sigma are assumed to take the following mass dependent form

A=a+bmi,B=B01mi,σ=σ0mi,\displaystyle A=a+bm_{i},\;B=B_{0}\sqrt{\frac{1}{m_{i}}},\;\sigma=\sigma_{0}m_{i}, (8)

with aa, bb, B0B_{0}, and σ0\sigma_{0} being constants. Four model coupling constants are determined by comparing the theoretical mass results with experimental data of conventional mesons,

a=78650MeV2,b=28MeV,\displaystyle a=78650\ {\rm MeV^{2}},\quad b=28\ {\rm MeV}\,,
B0=30.86MeV1/2,σ0=0.7.\displaystyle B_{0}=30.86\ {\rm MeV^{1/2}}\,,\quad\sigma_{0}=0.7\,. (9)

The fitting results McalM^{cal} for the S- and P-wave ground and first radial excited bottomonium and charmonium meson states are listed in Table 2, together with experimental data MexpM^{exp} from PDG Workman et al. (2022). Some typical theoretical mass results from other works for bottomonium mesons Segovia et al. (2016); Godfrey and Moats (2015); Shah et al. (2012) and charmonium mesons Barnes et al. (2005); Li and Chao (2009) are collected for comparison. Our results are fairly compatible with experimental data.

Table 2: Masses of ground and first radial excited bottomonium and charmonium meson states, with unit in MeV. McalM^{cal} are our fitting results. Experimental data MexpM^{exp} are taken from PDG Workman et al. (2022), and other theoretical results for comparison are from cited sources.
bb¯b\bar{b} JPCJ^{PC} nLnL MexpM^{exp} McalM^{cal} Segovia et al. (2016) Godfrey and Moats (2015) Shah et al. (2012)
ηb\eta_{b} 0+0^{-+} 1S 9399 9394 9455 9402 9392
2S 9999 9989 9990 9976 9991
Υ\Upsilon 11^{--} 1S 9460 9461 9502 9465 9460
2S 10023 10017 10015 10003 10024
hbh_{b} 1+1^{+-} 1P 9899 9894 9879 9882 9896
2P 10260 10270 10240 10250 10260
χb0\chi_{b0} 0++0^{++} 1P 9859 9859 9855 9847 9862
2P 10232 10244 10221 10226 10240
χb1\chi_{b1} 1++1^{++} 1P 9893 9888 9874 9876 9888
2P 10255 10266 10236 10261 10256
χb2\chi_{b2} 2++2^{++} 1P 9912 9905 9886 9897 9908
2P 10269 10280 10246 10261 10268
cc¯c\bar{c} JPCJ^{PC} nLnL MexpM^{exp} McalM^{cal} Barnes et al. (2005)NR Barnes et al. (2005)GI Li and Chao (2009)
ηc\eta_{c} 0+0^{-+} 1S 2984 2987 2982 2975 2979
2S 3638 3633 3630 3623 3623
ψ\psi 11^{--} 1S 3097 3110 3090 3098 3097
2S 3686 3673 3672 3676 3673
hch_{c} 1+1^{+-} 1P 3525 3533 3516 3517 3519
χc0\chi_{c0} 0++0^{++} 1P 3415 3460 3424 3445 3433
2P 3860 3884 3852 3916 3842
χc1\chi_{c1} 1++1^{++} 1P 3510 3528 3505 3510 3510
χc2\chi_{c2} 2++2^{++} 1P 3556 3566 3556 3550 3554
2P 3930 3949 3972 3979 3537

The S-wave and D-wave 11^{--} quarkonium leptonic decay width given by the Van Royen-Weisskopf formula Van Royen and Weisskopf (1967), including radiative QCD corrections for S-wave Barbieri et al. (1979), takes the same form with Segovia et al. (2016)

Γ(n3S1e+e)\displaystyle\Gamma(n^{3}S_{1}\to e^{+}e^{-}) =4α2eq2|RnS(0)|2Mn2(116αs3π),\displaystyle=\frac{4\alpha^{2}e_{q}^{2}|R_{nS}(0)|^{2}}{M_{n}^{2}}(1-\frac{16\alpha_{s}}{3\pi}),
Γ(n3D1e+e)\displaystyle\Gamma(n^{3}D_{1}\to e^{+}e^{-}) =25α2eq2|RnD′′(0)|22mi4Mn2,\displaystyle=\frac{25\alpha^{2}e_{q}^{2}|R^{{}^{\prime\prime}}_{nD}(0)|^{2}}{2m_{i}^{4}M_{n}^{2}}, (10)

where the fine-structure constant α1/137\alpha\simeq 1/137. eqe_{q} is the charge of quarks, MnM_{n} is the mass of the decaying quarkonium states, RnS(0)R_{nS}(0) and RnD(0)R_{nD}(0) are the radial wave functions of the S13{}^{3}S_{1} and D13{}^{3}D_{1} states at the origin respectively. αs\alpha_{s} is the running strong coupling constant, where αs(bb¯)=0.118\alpha_{s}(b\bar{b})=0.118 for bottomonium Shah et al. (2012) and αs(cc¯)=0.26\alpha_{s}(c\bar{c})=0.26 for charmonium Li and Chao (2009).

The difference between performing full integration for leptonic width and applying the lowest order approximation is about 50% for light mesons, but is about 10% for charmonium mesons and 4% for bottomonium mesons. Thus the Van’s formula with the first order approximation is reliable to be employed for estimating heavy quarkonium leptonic widths.

III Results and discussion

III.1 Masses and leptonic widths

Table 3: Present predictions of bottomoium bb¯b\bar{b} and charmonium cc¯c\bar{c} 11^{--} state masses (MeV) and leptonic widths (keV) compared with experimental data from PDG Workman et al. (2022) and others theoretical works from cited sources.
nLnL(bb¯b\bar{b}) MexpM^{exp}(MeV) McalM^{cal}(MeV) Shah et al. (2012) Godfrey and Moats (2015) Wang et al. (2018) Segovia et al. (2016) Γexp\Gamma^{exp}(keV) Γcal\Gamma^{cal}(keV) Shah et al. (2012) Godfrey and Moats (2015) Wang et al. (2018) Segovia et al. (2016)
1S 9460.30±0.269460.30\pm 0.26 9461 9460 9465 9463 9502 1.340±0.0181.340\pm 0.018 1.370 1.203 1.44 1.650 0.71
2S 10023.26±0.3110023.26\pm 0.31 10017 10024 10003 10017 10015 0.612±0.0110.612\pm 0.011 0.626 0.519 0.73 0.821 0.37
1D 10143 10147 10138 10153 10117 0.002 0.001 0.002 0.001
3S 10355.2±0.510355.2\pm 0.5 10379 10346 10354 10356 10349 0.443±0.0080.443\pm 0.008 0.468 0.330 0.53 0.569 0.27
2D 10461 10427 10441 10442 10414 0.003 0.002 0.003 0.003
4S 10579.4±1.210579.4\pm 1.2 10678 10576 10635 10612 10607 0.272±0.0290.272\pm 0.029 0.393 0.242 0.39 0.431 0.21
3D 10739 10637 10698 10675 10653 0.005 0.002 0.003
5S 10942 10755 10878 10822 10818 0.346 0.191 0.33 0.348 0.18
4D 10991 10805 10928 10871 10853 0.006 0.002 0.003
6S 11184 10904 11102 11001 10995 0.313 0.158 0.27 0.286 0.15
5D 11224 10946 11041 11023 0.008 0.003
nLnL(cc¯c\bar{c}) MexpM^{exp}(MeV) McalM^{cal}(MeV) Shah et al. (2012) Li and Chao (2009) Segovia et al. (2008a) Barnes et al. (2005) Γexp\Gamma^{exp}(keV) Γcal\Gamma^{cal}(keV) Shah et al. (2012) Li and Chao (2009) Segovia et al. (2008a) Barnes (2004)
1S 3096.90±0.013096.90\pm 0.01 3110 3097 3097 3096 3090 5.55±0.145.55\pm 0.14 6.02 4.95 6.60 3.93 12.13
2S 3686.10±0.033686.10\pm 0.03 3673 3690 3673 3703 3672 2.33±0.042.33\pm 0.04 2.33 1.69 2.40 1.78 5.03
1D 3773.13±0.353773.13\pm 0.35 3782 3729 3787 3796 3785 0.26±0.020.26\pm 0.02 0.14 0.03 0.22 0.06
3S 4039±14039\pm 1 4046 4030 4022 4097 4072 0.86±0.070.86\pm 0.07 1.55 0.96 1.42 1.11 3.48
2D 4114 4056 4089 4153 4142 0.22 0.04 0.30 0.10
4S 4355 4273 4273 4389 4406 1.19 0.65 0.97 0.78 2.63
3D 4404 4293 4317 4426 0.26 0.04 0.33
5S 4628 4464 4463 4614 0.97 0.49 0.70 0.57
4D 4667 4480 4641 0.20 0.31
6S 4879 4622 4608 4791 0.82 0.39 0.49 0.42
5D 4910 4634 4810 0.23 0.28

We evaluate the masses and leptonic widths of the bottomonium and charmonium meson states using the Hamiltonian in Eq. (1) and the leptonic widths formula in Eq. (II). The theoretical results for the 11^{--} 1S1S to 5D5D states are listed in Table 3, with McalM^{cal} for masses and Γcal\Gamma^{cal} for leptonic widths. The experimental data MexpM^{exp} and Γexp\Gamma^{exp} of Υ\Upsilon(1S) to Υ\Upsilon(4S) and ψ\psi(1S), ψ\psi(2S), ψ\psi(4040), and ψ\psi(3770) are taken from PDG Workman et al. (2022). These states are widely believed to be conventional meson states.

For comparison, we also briefly discuss the results of several works reviewed in Sec. I, and show their predictions in Table 3.

For bottomonium states, the fitting results of masses Shah et al. (2012) can be matched very well with experimental data, but the leptonic widths are all smaller than experimental data especially for Υ\Upsilon(2S), Υ\Upsilon(3S), and ψ\psi(2S).

The theoretical mass results of 11^{--} bottomonium states from Refs Godfrey and Moats (2015); Wang et al. (2018) are roughly compatible with experimental data, and the mass of 3S states has a very nice match with Υ\Upsilon(3S). However, both of leptonic width results are significantly larger than experimental data from Υ\Upsilon(1S) to Υ\Upsilon(4S).

On the other hand, mass results in Ref Segovia et al. (2016) are roughly compatible but leptonic width results are significantly smaller than the data.

For charmonium states, the collected theoretical results of Ref Li and Chao (2009) show that the 1S mass agrees well with the data of J/ψJ/\psi, and the masses of 2S, 1D, and 3S are compatible with the data of ψ\psi(2S), ψ\psi(3770), and ψ\psi(4040). But theoretical leptonic width results are all larger than the corresponded data. The results of Ref Segovia et al. (2008a) show that the theoretical masses are roughly compatible with the data, but the leptonic widths of 1S and 2S states are much smaller than the data.

The theoretical mass results Barnes et al. (2005) are compatible with the data, but the leptonic width results Barnes (2004) are too large due to only the leading order contribution in leptonic width formula considered.

It can be seen from Table 3 that the predictions of mass and leptonic width for higher excited 11^{--} states do not simultaneously match well with experimental data when one considers the meson states in either S-wave or D-wave state only.

III.2 Possible mixtures of nSnS and (n1)D(n-1)D states

Table 4: The mixtures of nSnS and (n1)D(n-1)D 11^{--} charmonium and bottomoium states. MexpM^{exp} and Γexp\Gamma^{exp} are from PDG Workman et al. (2022).
quark mixture Mcal(MeV)M^{cal}{\rm(MeV)} θ°\theta\degree Mψ1M_{\psi_{1}} Assignment Mexp(MeV)M^{exp}{\rm(MeV)} Γψ1\Gamma_{\psi_{1}} Γexp(keV)\Gamma^{exp}{\rm(keV)}
content states Mψ2M_{\psi_{2}} Γψ2\Gamma_{\psi_{2}}
bb¯b\bar{b} 2S 10017 9.0°-9.0\degree , 15.1°15.1\degree 10014 , 10007 Υ(2S)\Upsilon(2S) 10023.26±0.3110023.26\pm 0.31 0.601 0.612±0.0110.612\pm 0.011
1D 10143 10146 , 10153 0.027
bb¯b\bar{b} 3S 10379 12.5°-12.5\degree , 22.2°22.2\degree 10375 , 10363 Υ(3S)\Upsilon(3S) 10355.2±0.510355.2\pm 0.5 0.430 0.443±0.0080.443\pm 0.008
2D 10461 10465 , 10477 0.042
bb¯b\bar{b} 4S 10678 38.0°38.0\degree, 25.3°-25.3\degree 10583 , 10661 Υ(4S)\Upsilon(4S) 10579.4±1.210579.4\pm 1.2 0.288 0.272±0.0290.272\pm 0.029
3D 10739 10834 , 10756 Υ(10753)\Upsilon(10753)? 10753±610753\pm 6 0.109
bb¯b\bar{b} 5S 10942 34.9°34.9\degree, 19.6°-19.6\degree 10897 , 10935 Υ(10860)\Upsilon(10860) 10885.21.6+2.610885.2^{+2.6}_{-1.6} 0.278 0.31±0.070.31\pm 0.07
4D 10991 11036 , 10998 Υ(11020)\Upsilon(11020) 11000±411000\pm 4 0.074 0.13±0.030.13\pm 0.03
cc¯c\bar{c} 2S 3673 2.5°-2.5\degree , 30.6°30.6\degree 3673 , 3615 ψ(2S)\psi(2S) 3686.10±0.033686.10\pm 0.03 2.27 2.33±0.042.33\pm 0.04
1D 3782 3782 , 3840 ψ(3770)\psi(3770) 3773.13±0.353773.13\pm 0.35 0.20 0.26±0.020.26\pm 0.02
cc¯c\bar{c} 3S 4046 21.2°-21.2\degree , 62.6°62.6\degree 4034 , 4139 ψ(4040)\psi(4040) 4039±14039\pm 1 0.98 0.86±0.070.86\pm 0.07
2D 4114 4125 , 4021 ψ(4160)\psi(4160) 4191±54191\pm 5 0.79 0.48±0.220.48\pm 0.22
cc¯c\bar{c} 4S 4355 18.1°-18.1\degree , 68.3°68.3\degree 4349 , 4413 ψ(4360)\psi(4360) 4368±134368\pm 13 0.77
3D 4404 4410 , 4346 ψ(4415)\psi(4415) 4421±44421\pm 4 0.68 0.58±0.070.58\pm 0.07

As reviewed above, it is difficult to simultaneously reproduce masses and leptonic widths of experimental data for higher excited quarkonia under the assumption of pure S- and D-wave states.

Based on the results in Table 3, it is natural to consider altering the theoretical masses and leptonic widths simultaneously by mixing the S and D waves. Dynamically, the coupling of S and D waves may stem from tensor forces. However, detailed calculations reveal that the tensor force in the Hamiltonian in Eq. (1) and (II) is not strong enough to mix the SS and DD waves considerably. One may expect that coupled-channel effects, stemming from the mixing via decay channels, might be the source of the large S-D mixing Heikkila et al. (1984); Ono et al. (1986, 1985); Lu et al. (2016); Fu and Jiang (2019). Or, the meson exchange or multi-gluon exchange may contribute stronger tensor force interactions Machleidt et al. (1987); Glozman and Riska (1996).

The mixing probability is proportional to 1/|δE|21/|\delta E|^{2} in perturbation calculations, where δE\delta E is the energy difference between the two mixed states, and hence only the nearest states may mix up considerably. Based on the results in Table 3, we estimate that the probability for the (n2)D(n-2)D and nSnS mixing as well as the nDnD and nSnS mixing is less than 10% of the probability for the nSnS and (n1)D(n-1)D mixing. It is a reasonable approximation to consider only the mixing between the nearest nSnS and (n1)D(n-1)D states. The mixed states may take the form,

|ψ1=cosθ|nS+sinθ|(n1)D,\displaystyle|\psi_{1}\rangle={\rm{cos}}\theta|nS\rangle+{\rm{sin}}\theta|(n-1)D\rangle,
|ψ2=sinθ|nS+cosθ|(n1)D,\displaystyle|\psi_{2}\rangle=-{\rm{sin}}\theta|nS\rangle+{\rm{cos}}\theta|(n-1)D\rangle, (11)

where θ\theta is mixing angle.

The charmonium states, ψ(2S)\psi(2S), ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160), ψ(4360)\psi(4360) and ψ(4415)\psi(4415), and bottomonium states Υ(2S)\Upsilon(2S), Υ(3S)\Upsilon(3S), Υ(4S)\Upsilon(4S), Υ(10860)\Upsilon(10860), and Υ(11020)\Upsilon(11020) are considered to be SS-DD mixture candidates. The masses, Mψ1M_{\psi_{1}} and Mψ2M_{\psi_{2}}, and the leptonic decay widths, Γψ1\Gamma_{\psi_{1}} and Γψ2\Gamma_{\psi_{2}}, of the states |ψ1|\psi_{1}\rangle and |ψ2|\psi_{2}\rangle are derived,

Mψ1=12(MnS+M(n1)D+(MnSM(n1)D)1cos2θ),\displaystyle M_{\psi_{1}}=\frac{1}{2}(M_{nS}+M_{(n-1)D}+(M_{nS}-M_{(n-1)D})\frac{1}{{\rm{cos}}2\theta}),
Mψ2=12(MnS+M(n1)D+(M(n1)DMnS)1cos2θ),\displaystyle M_{\psi_{2}}=\frac{1}{2}(M_{nS}+M_{(n-1)D}+(M_{(n-1)D}-M_{nS})\frac{1}{{\rm{cos}}2\theta}),
Γψ1=(FcFnSRnS(0)cosθ+F(n1)DR(n1)D′′(0)sinθ)2,\displaystyle\Gamma_{\psi_{1}}=(\sqrt{F_{c}}F_{nS}R_{nS}(0){\rm{cos}}\theta+F_{(n-1)D}R^{{}^{\prime\prime}}_{(n-1)D}(0){\rm{sin}}\theta)^{2},
Γψ2=(FcFnSRnS(0)sinθ+F(n1)DR(n1)D′′(0)cosθ)2\displaystyle\Gamma_{\psi_{2}}=(-\sqrt{F_{c}}{F_{nS}R_{nS}(0)\rm{sin}}\theta+F_{(n-1)D}R^{{}^{\prime\prime}}_{(n-1)D}(0){\rm{cos}}\theta)^{2} (12)

with

FnS=2αeqMnS,FnD=5αeq2mi2MnD,Fc=(116αs3π).\displaystyle F_{nS}=\frac{2\alpha e_{q}}{M_{nS}},\,F_{nD}=\frac{5\alpha e_{q}}{\sqrt{2}m_{i}^{2}M_{nD}},\,F_{c}=(1-\frac{16\alpha_{s}}{3\pi}). (13)

Fitting the theoretical leptonic widths (Γψ1\Gamma_{\psi_{1}} and Γψ2\Gamma_{\psi_{2}}) of the SS-DD mixture states to experimental data leads to two mixing angles θ°\theta\degree, as shown in the 4th column of Table 4. By applying the two angles to Eq. (III.2), we derive two masses for each mixing state shown in the 5th column. It is found that the masses derived with the 1st angle in column 4 are more consistent with experimental data.

The decay widths of E1 radiative transitions are calculated for the SS-DD mixture states, since the radiative transitions are sensitive to the internal structure of states. The decay width for E1 transitions between an initial state n2S+1LJn^{2S+1}L_{J} and final state n2S+1LJn^{\prime 2S^{\prime}+1}L^{\prime}_{J^{\prime}} can be written asSegovia et al. (2016)

Γ(n2S+1LJn2S+1LJ+γ)\displaystyle\Gamma(n^{2S+1}L_{J}\to n^{\prime 2S^{\prime}+1}L^{\prime}_{J^{\prime}}+\gamma)
=4α2eq2k33(2J+1)SfiEδSS|ϵfi|2EfMi,\displaystyle=\frac{4\alpha^{2}e_{q}^{2}k^{3}}{3}(2J^{\prime}+1)S^{E}_{fi}\delta_{SS^{\prime}}|\epsilon_{fi}|^{2}\frac{E_{f}}{M_{i}}, (14)
SfiE=max(L,L){J1JLSL}2,\displaystyle S^{E}_{fi}={\rm max}(L,L^{\prime}){\begin{Bmatrix}J&1&J^{\prime}\\ L^{\prime}&S&L\end{Bmatrix}}^{2}, (15)
ϵfi=3k0Ri(r)[kr2j0(kr2)j1(kr2)]Rf(r)r2𝑑r\displaystyle\epsilon_{fi}=\frac{3}{k}\int_{0}^{\infty}R_{i}(r)\left[\frac{kr}{2}j_{0}\left(\frac{kr}{2}\right)-j_{1}\left(\frac{kr}{2}\right)\right]R_{f}(r)r^{2}dr (16)

where k is the emitted photon momentum. MiM_{i} is the mass of the initial state and EfE_{f} is the energy of the final state, which are taken from established experimental data. SfiES^{E}_{fi} is a the statistical factor. ji(x)j_{i}(x) is the spherical Bessel functions of the first kind. Ri(r)R_{i}(r) and Rf(r)R_{f}(r) are the radial wave function of initial and final states respectively.

Since the E1 transition branching fractions in PDG of Υ\Upsilon(2S), Υ\Upsilon(3S), ψ\psi(2S) and ψ\psi(3770) are clear, E1 transition decay processes, Υ(2S1D)γχbJ(1P)\Upsilon\rm{(2S-1D)}\to\gamma\chi_{b_{J}}\rm{(1P)}, Υ(3S2D)γχbJ(2P)\Upsilon\rm{(3S-2D)}\to\gamma\chi_{b_{J}}\rm{(2P)} and ψ(2S1D)γχbJ(1P)\psi\rm{(2S-1D)}\to\gamma\chi_{b_{J}}\rm{(1P)}, are studied. The E1 decay widths are calculated by applying the SS-DD mixed radial wave function Eq. (III.2) for initial states to Eq. (16). MiM_{i} in Eq. (III.2) for Υ\Upsilon D-wave mixture states are taken from the mass spectrum in Table 4 due to no available data. The theoretical results, compared with experimental data, are listed in Table 5. In this case, experimental data of E1 decay widths is derived from the experimental data of total decay widths and E1 branching fractions of PDG 2022 Workman et al. (2022).

Table 5: Theoretical results and experimental data of E1 radiative transition decay widths of Υ\Upsilon and ψ\psi mixture states.
Initial
state
Final
state
E1exp\mathcal{B}^{exp}_{E1} Workman et al. (2022)
(ΓE1/Γtot\Gamma_{E1}/\Gamma_{tot})
ΓE1exp\Gamma^{exp}_{E1}
(keV)(\rm{keV})
ΓE1the\Gamma^{the}_{E1}
(keV)(\rm{keV})
(Υ(2S)Υ(1D))\bigg{(}\begin{tabular}[]{@{}c@{}}$\Upsilon$(2S)\\ $\Upsilon$(1D)\end{tabular}\bigg{)} γχb0(1P)\gamma\chi_{b0}(1P)
(3.8±0.4)%(3.8\pm 0.4)\%
1.2±0.21.2\pm 0.2
1.0
8.2
(Υ(2S)Υ(1D))\bigg{(}\begin{tabular}[]{@{}c@{}}$\Upsilon$(2S)\\ $\Upsilon$(1D)\end{tabular}\bigg{)} γχb1(1P)\gamma\chi_{b1}(1P)
(6.9±0.4)%(6.9\pm 0.4)\%
2.2±0.32.2\pm 0.3
1.8
4.8
(Υ(2S)Υ(1D))\bigg{(}\begin{tabular}[]{@{}c@{}}$\Upsilon$(2S)\\ $\Upsilon$(1D)\end{tabular}\bigg{)} γχb2(1P)\gamma\chi_{b2}(1P)
(7.15±0.35(7.15\pm 0.35)%
2.3±0.32.3\pm 0.3
2.1
0.3
(Υ(3S)Υ(2D))\bigg{(}\begin{tabular}[]{@{}c@{}}$\Upsilon$(3S)\\ $\Upsilon$(2D)\end{tabular}\bigg{)} γχb0(2P)\gamma\chi_{b0}(2P)
(5.9±0.6)%(5.9\pm 0.6)\%
1.2±0.21.2\pm 0.2
1.1
5.7
(Υ(3S)Υ(2D))\bigg{(}\begin{tabular}[]{@{}c@{}}$\Upsilon$(3S)\\ $\Upsilon$(2D)\end{tabular}\bigg{)} γχb1(2P)\gamma\chi_{b1}(2P)
(12.6±1.2)%(12.6\pm 1.2)\%
2.6±0.52.6\pm 0.5
2.1
3.8
(Υ(3S)Υ(2D))\bigg{(}\begin{tabular}[]{@{}c@{}}$\Upsilon$(3S)\\ $\Upsilon$(2D)\end{tabular}\bigg{)} γχb2(2P)\gamma\chi_{b2}(2P)
(13.1±1.6)%(13.1\pm 1.6)\%
2.7±0.62.7\pm 0.6
2.4
0.2
(ψ(2S)ψ(1D))\bigg{(}\begin{tabular}[]{@{}c@{}}$\psi$(2S)\\ $\psi$(1D)\end{tabular}\bigg{)} γχc0(1P)\gamma\chi_{c0}(1P)
(9.79±0.20)%(9.79\pm 0.20)\%
(0.69±0.06)%(0.69\pm 0.06)\%
28.8±1.428.8\pm 1.4
187.7±23.8187.7\pm 23.8
24.6
138.9
(ψ(2S)ψ(1D))\bigg{(}\begin{tabular}[]{@{}c@{}}$\psi$(2S)\\ $\psi$(1D)\end{tabular}\bigg{)} γχc1(1P)\gamma\chi_{c1}(1P)
(9.75±0.24)%(9.75\pm 0.24)\%
(0.249±0.023)%(0.249\pm 0.023)\%
28.7±1.528.7\pm 1.5
67.7±9.067.7\pm 9.0
35.7
65.3
(ψ(2S)ψ(1D))\bigg{(}\begin{tabular}[]{@{}c@{}}$\psi$(2S)\\ $\psi$(1D)\end{tabular}\bigg{)} γχc2(1P)\gamma\chi_{c2}(1P)
(9.52±0.20)%(9.52\pm 0.20)\%
<6.4×104<6.4\times 10^{-4}
28.0±1.428.0\pm 1.4
<17.4<17.4
32.7
3.1

III.3 Assignments and discussion

The theoretical mass and leptonic width results of 11^{--} heavy quarkonium states are summarized in Table 6, where some possible SS-DD mixing states are listed in brackets, and the tentative assignments for the observed states are provided.

Table 6: Present predictions of bottomoium and charmonium 11^{--} state masses (MeV) and leptonic widths (keV) after possible SS-DD mixture compared with experimental data. The experimental data is taken from PDG Workman et al. (2022).
nLnL MSDcal(MeV)M^{cal}_{S-D}{\rm(MeV)} Assignment Mexp(MeV)M^{exp}{\rm(MeV)} ΓSDcal(keV)\Gamma^{cal}_{S-D}{\rm(keV)} Γexp(keV)\Gamma^{exp}{\rm(keV)} Other assignments
1S 9461 Υ(1S)\Upsilon(1S) 9460.30±0.269460.30\pm 0.26 1.370 1.340±0.0181.340\pm 0.018 1S bb¯b\bar{b} Workman et al. (2022)
(2S1D)\bigg{(}\begin{tabular}[]{@{}c@{}}2S\\ 1D\end{tabular}\bigg{)} (1001410146)\bigg{(}\begin{tabular}[]{@{}c@{}}10014\\ 10146\end{tabular}\bigg{)}
Υ(2S)\Upsilon(2S)
10023.26±0.3110023.26\pm 0.31
0.601
0.027
0.612±0.0110.612\pm 0.011
2S bb¯b\bar{b} Workman et al. (2022)
(3S2D)\bigg{(}\begin{tabular}[]{@{}c@{}}3S\\ 2D\end{tabular}\bigg{)} (1037510465)\bigg{(}\begin{tabular}[]{@{}c@{}}10375\\ 10465\end{tabular}\bigg{)}
Υ(3S)\Upsilon(3S)
10355.2±0.510355.2\pm 0.5
0.430
0.042
0.443±0.0080.443\pm 0.008
3S bb¯b\bar{b} Workman et al. (2022)
(4S3D)\bigg{(}\begin{tabular}[]{@{}c@{}}4S\\ 3D\end{tabular}\bigg{)} (1058310834)\bigg{(}\begin{tabular}[]{@{}c@{}}10583\\ 10834\end{tabular}\bigg{)}
Υ(4S)\Upsilon(4S)
Υ(10753)\Upsilon(10753)?
10579.4±1.210579.4\pm 1.2
10753±610753\pm 6
0.288
0.109
0.272±0.0290.272\pm 0.029
4S bb¯b\bar{b} Workman et al. (2022)
(5S4D)\bigg{(}\begin{tabular}[]{@{}c@{}}5S\\ 4D\end{tabular}\bigg{)} (1089711036)\bigg{(}\begin{tabular}[]{@{}c@{}}10897\\ 11036\end{tabular}\bigg{)}
Υ(10860)\Upsilon(10860)
Υ(11020)\Upsilon(11020)
10885.21.6+2.610885.2^{+2.6}_{-1.6}
11000±411000\pm 4
0.278
0.074
0.31±0.070.31\pm 0.07
0.13±0.030.13\pm 0.03
5S bb¯b\bar{b} Segovia et al. (2016); Wang et al. (2018); Godfrey and Moats (2015); Deng et al. (2017); Dong et al. (2020)
6S bb¯b\bar{b} Segovia et al. (2016); Wang et al. (2018); Godfrey and Moats (2015); Deng et al. (2017); Dong et al. (2020),7S bb¯b\bar{b} Shah et al. (2012)
1S 3110 J/ψJ/\psi 3096.90±0.013096.90\pm 0.01 6.02 5.55±0.145.55\pm 0.14 1S cc¯c\bar{c} Workman et al. (2022)
(2S1D)\bigg{(}\begin{tabular}[]{@{}c@{}}2S\\ 1D\end{tabular}\bigg{)} (36733782)\bigg{(}\begin{tabular}[]{@{}c@{}}3673\\ 3782\end{tabular}\bigg{)}
ψ(2S)\psi(2S)
ψ(3770)\psi(3770)
3686.10±0.033686.10\pm 0.03
3773.13±0.353773.13\pm 0.35
2.27
0.20
2.33±0.042.33\pm 0.04
0.26±0.020.26\pm 0.02
2S cc¯c\bar{c} Workman et al. (2022)
1D cc¯c\bar{c} Liu et al. (2012); Zhang (2007); Li and Chao (2009); Segovia et al. (2008a); Barnes et al. (2005)
(3S2D)\bigg{(}\begin{tabular}[]{@{}c@{}}3S\\ 2D\end{tabular}\bigg{)} (40344125)\bigg{(}\begin{tabular}[]{@{}c@{}}4034\\ 4125\end{tabular}\bigg{)}
ψ(4040)\psi(4040)
ψ(4160)\psi(4160)
4039±14039\pm 1
4191±54191\pm 5
0.98
0.79
0.86±0.070.86\pm 0.07
0.48±0.220.48\pm 0.22
3S cc¯c\bar{c} Zhang (2007); Li and Chao (2009); Segovia et al. (2008a); Barnes et al. (2005)
2D cc¯c\bar{c} Zhang (2007); Li and Chao (2009); Segovia et al. (2008a); Barnes et al. (2005)
ψ(4230)\psi(4230) 4230±84230\pm 8 4S cc¯c\bar{c} Llanes-Estrada (2005); Li and Chao (2009); Shah et al. (2012), 3D cc¯c\bar{c} Zhang (2007); Dai et al. (2015),
cc¯gc\bar{c}g Liu et al. (2012); Luo and Liu (2006); Zhu (2005), (qcq¯c¯)\left(qc\bar{q}\bar{c}\right) Maiani et al. (2005); Drenska et al. (2009); Ebert et al. (2008), (qc¯)(q¯c)\left(q\bar{c}\right)\left(\bar{q}c\right) Chiu and Hsieh (2006); Ding (2009); Close and Downum (2009); Close et al. (2010)
(4S3D)\bigg{(}\begin{tabular}[]{@{}c@{}}4S\\ 3D\end{tabular}\bigg{)} (43494410)\bigg{(}\begin{tabular}[]{@{}c@{}}4349\\ 4410\end{tabular}\bigg{)}
ψ(4360)\psi(4360)
ψ(4415)\psi(4415)
4368±134368\pm 13
4421±44421\pm 4
0.77
0.68
0.58±0.070.58\pm 0.07
4S cc¯c\bar{c} Segovia et al. (2008a), 3D cc¯c\bar{c} Li and Chao (2009)
4S cc¯c\bar{c} Zhang (2007), 3D cc¯c\bar{c} Segovia et al. (2008a), 5S cc¯c\bar{c} Li and Chao (2009); Shah et al. (2012)
5S 4628 ψ(4660)\psi(4660) 4643±94643\pm 9 0.97 5S cc¯c\bar{c} Segovia et al. (2008a); Ding et al. (2008), 6S cc¯c\bar{c} Li and Chao (2009); Shah et al. (2012)
4D 4667 0.20

For excited bottomonium states 2S–1D, 3S–2D, 4S–3D, and 5S–4D mixtures are considered. The Υ\Upsilon(10023) and Υ\Upsilon(10355) are assigned to be largely 2S and 3S state respectively, containing some D wave component. The Υ\Upsilon(10579) is assigned a 4S–3D mixture state due to the large mixing angle.

The leptonic width data of Υ\Upsilon(11020), 0.13±0.030.13\pm 0.03 keV Workman et al. (2022), is averaged from 0.095±0.03±0.0350.095\pm 0.03\pm 0.035 keV Besson et al. (1985) and 0.156±0.0400.156\pm 0.040 keV Lovelock et al. (1985), which is too small to be 5S state where the 5S leptonic width is predicted to be around 0.3 keV in Table 3. Thus, the Υ\Upsilon(10860) and Υ\Upsilon(11020) are assigned to be 5S–4D mixed states due to a congruent matching for both masses and leptonic widths.

The newly reported state Υ\Upsilon(10753) observed by Belle Mizuk et al. (2019) and Belle-II collaboration Adachi et al. (2023) is tentatively assigned to be largely 3D state. For a tetraquark mixture interpretation, one may refer to Ref Ali et al. (2020). More experimental data and theoretical works are essential for making an unambiguous assignment for the Υ\Upsilon(10753).

For the higher excited charmonium states, 2S–1D, 3S–2D, and 4S–3D mixtures are considered. It is found that the ψ\psi(2S) possesses a small D-wave component, and ψ\psi(3770) possesses a small S-wave component, in consistent with our previous work Sreethawong et al. (2015); Limphirat et al. (2014) and other theoretical work Li and Chao (2009).

Since the theoretical results of ψ(4040)\psi(4040) leptonic width (from 0.96–3.48 keV) in Table 3 are all larger than experimental data Workman et al. (2022) (with Γee=0.86±0.07\Gamma_{ee}=0.86\pm 0.07 keV) significantly, and the leptonic width of the widely believed 2D state ψ(4160)\psi(4160) Zhang (2007); Li and Chao (2009); Segovia et al. (2008a); Barnes et al. (2005) is measured to be 0.48±0.220.48\pm 0.22 keV Ablikim et al. (2007), one may naturally consider the ψ(4040)\psi(4040) and ψ(4160)\psi(4160) to be S-D mixture states. The PDG mass, 4191±54191\pm 5 MeV, of the ψ(4160)\psi(4160) Workman et al. (2022)is collected from BES collaboration Ablikim et al. (2007). However, data analyses in Ref. Seth (2005) result in the mass and leptonic width, 4151±44151\pm 4 MeV and 0.83±0.080.83\pm 0.08 keV from Crystal Ball measurement Osterheld et al. (1986), and 4155±54155\pm 5 MeV and 0.84±0.130.84\pm 0.13 keV from BES measurement Bai et al. (2002). Our theoretical results are compatible with the results in Ref. Seth (2005), and we suggest that the ψ(4040)\psi(4040) and ψ(4160)\psi(4160) are 3S and 2D mixed states.

In other conventional meson assignments, the ψ(4360)\psi(4360) is assigned to be 4S cc¯c\bar{c} Segovia et al. (2008a) and 3D cc¯c\bar{c} Li and Chao (2009) while the ψ\psi(4415) is assigned to be 4S cc¯c\bar{c} Zhang (2007), 3D cc¯c\bar{c} Segovia et al. (2008a) and 5S cc¯c\bar{c} Li and Chao (2009); Shah et al. (2012). Considering the congruent matching for both masses and leptonic widths in the work, we assign the ψ(4360)\psi(4360) and ψ(4415)\psi(4415) to be 4S and 3D mixture states, where the ψ(4360)\psi(4360) and ψ(4415)\psi(4415) are largely 4S and 3D state respectively.

ψ(4660)\psi(4660) is tentatively assigned to be 5S state according to the good mass matching, which is consistent with the Refs Segovia et al. (2008a); Ding et al. (2008). The ψ(4230)\psi(4230) can not be accommodated as a cc¯c\bar{c} state in the present work. For other interpretations, one may refer to Refs Liu et al. (2012); Luo and Liu (2006); Zhu (2005) for charmonium hybrid, Refs Maiani et al. (2005); Drenska et al. (2009); Ebert et al. (2008) for tetraquark, and Refs Chiu and Hsieh (2006); Ding (2009); Close and Downum (2009); Close et al. (2010) for molecule picture.

IV Summary

The masses and leptonic decay widths of S-wave and D-wave heavy quarkonium meson states with quantum number JPC=1J^{PC}=1^{--} until 6S and 5D have been evaluated, with all model parameters predetermined by studying all ground and first radial excited S- and P-wave heavy quarkonium mesons. The theoretical results have been matched with experimental data by considering possible S-D mixtures, and the tentative assignments for higher excited states are provided. Based on the assignment, E1 radiative transition decay widths are calculated.

For the 11^{--} bottomonium states, this work suggests that the Υ(2S)\Upsilon(2S) and Υ(3S)\Upsilon(3S) may possesses some D-wave component, and Υ(4S)\Upsilon(4S) may be a 4S-3D mixture state. The Υ\Upsilon(10860) and Υ\Upsilon(11020) are assigned to be 5S-4D mixture states. The Υ\Upsilon(10753) is tentatively assigned to be 4S-3D mixture state, and more experimental data is required to make unambiguous assignment for this newly reported state.

For the 11^{--} charmonium states, the work suggests that the ψ(2S)\psi(2S) and ψ(3770)\psi(3770) may possesses some small D-wave and S-wave component respectively, and the ψ\psi(4040) and ψ\psi(4160) are mainly 3S and 2D state respectively. The ψ\psi(4360) and ψ\psi(4415) are largely 4S and 3D state respectively. The ψ\psi(4660) is assigned to be a 5S state. The ψ\psi(4230) may not be accommodated with the conventional meson picture in the present work.

The work shows that a large SDS-D mixing is essential to understand the experimental data of higher excited quarkonia, but the tensor force in the widely applied Hamiltonian is not strong enough to mix the SS and DD waves considerably. It is expected that the coupled-channel effects, resulting from couplings to common decay channels, might be an important source of the large S-D mixing. Heavy quarkonia will be studied by considering the coupled channel induced S-D mixing in our future work.

Acknowledgements.
This work was supported by (i) Suranaree University of Technology (SUT), (ii) Thailand Science Research and Innovation (TSRI), and (iii) National Science Research and Innovation Fund (NSRF), Project No. 179349.

References