This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A theory of Stimulated and Spontaneous Axion Scattering

M. Smith Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA    Kartiek Agarwal Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA    Ivar Martin Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
Abstract

We present a theory for nonlinear, resonant excitation of dynamical axions by counter-propagating electromagnetic waves in materials that break both 𝒫\mathcal{P} and 𝒯\mathcal{T} symmetries. We show that dynamical axions can mediate an exponential growth in the amplitude of the lower frequency (Stokes) beam. We also discuss spontaneous generation of a counter-propagating Stokes mode, enabled by resonant amplification of quantum and thermal fluctuations in the presence of a single pump laser. Remarkably, the amplification can be orders of magnitude larger than that obtained via stimulated Brillouin and Raman scattering processes, and can be modulated with the application of external magnetic fields, making stimulated axion scattering promising for optoelectronics applications.

Introduction.—

The propagation of electromagnetic (EM) fields through materials is governed by the celebrated Maxwell’s equations. In vacuum, these equations arise from the usual electromagnetic action 𝒮EM=12d3x𝑑t(ϵ0𝑬2𝑩2/μ0)\mathcal{S}_{EM}=\frac{1}{2}\int d^{3}xdt\left(\epsilon_{0}\bm{E}^{2}-\bm{B}^{2}/\mu_{0}\right), where 𝑬\bm{E} and 𝑩\bm{B} are the electric and magnetic fields and ϵ0\epsilon_{0} and μ0\mu_{0} are the vacuum permittivity and permeability, respectively. For waves in a medium, it often suffices to promote these constants to material dependent values without changing the form of the action. However, in materials that break time reversal (𝒯\mathcal{T}) and inversion (𝒫\mathcal{P}) symmetries, a novel term becomes possible

𝒮a=gaγγ4d3x𝑑tθ𝑬𝑩,\displaystyle\mathcal{S}_{a}=-\frac{g_{a\gamma\gamma}}{4}\int d^{3}xdt\ \theta\ \bm{E}\cdot\bm{B}, (1)

with a pseudoscalar field θ\theta (odd under both 𝒯\mathcal{T} and 𝒫\mathcal{P}) coupled to electromangetic fields with strength gaγγg_{a\gamma\gamma}. This unusual term first appeared in quantum chromodynamics in the context of the strong charge conjugation-parity problem  [1, 2, 3]. The elementary excitations of the θ\theta field, “axions”, are one of the prime candidates for cosmological dark matter  [4]. Despite significant efforts [5, 6, 7, 8, 9, 10, 11, 12, 13], they are yet to be detected experimentally.

The magnetoelectric coupling (1) has been known to exist in materials like Cr2O3 for quite some time [14, 15, 16]. The corresponding action, 𝒮ME=d3x𝑑tα~ijEiBj\mathcal{S}_{\text{ME}}=\int d^{3}xdt\ \tilde{\alpha}_{ij}E_{i}B_{j}, typically requires breaking both 𝒫\mathcal{P} and 𝒯\mathcal{T} symmetries. However, recently it has been recognized that even in the presence of 𝒫\mathcal{P} and/or 𝒯\mathcal{T}, such a coupling can exist, if α~ij\tilde{\alpha}_{ij} is given by αϵ0cθδij/π\alpha\epsilon_{0}c\theta\delta_{ij}/\pi, with cc the speed of light, α\alpha the fine structure constant, and θ\theta is an integer multiple of π\pi. Having θ=nπ\theta=n\pi with nn odd is the defining characteristic of topological insulators and is the origin of the topological magnetoelectric effect [17, 4, 2, 20].

When both 𝒫\mathcal{P} and 𝒯\mathcal{T} symmetries are broken, θ\theta is no longer quantized. This is the case in Cr2O3, but also some magnetically doped topological insulators  [2, 6]. In the latter, finite antiferromagnetic (Neel) order leads to the deviation of θ\theta from π\pi, and longitudinal fluctuations of the Neel order parameter translate into fluctuations of θ\theta. To avoid confusion with the static part of θ\theta, these fluctuations are sometimes referred to as dynamical axions (DAs). DAs can hybridize with photons, forming axion-polaritons, and can manifest in a variety of dynamical responses  [3, 23, 24, 25, 26, 27]. Recent experimental work in thin film MnBi2Te4, which is predicted to host DAs, not only observed an axion-like coupling between the Neel order and 𝑬𝑩\bm{E}\cdot\bm{B}  [28] but also directly probed DAs [29].

In this Letter, we focus on an inherently nonlinear phenomenon associated with light propagation in media supporting DAs, namely stimulated axion scattering (SAS). We show that the nonlinear excitation of DAs by two counterpropagating and orthogonally polarized fields leads to energy transfer between the two waves, with the intensity of the lower frequency (Stokes) mode growing exponentially in space. This can lead to reflection and transmission coefficients of the Stokes mode to be greater than 11, and provides a sensitive probe of axion dynamics in the material. We also show that the Stokes mode can be generated spontaneously in the presence of a single applied electromagnetic wave when allowing for quantum or thermal fluctuations of the Neel order. Apart from providing a method for axion spectroscopy, this latter phenomenon can be employed to realize the phase conjugation effect  [30], which can be used in holography and image correction [31].

The exponential growth of the Stokes mode in SAS is similar to that seen in Stimulated Brillouin Scattering (SBS) [32] and Stimulated Raman Scattering (SRS) [33]. Instead of axions, the oscillator modes that enable SBS and SRS are atomic or molecular vibrations. Due to their high sensitivity, SBS and SRS have found applications in microscopy and spectroscopy both in inroganic materials and biological systems  [34, 35, 36, 37, 38]. Furthermore, the orthogonality of polarizations which maximizes SAS, concomitantly minimizes SBS and SRS; this sensitivity to the polarization can thus help isolate these different phenomena. Remarkably, even though the DA is driven by the product of the electric and magnetic fields, which one naively would expect to have weaker coupling to matter than the product of electric fields, the exponential amplification rate for SAS can be orders of magnitude larger than for SBS and SRS. This difference arises from the relatively low stiffness of the DA as compared to phonons, making DAs easier to excite. The strength of SAS and its tunability with external fields point towards possible practical importance of materials that host DAs for various optoelectronics applications where SBS and SRS are currently employed [39, 40].

Refer to caption
Figure 1: Counter-propagating and orthogonally polarized electromagnetic waves impinging on a sample hosting DAs. The lower frequency Stokes mode (blue) is amplified with the aid of the pump pulse (red) and excitation of DA field in the medium with the appropriate wavevector (green and blue).

Equations of Motion.— The minimal action for the coupled EM fields and DAs in a material is given by

𝒮\displaystyle\mathcal{S} =d3x𝑑t12(ϵ𝑬2𝑩2/μ)+α~d3x𝑑tθ𝑬𝑩\displaystyle=\int d^{3}xdt\frac{1}{2}(\epsilon\bm{E}^{2}-\bm{B}^{2}/\mu)+\tilde{\alpha}\int d^{3}xdt\theta\bm{E}\cdot\bm{B}
+Jd3x𝑑t[(tθ)2(vθ)2m2θ2].\displaystyle+J\int d^{3}xdt\left[(\partial_{t}\theta)^{2}-(v\nabla\theta)^{2}-m^{2}\theta^{2}\right]. (2)

Here we allow the permeability μ\mu and permittivity ϵ\epsilon to deviate from their vacuum values. α~=αϵ0c/π\tilde{\alpha}=\alpha\epsilon_{0}c/\pi is the coupling between the EM fields and the DA, J,vJ,\,v and mm are the stiffness, velocity, and mass of the DA, respectively. For the remainder of this letter, we neglect the static part of θ\theta, as it only weakly affects SAS (see discussion in SI).

Minimizing the action leads to the coupled equations of motion

t2𝑬c22𝑬\displaystyle\partial_{t}^{2}\bm{E}-c^{\prime 2}\nabla^{2}\bm{E} =1ϵt𝑱θ,\displaystyle=-\frac{1}{\epsilon}\partial_{t}\bm{J}_{\theta}, (3a)
t2θ+γtθ+v22θ+m2θ\displaystyle\partial_{t}^{2}\theta+\gamma\partial_{t}\theta+v^{2}\nabla^{2}\theta+m^{2}\theta =α~2J𝑬𝑩.\displaystyle=\frac{\tilde{\alpha}}{2J}\bm{E}\cdot\bm{B}. (3b)

Here c=1/μϵc^{\prime}=1/\sqrt{\mu\epsilon} is the speed of light in the material and the current due to DAs is given by 𝑱θ=t𝑷θ+×𝑴θ\bm{J}_{\theta}=\partial_{t}\bm{P}_{\theta}+\bm{\nabla}\times\bm{M}_{\theta}, where the polarization and magnetization induced by the DA are 𝑷θ=α~θ𝑩\bm{P}_{\theta}=\tilde{\alpha}\theta\bm{B} and 𝑴θ=α~θ𝑬\bm{M}_{\theta}=\tilde{\alpha}\theta\bm{E}, respectively. A rate γ\gamma has been introduced phenomenologically to describe the damping of axions (which in turn relates to the relaxation of appropriate spin waves in the material).

As depicted in Fig. 1, we consider two counter propagating electromagnetic waves, 𝑬=𝑬1(z,t)ei(ω1tk1z)+𝑬2(z,t)ei(ω2t+k2z)\bm{E}=\bm{E}_{1}(z,t)e^{i(\omega_{1}t-k_{1}z)}+\bm{E}_{2}(z,t)e^{i(\omega_{2}t+k_{2}z)} + c.c., where 𝑬1(2)\bm{E}_{1(2)} are the slowly varying envelope functions and ω1(2)\omega_{1(2)} and k1(2)k_{1(2)} their frequency and wavevector in the DA medium, respectively; the waves are oriented such that 𝑬1(2)𝑩2(1)\bm{E}_{1(2)}\parallel\bm{B}_{2(1)} and propagating along the zz-axis. In the following we will ignore the spatial derivative part on the LHS of (3b), using the fact that the axion velocity is much smaller than the speed of light. Then, if the difference of the incoming light beam frequencies Ω=ω1ω2\Omega=\omega_{1}-\omega_{2} matches the DA energy mm, DAs will be resonantly excited. We refer to the higher frequency (ω1\omega_{1}) mode as the pump, and the lower frequency (ω2\omega_{2}) mode as the Stokes mode. We will also assume that Ωω1,2\Omega\ll\omega_{1,2}, which allows us to use the rotating wave approximation. Making the ansatz θ=θ12(z,t)ei(ΩtQz)\theta=\theta_{12}(z,t)e^{i(\Omega t-Qz)} + c.c., with Q=k1+k2Q=k_{1}+k_{2} and plugging in the solution for θ12\theta_{12} from Eq. (3b) into Eq. (3a), we find for the envelope functions E1,2E_{1,2} in the slowly varying envelope approximation:

zE1+1ctE1\displaystyle\nabla_{z}E_{1}+\frac{1}{c^{\prime}}\partial_{t}E_{1} =iω1c2α~ϵθ12E2,\displaystyle=-\frac{i\omega_{1}}{c^{\prime 2}}\frac{\tilde{\alpha}}{\epsilon}\theta_{12}E_{2}, (4a)
zE21ctE2\displaystyle\nabla_{z}E_{2}-\frac{1}{c^{\prime}}\partial_{t}E_{2} =iω2c2α~ϵθ12E1.\displaystyle=\frac{i\omega_{2}}{c^{\prime 2}}\frac{\tilde{\alpha}}{\epsilon}\theta_{12}^{*}E_{1}. (4b)

In the limit when E1E_{1} can be assumed constant (|E1||E2||E_{1}|\gg|E_{2}|), the RHS of Eq. (4b) can be viewed as giving an imaginary contribution to the index of refraction, which on resonance, Ω=m\Omega=m, goes as cgAI1/(2ω1)-c^{\prime}g_{A}I_{1}/(2\omega_{1}), where gAg_{A} is the gain coefficient defined below in Eq. (6) and I1=2ϵ0c|E1|2I_{1}=2\epsilon_{0}c^{\prime}|E_{1}|^{2} is the intensity of the pump. This imaginary contribution to the index of refraction makes the amplitude of the Stokes mode E2E_{2} grow exponentially as a function of zz.

We can find time-independent solutions to the above equations for arbitrary incoming beam intensities and frequencies. Writing Eqs. (4) in terms of the intensites Ii=2ϵ0c|Ei|2I_{i}=2\epsilon_{0}c^{\prime}|E_{i}|^{2}, their real parts yield

zI1\displaystyle\nabla_{z}I_{1} =gAI1I2\displaystyle=-g_{A}I_{1}I_{2} (5a)
zI2\displaystyle\nabla_{z}I_{2} =gAξ12I1I2\displaystyle=-g_{A}\xi_{12}I_{1}I_{2} (5b)

where

gA\displaystyle g_{A} =α2n4π2c2ϵ0ϵω1γ1JΩ(γΩ)2(m2Ω2)2+(γΩ)2.\displaystyle=\frac{\alpha^{2}n^{4}}{\pi^{2}c^{2}}\cdot\frac{\epsilon_{0}}{\epsilon}\cdot\frac{\omega_{1}}{\gamma}\cdot\frac{1}{J\Omega}\cdot\frac{(\gamma\Omega)^{2}}{(m^{2}-\Omega^{2})^{2}+(\gamma\Omega)^{2}}. (6)

Here, gAg_{A} is the gain coefficient for the SAS process mentioned above, ξ12=ω2/ω1\xi_{12}=\omega_{2}/\omega_{1} and n=ϵμ/(ϵ0μ0)n=\sqrt{\epsilon\mu/(\epsilon_{0}\mu_{0})} is the index of refraction of the DA medium. Note that Eqs. (5) imply zI1/ω1=zI2/ω2\nabla_{z}I_{1}/\omega_{1}=\nabla_{z}I_{2}/\omega_{2} which can be interpreted as the conservation of photon number between the Stokes and pump fields (single absorbed pump photon converts into single Stokes photon and DA). The pump beam enters the sample at z=0z=0, while the Stokes beam at the opposite end at z=Lz=L. In the limit ξ12I1(0)I2(0)\xi_{12}I_{1}(0)\gg I_{2}(0), the output Stokes intensity is readily obtained and found to grow exponentially in both the pump intensity and sample length:

I2(0)\displaystyle I_{2}(0) I2(L)eGA,GAgAξ12I1(0)L.\displaystyle\approx I_{2}(L)e^{G_{A}},\quad G_{A}\equiv g_{A}\xi_{12}I_{1}(0)L. (7)

The pump intensity I1(L)I_{1}(L) can be obtained using the photon conservation equation; a general solution for arbitrary pump and Stokes intensities is given in the SI.

Effect strength estimate. We now estimate gAg_{A} using model parameters for Bi2Se3 doped with Fe [4]. The axion stiffness JJ is given by (see SI for more details)

J=M02d3k(2π)3i=14di216(i=15di2)5/2103/216(2π)3M02A1A22\displaystyle J=M_{0}^{2}\int\frac{d^{3}k}{(2\pi)^{3}}\frac{\sum_{i=1}^{4}d_{i}^{2}}{16\left(\sum_{i=1}^{5}d_{i}^{2}\right)^{5/2}}\approx\frac{10^{3/2}}{16(2\pi)^{3}}\frac{M_{0}^{2}}{A_{1}A_{2}^{2}} (8)

where did_{i} are parameters in an effective four-band model for the system, A1(2)A_{1(2)} are velocities and M0M_{0} is the gap at the Γ\Gamma point. Using M0=.03M_{0}=-.03 eV, such that the band gap is trivial, A1=2.2A_{1}=2.2 eV\cdotÅ , A2=4.1A_{2}=4.1 eV\cdotÅ [4], an axion mass m=2m=2 meV, magnon lifetime τ=0.1\tau=0.1 ns, pump frequency ω1=1.481\omega_{1}=1.481 THz, index of refraction n=1n=1, and assuming we are on resonance, we find gA=11.1 m/GWg_{A}=11.1\text{ m/GW}.

Importantly, gAg_{A} is proportional to the magnon lifetime and may be larger as magnon lifetimes can exceed 1010010-100 ns [1]. Conversely, the gain bandwidth is protortional to the magnon relaxation rate; see Eq. (6). Thus, an increase of the bandwidth can be traded for a decrease in gain amplitude and vice versa. We also note that gAg_{A} is inversely proportional to the Neel temperature, as mkBTNm\sim k_{B}T_{N} which can be modulated, for instance, by applying a magnetic field perpendicular to the AFM ordering direction. The controllability of gain parameters using external fields makes media supporting DAs potentially more versatile for non-linear amplification than materials where SBS, SRS or inversion breaking χ(2)\chi^{(2)} non-linearities [42] are employed.

The estimated gain gAg_{A} is at least an order of magnitude larger than that obtained with SBS or SRS in materials typically used for nonlinear optics [5]. These processes are similar to SAS with the distinction that SBS and SRS involve lattice and molecular vibrations, respectively, in lieu of axions. The large SAS effect is at first surprising given that SBS and SRS proceed via a putatively stronger coupling δϵ𝑬𝑬\sim\delta\epsilon\bm{E}\cdot\bm{E}, where δϵ\delta\epsilon is a change in the dielectric constant due to lattice or molecular vibrations while the former corresponds to a weaker coupling θ𝑬𝑩\sim\theta\bm{E}\cdot\bm{B}. In the SI, we argue that the reason for the strength of SAS in comparison to SBS (which in turn is generally stronger than SRS) is because of the lower stiffness of axions compared to phonons, making them easier to excite. Another process used for parameteric amplification when inversion symmetry is absent are χ(2)\chi^{(2)} non-linearities. Here, the gain coefficient scales as I\sim\sqrt{I} and is generically weaker than that for SAS, SBS, and SRS, but the gain bandwidth is much broader (for a quantiative comparison, see Ref. [42]). In short, SAS is a strong effect that could be used for parameteric amplification depending on the precise requirements of gain, bandwidth, and wavelength of interest.

Finally, we note that the maximum amplification obtainable is not without bounds. The DA amplitude is bounded due to the finite amplitude of the underlying Neel order. The deviation in the static θ\theta from π\pi in AFM topological insulators is given by δθ=m5/M0\delta\theta=-m_{5}/M_{0} [3], where m5kBTNm_{5}\sim k_{B}T_{N} is the contribution of the longitudinal AFM order to the electronic parameter d5d_{5} introduced above. This limits the amplitude of DA to |θ(z)||m5/M0|\mathinner{\!\left\lvert\theta(z)\right\rvert}\leq\mathinner{\!\left\lvert m_{5}/M_{0}\right\rvert}. Since θ(z)\theta(z) is excited by the product of the pump and Stokes fields, this puts a bound on the geometric mean of the local intensities, I1(z)I2(z)<2αω1/(πcgA)\sqrt{I_{1}(z)I_{2}(z)}<2\alpha\omega_{1}/(\pi cg_{A}). While this does not bound the relative gain (I2(0)/I2(L)I_{2}(0)/I_{2}(L)), it asserts a bound on the maximum output Stokes intensity.

Refer to caption
Figure 2: Reflectance |r|\mathinner{\!\left\lvert r\right\rvert} (red) and transmittance |t|\mathinner{\!\left\lvert t\right\rvert} (blue) for the Stokes mode plotted as a function of refractive index nn, obtained numerically for a finite sample of length L=600L=600 μ\mum with a gain factor of GA1.32G_{A}\approx 1.32 at n=1n=1. Solid (dashed) lines correspond to simulations in the presence (absence) of DAs. Dot-dashed lines are obtained by geometrically summing amplitudes of all possible light paths accounting for gain and phase accrued in propagating inside the sample. Inset shows the transmission as a function of applied pump frequency at n=1n=1. The full set of parameters can be found in the SI.

Boundary effects:— We now consider a more detailed treatment of the setup in Fig. 1 accounting for boundary conditions. The bulk equations of motion can be solved semi-analytically and a solution consistent with the boundary conditions can be found numerically by iteration; see SI for details. In Fig. 2, the numerically computed reflectance and transmittance coefficients of the Stokes mode are plotted as a function of index of refraction of the DA medium. We used a sample length L=600L=600 μ\mum, so that 2QL12QL\gg 1, which simplifies the treatment of the nonlinearity (see SI for details). The electric field amplitudes in the incident waves are E1a=5.5×103E_{1a}=5.5\times 10^{-3} V/nm and E2a=106E_{2a}=10^{-6} V/nm; this leads to a gain factor for the Stokes mode GA1.32G_{A}\approx 1.32 at n=1n=1. The transmittance being greater than 1 is a direct consequence of the exponential gain of the Stokes intensity governed by Eq. (7). Moreover, when the index of refraction n1n\neq 1, reflections at the boundaries occur, and a part of the Stokes beam can exit the sample in the direction opposite to its incidence, resulting in reflectance coefficients that can also exceed one.

Note that the Stokes and pump beam polarizations remain unchanged as they propagate through the medium if θ\theta has no static part (A static contribution to θ\theta due to the equilibrium AFM order is generally present; however, even θ=π\theta=\pi in topological insulators produces only a very small Kerr rotation  [25, 16]. See SI for details). This simplification allows one to compute the reflection and transmission coefficients of the Stokes’ mode by geometrically adding up contributions from all possible paths of the beam (with an arbitrary number of internal reflections) accounting for the phase eik2Le^{ik_{2}L} and gain eGAe^{G_{A}} factors accrued along the segments of the path. This analytical computation matches the exact result obtained by numerical iteration well, predicting a series of Fabry-Perot type resonances where the Stokes intensity can be greatly amplified (see an example in Fig. 2, and the analytical derivation in Eqs. (S74-77) of the SI).

Refer to caption
Refer to caption
Figure 3: Log-intensities, in W/cm2\text{W}/\text{cm}^{2}, of the pump (red) and Stokes (blue) beams as they traverse (and internally reflect) the DA sample. Arrows indicate propagation direction. Here we used L=600L=600 μ\mum, n=1.8n=1.8. Top: parametric amplification of Stokes intensity with E1a=.01E_{1a}=.01 V/nm and E2a=107E_{2a}=10^{-7} V/nm and Bottom: Spontaneous generation of Stokes beam in the presence of applied pump field with E1a=0.0125V/nmE_{1a}=0.0125V/nm.

Spontaneous Emission:— We now explore the possibility of spontaneous generation of the Stokes mode due to the resonant amplification of quantum or thermal fluctuations in the DA medium in the presence of a single coherent source. Including Langevin fluctuations in Eq. (3b), and solving for θ\theta and E2E_{2} in the presence of a strong and thus approximately spatially constant E1E_{1}, we find the average Stokes intensity emitted at z=0z=0 (See SI) to be given by [8, 9, 10]

I2(0,t=)\displaystyle\langle I_{2}(0,t=\infty)\rangle =GAINoiseeGA/2[I0(GA/2)I1(GA/2)]\displaystyle=G_{A}I_{\text{Noise}}e^{G_{A}/2}\left[I_{0}(G_{A}/2)-I_{1}(G_{A}/2)\right] (9)

where Ik(x)I_{k}(x) is the kthk^{\text{th}} modified Bessel function of the first kind, GAG_{A} is the gain factor as defined above, and INoiseI_{\text{Noise}} is an effective seed Stokes intensity,

INoise\displaystyle I_{\text{Noise}} =ϵ04ϵcoth(Ω2kBT)ω2γA61011 W/cm2.\displaystyle=\frac{\epsilon_{0}}{4\epsilon}\coth\left(\frac{\hbar\Omega}{2k_{B}T}\right)\frac{\omega_{2}\gamma}{A}\approx 6\cdot 10^{-11}\text{ W/cm${}^{2}$}. (10)

We assume ω2=1\omega_{2}=1 THz and γ=0.04\gamma=0.04 meV as above, sample cross-section Aλ22=3.55 mm2A\approx\lambda_{2}^{2}=3.55~{}\text{ mm}^{2} and kBT=1.3k_{B}T=1.3 meV. The temperature TT and sample cross-section AA enter due to the average fluctuation strength of the dynamical axion |θ|2T/A\langle|\theta|^{2}\rangle\propto T/A (in the classical limit) as discussed in the SI. In the large gain limit GA1G_{A}\gg 1, Eq. (9) shows that the amplitude of the Stokes mode grows exponentially with the length of the sample, much like the stimulated case. We note again that the exponential growth is limited by the condition, I2I1I_{2}\ll I_{1}, saturating when intensities become comparable.

Conclusion:— SAS described in this paper is a qualitatively strong phenomenon that may be useful for spectroscopic studies of condensed matter axions, and could also have practical applications. For our estimates we considered Bi2Se3 which has well established electronic parameters, and is expected to harbor an AFM phase when doped with Fe (but has not yet been experimentally realized). The band gap and the putative Néel temperature are small—this limits the temperatures where the effect is present, T<TNT<T_{N}, as well as the frequencies of the electromagnetic sources, ω1,2<|M0|\omega_{1,2}<|M_{0}|. The above discussion also applies to thin films of MnBi2Te4\text{MnBi}_{2}\text{Te}_{4}, which likewise has a small band gap but a relatively large TN21T_{N}\sim 21 K  [28]. Using Eq. (8), we find a similar gain coefficient gAg_{A}. We note here that bulk MnBi2Te4\text{MnBi}_{2}\text{Te}_{4} possesses parity symmetry, and thus quantized θ\theta, which should make SAS vanish in bulk samples. SAS should also be present in known magnetoelectrics, such as Cr2O3\text{Cr}_{2}\text{O}_{3}. In Cr2O3\text{Cr}_{2}\text{O}_{3}, a significantly larger band gap (3 eV) allows application of much higher frequency pump and Stokes beams without deleterious bulk absorption, and the high Neel temperature (300 K) [47] should allow for observing SAS at room temperature. The gain coefficient benefits from higher frequency sources, though is likely suppressed by the larger band gap. An accurate estimate of gAg_{A} for Cr2O3\text{Cr}_{2}\text{O}_{3} is left for future work.

We would like to mention that the general framework of stimulated scattering, SAS, SBS, or SRS, thanks to its exquisite selectivity and sensitivity can have many applications in condensed matter systems. In particular, it may be useful for detecting other long sought excitations such as the Higgs mode [48, 49], or dark Josephson plasmons [50].

Finally, it is interesting to consider whether cosmic axions can be excited in a similar fashion by colliding sufficiently strong orthgonally polarized laser beams. The problem of light-by-light scattering has rich history, form the elastic Euler-Heisenberg scattering [51, 52, 53], to inelastic Beit-Wheeler electron-positron pair creation [54]. At low photon frequencies, elastic scattering is extremely weak and hard to detect except in some special cases [55]; inelastic scattering [54], on the other hand, requires very high frequency photons [56]. In this regard, SAS may be advantageous since the axion mass is expected to be in the sub eV range, and axions could be excited resonantly. Even if such experiments do not lead to the detection of cosmic axions, they should put new bounds on the mass and the coupling to this elusive particle.

Note:—

The authors of Ref. [26] considered a similar set up where DAs were excited by counter-propagating electromagnetic waves. They do not include, however, the back-action of DAs on the driving fields crucial in SAS, instead studying the DA contribution to time-resolved Kerr rotations of a probe beam.

Data Availability:—

The code used to generate plots in Figs 2 and 3 can be obtained in the Harvard Dataverse with the identifier https://doi.org/10.7910/DVN/PZPUAW.

Acknowledgements:—

We thank V. Quito, P. Orth, S.-Y. Xu, R. McQueeney, J. Curtis, A. Bhattacharya, A. Burkov, A. Hoffman, and D. Basov for useful discussions. This work was supported by the Center for the Advancement of Topological Semimetals (CATS), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE) Office of Science (SC), Office of Basic Energy Sciences (BES), through the Ames National Laboratory under contract DE-AC02-07CH11358. The work of KA, particularly on the sample boundary effects, was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

References

  • Peccei and Quinn [1977] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Pseudoparticles, Physical Review Letters 38, 1440 (1977), publisher: American Physical Society.
  • Weinberg [1978] S. Weinberg, A New Light Boson?, Physical Review Letters 40, 223 (1978), publisher: American Physical Society.
  • Wilczek [1978] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Physical Review Letters 40, 279 (1978), publisher: American Physical Society.
  • Wilczek [1987] F. Wilczek, Two applications of axion electrodynamics, Physical Review Letters 58, 1799 (1987), publisher: American Physical Society.
  • Sikivie [1983] P. Sikivie, Experimental Tests of the ”Invisible” Axion, Physical Review Letters 51, 1415 (1983), publisher: American Physical Society.
  • Rybka [2014] G. Rybka, Direct detection searches for axion dark matter, Physics of the Dark Universe DARK TAUP2013, 4, 14 (2014).
  • Budker et al. [2014] D. Budker, P. W. Graham, M. Ledbetter, S. Rajendran, and A. O. Sushkov, Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Physical Review X 4, 021030 (2014), publisher: American Physical Society.
  • Brubaker et al. [2017] B. Brubaker, L. Zhong, Y. Gurevich, S. Cahn, S. Lamoreaux, M. Simanovskaia, J. Root, S. Lewis, S. Al Kenany, K. Backes, I. Urdinaran, N. Rapidis, T. Shokair, K. van Bibber, D. Palken, M. Malnou, W. Kindel, M. Anil, K. Lehnert, and G. Carosi, First Results from a Microwave Cavity Axion Search at 24 microeV, Physical Review Letters 118, 061302 (2017), publisher: American Physical Society.
  • MADMAX Working Group et al. [2017] MADMAX Working Group, A. Caldwell, G. Dvali, B. Majorovits, A. Millar, G. Raffelt, J. Redondo, O. Reimann, F. Simon, and F. Steffen, Dielectric Haloscopes: A New Way to Detect Axion Dark Matter, Physical Review Letters 118, 091801 (2017), publisher: American Physical Society.
  • Irastorza and Redondo [2018] I. G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Progress in Particle and Nuclear Physics 102, 89 (2018).
  • Goryachev et al. [2018] M. Goryachev, B. T. McAllister, and M. E. Tobar, Axion detection with negatively coupled cavity arrays, Physics Letters A Special Issue in memory of Professor V.B. Braginsky, 382, 2199 (2018).
  • Lawson et al. [2019] M. Lawson, A. J. Millar, M. Pancaldi, E. Vitagliano, and F. Wilczek, Tunable Axion Plasma Haloscopes, Physical Review Letters 123, 141802 (2019), publisher: American Physical Society.
  • Røising et al. [2021] H. S. Røising, B. Fraser, S. M. Griffin, S. Bandyopadhyay, A. Mahabir, S.-W. Cheong, and A. V. Balatsky, Axion-matter coupling in multiferroics, Physical Review Research 3, 033236 (2021), publisher: American Physical Society.
  • Wiegelmann et al. [1994] H. Wiegelmann, A. G. M. Jansen, P. Wyder, J.-P. Rivera, and H. Schmid, Magnetoelectric effect of Cr2O3 in strong static magnetic fields, Ferroelectrics 162, 141 (1994), publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00150199408245099.
  • Coh et al. [2011] S. Coh, D. Vanderbilt, A. Malashevich, and I. Souza, Chern-Simons orbital magnetoelectric coupling in generic insulators, Physical Review B 83, 085108 (2011), publisher: American Physical Society.
  • Wu et al. [2016] L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, and N. P. Armitage, Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator, Science 354, 1124 (2016), publisher: American Association for the Advancement of Science.
  • Qi et al. [2008] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Physical Review B 78, 195424 (2008), publisher: American Physical Society.
  • Zhang et al. [2009] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nature Physics 5, 438 (2009), number: 6 Publisher: Nature Publishing Group.
  • Li et al. [2010] R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Dynamical axion field in topological magnetic insulators, Nature Physics 6, 284 (2010), number: 4 Publisher: Nature Publishing Group.
  • Tse and MacDonald [2010] W.-K. Tse and A. H. MacDonald, Giant Magneto-Optical Kerr Effect and Universal Faraday Effect in Thin-Film Topological Insulators, Physical Review Letters 105, 057401 (2010), publisher: American Physical Society.
  • Sekine and Nomura [2021] A. Sekine and K. Nomura, Axion electrodynamics in topological materials, Journal of Applied Physics 129, 141101 (2021).
  • Sekine and Nomura [2016] A. Sekine and K. Nomura, Chiral Magnetic Effect and Anomalous Hall Effect in Antiferromagnetic Insulators with Spin-Orbit Coupling, Physical Review Letters 116, 096401 (2016), publisher: American Physical Society.
  • Taguchi et al. [2018] K. Taguchi, T. Imaeda, T. Hajiri, T. Shiraishi, Y. Tanaka, N. Kitajima, and T. Naka, Electromagnetic effects induced by a time-dependent axion field, Physical Review B 97, 214409 (2018), publisher: American Physical Society.
  • Liu and Wang [2020] Z. Liu and J. Wang, Anisotropic topological magnetoelectric effect in axion insulators, Physical Review B 101, 205130 (2020), publisher: American Physical Society.
  • Ahn et al. [2022] J. Ahn, S.-Y. Xu, and A. Vishwanath, Theory of optical axion electrodynamics and application to the Kerr effect in topological antiferromagnets, Nature Communications 13, 7615 (2022), number: 1 Publisher: Nature Publishing Group.
  • Liebman et al. [2023] O. Liebman, J. Curtis, I. Petrides, and P. Narang, Multiphoton Spectroscopy of a Dynamical Axion Insulator (2023).
  • Gao et al. [2024] Z.-Q. Gao, T. Wang, M. P. Zaletel, and D.-H. Lee, Detecting axion dynamics on the surface of magnetic topological insulators (2024), arXiv:2409.17230 [cond-mat].
  • Gao et al. [2021] A. Gao, Y.-F. Liu, C. Hu, J.-X. Qiu, C. Tzschaschel, B. Ghosh, S.-C. Ho, D. Bérubé, R. Chen, H. Sun, Z. Zhang, X.-Y. Zhang, Y.-X. Wang, N. Wang, Z. Huang, C. Felser, A. Agarwal, T. Ding, H.-J. Tien, A. Akey, J. Gardener, B. Singh, K. Watanabe, T. Taniguchi, K. S. Burch, D. C. Bell, B. B. Zhou, W. Gao, H.-Z. Lu, A. Bansil, H. Lin, T.-R. Chang, L. Fu, Q. Ma, N. Ni, and S.-Y. Xu, Layer Hall effect in a 2D topological axion antiferromagnet, Nature 595, 521 (2021), number: 7868 Publisher: Nature Publishing Group.
  • Qiu and et. al. [2024] J.-X. Qiu and et. al., Observation of the dynamical axion quasiparticle by coherent control of berry curvature in 2d mnbi2te4 (2024), unpublished.
  • Zel’dovich et al. [1985] B. Y. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation, edited by T. Tamir, Springer Series in Optical Sciences, Vol. 42 (Springer, Berlin, Heidelberg, 1985).
  • Hillman et al. [2013] T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, Digital optical phase conjugation for delivering two-dimensional images through turbid media, Scientific Reports 3, 1909 (2013), publisher: Nature Publishing Group.
  • Brillouin [1922] L. Brillouin, Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l’agitation thermique, Annales de Physique 9, 88 (1922), number: 17 Publisher: EDP Sciences.
  • Hellwarth [1963] R. W. Hellwarth, Theory of Stimulated Raman Scattering, Physical Review 130, 1850 (1963), publisher: American Physical Society.
  • Koski and Yarger [2005] K. J. Koski and J. L. Yarger, Brillouin imaging, Applied Physics Letters 87, 061903 (2005).
  • Scarcelli and Yun [2008] G. Scarcelli and S. H. Yun, Confocal Brillouin microscopy for three-dimensional mechanical imaging, Nature Photonics 2, 39 (2008), publisher: Nature Publishing Group.
  • Ballmann et al. [2015] C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, Stimulated Brillouin Scattering Microscopic Imaging, Scientific Reports 5, 18139 (2015), publisher: Nature Publishing Group.
  • Cheng et al. [2021] Q. Cheng, Y. Miao, J. Wild, W. Min, and Y. Yang, Emerging applications of stimulated Raman scattering microscopy in materials science, Matter 4, 1460 (2021), publisher: Elsevier.
  • Ranjan and Sirleto [2024] R. Ranjan and L. Sirleto, Stimulated Raman Scattering Microscopy: A Review, Photonics 11, 489 (2024), number: 6 Publisher: Multidisciplinary Digital Publishing Institute.
  • Cerny et al. [2004] P. Cerny, H. Jelinkova, P. G. Zverev, and T. T. Basiev, Solid state lasers with Raman frequency conversion, Progress in Quantum Electronics 28, 113 (2004).
  • Bai et al. [2018] Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R. P. Mildren, Y. Wang, and Z. Lu, Stimulated Brillouin scattering materials, experimental design and applications: A review, Optical Materials 75, 626 (2018).
  • Bayrakci et al. [2013] S. P. Bayrakci, D. A. Tennant, P. Leininger, T. Keller, M. C. R. Gibson, S. D. Wilson, R. J. Birgeneau, and B. Keimer, Lifetimes of Antiferromagnetic Magnons in Two and Three Dimensions: Experiment, Theory, and Numerics, Physical Review Letters 111, 017204 (2013), publisher: American Physical Society.
  • Manzoni and Cerullo [2016] C. Manzoni and G. Cerullo, Design criteria for ultrafast optical parametric amplifiers, Journal of Optics 18, 103501 (2016), publisher: IOP Publishing.
  • Boyd [2020] R. W. Boyd, ed., Nonlinear Optics (Academic Press, 2020).
  • von Foerster and Glauber [1971] T. von Foerster and R. J. Glauber, Quantum Theory of Light Propagation in Amplifying Media, Physical Review A 3, 1484 (1971), publisher: American Physical Society.
  • Raymer and Mostowski [1981] M. G. Raymer and J. Mostowski, Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation, Physical Review A 24, 1980 (1981), publisher: American Physical Society.
  • Boyd et al. [1990] R. W. Boyd, K. Rzaewski, and P. Narum, Noise initiation of stimulated Brillouin scattering, Physical Review A 42, 5514 (1990), publisher: American Physical Society.
  • Iino et al. [2019] T. Iino, T. Moriyama, H. Iwaki, H. Aono, Y. Shiratsuchi, and T. Ono, Resistive detection of the Néel temperature of Cr2O3 thin films, Applied Physics Letters 114, 022402 (2019).
  • Podolsky et al. [2011] D. Podolsky, A. Auerbach, and D. P. Arovas, Visibility of the amplitude (Higgs) mode in condensed matter, Physical Review B 84, 174522 (2011), publisher: American Physical Society.
  • Matsunaga et al. [2014] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor, Science 345, 1145 (2014), publisher: American Association for the Advancement of Science.
  • Nicoletti et al. [2022] D. Nicoletti, M. Buzzi, M. Fechner, P. E. Dolgirev, M. H. Michael, J. B. Curtis, E. Demler, G. D. Gu, and A. Cavalleri, Coherent emission from surface Josephson plasmons in striped cuprates, Proceedings of the National Academy of Sciences 119, e2211670119 (2022), publisher: Proceedings of the National Academy of Sciences.
  • Heisenberg and Euler [1936] W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons, Zeitschrift für Physik 98, 714 (1936).
  • Karplus and Neuman [1951] R. Karplus and M. Neuman, The Scattering of Light by Light, Physical Review 83, 776 (1951), publisher: American Physical Society.
  • Ueki and Sauls [2024] H. Ueki and J. A. Sauls, Photon Frequency Conversion in High-Q Superconducting Resonators: Axion Electrodynamics, QED & Nonlinear Meissner Radiation (2024), arXiv:2408.08275.
  • Breit and Wheeler [1934] G. Breit and J. A. Wheeler, Collision of Two Light Quanta, Physical Review 46, 1087 (1934), publisher: American Physical Society.
  • Akhmadaliev et al. [1998] S. Z. Akhmadaliev, G. Y. Kezerashvili, S. G. Klimenko, V. M. Malyshev, A. L. Maslennikov, A. M. Milov, A. I. Milstein, N. Y. Muchnoi, A. I. Naumenkov, V. S. Panin, S. V. Peleganchuk, V. G. Popov, G. E. Pospelov, I. Y. Protopopov, L. V. Romanov, A. G. Shamov, D. N. Shatilov, E. A. Simonov, and Y. A. Tikhonov, Delbruck scattering at energies of 140–450 MeV, Physical Review C 58, 2844 (1998), publisher: American Physical Society.
  • Burke et al. [1997] D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D. Walz, S. C. Berridge, W. M. Bugg, K. Shmakov, A. W. Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C. Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C. Melissinos, D. D. Meyerhofer, D. A. Reis, and W. Ragg, Positron Production in Multiphoton Light-by-Light Scattering, Physical Review Letters 79, 1626 (1997), publisher: American Physical Society.

I Supplemental Information: Bulk Equations

We start with action for electromagnetic waves and dynamical axions

𝒮=d3x𝑑t12(ϵE2B2/μ)+α~d3x𝑑t(θ0+θ)𝑬𝑩+Jd3x𝑑t[(tθ)2(vθ)2m2θ2]\displaystyle\mathcal{S}=\int d^{3}xdt\frac{1}{2}(\epsilon E^{2}-B^{2}/\mu)+\tilde{\alpha}\int d^{3}xdt(\theta_{0}+\theta)\bm{E}\cdot\bm{B}+J\int d^{3}xdt\left[(\partial_{t}\theta)^{2}-(v\bm{\nabla}\theta)^{2}-m^{2}\theta^{2}\right] (S1)

where θ0\theta_{0} is the static part of the axion field, which in the case of magnetically doped topological insulator is the sum of the quantized part and deviations from the quantized value proportional to the AFM order. We set =1\hbar=1 except for final expressions. Writing 𝑬=t𝑨\bm{E}=-\partial_{t}\bm{A} and 𝑩=×𝑨\bm{B}=\bm{\nabla}\times\bm{A}, 𝑨\bm{A} being the vector potential, we vary 𝒮\mathcal{S} with respect to 𝑨\bm{A} to obtain the equation of motion for 𝑨\bm{A} upon making the gauge choice 𝑨=0\bm{\nabla}\cdot\bm{A}=0:

t2𝑨c22𝑨=α~ϵ[θ˙(×𝑨)θ×t𝑨]=1ϵ𝑱θ\displaystyle\partial_{t}^{2}\bm{A}-c^{\prime 2}\nabla^{2}\bm{A}=\frac{\tilde{\alpha}}{\epsilon}\left[\dot{\theta}(\bm{\nabla}\times\bm{A})-\bm{\nabla}\theta\times\partial_{t}\bm{A}\right]=\frac{1}{\epsilon}\bm{J}_{\theta} (S2)

where

𝑱θ\displaystyle\bm{J}_{\theta} =t𝑷θ+×𝑴θ\displaystyle=\partial_{t}\bm{P}_{\theta}+\bm{\nabla}\times\bm{M}_{\theta} (S3a)
𝑷θ\displaystyle\bm{P}_{\theta} =α~θ𝑩\displaystyle=\tilde{\alpha}\theta\bm{B} (S3b)
𝑴θ\displaystyle\bm{M}_{\theta} =α~θ𝑬\displaystyle=\tilde{\alpha}\theta\bm{E} (S3c)

Acting upon both sides of Eq. (S2) with t-\partial_{t} we obtain the equation of motion for the electric field 𝑬\bm{E}

t2𝑬c22𝑬\displaystyle\partial_{t}^{2}\bm{E}-c^{\prime 2}\nabla^{2}\bm{E} =1ϵt𝑱θ.\displaystyle=-\frac{1}{\epsilon}\partial_{t}\bm{J}_{\theta}. (S4)

Varying the action with respect to the axion field θ\theta, and including damping characterized by γ\gamma, we obtain

t2θ+γtθ+v22θ+m2θ\displaystyle\partial_{t}^{2}\theta+\gamma\partial_{t}\theta+v^{2}\nabla^{2}\theta+m^{2}\theta =α~2J𝑬𝑩\displaystyle=\frac{\tilde{\alpha}}{2J}\bm{E}\cdot\bm{B} (S5)

We will consider two counter propagating electromagnetic waves, with the total electric field being written

𝑬\displaystyle\bm{E} =𝑬1(z,t)ei(ω1tk1z)+𝑬2(z,t)ei(ω2t+k2z)+ c.c.\displaystyle=\bm{E}_{1}(z,t)e^{i(\omega_{1}t-k_{1}z)}+\bm{E}_{2}(z,t)e^{i(\omega_{2}t+k_{2}z)}+\text{ c.c.} (S6)

where 𝑬1(z,t)=E1(z,t)x^\bm{E}_{1}(z,t)=E_{1}(z,t)\hat{x} and 𝑬2(z,t)=E2(z,t)y^\bm{E}_{2}(z,t)=E_{2}(z,t)\hat{y} are slowly-varying envelope functions. We consider the excitation of the dynamical axion at the frequency difference Ω=ω1ω2\Omega=\omega_{1}-\omega_{2}, and we write the dynamical axion field θ=θ12(z,t)ei(ΩtQz)+\theta=\theta_{12}(z,t)e^{i(\Omega t-Qz)}+ c.c., where Q=k1+k2Q=k_{1}+k_{2} and θ12(z,t)\theta_{12}(z,t) is an envelope function. We then simplify the equation of motion for the axion envelope function by working in the slowly varying envelope approximation, which neglects higher order derivatives of θ12(z,t)\theta_{12}(z,t), to obtain

2iΩtθ12(z,t)+(m2Ω2v2Q2+iγΩ)θ12(z,t)2iv2Qzθ12(z,t)\displaystyle 2i\Omega\partial_{t}\theta_{12}(z,t)+(m^{2}-\Omega^{2}-v^{2}Q^{2}+i\gamma\Omega)\theta_{12}(z,t)-2iv^{2}Q\partial_{z}\theta_{12}(z,t) =α~2J[E1(z,t)B2(z,t)+E2(z,t)B1(z,t)].\displaystyle=\frac{\tilde{\alpha}}{2J}[E_{1}(z,t)B_{2}(z,t)+E_{2}(z,t)B_{1}(z,t)]. (S7)

We next make the approximation that Ei(z,t)cBi(z,t)E_{i}(z,t)\approx c^{\prime}B_{i}(z,t), which amounts to neglecting higher order terms in Ei(z,t)E_{i}(z,t), or equivalently higher order terms in α~\tilde{\alpha} (see Eqs. (S72)). We look for stationary solutions such that θ12\theta_{12} and EiE_{i} are only functions of zz, and using the smallness of the axion velocity in comparison to the speed of light, vcv\ll c^{\prime}, we neglect the terms proportional to v2v^{2} in Eq. S7, so that θ12(z)\theta_{12}(z) is given by

θ12(z)\displaystyle\theta_{12}(z) =α~JcE1(z)E2(z)m2Ω2+iγΩ.\displaystyle=\frac{\tilde{\alpha}}{Jc^{\prime}}\frac{E_{1}(z)E_{2}^{*}(z)}{m^{2}-\Omega^{2}+i\gamma\Omega}. (S8)

The polarization and magnetization arising from the dynamical axion at frequencies ω1\omega_{1} and ω2\omega_{2} are given by

𝑷1(z,t)\displaystyle\bm{P}_{1}(z,t) =α~θ12(z,t)𝑩2(z,t)ei(ω1tk1z)+ c.c.,𝑴1(z,t)=α~θ12(z,t)𝑬2(z,t)ei(ω1tk1z)+ c.c.\displaystyle=\tilde{\alpha}\theta_{12}(z,t)\bm{B}_{2}(z,t)e^{i(\omega_{1}t-k_{1}z)}+\text{ c.c.},\quad\bm{M}_{1}(z,t)=\tilde{\alpha}\theta_{12}(z,t)\bm{E}_{2}(z,t)e^{i(\omega_{1}t-k_{1}z)}+\text{ c.c.} (S9a)
𝑷2(z,t)\displaystyle\bm{P}_{2}(z,t) =α~θ12(z,t)𝑩1(z,t)ei(ω2t+k2z)+ c.c.,𝑴2(z,t)=α~θ12(z,t)𝑬1(z,t)ei(ω2t+k2z)+ c.c.\displaystyle=\tilde{\alpha}\theta_{12}^{*}(z,t)\bm{B}_{1}(z,t)e^{i(\omega_{2}t+k_{2}z)}+\text{ c.c.},\quad\bm{M}_{2}(z,t)=\tilde{\alpha}\theta_{12}^{*}(z,t)\bm{E}_{1}(z,t)e^{i(\omega_{2}t+k_{2}z)}+\text{ c.c.} (S9b)

so that

𝑱1(z,t)\displaystyle\bm{J}_{1}(z,t) =2iω1α~θ12(z,t)𝑩2(z,t)ei(ω1tk1z)+ c.c.\displaystyle=2i\omega_{1}\tilde{\alpha}\theta_{12}(z,t)\bm{B}_{2}(z,t)e^{i(\omega_{1}t-k_{1}z)}+\text{ c.c.} (S10a)
𝑱2(z,t)\displaystyle\bm{J}_{2}(z,t) =2iω2α~θ12(z,t)𝑩1(z,t)ei(ω2t+k2z)+ c.c.\displaystyle=2i\omega_{2}\tilde{\alpha}\theta_{12}^{*}(z,t)\bm{B}_{1}(z,t)e^{i(\omega_{2}t+k_{2}z)}+\text{ c.c.} (S10b)

where we have made use of Ei(z,t)cBi(z,t)E_{i}(z,t)\approx c^{\prime}B_{i}(z,t). Returning to Eq. (S4) and using the slowly varying envelope approximation, we have the following coupled equations for E1(z)E_{1}(z) and E2(z)E_{2}(z)

zE1(z)\displaystyle\nabla_{z}E_{1}(z) =iα~ω1ϵc2θ12(z)E2(z)\displaystyle=-\frac{i\tilde{\alpha}\omega_{1}}{\epsilon c^{\prime 2}}\theta_{12}(z)E_{2}(z) (S11a)
zE2(z)\displaystyle\nabla_{z}E_{2}(z) =iα~ω2ϵc2θ12(z)E1(z)\displaystyle=\frac{i\tilde{\alpha}\omega_{2}}{\epsilon c^{\prime 2}}\theta_{12}^{*}(z)E_{1}(z) (S11b)

Plugging in the expression for θ12(z)\theta_{12}(z), Eq. (S8), and relating the electric field amplitudes to the intensities Ii(z)=2ϵ0c|Ei(z)|2I_{i}(z)=2\epsilon_{0}c^{\prime}|E_{i}(z)|^{2}, we may write the real part of Eqs. (S11) as

zI1(z)=gAI1(z)I2(z)\displaystyle\nabla_{z}I_{1}(z)=-g_{A}I_{1}(z)I_{2}(z) (S12a)
zI2(z)=gAξ12I1(z)I2(z)\displaystyle\nabla_{z}I_{2}(z)=-g_{A}\xi_{12}I_{1}(z)I_{2}(z) (S12b)

where ξ12=ω2/ω1\xi_{12}=\omega_{2}/\omega_{1} and the gain coefficient

gA\displaystyle g_{A} =α~2ω1Jϵϵ0c4γΩ(m2Ω2)2+(γΩ)2.\displaystyle=\frac{\tilde{\alpha}^{2}\omega_{1}}{J\epsilon\epsilon_{0}c^{\prime 4}}\frac{\gamma\Omega}{(m^{2}-\Omega^{2})^{2}+(\gamma\Omega)^{2}}. (S13)

We note here that zI2(z)=ξ12zI1(z)\nabla_{z}I_{2}(z)=\xi_{12}\nabla_{z}I_{1}(z), which when integrated from 0 to zz gives

I2(z)I2(0)ω2\displaystyle\frac{I_{2}(z)-I_{2}(0)}{\omega_{2}} =I1(z)I1(0)ω1\displaystyle=\frac{I_{1}(z)-I_{1}(0)}{\omega_{1}} (S14)

and is simply a statement about the conservation of photons. We thus have

I1(z)\displaystyle I_{1}(z) =ξ121[I2(z)I2(0)]+I1(0)\displaystyle=\xi_{12}^{-1}\left[I_{2}(z)-I_{2}(0)\right]+I_{1}(0) (S15)

and the full solution for I2(z)I_{2}(z) is

I2(z)\displaystyle I_{2}(z) =I2(0)[ξ12I1(0)I2(0)]ξ12I1(0)egAz[ξ12I1(0)I2(0)]I2(0),\displaystyle=\frac{I_{2}(0)\left[\xi_{12}I_{1}(0)-I_{2}(0)\right]}{\xi_{12}I_{1}(0)e^{g_{A}z[\xi_{12}I_{1}(0)-I_{2}(0)]}-I_{2}(0)}, (S16)

which when ξ12I1(0)I2(0)\xi_{12}I_{1}(0)\gg I_{2}(0) reduces to Eq. (8) in the main text. Returning to Eqs. (S11), we now seek the solution to the phase accumulated by the electric field envelope functions Ei(z)E_{i}(z) due to dynamical axions. Writing Ei(z)=|Ei(z)|eiδi(z)E_{i}(z)=|E_{i}(z)|e^{i\delta_{i}(z)}, we have for δ1(L)\delta_{1}(L)

δ1(L)\displaystyle\delta_{1}(L) =δ1(0)gA2m2Ω2γΩ0L𝑑zI2(z)\displaystyle=\delta_{1}(0)-\frac{g_{A}}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega}\int_{0}^{L}dz\ I_{2}(z) (S17)

Evaluating the integral through use of Eq. (S16)

δ1(L)\displaystyle\delta_{1}(L) =δ1(0)12m2Ω2γΩln(I2(0)egAL[ξ12I1(0)I2(0)]ξ12I1(0)I2(0)ξ12I1(0))\displaystyle=\delta_{1}(0)-\frac{1}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega}\ln\left(\frac{I_{2}(0)e^{-g_{A}L[\xi_{12}I_{1}(0)-I_{2}(0)]}-\xi_{12}I_{1}(0)}{I_{2}(0)-\xi_{12}I_{1}(0)}\right) (S18)

which, in the limit of ξ12I1(0)I2(0)\xi_{12}I_{1}(0)\gg I_{2}(0) is

δ1(L)\displaystyle\delta_{1}(L) =δ1(0)12m2Ω2γΩI2(0)ξ12I1(0)\displaystyle=\delta_{1}(0)-\frac{1}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega}\frac{I_{2}(0)}{\xi_{12}I_{1}(0)} (S19)

Likewise, we get for δ2(L)\delta_{2}(L)

δ2(L)\displaystyle\delta_{2}(L) =δ2(0)+ξ12gA2m2Ω2γΩ0L𝑑zI1(z)\displaystyle=\delta_{2}(0)+\frac{\xi_{12}g_{A}}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega}\int_{0}^{L}dz\ I_{1}(z)
=δ2(0)+12m2Ω2γΩln(I2(0)ξ12I1(0)egAL[ξ12I1(0)I2(0)]I2(0)ξ12I1(0))\displaystyle=\delta_{2}(0)+\frac{1}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega}\ln\left(\frac{I_{2}(0)-\xi_{12}I_{1}(0)e^{g_{A}L[\xi_{12}I_{1}(0)-I_{2}(0)]}}{I_{2}(0)-\xi_{12}I_{1}(0)}\right) (S20)

and can be simplified in the limit ξ12I1(0)I2(0)\xi_{12}I_{1}(0)\gg I_{2}(0)

δ2(L)\displaystyle\delta_{2}(L) =δ2(0)+GA2m2Ω2γΩ.\displaystyle=\delta_{2}(0)+\frac{G_{A}}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega}. (S21)

where GA=gALξ12I1G_{A}=g_{A}L\xi_{12}I_{1}. As we will consider the boundary conditions for a finite system hosting dynamical axions below, we now consider the internal reflected waves, which we write as

𝑬3(z,t)ei(ω1t+k1z)+𝑬4(z,t)ei(ω2tk2z)+ c.c.\displaystyle\bm{E}_{3}(z,t)e^{i(\omega_{1}t+k_{1}z)}+\bm{E}_{4}(z,t)e^{i(\omega_{2}t-k_{2}z)}+\text{ c.c.} (S22)

We assume E^3,4E^1,2\hat{E}_{3,4}\parallel\hat{E}_{1,2}, and as the internally reflected waves are propagating in the opposite direction relative to the initial internal waves, we have B^3,4B^1,2\hat{B}_{3,4}\parallel-\hat{B}_{1,2}. We note that these internally reflected waves will also excite the dynamical axion at the frequency difference Ω=ω1ω2\Omega=\omega_{1}-\omega_{2}, proportional to θ34(z,t)ei(Ωt+Qz)\theta_{34}(z,t)e^{i(\Omega t+Qz)}, where θ34(z,t)\theta_{34}(z,t) is an envelope function. Returning to Eq. (S5), we find for the excitation of the dynamical axion by the internal reflected waves

θ34(z)=α~JcE3(z)E4(z)m2Ω2+iγΩ\displaystyle\theta_{34}(z)=-\frac{\tilde{\alpha}}{Jc^{\prime}}\frac{E_{3}(z)E_{4}^{*}(z)}{m^{2}-\Omega^{2}+i\gamma\Omega} (S23)

In writing down this solution, we have assumed we can resolve the eiQze^{-iQz} associated with θ12(z)\theta_{12}(z) and the eiQze^{iQz} associated with θ34(z)\theta_{34}(z), i.e. we must have 2QL12QL\gg 1, which we will assume going forward. The subsequent polarization and magnetization which arise from the internally reflected waves are

𝑷3(z,t)\displaystyle\bm{P}_{3}(z,t) =α~θ34(z,t)𝑩4(z,t)ei(ω1t+k1z)+ c.c.𝑴3(z,t)=α~θ34(z,t)𝑬4(z,t)ei(ω1t+k1z)+ c.c.\displaystyle=\tilde{\alpha}\theta_{34}(z,t)\bm{B}_{4}(z,t)e^{i(\omega_{1}t+k_{1}z)}+\text{ c.c.}\quad\bm{M}_{3}(z,t)=\tilde{\alpha}\theta_{34}(z,t)\bm{E}_{4}(z,t)e^{i(\omega_{1}t+k_{1}z)}+\text{ c.c.} (S24a)
𝑷4(z,t)\displaystyle\bm{P}_{4}(z,t) =α~θ34(z,t)𝑩3(z,t)ei(ω2tk2z)+ c.c.𝑴4(z,t)=α~θ34(z,t)𝑬3(z,t)ei(ω2tk2z)+ c.c.\displaystyle=\tilde{\alpha}\theta_{34}^{*}(z,t)\bm{B}_{3}(z,t)e^{i(\omega_{2}t-k_{2}z)}+\text{ c.c.}\quad\bm{M}_{4}(z,t)=\tilde{\alpha}\theta_{34}^{*}(z,t)\bm{E}_{3}(z,t)e^{i(\omega_{2}t-k_{2}z)}+\text{ c.c.} (S24b)

which leads to currents

𝑱3(z,t)\displaystyle\bm{J}_{3}(z,t) =2iω1α~θ34(z,t)𝑩4(z,t)ei(ω1t+k1z)+ c.c.\displaystyle=2i\omega_{1}\tilde{\alpha}\theta_{34}(z,t)\bm{B}_{4}(z,t)e^{i(\omega_{1}t+k_{1}z)}+\text{ c.c.} (S25a)
𝑱4(z,t)\displaystyle\bm{J}_{4}(z,t) =2iω2α~θ34(z,t)𝑩3(z,t)ei(ω2tk2z)+ c.c.\displaystyle=2i\omega_{2}\tilde{\alpha}\theta_{34}^{*}(z,t)\bm{B}_{3}(z,t)e^{i(\omega_{2}t-k_{2}z)}+\text{ c.c.} (S25b)

where again we have made the approximation to work to leading order in the fields. Returning to Eq. (S4) for the internally reflected waves, the equations of motion for E3,4(z)E_{3,4}(z) are

zE3(z)\displaystyle\nabla_{z}E_{3}(z) =iα~ω1ϵc2θ34(z)E4(z)\displaystyle=-\frac{i\tilde{\alpha}\omega_{1}}{\epsilon c^{\prime 2}}\theta_{34}(z)E_{4}(z) (S26a)
zE4(z)\displaystyle\nabla_{z}E_{4}(z) =iα~ω2ϵc2θ34(z)E3(z)\displaystyle=\frac{i\tilde{\alpha}\omega_{2}}{\epsilon c^{\prime 2}}\theta_{34}^{*}(z)E_{3}(z) (S26b)

Relating the electric field amplitudes to the intensities, the real part of the above equations can be written

zI3(z)\displaystyle\nabla_{z}I_{3}(z) =gAI3(z)I4(z),\displaystyle=g_{A}I_{3}(z)I_{4}(z), (S27a)
zI4(z)\displaystyle\nabla_{z}I_{4}(z) =ξ12gAI3(z)I4(z).\displaystyle=\xi_{12}g_{A}I_{3}(z)I_{4}(z). (S27b)

When solved, they give for the intensities of the reflected waves in the material

I4(z)\displaystyle I_{4}(z) =I4(0)[ξ12I3(0)I4(0)]ξ12I3(0)egAz[ξ12I3(0)I4(0)]I4(0)\displaystyle=\frac{I_{4}(0)\left[\xi_{12}I_{3}(0)-I_{4}(0)\right]}{\xi_{12}I_{3}(0)e^{-g_{A}z\left[\xi_{12}I_{3}(0)-I_{4}(0)\right]}-I_{4}(0)} (S28a)
I3(z)\displaystyle I_{3}(z) =ξ121[I4(z)I4(0)]+I3(0)\displaystyle=\xi_{12}^{-1}\left[I_{4}(z)-I_{4}(0)\right]+I_{3}(0) (S28b)

Note the minus sign in the exponential which assures that, even though the reflected waves are propagating in the opposite directions relative to their principle counter parts, the higher frequency mode ω1\omega_{1} still deposits energy into the lower frequency mode ω2\omega_{2}. Returning to the imaginary part of Eqs. (S26) and integrating over the sample, we obtain the phases δ3,4(L)\delta_{3,4}(L)

δ3(L)\displaystyle\delta_{3}(L) =δ3(0)+12m2Ω2γΩln(ξ12I3(0)I4(0)ξ12I3(0)I4(0)egAL(ξ12I3(0)I4(0)))\displaystyle=\delta_{3}(0)+\frac{1}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega}\ln\left(\frac{\xi_{12}I_{3}(0)-I_{4}(0)}{\xi_{12}I_{3}(0)-I_{4}(0)e^{g_{A}L(\xi_{12}I_{3}(0)-I_{4}(0))}}\right) (S29a)
δ3(0)+12m2Ω2γΩI4(0)ξ12I3(0)eGA\displaystyle\approx\delta_{3}(0)+\frac{1}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega}\frac{I_{4}(0)}{\xi_{12}I_{3}(0)}e^{G_{A}^{\prime}} (S29b)
δ4(L)\displaystyle\delta_{4}(L) =δ4(0)12m2Ω2γΩln(ξ12I3(0)I4(0)ξ12I3(0)egAL(ξ12I3(0)I4(0))I4(0))\displaystyle=\delta_{4}(0)-\frac{1}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega}\ln\left(\frac{\xi_{12}I_{3}(0)-I_{4}(0)}{\xi_{12}I_{3}(0)e^{-g_{A}L(\xi_{12}I_{3}(0)-I_{4}(0))}-I_{4}(0)}\right) (S29c)
δ4(0)GA2m2Ω2γΩ\displaystyle\approx\delta_{4}(0)-\frac{G_{A}^{\prime}}{2}\frac{m^{2}-\Omega^{2}}{\gamma\Omega} (S29d)

where we have simplified each expression in the limit ξ12I3(0)I4(0)\xi_{12}I_{3}(0)\gg I_{4}(0), and the gain factor for the internally reflected waves is GA=gALξ12I3(0)G_{A}^{\prime}=g_{A}L\xi_{12}I_{3}(0).

II Parameter Estimation and Comparison to SBS

In SI units, the axion coupling α~=αϵ0c/π\tilde{\alpha}=\alpha\epsilon_{0}c/\pi, where α=1/137\alpha=1/137 is the fine structure constant. The gain coefficient is written

gA\displaystyle g_{A} =α2π2ω1Jc2ϵ0ϵc2c2γΩ(m22Ω2)2+(γΩ)2\displaystyle=\frac{\alpha^{2}}{\pi^{2}}\frac{\omega_{1}}{Jc^{\prime 2}}\frac{\epsilon_{0}}{\epsilon}\frac{c^{2}}{c^{\prime 2}}\frac{\gamma\hbar\Omega}{(m^{2}-\hbar^{2}\Omega^{2})^{2}+(\gamma\hbar\Omega)^{2}} (S30)

here γ=/τ\gamma=\hbar/\tau where τ=.1100\tau=.1-100 ns is the magnon lifetime [1]. We take τ=.1\tau=.1 ns for the estimates below. Let us estimate JJ, and use Bi2Se3 doped with Fe as an example [2]. The axion stiffness JJ can then be written

J=g~2J~=g~2d3k(2π)3i=14di2(i=15di2)5/2\displaystyle J=\tilde{g}^{2}\tilde{J}=\tilde{g}^{2}\int\frac{d^{3}k}{(2\pi)^{3}}\frac{\sum_{i=1}^{4}d_{i}^{2}}{\left(\sum_{i=1}^{5}d_{i}^{2}\right)^{5/2}} (S31)

where did_{i} is given by

d1\displaystyle d_{1} =A2asink~x\displaystyle=\frac{A_{2}}{a}\sin\tilde{k}_{x} (S32a)
d2\displaystyle d_{2} =A2asink~y\displaystyle=\frac{A_{2}}{a}\sin\tilde{k}_{y} (S32b)
d3\displaystyle d_{3} =A1csink~z\displaystyle=\frac{A_{1}}{c}\sin\tilde{k}_{z} (S32c)
d4\displaystyle d_{4} =M02B1c2(1cosk~z)2B2a2(1cosk~x)2B2a2(1cosk~y)\displaystyle=M_{0}-2\frac{B_{1}}{c^{2}}(1-\cos\tilde{k}_{z})-2\frac{B_{2}}{a^{2}}(1-\cos\tilde{k}_{x})-2\frac{B_{2}}{a^{2}}(1-\cos\tilde{k}_{y}) (S32d)
d5\displaystyle d_{5} =m5\displaystyle=m_{5} (S32e)

and k~x=kxa\tilde{k}_{x}=k_{x}a, k~y=kya\tilde{k}_{y}=k_{y}a, k~z=kzc\tilde{k}_{z}=k_{z}c. The coupling g~\tilde{g} relates the dimensionless dynamical axion to the longitudinal AFM order m5m_{5}, and thus g~=M0\tilde{g}=-M_{0} [3]. The parameters used [4], bar M0M_{0} which we assume to be small and negative so that the material is tuned to the non-topological phase, are given by

M0\displaystyle M_{0} =.03 eV\displaystyle=-.03\text{ eV} (S33a)
A1\displaystyle A_{1} =2.2 eVA\displaystyle=2.2\text{ eV$\cdot$A} (S33b)
A2\displaystyle A_{2} =4.1 eVA\displaystyle=4.1\text{ eV$\cdot$A} (S33c)
B1\displaystyle B_{1} =10 eVA2\displaystyle=10\text{ eV$\cdot$A${}^{2}$} (S33d)
B2\displaystyle B_{2} =56.6 eVA2\displaystyle=56.6\text{ eV$\cdot$A${}^{2}$} (S33e)
m5\displaystyle m_{5} =.001 eV\displaystyle=.001\text{ eV} (S33f)
a\displaystyle a =4.076 A\displaystyle=4.076\text{ A} (S33g)
c\displaystyle c =29.830 A\displaystyle=29.830\text{ A} (S33h)

The integrand is highly peaked about (k~x,k~y,k~z)=(0,0,0)(\tilde{k}_{x},\tilde{k}_{y},\tilde{k}_{z})=(0,0,0). For ease we define

fi=15di2\displaystyle f\equiv\sum_{i=1}^{5}d_{i}^{2} (S34)

its value at its peak is given by

f0=M02+m52M02\displaystyle f_{0}=M_{0}^{2}+m_{5}^{2}\approx M_{0}^{2} (S35)

Expanding about (k~x,k~y,k~z)=(0,0,0)(\tilde{k}_{x},\tilde{k}_{y},\tilde{k}_{z})=(0,0,0), ff to second order in k~z2\tilde{k}_{z}^{2} and k~2=k~x2+k~y2\tilde{k}_{\parallel}^{2}=\tilde{k}_{x}^{2}+\tilde{k}_{y}^{2} is

f\displaystyle f f0+k~z2c2(A122M0B1)+k~2a2(A222M0B2).\displaystyle\approx f_{0}+\frac{\tilde{k}_{z}^{2}}{c^{2}}\left(A_{1}^{2}-2M_{0}B_{1}\right)+\frac{\tilde{k}_{\parallel}^{2}}{a^{2}}\left(A_{2}^{2}-2M_{0}B_{2}\right). (S36)

Furthermore, the integrand of J~\tilde{J} is approximately

fm52f5/21f3/2\displaystyle\frac{f-m_{5}^{2}}{f^{5/2}}\approx\frac{1}{f^{3/2}} (S37)

We thus define the relevant width of the integrand, Δk~\Delta\tilde{k}, as the dimensionless momentum for which ff grows by a factor of 1010, which gives

Δk~z2\displaystyle\Delta\tilde{k}_{z}^{2} 10f0c2A122M0B1,\displaystyle\approx\frac{10f_{0}c^{2}}{A_{1}^{2}-2M_{0}B_{1}}, (S38a)
Δk~2\displaystyle\Delta\tilde{k}_{\parallel}^{2} 10f0a2A222M0B2.\displaystyle\approx\frac{10f_{0}a^{2}}{A_{2}^{2}-2M_{0}B_{2}}. (S38b)

The integral can then be approximated

J~\displaystyle\tilde{J} d3k~(2π)3a2c116f3/2ΔkzΔk2(2π)3a2c16f03/2\displaystyle\approx\int\frac{d^{3}\tilde{k}}{(2\pi)^{3}a^{2}c}\frac{1}{16f^{3/2}}\approx\frac{\Delta k_{z}\Delta k_{\parallel}^{2}}{(2\pi)^{3}a^{2}c16f_{0}^{3/2}}
=103/216(2π)31(A222B2M~0)A122M~0B1\displaystyle=\frac{10^{3/2}}{16(2\pi)^{3}}\frac{1}{(A_{2}^{2}-2B_{2}\tilde{M}_{0})\sqrt{A_{1}^{2}-2\tilde{M}_{0}B_{1}}} (S39)

As A122M~0B1A_{1}^{2}\gg 2\tilde{M}_{0}B_{1} and A222M~0B2A_{2}^{2}\gg 2\tilde{M}_{0}B_{2}, Eq. (S40) is simplified to

J\displaystyle J 103/216(2π)3M02A22A13.31104 eV-1  nm-3\displaystyle\approx\frac{10^{3/2}}{16(2\pi)^{3}}\frac{M_{0}^{2}}{A_{2}^{2}A_{1}}\approx 3.31\cdot 10^{-4}\text{ eV${}^{-1}$ $\cdot$ nm${}^{-3}$} (S40)

In the case of Bi2Se3 doped with Fe the axion mass m=2m=2 meV, and so we choose initial frequencies

ω1\displaystyle\omega_{1} =1483 GHz\displaystyle=1483\text{ GHz} (S41a)
ω2\displaystyle\omega_{2} =1000 GHz\displaystyle=1000\text{ GHz} (S41b)

such that Ω=2\hbar\Omega=2 meV and we are on resonance, as well as ω1,2|M0|\hbar\omega_{1,2}\ll|M_{0}|. Using these, and assuming for now n=1n=1, we have

gA\displaystyle g_{A} =α~2π2ω1Jc2γm=11.6 m/GW\displaystyle=\frac{\tilde{\alpha}^{2}}{\pi^{2}}\frac{\omega_{1}}{Jc^{\prime 2}\gamma m}=11.6\text{ m/GW} (S42)

A significant gain factor GA=2ϵ0cgALξ12|E1|2G_{A}=2\epsilon_{0}c^{\prime}g_{A}L\xi_{12}|E_{1}|^{2} is GA10G_{A}\sim 10. For a sample of length L=5106L=5\cdot 10^{6} nm, so that 2QL102QL\sim 10, one obtains GA=10G_{A}=10 with an electric field strength of

E1.02 V/nm\displaystyle E_{1}\sim.02\text{ V/nm} (S43)

We note here that the gain coefficient gAg_{A} can be increased by orders of magnitude. One can apply frequency ω1\omega_{1} which is 5 times larger and still maintain ω1<|M0|\hbar\omega_{1}<|M_{0}|, and similarly we have assumed the magnon lifetime τ\tau is small, and can be increased to 1010010-100 ns.

Let us now consider stimulated Brillouin scattering (SBS) [5]. Here, we consider two counter-propagating electromagnetic waves such that 𝑬1𝑬2\bm{E}_{1}\parallel\bm{E}_{2}. There is a resulting electrostrictive force exerted on the sample, which drives the density ρ\rho from equilibrium, the equation of motion for ρ\rho given by

t2ρ+Γtz2ρv2z2ρ=γe8πz2Etot2\displaystyle\partial_{t}^{2}\rho+\Gamma^{\prime}\partial_{t}\nabla_{z}^{2}\rho-v^{2}\nabla_{z}^{2}\rho=-\frac{\gamma_{e}}{8\pi}\nabla_{z}^{2}E_{tot}^{2} (S44)

Thus, the density is driven at frequency Ω=ω1ω2\Omega=\omega_{1}-\omega_{2}, similar to the dynamical axion. The electric field, in turn, is driven by the change in the density as it influences the polarization:

t2𝑬c22𝑬=1ϵt2𝑷B\displaystyle\partial_{t}^{2}\bm{E}-c^{\prime 2}\nabla^{2}\bm{E}=-\frac{1}{\epsilon}\partial_{t}^{2}\bm{P}_{B} (S45)

where the polarization is given by

𝑷B\displaystyle\bm{P}_{B} =ϵ0γeρρ0𝑬.\displaystyle=\epsilon_{0}\gamma_{e}\frac{\rho}{\rho_{0}}\bm{E}. (S46)

Here γe\gamma_{e} is a dimensionless coupling on the order of 1 and ρ0\rho_{0} is the equilibrium density. In a similar fashion as the dynamical axion above, we solve Eq. (S44) for the density ρ(z,t)\rho(z,t) by writing ρ(z,t)=ρ~(z)ei(ΩtQz)\rho(z,t)=\tilde{\rho}(z)e^{i(\Omega t-Qz)}, where ρ~(z)\tilde{\rho}(z) is an envelope function, and substitute it into Eqs. (S46) and (S45). Thus, one finds the Stokes intensity grows exponentially, similar to Eq. (S16) but with a gain coefficient

gB=γe2ω2nvphc3ρ0ΓB.\displaystyle g_{B}=\frac{\gamma_{e}^{2}\omega^{2}}{nv_{ph}c^{3}\rho_{0}\Gamma_{B}}. (S47)

Here it has been assumed ω1ω2=ω\omega_{1}\approx\omega_{2}=\omega, vphv_{ph} is the phonon velocity, and ΓB=τph1\Gamma_{B}=\tau_{ph}^{-1} is the inverse phonon lifetime. Let us estimate gBg_{B} for CS2, which has a large gain coefficient and whose parameters are given by [5]

n\displaystyle n =1.67\displaystyle=1.67 (S48a)
ω\displaystyle\omega =6π1014 rad/s\displaystyle=6\pi\cdot 10^{14}\text{ rad/s} (S48b)
v\displaystyle v =1.1103 m/s\displaystyle=1.1\cdot 10^{3}\text{ m/s} (S48c)
ρ0\displaystyle\rho_{0} =1.26103 kg/m3\displaystyle=1.26\cdot 10^{3}\text{ kg/m${}^{3}$} (S48d)
γe\displaystyle\gamma_{e} =2.4\displaystyle=2.4 (S48e)
ΓB1\displaystyle\Gamma_{B}^{-1} =4 ns\displaystyle=4\text{ ns} (S48f)

which gives gB=1.5g_{B}=1.5 m/GW. To understand why gAg_{A} can be orders of magnitude larger than gBg_{B}, we take the ratio

gAgB\displaystyle\frac{g_{A}}{g_{B}} =α~2n3π2γe2ΓBγ/ω1ωvphcρ0ωmJ\displaystyle=\frac{\tilde{\alpha}^{2}n^{3}}{\pi^{2}\gamma_{e}^{2}}\frac{\Gamma_{B}}{\gamma/\hbar}\frac{\omega_{1}}{\omega}\frac{v_{ph}c\rho_{0}}{\omega\hbar mJ} (S49)

For comparison, we have separated the ratio into 4 fractions, the first 3 of which being much less than 1:

α~2n3π2γe2=4.37106\displaystyle\frac{\tilde{\alpha}^{2}n^{3}}{\pi^{2}\gamma_{e}^{2}}=4.37\cdot 10^{-6} (S50a)
ΓBγ/=2.5102\displaystyle\frac{\Gamma_{B}}{\gamma/\hbar}=2.5\cdot 10^{-2} (S50b)
ω1ω=6.588104\displaystyle\frac{\omega_{1}}{\omega}=6.588\cdot 10^{-4} (S50c)

And the last fraction of Eq. (S49) being 1012\sim 10^{12}. To understand this, let us re-write the last fraction in Eq. (S49) using Eq. (S40),

vphcρ0ωmJ\displaystyle\frac{v_{ph}c\rho_{0}}{\omega\hbar mJ} =vph2ρ0ωcvph1JmTDTNcv8π3A22A1a2cM02ω\displaystyle=\frac{v^{2}_{ph}\rho_{0}}{\hbar\omega}\frac{c}{v_{ph}}\frac{1}{Jm}\approx\frac{T_{D}}{T_{N}}\frac{c}{v}\frac{8\pi^{3}A_{2}^{2}A_{1}}{a^{2}cM_{0}^{2}\hbar\omega} (S51)

where we have written vph2ρ0kBTD/(a2c)v^{2}_{ph}\rho_{0}\approx k_{B}T_{D}/(a^{2}c) and mkBTNm\approx k_{B}T_{N}. These ratios are all much greater than 1, and are estimated as

TDTN\displaystyle\frac{T_{D}}{T_{N}} 5102\displaystyle\approx 5\cdot 10^{2} (S52a)
cvph\displaystyle\frac{c}{v_{ph}} 105\displaystyle\approx 10^{5} (S52b)
A22A1a2cM02ω\displaystyle\frac{A_{2}^{2}A_{1}}{a^{2}cM_{0}^{2}\hbar\omega} 87.9\displaystyle\approx 87.9 (S52c)

so that

vcρ0ωmJ1012\displaystyle\frac{vc\rho_{0}}{\omega\hbar mJ}\approx 10^{12} (S53)

We thus understand that the gain coefficient of SAS can be much larger than that of SBS owing to the smallness of the Neel temperature in comparison to the Debye temperature, the smallness of the phonon velocity relative to the speed of light, and the fact that JJ is controlled by electronic parameters.

III Boundary Conditions

Let us now consider the boundary conditions of a material hosting dynamical axions in the presence of applied counter-propagating electromagnetic waves. The electric field inside the sample is given by

𝑬\displaystyle\bm{E} =𝑬1(z,t)ei(ω1tk1z)+𝑬2(z,t)ei(ω2t+k2z)+𝑬3(z,t)ei(ω1t+k1z)+𝑬4(z,t)ei(ω2tk2z)+ c.c.\displaystyle=\bm{E}_{1}(z,t)e^{i(\omega_{1}t-k_{1}z)}+\bm{E}_{2}(z,t)e^{i(\omega_{2}t+k_{2}z)}+\bm{E}_{3}(z,t)e^{i(\omega_{1}t+k_{1}z)}+\bm{E}_{4}(z,t)e^{i(\omega_{2}t-k_{2}z)}+\text{ c.c.} (S54)

We wish to relate these waves with the incident waves outside the medium, 𝑬1,2a\bm{E}_{1,2a}. First, let us note the Maxwell’s equations in the presence of axions are [3, 6]

𝑬\displaystyle\bm{\nabla}\cdot\bm{E} =ρchargeϵ1ϵ𝑷θ\displaystyle=\frac{\rho_{charge}}{\epsilon}-\frac{1}{\epsilon}\bm{\nabla}\cdot\bm{P}_{\theta} (S55a)
×𝑬\displaystyle\bm{\nabla}\times\bm{E} =t𝑩\displaystyle=-\partial_{t}\bm{B} (S55b)
𝑩\displaystyle\bm{\nabla}\cdot\bm{B} =0\displaystyle=0 (S55c)
×𝑩\displaystyle\bm{\nabla}\times\bm{B} =1c2t𝑬+μ(𝑱+𝑱θ)\displaystyle=\frac{1}{c^{\prime 2}}\partial_{t}\bm{E}+\mu\left(\bm{J}+\bm{J}_{\theta}\right) (S55d)

where ρcharge\rho_{charge} and 𝑱\bm{J} are the charge density and current density respectively and 𝑷θ\bm{P}_{\theta} and 𝑱θ\bm{J}_{\theta} are given by Eqs. (S3).

We assume that, while our applied fields are oriented as discussed above, reflected and transmitted waves can be rotated. The electromagnetic fields are then

𝑬1\displaystyle\bm{E}_{1} =E1(cosϕ1x^+sinϕ1y^),\displaystyle=E_{1}(\cos\phi_{1}\hat{x}+\sin\phi_{1}\hat{y}),\quad 𝑩1\displaystyle\bm{B}_{1} =B1(sinϕ1x^+cosϕ1y^)\displaystyle=B_{1}(-\sin\phi_{1}\hat{x}+\cos\phi_{1}\hat{y}) (S56a)
𝑬2\displaystyle\bm{E}_{2} =E2(sinϕ2x^+cosϕ2y^),\displaystyle=E_{2}(-\sin\phi_{2}\hat{x}+\cos\phi_{2}\hat{y}),\quad 𝑩2\displaystyle\bm{B}_{2} =B2(cosϕ2x^+sinϕ2y^)\displaystyle=B_{2}(\cos\phi_{2}\hat{x}+\sin\phi_{2}\hat{y}) (S56b)
𝑬3\displaystyle\bm{E}_{3} =E3(cosϕ3x^+sinϕ3y^),\displaystyle=E_{3}(\cos\phi_{3}\hat{x}+\sin\phi_{3}\hat{y}),\quad 𝑩3\displaystyle\bm{B}_{3} =B3(sinϕ3x^+cosϕ3y^)\displaystyle=-B_{3}(-\sin\phi_{3}\hat{x}+\cos\phi_{3}\hat{y}) (S56c)
𝑬4\displaystyle\bm{E}_{4} =E4(sinϕ4x^+cosϕ4y^),\displaystyle=E_{4}(-\sin\phi_{4}\hat{x}+\cos\phi_{4}\hat{y}),\quad 𝑩4\displaystyle\bm{B}_{4} =B4(cosϕ4x^+sinϕ4y^)\displaystyle=-B_{4}(\cos\phi_{4}\hat{x}+\sin\phi_{4}\hat{y}) (S56d)
𝑬1a\displaystyle\bm{E}_{1a} =E1ax^,\displaystyle=E_{1a}\hat{x},\quad 𝑩1a\displaystyle\bm{B}_{1a} =B1ay^\displaystyle=B_{1a}\hat{y} (S56e)
𝑬1r\displaystyle\bm{E}_{1r} =E1r(cosϕ1rx^+sinϕ1ry^),\displaystyle=E_{1r}(\cos\phi_{1r}\hat{x}+\sin\phi_{1r}\hat{y}),\quad 𝑩1r\displaystyle\bm{B}_{1r} =B1r(sinϕ1rx^+cosϕ1ry^)\displaystyle=-B_{1r}(-\sin\phi_{1r}\hat{x}+\cos\phi_{1r}\hat{y}) (S56f)
𝑬1t\displaystyle\bm{E}_{1t} =E1t(cosϕ1tx^+sinϕ1ty^),\displaystyle=E_{1t}(\cos\phi_{1t}\hat{x}+\sin\phi_{1t}\hat{y}),\quad 𝑩1t\displaystyle\bm{B}_{1t} =B1t(sinϕ1tx^+cosϕ1ty^)\displaystyle=B_{1t}(-\sin\phi_{1t}\hat{x}+\cos\phi_{1t}\hat{y}) (S56g)
𝑬2a\displaystyle\bm{E}_{2a} =E2ay^,\displaystyle=E_{2a}\hat{y},\quad 𝑩2a\displaystyle\bm{B}_{2a} =B2ax^\displaystyle=B_{2a}\hat{x} (S56h)
𝑬2r\displaystyle\bm{E}_{2r} =E2r(sinϕ2rx^+cosϕ2ry^),\displaystyle=E_{2r}(-\sin\phi_{2r}\hat{x}+\cos\phi_{2r}\hat{y}),\quad 𝑩2r\displaystyle\bm{B}_{2r} =B2r(cosϕ2rx^+sinϕ2ry^)\displaystyle=-B_{2r}(\cos\phi_{2r}\hat{x}+\sin\phi_{2r}\hat{y}) (S56i)
𝑬2t\displaystyle\bm{E}_{2t} =E2t(sinϕ2tx^+cosϕ2ty^),\displaystyle=E_{2t}(-\sin\phi_{2t}\hat{x}+\cos\phi_{2t}\hat{y}),\quad 𝑩2t\displaystyle\bm{B}_{2t} =B2t(cosϕ2tx^+sinϕ2ty^)\displaystyle=B_{2t}(\cos\phi_{2t}\hat{x}+\sin\phi_{2t}\hat{y}) (S56j)

As shown above, there are two contributions to the dynamical axion at the frequency difference Ω\Omega, provided 2QL12QL\gg 1 so that the principle and internally reflected electromagnetic waves excite the dynamical axion with amplitude θ12\theta_{12} and θ34\theta_{34} respectively,

θ(z,t)\displaystyle\theta(z,t) =θ12(z)ei(ΩtQz)+θ34(z)ei(Ωt+Qz)+ c.c.\displaystyle=\theta_{12}(z)e^{i(\Omega t-Qz)}+\theta_{34}(z)e^{i(\Omega t+Qz)}+\text{ c.c.} (S57)

where, in the presence of the rotated internal waves,

θ12(z)\displaystyle\theta_{12}(z) =α~JcE1(z)E2(z)m2Ω2+iγΩcos(ϕ1ϕ2)\displaystyle=\frac{\tilde{\alpha}}{Jc^{\prime}}\frac{E_{1}(z)E_{2}^{*}(z)}{m^{2}-\Omega^{2}+i\gamma\Omega}\cos(\phi_{1}-\phi_{2}) (S58)
θ34(z)\displaystyle\theta_{34}(z) =α~JcE3(z)E4(z)m2Ω2+iγΩcos(ϕ3ϕ4)\displaystyle=-\frac{\tilde{\alpha}}{Jc^{\prime}}\frac{E_{3}(z)E_{4}^{*}(z)}{m^{2}-\Omega^{2}+i\gamma\Omega}\cos(\phi_{3}-\phi_{4}) (S59)

and we have made the approximation EicBiE_{i}\approx c^{\prime}B_{i}. Note that there is no contribution at the frequency difference between E1E_{1} and E4E_{4} because they are traveling in the same direction and thus do not excite the dynamical axion. As we are considering the case of normal incidence, we have for the boundary condition for 𝑬\bm{E}:

Δ𝑬\displaystyle\Delta\bm{E} =0\displaystyle=0 (S60)

Similarly for the magnetic field, we have

Δ𝑩\displaystyle\Delta\bm{B} =Δ(μ𝑴)\displaystyle=\Delta(\mu\bm{M}) (S61)

which arise from Eqs. (S55). Here Δ𝑬\Delta\bm{E} is the difference between the electric fields at the interface, and similarly for Δ𝑩\Delta\bm{B} and Δ(μ𝑴)\Delta(\mu\bm{M}). The magnetization is given by

𝑴\displaystyle\bm{M} =μμ0μ0μ𝑩+α~(θ0+θ)𝑬\displaystyle=\frac{\mu-\mu_{0}}{\mu_{0}\mu}\bm{B}+\tilde{\alpha}(\theta_{0}+\theta)\bm{E} (S62)

We will assume, for ease, that μμ0\mu\approx\mu_{0}, so the magnetization arises solely due to the static and dynamical axions and is given by

𝑴1(z,t)\displaystyle\bm{M}_{1}(z,t) =α~θ0𝑬1(z,t)ei(ω1tk1z)+α~θ0𝑬3(z,t)ei(ω1t+k1z)+α~θ12(z,t)𝑬2(z,t)ei(ω1tk1z)+α~θ34(z,t)𝑬4(z,t)ei(ω1t+k1z)\displaystyle=\tilde{\alpha}\theta_{0}\bm{E}_{1}(z,t)e^{i(\omega_{1}t-k_{1}z)}+\tilde{\alpha}\theta_{0}\bm{E}_{3}(z,t)e^{i(\omega_{1}t+k_{1}z)}+\tilde{\alpha}\theta_{12}(z,t)\bm{E}_{2}(z,t)e^{i(\omega_{1}t-k_{1}z)}+\tilde{\alpha}\theta_{34}(z,t)\bm{E}_{4}(z,t)e^{i(\omega_{1}t+k_{1}z)}
+α~θ34𝑬2ei(ω1t+(Q+k2)z)+α~θ12𝑬4ei(ω1t(Q+k2)z)+ c.c.\displaystyle+\tilde{\alpha}\theta_{34}\bm{E}_{2}e^{i(\omega_{1}t+(Q+k_{2})z)}+\tilde{\alpha}\theta_{12}\bm{E}_{4}e^{i(\omega_{1}t-(Q+k_{2})z)}+\text{ c.c.} (S63a)
𝑴2(z,t)\displaystyle\bm{M}_{2}(z,t) =α~θ0𝑬2(z,t)ei(ω2t+k2z)+α~θ0𝑬4(z,t)ei(ω2tk2z)+αθ12(z,t)𝑬1(z,t)ei(ω2t+k2z)+αθ34(z,t)𝑬3(z,t)ei(ω2tk2z)\displaystyle=\tilde{\alpha}\theta_{0}\bm{E}_{2}(z,t)e^{i(\omega_{2}t+k_{2}z)}+\tilde{\alpha}\theta_{0}\bm{E}_{4}(z,t)e^{i(\omega_{2}t-k_{2}z)}+\alpha\theta_{12}^{*}(z,t)\bm{E}_{1}(z,t)e^{i(\omega_{2}t+k_{2}z)}+\alpha\theta_{34}^{*}(z,t)\bm{E}_{3}(z,t)e^{i(\omega_{2}t-k_{2}z)}
+α~θ34(z,t)𝑬1(z,t)ei(ω2t(Q+k1)z)+α~θ12(z,t)𝑬3(z,t)ei(ω2t+(Q+k1)z)+ c.c.\displaystyle+\tilde{\alpha}\theta_{34}^{*}(z,t)\bm{E}_{1}(z,t)e^{i(\omega_{2}t-(Q+k_{1})z)}+\tilde{\alpha}\theta_{12}^{*}(z,t)\bm{E}_{3}(z,t)e^{i(\omega_{2}t+(Q+k_{1})z)}+\text{ c.c.} (S63b)

The equations stemming from Δ𝑬=0\Delta\bm{E}=0 are

𝑬1a+𝑬1r\displaystyle\bm{E}_{1a}+\bm{E}_{1r} =𝑬1(0)+𝑬3(0)\displaystyle=\bm{E}_{1}(0)+\bm{E}_{3}(0) (S64a)
𝑬2t\displaystyle\bm{E}_{2t} =𝑬2(0)+𝑬4(0)\displaystyle=\bm{E}_{2}(0)+\bm{E}_{4}(0) (S64b)
𝑬1(L)eink1L+𝑬3(L)eink1L\displaystyle\bm{E}_{1}(L)e^{-ink_{1}^{\prime}L}+\bm{E}_{3}(L)e^{ink_{1}^{\prime}L} =𝑬1teik1L\displaystyle=\bm{E}_{1t}e^{-ik_{1}^{\prime}L} (S64c)
𝑬2(L)eink2L+𝑬4(L)eink2L\displaystyle\bm{E}_{2}(L)e^{ink_{2}^{\prime}L}+\bm{E}_{4}(L)e^{-ink_{2}^{\prime}L} =𝑬2aeik2L+𝑬2reik2L\displaystyle=\bm{E}_{2a}e^{ik_{2}^{\prime}L}+\bm{E}_{2r}e^{-ik_{2}^{\prime}L} (S64d)

and the equations stemming from Δ𝑩=Δ(μ𝑴)\Delta\bm{B}=\Delta(\mu\bm{M}) are

𝑩1a+𝑩1r𝑩1(0)𝑩3(0)=α~μ0[θ12(0)+θ34(0)][𝑬2(0)+𝑬4(0)]α~μ0θ0[𝑬1(0)+𝑬3(0)]\displaystyle\bm{B}_{1a}+\bm{B}_{1r}-\bm{B}_{1}(0)-\bm{B}_{3}(0)=-\tilde{\alpha}\mu_{0}\left[\theta_{12}(0)+\theta_{34}(0)\right]\left[\bm{E}_{2}(0)+\bm{E}_{4}(0)\right]-\tilde{\alpha}\mu_{0}\theta_{0}\left[\bm{E}_{1}(0)+\bm{E}_{3}(0)\right] (S65a)
𝑩2t𝑩2(0)𝑩4(0)=α~μ0[θ12(0)+θ34(0)][𝑬1(0)+𝑬3(0)]α~μ0θ0[𝑬2(0)+𝑬4(0)]\displaystyle\bm{B}_{2t}-\bm{B}_{2}(0)-\bm{B}_{4}(0)=-\tilde{\alpha}\mu_{0}\left[\theta_{12}^{*}(0)+\theta_{34}^{*}(0)\right]\left[\bm{E}_{1}(0)+\bm{E}_{3}(0)\right]-\tilde{\alpha}\mu_{0}\theta_{0}\left[\bm{E}_{2}(0)+\bm{E}_{4}(0)\right] (S65b)
𝑩1(L)eink1L+𝑩3(L)eink1L𝑩1teik1L=α~μ0θ12(L)[𝑬2(L)eink1L+𝑬4(L)ein(Q+k2)L]\displaystyle\bm{B}_{1}(L)e^{-ink_{1}^{\prime}L}+\bm{B}_{3}(L)e^{ink_{1}^{\prime}L}-\bm{B}_{1t}e^{-ik_{1}^{\prime}L}=\tilde{\alpha}\mu_{0}\theta_{12}(L)\left[\bm{E}_{2}(L)e^{-ink_{1}^{\prime}L}+\bm{E}_{4}(L)e^{-in(Q^{\prime}+k_{2}^{\prime})L}\right]
+α~μ0θ34(L)[𝑬2(L)ein(Q+k2)L+𝑬4(L)eink1L]+α~μ0θ0[𝑬1(L)eink1L+𝑬3(L)eink1L]\displaystyle+\tilde{\alpha}\mu_{0}\theta_{34}(L)\left[\bm{E}_{2}(L)e^{in(Q^{\prime}+k_{2}^{\prime})L}+\bm{E}_{4}(L)e^{ink_{1}^{\prime}L}\right]+\tilde{\alpha}\mu_{0}\theta_{0}\left[\bm{E}_{1}(L)e^{-ink_{1}^{\prime}L}+\bm{E}_{3}(L)e^{ink_{1}^{\prime}L}\right] (S65c)
𝑩2(L)eink2L+𝑩4(L)eink2L𝑩2aeik2L𝑩2reik2L=α~μ0θ12(L)[𝑬1(L)eink2L+𝑬3(L)ein(Q+k1)L]\displaystyle\bm{B}_{2}(L)e^{ink_{2}^{\prime}L}+\bm{B}_{4}(L)e^{-ink_{2}^{\prime}L}-\bm{B}_{2a}e^{ik_{2}^{\prime}L}-\bm{B}_{2r}e^{-ik_{2}^{\prime}L}=\tilde{\alpha}\mu_{0}\theta_{12}^{*}(L)\left[\bm{E}_{1}(L)e^{ink_{2}^{\prime}L}+\bm{E}_{3}(L)e^{in(Q^{\prime}+k_{1}^{\prime})L}\right]
+α~μ0θ34(L)[𝑬1(L)ein(Q+k1)L+𝑬3(L)eink2L]+α~μ0θ0[𝑬2(L)eink2L+𝑬4(L)eink2L]\displaystyle+\tilde{\alpha}\mu_{0}\theta_{34}^{*}(L)\left[\bm{E}_{1}(L)e^{-in(Q^{\prime}+k_{1}^{\prime})L}+\bm{E}_{3}(L)e^{-ink_{2}^{\prime}L}\right]+\tilde{\alpha}\mu_{0}\theta_{0}\left[\bm{E}_{2}(L)e^{ink_{2}^{\prime}L}+\bm{E}_{4}(L)e^{-ink_{2}^{\prime}L}\right] (S65d)

where ki=ωi/ck_{i}^{\prime}=\omega_{i}/c is the wavevector in vacuum and Q=k1+k2Q^{\prime}=k_{1}^{\prime}+k_{2}^{\prime}. Here we note that the only term that rotates the fields is proportional to θ0\theta_{0}, as otherwise there is a consistent solution where none of the transmitted or reflected waves are rotated, i.e. ϕi=0\phi_{i}=0, owing to the fact 𝑬1a𝑩2a\bm{E}_{1a}\parallel\bm{B}_{2a}. Let us estimate the rotation due to reflection and transmission at the boundary of a semi-infinite material in the presence of θ0\theta_{0} and in the absence of dynamical axions. The boundary conditions in this case are

𝑬1a+𝑬1r\displaystyle\bm{E}_{1a}+\bm{E}_{1r} =𝑬1(0)\displaystyle=\bm{E}_{1}(0) (S66a)
𝑩1a+𝑩1r𝑩1(0)\displaystyle\bm{B}_{1a}+\bm{B}_{1r}-\bm{B}_{1}(0) =α~μ0θ0𝑬1(0)\displaystyle=-\tilde{\alpha}\mu_{0}\theta_{0}\bm{E}_{1}(0) (S66b)

We can relate the electromagnetic fields in the standard way, E1(0)=cB1(0)E_{1}(0)=c^{\prime}B_{1}(0) and E1a,r=cB1a,rE_{1a,r}=cB_{1a,r}. Solving for ϕ1\phi_{1} and ϕ1r\phi_{1r}, the angles after transmission or reflection at the boundary, we find

ϕ1\displaystyle\phi_{1} αθ0/π(1+n)\displaystyle\approx-\frac{\alpha\theta_{0}/\pi}{(1+n)} (S67a)
ϕ1r\displaystyle\phi_{1r} αθ0/πn21+α2θ02/π2\displaystyle\approx\frac{\alpha\theta_{0}/\pi}{n^{2}-1+\alpha^{2}\theta_{0}^{2}/\pi^{2}} (S67b)

As we have thus far considered materials where the quantized part of the static axion is zero, we have θ0=m5/M0\theta_{0}=-m_{5}/M_{0} and therefore the angle of rotation due transmission/reflection ϕi1\phi_{i}\ll 1 provided n21α2θ02/π2n^{2}-1\gg\alpha^{2}\theta_{0}^{2}/\pi^{2}. As we are concerned with the effect of dynamical axions, we therefore neglect the term proportional to θ0\theta_{0} in the following and set ϕi=0\phi_{i}=0. Lastly we note that even in the presence of the quantized part of the static axion, where θ0=πm5/M0\theta_{0}=\pi-m_{5}/M_{0}, the rotation upon transmission or reflection is still proportional to α\alpha, the fine structure constant, and is therefore typically negligible.

In order to simplify Eqs. (S65) we must relate the field amplitudes EE and BB inside the material. We do this via the Maxwell equation

×𝑬\displaystyle\bm{\nabla}\times\bm{E} =t𝑩.\displaystyle=-\partial_{t}\bm{B}. (S68)

We have for the principle wave at frequency ω1\omega_{1}

cB1(z)\displaystyle c^{\prime}B_{1}(z) =E1(z)+izE1(z)k1\displaystyle=E_{1}(z)+i\frac{\nabla_{z}E_{1}(z)}{k_{1}} (S69)

where we have used the fact that t𝑩1(z)=0\partial_{t}\bm{B}_{1}(z)=0. Using Eq. (S11a) we have

B1(z)\displaystyle B_{1}(z) =E1(z)c+α~μ0θ12(z)E2(z)\displaystyle=\frac{E_{1}(z)}{c^{\prime}}+\tilde{\alpha}\mu_{0}\theta_{12}(z)E_{2}(z) (S70)

likewise, we get for the other waves

B2(z)\displaystyle B_{2}(z) =E2(z)c+α~μ0θ12(z)E1(z)\displaystyle=\frac{E_{2}(z)}{c^{\prime}}+\tilde{\alpha}\mu_{0}\theta_{12}^{*}(z)E_{1}(z) (S71a)
B3(z)\displaystyle B_{3}(z) =E3(z)cα~μ0θ34(z)E4(z)\displaystyle=\frac{E_{3}(z)}{c^{\prime}}-\tilde{\alpha}\mu_{0}\theta_{34}(z)E_{4}(z) (S71b)
B4(z)\displaystyle B_{4}(z) =E4(z)cα~μ0θ34(z)E3(z)\displaystyle=\frac{E_{4}(z)}{c^{\prime}}-\tilde{\alpha}\mu_{0}\theta_{34}^{*}(z)E_{3}(z) (S71c)

When plugging in the values for θ12(z)\theta_{12}(z) and θ34(z)\theta_{34}(z) we see

B1(z)\displaystyle B_{1}(z) =E1(z)c+α~2μ0Jc|E2(z)|2E1(z)m2Ω2+iγΩ\displaystyle=\frac{E_{1}(z)}{c^{\prime}}+\frac{\tilde{\alpha}^{2}\mu_{0}}{Jc^{\prime}}\frac{|E_{2}(z)|^{2}E_{1}(z)}{m^{2}-\Omega^{2}+i\gamma\Omega} (S72a)
B2(z)\displaystyle B_{2}(z) =E2(z)c+α~2μ0Jc|E1(z)|2E2(z)m2Ω2iγΩ\displaystyle=\frac{E_{2}(z)}{c^{\prime}}+\frac{\tilde{\alpha}^{2}\mu_{0}}{Jc^{\prime}}\frac{|E_{1}(z)|^{2}E_{2}(z)}{m^{2}-\Omega^{2}-i\gamma\Omega} (S72b)
B3(z)\displaystyle B_{3}(z) =E3(z)c+α~2μ0Jc|E4(z)|2E3(z)m2Ω2+iγΩ\displaystyle=\frac{E_{3}(z)}{c^{\prime}}+\frac{\tilde{\alpha}^{2}\mu_{0}}{Jc^{\prime}}\frac{|E_{4}(z)|^{2}E_{3}(z)}{m^{2}-\Omega^{2}+i\gamma\Omega} (S72c)
B4(z)\displaystyle B_{4}(z) =E4(z)c+α~2μ0Jc|E3(z)|2E4(z)m2Ω2iγΩ\displaystyle=\frac{E_{4}(z)}{c^{\prime}}+\frac{\tilde{\alpha}^{2}\mu_{0}}{Jc^{\prime}}\frac{|E_{3}(z)|^{2}E_{4}(z)}{m^{2}-\Omega^{2}-i\gamma\Omega} (S72d)

Using Eqs. (S72) our boundary conditions Eqs. (S64) and (S65) become

E1a+E1r=E1(0)+E3(0)\displaystyle E_{1a}+E_{1r}=E_{1}(0)+E_{3}(0) (S73a)
E2t=E2(0)+E4(0)\displaystyle E_{2t}=E_{2}(0)+E_{4}(0) (S73b)
E1(L)eink1L+E3(L)eink1L=E1teik1L\displaystyle E_{1}(L)e^{-ink_{1}^{\prime}L}+E_{3}(L)e^{ink_{1}^{\prime}L}=E_{1t}e^{-ik_{1}^{\prime}L} (S73c)
E2(L)eink2L+E4(L)eink2L=E2aeik2L+E2reik2L\displaystyle E_{2}(L)e^{ink_{2}^{\prime}L}+E_{4}(L)e^{-ink_{2}^{\prime}L}=E_{2a}e^{ik_{2}^{\prime}L}+E_{2r}e^{-ik_{2}^{\prime}L} (S73d)
E1anE1rnE1(0)+E3(0)=α~μ0c[θ12(0)E4(0)+θ34(0)E2(0)]\displaystyle\frac{E_{1a}}{n}-\frac{E_{1r}}{n}-E_{1}(0)+E_{3}(0)=-\tilde{\alpha}\mu_{0}c^{\prime}\left[\theta_{12}(0)E_{4}(0)+\theta_{34}(0)E_{2}(0)\right] (S73e)
E2tnE2(0)+E4(0)=α~μ0c[θ12(0)E3(0)+θ34(0)E1(0)]\displaystyle\frac{E_{2t}}{n}-E_{2}(0)+E_{4}(0)=-\tilde{\alpha}\mu_{0}c^{\prime}\left[\theta_{12}^{*}(0)E_{3}(0)+\theta_{34}^{*}(0)E_{1}(0)\right] (S73f)
E1(L)eink1LE3(L)eink1LE1tneik1L=α~μ0c[θ34(L)E2(L)ein(Q+k2)L+θ12(L)E4(L)ein(Q+k2)L]\displaystyle E_{1}(L)e^{-ink_{1}^{\prime}L}-E_{3}(L)e^{ink_{1}^{\prime}L}-\frac{E_{1t}}{n}e^{-ik_{1}^{\prime}L}=\tilde{\alpha}\mu_{0}c^{\prime}\left[\theta_{34}(L)E_{2}(L)e^{in(Q^{\prime}+k_{2}^{\prime})L}+\theta_{12}(L)E_{4}(L)e^{-in(Q^{\prime}+k_{2}^{\prime})L}\right] (S73g)
E2(L)eink2LE4(L)eink2LE2aneik2L+E2rneik2L=α~μ0c[θ34(L)E1(L)ein(Q+k1)L+θ12(L)E3(L)ein(Q+k1)L]\displaystyle E_{2}(L)e^{ink_{2}^{\prime}L}-E_{4}(L)e^{-ink_{2}^{\prime}L}-\frac{E_{2a}}{n}e^{ik_{2}^{\prime}L}+\frac{E_{2r}}{n}e^{-ik_{2}^{\prime}L}=\tilde{\alpha}\mu_{0}c^{\prime}\left[\theta_{34}^{*}(L)E_{1}(L)e^{-in(Q^{\prime}+k_{1}^{\prime})L}+\theta_{12}^{*}(L)E_{3}(L)e^{in(Q^{\prime}+k_{1}^{\prime})L}\right] (S73h)

Note that the RHS of the latter 4 equations is only non-zero in the presence of internal reflected waves, due to the corrections to the relation between the electric and magnetic field amplitudes in the presence of dynamical axions. Numerical solutions for the reflectance and transmittance of the Stokes mode are plotted in Fig. 2a and 2b of the main text.

III.1 Analytic Expression for Transmittance and Reflectance Coefficients

Let us consider an air-sample-air system just as above, and a normally incident electromagnetic field at frequency ω2\omega_{2}. In the absence of dynamical axions, at the first boundary, traveling from medium with index of refraction to n1=1n_{1}=1 to n2=nn_{2}=n the reflectance and transmittance coefficients are [7]

r12\displaystyle r_{12} =n1n2n1+n2\displaystyle=\frac{n_{1}-n_{2}}{n_{1}+n_{2}} (S74a)
t12\displaystyle t_{12} =2n1n1+n2\displaystyle=\frac{2n_{1}}{n_{1}+n_{2}} (S74b)

and similarly for the 2323 boundary, where n3=1n_{3}=1. The reflectance of the system is then given by the geometric sum of all possible internally reflected waves,

r\displaystyle r =r12+t12r23t21e2iβ+t12r23r21r23t21e4iβ+\displaystyle=r_{12}+t_{12}r_{23}t_{21}e^{2i\beta}+t_{12}r_{23}r_{21}r_{23}t_{21}e^{4i\beta}+\ldots
=r12+r23e2iβ1+r12r23e2iβ\displaystyle=\frac{r_{12}+r_{23}e^{2i\beta}}{1+r_{12}r_{23}e^{2i\beta}} (S75)

here β=nk2L\beta=nk_{2}^{\prime}L is the phase gained upon propagation through the medium, and we have used the fact that r122+t12t21=1r_{12}^{2}+t_{12}t_{21}=1. Similarly, we get for the transmittance

t\displaystyle t =t12t23eiβ+t12r23r21t23e3iβ+\displaystyle=t_{12}t_{23}e^{i\beta}+t_{12}r_{23}r_{21}t_{23}e^{3i\beta}+\ldots
=t12t23eiβ1+r12r23e2iβ\displaystyle=\frac{t_{12}t_{23}e^{i\beta}}{1+r_{12}r_{23}e^{2i\beta}} (S76)

In the presence of dynamical axions and a constant pump, which for simplicity we will assume the Stokes and pump frequencies are on resonance, Ω=m\Omega=m, the electric field amplitude of the Stokes mode will grow exponentially in the sample. One can see how this arises by considering an imaginary contribution to the index of refraction for the principle wave, GA/(2k2L)-G_{A}/(2k_{2}^{\prime}L). For the internally reflected wave, however, it experiences a different gain factor, GA=gALξ12I3(0)G^{\prime}_{A}=g_{A}L\xi_{12}I_{3}(0), where I3(0)=2ϵ0c|E3(0)|2I_{3}(0)=2\epsilon_{0}c^{\prime}|E_{3}(0)|^{2} is the intensity of the internal reflection of the pump. Including the exponential growth correctly for the principle and reflected waves, we get for the transmission and reflection coefficients

r\displaystyle r =r12+r23e2iβ+(GA+GA)/21+r12r23e2iβ+(GA+GA)/2\displaystyle=\frac{r_{12}+r_{23}e^{2i\beta+(G_{A}+G^{\prime}_{A})/2}}{1+r_{12}r_{23}e^{2i\beta+(G_{A}+G^{\prime}_{A})/2}} (S77a)
t\displaystyle t =t12t21eiβ+GA/21+r12r23e2iβ+(GA+GA)/2\displaystyle=\frac{t_{12}t_{21}e^{i\beta+G_{A}/2}}{1+r_{12}r_{23}e^{2i\beta+(G_{A}+G^{\prime}_{A})/2}} (S77b)

These expressions are plotted in Fig. 2 of the main text with dotted-dashed lines, with the gain factors calculated at each nn, in excellent agreement with the numerical solutions to the boundary conditions.

III.2 Figure Parameters

We note here the parameters used in Figs. 2,

J\displaystyle J =3.31104 eV1nm-3\displaystyle=3.31\cdot 10^{-4}\text{ eV${}^{-1}\cdot$nm${}^{-3}$} (S78a)
γ\displaystyle\gamma =τ,τ=.1 ns\displaystyle=\frac{\hbar}{\tau},\quad\tau=.1\text{ ns} (S78b)
m\displaystyle m =2 meV\displaystyle=2\text{ meV} (S78c)
ω1\displaystyle\omega_{1} =1.483 THz\displaystyle=1.483\text{ THz} (S78d)
ω2\displaystyle\omega_{2} =1 THz\displaystyle=1\text{ THz} (S78e)
L\displaystyle L =600 μm\displaystyle=600\text{ $\mu$m} (S78f)
E1a\displaystyle E_{1a} =.0055 V/nm\displaystyle=.0055\text{ V/nm} (S78g)
E2a\displaystyle E_{2a} =106 V/nm\displaystyle=10^{-6}\text{ V/nm} (S78h)

For the inset figure, ω1\omega_{1} was varied to vary Ω=ω1ω2\Omega=\omega_{1}-\omega_{2} at n=1n=1. For Figure 3, we used the same JJ, γ\gamma, mm, LL, and ω1,2\omega_{1,2}. For Figure 3a, we used

E1a\displaystyle E_{1a} =.01 V/nm\displaystyle=.01\text{ V/nm} (S79a)
E2a\displaystyle E_{2a} =107 V/nm\displaystyle=10^{-7}\text{ V/nm} (S79b)
n\displaystyle n =1.8\displaystyle=1.8 (S79c)

for Fig. 3b we use the same index of refraction nn but E1a=.0125E_{1a}=.0125 V/nm.

IV Spontaneous Axion Scattering

Let us consider the spontaneous generation of the Stokes field in the presence of a pump field and a fluctuating θ\theta (AFM order). We include in our equation of motion for θ\theta a Langevin noise term F(z,t)=iΩf(z,t)ei(ΩtQz)F(z,t)=i\Omega f(z,t)e^{i(\Omega t-Qz)} [8, 9, 10], so that the equation of motion is

t2θ+γtθ+v22θ+m2θ=α~2J𝑬𝑩+F\displaystyle\partial_{t}^{2}\theta+\gamma\partial_{t}\theta+v^{2}\nabla^{2}\theta+m^{2}\theta=\frac{\tilde{\alpha}}{2J}\bm{E}\cdot\bm{B}+F (S80)

which, when plugging in our expression for the counter-propagating electromagnetic waves E1E_{1} and E2E_{2} and working in the slowly varying envelope approximation, gives

2iΩtθ12(z,t)+(m2Ω2v2Q2+iγΩ)θ12(z,t)2iv2Qzθ12(z,t)=α~JcE1(z,t)E2(z,t)+iΩf(z,t)\displaystyle 2i\Omega\partial_{t}\theta_{12}(z,t)+(m^{2}-\Omega^{2}-v^{2}Q^{2}+i\gamma\Omega)\theta_{12}(z,t)-2iv^{2}Q\nabla_{z}\theta_{12}(z,t)=\frac{\tilde{\alpha}}{Jc^{\prime}}E_{1}(z,t)E_{2}^{*}(z,t)+i\Omega f(z,t) (S81)

Let us further simplify by neglecting terms proprotional to v2v^{2} and considering the response on resonance, i.e. Ω=m\Omega=m,

tθ12(z,t)+γ2θ12(z,t)\displaystyle\partial_{t}\theta_{12}(z,t)+\frac{\gamma}{2}\theta_{12}(z,t) =α~2JcΩE1(z,t)E2(z,t)+f(z,t)2.\displaystyle=\frac{\tilde{\alpha}}{2Jc^{\prime}\Omega}E_{1}(z,t)E_{2}^{*}(z,t)+\frac{f(z,t)}{2}. (S82)

In the absence of E1,2E_{1,2} this is easily solved by writing θ~=θeγt/2\tilde{\theta}=\theta e^{\gamma t/2} and integrating over time. The resulting solution is

θ12(z,t)\displaystyle\theta_{12}(z,t) =t𝑑tf(z,t)2eγ(tt)/2\displaystyle=\int_{-\infty}^{t}dt^{\prime}\frac{f(z,t^{\prime})}{2}e^{\gamma(t^{\prime}-t)/2} (S83)

where we have used the fact that θ12(z,)=0\theta_{12}(z,-\infty)=0. Let us partition our sample into rectangles of length Δz\Delta z and cross sectional area AA, with the value of θ12(z,t)\theta_{12}(z,t) and f(z,t)f(z,t) in the ii-th rectangle denoted θi(t)\theta_{i}(t) and fi(t)f_{i}(t) respectively. The correlator θi(t)θj(t)\langle\theta_{i}(t)\theta^{*}_{j}(t)\rangle is then

θi(t)θj(t)=14𝑑t𝑑t′′fi(t)fj(t′′)eγ(t+t′′2t)/2\displaystyle\langle\theta_{i}(t)\theta_{j}^{*}(t)\rangle=\frac{1}{4}\int dt^{\prime}dt^{\prime\prime}\langle f_{i}(t^{\prime})f_{j}^{*}(t^{\prime\prime})\rangle e^{\gamma(t^{\prime}+t^{\prime\prime}-2t)/2} (S84)

if we assume the correlations of the Langevin noise take the form

fi(t)fj(t)=Q~δijδ(tt)\displaystyle\langle f_{i}(t)f_{j}^{*}(t^{\prime})\rangle=\tilde{Q}\delta_{ij}\delta(t-t^{\prime}) (S85)

we then have for the correlator of θ\theta

θi(t)θj(t)=Q~4γδij\displaystyle\langle\theta_{i}(t)\theta_{j}^{*}(t)\rangle=\frac{\tilde{Q}}{4\gamma}\delta_{ij} (S86)

The fluctuations of θ\theta can be estimated as follows: the dynamical axion field inside each box, θi\theta_{i}, has average energy density

ui\displaystyle\langle u_{i}\rangle =J|θ˙i|2+Jm2|θi|2\displaystyle=J\langle|\dot{\theta}_{i}|^{2}\rangle+Jm^{2}\langle|\theta_{i}|^{2}\rangle (S87)

The total average energy of each box is then i=uiAΔz\mathcal{E}_{i}=\langle u_{i}\rangle A\Delta z. By the equipartition theorem, each term contributes an energy kBT/2k_{B}T/2, and we therefore estimate

|θi|2\displaystyle\langle|\theta_{i}|^{2}\rangle =kBT2Jm2AΔz\displaystyle=\frac{k_{B}T}{2Jm^{2}A\Delta z} (S88)

which gives us for Q~\tilde{Q}

Q~=2kBTγJm2AΔz\displaystyle\tilde{Q}=\frac{2k_{B}T\gamma}{Jm^{2}A\Delta z} (S89)

writing the correlator for the Langevin noise in the continuum limit, we have

f(z,t)f(z,t)=Qδ(zz)δ(tt)\displaystyle\langle f(z,t)f^{*}(z^{\prime},t^{\prime})\rangle=Q\delta(z-z^{\prime})\delta(t-t^{\prime}) (S90)

where we have written Q=Q~ΔzQ=\tilde{Q}\Delta z and

Q=2kBTγJm2A\displaystyle Q=\frac{2k_{B}T\gamma}{Jm^{2}A} (S91)

For the consideration of quantum fluctuations, one can replace kBTk_{B}T with Ω2(2n¯+1)\frac{\hbar\Omega}{2}(2\bar{n}+1), where n¯=(eΩ/(kBT)1)1\bar{n}=(e^{\hbar\Omega/(k_{B}T)}-1)^{-1} is the occupation number of magnons, and QQ is therefore given by

Q\displaystyle Q =γΩJm2Acoth(Ω2kBT).\displaystyle=\frac{\gamma\hbar\Omega}{Jm^{2}A}\coth\left(\frac{\hbar\Omega}{2k_{B}T}\right). (S92)

Note that QQ reduces to the expression for thermal fluctuations in the limit kBTΩk_{B}T\gg\hbar\Omega. We now solve the equations for E2E_{2} and θ\theta, considering E1E_{1} to be constant in space and time. The relevant equations are

(z1ct)E2(z,t)=α~ω2iϵc2θ12(z,t)E1\displaystyle(\nabla_{z}-\frac{1}{c^{\prime}}\partial_{t})E_{2}(z,t)=\frac{\tilde{\alpha}\omega_{2}}{i\epsilon c^{\prime 2}}\theta^{*}_{12}(z,t)E_{1} (S93a)
tθ12(z,t)+γ2θ12(z,t)=iα~E12JcΩE2(z,t)+f(z,t)2\displaystyle\partial_{t}\theta^{*}_{12}(z,t)+\frac{\gamma}{2}\theta^{*}_{12}(z,t)=\frac{i\tilde{\alpha}E_{1}^{*}}{2Jc^{\prime}\Omega}E_{2}(z,t)+\frac{f^{*}(z,t)}{2} (S93b)

for simplicity, we write

κ1\displaystyle\kappa_{1} =α~ω2ϵc2E1\displaystyle=\frac{\tilde{\alpha}\omega_{2}}{\epsilon c^{\prime 2}}E_{1} (S94a)
κ2\displaystyle\kappa_{2} =α~2JcΩE1\displaystyle=\frac{\tilde{\alpha}}{2Jc^{\prime}\Omega}E_{1}^{*} (S94b)

and change variables to (z,τ)(z,\tau) where τ=t+z/c\tau=t+z/c^{\prime} which allows us to write our equations

xE2(z,τ)\displaystyle\partial_{x}E_{2}(z,\tau) =iκ1θ12(z,τ)\displaystyle=-i\kappa_{1}\theta^{*}_{12}(z,\tau) (S95a)
τθ(z,τ)+γ2θ12(z,τ)\displaystyle\partial_{\tau}\theta^{*}(z,\tau)+\frac{\gamma}{2}\theta^{*}_{12}(z,\tau) =iκ2E2(z,τ)+f(z,τ)2\displaystyle=i\kappa_{2}E_{2}(z,\tau)+\frac{f^{*}(z,\tau)}{2} (S95b)

We now Laplace transform both equations in coordinate zz, {g(z)}=0eszg(z)𝑑z\mathcal{L}\left\{g(z)\right\}=\int_{0}^{\infty}e^{-sz}g(z)dz , using the notation

{E2(z,τ)}\displaystyle\mathcal{L}\left\{E_{2}(z,\tau)\right\} =E~2(s,τ)\displaystyle=\tilde{E}_{2}(s,\tau) (S96a)
{θ12(z,τ)}\displaystyle\mathcal{L}\left\{\theta^{*}_{12}(z,\tau)\right\} =θ~12(s,τ)\displaystyle=\tilde{\theta}_{12}^{*}(s,\tau) (S96b)
{f(z,τ)}\displaystyle\mathcal{L}\left\{f^{*}(z,\tau)\right\} =f~(s,τ)\displaystyle=\tilde{f}^{*}(s,\tau) (S96c)

to obtain

E~2(s,τ)\displaystyle\tilde{E}_{2}(s,\tau) =s1[E2(0,τ)iκ1θ~12(s,τ)]\displaystyle=s^{-1}\left[E_{2}(0,\tau)-i\kappa_{1}\tilde{\theta}_{12}^{*}(s,\tau)\right] (S97a)
τθ12(s,τ)+γ2θ~12(s,τ)\displaystyle\partial_{\tau}\theta^{*}_{12}(s,\tau)+\frac{\gamma}{2}\tilde{\theta}^{*}_{12}(s,\tau) =iκ2E~2(s,τ)+f~(s,τ)2.\displaystyle=i\kappa_{2}\tilde{E}_{2}(s,\tau)+\frac{\tilde{f}^{*}(s,\tau)}{2}. (S97b)

Plugging the former into the latter we can solve for θ12(s,τ)\theta^{*}_{12}(s,\tau)

θ~12(s,τ)\displaystyle\tilde{\theta}_{12}(s,\tau) =θ~12(s,0)eγτ/2eκ1κ2τ/s+0τ𝑑τeγ(ττ)/2eκ1κ2(ττ)/s(iκ2E2(0,τ)s+f~(s,τ)2)\displaystyle=\tilde{\theta}_{12}(s,0)e^{-\gamma\tau/2}e^{\kappa_{1}\kappa_{2}\tau/s}+\int_{0}^{\tau}d\tau^{\prime}e^{-\gamma(\tau-\tau^{\prime})/2}e^{\kappa_{1}\kappa_{2}(\tau-\tau^{\prime})/s}\left(\frac{i\kappa_{2}E_{2}(0,\tau^{\prime})}{s}+\frac{\tilde{f}^{*}(s,\tau^{\prime})}{2}\right) (S98)

which we then plug into the equation for E~2(s,τ)\tilde{E}_{2}(s,\tau) to obtain

E~2(s,τ)\displaystyle\tilde{E}_{2}(s,\tau) =E2(0,τ)siκ1θ~12(s,0)eγτ/2eκ1κ2τ/ssiκ1s0τ𝑑τeγ(ττ)/2eκ1κ2(ττ)/s(iκ2E2(0,τ)s+f~(s,τ)2).\displaystyle=\frac{E_{2}(0,\tau)}{s}-i\kappa_{1}\tilde{\theta}^{*}_{12}(s,0)e^{-\gamma\tau/2}\frac{e^{\kappa_{1}\kappa_{2}\tau/s}}{s}-\frac{i\kappa_{1}}{s}\int_{0}^{\tau}d\tau^{\prime}e^{-\gamma(\tau-\tau^{\prime})/2}e^{\kappa_{1}\kappa_{2}(\tau-\tau^{\prime})/s}\left(\frac{i\kappa_{2}E_{2}(0,\tau^{\prime})}{s}+\frac{\tilde{f}^{*}(s,\tau^{\prime})}{2}\right). (S99)

Taking the inverse Laplace transform of Eq. (S99), we make use of the following two identities:

{(z/a)nIn(4az)}\displaystyle\mathcal{L}\left\{(z/a)^{n}I_{n}(\sqrt{4az})\right\} =s(n+1)ea/s,\displaystyle=s^{-(n+1)}e^{a/s}, (S100a)
1{F(s)G(s)}\displaystyle\mathcal{L}^{-1}\left\{F(s)G(s)\right\} =0xf(xz)g(z)𝑑z,\displaystyle=\int_{0}^{x}f(x-z)g(z)dz, (S100b)

where In(x)I_{n}(x) is the nn-th order modified Bessel function and ff and gg are the inverse Laplace transforms of FF and GG. Using identities Eqs. (S100), we find for E2(z,τ)E_{2}(z,\tau)

E2(z,τ)\displaystyle E_{2}(z,\tau) =E2(0,τ)iκ1eγτ/20z𝑑zθ12(z,0)I0(4κ1κ2τ(zz))\displaystyle=E_{2}(0,\tau)-i\kappa_{1}e^{-\gamma\tau/2}\int_{0}^{z}dz^{\prime}\theta^{*}_{12}(z^{\prime},0)I_{0}(\sqrt{4\kappa_{1}\kappa_{2}\tau(z-z^{\prime})})
+κ1κ2z0τ𝑑τeγ(ττ)/2ττE2(0,τ)\displaystyle+\sqrt{\kappa_{1}\kappa_{2}z}\int_{0}^{\tau}d\tau^{\prime}\frac{e^{-\gamma(\tau-\tau^{\prime})/2}}{\sqrt{\tau-\tau^{\prime}}}E_{2}(0,\tau^{\prime})
iκ120τ𝑑τ0z𝑑zeγ(ττ)/2f(z,τ)I0(4κ1κ2(ττ)(zz))\displaystyle-i\frac{\kappa_{1}}{2}\int_{0}^{\tau}d\tau^{\prime}\int_{0}^{z}dz^{\prime}e^{-\gamma(\tau-\tau^{\prime})/2}f^{*}(z^{\prime},\tau^{\prime})I_{0}(\sqrt{4\kappa_{1}\kappa_{2}(\tau-\tau^{\prime})(z-z^{\prime})}) (S101)

Let us set z=Lz=L and use the fact that |E2(L,τ)||E2(0,τ)||E_{2}(L,\tau)|\ll|E_{2}(0,\tau)|, as we know E2E_{2} will grow from 0 to LL. We can then multiply the above equation by its complex conjugate and do a statistical average to obtain

|E2(0,τ)|2=|κ1|2eγτ0L𝑑z𝑑z′′θ12(z,0)θ12(z′′,0)I0(4κ1κ2τ(Lz))I0(4κ1κ2τ(Lz′′))\displaystyle\langle|E_{2}(0,\tau)|^{2}\rangle=|\kappa_{1}|^{2}e^{-\gamma\tau}\int_{0}^{L}dz^{\prime}dz^{\prime\prime}\langle\theta_{12}^{*}(z^{\prime},0)\theta_{12}(z^{\prime\prime},0)\rangle I_{0}(\sqrt{4\kappa_{1}\kappa_{2}\tau(L-z^{\prime})})I_{0}(\sqrt{4\kappa_{1}\kappa_{2}\tau(L-z^{\prime\prime})})
+|κ1|240τ𝑑τ𝑑τ′′0L𝑑z𝑑z′′eγ(2τττ′′)/2f(z,τ)f(z′′,τ′′)I0(4κ1κ2(ττ)(Lz))I0(4κ1κ2(ττ′′)(Lz′′))\displaystyle+\frac{|\kappa_{1}|^{2}}{4}\int_{0}^{\tau}d\tau^{\prime}d\tau^{\prime\prime}\int_{0}^{L}dz^{\prime}dz^{\prime\prime}e^{-\gamma(2\tau-\tau^{\prime}-\tau^{\prime\prime})/2}\langle f^{*}(z^{\prime},\tau^{\prime})f(z^{\prime\prime},\tau^{\prime\prime})\rangle I_{0}(\sqrt{4\kappa_{1}\kappa_{2}(\tau-\tau^{\prime})(L-z^{\prime})})I_{0}(\sqrt{4\kappa_{1}\kappa_{2}(\tau-\tau^{\prime\prime})(L-z^{\prime\prime})}) (S102)

where we have assumed that E2(0,τ)E_{2}(0,\tau) is not correlated with f(z,τ)f(z,\tau), θ12(z,τ)\theta_{12}(z,\tau), or itself at different times, and that θ12(z,τ)f(z,τ)=0\langle\theta_{12}(z,\tau)f^{*}(z^{\prime},\tau^{\prime})\rangle=0. To simplify Eq. (IV) we use Eq. (S90) and the continuum version of Eq. (S86),

θ(z,0)θ(z,0)\displaystyle\langle\theta(z,0)\theta^{*}(z^{\prime},0) =Q4γδ(zz),\displaystyle=\frac{Q}{4\gamma}\delta(z-z^{\prime}), (S103)

giving

|E2(0,τ)|2\displaystyle\langle|E_{2}(0,\tau)|^{2}\rangle =|κ1|2QL4γeγτ[I02(4κ1κ2τL)I12(4κ1κ2τL)]\displaystyle=\frac{|\kappa_{1}|^{2}QL}{4\gamma}e^{-\gamma\tau}\left[I_{0}^{2}(\sqrt{4\kappa_{1}\kappa_{2}\tau L})-I_{1}^{2}(\sqrt{4\kappa_{1}\kappa_{2}\tau L})\right]
+|κ1|24QL0τ𝑑τeγ(ττ)[I02(4κ1κ2(ττ)L)I12(4κ1κ2(ττ)L)].\displaystyle+\frac{|\kappa_{1}|^{2}}{4}QL\int_{0}^{\tau}d\tau^{\prime}e^{-\gamma(\tau-\tau^{\prime})}\left[I_{0}^{2}(\sqrt{4\kappa_{1}\kappa_{2}(\tau-\tau^{\prime})L})-I_{1}^{2}(\sqrt{4\kappa_{1}\kappa_{2}(\tau-\tau^{\prime})L})\right]. (S104)

At long times γτ1\gamma\tau\gg 1 the first term can be neglected. To see this, we use that at large arguments the modified Bessel functions can be written

I0(aτ)\displaystyle I_{0}(\sqrt{a\tau}) eaτ2π[(aτ)1/4+(aτ)3/48+]\displaystyle\approx\frac{e^{\sqrt{a\tau}}}{\sqrt{2\pi}}\left[(a\tau)^{-1/4}+\frac{(a\tau)^{-3/4}}{8}+\ldots\right] (S105a)
I1(aτ)\displaystyle I_{1}(\sqrt{a\tau}) eaτ2π[(aτ)1/43(aτ)3/48+]\displaystyle\approx\frac{e^{\sqrt{a\tau}}}{\sqrt{2\pi}}\left[(a\tau)^{-1/4}-\frac{3(a\tau)^{-3/4}}{8}+\ldots\right] (S105b)

Thus, when paired with the exponential eγτe^{-\gamma\tau} the first term of Eq. (IV) will always go to zero in the long time limit. To see that the third term is finite, we change variables to y=γ(ττ)y=\gamma(\tau-\tau^{\prime}),

|E2(0,τ)|2\displaystyle\langle|E_{2}(0,\tau)|^{2}\rangle |κ1|2QL4γγτ0𝑑yey[I02(4κ1κ2Lγy)I12(4κ1κ2Lγy)]\displaystyle\approx-\frac{|\kappa_{1}|^{2}QL}{4\gamma}\int_{\gamma\tau}^{0}dy\ e^{-y}\left[I_{0}^{2}\left(\sqrt{\frac{4\kappa_{1}\kappa_{2}L}{\gamma}y}\right)-I_{1}^{2}\left(\sqrt{\frac{4\kappa_{1}\kappa_{2}L}{\gamma}y}\right)\right] (S106)

in the limit that γτ1\gamma\tau\gg 1, or τ\tau\rightarrow\infty, we have

|E2(0,)|2\displaystyle\langle|E_{2}(0,\infty)|^{2}\rangle =|κ1|2QL4γ0ey[I02(4κ1κ2L4γy)I12(4κ1κ2Lγy)]\displaystyle=\frac{|\kappa_{1}|^{2}QL}{4\gamma}\int_{0}^{\infty}e^{-y}\left[I_{0}^{2}\left(\sqrt{\frac{4\kappa_{1}\kappa_{2}L}{4\gamma}y}\right)-I_{1}^{2}\left(\sqrt{\frac{4\kappa_{1}\kappa_{2}L}{\gamma}y}\right)\right]
=|κ1|2QL4γe2κ1κ2Lγ[I0(2κ1κ2Lγ)I1(2κ1κ2Lγ)]\displaystyle=\frac{|\kappa_{1}|^{2}QL}{4\gamma}e^{\frac{2\kappa_{1}\kappa_{2}L}{\gamma}}\left[I_{0}\left(\frac{2\kappa_{1}\kappa_{2}L}{\gamma}\right)-I_{1}\left(\frac{2\kappa_{1}\kappa_{2}L}{\gamma}\right)\right] (S107)

we can rewrite

2κ1κ2Lγ\displaystyle\frac{2\kappa_{1}\kappa_{2}L}{\gamma} =α2π2ω2ϵ0Jcϵ0ϵc2c2|E1|2LγΩ=2ϵ0cgALξ12|E1|2/2=GA/2\displaystyle=\frac{\alpha^{2}}{\pi^{2}}\frac{\omega_{2}\epsilon_{0}}{Jc^{\prime}}\frac{\epsilon_{0}}{\epsilon}\frac{c^{2}}{c^{\prime 2}}\frac{|E_{1}|^{2}L}{\gamma\Omega}=2\epsilon_{0}c^{\prime}g_{A}L\xi_{12}|E_{1}|^{2}/2=G_{A}/2 (S108)

where we have used the expression for gAg_{A} on resonance. The average Stokes intensity at γτ1\gamma\tau\gg 1 is then

I2(0,)\displaystyle\langle I_{2}(0,\infty)\rangle =GAINoiseeGA/2[I0(GA/2)I1(GA/2)]\displaystyle=G_{A}I_{\text{Noise}}e^{G_{A}/2}\left[I_{0}(G_{A}/2)-I_{1}(G_{A}/2)\right] (S109)

with

INoise\displaystyle I_{\text{Noise}} =ϵ04ϵcoth(Ω2kBT)ω2γA61011 W/cm2\displaystyle=\frac{\epsilon_{0}}{4\epsilon}\coth\left(\frac{\hbar\Omega}{2k_{B}T}\right)\frac{\omega_{2}\gamma}{A}\approx 6\cdot 10^{-11}\text{ W/cm${}^{2}$} (S110)

where we have used ω2=1000\omega_{2}=1000 GHz, γ=.04\gamma=.04 meV, n=1n=1 as well as using a sample size Aλ22=3.55A\sim\lambda_{2}^{2}=3.55 mm2 and kBT1.3k_{B}T\sim 1.3 meV. We note however that Eq. (S109) is valid under the assumption that E1E_{1} is constant, and thus Eq. (S109) is only valid when I2(0,)I1\langle I_{2}(0,\infty)\rangle\ll I_{1}.

References

  • Bayrakci et al. [2013] S. P. Bayrakci, D. A. Tennant, P. Leininger, T. Keller, M. C. R. Gibson, S. D. Wilson, R. J. Birgeneau, and B. Keimer, Lifetimes of Antiferromagnetic Magnons in Two and Three Dimensions: Experiment, Theory, and Numerics, Physical Review Letters 111, 017204 (2013), publisher: American Physical Society.
  • Li et al. [2010] R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Dynamical axion field in topological magnetic insulators, Nature Physics 6, 284 (2010), number: 4 Publisher: Nature Publishing Group.
  • Sekine and Nomura [2016] A. Sekine and K. Nomura, Chiral Magnetic Effect and Anomalous Hall Effect in Antiferromagnetic Insulators with Spin-Orbit Coupling, Physical Review Letters 116, 096401 (2016), publisher: American Physical Society.
  • Zhang et al. [2009] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nature Physics 5, 438 (2009), number: 6 Publisher: Nature Publishing Group.
  • Boyd [2020] R. W. Boyd, ed., Nonlinear Optics (Academic Press, 2020).
  • Sekine and Nomura [2021] A. Sekine and K. Nomura, Axion electrodynamics in topological materials, Journal of Applied Physics 129, 141101 (2021).
  • Born and Wolf [1999] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, Cambridge, 1999).
  • von Foerster and Glauber [1971] T. von Foerster and R. J. Glauber, Quantum Theory of Light Propagation in Amplifying Media, Physical Review A 3, 1484 (1971), publisher: American Physical Society.
  • Raymer and Mostowski [1981] M. G. Raymer and J. Mostowski, Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation, Physical Review A 24, 1980 (1981), publisher: American Physical Society.
  • Boyd et al. [1990] R. W. Boyd, K. Rzaewski, and P. Narum, Noise initiation of stimulated Brillouin scattering, Physical Review A 42, 5514 (1990), publisher: American Physical Society.