This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Mahler measure of a nonreciprocal family of elliptic curves

Detchat Samart Department of Mathematics, Faculty of Science, Burapha University, Chonburi, Thailand 20131 petesamart@gmail.com
Abstract.

In this article, we study the logarithmic Mahler measure of the one-parameter family

Qα=y2+(x2αx)y+x,Q_{\alpha}=y^{2}+(x^{2}-\alpha x)y+x,

denoted by m(Qα)\mathrm{m}(Q_{\alpha}). The zero loci of QαQ_{\alpha} generically define elliptic curves EαE_{\alpha} which are 33-isogenous to the family of Hessian elliptic curves. We are particularly interested in the case α(1,3)\alpha\in(-1,3), which has not been considered in the literature due to certain subtleties. For α\alpha in this interval, we establish a hypergeometric formula for the (modified) Mahler measure of QαQ_{\alpha}, denoted by n~(α).\tilde{n}(\alpha). This formula coincides, up to a constant factor, with the known formula for m(Qα)\mathrm{m}(Q_{\alpha}) with |α||\alpha| sufficiently large. In addition, we verify numerically that if α3\alpha^{3} is an integer, then n~(α)\tilde{n}(\alpha) is a rational multiple of L(Eα,0)L^{\prime}(E_{\alpha},0). A proof of this identity for α=2\alpha=2, which is corresponding to an elliptic curve of conductor 1919, is given.

1. Introduction

For any Laurent polynomial P[x1±1,,xn±1]\{0}P\in\mathbb{C}[x_{1}^{\pm 1},\ldots,x_{n}^{\pm 1}]\backslash\{0\}, the (logarithmic) Mahler measure of PP, denoted by m(P)\mathrm{m}(P), is the average of log|P|\log|P| over the nn-torus. In other words,

m(P)\displaystyle\mathrm{m}(P) =1(2πi)n∫⋯∫|x1|==|xn|=1log|P(x1,,xn)|dx1x1dxnxn.\displaystyle=\frac{1}{(2\pi i)^{n}}\idotsint\limits_{|x_{1}|=\dots=|x_{n}|=1}\log|P(x_{1},\dots,x_{n})|\frac{\mathrm{d}x_{1}}{x_{1}}\dotsb\frac{\mathrm{d}x_{n}}{x_{n}}.

Consider the following two families of bivariate polynomials

Pα(x,y)\displaystyle P_{\alpha}(x,y) =x3+y3+1αxy,\displaystyle=x^{3}+y^{3}+1-\alpha xy,
Qα(x,y)\displaystyle Q_{\alpha}(x,y) =y2+(x2αx)y+x,\displaystyle=y^{2}+(x^{2}-\alpha x)y+x,

with the parameter α\alpha\in\mathbb{C}. For α3,\alpha\neq 3, the zero loci of PαP_{\alpha} define a family of elliptic curves known as the Hessian curves. There is a 33-isogeny between Pα(x,y)=0P_{\alpha}(x,y)=0 and the curve

Eα:Qα(x,y)=0,E_{\alpha}:Q_{\alpha}(x,y)=0,

which is isomorphic to the curve in the Deuring form, defined by the zero locus of

Rα(x,y)=y2+αxy+yx3.R_{\alpha}(x,y)=y^{2}+\alpha xy+y-x^{3}.

Observe that

(x2y)3Pα(yx2,1xy)=Qα(x3,y3),(x^{2}y)^{3}P_{\alpha}\left(\frac{y}{x^{2}},\frac{1}{xy}\right)=Q_{\alpha}(x^{3},y^{3}),

from which we have m(Pα)=m(Qα)\mathrm{m}(P_{\alpha})=\mathrm{m}(Q_{\alpha}) (see [20, Cor. 8]). Similarly, the change of variables (x,y)(y,xy)(x,y)\mapsto(-y,xy) transforms the family RαR_{\alpha} into QαQ_{\alpha} without changing the Mahler measure. For some technical reasons which shall be addressed below, we will focus on the family QαQ_{\alpha} only. Following notation in previous papers [13, 17, 18], we let

n(α):=m(Qα).n(\alpha):=\mathrm{m}(Q_{\alpha}).

The Mahler measure of QαQ_{\alpha} (and its allies) was first studied by Boyd in his seminal paper [4]. He verified numerically that for several α\alpha\in\mathbb{Z} with α(1,3),\alpha\notin(-1,3),

(1.1) n(α)=?rαL(Eα,0),n(\alpha)\stackrel{{\scriptstyle?}}{{=}}r_{\alpha}L^{\prime}(E_{\alpha},0),

where rαr_{\alpha}\in\mathbb{Q} and A=?BA\stackrel{{\scriptstyle?}}{{=}}B means AA and BB are equal to at least 5050 decimal places. Later, Rodriguez Villegas [23] made an observation that (1.1) seems to hold for all sufficiently large |α||\alpha| which is a cube root of an integer. The values of α\alpha for which (1.1) has been proven rigorously are given in Table 1.

α\alpha Conductor of EαE_{\alpha} rαr_{\alpha} Reference(s)
6-6 2727 33 [23]
3-3 5454 11 [7]
2-2 3535 11 [7]
1-1 1414 22 [15],[7]
323\sqrt[3]{32} 2020 83\frac{8}{3} [18]
543\sqrt[3]{54} 3636 32\frac{3}{2} [17]
55 1414 77 [15]
Table 1. Proven formulas for (1.1)

In addition to the results in this list, there are some known identities which relate n(α)n(\alpha), where α\alpha is a cube root of an algebraic integer, to a linear combination of LL-values. For example, the author proved in [19] that the following identity is true:

(1.2) n(6623+18433)=12(L(F108,0)+L(F36,0)3L(F27,0)),n\left(\sqrt[3]{6-6\sqrt[3]{2}+18\sqrt[3]{4}}\right)=\frac{1}{2}\left(L^{\prime}(F_{108},0)+L^{\prime}(F_{36},0)-3L^{\prime}(F_{27},0)\right),

where FNF_{N} is an elliptic curve over \mathbb{Q} of conductor NN. In compliance with Boyd’s results, it is worth noting that

6623+184333.0005>3.\sqrt[3]{6-6\sqrt[3]{2}+18\sqrt[3]{4}}\approx 3.0005>3.

We refer the interested reader to the aforementioned paper for more conjectural identities of this type.

Recall that a polynomial P(x1,x2,,xn)P(x_{1},x_{2},\ldots,x_{n}) is said to be reciprocal if there exist integers d1,d2,,dnd_{1},d_{2},\ldots,d_{n} such that

x1d1x2d2xndnP(1/x1,1/x2,,1/xn)=P(x1,x2,,xn),x_{1}^{d_{1}}x_{2}^{d_{2}}\cdots x_{n}^{d_{n}}P(1/x_{1},1/x_{2},\ldots,1/x_{n})=P(x_{1},x_{2},\ldots,x_{n}),

and nonreciprocal otherwise. For a family of two-variable polynomials

(1.3) P~α(x,y)=A(x)y2+(B(x)+αx)y+C(x),\tilde{P}_{\alpha}(x,y)=A(x)y^{2}+(B(x)+\alpha x)y+C(x),

let ZαZ_{\alpha} be the zero locus of P~α(x,y)\tilde{P}_{\alpha}(x,y) and let KK be the set of α\alpha\in\mathbb{C} for which P~α\tilde{P}_{\alpha} vanishes on the 22-torus. Boyd conjectured from his experiments that, for all integer α\alpha in the unbounded component GG_{\infty} of \K\mathbb{C}\backslash K, if P~α\tilde{P}_{\alpha} is tempered (see [23] for the definition), then m(P~α)\mathrm{m}(\tilde{P}_{\alpha}) is related to an LL-value of elliptic curve (if ZαZ_{\alpha} has genus one) or Dirichlet character (if ZαZ_{\alpha} has genus zero). If P~α(x,y)\tilde{P}_{\alpha}(x,y) is reciprocal, then it can be shown that KK\subseteq\mathbb{R}, implying G¯=\overline{G}_{\infty}=\mathbb{C}. Hence by continuity one could expect that identities like (1.1) hold for all α\alpha\in\mathbb{Z}, with some exceptions in the genus zero cases. Examples of polynomials satisfying these properties include the families x+1/x+y+1/y+αx+1/x+y+1/y+\alpha and (1+x)(1+y)(x+y)αxy(1+x)(1+y)(x+y)-\alpha xy, whose Mahler measures have been extensively studied over the past few decades (e.g. see [4, 12, 13, 14, 15, 17, 18, 23]).

The family QαQ_{\alpha}, on the other hand, is nonreciprocal, so the set KK of α\alpha\in\mathbb{C} for which QαQ_{\alpha} vanishes on the 22-torus has nonempty interior. In fact, as described in [4, §2B] and [23, §14], KK is the region inside a hypocycloid whose vertices are the cube roots of 2727 in the complex plane and K=(1,3)K\cap\mathbb{R}=(-1,3). This is illustrated in Figure 1 below.

Refer to caption
Figure 1.

It is known (see, for example, [17, Thm. 3.1]) that, for most complex numbers α\alpha, n(α)n(\alpha) is expressible in terms of a generalized hypergeometric function: if |α||\alpha| is sufficiently large, then

(1.4) n(α)=Re(logα2α3F34(.43,53,1,12,2,2.|27α3)).n(\alpha)=\mathop{\mathrm{Re}}\left(\log\alpha-\frac{2}{\alpha^{3}}{}_{4}F_{3}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{4}{3}\mathchar 44\relax\mkern 6.0mu\frac{5}{3}\mathchar 44\relax\mkern 6.0mu1\mathchar 44\relax\mkern 6.0mu1}{2\mathchar 44\relax\mkern 6.0mu2\mathchar 44\relax\mkern 6.0mu2}\,\,\bigg{|}\,\,\frac{27}{\alpha^{3}}\biggr{)}\right).

Since both sides of (1.4) are real parts of holomorphic functions that agree at every point in an open subset of the region \K\mathbb{C}\backslash K, the formula (1.4) is valid for all α\K;\alpha\in\mathbb{C}\backslash K; i.e., for all α\alpha on the border and outside of the hypocycloid in Figure 1. Because of this anomalous property of the family QαQ_{\alpha} (and other nonreciprocal families in general), to our knowledge, there are no known results about n(α)n(\alpha) for αK\alpha\in K, with an exception for the case α=0\alpha=0 due to Smyth [21], namely

n(0)=m(x3+y3+1)=m(x+y+1)=L(χ3,1),n(0)=\mathrm{m}(x^{3}+y^{3}+1)=\mathrm{m}(x+y+1)=L^{\prime}(\chi_{-3},-1),

where χN=(N).\chi_{-N}=\left(\frac{N}{\cdot}\right). The aim of this paper is to give a thorough investigation of these omitted values of n(α)n(\alpha). In particular, we are interested in establishing formulas analogous to (1.1) and (1.4) for α(1,3)\alpha\in(-1,3).

While the family PαP_{\alpha} is more well established than the family QαQ_{\alpha} in the literature, we choose to work with the latter for the following two reasons. Firstly, the family QαQ_{\alpha} is in the form (1.3), whose Mahler measure can be efficiently computed from both theoretical and numerical perspectives, regardless of the value of α\alpha. Therefore, one can test the results numerically with high precision computations. The Mahler measure of PαP_{\alpha}, on the other hand, is quite difficult to compute, especially when αK\alpha\in K. Secondly, although the zero loci of PαP_{\alpha} and QαQ_{\alpha} give elliptic curves in the same isogeny class, their certain arithmetic properties, which are involved in the process of evaluating their Mahler measure in terms of L(Eα,0)L^{\prime}(E_{\alpha},0), could be different. This will be elaborated at the end of this section.

Let us first factorize QαQ_{\alpha} as

Qα(x,y)=y2+(x2αx)y+x=(yy+(x))(yy(x)),Q_{\alpha}(x,y)=y^{2}+(x^{2}-\alpha x)y+x=(y-y_{+}(x))(y-y_{-}(x)),

where

y±(x)=(x2αx)(12±141x(xα)2),y_{\pm}(x)=-(x^{2}-\alpha x)\left(\frac{1}{2}\pm\sqrt{\frac{1}{4}-\frac{1}{x(x-\alpha)^{2}}}\right),

and denote

J(α)=1πcos1(α12)πlog|y+(eiθ)|dθ.J(\alpha)=\frac{1}{\pi}\int_{\cos^{-1}\left(\frac{\alpha-1}{2}\right)}^{\pi}\log|y_{+}(e^{i\theta})|\mathrm{d}\theta.

(Here and throughout we use the principal branch for the complex square root.) The significance of the function J(α)J(\alpha), which can be seen as a part of m(Qα)\mathrm{m}(Q_{\alpha}), will be made clear later. For α(1,1)(1,3)\alpha\in(-1,1)\cup(1,3), y±(x)y_{\pm}(x) are functions on 𝕋1:={x|x|=1}\mathbb{T}^{1}:=\{x\in\mathbb{C}\mid|x|=1\}. If α=1\alpha=1, y±(x)y_{\pm}(x) have only one removable singularity on 𝕋1\mathbb{T}^{1}, namely x=1x=1, so we can extend its domain to 𝕋1\mathbb{T}^{1} by setting

y±(1)=limx1y±(x)=i.y_{\pm}(1)=\lim_{x\rightarrow 1}y_{\pm}(x)=\mp i.

The first main result of this paper is the following hypergeometric formula, which extends (1.4).

Theorem 1.

Let n~(α)=n(α)3J(α)\tilde{n}(\alpha)=n(\alpha)-3J(\alpha). For α(1,3)\{0}\alpha\in(-1,3)\backslash\{0\}, the following identity is true:

n~(α)=413sgn(α)Re(logα2α3F34(.43,53,1,12,2,2.|27α3)).\tilde{n}(\alpha)=\frac{4}{1-3\,\mathrm{sgn}(\alpha)}\mathop{\mathrm{Re}}\left(\log\alpha-\frac{2}{\alpha^{3}}{}_{4}F_{3}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{4}{3}\mathchar 44\relax\mkern 6.0mu\frac{5}{3}\mathchar 44\relax\mkern 6.0mu1\mathchar 44\relax\mkern 6.0mu1}{2\mathchar 44\relax\mkern 6.0mu2\mathchar 44\relax\mkern 6.0mu2}\,\,\bigg{|}\,\,\frac{27}{\alpha^{3}}\biggr{)}\right).

By Theorem 1 and a result of Rogers [17, Eq. (43)], we can express n~(α)\tilde{n}(\alpha) in terms of (convergent) F23{}_{3}F_{2}-hypergeometric series; for α(1,3)\{0}\alpha\in(-1,3)\backslash\{0\},

n~(α)=s(α)(23Γ(16)Γ(13)Γ(12)3π2αF23(.13,13,1323,43.|α327)+Γ3(23)2π2α2F23(.23,23,2343,53.|α327)),\tilde{n}(\alpha)=s(\alpha)\left(\frac{\sqrt[3]{2}\Gamma\left(\frac{1}{6}\right)\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{1}{2}\right)}{\sqrt{3}\pi^{2}}\alpha{}_{3}F_{2}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{1}{3}}{\frac{2}{3}\mathchar 44\relax\mkern 6.0mu\frac{4}{3}}\,\,\bigg{|}\,\,\frac{\alpha^{3}}{27}\biggr{)}+\frac{\Gamma^{3}\left(\frac{2}{3}\right)}{2\pi^{2}}\alpha^{2}{}_{3}F_{2}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{2}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{\frac{4}{3}\mathchar 44\relax\mkern 6.0mu\frac{5}{3}}\,\,\bigg{|}\,\,\frac{\alpha^{3}}{27}\biggr{)}\right),

where s(α)=(1+3sgn(α))264.s(\alpha)=-\frac{(1+3\,\mathrm{sgn}(\alpha))^{2}}{64}.

We also study n~(α)\tilde{n}(\alpha) from the arithmetic point of view. We discovered from our numerical computation that when α(1,3)\alpha\in(-1,3) is a cube root of an integer, then n~(α)\tilde{n}(\alpha) (conjecturally) satisfies an identity analogous to (1.1). Numerical data for this identity are given in Table 2. This identity can be proven rigorously in some cases using Brunault-Mellit-Zudilin’s formula (see Theorem 8 below). As a concrete example, we prove the following result.

Theorem 2.

Let n~(α)=n(α)3J(α)\tilde{n}(\alpha)=n(\alpha)-3J(\alpha) and let EαE_{\alpha} be the elliptic curve defined by the zero locus of QαQ_{\alpha}. Then the following evaluation is true:

(1.5) n~(2)\displaystyle\tilde{n}(2) =3L(E2,0).\displaystyle=-3L^{\prime}(E_{2},0).

Note that E2E_{2} has conductor 1919. What makes this curve special is that it admits a modular unit parametrization. The celebrated modularity theorem asserts that every elliptic curve over \mathbb{Q} can be parametrized by modular functions. However, a recent result of Brunault [6] reveals that there are only a finite number of them which can be parametrized by modular units (i.e. modular functions whose zeros and poles are supported at the cusps). In order to apply Brunault-Mellit-Zudilin’s formula, one needs to show that the integration path corresponding to n~(2)\tilde{n}(2) becomes a closed path for the regulator integral defined on the curve Q2(x,y)=0.Q_{2}(x,y)=0. This path can then be translated into a path joining cusps on the modular curve X1(19)X_{1}(19). The calculation for this part will be worked out in Section 3. On the other hand, the isogenous curve P2(x,y)=0P_{2}(x,y)=0, which has Cremona label 19a119a1, does not admit such a nice parametrization [6, Tab. 1], so we cannot use the same argument to directly relate m(P2)\mathrm{m}(P_{2}) to L(E2,0).L^{\prime}(E_{2},0).

2. The hypergeometric formula

The goal of this section is to prove Theorem 1. To achieve this goal, we need some auxiliary results as follows.

Lemma 3.

Let α\alpha\in\mathbb{C} and x\{α}x\in\mathbb{C}\backslash\{\alpha\}. If |x|=1|x|=1, then |y(x)|1|y+(x)|.|y_{-}(x)|\leq 1\leq|y_{+}(x)|.

Proof.

Assume that |x|=1|x|=1 and write 141x(xα)2=a+bi\sqrt{\frac{1}{4}-\frac{1}{x(x-\alpha)^{2}}}=a+bi, where a,b.a,b\in\mathbb{R}. Since the square root is defined using the principal branch, we have a0a\geq 0. Hence

|y(x)|=|x2αx||12abi||x2αx||12+a+bi|=|y+(x)|.|y_{-}(x)|=|x^{2}-\alpha x|\left|\frac{1}{2}-a-bi\right|\leq|x^{2}-\alpha x|\left|\frac{1}{2}+a+bi\right|=|y_{+}(x)|.

Since |y+(x)||y(x)|=|x|=1|y_{+}(x)||y_{-}(x)|=|x|=1, it follows that |y(x)|1|y+(x)||y_{-}(x)|\leq 1\leq|y_{+}(x)|, as desired. ∎

By Lemma 3 and Jensen’s formula, we have

(2.1) n(α)\displaystyle n(\alpha) =12πππlog|y+(eiθ)|dθ\displaystyle=\frac{1}{2\pi}\int_{-\pi}^{\pi}\log|y_{+}(e^{i\theta})|\mathrm{d}\theta
=1π0πlog|y+(eiθ)|dθ\displaystyle=\frac{1}{\pi}\int_{0}^{\pi}\log|y_{+}(e^{i\theta})|\mathrm{d}\theta
=1πRe0πlog((xα)(12+141x(xα)2))|x=eiθdθ,\displaystyle=\frac{1}{\pi}\mathop{\mathrm{Re}}\int_{0}^{\pi}\log\left((x-\alpha)\left(\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{1}{x(x-\alpha)^{2}}}\right)\right)\bigg{\rvert}_{x=e^{i\theta}}\mathrm{d}\theta,

where the second equality follows from y+(eiθ)=y+(eiθ)¯.y_{+}(e^{-i\theta})=\overline{y_{+}(e^{i\theta})}. Next, we shall locate the toric points, the points of intersection of the affine curve Qα=0Q_{\alpha}=0 and the 22-torus, explicitly.

Proposition 4.

Let 𝕋2={(x,y)2|x|=|y|=1}\mathbb{T}^{2}=\{(x,y)\in\mathbb{C}^{2}\mid|x|=|y|=1\} and for each α\alpha\in\mathbb{C} let Cα={(x,y)2Qα(x,y)=0}C_{\alpha}=\{(x,y)\in\mathbb{C}^{2}\mid Q_{\alpha}(x,y)=0\}. Then for α(1,3)\alpha\in(-1,3), we have

Cα𝕋2={(eit,y±(eit))t=0,±cos1(α12)}.C_{\alpha}\cap\mathbb{T}^{2}=\left\{\left(e^{it},y_{\pm}(e^{it})\right)\mid t=0,\pm\cos^{-1}\left(\frac{\alpha-1}{2}\right)\right\}.
Proof.

Assume first that α1\alpha\neq 1. Suppose |x|=1|x|=1, so x=eitx=e^{it} for some t(π,π].t\in(-\pi,\pi]. Since y±(x)=(x2αx)(12±141x(xα)2)y_{\pm}(x)=-(x^{2}-\alpha x)\left(\frac{1}{2}\pm\sqrt{\frac{1}{4}-\frac{1}{x(x-\alpha)^{2}}}\right) and |y+(x)||y(x)|=|x|=1|y_{+}(x)||y_{-}(x)|=|x|=1, we have that the condition |y+(x)|=1=|y(x)||y_{+}(x)|=1=|y_{-}(x)| is equivalent to the equality

(2.2) |12+141x(xα)2|=|12141x(xα)2|.\left|\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{1}{x(x-\alpha)^{2}}}\right|=\left|\frac{1}{2}-\sqrt{\frac{1}{4}-\frac{1}{x(x-\alpha)^{2}}}\right|.

It is easily seen that (2.2) holds if and only if 141x(xα)2\sqrt{\frac{1}{4}-\frac{1}{x(x-\alpha)^{2}}} is purely imaginary; equivalently, x(xα)2(0,4)x(x-\alpha)^{2}\in(0,4). Simple calculation yields

(2.3) Re(x(xα)2)\displaystyle\mathop{\mathrm{Re}}(x(x-\alpha)^{2}) =(cost)((costα)2sin2t)2(costα)sin2t,\displaystyle=(\cos t)((\cos t-\alpha)^{2}-\sin^{2}t)-2(\cos t-\alpha)\sin^{2}t,
(2.4) Im(x(xα)2)\displaystyle\mathop{\mathrm{Im}}(x(x-\alpha)^{2}) =(sint)(2cost(α1))(2cost(α+1)),\displaystyle=(\sin t)(2\cos t-(\alpha-1))(2\cos t-(\alpha+1)),
(2.5) |x(xα)2|\displaystyle|x(x-\alpha)^{2}| =|xα|2=α22αcost+1.\displaystyle=|x-\alpha|^{2}=\alpha^{2}-2\alpha\cos t+1.

We have from (2.4) that x(xα)2x(x-\alpha)^{2}\in\mathbb{R} if and only if sint=0\sin t=0 or cost=(α±1)/2.\cos t=(\alpha\pm 1)/2.
If sint=0\sin t=0, then either cost=1\cos t=1 or cost=1.\cos t=-1. If cost=1\cos t=-1, then x(xα)2=(1+α)2<0.x(x-\alpha)^{2}=-(1+\alpha)^{2}<0. If cost=(α+1)/2\cos t=(\alpha+1)/2, then α(1,1)\alpha\in(-1,1) and sin2t=1((α+1)/2)2,\sin^{2}t=1-\left((\alpha+1)/2\right)^{2}, from which we can deduce using (2.3) that

x(xα)2=Re(x(xα)2)=α1<0.x(x-\alpha)^{2}=\mathop{\mathrm{Re}}(x(x-\alpha)^{2})=\alpha-1<0.

Also, it can be shown using (2.3) and (2.5) that the remaining cases, cost=1\cos t=1 and cost=α12\cos t=\frac{\alpha-1}{2}, imply 0<x(xα)2<40<x(x-\alpha)^{2}<4. As a consequence, the curve Cα=0C_{\alpha}=0 intersects 𝕋2\mathbb{T}^{2} exactly at (eit,y±(eit))\left(e^{it},y_{\pm}(e^{it})\right), where t=0,±cos1(α12)t=0,\pm\cos^{-1}\left(\frac{\alpha-1}{2}\right). The same result also holds for α=1\alpha=1 by continuity. ∎

Lemma 5.

For λ[1,2)\lambda\in[1,2), let pλ(x)=x(λ2x)(x2+(4λλ2)x+4λ2)p_{\lambda}(x)=x(\lambda^{2}-x)\left(x^{2}+\left(\frac{4}{\lambda}-\lambda^{2}\right)x+\frac{4}{\lambda^{2}}\right) and γ=λ3λ22λ+λ+12λ(2λ)(λ3+λ2)i\gamma=\frac{\lambda^{3}-\lambda-2}{2\lambda}+\frac{\lambda+1}{2\lambda}\sqrt{(2-\lambda)(\lambda^{3}+\lambda-2)}i. Then we have

(2.6) λ1γ1pλ(x)dx=01/λ1pλ(x)dx,\int_{\lambda-1}^{\gamma}\frac{1}{\sqrt{-p_{\lambda}(x)}}\mathrm{d}x=\int_{0}^{-1/\lambda}\frac{1}{\sqrt{-p_{\lambda}(x)}}\mathrm{d}x,

where the left (complex) integral is path-independent in the upper-half unit disk and the right integral is a real integral.

Proof.

Note first that |γ|=1|\gamma|=1 and the nonzero roots of pλ(x)p_{\lambda}(x) are

x1(λ)=λ2,x2(λ)=λ34+λ3(λ38)2λ, and x3(λ)=λ34λ3(λ38)2λ,x_{1}(\lambda)=\lambda^{2},\quad x_{2}(\lambda)=\frac{\lambda^{3}-4+\sqrt{\lambda^{3}(\lambda^{3}-8)}}{2\lambda},\text{ and }x_{3}(\lambda)=\frac{\lambda^{3}-4-\sqrt{\lambda^{3}(\lambda^{3}-8)}}{2\lambda},

which lie outside the unit circle, so the integration path for the left integral can be chosen to be any path joining λ1\lambda-1 and γ\gamma in the upper-half unit disk. For 1<λ<21<\lambda<2 and xx\in\mathbb{R},

x2+(4λλ2)x+4λ2=(x+(2λλ22))2λ(λ342)>0,x^{2}+\left(\frac{4}{\lambda}-\lambda^{2}\right)x+\frac{4}{\lambda^{2}}=\left(x+\left(\frac{2}{\lambda}-\frac{\lambda^{2}}{2}\right)\right)^{2}-\lambda\left(\frac{\lambda^{3}}{4}-2\right)>0,

so pλ(x)>0-p_{\lambda}(x)>0 for all x(1/λ,0)x\in(-1/\lambda,0) and the integral on the right-hand side is real. Define the symmetric polynomial111We obtain the polynomial Fλ(x,y)F_{\lambda}(x,y) using numerical values of the integrals in (2.6). The PSLQ algorithm plays an essential role in identifying its coefficients. Fλ(x,y)F_{\lambda}(x,y) by

Fλ(x,y):=λ2(λ1)x2y2λ(λ1)(λ3λ2+λ2)(x2y+xy2)+λ2(x2+y2)+(λ72λ6+2λ55λ4+6λ36λ2+6λ4)xy2λ2(λ1)(x+y)+λ2(λ1)2.F_{\lambda}(x,y):=\lambda^{2}(\lambda-1)x^{2}y^{2}-\lambda(\lambda-1)(\lambda^{3}-\lambda^{2}+\lambda-2)(x^{2}y+xy^{2})+\lambda^{2}(x^{2}+y^{2})\\ +(\lambda^{7}-2\lambda^{6}+2\lambda^{5}-5\lambda^{4}+6\lambda^{3}-6\lambda^{2}+6\lambda-4)xy-2\lambda^{2}(\lambda-1)(x+y)+\lambda^{2}(\lambda-1)^{2}.

Then, for λ[1,2)\lambda\in[1,2), Fλ(x,y)F_{\lambda}(x,y) transforms the interval (1/λ,0)(-1/\lambda,0) to a continuous path in the upper-half unit disk joining γ\gamma and λ1\lambda-1. Moreover, by implicitly differentiating Fλ(x,y)=0F_{\lambda}(x,y)=0, it can be checked using a computer algebra system that the following equation holds on this curve:

(dydx)2pλ(y)pλ(x)=0,\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}-\frac{p_{\lambda}(y)}{p_{\lambda}(x)}=0,

from which (2.6) follows immediately. ∎

Lemma 6.

For α(1,3),\alpha\in(-1,3), if α=(λ32)/λ\alpha=(\lambda^{3}-2)/\lambda, then

ddα(n(α)3J(α))=1π0λ21pλ(x)dx,\frac{\mathrm{d}}{\mathrm{d}\alpha}\left(n(\alpha)-3J(\alpha)\right)=-\frac{1}{\pi}\int_{0}^{\lambda^{2}}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x,

where pλ(x)p_{\lambda}(x) is defined as in Lemma 5.

Proof.

Differentiating (2.1) with respect to α\alpha yields

ddαn(α)=1πRe0πxx(xα)24|x=eiθdθ.\frac{\mathrm{d}}{\mathrm{d}\alpha}n(\alpha)=\frac{1}{\pi}\mathop{\mathrm{Re}}\int_{0}^{\pi}\frac{\sqrt{x}}{\sqrt{x(x-\alpha)^{2}-4}}\bigg{\rvert}_{x=e^{i\theta}}\mathrm{d}\theta.

Let c(α)=cos1(α12)c(\alpha)=\cos^{-1}\left(\frac{\alpha-1}{2}\right). Then, by Leibniz integral rule and Proposition 4, we have

ddαJ(α)\displaystyle\frac{\mathrm{d}}{\mathrm{d}\alpha}J(\alpha) =1π(log|y+(eic(α))|ddαc(α)\displaystyle=\frac{1}{\pi}\Bigg{(}-\log\left|y_{+}\left(e^{ic(\alpha)}\right)\right|\frac{\mathrm{d}}{\mathrm{d}\alpha}c(\alpha)
+Rec(α)πddαlog((xα)(12+141x(xα)2))|x=eiθdθ)\displaystyle\qquad+\mathop{\mathrm{Re}}\int_{c(\alpha)}^{\pi}\frac{\mathrm{d}}{\mathrm{d}\alpha}\log\left((x-\alpha)\left(\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{1}{x(x-\alpha)^{2}}}\right)\right)\bigg{\rvert}_{x=e^{i\theta}}\mathrm{d}\theta\Bigg{)}
=1πRe0c(α)xx(xα)24|x=eiθdθ.\displaystyle=\frac{1}{\pi}\mathop{\mathrm{Re}}\int_{0}^{c(\alpha)}\frac{\sqrt{x}}{\sqrt{x(x-\alpha)^{2}-4}}\bigg{\rvert}_{x=e^{i\theta}}\mathrm{d}\theta.

It follows that

(2.7) ddα(n(α)3J(α))=1πRe((2c(α)π0c(α))xx(xα)24|x=eiθdθ).\frac{\mathrm{d}}{\mathrm{d}\alpha}\left(n(\alpha)-3J(\alpha)\right)=-\frac{1}{\pi}\mathop{\mathrm{Re}}\left(\left(2\int_{c(\alpha)}^{\pi}-\int_{0}^{c(\alpha)}\right)\frac{\sqrt{x}}{\sqrt{x(x-\alpha)^{2}-4}}\bigg{\rvert}_{x=e^{i\theta}}\mathrm{d}\theta\right).

Let α=(λ32)/λ\alpha=(\lambda^{3}-2)/\lambda. Then α\alpha maps the interval (1,2)(1,2) bijectively onto (1,3)(-1,3) and

(2.8) x(xα)24=(xλ2)(x2+(4λλ2)x+4λ2).x(x-\alpha)^{2}-4=(x-\lambda^{2})\left(x^{2}+\left(\frac{4}{\lambda}-\lambda^{2}\right)x+\frac{4}{\lambda^{2}}\right).

An inspection of the signs of the square roots in the integrand reveals that

(2.9) c(α)πxx(xα)24|x=eiθdθ\displaystyle\int_{c(\alpha)}^{\pi}\frac{\sqrt{x}}{\sqrt{x(x-\alpha)^{2}-4}}\bigg{\rvert}_{x=e^{i\theta}}\mathrm{d}\theta =γ11pλ(x)dx=(0γ01)1pλ(x)dx,\displaystyle=-\int_{\gamma}^{-1}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x=\left(\int_{0}^{\gamma}-\int_{0}^{-1}\right)\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x,
(2.10) 0c(α)xx(xα)24|x=eiθdθ\displaystyle\int_{0}^{c(\alpha)}\frac{\sqrt{x}}{\sqrt{x(x-\alpha)^{2}-4}}\bigg{\rvert}_{x=e^{i\theta}}\mathrm{d}\theta =1γ1pλ(x)dx=(0γ01)1pλ(x)dx,\displaystyle=\int_{1}^{\gamma}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x=\left(\int_{0}^{\gamma}-\int_{0}^{1}\right)\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x,

where

γ=eic(α)=α12+(3α)(α+1)2i=λ3λ22λ+λ+12λ(2λ)(λ3+λ2)i.\gamma=e^{ic(\alpha)}=\frac{\alpha-1}{2}+\frac{\sqrt{(3-\alpha)(\alpha+1)}}{2}i=\frac{\lambda^{3}-\lambda-2}{2\lambda}+\frac{\lambda+1}{2\lambda}\sqrt{(2-\lambda)(\lambda^{3}+\lambda-2)}i.

Since pλ(x)<0p_{\lambda}(x)<0 for any x(1,0)x\in(-1,0) and λ(1,2)\lambda\in(1,2), we have

(2.11) Re011pλ(x)dx=0.\mathop{\mathrm{Re}}\int_{0}^{-1}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x=0.

Plugging (2.9),(2.10), and (2.11) into (2.7) gives

(2.12) ddα(n(α)3J(α))=1π(011pλ(x)dx+Re0γ1pλ(x)dx).\frac{\mathrm{d}}{\mathrm{d}\alpha}\left(n(\alpha)-3J(\alpha)\right)=-\frac{1}{\pi}\left(\int_{0}^{1}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x+\mathop{\mathrm{Re}}\int_{0}^{\gamma}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x\right).

Note that the mapping

(2.13) xλ2xλx+1x\mapsto\frac{\lambda^{2}-x}{\lambda x+1}

is the unique Möbius transformation which interchanges the following values:

0λ2,1λ1,x2(λ)x3(λ),0\leftrightarrow\lambda^{2},\quad 1\leftrightarrow\lambda-1,\quad x_{2}(\lambda)\leftrightarrow x_{3}(\lambda),

where x2(λ)x_{2}(\lambda) and x3(λ)x_{3}(\lambda) are the roots of x2+(4/λλ2)x+4/λ2x^{2}+(4/\lambda-\lambda^{2})x+4/\lambda^{2}. Hence using (2.13) we have

0λ11pλ(x)dx=1λ21pλ(x)dx.\int_{0}^{\lambda-1}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x=\int_{1}^{\lambda^{2}}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x.

Finally, we have from Lemma 5 that

λ1γ1pλ(x)dx=01/λ1pλ(x)dxi,\int_{\lambda-1}^{\gamma}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x=\int_{0}^{-1/\lambda}\frac{1}{\sqrt{p_{\lambda}(x)}}\mathrm{d}x\in i\mathbb{R},

so (2.12) immediately gives the desired result. ∎

Lemma 7.

For α(1,0)\alpha\in(-1,0), we have

(2.14) ddα(n(α)3J(α))=Re(1αF12(.13,231.|27α3)).\frac{\mathrm{d}}{\mathrm{d}\alpha}\left(n(\alpha)-3J(\alpha)\right)=\mathop{\mathrm{Re}}\left(\frac{1}{\alpha}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27}{\alpha^{3}}\biggr{)}\right).

For α(0,3)\alpha\in(0,3), we have

(2.15) ddα(n(α)3J(α))=2Re(1αF12(.13,231.|27α3)).\frac{\mathrm{d}}{\mathrm{d}\alpha}\left(n(\alpha)-3J(\alpha)\right)=-2\mathop{\mathrm{Re}}\left(\frac{1}{\alpha}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27}{\alpha^{3}}\biggr{)}\right).
Proof.

Let us first consider (2.15). We prove this identity by expressing both sides in terms of the elliptic integral of the first kind

K(z)=01dx(1x2)(1z2x2).K(z)=\int_{0}^{1}\frac{\mathrm{d}x}{\sqrt{(1-x^{2})(1-z^{2}x^{2})}}.

Again, let α=(λ32)/λ.\alpha=(\lambda^{3}-2)/\lambda. Following a procedure in [11, Ch. 3], we let

u=1λ3+1λ,v=1+λ3+1λ,x=utvt1.u=\frac{-1-\sqrt{\lambda^{3}+1}}{\lambda},\quad v=\frac{-1+\sqrt{\lambda^{3}+1}}{\lambda},\quad x=\frac{ut-v}{t-1}.

This substitution transforms the integral in Lemma 6 (without the factor 1/π-1/\pi) into

λ2λ3+1t1t2dt(B1t2+A1)(B2t2+A2),\frac{\lambda}{2\sqrt{\lambda^{3}+1}}\int_{t_{1}}^{t_{2}}\frac{\mathrm{d}t}{\sqrt{(B_{1}t^{2}+A_{1})(B_{2}t^{2}+A_{2})}},

where

t1\displaystyle t_{1} =λ3+22λ3+1λ3,\displaystyle=-\frac{\lambda^{3}+2-2\sqrt{\lambda^{3}+1}}{\lambda^{3}}, t2=t1,\displaystyle t_{2}=-t_{1},
A1\displaystyle A_{1} =λ3+22λ3+14λ3+1,\displaystyle=\frac{\lambda^{3}+2-2\sqrt{\lambda^{3}+1}}{4\sqrt{\lambda^{3}+1}}, B1=λ322λ3+14λ3+1,\displaystyle B_{1}=\frac{-\lambda^{3}-2-2\sqrt{\lambda^{3}+1}}{4\sqrt{\lambda^{3}+1}},
A2\displaystyle A_{2} =λ3+2+2λ3+14λ3+1,\displaystyle=\frac{-\lambda^{3}+2+2\sqrt{\lambda^{3}+1}}{4\sqrt{\lambda^{3}+1}}, B2=λ32+2λ3+14λ3+1.\displaystyle B_{2}=\frac{\lambda^{3}-2+2\sqrt{\lambda^{3}+1}}{4\sqrt{\lambda^{3}+1}}.

Observe that, for λ(1,2)\lambda\in(1,2), we have A1,A2,B2>0A_{1},A_{2},B_{2}>0, B1<0B_{1}<0, and A1/B1=t2.\sqrt{-A_{1}/B_{1}}=t_{2}. Hence the substitution tA1/B1tt\mapsto\sqrt{-A_{1}/B_{1}}t yields

λ2λ3+1t1t2dt(B1t2+A1)(B2t2+A2)\displaystyle\frac{\lambda}{2\sqrt{\lambda^{3}+1}}\int_{t_{1}}^{t_{2}}\frac{\mathrm{d}t}{\sqrt{(B_{1}t^{2}+A_{1})(B_{2}t^{2}+A_{2})}} =λ2λ3+11A2B111dt(1t2)(1A1B2A2B1t2)\displaystyle=\frac{\lambda}{2\sqrt{\lambda^{3}+1}}\sqrt{-\frac{1}{A_{2}B_{1}}}\int_{-1}^{1}\frac{\mathrm{d}t}{\sqrt{(1-t^{2})\left(1-\frac{A_{1}B_{2}}{A_{2}B_{1}}t^{2}\right)}}
=4λ(λ3+1+1)3(3λ3+1)K(A1B2A2B1).\displaystyle=\frac{4\lambda}{\sqrt{\left(\sqrt{\lambda^{3}+1}+1\right)^{3}\left(3-\sqrt{\lambda^{3}+1}\right)}}K\left(\sqrt{\frac{A_{1}B_{2}}{A_{2}B_{1}}}\right).

Therefore, we obtain

(2.16) ddα(n(α)3J(α))=4λπ(λ3+1+1)3(3λ3+1)K(A1B2A2B1).\frac{\mathrm{d}}{\mathrm{d}\alpha}\left(n(\alpha)-3J(\alpha)\right)=-\frac{4\lambda}{\pi\sqrt{\left(\sqrt{\lambda^{3}+1}+1\right)^{3}\left(3-\sqrt{\lambda^{3}+1}\right)}}K\left(\sqrt{\frac{A_{1}B_{2}}{A_{2}B_{1}}}\right).

On the other hand, we apply the hypergeometric transformation [18, p. 410]

(2.17) ReF12(.13,231.|27y(y2)3)=y2y+4F12(.13,231.|27y2(y+4)3),\mathop{\mathrm{Re}}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27y}{(y-2)^{3}}\biggr{)}=\frac{y-2}{y+4}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27y^{2}}{(y+4)^{3}}\biggr{)},

which is valid for y(2,8)y\in(2,8), to write the right-hand side of (2.15) as

2αRe(F12(.13,231.|27α3))\displaystyle-\frac{2}{\alpha}\mathop{\mathrm{Re}}\left({}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27}{\alpha^{3}}\biggr{)}\right) =2λ2λ3Re(F12(.13,231.|27λ3(λ32)3))\displaystyle=\frac{2\lambda}{2-\lambda^{3}}\mathop{\mathrm{Re}}\left({}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27\lambda^{3}}{(\lambda^{3}-2)^{3}}\biggr{)}\right)
=2λλ3+4F12(.13,231.|27λ6(λ3+4)3).\displaystyle=-\frac{2\lambda}{\lambda^{3}+4}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27\lambda^{6}}{(\lambda^{3}+4)^{3}}\biggr{)}.

The substitution λ=4(p+p2)3\lambda=\sqrt[3]{4(p+p^{2})} gives a bijection from the interval ((31)/2,1)((\sqrt{3}-1)/2,1) onto (23,2)(\sqrt[3]{2},2), which is corresponding to the interval (0,3)(0,3) for α\alpha, with the inverse mapping p=(λ3+11)/2p=(\sqrt{\lambda^{3}+1}-1)/2. We apply this substitution together with a classical result of Ramanujan [2, Thm 5.6] to deduce

2λλ3+4F12(.13,231.|27λ6(λ3+4)3)\displaystyle-\frac{2\lambda}{\lambda^{3}+4}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27\lambda^{6}}{(\lambda^{3}+4)^{3}}\biggr{)} =4(p+p2)32(p2+p+1)F12(.13,231.|27p2(1+p)24(1+p+p2)3)\displaystyle=-\frac{\sqrt[3]{4(p+p^{2})}}{2(p^{2}+p+1)}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27p^{2}(1+p)^{2}}{4(1+p+p^{2})^{3}}\biggr{)}
=4(p+p2)321+2pF12(.12,121.|p3(2+p)1+2p)\displaystyle=-\frac{\sqrt[3]{4(p+p^{2})}}{2\sqrt{1+2p}}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{2}\mathchar 44\relax\mkern 6.0mu\frac{1}{2}}{1}\,\,\bigg{|}\,\,\frac{p^{3}(2+p)}{1+2p}\biggr{)}
=λ2λ3+14F12(.12,121.|ρ(λ)),\displaystyle=-\frac{\lambda}{2\sqrt[4]{\lambda^{3}+1}}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{2}\mathchar 44\relax\mkern 6.0mu\frac{1}{2}}{1}\,\,\bigg{|}\,\,\rho(\lambda)\biggr{)},

where

ρ(λ)=λ64λ38+8λ3+116λ3+1.\rho(\lambda)=\frac{\lambda^{6}-4\lambda^{3}-8+8\sqrt{\lambda^{3}+1}}{16\sqrt{\lambda^{3}+1}}.

Then by the identities [1, Eq. 3.2.3], [9, Eq. 15.8.1]

K(k)=π2F12(.12,121.|k2),K(r)=11rK(rr1),K(k)=\frac{\pi}{2}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{2}\mathchar 44\relax\mkern 6.0mu\frac{1}{2}}{1}\,\,\bigg{|}\,\,k^{2}\biggr{)},\qquad K(\sqrt{r})=\frac{1}{\sqrt{1-r}}K\left(\sqrt{\frac{r}{r-1}}\right),

we arrive at

(2.18) λ2λ3+14F12(.12,121.|ρ(λ))=4λπ(λ3+1+1)3(3λ3+1)K(ρ(λ)ρ(λ)1).-\frac{\lambda}{2\sqrt[4]{\lambda^{3}+1}}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{2}\mathchar 44\relax\mkern 6.0mu\frac{1}{2}}{1}\,\,\bigg{|}\,\,\rho(\lambda)\biggr{)}=-\frac{4\lambda}{\pi\sqrt{\left(\sqrt{\lambda^{3}+1}+1\right)^{3}\left(3-\sqrt{\lambda^{3}+1}\right)}}K\left(\sqrt{\frac{\rho(\lambda)}{\rho(\lambda)-1}}\right).

It can be calculated directly that

ρ(λ)ρ(λ)1=λ64λ38+8λ3+1λ64λ388λ3+1=A1B2A2B1,\frac{\rho(\lambda)}{\rho(\lambda)-1}=\frac{\lambda^{6}-4\lambda^{3}-8+8\sqrt{\lambda^{3}+1}}{\lambda^{6}-4\lambda^{3}-8-8\sqrt{\lambda^{3}+1}}=\frac{A_{1}B_{2}}{A_{2}B_{1}},

so the right-hand side of (2.18) coincides with that of (2.16) and the proof is completed. Equation (2.14) also follows from the arguments above, provided that (2.17) is replaced with

ReF12(.13,231.|27y(y2)3)=42yy+4F12(.13,231.|27y2(y+4)3),\mathop{\mathrm{Re}}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27y}{(y-2)^{3}}\biggr{)}=\frac{4-2y}{y+4}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27y^{2}}{(y+4)^{3}}\biggr{)},

which is valid for y(1,2).y\in(1,2).

Proof of Theorem 1.

For α>3\alpha>3, we can apply term-by-term differentiation to show that

ddαRe(logα2α3F34(.43,53,1,12,2,2.|27α3))=Re(1αF12(.13,231.|27α3)).\frac{\mathrm{d}}{\mathrm{d}\alpha}\mathop{\mathrm{Re}}\left(\log\alpha-\frac{2}{\alpha^{3}}{}_{4}F_{3}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{4}{3}\mathchar 44\relax\mkern 6.0mu\frac{5}{3}\mathchar 44\relax\mkern 6.0mu1\mathchar 44\relax\mkern 6.0mu1}{2\mathchar 44\relax\mkern 6.0mu2\mathchar 44\relax\mkern 6.0mu2}\,\,\bigg{|}\,\,\frac{27}{\alpha^{3}}\biggr{)}\right)=\mathop{\mathrm{Re}}\left(\frac{1}{\alpha}{}_{2}F_{1}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{1}{3}\mathchar 44\relax\mkern 6.0mu\frac{2}{3}}{1}\,\,\bigg{|}\,\,\frac{27}{\alpha^{3}}\biggr{)}\right).

By analytic continuation, the above equality also holds for α(1,0)(0,3)\alpha\in(-1,0)\cup(0,3). Therefore, integrating both sides of (2.14) and (2.15) yields

n(α)3J(α)={Re(logα2α3F34(.43,53,1,12,2,2.|27α3))+C1, if 1<α<0,2Re(logα2α3F34(.43,53,1,12,2,2.|27α3))+C2, if 0<α<3,n(\alpha)-3J(\alpha)=\begin{cases}\mathop{\mathrm{Re}}\left(\log\alpha-\frac{2}{\alpha^{3}}{}_{4}F_{3}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{4}{3}\mathchar 44\relax\mkern 6.0mu\frac{5}{3}\mathchar 44\relax\mkern 6.0mu1\mathchar 44\relax\mkern 6.0mu1}{2\mathchar 44\relax\mkern 6.0mu2\mathchar 44\relax\mkern 6.0mu2}\,\,\bigg{|}\,\,\frac{27}{\alpha^{3}}\biggr{)}\right)+C_{1},&\text{ if }-1<\alpha<0,\\ -2\mathop{\mathrm{Re}}\left(\log\alpha-\frac{2}{\alpha^{3}}{}_{4}F_{3}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{4}{3}\mathchar 44\relax\mkern 6.0mu\frac{5}{3}\mathchar 44\relax\mkern 6.0mu1\mathchar 44\relax\mkern 6.0mu1}{2\mathchar 44\relax\mkern 6.0mu2\mathchar 44\relax\mkern 6.0mu2}\,\,\bigg{|}\,\,\frac{27}{\alpha^{3}}\biggr{)}\right)+C_{2},&\text{ if }0<\alpha<3,\end{cases}

for some constants C1C_{1} and C2C_{2}. Since α=1\alpha=-1 and α=3\alpha=3 are on the boundary of the set KK defined in Section 1, an argument underneath (1.4) implies that

(2.19) n(1)\displaystyle n(-1) =Re(log(1)+2F34(.43,53,1,12,2,2.|27)),\displaystyle=\mathop{\mathrm{Re}}\left(\log(-1)+2{}_{4}F_{3}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{4}{3}\mathchar 44\relax\mkern 6.0mu\frac{5}{3}\mathchar 44\relax\mkern 6.0mu1\mathchar 44\relax\mkern 6.0mu1}{2\mathchar 44\relax\mkern 6.0mu2\mathchar 44\relax\mkern 6.0mu2}\,\,\bigg{|}\,\,-27\biggr{)}\right),
n(3)\displaystyle n(3) =Re(log3227F34(.43,53,1,12,2,2.|  1)).\displaystyle=\mathop{\mathrm{Re}}\left(\log 3-\frac{2}{27}{}_{4}F_{3}\biggl{(}\genfrac{.}{.}{0.0pt}{}{\frac{4}{3}\mathchar 44\relax\mkern 6.0mu\frac{5}{3}\mathchar 44\relax\mkern 6.0mu1\mathchar 44\relax\mkern 6.0mu1}{2\mathchar 44\relax\mkern 6.0mu2\mathchar 44\relax\mkern 6.0mu2}\,\,\bigg{|}\,\,1\biggr{)}\right).

Hence, by continuity of n(α)n(\alpha) and (2.19), we have

C1\displaystyle C_{1} =limα1+(3J(α))=0,\displaystyle=\lim_{\alpha\rightarrow-1^{+}}(-3J(\alpha))=0,
C2\displaystyle C_{2} =3limα3(n(3)J(α))=0,\displaystyle=3\lim_{\alpha\rightarrow 3^{-}}(n(3)-J(\alpha))=0,

and the desired result follows. ∎

3. Relation to elliptic regulators and LL-values

In this section, we prove Theorem 2, which resembles Boyd’s conjectures (1.1). The key idea of the proof is to rewrite n~(α)\tilde{n}(\alpha) as a regulator integral over a path joining two cusps and apply Brunault-Mellit-Zudilin formula [25], which is stated below. As usual, we define the real differential form η(f,g)\eta(f,g) for meromorphic functions ff and gg on a smooth curve CC as

η(f,g)=log|f|darg(g)log|g|darg(f),\eta(f,g)=\log|f|\mathrm{d}\arg(g)-\log|g|\mathrm{d}\arg(f),

where darg(g)=Im(dg/g)\mathrm{d}\arg(g)=\mathop{\mathrm{Im}}(\mathrm{d}g/g).

Theorem 8 (Brunault-Mellit-Zudilin).

Let NN be a positive integer and define

ga(τ)=qNB2(a/N)/2n1namodN(1qn)n1namodN(1qn),q:=e2πiτ,g_{a}(\tau)=q^{NB_{2}(a/N)/2}\prod_{\begin{subarray}{c}n\geq 1\\ n\equiv a\bmod N\end{subarray}}(1-q^{n})\prod_{\begin{subarray}{c}n\geq 1\\ n\equiv-a\bmod N\end{subarray}}(1-q^{n}),\qquad q:=e^{2\pi i\tau},

where B2(x)={x}2{x}+1/6B_{2}(x)=\{x\}^{2}-\{x\}+1/6. Then for any a,b,ca,b,c\in\mathbb{Z} such that NacN\nmid ac and NbcN\nmid bc,

c/Niη(ga,gb)=14πL(f(τ)f(i),2),\int_{c/N}^{i\infty}\eta(g_{a},g_{b})=\frac{1}{4\pi}L(f(\tau)-f(i\infty),2),

where f(τ)=fa,b;c(τ)f(\tau)=f_{a,b;c}(\tau) is a weight 22 modular form given by

fa,b;c=ea,bceb,acea,bceb,acf_{a,b;c}=e_{a,bc}e_{b,-ac}-e_{a,-bc}e_{b,ac}

and

ea,b(τ)=12(1+ζNa1ζNa+1+ζNb1ζNb)+m,n1(ζNam+bnζN(am+bn))qmn,ζN:=e2πiN.e_{a,b}(\tau)=\frac{1}{2}\left(\frac{1+\zeta_{N}^{a}}{1-\zeta_{N}^{a}}+\frac{1+\zeta_{N}^{b}}{1-\zeta_{N}^{b}}\right)+\sum_{m,n\geq 1}\left(\zeta_{N}^{am+bn}-\zeta_{N}^{-(am+bn)}\right)q^{mn},\quad\zeta_{N}:=e^{\frac{2\pi i}{N}}.

Let us first outline a general framework for computing n~(α)\tilde{n}(\alpha) in terms of a regulator integral. Recall from Deninger’s result [8, Prop. 3.3] that if Qα(x,y)Q_{\alpha}(x,y) is irreducible, then

n(α)=12πγ¯αη(x,y),n(\alpha)=-\frac{1}{2\pi}\int_{\overline{\gamma}_{\alpha}}\eta(x,y),

where γα\gamma_{\alpha} is the Deninger path on the curve Eα:Qα(x,y)=0E_{\alpha}:Q_{\alpha}(x,y)=0; i.e.,

γα={(x,y)2|x|=1,|y|>1,Qα(x,y)=0}.\gamma_{\alpha}=\{(x,y)\in\mathbb{C}^{2}\mid|x|=1,|y|>1,Q_{\alpha}(x,y)=0\}.

If QαQ_{\alpha} does not vanish on the torus, then γ¯α\overline{\gamma}_{\alpha} becomes a closed path, so the Bloch-Beilinson conjectures give a prediction that (1.1) holds for all sufficiently large |α||\alpha| with suitable arithmetic properties; in this case, we need that α\alpha be a cube root of an integer. On the other hand, if α(1,3)\alpha\in(-1,3), then the functions y±(x)y_{\pm}(x) defined in Section 1 are discontinuous at the toric points as given in Proposition 4, so γ¯α\overline{\gamma}_{\alpha} is not closed in this case. We will show, however, that the path on EαE_{\alpha} corresponding to n~(α)\tilde{n}(\alpha) is indeed closed, so that n~(α)\tilde{n}(\alpha) is (conjecturally) related to LL-values. The numerical data supporting this hypothesis are given in Table 2.

Lemma 9.

Let α(1,3)\alpha\in(-1,3) and let n~(α)=n(α)3J(α).\tilde{n}(\alpha)=n(\alpha)-3J(\alpha). Then

n~(α)=12πγ~αη(x,y)\tilde{n}(\alpha)=-\frac{1}{2\pi}\int_{\tilde{\gamma}_{\alpha}}\eta(x,y)

for some γ~αH1(Eα,).\tilde{\gamma}_{\alpha}\in H_{1}(E_{\alpha},\mathbb{Z})^{-}. In other words, the integration path associated to the modified Mahler measure n~(α)\tilde{n}(\alpha) can be realized as a closed path which is anti-invariant under complex conjugation.

Proof.

We label the six toric points obtained from Proposition 4 as follows:

P1±\displaystyle P_{1}^{\pm} =(1,y±(1))=(1,Y±),\displaystyle=(1,y_{\pm}(1))=\left(1,Y_{\pm}\right),
P2±\displaystyle P_{2}^{\pm} =(e±ic(α),y+(e±ic(α)))=(Y±,1),\displaystyle=(e^{\pm ic(\alpha)},y_{+}(e^{\pm ic(\alpha)}))=\left(Y_{\pm},1\right),
P3±\displaystyle P_{3}^{\pm} =(e±ic(α),y(e±ic(α)))=(Y±,Y±),\displaystyle=(e^{\pm ic(\alpha)},y_{-}(e^{\pm ic(\alpha)}))=\left(Y_{\pm},Y_{\pm}\right),

where c(α)=cos1(α12)c(\alpha)=\cos^{-1}\left(\frac{\alpha-1}{2}\right) and

Y±=α12±(3α)(α+1)2i.Y_{\pm}=\frac{\alpha-1}{2}\pm\frac{\sqrt{(3-\alpha)(\alpha+1)}}{2}i.

Observe that n~(α)\tilde{n}(\alpha) can be rewritten as n~(α)=I(α)2J(α),\tilde{n}(\alpha)=I(\alpha)-2J(\alpha), where

I(α)\displaystyle I(\alpha) =12πc(α)c(α)log|y+(eiθ)|dθ,\displaystyle=\frac{1}{2\pi}\int_{-c(\alpha)}^{c(\alpha)}\log|y_{+}(e^{i\theta})|\mathrm{d}\theta,
J(α)\displaystyle J(\alpha) =12πc(α)2πc(α)log|y+(eiθ)|dθ.\displaystyle=\frac{1}{2\pi}\int_{c(\alpha)}^{2\pi-c(\alpha)}\log|y_{+}(e^{i\theta})|\mathrm{d}\theta.

Let S={P1±,P2±,P3±}S=\{P_{1}^{\pm},P_{2}^{\pm},P_{3}^{\pm}\}. Then we may identify the paths corresponding to I(α)I(\alpha) and J(α)J(\alpha) as elements in the relative homology H1(Eα,S,)H_{1}(E_{\alpha},S,\mathbb{Z}), say γI\gamma_{I} and γJ\gamma_{J}, respectively. In other words, we write

I(α)=12πγIη(x,y),J(α)=12πγJη(x,y),I(\alpha)=-\frac{1}{2\pi}\int_{\gamma_{I}}\eta(x,y),\quad J(\alpha)=-\frac{1}{2\pi}\int_{\gamma_{J}}\eta(x,y),

and boundaries of these paths can be seen as 0-cycles on SS. Computing the limits of y+(eiθ)y_{+}(e^{i\theta}) as θ\theta approaches 0,c(α)0,c(\alpha), and c(α)-c(\alpha) from both sides, we find that

limθc(α)+y+(eiθ)\displaystyle\lim_{\theta\rightarrow-c(\alpha)^{+}}y_{+}(e^{i\theta}) =limθc(α)y+(eiθ)=1,\displaystyle=\lim_{\theta\rightarrow c(\alpha)^{-}}y_{+}(e^{i\theta})=1,
limθ0+y+(eiθ)\displaystyle\lim_{\theta\rightarrow 0^{+}}y_{+}(e^{i\theta}) =Y,\displaystyle=Y_{-},
limθ0y+(eiθ)\displaystyle\lim_{\theta\rightarrow 0^{-}}y_{+}(e^{i\theta}) =Y+.\displaystyle=Y_{+}.

Therefore, the path γI\gamma_{I} is discontinuous at θ=0\theta=0 and

(3.1) γI=[[P1+][P2]]+[[P2+][P1]].\partial\gamma_{I}=[[P_{1}^{+}]-[P_{2}^{-}]]+[[P_{2}^{+}]-[P_{1}^{-}]].

This is illustrated in Figure 3 for α=2\alpha=2, where the dashed curves in the upper-half plane and the lower-half plane, both oriented counterclockwise, correspond to θ(c(α),0)\theta\in(-c(\alpha),0) and θ(0,c(α))\theta\in(0,c(\alpha)), respectively.

Refer to caption
Figure 2. y+(eiθ),θ[0,2π)y_{+}(e^{i\theta}),\,\theta\in[0,2\pi)
Refer to caption
Figure 3. y(eiθ),θ[0,2π)y_{-}(e^{i\theta}),\,\theta\in[0,2\pi)

Next, observe that

limθc(α)+y(eiθ)=1=limθc(α)y(eiθ),\lim_{\theta\rightarrow c(\alpha)^{+}}y_{-}(e^{i\theta})=1=\lim_{\theta\rightarrow-c(\alpha)^{-}}y_{-}(e^{i\theta}),

and γJ\gamma_{J} can be identified as the path {(eiθ,y(eiθ))c(α)<θ<2πc(α)}\{(e^{i\theta},y_{-}(e^{i\theta}))\mid c(\alpha)<\theta<2\pi-c(\alpha)\} (with reversed orientation), implying

(3.2) γJ=[[P2+][P2]].\partial\gamma_{J}=[[P_{2}^{+}]-[P_{2}^{-}]].

(For α=2\alpha=2, the yy-coordinate of this path is the bold curve inside the unit circle, as illustrated in Figure 3, oriented clockwise.) Define

γJ={(1y(eiθ),y(1y(eiθ)))c(α)<θ<2πc(α)}.\gamma_{J}^{\prime}=\left\{\left(\frac{1}{y_{-}\left(e^{i\theta}\right)},y_{-}\left(\frac{1}{y_{-}\left(e^{i\theta}\right)}\right)\right)\mid c(\alpha)<\theta<2\pi-c(\alpha)\right\}.

By some calculation, one sees that

y(1y(eiθ))\displaystyle y_{-}\left(\frac{1}{y_{-}\left(e^{i\theta}\right)}\right) =eiθ,\displaystyle=e^{-i\theta},
limθc(α)+y(eiθ)\displaystyle\lim_{\theta\rightarrow c(\alpha)^{+}}y_{-}(e^{i\theta}) =1=limθc(α)y(eiθ),\displaystyle=1=\lim_{\theta\rightarrow-c(\alpha)^{-}}y_{-}(e^{i\theta}),

implying

(3.3) γJ=[[P1+][P1]].\partial\gamma_{J}^{\prime}=[[P_{1}^{+}]-[P_{1}^{-}]].

Moreover, we have

γJη(x,y)\displaystyle\int_{\gamma_{J}}\eta(x,y) =c(α)2πc(α)log|y+(eiθ)|dθ\displaystyle=-\int_{c(\alpha)}^{2\pi-c(\alpha)}\log|y_{+}\left(e^{i\theta}\right)|\mathrm{d}\theta
=c(α)2πc(α)log|y(eiθ)|dθ\displaystyle=\int_{c(\alpha)}^{2\pi-c(\alpha)}\log|y_{-}\left(e^{i\theta}\right)|\mathrm{d}\theta
=c(α)2πc(α)log(|1/y(eiθ)|)d(θ)\displaystyle=\int_{c(\alpha)}^{2\pi-c(\alpha)}\log(|1/y_{-}\left(e^{i\theta}\right)|)\mathrm{d}(-\theta)
=γJη(x,y).\displaystyle=\int_{\gamma_{J}^{\prime}}\eta(x,y).

Finally, we arrive at

n~(α)=I(α)2J(α)=12π(γIη(x,y)γJη(x,y)γJη(x,y))=12πγ~αη(x,y),\tilde{n}(\alpha)=I(\alpha)-2J(\alpha)=-\frac{1}{2\pi}\left(\int_{\gamma_{I}}\eta(x,y)-\int_{\gamma_{J}}\eta(x,y)-\int_{\gamma_{J}^{\prime}}\eta(x,y)\right)=-\frac{1}{2\pi}\int_{\tilde{\gamma}_{\alpha}}\eta(x,y),

where, by (3.1),(3.2), and (3.3), γ~α\tilde{\gamma}_{\alpha} has trivial boundary, from which we can conclude that γ~αH1(Eα,).\tilde{\gamma}_{\alpha}\in H_{1}(E_{\alpha},\mathbb{Z}). It is clear from the construction of the paths γI,γJ,\gamma_{I},\gamma_{J}, and γJ\gamma_{J}^{\prime} that they are anti-invariant under the action of complex conjugation. Therefore, we have γ~αH1(Eα,)\tilde{\gamma}_{\alpha}\in H_{1}(E_{\alpha},\mathbb{Z})^{-}, as desired. ∎

We shall use Theorem 8 and Lemma 9 to prove Theorem 2. We essentially follow an approach of Brunault [7] in identifying the path γ~2\tilde{\gamma}_{2} as the push-forward of a path joining cusps on X1(19)X_{1}(19) with the aid of Magma and Pari/GP.

Proof of Theorem 2.

The elliptic curve E2:y2+(x22x)y+x=0E_{2}:y^{2}+(x^{2}-2x)y+x=0 has Cremona label 19a319a3, so it admits a modular parametrization φ:X1(19)E2\varphi:X_{1}(19)\rightarrow E_{2}. Let f2f_{2} be the weight 22 newform of level 1919 associated to the curve E2E_{2} and let ω=2πif2(τ)dτ,\omega=2\pi if_{2}(\tau)\mathrm{d}\tau, the pull-back of the holomorphic differential form on E2E_{2}. Using Magma and Pari/GP codes in [7, §6.1], we find that

4/194/19ω=Ω4.12709i,\int_{4/19}^{-4/19}\omega=-\Omega^{-}\approx-4.12709i,

where Ω\Omega^{-} is the imaginary period of E2E_{2} obtained by subtracting twice the complex period from the real period of E2E_{2}. Hence it follows that γ~2=φ{419,419}\tilde{\gamma}_{2}=\varphi_{*}\left\{\frac{4}{19},-\frac{4}{19}\right\}, where γ~α\tilde{\gamma}_{\alpha} is the path associated to n~(α)\tilde{n}(\alpha). We have from [6, Tab. 1] that the curve E2E_{2} can be parametrized by modular units, which are given explicitly as follows. Let

x(τ)\displaystyle x(\tau) =g1g7g8g2g3g5,\displaystyle=-\frac{g_{1}g_{7}g_{8}}{g_{2}g_{3}g_{5}},
y(τ)\displaystyle y(\tau) =g1g7g8g4g6g9,\displaystyle=\frac{g_{1}g_{7}g_{8}}{g_{4}g_{6}g_{9}},

where ga:=ga(τ)g_{a}:=g_{a}(\tau) is as given in Theorem 8 with N=19N=19. By a result of Yang [24, Cor. 3], both x(τ)x(\tau) and y(τ)y(\tau) are modular functions on Γ1(19)\Gamma_{1}(19). Multiplying each term by a modular form in M2(Γ1(19))M_{2}(\Gamma_{1}(19)), one can apply Sturm’s theorem [22, Cor. 9.19], with the Sturm bound B(M2(Γ1(19)))=60B(M_{2}(\Gamma_{1}(19)))=60, to show that y(τ)2+(x(τ)22x(τ))y(τ)+x(τ)y(\tau)^{2}+(x(\tau)^{2}-2x(\tau))y(\tau)+x(\tau) vanishes identically; i.e., (x(τ),y(τ))(x(\tau),y(\tau)) parametrizes the curve E2E_{2}. Finally, by Lemma 9 and Theorem 8, we find that

n~(2)=12πγ~2η(x,y)=12π4/194/19η(x(τ),y(τ))=14π2L(57f2,2)=3L(f2,0),\tilde{n}(2)=-\frac{1}{2\pi}\int_{\tilde{\gamma}_{2}}\eta(x,y)=\frac{1}{2\pi}\int_{-4/19}^{4/19}\eta(x(\tau),y(\tau))=-\frac{1}{4\pi^{2}}L(57f_{2},2)=-3L^{\prime}(f_{2},0),

where the last equality follows from the functional equation for L(f2,s)L(f_{2},s). ∎

In addition to (1.5), we discovered that, for all α(1,3)\alpha\in(-1,3) which are cube roots of integers, the following identity holds numerically:

(3.4) n~(α)=?rαL(Eα,0),\tilde{n}(\alpha)\stackrel{{\scriptstyle?}}{{=}}r_{\alpha}L^{\prime}(E_{\alpha},0),

where rαr_{\alpha}\in\mathbb{Q}. The data of rαr_{\alpha} and EαE_{\alpha} are given in Table 2.

α3\alpha^{3} Cremona label of EαE_{\alpha} rαr_{\alpha} α3\alpha^{3} Cremona label of EαE_{\alpha} rαr_{\alpha}
11 26a326a3 1-1 1414 2548d12548d1 1/361/36
22 20a120a1 5/3-5/3 1515 1350i11350i1 1/181/18
33 54a154a1 2/3-2/3 1616 44a144a1 4/3-4/3
44 92a192a1 1/3-1/3 1717 2890e12890e1 1/27-1/27
55 550d1550d1 1/9-1/9 1818 324b1324b1 1/6-1/6
66 756f1756f1 1/18-1/18 1919 722a1722a1 1/91/9
77 490a1490a1 1/91/9 2020 700i1700i1 1/9-1/9
88 19a319a3 3-3 2121 2464k12464k1 1/27-1/27
99 162c1162c1 1/3-1/3 2222 2420d12420d1 1/261/26
1010 1700c11700c1 1/361/36 2323 1058b11058b1 1/12-1/12
1111 242b1242b1 1/3-1/3 2424 27a127a1 3-3
1212 540d1540d1 1/91/9 2525 50a150a1 5/3-5/3
1313 2366d12366d1 1/45-1/45 2626 676c1676c1 1/6-1/6
Table 2. Data for (3.4)

It might be possible to prove some formulas in this list by relating n~(α)\tilde{n}(\alpha) to known results in Table 1. In particular, the conjectural formulas for the curves of conductor 20,27,20,27, and 5454 are equivalent to the following identities:

n~(23)\displaystyle\tilde{n}(\sqrt[3]{2}) =?58n(323),\displaystyle\stackrel{{\scriptstyle?}}{{=}}-\frac{5}{8}n(\sqrt[3]{32}),
n~(243)\displaystyle\tilde{n}(\sqrt[3]{24}) =?n(6),\displaystyle\stackrel{{\scriptstyle?}}{{=}}-n(-6),
n~(33)\displaystyle\tilde{n}(\sqrt[3]{3}) =?32n(3).\displaystyle\stackrel{{\scriptstyle?}}{{=}}-\frac{3}{2}n(-3).

As a side note, the authors of [18] (incorrectly) proved

(3.5) n(23)=56L(E23,0)n(\sqrt[3]{2})=\frac{5}{6}L^{\prime}(E_{\sqrt[3]{2}},0)

(see the corollary under [18, Thm. 5]). In their arguments, they made use of the following functional identity for Mahler measures [13, Thm. 2.4]: for sufficiently small |p|0|p|\neq 0,

(3.6) 3g(1p)=n(1+4pp3)+4n(12pp23),3g\left(\frac{1}{p}\right)=n\left(\frac{1+4p}{\sqrt[3]{p}}\right)+4n\left(\frac{1-2p}{\sqrt[3]{p^{2}}}\right),

where g(α)=m((x+1)(y+1)(x+y)αxy)g(\alpha)=\mathrm{m}((x+1)(y+1)(x+y)-\alpha xy). When any of the arguments of nn in (3.6) enters the region inside the hypocycloid in Figure 1 (e.g. p=1/2p=-1/2 in this case), this functional identity could be invalid due to discontinuity. Therefore, it is logically forbidden to deduce (3.5) from (3.6). In fact, by extending the hypergeometric formula (1.4) to the real line, Rogers [16] conjectured that

(3.7) n(2)=32L(E2,0),n(2)=\frac{3}{2}L^{\prime}(E_{2},0),

which is not the case by Theorem 2. It should be noted that both (3.5) and (3.7) make perfect sense if one thinks of n(α)n(\alpha) as the right-hand side of (1.4)\eqref{E:naR} on the punctured real line. That said, this strange behavior of the function n(α)n(\alpha) became a part of our motivation to initiate this project.

4. Final remarks

The family QαQ_{\alpha} is among the several nonreciprocal families of two-variable polynomials studied by Boyd. Our results provide evidence of how Mahler measure behaves when the zero locus of a bivariate polynomial intersects the 22-torus nontrivially. This could shed some light on the discrepancies between Mahler measure and (elliptic) regulator, which is conjecturally related to LL-values under favorable conditions. Another family which possesses similar properties (i.e. nonreciprocality and temperedness) to QαQ_{\alpha} is

Sα=y2+(x2+αx+1)y+x3,S_{\alpha}=y^{2}+(x^{2}+\alpha x+1)y+x^{3},

which is labeled (2-33)(2\text{-}33) in [4]. Let KK be as defined in Section 1. Then for the family SαS_{\alpha} we have K=[4,2].K\cap\mathbb{R}=[-4,2]. For α\alpha in this range, the Mahler measure of SαS_{\alpha} again splits naturally at the points of intersection between the curve Sα=0S_{\alpha}=0 and the 22-torus. If k=0k=0, these points are ±i\pm i, and Boyd verified numerically that

(4.1) 1π0π/2log|y(eiθ)|dθ1ππ/2πlog|y(eiθ)|dθ=?L(E,0),\frac{1}{\pi}\int_{0}^{\pi/2}\log|y_{-}(e^{i\theta})|\mathrm{d}\theta-\frac{1}{\pi}\int_{\pi/2}^{\pi}\log|y_{-}(e^{i\theta})|\mathrm{d}\theta\stackrel{{\scriptstyle?}}{{=}}-L^{\prime}(E,0),

where y(x)=(x2+1)2(114x3(x2+1)2)y_{-}(x)=-\frac{(x^{2}+1)}{2}\left(1-\sqrt{1-\frac{4x^{3}}{(x^{2}+1)^{2}}}\right) and EE is the conductor 1111 elliptic curve defined by S0=0S_{0}=0. He also remarked

“This is in accord with our contention that in case PP vanishes on the torus, it is the integral of ω\omega around a branch cut rather than m(P),\mathrm{m}(P), which should be rationally related to L(E,0)L^{\prime}(E,0).”.

One might try to prove this identity using the investigation carried out in Section 3 and a result of Brunault [5] concerning Mahler measure of a conductor 1111 elliptic curve. We also discovered conjectural identities analogous to (4.1) for elliptic curves of conductor 1717 and 5353, which are corresponding to k=1k=1 and k=1k=-1, respectively. As opposed to the family QαQ_{\alpha}, we are unable to find a general formula, both analytically and arithmetically, for Mahler measure (or its modification) of SαS_{\alpha}, so the situation seems less apparent for this family.

We would also like to point out another related result in the literature which we find incomplete. In [10, Thm 3.1], Guillera and Rogers assert that for q=e2πiτ(1,1)q=e^{2\pi i\tau}\in(-1,1) if α=3(1+27η12(3τ)η12(τ))13,\alpha=3\left(1+27\frac{\eta^{12}(3\tau)}{\eta^{12}(\tau)}\right)^{\frac{1}{3}}, then

(4.2) n(α)=92πn=D(e2πi/3qn),{n(\alpha)=\frac{9}{2\pi}\sum_{n=-\infty}^{\infty}D\left(e^{2\pi i/3}q^{n}\right)},

where η(τ)\eta(\tau) is the Dedekind eta function, and D(z)D(z) is the Bloch-Wigner dilogarithm. The summation in the formula above can be seen as a value of the elliptic dilogarithm. Consider the curve E2E_{2}, which appears in Theorem 2 and is isomorphic to /+τ\mathbb{C}/\mathbb{Z}+\mathbb{Z}\tau, where τ=1/2+0.50586i.\tau=1/2+0.50586\ldots i. Then we have q=e2πiτ=0.04165q=e^{2\pi i\tau}=-0.04165\ldots. However, the identity (4.2) seems invalid in this case (and all other cases for 1<α<3)-1<\alpha<3). The right-hand side is numerically equal to 32L(E2,0)\frac{3}{2}L^{\prime}(E_{2},0), which is a conjecture of Bloch and Grayson [3], while n(2)n(2) is not a rational multiple of L(E2,0)L^{\prime}(E_{2},0). A correct formula for α(1,3)\alpha\in(-1,3) should be

n~(α)=9πn=D(e2πi/3qn),\tilde{n}(\alpha)=-\frac{9}{\pi}\displaystyle\sum_{n=-\infty}^{\infty}D\left(e^{2\pi i/3}q^{n}\right),

which can be proven using Lemma 9 and [7, Prop. 19].

Finally, we propose some problems for the interested readers.

  • (i)

    The function n~(α)\tilde{n}(\alpha) looks somewhat unnatural at first glance. Is it possible to write it as the (full) Mahler measure of some polynomial?

  • (ii)

    Do there exist algebraic integers β\beta for which β3(1,3)\sqrt[3]{\beta}\in(-1,3) and n~(β3)\tilde{n}(\sqrt[3]{\beta}) is a linear combination of L(E,0)L^{\prime}(E,0) (i.e. identities analogous to (1.2))? As suggested by a result of Guillera and Rogers above, one might start by evaluating the function u(τ)=3(1+27η12(3τ)η12(τ))13u(\tau)=3\left(1+27\frac{\eta^{12}(3\tau)}{\eta^{12}(\tau)}\right)^{\frac{1}{3}} at some suitable CM points and numerically compare n~(u(τ))\tilde{n}(u(\tau)) with related elliptic LL-values using the PSLQ algorithm.

Funding

This work was supported by the National Research Council of Thailand (NRCT) under the Research Grant for Mid-Career Scholar [N41A640153 to D.S.].

Acknowledgements

The author is indebted to Wadim Zudilin for helpful discussions and his suggestion about integral and hypergeometric identities in the proofs of Lemma 6 and Lemma 7. The author would also like to thank François Brunault for his guidance on an approach to proving Lemma 9 and his explanation about Deninger’s results. This work would not have been complete without insightful comments from Mat Rogers and François Brunault on early versions of this manuscript, so the author would like to acknowledge them here. Finally, the author thanks Yusuke Nemoto and Zhengyu Tao for bringing a sign error in Theorem 1 and a miscalculation in the proof of Lemma 9 in the previous version of this paper to his attention.

References

  • [1] George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958
  • [2] Bruce C. Berndt, Ramanujan’s notebooks. Part V, Springer-Verlag, New York, 1998. MR 1486573
  • [3] S. Bloch and D. Grayson, K2K_{2} and LL-functions of elliptic curves: computer calculations, Applications of algebraic KK-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 79–88. MR 862631
  • [4] David W. Boyd, Mahler’s measure and special values of LL-functions, Experiment. Math. 7 (1998), no. 1, 37–82. MR 1618282
  • [5] François Brunault, Version explicite du théorème de Beilinson pour la courbe modulaire X1(N)X_{1}(N), C. R. Math. Acad. Sci. Paris 343 (2006), no. 8, 505–510. MR 2267584
  • [6] by same author, Parametrizing elliptic curves by modular units, J. Aust. Math. Soc. 100 (2016), no. 1, 33–41. MR 3436769
  • [7] by same author, Regulators of Siegel units and applications, J. Number Theory 163 (2016), 542–569. MR 3459587
  • [8] Christopher Deninger, Deligne periods of mixed motives, KK-theory and the entropy of certain 𝐙n{\bf Z}^{n}-actions, J. Amer. Math. Soc. 10 (1997), no. 2, 259–281. MR 1415320
  • [9] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.23 of 2019-06-15, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
  • [10] Jesús Guillera and Mathew Rogers, Mahler measure and the WZ algorithm, Proc. Amer. Math. Soc. 143 (2015), no. 7, 2873–2886. MR 3336612
  • [11] Leon M. Hall, Missouri S&T Math 483, Lecture Notes: Special Functions.
  • [12] Matilde Lalín, Detchat Samart, and Wadim Zudilin, Further explorations of Boyd’s conjectures and a conductor 21 elliptic curve, J. Lond. Math. Soc. (2) 93 (2016), no. 2, 341–360. MR 3483117
  • [13] Matilde N. Lalin and Mathew D. Rogers, Functional equations for Mahler measures of genus-one curves, Algebra Number Theory 1 (2007), no. 1, 87–117. MR 2336636
  • [14] Yotsanan Meemark and Detchat Samart, Mahler measures of a family of non-tempered polynomials and Boyd’s conjectures, Res. Math. Sci. 7 (2020), no. 1, Paper No. 1, 20. MR 4042306
  • [15] Anton Mellit, Elliptic dilogarithms and parallel lines, J. Number Theory 204 (2019), 1–24. MR 3991411
  • [16] Mathew Rogers, personal communication, 2010.
  • [17] by same author, Hypergeometric formulas for lattice sums and Mahler measures, Int. Math. Res. Not. IMRN (2011), no. 17, 4027–4058. MR 2836402
  • [18] Mathew Rogers and Wadim Zudilin, From LL-series of elliptic curves to Mahler measures, Compos. Math. 148 (2012), no. 2, 385–414. MR 2904192
  • [19] Detchat Samart, Mahler measures as linear combinations of LL-values of multiple modular forms, Canad. J. Math. 67 (2015), no. 2, 424–449. MR 3314841
  • [20] A. Schinzel, Polynomials with special regard to reducibility, Encyclopedia of Mathematics and its Applications, vol. 77, Cambridge University Press, Cambridge, 2000, With an appendix by Umberto Zannier. MR 1770638
  • [21] C. J. Smyth, On measures of polynomials in several variables, Bull. Austral. Math. Soc. 23 (1981), no. 1, 49–63. MR 615132
  • [22] William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007, With an appendix by Paul E. Gunnells. MR 2289048
  • [23] F. Rodriguez Villegas, Modular Mahler measures. I, Topics in number theory (University Park, PA, 1997), Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 17–48. MR 1691309
  • [24] Yifan Yang, Transformation formulas for generalized Dedekind eta functions, Bull. London Math. Soc. 36 (2004), no. 5, 671–682. MR 2070444
  • [25] Wadim Zudilin, Regulator of modular units and Mahler measures, Math. Proc. Cambridge Philos. Soc. 156 (2014), no. 2, 313–326. MR 3177872