This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Magneto-vortical Effect in Strong Magnetic Field

Shu Lin [email protected] School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China    Lixin Yang [email protected] School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China
Abstract

We develop covariant chiral kinetic theory with Landau level basis. We use it to investigate a magnetized plasma with a transverse electric field and a steady vorticity as perturbations. After taking into account vacuum shift in the latter case, we find the resulting current and stress tensor in both cases can be matched consistently with constitutive equations of magnetohydrodynamics. We find the solution in the vorticity case contains both shifts in temperature and chemical potential as well as excitations of the lowest Landau level states. The solution gives rise to an vector charge density and axial current density. The vacuum parts coming from both shifts and excitations agree with previous studies and the medium parts coming entirely from excitations leads to a new contribution to vector charge and axial current density consistent with standard chiral vortical effect.

I Introduction

The response of QCD matter to magnetic field and vorticity has received much attention recently. In the linear regime, the response is the celebrated chiral magnetic effect (CME) Vilenkin:1980fu ; Kharzeev:2004ey ; Kharzeev:2007tn ; Fukushima:2008xe ; Son:2009tf ; Neiman:2010zi and chiral vortical effect (CVE) Vilenkin:1980zv ; Erdmenger:2008rm ; Banerjee:2008th ; Son:2009tf ; Neiman:2010zi ; Landsteiner:2011cp , which are known to be dictated by chiral anomaly and gravitational anomaly. While magnetic field and rotation are analogous in many ways, they differ in one crucial aspect. The magnetic field is external, but rotation is defined by motion of medium itself.

Recently the combined effect of magnetic field and vorticity has been studied by different groups Hattori:2016njk ; Liu:2017spl ; Chen:2015hfc ; Cao:2019ctl ; Chen:2019tcp ; Bu:2019qmd ; Fukushima:2020ncb . In particular, it has been proposed by Hattori and Yin that in the limit of strong magnetic field, where lowest Landau level (LLL) approximation is valid, the effect of vorticity is to shift the energy of the LLL states through spin-orbit coupling Hattori:2016njk

Δϵ±=12sgn(qf)𝐁^𝝎,\displaystyle{\Delta}{\epsilon}^{\pm}=\mp\frac{1}{2}\mathrm{sgn}(q_{f})\hat{{\bf B}}\cdot{{\bm{\omega}}}, (1)

where the upper and lower signs correspond to particle and anti-particle of both chiralities and qfq_{f} is the charge of particle. The energy shift can also be interpreted as a shift of chemical potential sgn(qf)𝐁^𝝎\mathrm{sgn}(q_{f})\hat{{\bf B}}\cdot{{\bm{\omega}}} for particle. The shift induces vector charge density and axial current as

ΔJV0=qf14π2𝐁𝝎,Δ𝐉A=|qf|14π2(𝐁𝝎)𝐁^.\displaystyle{\Delta}J_{V}^{0}=q_{f}\frac{1}{4{\pi}^{2}}{{\bf B}}\cdot{{\bm{\omega}}},\quad{\Delta}{\bf J}_{A}=|q_{f}|\frac{1}{4{\pi}^{2}}({{\bf B}}\cdot{{\bm{\omega}}})\hat{{\bf B}}. (2)

As remarked before, vorticity also implies circular motion of fluid velocity, which arises from average velocity of constituents in fluid cells. The rotation modifies the distribution of constituents in the plane transverse to the vorticity. It induces an extra contribution to (2). We will refer to this contribution as medium contribution, and (2) as vacuum contribution based on their different origins.

Indeed, medium contributions to (2) are expected. On the one hand, it is known that vector charge density receives the following contribution Kovtun:2016lfw

ΔJV0=𝐏2𝐌𝝎.\displaystyle{\Delta}J_{V}^{0}=-{\bm{\nabla}}\cdot{\bf P}-2{\bf M}\cdot{{\bm{\omega}}}. (3)

The first term is the familiar bound charge from polarization 𝐏{\bf P}, which is absent in fluid. The second term is a required relativistic counterpart of the first one. It is from the coupling of magnetization 𝐌{\bf M} and vorticity. On the other hand, if we view Δ𝐉A{\Delta}{\bf J}_{A} in (2) as response to vorticity, we would expect also the standard CVE

Δ𝐉A=(μ2+μ522π2+T26)𝝎.\displaystyle{\Delta}{\bf J}_{A}=\left(\frac{{\mu}^{2}+{\mu}_{5}^{2}}{2{\pi}^{2}}+\frac{T^{2}}{6}\right){\bm{\omega}}. (4)

We will confirm the medium contributions in (3) and (4) in a magnetized quantum electrodynamics plasma with a vorticity. The combined vacuum and medium contributions can be matched nicely with constitutive equation of magnetohydrodynamics (MHD)Hernandez:2017mch ; Grozdanov:2016tdf ; Hongo:2020qpv ; Hattori:2017usa (see also Huang:2011dc ; Finazzo:2016mhm ). We also study a closely related setting in which magnetized plasma is subject to transverse electric field. We will find the matching with MHD in this setting gives the same coefficients once the shift of chemical potential is carefully taken into account. In line with (2), we will work in the limit of strong magnetic field and use LLL approximation. The constituents of the fluid is LLL states and is described by chiral kinetic theory (CKT) with Landau level basis Lin:2019fqo ; Hattori:2016lqx ; Sheng:2017lfu . It is supplementary to the usual chiral kinetic theory with free fermion basis, which is best suited at weak external field Son:2012wh ; Son:2012zy ; Stephanov:2012ki ; Gao:2012ix ; Pu:2010as ; Chen:2012ca ; Hidaka:2016yjf ; Manuel:2013zaa ; Manuel:2014dza ; Wu:2016dam ; Mueller:2017arw ; Mueller:2017lzw ; Huang:2018wdl ; Gao:2018wmr ; Carignano:2018gqt ; Lin:2019ytz ; Carignano:2019zsh ; Liu:2018xip ; Weickgenannt:2019dks ; Gao:2019znl ; Hattori:2019ahi ; Wang:2019moi ; Yang:2020hri ; Liu:2020flb ; Hayata:2020sqz ; chen2021equaltime .

This paper is organized as follows. In Section (II), we derive the CKT with Landau level basis in a covariant form. In the presence of strong magnetic field and vorticity in the fluid, the CKT needs to be corrected by the second order gradient terms on gauge potential. In Section (III), we find solution for magnetized plasma subject to transverse electric field. The resulting drift correction to the current and stress tensor are matched with MHD. We then follow a similar procedure to obtain the solution for magnetized plasma with a vorticity and compare it with MHD in Section (IV). We summarize and discuss possible extensions in Section (V).

Throughout this paper, we set =1{\hbar}=1 and c=1c=1. We take positive charge qf=eq_{f}=e for chiral fermions and absorb electric charge ee into the gauge field. We use the notations (xμ)=(x0,𝐱),(pμ)=(p0,𝐩)(x^{\mu})=(x_{0},{\bf x}),\,(p^{\mu})=(p_{0},{\bf p}) for four-vectors and adopt mostly minus signature.

II Covariant chiral kinetic theory with Landau level basis

We start with a system of right-handed chiral fermions covariantly coupled to external gauge field. The two-point correlator W¯(z,y)ψ(z)ψ(y){\bar{W}}(z,y)\equiv\langle\psi(z)\psi(y)^{\dagger}\rangle satisfies the following equations

zW¯(z,y)=0,W¯(z,y)y=0,\displaystyle{\not{D}}_{z}{\bar{W}}(z,y)=0,\quad{\bar{W}}(z,y){\not{D}}_{y}^{\dagger}=0, (5)

with the covariant derivatives defined as

z=∂̸z+i(z),y=∂̸yi(y),\displaystyle{\not{D}}_{z}={\not{{\partial}}}_{z}+i{\not{A}}(z),\qquad{\not{D}}_{y}^{\dagger}=\overleftarrow{{\not{{\partial}}}}_{y}-i{\not{A}}(y), (6)

where, for right-handed fermions, the slash is given by =σμAμ{\not{A}}={\sigma}^{\mu}A_{\mu}. Note W¯(z,y){\bar{W}}(z,y) is not gauge invariant. A gauge invariant correlator W~(z,y){\tilde{W}}(z,y) is constructed by using a gauge link U(y,z)U(y,z) as

W~(z,y)W¯(z,y)U(y,z),\displaystyle{\tilde{W}}(z,y)\equiv{\bar{W}}(z,y)U(y,z), (7)

with the gauge link defined by

U(y,z)=exp(izy𝑑rμAμ(r)).\displaystyle U(y,z)=\mathrm{exp}\left(i\int_{z}^{y}dr^{\mu}A_{\mu}(r)\right). (8)

In terms of W~(z,y){\tilde{W}}(z,y), the EOM reads

zW¯(z,y)=Dμz(σμW~(z,y)U(z,y))=0,\displaystyle{\not{D}}_{z}{\bar{W}}(z,y)=D_{\mu}^{z}\left({\sigma}^{\mu}{\tilde{W}}(z,y)U(z,y)\right)=0,
W¯(z,y)y=(W~(z,y)U(z,y)σμ)Dμy=0.\displaystyle{\bar{W}}(z,y){\not{D}}_{y}^{\dagger}=\left({\tilde{W}}(z,y)U(z,y){\sigma}^{\mu}\right)D_{\mu}^{y{\dagger}}=0. (9)

It is convenient to switch to variables x=12(y+z)x=\frac{1}{2}(y+z) and s=yzs=y-z. We will consider xx as a slow-varying variable and ss as a fast variable conjugate to momentum, i.e. xs{\partial}_{x}\ll{\partial}_{s}. This allows us to further simplify (II) using an expansion in x{\partial}_{x}, which for the covariant derivatives and gauge link reads

Dμz=12μx+μs+iAμ(x)+i2(sννx)Aμ(x)+i8(sννx)2Aμ(x)+O((x)3),\displaystyle D_{\mu}^{z}=\frac{1}{2}{\partial}_{\mu}^{x}+{\partial}_{\mu}^{s}+iA_{\mu}(x)+\frac{i}{2}\left(s^{\nu}{\partial}_{\nu}^{x}\right)A_{\mu}(x)+\frac{i}{8}\left(s^{\nu}{\partial}_{\nu}^{x}\right)^{2}A_{\mu}(x)+O\left(({\partial}_{x})^{3}\right),
Dμy=12μxμsiAμ(x)+i2(sννx)Aμ(x)i8(sννx)2Aμ(x)+O((x)3),\displaystyle D_{\mu}^{y{\dagger}}=\frac{1}{2}\overleftarrow{{\partial}}_{\mu}^{x}-\overleftarrow{{\partial}}_{\mu}^{s}-iA_{\mu}(x)+\frac{i}{2}\left(s^{\nu}{\partial}_{\nu}^{x}\right)A_{\mu}(x)-\frac{i}{8}\left(s^{\nu}{\partial}_{\nu}^{x}\right)^{2}A_{\mu}(x)+O\left(({\partial}_{x})^{3}\right),
U(y,z)=exp(isμAμ(x)+isμ24(sννx)2Aμ(x))+O((x)4).\displaystyle U(y,z)=\mathrm{exp}\left(is^{\mu}A_{\mu}(x)+\frac{is^{\mu}}{24}(s^{\nu}{\partial}_{\nu}^{x})^{2}A_{\mu}(x)\right)+O\left(({\partial}_{x})^{4}\right). (10)

Commuting the covariant derivatives with the gauge link using the following identities

Dμz(U(z,y)σμW~(z,y))\displaystyle D_{\mu}^{z}\left(U(z,y){\sigma}^{\mu}{\tilde{W}}(z,y)\right)
=U(z,y)(12μxμs+i2sνFμν+i12(sλλx)sνFμν)(σμW~(x,s)),\displaystyle\quad=U(z,y)\left(\frac{1}{2}{\partial}_{\mu}^{x}-{\partial}_{\mu}^{s}+\frac{i}{2}s^{\nu}F_{{\mu}{\nu}}+\frac{i}{12}\left(s^{\lambda}{\partial}_{\lambda}^{x}\right)s^{\nu}F_{{\mu}{\nu}}\right)\left({\sigma}^{\mu}{\tilde{W}}(x,s)\right),
(W~(z,y)σμU(z,y))Dμy\displaystyle\left({\tilde{W}}(z,y){\sigma}^{\mu}U(z,y)\right)D_{\mu}^{y{\dagger}}
=(W~(x,s)σμ)(12μx+μs+i2sνFμνi12(sλλx)sνFμν)U(z,y),\displaystyle\quad=\left({\tilde{W}}(x,s){\sigma}^{\mu}\right)\left(\frac{1}{2}\overleftarrow{{\partial}}_{\mu}^{x}+\overleftarrow{{\partial}}_{\mu}^{s}+\frac{i}{2}s^{\nu}F_{{\mu}{\nu}}-\frac{i}{12}\left(s^{\lambda}{\partial}_{\lambda}^{x}\right)s^{\nu}F_{{\mu}{\nu}}\right)U(z,y), (11)

we arrive at the EOM for W~(x,s){{\tilde{W}}}(x,s):

(12μxμs+i2sνFμν+i12(sλλx)sνFμν)σμW~(x,s)=0,\displaystyle\left(\frac{1}{2}{\partial}_{\mu}^{x}-{\partial}_{\mu}^{s}+\frac{i}{2}s^{\nu}F_{{\mu}{\nu}}+\frac{i}{12}\left(s^{\lambda}{\partial}_{\lambda}^{x}\right)s^{\nu}F_{{\mu}{\nu}}\right){\sigma}^{\mu}{\tilde{W}}(x,s)=0,
(12μx+μs+i2sνFμνi12(sλλx)sνFμν)W~(x,s)σμ=0.\displaystyle\left(\frac{1}{2}{\partial}_{\mu}^{x}+{\partial}_{\mu}^{s}+\frac{i}{2}s^{\nu}F_{{\mu}{\nu}}-\frac{i}{12}\left(s^{\lambda}{\partial}_{\lambda}^{x}\right)s^{\nu}F_{{\mu}{\nu}}\right){\tilde{W}}(x,s){\sigma}^{\mu}=0. (12)

The kinetic equation is formulated with a quantum distribution function derivable from the Wigner transform of W~(x,s){\tilde{W}}(x,s)Vasak:1987um ; Elze:1986qd ; Elze:1989un ; Zhuang:1995pd : W(x,p)=d4s(2π)4eipsW~(x,s)W(x,p)=\int\frac{d^{4}s}{(2{\pi})^{4}}e^{-ip\cdot s}{\tilde{W}}(x,s), which satisfies the following EOM

(12ΔμiΠμ)σμW(x,p)=0,\displaystyle(\frac{1}{2}{\Delta}_{\mu}-i{\Pi}_{\mu}){\sigma}^{\mu}{W}(x,p)=0,
(12Δμ+iΠμ)W(x,p)σμ=0,\displaystyle(\frac{1}{2}{\Delta}_{\mu}+i{\Pi}_{\mu}){W}(x,p){\sigma}^{\mu}=0, (13)

where we have defined operators Δμ=μpνFμν{\Delta}_{\mu}={\partial}_{\mu}-\frac{{\partial}}{{\partial}p_{\nu}}F_{{\mu}{\nu}}, Πμ=pμ1122pνpλxλFμν{\Pi}_{\mu}=p_{\mu}-\frac{1}{12}\frac{{\partial}^{2}}{{\partial}p_{\nu}{\partial}p_{\lambda}}\frac{{\partial}}{{\partial}x^{\lambda}}F_{{\mu}{\nu}} with the gradient xλ\frac{{\partial}}{{\partial}x^{\lambda}} acting on FμνF_{{\mu}{\nu}} only. We can rewrite (II) into component form by projecting it onto a suitable basis. For right-handed Weyl fermion, W(x,p)W(x,p) is decomposed as

W(x,p)=12jμσ¯μ.\displaystyle W(x,p)=\frac{1}{2}j_{\mu}\bar{{\sigma}}^{\mu}. (14)

The projection of (II) gives the following EOM for components

Πμjμ\displaystyle{\Pi}_{{\mu}}j^{{\mu}} =0,\displaystyle=0, (15)
Δμjμ\displaystyle{\Delta}_{{\mu}}j^{{\mu}} =0,\displaystyle=0, (16)
ΠμjνΠνjμ\displaystyle{\Pi}^{{\mu}}j^{{\nu}}-{\Pi}^{{\nu}}j^{{\mu}} =12ϵμνρσΔρjσ,.\displaystyle=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\Delta}_{{\rho}}j_{{\sigma}},. (17)

The details of the projection as well as the case for left-handed fermions can be found in appendix A. By solving the above equations, we can then obtain the current density and stress tensor by momentum integration of jμj^{\mu}:

Jμ=\displaystyle J^{\mu}= d4ptr(σμW)=d4pjμ,\displaystyle\int d^{4}p\;\text{tr}\left({\sigma}^{\mu}W\right)=\int d^{4}p\,j^{\mu},
Tμν=\displaystyle T^{{\mu}{\nu}}= 12d4ptr(p{μσν}W)=12d4pp{μjν},\displaystyle\frac{1}{2}\int d^{4}p\;\text{tr}\left(p^{\{{\mu}}{\sigma}^{{\nu}\}}W\right)=\frac{1}{2}\int d^{4}p\,p^{\{{\mu}}j^{{\nu}\}}, (18)

where X{μYν}XμYν+XνYμX^{\{{\mu}}Y^{{\nu}\}}\equiv X^{{\mu}}Y^{{\nu}}+X^{{\nu}}Y^{{\mu}}. The contribution of left-handed fermions will be added upon integrating over momenta.

Up to now, we have not specified the order of FμνF_{{\mu}{\nu}} in gradient. We can decompose FμνF_{{\mu}{\nu}} using the fluid velocity as: Fμν=ϵμνρσuρBσ+EμuνEνuμF_{{\mu}{\nu}}={\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}u^{\rho}B^{\sigma}+E_{\mu}u_{\nu}-E_{\nu}u_{\mu}, with EμE^{\mu} and BμB^{\mu} being electric and magnetic fields in local rest frame (LRF) of the fluid. For the case of our interest, we consider a strong background magnetic field and a possible electric field perturbation. Thus we regard BμO(0)B^{\mu}\sim O({\partial}^{0}) and EμO()E^{\mu}\sim O({\partial}). It follows that the FμνF_{{\mu}{\nu}} term in Πμ{\Pi}_{\mu} can be O(0)O({\partial}^{0}). This is the reason to include the second term in Πμ{\Pi}_{\mu}, which counts as O(2)O({\partial}^{2}) on the gauge potential.

To proceed, we further choose a constant magnetic field in LRF of the fluid, Bμ=BbμB^{\mu}=Bb^{\mu} with BB and bμb^{\mu} being magnitude and unit vector both constants in spacetime. While this choice is not the most general situation, it allows us to study the magneto-vortical effect in this simple setting. In particular, it adopts a simple covariant zeroth order solution as Lin:2019fqo

j(0)μ=\displaystyle j_{(0)}^{{\mu}}= (u+b)μδ(p(u+b))f(pu)epT2B(u+b)μj,\displaystyle(u+b)^{{\mu}}{\delta}(p\cdot(u+b))f(p\cdot u)e^{\frac{p_{T}^{2}}{B}}\equiv(u+b)^{{\mu}}j, (19)

where pTp_{T} is the momentum component transverse to uu and bb. It is defined by the transverse projector Pμνgμν+uμuνbμbνP^{{\mu}{\nu}}\equiv-g^{{\mu}{\nu}}+u^{{\mu}}u^{{\nu}}-b^{{\mu}}b^{{\nu}} as pTμPμνpν=pμ(pu)uμ+(pb)bμp_{T}^{\mu}\equiv-P^{{\mu}{\nu}}p_{\nu}=p^{\mu}-(p\cdot u)u^{\mu}+(p\cdot b)b^{\mu}. The distribution function involving energy of fermion is

f(pu)=2(2π)3r=±rθ(rpu)er(puμR)/T+1,\displaystyle f(p\cdot u)=\frac{2}{(2{\pi})^{3}}\sum_{r=\pm}\frac{r{\theta}(rp\cdot u)}{e^{r\left(p\cdot u-{\mu}_{{}_{R}}\right)/T}+1}, (20)

where μR{\mu}_{{}_{R}} is the chemical potential for right-handed Weyl fermions. We take constant chemical potential μR/L{\mu}_{{}_{R/L}} and temperature TT for simplicity.

In the next two sections, we will study first order gradient correction to (19) induced by constant transverse electric field and vorticity respectively. The resulting current and stress tensor allow us to study (thermal) Hall effect and magneto-vortical effect respectively. The static solution can also be matched with magnetohydrostatics, which is the static limit of magnetohydrodynamics. We will determine several thermodynamic functions through the matching.

III Magnetized plasma with a drift

In this section, we study the magnetized plasma perturbed by a transverse electric field. This would lead to the development a drift velocity like in the case of magnetized plasma consisting of free fermions. We will see drift velocity appear in the solution. In this drift state, we will find the existence of charge and heat flow in the direction of the drift velocity.

We start by turning on a perturbation aμa^{\mu} at O(1)O(1) in gauge potential which gives an O()O({\partial}) electric field Eμ=fμνuνE_{{\mu}}=f_{{\mu}{\nu}}u^{\nu} in the transverse direction, i.e., Eμbμ=0E_{\mu}b^{\mu}=0. Here we have isolated the O()O({\partial}) field strength fμν=EμuνEνuμf_{{\mu}{\nu}}=E_{\mu}u_{\nu}-E_{\nu}u_{\mu} from the O(1)O(1) part Fμν=ϵμνρσuρBσF_{{\mu}{\nu}}={\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}u^{\rho}B^{\sigma}. It is sufficient to consider constant uμu^{\mu}, which allows us to drop gradient terms. The EOM are then modified to

pμj(1)𝒟μ=0,\displaystyle p_{\mu}j_{(1){\cal D}}^{\mu}=0, (21)
Dμj(1)𝒟μfμνpνj(0)μ=0,\displaystyle D_{\mu}j_{(1){\cal D}}^{\mu}-f_{{\mu}{\nu}}\frac{{\partial}}{{\partial}p_{\nu}}j_{(0)}^{\mu}=0, (22)
p[μj(1)𝒟ν]=12ϵμνρσ(Dρjσ(1)𝒟fρλpλjσ(0)),\displaystyle p^{[{\mu}}j_{(1){\cal D}}^{{\nu}]}=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left(D_{\rho}j_{\sigma}^{(1){\cal D}}-f_{{\rho}{\lambda}}\frac{{\partial}}{{\partial}p_{\lambda}}j_{\sigma}^{(0)}\right), (23)

with DμpνFμν=ϵμνρσBbρuσpνD_{\mu}\equiv-\frac{{\partial}}{{\partial}p_{\nu}}F_{{\mu}{\nu}}={\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}Bb^{\rho}u^{\sigma}\frac{{\partial}}{{\partial}p_{\nu}} and X[μYν]XμYνXνYμX^{[{\mu}}Y^{{\nu}]}\equiv X^{\mu}Y^{\nu}-X^{\nu}Y^{\mu}. Below we will solve (21) through (23) and match the resulting current and stress tensor with MHD.

III.1 Solution of CKT for a drift state

We start by putting down an ansatz at O()O({\partial}) for the drift state solution,

j(1)𝒟μ=(u+b)μpu(1)((pu)G1+G2)+u(1)μG3,\displaystyle j_{(1){\cal D}}^{{\mu}}=(u+b)^{{\mu}}\,p\cdot u_{(1)}\left(\frac{{\partial}}{{\partial}(p\cdot u)}G_{1}+G_{2}\right)+u_{(1)}^{{\mu}}G_{3}, (24)

with u(1)μ12Bϵμνρσfνρbσu_{(1)}^{{\mu}}\equiv\frac{1}{2B}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\nu}{\rho}}b_{{\sigma}}. It is orthogonal to Eμ,bμE_{\mu},\,b_{\mu} and uμu_{\mu}, and is interpreted as drift velocity. Gnδ(p(u+b))epT2BG_{n}\propto{\delta}(p\cdot(u+b))e^{\frac{p_{T}^{2}}{B}} are undetermined functions depending on momenta pu,pbp\cdot u,\,p\cdot b and pT2p_{T}^{2}. We treat pu,pbp\cdot u,\,p\cdot b and pT2p_{T}^{2} as independent in momenta derivatives. More careful discussions can be found in Appendix B where we take momentum in LRF of fluid qμq^{\mu} as independent variables 111One can equivalently switch between pμp^{\mu} and qμq^{\mu} to arrive at the same final solution..

One may think there might be a possible change in the leading order distribution j(0)μj_{(0)}^{\mu} due to the O(1)O(1) perturbation aμa^{\mu} in gauge potential,

j(0)𝒟μ=(u+b)μ(j+aλuλG4).\displaystyle j_{(0){\cal D}}^{{\mu}}=(u+b)^{{\mu}}\left(j+a^{\lambda}u_{\lambda}\,G_{4}\right). (25)

Note that aλuλa^{\lambda}u_{\lambda} can be interpreted as a shift on the chemical potential. Such a contribution is possible, but does not lead to charge/heat current in the direction of the drift velocity. We will not consider this possibility below. Now we work on the response to the external field EμE^{\mu} at the first order. The two scalar equations (21) and (22) give

(21)\displaystyle\eqref{eom1E}\quad\to\quad pu(1)p(u+b)((pu)G1+G2)+pu(1)G3=0\displaystyle p\cdot u_{(1)}p\cdot(u+b)\left(\frac{{\partial}}{{\partial}(p\cdot u)}G_{1}+G_{2}\right)+p\cdot u_{(1)}G_{3}=0 (26)
(22)\displaystyle\eqref{eom2E}\quad\to\quad Fμλpλj(1)𝒟μfμνpνj(0)μ\displaystyle-F_{{\mu}{\lambda}}\frac{{\partial}}{{\partial}p_{\lambda}}j_{(1){\cal D}}^{{\mu}}-f_{{\mu}{\nu}}\frac{{\partial}}{{\partial}p_{{\nu}}}j_{(0)}^{{\mu}}
=Bϵμλαβbαuβϵμνρσfνρbσ2B2pTλBG3(u+b)μfμν2pTνBj\displaystyle=B{\epsilon}_{{\mu}{\lambda}{\alpha}{\beta}}b^{{\alpha}}u^{{\beta}}\frac{{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\nu}{\rho}}b_{{\sigma}}}{2B}\frac{2p_{T}^{{\lambda}}}{B}G_{3}-(u+b)^{{\mu}}f_{{\mu}{\nu}}\frac{2p_{T}^{{\nu}}}{B}j
=p[ρuν]fνρ1BG3p[νuμ]fμν1Bj=0,\displaystyle=p^{[{\rho}}u^{{\nu}]}f_{{\nu}{\rho}}\frac{1}{B}G_{3}-p^{[{\nu}}u^{{\mu}]}f_{{\mu}{\nu}}\frac{1}{B}j=0, (27)

where we have used Eμuμ=0E^{\mu}u_{\mu}=0 and bμfμν=0b^{\mu}f_{{\mu}{\nu}}=0 in (27). One finds (26) and (27) are satisfied by G1=G3=jG_{1}=G_{3}=j and G2δ(p(u+b))G_{2}\propto{\delta}(p\cdot(u+b)).

We simplify the anti-symmetric tensor equation (23) as follows.

LHS=\displaystyle\text{LHS}= p[μj(1)𝒟ν]=pu(1)p[μ(u+b)ν]((pu)G1+G2)+p[μu(1)ν]G3\displaystyle p^{[{\mu}}j_{(1){\cal D}}^{{\nu}]}=p\cdot u_{(1)}p^{[{\mu}}(u+b)^{{\nu}]}\left(\frac{{\partial}}{{\partial}(p\cdot u)}G_{1}+G_{2}\right)+p^{[{\mu}}u_{(1)}^{{\nu}]}G_{3}
=\displaystyle= pu(1)(pT[μ(u+b)ν]p(u+b)b[μuν])((pu)G1+G2)\displaystyle p\cdot u_{(1)}\left(p_{T}^{[{\mu}}(u+b)^{{\nu}]}-p\cdot(u+b)b^{[{\mu}}u^{{\nu}]}\right)\left(\frac{{\partial}}{{\partial}(p\cdot u)}G_{1}+G_{2}\right)
+pT[μu(1)ν]G3+pu(u+b)[μu(1)ν]G3,\displaystyle\quad+p_{T}^{[{\mu}}u_{(1)}^{{\nu}]}G_{3}+p\cdot u(u+b)^{[{\mu}}u_{(1)}^{{\nu}]}G_{3}, (28)
RHS=\displaystyle\text{RHS}= 12ϵμνρσ(Fρλpλjσ(1)𝒟fρλpλjσ(0)).\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left(-F_{{\rho}{\lambda}}\frac{{\partial}}{{\partial}p_{\lambda}}j^{(1){\cal D}}_{{\sigma}}-f_{{\rho}{\lambda}}\frac{{\partial}}{{\partial}p_{{\lambda}}}j_{{\sigma}}^{(0)}\right). (29)

For two parts on the RHS, the first one can be written as

12ϵμνρσBϵρλαβbαuβpλ[pu(1)(u+b)σ((pu)G1+G2)+uσ(1)G3]\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}B{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}b^{{\alpha}}u^{{\beta}}\frac{{\partial}}{{\partial}p_{{\lambda}}}\left[p\cdot u_{(1)}(u+b)_{{\sigma}}\left(\frac{{\partial}}{{\partial}(p\cdot u)}G_{1}+G_{2}\right)+u^{(1)}_{{\sigma}}G_{3}\right]
=(pu(1)pT[μ(u+b)ν]+B2u(1)[μ(u+b)ν])((pu)G1+G2)+b[μuν]pu(1)G3,\displaystyle=\left(p\cdot u_{(1)}p_{T}^{[{\mu}}(u+b)^{{\nu}]}+\frac{B}{2}u_{(1)}^{[{\mu}}(u+b)^{{\nu}]}\right)\left(\frac{{\partial}}{{\partial}(p\cdot u)}G_{1}+G_{2}\right)+b^{[{\mu}}u^{{\nu}]}p\cdot u_{(1)}G_{3}, (30)

where we have used uu(1)=bu(1)=0u\cdot u_{(1)}=b\cdot u_{(1)}=0. Noting fρλbλ=0f_{{\rho}{\lambda}}b^{\lambda}=0, the second part writes

12ϵμνρσfρλ(u+b)σ(uλ(pu)+2pTλB)j=B2(u+b)[μu(1)ν](pu)j+pT[μu(1)ν]j,\displaystyle\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}(u+b)_{{\sigma}}\left(u^{{\lambda}}\frac{{\partial}}{{\partial}(p\cdot u)}+\frac{2p_{T}^{{\lambda}}}{B}\right)j=\frac{B}{2}(u+b)^{[{\mu}}u_{(1)}^{\nu]}\frac{{\partial}}{{\partial}(p\cdot u)}j+p_{T}^{[{\mu}}u_{(1)}^{{\nu}]}j, (31)

where we have used the following identities shown in Appendix C,

ϵμνρσfρλ(u+b)σuλ=\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}(u+b)_{{\sigma}}u^{{\lambda}}= B(u+b)[μu(1)ν],\displaystyle B(u+b)^{[{\mu}}u_{(1)}^{{\nu}]},
ϵμνρσfρλ(u+b)σpTλ=\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}(u+b)_{{\sigma}}p_{T}^{{\lambda}}= BpT[μu(1)ν].\displaystyle Bp_{T}^{[{\mu}}u_{(1)}^{{\nu}]}. (32)

We collect the LHS and RHS from (III.1)(III.1)(31) and group them into b[μuν],pT[μ(u+b)ν],(u+b)[μu(1)ν]b^{[{\mu}}u^{{\nu}]},\,p_{T}^{[{\mu}}(u+b)^{{\nu}]},\,(u+b)^{[{\mu}}u_{(1)}^{{\nu}]} and pT[μu(1)ν]p_{T}^{[{\mu}}u_{(1)}^{{\nu}]} terms to fix GnG_{n} by comparing the coefficients of the groups. For b[μuν]b^{[{\mu}}u^{{\nu}]} terms, one gets

pu(1)p(u+b)((pu)G1+G2)=pu(1)G3,\displaystyle-p\cdot u_{(1)}p\cdot(u+b)\left(\frac{{\partial}}{{\partial}(p\cdot u)}G_{1}+G_{2}\right)=p\cdot u_{(1)}G_{3}, (33)

which holds by G1=G3=jG_{1}=G_{3}=j. The coefficients of pT[μ(u+b)ν]p_{T}^{[{\mu}}(u+b)^{{\nu}]} on two sides cancel out automatically. For the (u+b)[μu(1)ν](u+b)^{[{\mu}}u_{(1)}^{{\nu}]} terms, we get

puG3=B2((pu)G1+G2)+B2(pu)j,\displaystyle p\cdot u\,G_{3}=-\frac{B}{2}\left(\frac{{\partial}}{{\partial}(p\cdot u)}G_{1}+G_{2}\right)+\frac{B}{2}\frac{{\partial}}{{\partial}(p\cdot u)}j, (34)

which, with G1=G3=jG_{1}=G_{3}=j, gives G2=2puBjG_{2}=\frac{-2p\cdot u}{B}j. The coefficients of pT[μu(1)ν]p_{T}^{[{\mu}}u_{(1)}^{{\nu}]} give G3=jG_{3}=j. In summary, the full drift solution for right-handed fermions is

j(1)𝒟μ=\displaystyle j_{(1){\cal D}}^{{\mu}}= pu(1)(u+b)μ((pu)2puB)j+u(1)μj.\displaystyle p\cdot u_{(1)}(u+b)^{{\mu}}\left(\frac{{\partial}}{{\partial}(p\cdot u)}-\frac{2p\cdot u}{B}\right)j+u_{(1)}^{\mu}j. (35)

In fact, up to O()O({\partial}) the solution can be combined with the zeroth order solution into a more suggestive form

j(0)μ+j(1)𝒟μ=\displaystyle j_{(0)}^{{\mu}}+j_{(1){\cal D}}^{{\mu}}= (u𝒟+b)μδ(p(u𝒟+b))f(pu𝒟)e(p2(pu𝒟)2+(pb)2)/B.\displaystyle(u_{\cal D}+b)^{{\mu}}{\delta}(p\cdot(u_{\cal D}+b))f(p\cdot u_{\cal D})e^{(p^{2}-(p\cdot u_{\cal D})^{2}+(p\cdot b)^{2})/B}. (36)

This is nothing but the zeroth order solution with uμu𝒟μ(u+u(1))μu^{\mu}\to u_{\cal D}^{\mu}\equiv(u+u_{(1)})^{\mu}. The counterpart for left-handed fermions can be obtained by sending bbb\to-b and μRμL{\mu}_{{}_{R}}\to{\mu}_{{}_{L}}.

We may either choose u𝒟μu_{\cal D}^{\mu} or uμu^{\mu} as fluid velocity, which correspond to different frame choices in hydrodynamics. In the former case the in medium electric field defined by u𝒟u_{\cal D} is vanishing fμνuν+Fμνu(1)ν=0f_{{\mu}{\nu}}u^{\nu}+F_{{\mu}{\nu}}u_{(1)}^{\nu}=0. It follows that there is no charge/heat current orthogonal to the fluid velocity. This corresponds to the Landau frame. The latter case contains both charge/heat current. As we will see below, it can be matched with the constitutive equations of MHD in thermodynamic frame Hernandez:2017mch .

III.2 Matching with magnetohydrodynamics

With (19) and (35), we are ready to calculate the current and stress tensor by momenta integration. Here we simply collect the final results and leave the details of the evaluation to appendix B.

J(0)μ=\displaystyle J_{(0)}^{\mu}= μB2π2uμ+μ5B2π2bμ,\displaystyle\frac{{\mu}B}{2{\pi}^{2}}u^{\mu}+\frac{{\mu}_{5}B}{2{\pi}^{2}}b^{\mu}, (37)
T(0)μν=\displaystyle T_{(0)}^{{\mu}{\nu}}= χVB2π2(uμuν+bμbν)+χA2π2u{μbν},\displaystyle\frac{{\chi}_{{}_{V}}B}{2{\pi}^{2}}(u^{\mu}u^{\nu}+b^{\mu}b^{\nu})+\frac{{\chi}_{{}_{A}}}{2{\pi}^{2}}u^{\{{\mu}}b^{{\nu}\}}, (38)
J(1)𝒟μ=\displaystyle J_{(1){\cal D}}^{\mu}= μ2π2ϵμνρσuνEρbσ,\displaystyle-\frac{{\mu}}{2{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{{\nu}}E_{{\rho}}b_{{\sigma}}, (39)
T(1)𝒟μν=\displaystyle T_{(1){\cal D}}^{{\mu}{\nu}}= 12π2(B4+χ)u{μϵν}λρσuλEρbσ,\displaystyle-\frac{1}{2{\pi}^{2}}\left(\frac{B}{4}+\chi\right)u^{\{{\mu}}{\epsilon}^{{\nu}\}{\lambda}{\rho}{\sigma}}u_{{\lambda}}E_{{\rho}}b_{{\sigma}}, (40)

where we have defined χVμ2+μ522+π2T26{\chi}_{{}_{V}}\equiv\frac{{\mu}^{2}+{\mu}_{5}^{2}}{2}+\frac{{\pi}^{2}T^{2}}{6} and χAμμ5{\chi}_{{}_{A}}\equiv{\mu}{\mu}_{5}. We see that (37) contains charge density and current density contributions. From the charge density, we easily recognize the charge susceptibility χμ=B2π2{\chi}_{\mu}=\frac{B}{2{\pi}^{2}}, which is given by density of LLL states. The current density is the celebrated CME result. (38) is effectively reduced to 1+11+1 dimensional in the LLL approximation and there is net longitudinal heat flow in the presence of μ5{\mu}_{5}. As we stressed the in medium electric field Eμ=FμνuνE_{\mu}=F_{{\mu}{\nu}}u^{\nu} in thermodynamic frame leads to Hall current and heat current in (39) and (40).

To match with constitutive equations of MHD, which relates components of current and stress tensor through thermodynamic functions, we closely follow the notations of Hernandez:2017mch , in which the current and stress tensor are decomposed as 222In making the comparison, we note that Hernandez:2017mch uses a different signature in metric. Also their definition of electromagnetic field or alternatively current differs from ours by a sign. We quote the converted constitutive relations of MHD.

Jμ=\displaystyle J^{\mu}= 𝒩uμ+𝒥μ\displaystyle{\cal N}u^{\mu}+{\cal J}^{\mu} (41)
Tμν=\displaystyle T^{{\mu}{\nu}}= uμuν+𝒫Δμν+𝒬μuν+𝒬νuμ+𝒯μν\displaystyle{\cal E}u^{\mu}u^{\nu}+{\cal P}{\Delta}^{{\mu}{\nu}}+{\cal Q}^{\mu}u^{\nu}+{\cal Q}^{\nu}u^{\mu}+{\cal T}^{{\mu}{\nu}} (42)

where Δμνgμν+uμuν=Pμν+bμbν{\Delta}^{{\mu}{\nu}}\equiv-g^{{\mu}{\nu}}+u^{\mu}u^{\nu}=P^{{\mu}{\nu}}+b^{\mu}b^{\nu}. One has 𝒩=uμJμ{\cal N}=u_{\mu}J^{\mu}, 𝒥μ=ΔμλJλ{\cal J}_{\mu}=-{\Delta}_{{\mu}{\lambda}}J^{\lambda}, =uμuνTμν{\cal E}=u_{\mu}u_{\nu}T^{{\mu}{\nu}}, 𝒫=13ΔμνTμν{\cal P}=\frac{1}{3}{\Delta}_{{\mu}{\nu}}T^{{\mu}{\nu}}, 𝒬μ=ΔμαuβTαβ{\cal Q}_{\mu}=-{\Delta}_{{\mu}{\alpha}}u_{\beta}T^{{\alpha}{\beta}} and 𝒯μν=12(ΔμαΔνβ+ΔναΔμβ23ΔμνΔαβ)Tαβ{\cal T}^{{\mu}{\nu}}=\frac{1}{2}\left({\Delta}_{{\mu}{\alpha}}{\Delta}_{{\nu}{\beta}}+{\Delta}_{{\nu}{\alpha}}{\Delta}_{{\mu}{\beta}}-\frac{2}{3}{\Delta}_{{\mu}{\nu}}{\Delta}_{{\alpha}{\beta}}\right)T^{{\alpha}{\beta}}. From (37) through (40), we obtain the components of the current and stress tensor at O(1)O(1),

𝒩(0)=μB2π2,𝒥(0)μ=μ5B2π2bμ,\displaystyle{\cal N}_{(0)}=\frac{{\mu}B}{2{\pi}^{2}},\qquad\qquad{\cal J}_{(0)}^{\mu}=\frac{{\mu}_{5}B}{2{\pi}^{2}}b^{\mu},
(0)=χVB2π2,𝒬(0)μ=χAB2π2bμ,\displaystyle{\cal E}_{(0)}=\frac{{\chi}_{{}_{V}}B}{2{\pi}^{2}},\qquad\qquad{\cal Q}_{(0)}^{\mu}=\frac{{\chi}_{{}_{A}}B}{2{\pi}^{2}}b^{\mu},
𝒫(0)=χVB6π2,𝒯(0)μν=χVB6π2(2bμbνPμν),\displaystyle{\cal P}_{(0)}=\frac{{\chi}_{{}_{V}}B}{6{\pi}^{2}},\qquad\qquad{\cal T}_{(0)}^{{\mu}{\nu}}=\frac{{\chi}_{{}_{V}}B}{6{\pi}^{2}}\left(2b^{\mu}b^{\nu}-P^{{\mu}{\nu}}\right), (43)

and two nonvanishing parity odd components at O()O({\partial}),

𝒥(1)𝒟μ=\displaystyle{\cal J}_{(1){\cal D}}^{{\mu}}= μ2π2ϵμνρσuνEρbσ,\displaystyle-\frac{{\mu}}{2{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{{\nu}}E_{{\rho}}b_{{\sigma}},
𝒬(1)𝒟μ=\displaystyle{\cal Q}_{(1){\cal D}}^{\mu}= 12π2(B4+χ)ϵμνρσuνEρbσ.\displaystyle-\frac{1}{2{\pi}^{2}}\left(\frac{B}{4}+\chi\right){\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{{\nu}}E_{{\rho}}b_{{\sigma}}. (44)

The spatial current 𝒥(1)𝒟μ{\cal J}_{(1){\cal D}}^{{\mu}} along the drift velocity gives the Hall conductivity σH=μ2π2{\sigma}_{H}=\frac{{\mu}}{2{\pi}^{2}}. The heat flow 𝒬(1)𝒟μ{\cal Q}_{(1){\cal D}}^{\mu} is parallel to the Hall current. They are nonvanishing in the absence of μ5{\mu}_{5}.

Meanwhile, the constitutive relations for components of MHD Hernandez:2017mch give,

𝒩(0)=\displaystyle{\cal N}_{(0)}= n=p,μ,𝒫(0)=Π=p43p,B2B2,\displaystyle n=p_{,{\mu}}\,,\qquad\qquad\qquad\qquad{\cal P}_{(0)}={\Pi}=p-\frac{4}{3}p_{,B^{2}}B^{2},
(0)=\displaystyle{\cal E}_{(0)}= ϵ=p+Tp,T+μp,μ,𝒯(0)μν=13αBBB2(2bμbνPμν),\displaystyle{\epsilon}=-p+Tp_{,{}_{T}}+{\mu}p_{,{\mu}}\,,\qquad{\cal T}_{(0)}^{{\mu}{\nu}}=\frac{1}{3}{\alpha}_{{}_{BB}}B^{2}\left(2b^{\mu}b^{\nu}-P^{{\mu}{\nu}}\right), (45)

and

𝒥(1)μ=\displaystyle{\cal J}_{(1)}^{\mu}= α,BBμϵμνρσuνEρBσ,\displaystyle-{\alpha}_{{}_{BB},{\mu}}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{{\nu}}E_{{\rho}}B_{{\sigma}},
𝒬(1)μ=\displaystyle{\cal Q}_{(1)}^{\mu}= (Mω,μ+2p,B2)ϵμνρσuνEρBσ,\displaystyle\left(M_{{\omega},{\mu}}+2p_{,B^{2}}\right){\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{{\nu}}E_{{\rho}}B_{{\sigma}}, (46)

where pp is pressure, αBB=2p,B2{\alpha}_{{}_{BB}}=2p_{,B^{2}} is magnetic susceptibility and MωM_{\omega} is magneto-vortical susceptibility. Note that pp and Π{\Pi} are thermodynamic functions here, not to be confused with indexed pμp_{\mu} and Πμ{\Pi}_{\mu}. To compare with MHD, we mute μ5{\mu}_{5} to get χVχμ22+π2T26{\chi}_{{}_{V}}\to{\chi}\equiv\frac{{\mu}^{2}}{2}+\frac{{\pi}^{2}T^{2}}{6} and vanishing parity odd coefficient χA{\chi}_{{}_{A}}. Then one easily finds the O(1)O(1) components in (III.2) satisfy the constitutive relations in (III.2) by taking p=χB/2π2p={\chi}B/2{\pi}^{2}. At O()O({\partial}), by matching (III.2) and (III.2), we can fix MωM_{\omega} in drift state as

Mω𝒟=μ8π2ξ2π2B.\displaystyle M_{{\omega}}^{{\cal D}}=-\frac{{\mu}}{8{\pi}^{2}}-\frac{{\xi}}{2{\pi}^{2}B}. (47)

IV Magnetized plasma with a vorticity

In this section, we study the effects of a steady vorticity parallel to the magnetic field in the plasma. We turn on a vorticity ωμ=12ϵμνρσuνρuσ=ωbμ{\omega}^{\mu}=\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{\nu}{\partial}_{\rho}u_{\sigma}={\omega}b^{\mu} in the fluid along the direction of the magnetic field with ω=ωμbμ{\omega}=-{\omega}^{\mu}b_{\mu}. We further require the absence of shear or bulk tensors in the fluid. Then we solve (15)-(17) to the first order of gradient, or equivalently, O(ω)O({\omega}). The solution is to be referred to as vortical solution. In matching the resulting current and stress tensor with MHD, we find one of the thermodynamic functions MωM_{\omega} has a different value from (47). The apparent discrepancy will be resolved with a reinterpretation of the results, which precisely corresponds to shift of chemical potential discussed in the introduction.

IV.1 Vortical Solution

Denoting the first order solution by j(1)𝒱μj_{(1){\cal V}}^{\mu}, we can write the equations explicitly as

pμj(1)𝒱μ+δΠμj(0)μ=0,\displaystyle p_{\mu}j_{(1){\cal V}}^{\mu}+{\delta}{\Pi}_{\mu}j_{(0)}^{\mu}=0, (48)
μj(0)μ+Dμj(1)𝒱μ=0,\displaystyle{\partial}_{\mu}j_{(0)}^{\mu}+D_{\mu}j_{(1){\cal V}}^{\mu}=0, (49)
p[μj(1)𝒱ν]+δΠ[μj(0)ν]=12ϵμνρσ(ρjσ(0)+Dρjσ(1)𝒱).\displaystyle p^{[{\mu}}j_{(1){\cal V}}^{{\nu}]}+{\delta}{\Pi}^{[{\mu}}j_{(0)}^{{\nu}]}=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left({\partial}_{\rho}j_{\sigma}^{(0)}+D_{\rho}j_{\sigma}^{(1){\cal V}}\right). (50)

where we have defined δΠμΠμpμ{\delta}{\Pi}_{\mu}\equiv{\Pi}_{\mu}-p_{\mu}. Here we choose Dμ=ϵμνρσBbρuσpνD_{\mu}={\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}Bb^{\rho}u^{\sigma}\frac{{\partial}}{{\partial}p_{\nu}} corresponding to a constant magnetic field in the LRF of the fluid. The field strength Fμν=ϵμνρσBbρuσF_{{\mu}{\nu}}={\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}Bb^{\rho}u^{\sigma} is spacetime dependent through the fluid velocity. In (48)-(50), j(1)𝒱μj_{(1){\cal V}}^{\mu} is sourced by terms proportional to j(0){\partial}\,j_{(0)} and δΠj(0){\delta}{\Pi}\,j_{(0)}. The former captures the spacetime derivatives on the distribution function and the latter is the counterpart in field strength. While mathematically they both reduce to spacetime dependence of fluid velocity, their physical difference is clear. Accordingly we will split j(1)𝒱μj_{(1){\cal V}}^{\mu} into two parts

j(1)𝒱μ=j(1)𝒞μ+j(1)𝒜μ,\displaystyle j_{(1){\cal V}}^{\mu}=j_{(1){\cal C}}^{\mu}+j_{(1){\cal A}}^{\mu}, (51)

with j(1)𝒞μj_{(1){\cal C}}^{\mu} and j(1)𝒜μj_{(1){\cal A}}^{\mu} satisfying the following EOM

pμj(1)𝒞μ=0,\displaystyle p_{\mu}j_{(1){\cal C}}^{\mu}=0, (52)
μj(0)μ+Dμj(1)𝒞μ=0,\displaystyle{\partial}_{\mu}j_{(0)}^{\mu}+D_{\mu}j_{(1){\cal C}}^{\mu}=0, (53)
p[μj(1)𝒞ν]=12ϵμνρσ(ρjσ(0)+Dρjσ(1)𝒞),\displaystyle p^{[{\mu}}j_{(1){\cal C}}^{{\nu}]}=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left({\partial}_{\rho}j_{\sigma}^{(0)}+D_{\rho}j_{\sigma}^{(1){\cal C}}\right), (54)
pμj(1)𝒜μ+δΠμj(0)μ=0,\displaystyle p_{\mu}j_{(1){\cal A}}^{\mu}+{\delta}{\Pi}_{\mu}j_{(0)}^{\mu}=0, (55)
Dμj(1)𝒜μ=0,\displaystyle D_{\mu}j_{(1){\cal A}}^{\mu}=0, (56)
p[μj(1)𝒜ν]+δΠ[μj(0)ν]=12ϵμνρσ(Dρjσ(1)𝒜),\displaystyle p^{[{\mu}}j_{(1){\cal A}}^{{\nu}]}+{\delta}{\Pi}^{[{\mu}}j_{(0)}^{{\nu}]}=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left(D_{\rho}j_{\sigma}^{(1){\cal A}}\right), (57)

Similar to (24), we take the following ansatz for j(1)𝒞μj_{(1){\cal C}}^{\mu},

j(1)𝒞μ=\displaystyle j_{(1){\cal C}}^{{\mu}}= (u+b)μωppTB((pu)F1+F2)+ωpTμBF3+(u+b)μF4,\displaystyle(u+b)^{{\mu}}\frac{{\omega}\,p\cdot p_{T}}{B}\left(\frac{{\partial}}{{\partial}(p\cdot u)}F_{1}+F_{2}\right)+\frac{{\omega}\,p_{T}^{{\mu}}}{B}F_{3}+(u+b)^{{\mu}}F_{4}, (58)

where Fnδ(p(u+b))epT2BF_{n}\propto{\delta}(p\cdot(u+b))e^{\frac{p_{T}^{2}}{B}} are undetermined functions. Noting the on shell condition δ(p(u+b)){\delta}(p\cdot(u+b)) in FnF_{n}, (52) gives

pμj(1)𝒞μ=\displaystyle p_{{\mu}}j_{(1){\cal C}}^{{\mu}}= p(u+b)(ωpT2B((pu)F1+F2)+F4)+pμωpTμBF3\displaystyle p\cdot(u+b)\left(\frac{{\omega}\,p_{T}^{2}}{B}\left(\frac{{\partial}}{{\partial}(p\cdot u)}F_{1}+F_{2}\right)+F_{4}\right)+p_{\mu}\frac{{\omega}\,p_{T}^{\mu}}{B}F_{3}
=\displaystyle= ωB(pT2F1+pT2F3)=0,\displaystyle\frac{{\omega}}{B}\left(-p_{T}^{2}F_{1}+p_{T}^{2}F_{3}\right)=0,
\displaystyle\to\quad F1+F3=0,\displaystyle-F_{1}+F_{3}=0, (59)

where we have used integration by parts for the (pu)F1\frac{{\partial}}{{\partial}(p\cdot u)}F_{1} term and pμpTμ=pT2p_{{\mu}}p_{T}^{{\mu}}=p_{T}^{2}.

We start with (53), which can be simplified using the bulk free condition μuμ=0{\partial}_{\mu}u^{\mu}=0. In this case, (53) becomes

μj(0)μDμj(1)𝒞μ=(u+b)μpλμuλ((pu)2puB)j\displaystyle{\partial}_{\mu}j_{(0)}^{{\mu}}-D_{\mu}j_{(1){\cal C}}^{{\mu}}=(u+b)^{{\mu}}p^{{\lambda}}{\partial}_{\mu}u_{{\lambda}}\left(\frac{{\partial}}{{\partial}(p\cdot u)}-\frac{2p\cdot u}{B}\right)j
+Bϵμνρσbρuσpν[(u+b)μ(ωpT2B((pu)F1+F2)+F4)+ωpTμBF3]=0.\displaystyle\quad+B{\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}b^{{\rho}}u^{{\sigma}}\frac{{\partial}}{{\partial}p_{\nu}}\left[(u+b)^{{\mu}}\left(\frac{{\omega}\,p_{T}^{2}}{B}\left(\frac{{\partial}}{{\partial}(p\cdot u)}F_{1}+F_{2}\right)+F_{4}\right)+\frac{{\omega}\,p_{T}^{\mu}}{B}F_{3}\right]=0. (60)

Furthermore, with ρuσ=ωbμuνϵμνρσ{\partial}_{\rho}u_{{\sigma}}=-{\omega}b^{{\mu}}u^{{\nu}}{\epsilon}_{{\mu}{\nu}{\rho}{\sigma}} following from the shear free condition, one finds all the terms vanish by anti-symmetry of ϵμνρσ{\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}. Therefore (53) is automatically satisfied.

The anti-symmetric tensor equation requires some work. Firstly, we simplify the left hand side (LHS) and right hand side(RHS) of (54) as follows. The LHS writes

p[μj(1)𝒞ν]=p[μ(u+b)ν](ωpT2B((pu)F1+F2)+F4)+ωBp[μpTν]F3\displaystyle p^{[{\mu}}j_{(1){\cal C}}^{{\nu}]}=p^{[{\mu}}(u+b)^{{\nu}]}\left(\frac{{\omega}\,p_{T}^{2}}{B}\left(\frac{{\partial}}{{\partial}(p\cdot u)}F_{1}+F_{2}\right)+F_{4}\right)+\frac{{\omega}}{B}p^{[{\mu}}p_{T}^{{\nu}]}F_{3}
=(pT[μ(u+b)ν]p(u+b)b[μuν])(ωpT2B((pu)F1+F2)+F4)\displaystyle=\left(p_{T}^{[{\mu}}(u+b)^{{\nu}]}-p\cdot(u+b)b^{[{\mu}}u^{{\nu}]}\right)\left(\frac{{\omega}\,p_{T}^{2}}{B}\left(\frac{{\partial}}{{\partial}(p\cdot u)}F_{1}+F_{2}\right)+F_{4}\right)
ωBpupT[μ(u+b)ν]F1,\displaystyle\qquad-\frac{{\omega}}{B}p\cdot u\,p_{T}^{[{\mu}}(u+b)^{{\nu}]}F_{1}, (61)

where we have used pT[μ(u+b)ν]=p[μ(u+b)ν]+p(u+b)b[μuν]p_{T}^{[{\mu}}(u+b)^{{\nu}]}=p^{[{\mu}}(u+b)^{{\nu}]}+p\cdot(u+b)b^{[{\mu}}u^{{\nu}]} in the first term and p[μpTν]=pupT[μ(u+b)ν]p^{[{\mu}}p_{T}^{{\nu}]}=-p\cdot u\,p_{T}^{[{\mu}}(u+b)^{{\nu}]} by on shell condition in the second term. (IV.1) contains two independent structures pT[μ(u+b)ν]p_{T}^{[{\mu}}(u+b)^{{\nu}]} and b[μuν]b^{[{\mu}}u^{{\nu}]}, which are transverse-longitudinal and longitudinal-temporal types. There are two parts on the RHS,

12ϵμνρσρjσ(0)12ϵμνρσDρjσ(1)𝒞.\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\partial}_{\rho}j_{\sigma}^{(0)}-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}D_{\rho}j_{\sigma}^{(1){\cal C}}. (62)

Using the relation ϵμνρσρuσ=2ω(bμuνbνuμ){\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\partial}_{\rho}u_{{\sigma}}=2{\omega}\left(b^{{\mu}}u^{{\nu}}-b^{{\nu}}u^{{\mu}}\right) and ρuλ=ωϵρλαβbαuβ{\partial}_{\rho}u_{{\lambda}}=-{\omega}{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}b^{{\alpha}}u^{{\beta}}, we can simplify the first term as

12ϵμνρσ[ρuσ+(u+b)σpλρuλ((pu)2puB)]j\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\left[{\partial}_{\rho}u_{{\sigma}}+(u+b)_{{\sigma}}p^{{\lambda}}{\partial}_{\rho}u_{{\lambda}}\left(\frac{{\partial}}{{\partial}(p\cdot u)}-\frac{2p\cdot u}{B}\right)\right]j
=ω[b[μuν]12ϵμνρσ(u+b)σpλϵρλαβbαuβ((pu)2puB)]j\displaystyle=-{\omega}\left[b^{[{\mu}}u^{{\nu}]}-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}(u+b)_{{\sigma}}p^{{\lambda}}{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}b^{{\alpha}}u^{{\beta}}\left(\frac{{\partial}}{{\partial}(p\cdot u)}-\frac{2p\cdot u}{B}\right)\right]j
=ω[b[μuν]j+12pT[μ(u+b)ν](j(pu)2puBj)].\displaystyle=-{\omega}\left[b^{[{\mu}}u^{{\nu}]}j+\frac{1}{2}p_{T}^{[{\mu}}(u+b)^{{\nu}]}\left(\frac{{\partial}j}{{\partial}(p\cdot u)}-\frac{2p\cdot u}{B}j\right)\right]. (63)

In the second part, given that FnepT2BF_{n}\propto e^{\frac{p_{T}^{2}}{B}} depend on momenta by pup\cdot u, pbp\cdot b and pT2p_{T}^{2} only, we note when acting on jσ(1)𝒞j_{{\sigma}}^{(1){\cal C}}, the operator pλ\frac{{\partial}}{{\partial}p_{{\lambda}}} can pull out terms like uλ(pu)u^{\lambda}\frac{{\partial}}{{\partial}(p\cdot u)}, bλpbb^{\lambda}\frac{{\partial}}{{\partial}p\cdot b}, pTλpT2p_{T}^{\lambda}\frac{{\partial}}{{\partial}p_{T}^{2}} and δσλ{\delta}_{\sigma}^{\lambda}, where only the last two cases survive upon contraction with ϵρλαβ{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}. One gets

12ϵμνρσϵρλαβBbαuβpλ[(u+b)σ(ωpT2B((pu)F1+F2)+F4)+ωpσTBF3]\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}Bb^{{\alpha}}u^{{\beta}}\frac{{\partial}}{{\partial}p_{{\lambda}}}\left[(u+b)_{{\sigma}}\left(\frac{{\omega}\,p_{T}^{2}}{B}\left(\frac{{\partial}}{{\partial}(p\cdot u)}F_{1}+F_{2}\right)+F_{4}\right)+\frac{{\omega}\,p^{T}_{{\sigma}}}{B}F_{3}\right]
=12ϵμνρσϵρλαβBbαuβ[(u+b)σ2pTλB(ω(1+pT2B)((pu)F1+F2)+F4)\displaystyle=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}Bb^{{\alpha}}u^{{\beta}}\bigg{[}(u+b)_{{\sigma}}\frac{2p_{T}^{\lambda}}{B}\left({\omega}\,\left(1+\frac{p_{T}^{2}}{B}\right)\left(\frac{{\partial}}{{\partial}(p\cdot u)}F_{1}+F_{2}\right)+F_{4}\right)
+ωB(δσλ+2pTλpσTB)F1]\displaystyle\quad+\frac{{\omega}}{B}\left({\delta}_{\sigma}^{\lambda}+\frac{2p_{T}^{\lambda}p_{\sigma}^{T}}{B}\right)F_{1}\bigg{]}
=pT[μ(u+b)ν](ω(1+pT2B)((pu)F1+F2)+F4)+b[μuν]ω(1+pT2B)F1.\displaystyle=p_{T}^{[{\mu}}(u+b)^{{\nu}]}\left({\omega}\left(1+\frac{p_{T}^{2}}{B}\right)\left(\frac{{\partial}}{{\partial}(p\cdot u)}F_{1}+F_{2}\right)+F_{4}\right)+b^{[{\mu}}u^{{\nu}]}{\omega}\left(1+\frac{p_{T}^{2}}{B}\right)F_{1}. (64)

The RHS from (IV.1)(IV.1) contains the same structures as the LHS. By matching the coefficient of b[μuν]b^{[{\mu}}u^{{\nu}]} using integration by part, we can fix F1=jF_{1}=j. The remaining structure reads

LHSRHS=ωpT[μ(u+b)ν][2puBj+(12(pu)j+F2)].\displaystyle\text{LHS$-$RHS}=-{\omega}\,p_{T}^{[{\mu}}(u+b)^{{\nu}]}\bigg{[}\frac{2p\cdot u}{B}j+\left(\frac{1}{2}\frac{{\partial}}{{\partial}(p\cdot u)}j+F_{2}\right)\bigg{]}. (65)

We note that F4F_{4} cancels in (65). In fact, F4δ(p(u+b))epT2BF_{4}\propto{\delta}(p\cdot(u+b))e^{\frac{p_{T}^{2}}{B}}, which can be recognized as the change of distribution function. We also note that F2δ(p(u+b))F_{2}\propto{\delta}(p\cdot(u+b)) while (pu)j\frac{{\partial}}{{\partial}(p\cdot u)}j contains δ(p(u+b)){\delta}^{\prime}(p\cdot(u+b)), which immediately shows (65) cannot be identically zero. This will be resolved only after we combine with the solution j(1)𝒜μj_{(1){\cal A}}^{\mu}.

To solve for j(1)𝒜μj_{(1){\cal A}}^{\mu}, we note that (55)-(57) can be formally obtained from the zeroth order by the replacement pμpμ+δΠμp_{\mu}\to p_{\mu}+{\delta}{\Pi}_{\mu} and j(0)μj(0)μ+j(1)𝒜μj_{(0)}^{\mu}\to j_{(0)}^{\mu}+j_{(1){\cal A}}^{\mu} and expanded to O()O({\partial}). The formal solution motivates the following ansatz

j(1)𝒜μ=(u+b)μδ(p(u+b))(u+b)δΠj~,\displaystyle j_{(1){\cal A}}^{\mu}=(u+b)^{{\mu}}{\delta}^{\prime}\left(p\cdot(u+b)\right)(u+b)\cdot{\delta}{\Pi}\,{\tilde{j}}, (66)

where j~f(pu)epT2B{\tilde{j}}\equiv f(p\cdot u)\,e^{\frac{p_{T}^{2}}{B}}. δΠ{\delta}{\Pi} is a differential operator, whose explicit expression is worked out in appendix B as

δΠμ\displaystyle{\delta}{\Pi}_{\mu} =uμδΠu+2pμTBδΠTwith\displaystyle=u_{\mu}{\delta}{\Pi}_{u}+\frac{2p_{\mu}^{T}}{B}{\delta}{\Pi}_{T}\quad\text{with}
δΠu\displaystyle{\delta}{\Pi}_{u} =Bω12Pλνpλpν,δΠT=Bω12(pu),\displaystyle=\frac{B{\omega}}{12}P_{{\lambda}{\nu}}\frac{{\partial}}{{\partial}p_{\lambda}}\frac{{\partial}}{{\partial}p_{\nu}},\quad{\delta}{\Pi}_{T}=\frac{B{\omega}}{12}\frac{{\partial}}{{\partial}(p\cdot u)}, (67)

up to O(ω)O({\omega}). Below we verify (66) gives an extra contribution that cancels out the (pu)j\frac{{\partial}}{{\partial}(p\cdot u)}j term in (65) and fixes F2F_{2} to gives a proper final solution at O(ω)O({\omega}). Using pTu=pTb=0p_{T}\cdot u=p_{T}\cdot b=0, (55) gives

pμj(1)𝒜μ+(uμδΠu+2pμTBδΠT)j(0)μ\displaystyle p_{\mu}j_{(1){\cal A}}^{\mu}+\left(u_{\mu}{{\delta}{\Pi}}_{u}+\frac{2p_{\mu}^{T}}{B}{{\delta}{\Pi}}_{T}\right)j_{(0)}^{\mu}
=p(u+b)δ(p(u+b))δΠuj~+δΠu(δ(p(u+b))j~)=0.\displaystyle=p\cdot(u+b){\delta}^{\prime}\left(p\cdot(u+b)\right){\delta}{\Pi}_{u}\,{\tilde{j}}+{\delta}{\Pi}_{u}\left({\delta}\left(p\cdot(u+b)\right)\,{\tilde{j}}\right)=0. (68)

Note that δΠu{\delta}{\Pi}_{u} involves differentiation on the transverse momenta pTμp_{T}^{\mu} and therefore does not act on pu,pbp\cdot u,\,p\cdot b, which means δΠuδ(p(u+b))=δ(p(u+b))δΠu{\delta}{\Pi}_{u}{\delta}\left(p\cdot(u+b)\right)={\delta}\left(p\cdot(u+b)\right){\delta}{\Pi}_{u}. We can then see the above equation holds upon integration by parts. By the anti-symmetric ϵμνρσbρuσ{\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}b^{\rho}u^{\sigma} term in DμD_{\mu}, (56) is trivially satisfied as j(1)𝒜μ(u+b)μj_{(1){\cal A}}^{\mu}\propto(u+b)^{\mu}. We then proceed to the anti-symmetric tensor equation (57) as follows. Explicitly, the LHS of (57) writes

δΠ[μj(0)ν]+p[μj(1)𝒜ν]=\displaystyle{\delta}{\Pi}^{[{\mu}}j_{(0)}^{{\nu}]}+p^{[{\mu}}j_{(1){\cal A}}^{{\nu}]}= (u[μbν]δΠu+2BpT[μ(u+b)ν]δΠT)(δ(p(u+b))j~)\displaystyle\left(u^{[{\mu}}b^{{\nu}]}{\delta}{\Pi}_{u}+\frac{2}{B}p_{T}^{[{\mu}}(u+b)^{{\nu}]}{\delta}{\Pi}_{T}\right)\left({\delta}\left(p\cdot(u+b)\right)\,{\tilde{j}}\right)
+pμ(u+b)ν(δ(p(u+b))δΠuj~)\displaystyle\quad+p^{{\mu}}(u+b)^{{\nu}}\left({\delta}^{\prime}\left(p\cdot(u+b)\right){\delta}{\Pi}_{u}\,{\tilde{j}}\right)
=\displaystyle= (2BpT[μ(u+b)ν]δΠTb[μuν]δΠu)(δ(p(u+b))j~)\displaystyle\left(\frac{2}{B}p_{T}^{[{\mu}}(u+b)^{{\nu}]}{\delta}{\Pi}_{T}-b^{[{\mu}}u^{{\nu}]}{\delta}{\Pi}_{u}\right)\left({\delta}\left(p\cdot(u+b)\right)\,{\tilde{j}}\right)
+(pTμ(u+b)νp(u+b)b[μuν])(δ(p(u+b))δΠuj~)\displaystyle\quad+\left(p_{T}^{{\mu}}(u+b)^{{\nu}}-p\cdot(u+b)b^{[{\mu}}u^{{\nu}]}\right)\left({\delta}^{\prime}\left(p\cdot(u+b)\right){\delta}{\Pi}_{u}\,{\tilde{j}}\right)
=\displaystyle= pT[μ(u+b)ν](2BδΠT(δ(p(u+b))j~)+δ(p(u+b))δΠuj~),\displaystyle p_{T}^{[{\mu}}(u+b)^{{\nu}]}\left(\frac{2}{B}{\delta}{\Pi}_{T}\left({\delta}\left(p\cdot(u+b)\right)\,{\tilde{j}}\right)+{\delta}^{\prime}\left(p\cdot(u+b)\right){\delta}{\Pi}_{u}\,{\tilde{j}}\right), (69)

where we have canceled out the b[μuν]b^{[{\mu}}u^{{\nu}]} terms using integration by parts in the last equality. The RHS of (57) gives

12ϵμνρσpλϵρλαβBbαuβjσ(1)𝒜=\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\frac{{\partial}}{{\partial}p_{{\lambda}}}{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}Bb^{{\alpha}}u^{{\beta}}j_{{\sigma}}^{(1){\cal A}}= 12ϵμνρσϵρλαβBbαuβ(u+b)σδ(p(u+b))δΠupλj~\displaystyle-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\epsilon}_{{\rho}{\lambda}{\alpha}{\beta}}Bb^{{\alpha}}u^{{\beta}}(u+b)_{{\sigma}}{\delta}^{\prime}\left(p\cdot(u+b)\right){\delta}{\Pi}_{u}\frac{{\partial}}{{\partial}p_{{\lambda}}}{\tilde{j}}
=\displaystyle= pTμ(u+b)νδ(p(u+b))(δΠuω3)j~,\displaystyle p_{T}^{{\mu}}(u+b)^{{\nu}}{\delta}^{\prime}\left(p\cdot(u+b)\right)\left({\delta}{\Pi}_{u}-\frac{{\omega}}{3}\right){\tilde{j}}, (70)

where the ω3\frac{{\omega}}{3} term in the last equality comes from the commutator [δΠu,pTλ][{\delta}{\Pi}_{u},p_{T}^{\lambda}]. Now, gathering (IV.1) and (IV.1), we have

LHSRHS=\displaystyle\text{LHS$-$RHS}= pT[μ(u+b)ν](2BδΠT(δ(p(u+b))j~)+ω3δ(p(u+b))j~)\displaystyle p_{T}^{[{\mu}}(u+b)^{{\nu}]}\left(\frac{2}{B}{\delta}{\Pi}_{T}\left({\delta}\left(p\cdot(u+b)\right)\,{\tilde{j}}\right)+\frac{{\omega}}{3}{\delta}^{\prime}\left(p\cdot(u+b)\right)\,{\tilde{j}}\right)
=\displaystyle= pT[μ(u+b)ν](ω6δ(p(u+b))f(pu)epT2B+ω2δ(p(u+b))j~).\displaystyle p_{T}^{[{\mu}}(u+b)^{{\nu}]}\left(\frac{{\omega}}{6}{\delta}\left(p\cdot(u+b)\right)f^{\prime}(p\cdot u)e^{\frac{p_{T}^{2}}{B}}+\frac{{\omega}}{2}{\delta}^{\prime}\left(p\cdot(u+b)\right)\,{\tilde{j}}\right). (71)

Cancellation of (65) and (IV.1) requires

F2=13δ(p(u+b))f(pu)epT2B2puBj.\displaystyle F_{2}=-\frac{1}{3}{\delta}\left(p\cdot(u+b)\right)f^{\prime}(p\cdot u)e^{\frac{p_{T}^{2}}{B}}-\frac{2p\cdot u}{B}j. (72)

Combining (58) and (66), we have the following solution up to possible addition of F4F_{4} as

j(1)𝒱μ=(u+b)μ[ω3(pT2B+1)δ(p(u+b))f(pu)+2ωpT23Bδ(p(u+b))f(pu)\displaystyle j_{(1){\cal V}}^{{\mu}}=(u+b)^{{\mu}}\bigg{[}-\frac{{\omega}}{3}\left(\frac{p_{T}^{2}}{B}+1\right){\delta}^{\prime}\left(p\cdot(u+b)\right)f(p\cdot u)+\frac{2{\omega}p_{T}^{2}}{3B}{\delta}\left(p\cdot(u+b)\right)f^{\prime}(p\cdot u)
2ωpT2B2puδ(p(u+b))f(pu)]epT2B+ωpTμBδ(p(u+b))f(pu)epT2B.\displaystyle\qquad\qquad-\frac{2{\omega}p_{T}^{2}}{B^{2}}p\cdot u\,{\delta}\left(p\cdot(u+b)\right)f(p\cdot u)\bigg{]}e^{\frac{p_{T}^{2}}{B}}+\frac{{\omega}p_{T}^{\mu}}{B}{\delta}\left(p\cdot(u+b)\right)f(p\cdot u)e^{\frac{p_{T}^{2}}{B}}. (73)

The above procedure can be easily generalized to the case of left-handed fermions with the solution given by the replacement bbb\to-b and μRμL{\mu}_{{}_{R}}\to{\mu}_{{}_{L}}333Here it is more appropriate to regard bb as the spin direction of LLL states rather than the magnetic field direction..

IV.2 Matching with magnetohydrodynamics

Again, after integration over momenta and summation over right/left-handed contributions detailed in Appendix B, (IV.1) gives the current and stress tensor as

J(1)𝒱μ=\displaystyle J_{(1){\cal V}}^{\mu}= ω2π2(2χV+23B)uμ+ω2π22χAbμ,\displaystyle\frac{{\omega}}{2{\pi}^{2}}\left(2{\chi}_{{}_{V}}+\frac{2}{3}B\right)u^{\mu}+\frac{{\omega}}{2{\pi}^{2}}2{\chi}_{{}_{A}}b^{\mu}, (74)
T(1)𝒱μν=\displaystyle T_{(1){\cal V}}^{{\mu}{\nu}}= ω2π2(2ξV+23μB)uμuν+ω2π2(2ξV13μB)bμbν\displaystyle\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{V}}+\frac{2}{3}{\mu}B\right)u^{\mu}u^{\nu}+\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{V}}-\frac{1}{3}{\mu}B\right)b^{\mu}b^{\nu}
+ω2π2(2ξA+16μ5B)u{μbν}+ω2π2μB2Pμν,\displaystyle+\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{A}}+\frac{1}{6}{\mu}_{5}B\right)u^{\{{\mu}}b^{{\nu}\}}+\frac{{\omega}}{2{\pi}^{2}}\frac{{\mu}B}{2}P^{{\mu}{\nu}}, (75)

where we have defined ξV13μ(μ2+3μ52+π2T2){\xi}_{{}_{V}}\equiv\frac{1}{3}{\mu}\left({\mu}^{2}+3{\mu}_{5}^{2}+{\pi}^{2}T^{2}\right) and ξA13μ5(μ52+3μ2+π2T2){\xi}_{{}_{A}}\equiv\frac{1}{3}{\mu}_{5}\left({\mu}_{5}^{2}+3{\mu}^{2}+{\pi}^{2}T^{2}\right). We note that the current density in (74) is in agreement with CVE. The charge density does contains an O(B0)O(B^{0}) medium contribution and O(B)O(B) vacuum contribution. The latter however contradicts (2). The contradiction should not be a surprise. The reason is our vortical solution (IV.1) is unique only up to possible addition of F4F_{4}, which we have not considered so far. In fact, since we consider the magnetized plasma in a steady vorticity, the state is not reached as a response to vorticity, thus we do not have a first principle to fix F4F_{4} within our approach. We can choose any F4δ(p(u+b))epT2Bg(pu)F_{4}\propto{\delta}(p\cdot(u+b))e^{\frac{p_{T}^{2}}{B}}g(p\cdot u), which necessarily modifies J(1)𝒱μJ_{(1){\cal V}}^{\mu} and T(1)𝒱μνT_{(1){\cal V}}^{{\mu}{\nu}}.

Fortunately the ambiguity can still be fixed by matching with constitutive equations of MHD. From (74) and (75), we obtain the components of the current and stress tensor at O()O({\partial}),

𝒩(1)𝒱=ω2π2(2χV+23B),𝒥(1)𝒱μ=ω2π22χAbμ,\displaystyle{\cal N}_{(1){\cal V}}=\frac{{\omega}}{2{\pi}^{2}}\left(2{\chi}_{{}_{V}}+\frac{2}{3}B\right),\qquad{\cal J}_{(1){\cal V}}^{\mu}=\frac{{\omega}}{2{\pi}^{2}}2{\chi}_{{}_{A}}b^{\mu},
(1)𝒱=ω2π2(2ξV+23μB),𝒬(1)𝒱μ=ω2π2(2ξA+16μ5B)bμ,\displaystyle{\cal E}_{(1){\cal V}}=\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{V}}+\frac{2}{3}{\mu}B\right),\qquad{\cal Q}_{(1){\cal V}}^{\mu}=\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{A}}+\frac{1}{6}{\mu}_{5}B\right)b^{\mu},
𝒫(1)𝒱=ω6π2(2ξV+23μB),𝒯(1)𝒱μν=ω6π2(2ξV56μB)(2bμbνPμν),\displaystyle{\cal P}_{(1){\cal V}}=\frac{{\omega}}{6{\pi}^{2}}\left(2{\xi}_{{}_{V}}+\frac{2}{3}{\mu}B\right),\qquad{\cal T}_{(1){\cal V}}^{{\mu}{\nu}}=\frac{{\omega}}{6{\pi}^{2}}\left(2{\xi}_{{}_{V}}-\frac{5}{6}{\mu}B\right)\left(2b^{\mu}b^{\nu}-P^{{\mu}{\nu}}\right), (76)

for which, the constitutive relations in MHD Hernandez:2017mch are

𝒩(1)=f𝒩=2(2p,B2+Mω,μ)Bω,\displaystyle{\cal N}_{(1)}=f_{\cal N}=-2\left(2p_{,B^{2}}+M_{{\omega},{\mu}}\right)B{\omega},
(1)=f=2(TMω,T+μMω,μ2Mω)Bω,\displaystyle{\cal E}_{(1)}=f_{\cal E}=-2\left(TM_{{\omega},T}+{\mu}M_{{\omega},{\mu}}-2M_{{\omega}}\right)B{\omega},
𝒫(1)=f𝒫=23(Mω+4Mω,B2B2)Bω,\displaystyle{\cal P}_{(1)}=f_{\cal P}=\frac{2}{3}\left(M_{{\omega}}+4M_{{\omega},B^{2}}B^{2}\right)B{\omega},
𝒯(1)=f𝒯=43(Mω,B2B2+Mω)Bω,\displaystyle{\cal T}_{(1)}=f_{\cal T}=-\frac{4}{3}\left(M_{{\omega},B^{2}}B^{2}+M_{\omega}\right)B{\omega}, (77)

with 𝒯(1)μν=(2bμbνPμν)𝒯(1){\cal T}_{(1)}^{{\mu}{\nu}}=\left(2b^{\mu}b^{\nu}-P^{{\mu}{\nu}}\right){\cal T}_{(1)}. To proceed, we turn off μ5{\mu}_{5} to get χVχμ22+π2T26{\chi}_{{}_{V}}\to{\chi}\equiv\frac{{\mu}^{2}}{2}+\frac{{\pi}^{2}T^{2}}{6}, ξVξ13μ(μ2+π2T2){\xi}_{{}_{V}}\to{\xi}\equiv\frac{1}{3}{\mu}\left({\mu}^{2}+{\pi}^{2}T^{2}\right) and vanishing parity odd coefficients χA,ξA{\chi}_{{}_{A}},\,{\xi}_{{}_{A}}. Then the counterparts in CKT are reduced to

𝒩(1)𝒱=f𝒩=ω2π2(2χ+23B),\displaystyle{\cal N}_{(1){\cal V}}=f_{\cal N}^{\prime}=\frac{{\omega}}{2{\pi}^{2}}\left(2{\chi}+\frac{2}{3}B\right),
(1)𝒱=f=ω2π2(2ξ+23μB),\displaystyle{\cal E}_{(1){\cal V}}=f_{\cal E}^{\prime}=\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}+\frac{2}{3}{\mu}B\right),
𝒫(1)𝒱=f𝒫=ω6π2(2ξ+23μB),\displaystyle{\cal P}_{(1){\cal V}}=f_{\cal P}^{\prime}=\frac{{\omega}}{6{\pi}^{2}}\left(2{\xi}+\frac{2}{3}{\mu}B\right),
𝒯(1)𝒱=f𝒯=ω6π2(2ξ56μB),\displaystyle{\cal T}_{(1){\cal V}}={f^{\prime}}_{\cal T}=\frac{{\omega}}{6{\pi}^{2}}\left(2{\xi}-\frac{5}{6}{\mu}B\right), (78)

up to possible addition of F4F_{4}, which corresponds to O(ω)O({\omega}) modification of distribution. The simplest possible modification is through O(ω)O({\omega}) modification of temperature and chemical potential. If this were the case, the effect of F4F_{4} can be realized by a frame transformation, which amounts to a redefinition of temperature and chemical potential Kovtun:2012rj . We will see below a frame transformation indeed allows for matching with MHD. The matching is most easily done through the following frame invariant variables Hernandez:2017mch ,

f\displaystyle f\equiv f𝒫(Πϵ)nf(Πn)ϵf𝒩,\displaystyle f_{\cal P}-\left(\frac{{\partial}{\Pi}}{{\partial}{\epsilon}}\right)_{n}f_{\cal E}-\left(\frac{{\partial}{\Pi}}{{\partial}n}\right)_{{\epsilon}}f_{\cal N},
t\displaystyle t\equiv f𝒯B23[(αBBϵ)nf+(αBBn)ϵf𝒩].\displaystyle f_{\cal T}-\frac{B^{2}}{3}\left[\left(\frac{{\partial}{\alpha}_{{}_{BB}}}{{\partial}{\epsilon}}\right)_{n}f_{\cal E}+\left(\frac{{\partial}{\alpha}_{{}_{BB}}}{{\partial}n}\right)_{{\epsilon}}f_{\cal N}\right]. (79)

We should match ff and tt constructed using (IV.2) and (IV.2) to fix MωM_{\omega}. Using

ϵ=χB2π2,Π=χB6π2,n=μB2π2,αBB=χ2π2B\displaystyle{\epsilon}=\frac{{\chi}B}{2{\pi}^{2}},\quad{\Pi}=\frac{{\chi}B}{6{\pi}^{2}},\quad n=\frac{{\mu}B}{2{\pi}^{2}},\quad{\alpha}_{{}_{BB}}=\frac{{\chi}}{2{\pi}^{2}B} (80)
(Πn)ϵ=0,(Πϵ)n=13,(αBBn)ϵ=0,(αBBϵ)n=1B2,\displaystyle\quad\Rightarrow\quad\left(\frac{{\partial}{\Pi}}{{\partial}n}\right)_{\epsilon}=0,\quad\left(\frac{{\partial}{\Pi}}{{\partial}{\epsilon}}\right)_{n}=\frac{1}{3},\quad\left(\frac{{\partial}{\alpha}_{{}_{BB}}}{{\partial}n}\right)_{\epsilon}=0,\quad\left(\frac{{\partial}{\alpha}_{{}_{BB}}}{{\partial}{\epsilon}}\right)_{n}=\frac{1}{B^{2}}, (81)

in (IV.2), one gets

23(Mω+4Mω,B2B2)+23(TMω,T+μMω,μ2Mω)=0,\displaystyle\frac{2}{3}\left(M_{{\omega}}+4M_{{\omega},B^{2}}B^{2}\right)+\frac{2}{3}\left(TM_{{\omega},T}+{\mu}M_{{\omega},{\mu}}-2M_{{\omega}}\right)=0,
43(Mω,B2B2+Mω)23(TMω,T+μMω,μ2Mω)=μ4π2,\displaystyle\frac{4}{3}\left(M_{{\omega},B^{2}}B^{2}+M_{\omega}\right)-\frac{2}{3}\left(TM_{{\omega},T}+{\mu}M_{{\omega},{\mu}}-2M_{{\omega}}\right)=\frac{{\mu}}{4{\pi}^{2}}, (82)

which are satisfied by Mω𝒱=μ8π2+#ξBM_{{\omega}}^{{\cal V}}=\frac{{\mu}}{8{\pi}^{2}}+\frac{\#{\xi}}{B}. An arbitrary coefficient #\# is allowed in the medium part. By matching the medium part with (47), we fix

Mω𝒱=μ8π2ξ2π2B.\displaystyle M_{{\omega}}^{{\cal V}}=\frac{{\mu}}{8{\pi}^{2}}-\frac{{\xi}}{2{\pi}^{2}B}. (83)

We see the matching equations (IV.2) are over-determined. The agreement on the medium part of MωM_{\omega} between drift and vortical solutions is rather non-trivial. The disagreement on the vacuum part needs further clarification.

IV.3 Vacuum ambiguity

Recall MωM_{\omega} is defined by the change of free energy in response to magneto-vortical source Kovtun:2012rj , which reads in our case

Δ=2MωBω.\displaystyle{\Delta}{\cal F}=-2M_{\omega}B{\omega}. (84)

The definition implicitly assumes the vacuum is not changed as the magneto-vortical source is turned on adiabatically. If the vacuum state is changed in the process, we should instead use the new vacuum state as reference point in calculating the free energy. To reconcile Mω𝒟M_{\omega}^{\cal D} and Mω𝒱M_{\omega}^{\cal V}, the vacuum energy density needs to be lowered by μBω2π2\frac{{\mu}B{\omega}}{2{\pi}^{2}} in the adiabatic process above. Indeed this is consistent with the picture that each LLL state has a lowered energy (1). The chemical potential measured with respect to the lowered vacuum is shifted up by Δμ=ω{\Delta}{\mu}={\omega} for particles. μBω2π2\frac{{\mu}B{\omega}}{2{\pi}^{2}} is accounted by the product of Δμ{\Delta}{\mu} and charge density μB2π2\frac{{\mu}B}{2{\pi}^{2}} of the LLL states.

The new vacuum is given by jμ=j(0)μ+jvacμj^{\mu}=j_{(0)}^{\mu}+j_{{}_{\text{vac}}}^{\mu}, with the shift part reads

jvacμ=ω(u±b)μδ(p(u±b))f(pu)epT2B,\displaystyle j_{{}_{\text{vac}}}^{{\mu}}={\omega}(u\pm b)^{\mu}{\delta}\left(p\cdot(u\pm b)\right)f^{\prime}\left(p\cdot u\right)e^{\frac{p_{T}^{2}}{B}}, (85)

with upper/lower signs for right/left handed fermions respectively. (85) has the simple interpretation as from a shift in chemical potential δμvac=ω{\delta}{\mu}_{{}_{\text{vac}}}=-{\omega}. The corresponding shift in stress tensor and current are evaluated as

Tvacμν=12d4pp{μjvacν}=μBω2π2(uμuν+bμbν),Jvacμ=d4pjvacμ=Bω2π2uμ.\displaystyle T_{{}_{\text{vac}}}^{{\mu}{\nu}}=\frac{1}{2}\int\,d^{4}pp^{\{{\mu}}j_{{}_{\text{vac}}}^{{\nu}\}}=-\frac{{\mu}B{\omega}}{2\pi^{2}}\left(u^{\mu}u^{\nu}+b^{\mu}b^{\nu}\right),\quad J_{{}_{\text{vac}}}^{\mu}=\int\,d^{4}pj_{{}_{\text{vac}}}^{\mu}=-\frac{B{\omega}}{2{\pi}^{2}}u^{\mu}. (86)

Note that apart from the needed shift in energy density, there is also a negative shift of charge density in the new vacuum.

Now we can calculate the change of charge density using Mω𝒱M_{\omega}^{\cal V} and the vacuum shifted density (86) as

ΔJ0\displaystyle{\Delta}J^{0} =2(2p,B2+Mω,μ𝒱)BωJvac0=(B4π2+χπ2)𝝎𝐛.\displaystyle=-2(2p_{,B^{2}}+M_{{\omega},{\mu}}^{\cal V})B{\omega}-J_{\text{vac}}^{0}=\left(\frac{B}{4{\pi}^{2}}+\frac{{\chi}}{{\pi}^{2}}\right){\bm{\omega}}\cdot{\bf b}. (87)

Alternatively, we can also use Mω𝒟M_{\omega}^{\cal D}, which does not involve vacuum shift to give 444Though we study vortical and drift perturbations individually at O()O({\partial}), the generation of charge density in vortical solution and generation of heat current in drift solution are connected by Onsager relation Bu:2019qmd .

ΔJ0\displaystyle{\Delta}J^{0} =2(2p,B2+Mω,μ𝒟)Bω=(B4π2+χπ2)𝝎𝐛.\displaystyle=-2(2p_{,B^{2}}+M_{{\omega},{\mu}}^{\cal D})B{\omega}=\left(\frac{B}{4{\pi}^{2}}+\frac{{\chi}}{{\pi}^{2}}\right){\bm{\omega}}\cdot{\bf b}. (88)

We can easily convince ourselves that the structure of the solution j(1)𝒱μ(u+b)μj_{(1){\cal V}}^{\mu}\propto(u+b)^{\mu} dictates that

Δ𝐉A=(B4π2+χπ2)𝝎.\displaystyle{\Delta}{\bf J}_{A}=\left(\frac{B}{4{\pi}^{2}}+\frac{{\chi}}{{\pi}^{2}}\right){\bm{\omega}}. (89)

The vacuum parts of (87) and (89) are in agreement with Hattori:2016njk . The medium part for (89) is consistent with the standard CVE result.

Let us further work out the frame transformation that connects (IV.2) with (IV.2). The frame transformation amounts to a redefinition of temperature and chemical potential TT+δTT\to T+{\delta}T and μμ+δμ{\mu}\to{\mu}+{\delta}{\mu}, giving the following matching equations,

f𝒩=f𝒩+δTn,T+δμn,μ,\displaystyle f_{\cal N}=f_{\cal N}^{\prime}+{\delta}T\,n_{,{}_{T}}+{\delta}{\mu}\,n_{,{\mu}},
f=f+δTϵ,T+δμϵ,μ,\displaystyle f_{\cal E}=f_{\cal E}^{\prime}+{\delta}T\,{\epsilon}_{,{}_{T}}+{\delta}{\mu}\,{\epsilon}_{,{\mu}},
f𝒫=f𝒫+δTΠ,T+δμΠ,μ,\displaystyle f_{\cal P}=f_{\cal P}^{\prime}+{\delta}T\,{\Pi}_{,{}_{T}}+{\delta}{\mu}\,{\Pi}_{,{\mu}},
f𝒯=f𝒯+B23(δTαBB,T+δμα,BBμ),\displaystyle f_{\cal T}={f^{\prime}}_{\cal T}+\frac{B^{2}}{3}\left({\delta}T\,{\alpha}_{{}_{BB,T}}+{\delta}{\mu}\,{\alpha}_{{}_{BB},{\mu}}\right), (90)

Now we can plug Mω𝒱M_{\omega}^{{\cal V}} into (IV.3) to get

δTn,T+δμn,μ=\displaystyle{\delta}T\,n_{,{}_{T}}+{\delta}{\mu}\,n_{,{\mu}}= 7Bω12π2,\displaystyle-\frac{7B{\omega}}{12{\pi}^{2}},
δTp,T+δμp,μ=\displaystyle{\delta}T\,p_{,{}_{T}}+{\delta}{\mu}\,p_{,{\mu}}= μBω12π2.\displaystyle-\frac{{\mu}B{\omega}}{12{\pi}^{2}}. (91)

The equations can be solved by

δT=3ωμπ2T,δμ=\displaystyle{\delta}T=\frac{3{\omega}{\mu}}{{\pi}^{2}T},\qquad{\delta}{\mu}= 7ω6.\displaystyle-\frac{7{\omega}}{6}. (92)

We can now translate the frame transformation back to the following F4F_{4},

F4=δ(p(u+b))(f(pu)TδT+f(pu)μδμ)epT2B.\displaystyle F_{4}={\delta}\left(p\cdot(u+b)\right)\left(\frac{{\partial}f(p\cdot u)}{{\partial}T}{\delta}T+\frac{{\partial}f(p\cdot u)}{{\partial}{\mu}}{\delta}{\mu}\right)e^{\frac{p_{T}^{2}}{B}}. (93)

It is instructive to write down the difference of the final solution with F4F_{4} added and the vacuum solution,

j(1)𝒱μjvacμ=\displaystyle j_{(1){\cal V}}^{{\mu}}-j_{{}_{\text{vac}}}^{\mu}= (u+b)μ[ω3(pT2B+1)δ(p(u+b))f(pu)\displaystyle(u+b)^{{\mu}}\bigg{[}-\frac{{\omega}}{3}\left(\frac{p_{T}^{2}}{B}+1\right){\delta}^{\prime}\left(p\cdot(u+b)\right)f(p\cdot u)
+(2ωpT23B+ω63ωμ2π2T2(puμ))δ(p(u+b))f(pu)\displaystyle+\left(\frac{2{\omega}p_{T}^{2}}{3B}+\frac{{\omega}}{6}-\frac{3{\omega}{\mu}}{2{\pi}^{2}T^{2}}(p\cdot u-{\mu})\right){\delta}\left(p\cdot(u+b)\right)f^{\prime}(p\cdot u)
2ωpT2B2puδ(p(u+b))f(pu)]epT2B+ωpTμBδ(p(u+b))f(pu)epT2B.\displaystyle-\frac{2{\omega}p_{T}^{2}}{B^{2}}p\cdot u\,{\delta}\left(p\cdot(u+b)\right)f(p\cdot u)\bigg{]}e^{\frac{p_{T}^{2}}{B}}+\frac{{\omega}p_{T}^{\mu}}{B}{\delta}\left(p\cdot(u+b)\right)f(p\cdot u)e^{\frac{p_{T}^{2}}{B}}. (94)

The structure of (IV.3) suggests the following interpretation: the first line is modification of dispersion, which does not contribute to charge density upon momenta integration. The terms proportional to ω6\frac{{\omega}}{6} and 3ωμ2π2T2(μpu)\frac{3{\omega}{\mu}}{2{\pi}^{2}T^{2}}({\mu}-p\cdot u) come from relative shifts of chemical potential δμδμvac{\delta}{\mu}-{\delta}{\mu}_{{}_{\text{vac}}} and temperature δT{\delta}T respectively. Because the zeroth order charge density nn is independent of temperature, contribution to charge density from temperature shift δTn,T{\delta}T\,n_{,T} vanishes. The remaining terms with factors of pTp_{T} and pT2p_{T}^{2} come from deformation of wave function of the LLL states averaged over the fluid cell, which can be interpreted as excitations of LLL states. Note that higher Landau levels are not excited because they are gapped by Bω\sqrt{B}\gg{\omega}. One may ask whether the vacuum and medium contributions can be traced back to shifts and excitations respectively. In fact, it is not true. The vacuum part is given by the terms 2ωpT23B+ω6\propto\frac{2{\omega}p_{T}^{2}}{3B}+\frac{{\omega}}{6}, which is a mixture of excitations and shifts. The medium part indeed comes from excitations. Finally we remark that we cannot naively take the vacuum limit T0T\to 0 in our solution because hydrodynamic description breaks down before the limit is reached.

V Summary

We have obtained covariant chiral kinetic theory with Landau level basis. We have used it to study the magnetized plasma subject to transverse electric field. The solution of the Wigner function is the same as the equilibrium one but with a drift velocity just as in system consisting of free fermions. It gives rise to Hall current and heat current.

We have also studied the Wigner function corresponding to a magnetized plasma with a steady vorticity. The resulting solution contains shifts of temperature and chemical potential as well as excitations of the LLL states. It also gives rise to an vector charge density and axial current density. The vacuum parts of both agree with previous studies and medium part of axial current density is consistent with standard CVE result. We find the vacuum contribution comes from the combination of the two effects, while the medium contribution comes from the excitation effect alone.

The current and stress tensor in both cases have been matched to constitutive relations of MHD, allowing us to determine several thermodynamic functions. An apparent discrepancy in the resulting thermodynamic function has been found. The resolution leads to the conclusion that the vacuum state is shifted as the vorticity is turned on adiabatically. The interpretation is in agreement with Hattori:2016njk .

The expectation that axial current comes solely from LLL states seems to indicate (89) is exact to O(ω)O({\omega}). Indeed a same result for charge density is obtained for weak magnetic and vorticity fields based on conventional CKT Yang:2020mtz . The numerical agreement of (87) and (89) follows from an emergent symmetry in LLL approximation. We expect the vector charge density to receive corrections from high Landau levels in general. It would be interesting to extend the present work to include higher Landau levels.

Last but not least, our study is based on collisionless kinetic theory. There have been indications that vorticity can induce spin rotation of fermions through collision effect, which could lead to current generation for fermions with anisotropic distribution Hou:2020mqp . It is curious to see whether similar mechanism is manifested with Landau level states. We leave it for future studies.

Acknowledgements.
We thank Han Gao for collaboration at early stage of the work. We are grateful to Jianhua Gao, Koichi Hattori and Yi Yin for useful discussions, also to Koichi Hattori and Yi Yin for helpful comments on an early version of the paper. S.L. thanks Aradhya Shukla for collaborations on related works. S.L. is in part supported by NSFC under Grant Nos 12075328, 11735007 and 11675274.

Appendix A Projection

The decomposition of EOM can be easily done by using the following identity

σμσ¯ν=gμν+(gμρgνσgμσgνρiϵμνρσ)nρ(nσnλgσλ)σλ\displaystyle{\sigma}^{\mu}{\bar{\sigma}}^{\nu}=g^{{\mu}{\nu}}+(g^{{\mu}{\rho}}g^{{\nu}{\sigma}}-g^{{\mu}{\sigma}}g^{{\nu}{\rho}}-i{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}})n_{\rho}(n_{\sigma}n_{\lambda}-g_{{\sigma}{\lambda}}){\sigma}^{\lambda} (95)

Here nn can be viewed as a time-like frame vector. (nσnλgσλ)σλ(n_{\sigma}n_{\lambda}-g_{{\sigma}{\lambda}}){\sigma}^{\lambda} is the spatial components of Pauli matrices orthogonal to nn. Note that (95) splits into an identity part and a Pauli matrix part, both of which contains real and imaginary parts. It is not difficult to see W(x,p)W(x,p) is hermitian from the definition and (σ¯μ)=σ¯μ({\bar{\sigma}}^{\mu})^{\dagger}={\bar{\sigma}}^{\mu}. It follows that jμj_{\mu} is real. Therefore, the splitting gives in total four equations

Πμjμ\displaystyle{\Pi}_{{\mu}}j^{{\mu}} =0,\displaystyle=0, (96)
Δμjμ\displaystyle{\Delta}_{{\mu}}j^{{\mu}} =0,\displaystyle=0, (97)
ΠμjνΠνjμ\displaystyle{\Pi}^{{\mu}}j^{{\nu}}-{\Pi}^{{\nu}}j^{{\mu}} =12ϵμνρσΔρjσ,\displaystyle=-\frac{1}{2}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\Delta}_{{\rho}}j_{\sigma}, (98)
12(ΔμjνΔνjμ)\displaystyle\frac{1}{2}\left({\Delta}^{{\mu}}j^{{\nu}}-{\Delta}^{{\nu}}j^{{\mu}}\right) =ϵμνρσΠρjσ,.\displaystyle={\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\Pi}_{{\rho}}j_{{\sigma}},. (99)

In fact (99) is equivalent to (98).

The case of left-handed fermions is similar. The only difference is that we replace σ{\sigma} in the covariant derivative (6) by σ¯{\bar{\sigma}} and σ¯\bar{{\sigma}} in the decomposition (14) by σ{\sigma}, which simply flips the sign of RHS of (98) and (99).

Appendix B Momenta Calculus

We show the momenta differentiation and integration in detail with qμ=Λνμpνq^{\mu}={\Lambda}_{\nu}^{\mu}p^{\nu} as independent variables and

Λνμ=(uwib),Λ1νμ=(uwib)T,\displaystyle{\Lambda}_{\nu}^{\mu}=\left(\begin{array}[]{c}u\\ -w_{i}\\ -b\\ \end{array}\right),\qquad\qquad{{\Lambda}^{{}^{-1}}}_{\nu}^{{\mu}}=\left(\begin{array}[]{c}u\\ w_{i}\\ b\\ \end{array}\right)^{T}, (106)

being Lorentz transformations between pμp^{\mu} and qμq^{\mu} where uμ,wi=1,2μu^{\mu},\,w_{i=1,2}^{\mu} and bμb^{\mu} are basis row vectors which are orthogonal to one another and normalized as u2=1,wi2=b2=1u^{2}=1,\,w_{i}^{2}=b^{2}=-1. The metric in most minus signature can be written as gμν=uμuνwiμwiνbμbνg^{{\mu}{\nu}}=u^{\mu}u^{\nu}-w_{i}^{\mu}w_{i}^{\nu}-b^{\mu}b^{\nu} with summation over transverse index i=1,2i=1,2. Then p2=(pu)2(pwi)(pwi)(pb)2q02qT2q32=q2p^{2}=(p\cdot u)^{2}-(p\cdot w_{i})(p\cdot w_{i})-(p\cdot b)^{2}\equiv q_{0}^{2}-q_{T}^{2}-q_{3}^{2}=q^{2} with q0pu,qipwi,q3pbq_{0}\equiv p\cdot u,\,q_{i}\equiv-p\cdot w_{i},\,q_{3}\equiv-p\cdot b, which gives pTμ=qiwiμp_{T}^{\mu}=q_{i}w_{i}^{\mu} and pT2=qT2p_{T}^{2}=-q_{T}^{2}.

Note there are gradients in q0=puq_{0}=p\cdot u and qT2=pT2q_{T}^{2}=-p_{T}^{2} since they depend on uμu^{\mu}. Explicitly, μ(pu)=pλμuλ{\partial}_{\mu}(p\cdot u)=p^{\lambda}{\partial}_{\mu}u_{\lambda} and μpT2=μ(p2(pu)2+(pb)2)=2pupλμuλ{\partial}_{\mu}p_{T}^{2}={\partial}_{\mu}\left(p^{2}-(p\cdot u)^{2}+(p\cdot b)^{2}\right)=-2p\cdot u\,p^{\lambda}{\partial}_{\mu}u_{\lambda}. Moreover, pTμ,Eμp_{T}^{\mu},\,E^{\mu} and u(1)μu_{(1)}^{\mu} lie in the transverse plane spanned by wiμw_{i}^{\mu} and therefore give vanishing dot products with uμu^{\mu} and bμb^{\mu}. We repeatedly use these properties in the text and the following calculations.

The momenta differentiation can be interpreted as

pμ=(pu)uμ+(pb)bμ+(pwi)wμi.\displaystyle\frac{{\partial}}{{\partial}p^{{\mu}}}=\frac{{\partial}}{{\partial}(p\cdot u)}u_{{\mu}}+\frac{{\partial}}{{\partial}(p\cdot b)}b_{{\mu}}+\frac{{\partial}}{{\partial}(p\cdot w_{i})}w_{{\mu}}^{i}. (107)

Multiplying it by uμu^{\mu} and bμb^{\mu}, one gets uμpμ=(pu)u^{{\mu}}\frac{{\partial}}{{\partial}p^{{\mu}}}=\frac{{\partial}}{{\partial}(p\cdot u)} and bμpμ=(pb)b^{{\mu}}\frac{{\partial}}{{\partial}p^{{\mu}}}=-\frac{{\partial}}{{\partial}(p\cdot b)}. We can then write the operator δΠμΠμpμ=112(λpxλ)pνFμν{{\delta}{\Pi}}_{\mu}\equiv{\Pi}_{\mu}-p_{\mu}=-\frac{1}{12}({\partial}_{\lambda}^{p}{\partial}_{x}^{\lambda})\frac{{\partial}}{{\partial}p_{\nu}}F_{{\mu}{\nu}} explicitly as follows. Using λuρ=ωϵλραβbαuβ{\partial}^{{\lambda}}u^{{\rho}}=-{\omega}{\epsilon}^{{\lambda}{\rho}{\alpha}{\beta}}b_{{\alpha}}u_{{\beta}}, we get

δΠμ=\displaystyle{{\delta}{\Pi}}_{\mu}= Bω12pλpν(bλbμuνbλbνuμ+gλμuνgλνuμ)\displaystyle\frac{B{\omega}}{12}\frac{{\partial}}{{\partial}p_{{\lambda}}}\frac{{\partial}}{{\partial}p_{{\nu}}}\left(b_{{\lambda}}b_{{\mu}}u_{{\nu}}-b_{{\lambda}}b_{{\nu}}u_{{\mu}}+g_{{\lambda}{\mu}}u_{{\nu}}-g_{{\lambda}{\nu}}u_{{\mu}}\right)
=\displaystyle= Bω12[(pu)(pμ(pb)bμ)pλpν(gλν+bλbν)uμ].\displaystyle\frac{B{\omega}}{12}\left[\frac{{\partial}}{{\partial}(p\cdot u)}\left(\frac{{\partial}}{{\partial}p^{{\mu}}}-\frac{{\partial}}{{\partial}(p\cdot b)}b_{{\mu}}\right)-\frac{{\partial}}{{\partial}p_{{\lambda}}}\frac{{\partial}}{{\partial}p_{{\nu}}}\left(g_{{\lambda}{\nu}}+b_{{\lambda}}b_{{\nu}}\right)u_{{\mu}}\right]. (108)

Applying the chain rule (107) in the first part, we obtain

δΠμ=\displaystyle{{\delta}{\Pi}}_{\mu}= Bω12[(pu)((pu)uμ+(pwi)wμi)pλpν(gλν+bλbν)uμ]\displaystyle\frac{B{\omega}}{12}\left[\frac{{\partial}}{{\partial}(p\cdot u)}\left(\frac{{\partial}}{{\partial}(p\cdot u)}u_{{\mu}}+\frac{{\partial}}{{\partial}(p\cdot w_{i})}w_{{\mu}}^{i}\right)-\frac{{\partial}}{{\partial}p_{{\lambda}}}\frac{{\partial}}{{\partial}p_{{\nu}}}\left(g_{{\lambda}{\nu}}+b_{{\lambda}}b_{{\nu}}\right)u_{{\mu}}\right]
=\displaystyle= Bω12[(pu)(pwi)wμipλpν(gλν+bλbνuλuν)uμ]\displaystyle\frac{B{\omega}}{12}\left[\frac{{\partial}}{{\partial}(p\cdot u)}\frac{{\partial}}{{\partial}(p\cdot w_{i})}w_{{\mu}}^{i}-\frac{{\partial}}{{\partial}p_{{\lambda}}}\frac{{\partial}}{{\partial}p_{{\nu}}}\left(g_{{\lambda}{\nu}}+b_{{\lambda}}b_{{\nu}}-u_{{\lambda}}u_{{\nu}}\right)u_{{\mu}}\right]
=\displaystyle= Bω12(2pμTB(pu)+uμPλνpλpν),\displaystyle\frac{B{\omega}}{12}\left(\frac{2p_{\mu}^{T}}{B}\frac{{\partial}}{{\partial}(p\cdot u)}+u_{{\mu}}P_{{\lambda}{\nu}}\frac{{\partial}}{{\partial}p_{{\lambda}}}\frac{{\partial}}{{\partial}p_{{\nu}}}\right), (109)

where, in the last equality, we have identified the operator (pwi)wμi=2pμTB\frac{{\partial}}{{\partial}(p\cdot w_{i})}w_{{\mu}}^{i}=\frac{2p_{\mu}^{T}}{B} upon acting on functions depending on pTμp_{T}^{\mu} through epT2Be^{\frac{p_{T}^{2}}{B}} only. Also, we have let (pu)\frac{{\partial}}{{\partial}(p\cdot u)} pass over 2pμTB\frac{2p_{\mu}^{T}}{B} since pμTp_{\mu}^{T} is independent of pup\cdot u.

When solving the kinetic equations, we have repeatedly used the vanishing integration by parts

p(u+b)δ(p(u+b))+δ(p(u+b))=0,\displaystyle p\cdot(u+b){\delta}^{\prime}\left(p\cdot(u+b)\right)+{\delta}(p\cdot(u+b))=0,
or(q0q3)δ(q0q3)+δ(q0q3)=0,\displaystyle\text{or}\quad\left(q_{0}-q_{3}\right){\delta}^{\prime}\left(q_{0}-q_{3}\right)+{\delta}(q_{0}-q_{3})=0, (110)

To include contribution from left-handed fermions, we generalize (19) and (20) as

js=\displaystyle j_{s}= δ(q0sq3)fs(q0)eqT2B,\displaystyle{\delta}(q_{0}-sq_{3})f_{s}(q_{0})e^{\frac{-q_{T}^{2}}{B}},
fs(q0)=\displaystyle f_{s}(q_{0})= 2(2π)3r=±rθ(rq0)er(q0μs)/T+1,\displaystyle\frac{2}{(2{\pi})^{3}}\sum_{r=\pm}\frac{r{\theta}(rq_{0})}{e^{r\left(q_{0}-{\mu}_{s}\right)/T}+1}, (111)

where helicity s=±s=\pm with μ+=μR{\mu}_{+}={\mu}_{{}_{R}} and μ=μL{\mu}_{-}={\mu}_{{}_{L}} respectively. With shorthand notations 𝑑q0𝑑q3,δsδ(q0sq3)\int\equiv\int dq_{0}dq_{3},\,{\delta}_{s}\equiv{\delta}(q_{0}-sq_{3}) and fsfs(q0)f_{s}\equiv f_{s}(q_{0}), the following integrals are useful to perform momenta integration

(δsfs)=1,δsfs=1,δsfs=0,\displaystyle\int\left({\delta}_{s}f_{s}\right)^{\prime}=-1,\quad\int{\delta}_{s}f_{s}^{\prime}=-1,\quad\to\quad\int{\delta}_{s}^{\prime}f_{s}=0, (112)
(q0δsfs)=0,δsfs=μs,q0(δsfs)=μs,\displaystyle\int\left(q_{0}{\delta}_{s}f_{s}\right)^{\prime}=0,\quad\int{\delta}_{s}f_{s}={\mu}_{s},\quad\to\quad\int\,q_{0}\left({\delta}_{s}f_{s}\right)^{\prime}=-{\mu}_{s},
q0δsfs=μs,\displaystyle\int\,q_{0}{\delta}_{s}f_{s}^{\prime}=-{\mu}_{s}, q0δsfs=0,sq3δsfs=μs,sq3δsfs=μs,\displaystyle\quad\to\quad\int\,q_{0}{\delta}_{s}^{\prime}f_{s}=0,\quad\int\,sq_{3}{\delta}_{s}f_{s}^{\prime}=-{\mu}_{s},\quad\to\quad\int\,sq_{3}{\delta}_{s}^{\prime}f_{s}={\mu}_{s}, (113)
q0δsfs=sq3δsfs=μs22+π2T26,\displaystyle\int\,q_{0}{\delta}_{s}f_{s}=\int\,sq_{3}{\delta}_{s}f_{s}=\frac{{\mu}_{s}^{2}}{2}+\frac{{\pi}^{2}T^{2}}{6}, (114)
q02δsfs=sq3q0δsfs=μs3(μs2+π2T2),\displaystyle\int\,q_{0}^{2}{\delta}_{s}f_{s}=\int\,sq_{3}q_{0}{\delta}_{s}f_{s}=\frac{{\mu}_{s}}{3}\left({\mu}_{s}^{2}+{\pi}^{2}T^{2}\right), (115)
𝑑q1𝑑q2eqT2B=𝑑q1𝑑q2qT2BeqT2B=2𝑑q1𝑑q2qi2BeqT2B=πB.\displaystyle\int dq_{1}dq_{2}\,e^{\frac{-q_{T}^{2}}{B}}=\int dq_{1}dq_{2}\frac{q_{T}^{2}}{B}e^{\frac{-q_{T}^{2}}{B}}=2\int dq_{1}dq_{2}\frac{q_{i}^{2}}{B}e^{\frac{-q_{T}^{2}}{B}}={\pi}B. (116)

Then, for the O(1)O(1) solution, we have

uμJ(0)μ=d4puμj(0)μ=d4qs=±js=μB2π2,\displaystyle u_{\mu}J_{(0)}^{\mu}=\int d^{4}p\,u_{\mu}j_{(0)}^{\mu}=\int d^{4}q\sum_{s=\pm}j_{s}=\frac{{\mu}B}{2{\pi}^{2}},
PμνJν(0)=d4pPμνjν(0)=0,\displaystyle P^{{\mu}{\nu}}J_{\nu}^{(0)}=\int d^{4}pP^{{\mu}{\nu}}j_{\nu}^{(0)}=0,
bμbνJν(0)=d4pbμbνjν(0)=d4qs=±sbμjs=μ5B2π2bμ,\displaystyle b^{\mu}b^{\nu}J_{\nu}^{(0)}=\int d^{4}p\,b^{\mu}b^{\nu}j_{\nu}^{(0)}=-\int d^{4}q\sum_{s=\pm}sb^{\mu}j_{s}=-\frac{{\mu}_{5}B}{2{\pi}^{2}}b^{\mu}, (117)
uμuνT(0)μν=d4puμuν12p{μj(0)ν}=d4qq0s=±js=χVB2π2,\displaystyle u_{\mu}u_{\nu}T_{(0)}^{{\mu}{\nu}}=\int d^{4}p\,u_{\mu}u_{\nu}\frac{1}{2}p^{\{{\mu}}j_{(0)}^{{\nu}\}}=\int d^{4}q\,q_{0}\sum_{s=\pm}j_{s}=\frac{{\chi}_{{}_{V}}B}{2{\pi}^{2}},
PμνT(0)μν=d4pPμν12p{μj(0)ν}=0,\displaystyle P_{{\mu}{\nu}}T_{(0)}^{{\mu}{\nu}}=\int d^{4}pP_{{\mu}{\nu}}\frac{1}{2}p^{\{{\mu}}j_{(0)}^{{\nu}\}}=0,
bμbνT(0)μν=d4pbμbν12p{μj(0)ν}=d4qs=±sq3js=χVB2π2,\displaystyle b_{\mu}b_{\nu}T_{(0)}^{{\mu}{\nu}}=\int d^{4}p\,b_{\mu}b_{\nu}\frac{1}{2}p^{\{{\mu}}j_{(0)}^{{\nu}\}}=\int d^{4}q\sum_{s=\pm}sq_{3}\,j_{s}=\frac{{\chi}_{{}_{V}}B}{2{\pi}^{2}}, (118)
ΔμαΔνβTαβ(0)=d4pbμbαbνbβ12p{αjβ}(0)=ωBd4qs=±bμbνsq3js=ω2π2χVbμbν,\displaystyle{\Delta}^{{\mu}{\alpha}}{\Delta}^{{\nu}{\beta}}T_{{\alpha}{\beta}}^{(0)}=\int d^{4}p\,b^{\mu}b^{\alpha}b^{\nu}b^{\beta}\frac{1}{2}p_{\{{\alpha}}j_{{\beta}\}}^{(0)}=\frac{{\omega}}{B}\int d^{4}q\sum_{s=\pm}b^{\mu}b^{\nu}\,sq_{3}j_{s}=\frac{{\omega}}{2{\pi}^{2}}{\chi}_{{}_{V}}b^{\mu}b^{\nu}, (119)
PμαuβTαβ(0)=\displaystyle P^{{\mu}{\alpha}}u^{\beta}T_{{\alpha}{\beta}}^{(0)}= d4pPμαuβp{αjβ}(0)=0,\displaystyle\int d^{4}pP^{{\mu}{\alpha}}u^{\beta}p_{\{{\alpha}}j_{{\beta}\}}^{(0)}=0,
bμbαuβTαβ(0)=\displaystyle b^{{\mu}}b^{{\alpha}}u^{\beta}T_{{\alpha}{\beta}}^{(0)}= d4pbμbαuβ12p{αjβ}(0)=bμd4qs=±(q3+sq0)js=χA2π2bμ,\displaystyle\int d^{4}p\,b^{\mu}b^{\alpha}u^{\beta}\frac{1}{2}p_{\{{\alpha}}j_{{\beta}\}}^{(0)}=-b^{\mu}\int d^{4}q\sum_{s=\pm}\left(q_{3}+sq_{0}\right)j_{s}=\frac{-{\chi}_{{}_{A}}}{2{\pi}^{2}}b^{\mu}, (120)

which give

𝒩(0)=μB2π2,𝒥(0)μ=ΔμνJν(0)=μ5B2π2bμ,\displaystyle{\cal N}_{(0)}=\frac{{\mu}B}{2{\pi}^{2}},\qquad{\cal J}_{(0)}^{\mu}=-{\Delta}^{{\mu}{\nu}}J_{\nu}^{(0)}=\frac{{\mu}_{5}B}{2{\pi}^{2}}b^{\mu},
(0)=χVB2π2,𝒫(0)=13ΔμνT(0)μν=χVB6π2,𝒬(0)μ=ΔμαuβTαβ(0)=χA2π2bμ,\displaystyle{\cal E}_{(0)}=\frac{{\chi}_{{}_{V}}B}{2{\pi}^{2}},\qquad{\cal P}_{(0)}=\frac{1}{3}{\Delta}_{{\mu}{\nu}}T_{(0)}^{{\mu}{\nu}}=\frac{{\chi}_{{}_{V}}B}{6{\pi}^{2}},\qquad{\cal Q}_{(0)}^{\mu}={\Delta}^{{\mu}{\alpha}}u^{\beta}T_{{\alpha}{\beta}}^{(0)}=-\frac{{\chi}_{{}_{A}}}{2{\pi}^{2}}b^{\mu},
𝒯(0)μν=12(ΔμαΔνβ+ΔναΔμβ23ΔμνΔαβ)Tαβ(0)=χVB6π2(2bμbνPμν).\displaystyle{\cal T}_{(0)}^{{\mu}{\nu}}=\frac{1}{2}\left({\Delta}^{{\mu}{\alpha}}{\Delta}^{{\nu}{\beta}}+{\Delta}^{{\nu}{\alpha}}{\Delta}^{{\mu}{\beta}}-\frac{2}{3}{\Delta}^{{\mu}{\nu}}{\Delta}^{{\alpha}{\beta}}\right)T_{{\alpha}{\beta}}^{(0)}=\frac{{\chi}_{{}_{V}}B}{6{\pi}^{2}}\left(2b^{\mu}b^{\nu}-P^{{\mu}{\nu}}\right). (121)

The following are O()O({\partial}) solutions. Firstly, for drift solution, the nontrivial components are

𝒥(1)𝒟μ=\displaystyle{\cal J}_{(1){\cal D}}^{{\mu}}= ΔμνJν(1)𝒟=d4pPμνjν(1)𝒟=d4pPμνs=±uν(1)js\displaystyle-{\Delta}^{{\mu}{\nu}}J_{\nu}^{(1){\cal D}}=-\int d^{4}p\,P^{{\mu}{\nu}}j_{\nu}^{(1){\cal D}}=-\int d^{4}p\,P^{{\mu}{\nu}}\sum_{s=\pm}u_{{\nu}}^{(1)}j_{s}
=\displaystyle= d4qu(1)μs=±js=μ4π2ϵμνρσfνρbσ=μ2π2ϵμνρσuνEρbσ,\displaystyle\int d^{4}q\,u_{(1)}^{{\mu}}\sum_{s=\pm}j_{s}=\frac{{\mu}}{4{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\nu}{\rho}}b_{{\sigma}}=-\frac{{\mu}}{2{\pi}^{2}}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{{\nu}}E_{{\rho}}b_{{\sigma}}, (122)
𝒬(1)𝒟μ=\displaystyle{\cal Q}_{(1){\cal D}}^{\mu}= ΔμαuβTαβ(1)𝒟=d4pPμαuβ12p{αjβ}(1)𝒟\displaystyle-{\Delta}^{{\mu}{\alpha}}u^{{\beta}}T_{{\alpha}{\beta}}^{(1){\cal D}}=-\int d^{4}p\,P^{{\mu}{\alpha}}u^{{\beta}}\frac{1}{2}p_{\{{\alpha}}j_{{\beta}\}}^{(1){\cal D}}
=\displaystyle= 12d4ps=±[pu(1)pTμ((pu)2puB)js+puu(1)μjs]\displaystyle\frac{1}{2}\int d^{4}p\,\sum_{s=\pm}\left[p\cdot u_{(1)}p_{T}^{{\mu}}\left(\frac{{\partial}}{{\partial}(p\cdot u)}-\frac{2p\cdot u}{B}\right)j_{s}+p\cdot u\,u_{(1)}^{{\mu}}j_{s}\right]
=\displaystyle= 12d4qu(1)μs=±[qT22(2q0Bq0)js+q0js]\displaystyle\frac{1}{2}\int d^{4}q\,u_{(1)}^{{\mu}}\sum_{s=\pm}\left[\frac{q_{T}^{2}}{2}\left(\frac{2q_{0}}{B}-\frac{{\partial}}{{\partial}q_{0}}\right)j_{s}+q_{0}j_{s}\right]
=\displaystyle= 12π2(B4+χV)u(1)μ\displaystyle\frac{1}{2{\pi}^{2}}\left(\frac{B}{4}+\chi_{{}_{V}}\right)u_{(1)}^{{\mu}}
=\displaystyle= 12π2(B4+χV)ϵμνρσuνEρbσ.\displaystyle-\frac{1}{2{\pi}^{2}}\left(\frac{B}{4}+\chi_{{}_{V}}\right){\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}u_{{\nu}}E_{{\rho}}b_{{\sigma}}. (123)

All the other components from drift solution are vanishing upon integration over qiq_{i} odd functions. For vortical solution, we have

uμJ(1)𝒞μ=d4puμj(1)𝒞μ=ωBd4qs=±qT2(2q0Bjsjs+13δsfseqT2B)=ω2π2(2χV+23B),\displaystyle u_{\mu}J_{(1){\cal C}}^{\mu}=\int d^{4}p\,u_{\mu}j_{(1){\cal C}}^{\mu}=\frac{{\omega}}{B}\int d^{4}q\sum_{s=\pm}q_{T}^{2}\left(\frac{2q_{0}}{B}j_{s}-j_{s}^{\prime}+\frac{1}{3}{\delta}_{s}f_{s}^{\prime}e^{\frac{-q_{T}^{2}}{B}}\right)=\frac{{\omega}}{2{\pi}^{2}}\left(2{\chi}_{{}_{V}}+\frac{2}{3}B\right),
PμνJν(1)𝒞=d4pPμνjν(1)𝒞=0,\displaystyle P^{{\mu}{\nu}}J_{\nu}^{(1){\cal C}}=\int d^{4}pP^{{\mu}{\nu}}j_{\nu}^{(1){\cal C}}=0,
bμbνJν(1)𝒞=d4pbμbνjν(1)𝒞=ωBbμd4qs=±sqT2(2q0Bjsjs+13δsfseqT2B)\displaystyle b^{\mu}b^{\nu}J_{\nu}^{(1){\cal C}}=\int d^{4}p\,b^{\mu}b^{\nu}j_{\nu}^{(1){\cal C}}=-\frac{{\omega}}{B}b^{\mu}\int d^{4}q\sum_{s=\pm}sq_{T}^{2}\left(\frac{2q_{0}}{B}j_{s}-j_{s}^{\prime}+\frac{1}{3}{\delta}_{s}f_{s}^{\prime}e^{\frac{-q_{T}^{2}}{B}}\right)
=ω2π22χAbμ,\displaystyle\qquad\qquad=-\frac{{\omega}}{2{\pi}^{2}}2{\chi}_{{}_{A}}b^{\mu}, (124)
uμuνT(1)𝒞μν=d4puμuν12p{μj(1)𝒞ν}=ωBd4qs=±q0qT2(2q0Bjsjs+13δsfseqT2B)\displaystyle u_{\mu}u_{\nu}T_{(1){\cal C}}^{{\mu}{\nu}}=\int d^{4}p\,u_{\mu}u_{\nu}\frac{1}{2}p^{\{{\mu}}j_{(1){\cal C}}^{{\nu}\}}=\frac{{\omega}}{B}\int d^{4}q\sum_{s=\pm}q_{0}q_{T}^{2}\left(\frac{2q_{0}}{B}j_{s}-j_{s}^{\prime}+\frac{1}{3}{\delta}_{s}f_{s}^{\prime}e^{\frac{-q_{T}^{2}}{B}}\right)
=ω2π2(2ξV+23μB),\displaystyle\qquad\qquad=\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{V}}+\frac{2}{3}{\mu}B\right),
PμνT(1)𝒞μν=d4pPμν12p{μj(1)𝒞ν}=ωBd4qs=±qT2js=ω2π2μB,\displaystyle P_{{\mu}{\nu}}T_{(1){\cal C}}^{{\mu}{\nu}}=\int d^{4}pP_{{\mu}{\nu}}\frac{1}{2}p^{\{{\mu}}j_{(1){\cal C}}^{{\nu}\}}=\frac{{\omega}}{B}\int d^{4}q\sum_{s=\pm}q_{T}^{2}j_{s}=\frac{{\omega}}{2{\pi}^{2}}{\mu}B,
bμbνT(1)𝒞μν=d4pbμbν12p{μj(1)𝒞ν}=ωBd4qs=±sq3qT2(2q0Bjsjs+13δsfseqT2B)\displaystyle b_{\mu}b_{\nu}T_{(1){\cal C}}^{{\mu}{\nu}}=\int d^{4}p\,b_{\mu}b_{\nu}\frac{1}{2}p^{\{{\mu}}j_{(1){\cal C}}^{{\nu}\}}=\frac{{\omega}}{B}\int d^{4}q\sum_{s=\pm}sq_{3}q_{T}^{2}\left(\frac{2q_{0}}{B}j_{s}-j_{s}^{\prime}+\frac{1}{3}{\delta}_{s}f_{s}^{\prime}e^{\frac{-q_{T}^{2}}{B}}\right)
=ω2π2(2ξV13μB),\displaystyle\qquad\qquad=\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{V}}-\frac{1}{3}{\mu}B\right), (125)
ΔμαΔνβTαβ(1)𝒞=d4p(PμαPνβ+bμbαbνbβ)12p{αjβ}(1)𝒞\displaystyle{\Delta}^{{\mu}{\alpha}}{\Delta}^{{\nu}{\beta}}T_{{\alpha}{\beta}}^{(1){\cal C}}=\int d^{4}p\left(P^{{\mu}{\alpha}}P^{{\nu}{\beta}}+b^{\mu}b^{\alpha}b^{\nu}b^{\beta}\right)\frac{1}{2}p_{\{{\alpha}}j_{{\beta}\}}^{(1){\cal C}}
=ωBd4ps=±[pTμpTνjs+bμbν(spb)pT2(js(pu)13δsfsepT2B2puBjs)]\displaystyle=\frac{{\omega}}{B}\int d^{4}p\sum_{s=\pm}\left[p_{T}^{{\mu}}p_{T}^{{\nu}}j_{s}+b^{\mu}b^{\nu}\left(-sp\cdot b\right)p_{T}^{2}\left(\frac{{\partial}j_{s}}{{\partial}(p\cdot u)}-\frac{1}{3}{\delta}_{s}f_{s}e^{\frac{p_{T}^{2}}{B}}-\frac{2p\cdot u}{B}j_{s}\right)\right]
=ωBd4qs=±[12PμνqT2js+bμbνsq3qT2(2q0Bjsjs+13δsfseqT2B)]\displaystyle=\frac{{\omega}}{B}\int d^{4}q\sum_{s=\pm}\left[\frac{1}{2}P^{{\mu}{\nu}}q_{T}^{2}j_{s}+b^{\mu}b^{\nu}\,sq_{3}q_{T}^{2}\left(\frac{2q_{0}}{B}j_{s}-j_{s}^{\prime}+\frac{1}{3}{\delta}_{s}f_{s}^{\prime}e^{\frac{-q_{T}^{2}}{B}}\right)\right]
=12Pμνω2π2μB+bμbνω2π2(2ξV13μB),\displaystyle=\frac{1}{2}P^{{\mu}{\nu}}\frac{{\omega}}{2{\pi}^{2}}{\mu}B+b^{\mu}b^{\nu}\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{V}}-\frac{1}{3}{\mu}B\right), (126)
PμαuβTαβ(1)𝒞=d4pPμαuβ12p{αjβ}(1)𝒞=0,\displaystyle P^{{\mu}{\alpha}}u^{\beta}T_{{\alpha}{\beta}}^{(1){\cal C}}=\int d^{4}pP^{{\mu}{\alpha}}u^{\beta}\frac{1}{2}p_{\{{\alpha}}j_{{\beta}\}}^{(1){\cal C}}=0,
bμbαuβTαβ(1)𝒞=d4pbμbαuβ12p{αjβ}(1)𝒞=bμω2Bd4qs=±(q3+sq0)\displaystyle b^{\mu}b^{\alpha}u^{\beta}T_{{\alpha}{\beta}}^{(1){\cal C}}=\int d^{4}p\,b^{{\mu}}b^{{\alpha}}u^{\beta}\frac{1}{2}p_{\{{\alpha}}j_{{\beta}\}}^{(1){\cal C}}=-\frac{b^{\mu}{\omega}}{2B}\int d^{4}q\sum_{s=\pm}\left(q_{3}+sq_{0}\right)
×qT2(2q0Bjsjs+13δsfseqT2B)=ω2π2(2ξA+16μ5B)bμ.\displaystyle\qquad\times q_{T}^{2}\left(\frac{2q_{0}}{B}j_{s}-j_{s}^{\prime}+\frac{1}{3}{\delta}_{s}f_{s}^{\prime}e^{\frac{-q_{T}^{2}}{B}}\right)=-\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{A}}+\frac{1}{6}{\mu}_{5}B\right)b^{\mu}. (127)

The j(1)𝒜μj_{(1){\cal A}}^{{\mu}} part does not contribute to the final vortical result since we have

δΠuepT2BPλνpλpνepT2B=qiqieqT2B=4B(qT2B1)eqT2B,\displaystyle{{\delta}{\Pi}}_{u}e^{\frac{p_{T}^{2}}{B}}\sim P_{{\lambda}{\nu}}\frac{{\partial}}{{\partial}p_{{\lambda}}}\frac{{\partial}}{{\partial}p_{{\nu}}}e^{\frac{p_{T}^{2}}{B}}=\frac{{\partial}}{{\partial}q_{i}}\frac{{\partial}}{{\partial}q_{i}}e^{\frac{-q_{T}^{2}}{B}}=\frac{4}{B}\left(\frac{q_{T}^{2}}{B}-1\right)e^{\frac{-q_{T}^{2}}{B}}, (128)

which gives vanishing integral by noting 𝑑q1𝑑q2eqT2B=𝑑q1𝑑q2qT2BeqT2B\int dq_{1}dq_{2}\,e^{\frac{-q_{T}^{2}}{B}}=\int dq_{1}dq_{2}\frac{q_{T}^{2}}{B}e^{\frac{-q_{T}^{2}}{B}}. Thus

𝒩(1)𝒱=ω2π2(2χV+23B),𝒥(1)𝒱μ=ΔμνJν(1)𝒱=ω2π22χAbμ,\displaystyle{\cal N}_{(1){\cal V}}=\frac{{\omega}}{2{\pi}^{2}}\left(2{\chi}_{{}_{V}}+\frac{2}{3}B\right),\qquad{\cal J}_{(1){\cal V}}^{\mu}=-{\Delta}^{{\mu}{\nu}}J_{\nu}^{(1){\cal V}}=\frac{{\omega}}{2{\pi}^{2}}2{\chi}_{{}_{A}}b^{\mu},
(1)𝒱=ω2π2(2ξV+23μB),𝒫(1)𝒱=ΔμνT(1)𝒱μν=ω6π2(2ξV+23μB),\displaystyle{\cal E}_{(1){\cal V}}=\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{V}}+\frac{2}{3}{\mu}B\right),\qquad{\cal P}_{(1){\cal V}}={\Delta}_{{\mu}{\nu}}T_{(1){\cal V}}^{{\mu}{\nu}}=\frac{{\omega}}{6{\pi}^{2}}\left(2{\xi}_{{}_{V}}+\frac{2}{3}{\mu}B\right),
𝒬(1)𝒱μ=ΔμαuβTαβ(1)𝒱=ω2π2(2ξA+16μ5B)bμ,\displaystyle{\cal Q}_{(1){\cal V}}^{\mu}=-{\Delta}^{{\mu}{\alpha}}u^{\beta}T_{{\alpha}{\beta}}^{(1){\cal V}}=\frac{{\omega}}{2{\pi}^{2}}\left(2{\xi}_{{}_{A}}+\frac{1}{6}{\mu}_{5}B\right)b^{\mu},
𝒯(1)𝒱μν=12(ΔμαΔνβ+ΔναΔμβ23ΔμνΔαβ)Tαβ(1)𝒱\displaystyle{\cal T}_{(1){\cal V}}^{{\mu}{\nu}}=\frac{1}{2}\left({\Delta}^{{\mu}{\alpha}}{\Delta}^{{\nu}{\beta}}+{\Delta}^{{\nu}{\alpha}}{\Delta}^{{\mu}{\beta}}-\frac{2}{3}{\Delta}^{{\mu}{\nu}}{\Delta}^{{\alpha}{\beta}}\right)T_{{\alpha}{\beta}}^{(1){\cal V}}
=ω6π2(2ξV56μB)(2bμbνPμν).\displaystyle\qquad=\frac{{\omega}}{6{\pi}^{2}}\left(2{\xi}_{{}_{V}}-\frac{5}{6}{\mu}B\right)\left(2b^{\mu}b^{\nu}-P^{{\mu}{\nu}}\right). (129)

Appendix C Useful Formulas

We have repeatedly used the contraction formulas of two anti-symmetric tensors,

ϵμνρσϵμναβ=2|δαρδβρδασδβσ|,\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\epsilon}_{{\mu}{\nu}{\alpha}{\beta}}=-2\left|\begin{array}[]{cc}{\delta}_{\alpha}^{\rho}&{\delta}_{\beta}^{\rho}\\ {\delta}_{\alpha}^{\sigma}&{\delta}_{\beta}^{\sigma}\\ \end{array}\right|, (132)
ϵμνρσϵμλαβ=|δλνδανδβνδλρδαρδβρδλσδασδβσ|.\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\epsilon}_{{\mu}{\lambda}{\alpha}{\beta}}=-\left|\begin{array}[]{ccc}{\delta}_{\lambda}^{\nu}&{\delta}_{\alpha}^{\nu}&{\delta}_{\beta}^{\nu}\\ {\delta}_{\lambda}^{\rho}&{\delta}_{\alpha}^{\rho}&{\delta}_{\beta}^{\rho}\\ {\delta}_{\lambda}^{\sigma}&{\delta}_{\alpha}^{\sigma}&{\delta}_{\beta}^{\sigma}\\ \end{array}\right|. (136)

By repeated use of the five-index cyclic identity,

ϵμνρσpλ+ϵνρσλpμ+ϵρσλμpν+ϵσλμνpρ+ϵλμνρpσ=0,\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}p^{\lambda}+{\epsilon}^{{\nu}{\rho}{\sigma}{\lambda}}p^{\mu}+{\epsilon}^{{\rho}{\sigma}{\lambda}{\mu}}p^{\nu}+{\epsilon}^{{\sigma}{\lambda}{\mu}{\nu}}p^{\rho}+{\epsilon}^{{\lambda}{\mu}{\nu}{\rho}}p^{\sigma}=0, (137)

we can prove the identities in (III.1). For the first one,

ϵμνρσfρλ(u+b)σuλ=(ϵνρσλuμ+ϵρσλμuν+ϵσλμνuρ+ϵλμνρuσ)fρλ(u+b)σ.\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}(u+b)_{{\sigma}}u^{{\lambda}}=-\left({\epsilon}^{{\nu}{\rho}{\sigma}{\lambda}}u^{\mu}+{\epsilon}^{{\rho}{\sigma}{\lambda}{\mu}}u^{\nu}+{\epsilon}^{{\sigma}{\lambda}{\mu}{\nu}}u^{\rho}+{\epsilon}^{{\lambda}{\mu}{\nu}{\rho}}u^{\sigma}\right)f_{{\rho}{\lambda}}(u+b)_{{\sigma}}. (138)

Upon moving the third term ϵσλμνuρ{\epsilon}^{{\sigma}{\lambda}{\mu}{\nu}}u^{\rho} of the RHS to the LHS, one finds the LHS doubles. At the same time, the uσu_{\sigma} parts in the first and second terms vanish by noting fρλ=EρuλEλuρf_{{\rho}{\lambda}}=E_{\rho}u_{\lambda}-E_{\lambda}u_{\rho} and the anti-symmetry of ϵνρσλ{\epsilon}^{{\nu}{\rho}{\sigma}{\lambda}} and ϵρσλμ{\epsilon}^{{\rho}{\sigma}{\lambda}{\mu}}. Rearranging the indices, one gets

2ϵμνρσfρλ(u+b)σuλ=u[μϵν]ρλσfρλbσ+ϵμνρλfρλ.\displaystyle 2{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}(u+b)_{{\sigma}}u^{{\lambda}}=u^{[{\mu}}{\epsilon}^{{\nu}]{\rho}{\lambda}{\sigma}}f_{{\rho}{\lambda}}b_{\sigma}+{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}f_{{\rho}{\lambda}}. (139)

The ϵμνρλfρλ{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}f_{{\rho}{\lambda}} term can be written into b[μϵν]ρσλfρλbσb^{[{\mu}}{\epsilon}^{{\nu}]{\rho}{\sigma}{\lambda}}f_{{\rho}{\lambda}}b_{{\sigma}} by starting from

bμϵνρλσfρλbσ=(bνϵρλσμ+bρϵλσμν+bλϵσμνρ+bσϵμνρλ)fρλbσ,\displaystyle b^{{\mu}}{\epsilon}^{{\nu}{\rho}{\lambda}{\sigma}}f_{{\rho}{\lambda}}b_{{\sigma}}=-\left(b^{\nu}{\epsilon}^{{\rho}{\lambda}{\sigma}{\mu}}+b^{\rho}{\epsilon}^{{\lambda}{\sigma}{\mu}{\nu}}+b^{\lambda}{\epsilon}^{{\sigma}{\mu}{\nu}{\rho}}+b^{{\sigma}}{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}\right)f_{{\rho}{\lambda}}b_{{\sigma}}, (140)

where we can move the first term bνϵρλσμb^{\nu}{\epsilon}^{{\rho}{\lambda}{\sigma}{\mu}} of the RHS to the LHS to produce b[μϵν]ρλσfρλbσb^{[{\mu}}{\epsilon}^{{\nu}]{\rho}{\lambda}{\sigma}}f_{{\rho}{\lambda}}b_{{\sigma}} in the LHS. Then by noting bρfρλ=bλfρλ=0b^{\rho}f_{{\rho}{\lambda}}=b^{\lambda}f_{{\rho}{\lambda}}=0 in the second and third terms, we do get ϵμνρλfρλ=b[μϵν]ρλσfρλbσ{\epsilon}^{{\mu}{\nu}{\rho}{\lambda}}f_{{\rho}{\lambda}}=b^{[{\mu}}{\epsilon}^{{\nu}]{\rho}{\lambda}{\sigma}}f_{{\rho}{\lambda}}b_{{\sigma}} which gives

2ϵμνρσfρλ(u+b)σuλ=(u+b)[μϵν]ρλσfρλbσ=2B(u+b)[μu(1)ν].\displaystyle 2{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}(u+b)_{{\sigma}}u^{{\lambda}}=(u+b)^{[{\mu}}{\epsilon}^{{\nu}]{\rho}{\lambda}{\sigma}}f_{{\rho}{\lambda}}b_{{\sigma}}=2B(u+b)^{[{\mu}}u_{(1)}^{{\nu}]}. (141)

Similarly, for the second identity in (III.1), one has

ϵμνρσfρλ(u+b)σpTλ=(ϵνρσλpTμ+ϵρσλμpTν+ϵσλμνpTρ+ϵλμνρpTσ)fρλ(u+b)σ\displaystyle{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}(u+b)_{{\sigma}}p_{T}^{{\lambda}}=-\left({\epsilon}^{{\nu}{\rho}{\sigma}{\lambda}}p_{T}^{\mu}+{\epsilon}^{{\rho}{\sigma}{\lambda}{\mu}}p_{T}^{\nu}+{\epsilon}^{{\sigma}{\lambda}{\mu}{\nu}}p_{T}^{\rho}+{\epsilon}^{{\lambda}{\mu}{\nu}{\rho}}p_{T}^{\sigma}\right)f_{{\rho}{\lambda}}(u+b)_{{\sigma}}
2ϵμνρσfρλ(u+b)σpTλ=pT[μϵν]ρλσfρλbσ=2pT[μu(1)ν].\displaystyle\to\quad 2{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}f_{{\rho}{\lambda}}(u+b)_{{\sigma}}p_{T}^{{\lambda}}=p_{T}^{[{\mu}}{\epsilon}^{{\nu}]{\rho}{\lambda}{\sigma}}f_{{\rho}{\lambda}}b_{\sigma}=2p_{T}^{[{\mu}}u_{(1)}^{{\nu}]}. (142)

References

  • [1] A. Vilenkin. EQUILIBRIUM PARITY VIOLATING CURRENT IN A MAGNETIC FIELD. Phys. Rev. D, 22:3080–3084, 1980.
  • [2] Dmitri Kharzeev. Parity violation in hot QCD: Why it can happen, and how to look for it. Phys. Lett. B, 633:260–264, 2006.
  • [3] D. Kharzeev and A. Zhitnitsky. Charge separation induced by P-odd bubbles in QCD matter. Nucl. Phys. A, 797:67–79, 2007.
  • [4] Kenji Fukushima, Dmitri E. Kharzeev, and Harmen J. Warringa. The Chiral Magnetic Effect. Phys. Rev. D, 78:074033, 2008.
  • [5] Dam T. Son and Piotr Surowka. Hydrodynamics with Triangle Anomalies. Phys. Rev. Lett., 103:191601, 2009.
  • [6] Yasha Neiman and Yaron Oz. Relativistic Hydrodynamics with General Anomalous Charges. JHEP, 03:023, 2011.
  • [7] A. Vilenkin. QUANTUM FIELD THEORY AT FINITE TEMPERATURE IN A ROTATING SYSTEM. Phys. Rev. D, 21:2260–2269, 1980.
  • [8] Johanna Erdmenger, Michael Haack, Matthias Kaminski, and Amos Yarom. Fluid dynamics of R-charged black holes. JHEP, 01:055, 2009.
  • [9] Nabamita Banerjee, Jyotirmoy Bhattacharya, Sayantani Bhattacharyya, Suvankar Dutta, R. Loganayagam, and P. Surowka. Hydrodynamics from charged black branes. JHEP, 01:094, 2011.
  • [10] Karl Landsteiner, Eugenio Megias, and Francisco Pena-Benitez. Gravitational Anomaly and Transport. Phys. Rev. Lett., 107:021601, 2011.
  • [11] Koichi Hattori and Yi Yin. Charge redistribution from anomalous magnetovorticity coupling. Phys. Rev. Lett., 117(15):152002, 2016.
  • [12] Yizhuang Liu and Ismail Zahed. Pion Condensation by Rotation in a Magnetic field. Phys. Rev. Lett., 120(3):032001, 2018.
  • [13] Hao-Lei Chen, Kenji Fukushima, Xu-Guang Huang, and Kazuya Mameda. Analogy between rotation and density for Dirac fermions in a magnetic field. Phys. Rev. D, 93(10):104052, 2016.
  • [14] Gaoqing Cao and Lianyi He. Rotation induced charged pion condensation in a strong magnetic field: A Nambu–Jona-Lasino model study. Phys. Rev. D, 100(9):094015, 2019.
  • [15] Hao-Lei Chen, Xu-Guang Huang, and Kazuya Mameda. Do charged pions condense in a magnetic field with rotation? 10 2019.
  • [16] Yanyan Bu and Shu Lin. Magneto-vortical effect in strongly coupled plasma. Eur. Phys. J. C, 80(5):401, 2020.
  • [17] Kenji Fukushima, Takuya Shimazaki, and Lingxiao Wang. Mode decomposed chiral magnetic effect and rotating fermions. Phys. Rev. D, 102(1):014045, 2020.
  • [18] Pavel Kovtun. Thermodynamics of polarized relativistic matter. JHEP, 07:028, 2016.
  • [19] Juan Hernandez and Pavel Kovtun. Relativistic magnetohydrodynamics. JHEP, 05:001, 2017.
  • [20] Sašo Grozdanov, Diego M. Hofman, and Nabil Iqbal. Generalized global symmetries and dissipative magnetohydrodynamics. Phys. Rev. D, 95(9):096003, 2017.
  • [21] Masaru Hongo and Koichi Hattori. Revisiting relativistic magnetohydrodynamics from quantum electrodynamics. 5 2020.
  • [22] Koichi Hattori, Yuji Hirono, Ho-Ung Yee, and Yi Yin. MagnetoHydrodynamics with chiral anomaly: phases of collective excitations and instabilities. Phys. Rev. D, 100(6):065023, 2019.
  • [23] Xu-Guang Huang, Armen Sedrakian, and Dirk H. Rischke. Kubo formulae for relativistic fluids in strong magnetic fields. Annals Phys., 326:3075–3094, 2011.
  • [24] Stefano Ivo Finazzo, Renato Critelli, Romulo Rougemont, and Jorge Noronha. Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields. Phys. Rev. D, 94(5):054020, 2016. [Erratum: Phys.Rev.D 96, 019903 (2017)].
  • [25] Shu Lin and Lixin Yang. Chiral kinetic theory from Landau level basis. Phys. Rev. D, 101(3):034006, 2020.
  • [26] Koichi Hattori, Shiyong Li, Daisuke Satow, and Ho-Ung Yee. Longitudinal Conductivity in Strong Magnetic Field in Perturbative QCD: Complete Leading Order. Phys. Rev. D, 95(7):076008, 2017.
  • [27] Xin-li Sheng, Dirk H. Rischke, David Vasak, and Qun Wang. Wigner functions for fermions in strong magnetic fields. Eur. Phys. J. A, 54(2):21, 2018.
  • [28] Dam Thanh Son and Naoki Yamamoto. Berry Curvature, Triangle Anomalies, and the Chiral Magnetic Effect in Fermi Liquids. Phys. Rev. Lett., 109:181602, 2012.
  • [29] Dam Thanh Son and Naoki Yamamoto. Kinetic theory with Berry curvature from quantum field theories. Phys. Rev. D, 87(8):085016, 2013.
  • [30] M. A. Stephanov and Y. Yin. Chiral Kinetic Theory. Phys. Rev. Lett., 109:162001, 2012.
  • [31] Jian-Hua Gao, Zuo-Tang Liang, Shi Pu, Qun Wang, and Xin-Nian Wang. Chiral Anomaly and Local Polarization Effect from Quantum Kinetic Approach. Phys. Rev. Lett., 109:232301, 2012.
  • [32] Shi Pu, Jian-hua Gao, and Qun Wang. A consistent description of kinetic equation with triangle anomaly. Phys. Rev. D, 83:094017, 2011.
  • [33] Jiunn-Wei Chen, Shi Pu, Qun Wang, and Xin-Nian Wang. Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation. Phys. Rev. Lett., 110(26):262301, 2013.
  • [34] Yoshimasa Hidaka, Shi Pu, and Di-Lun Yang. Relativistic Chiral Kinetic Theory from Quantum Field Theories. Phys. Rev. D, 95(9):091901, 2017.
  • [35] Cristina Manuel and Juan M. Torres-Rincon. Kinetic theory of chiral relativistic plasmas and energy density of their gauge collective excitations. Phys. Rev. D, 89(9):096002, 2014.
  • [36] Cristina Manuel and Juan M. Torres-Rincon. Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory. Phys. Rev. D, 90(7):076007, 2014.
  • [37] Yan Wu, Defu Hou, and Hai-cang Ren. Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect. Phys. Rev. D, 96(9):096015, 2017.
  • [38] Niklas Mueller and Raju Venugopalan. Worldline construction of a covariant chiral kinetic theory. Phys. Rev. D, 96(1):016023, 2017.
  • [39] Niklas Mueller and Raju Venugopalan. The chiral anomaly, Berry’s phase and chiral kinetic theory, from world-lines in quantum field theory. Phys. Rev. D, 97(5):051901, 2018.
  • [40] Anping Huang, Shuzhe Shi, Yin Jiang, Jinfeng Liao, and Pengfei Zhuang. Complete and Consistent Chiral Transport from Wigner Function Formalism. Phys. Rev. D, 98(3):036010, 2018.
  • [41] Jian-Hua Gao, Zuo-Tang Liang, Qun Wang, and Xin-Nian Wang. Disentangling covariant Wigner functions for chiral fermions. Phys. Rev. D, 98(3):036019, 2018.
  • [42] Stefano Carignano, Cristina Manuel, and Juan M. Torres-Rincon. Consistent relativistic chiral kinetic theory: A derivation from on-shell effective field theory. Phys. Rev. D, 98(7):076005, 2018.
  • [43] Shu Lin and Aradhya Shukla. Chiral Kinetic Theory from Effective Field Theory Revisited. JHEP, 06:060, 2019.
  • [44] Stefano Carignano, Cristina Manuel, and Juan M. Torres-Rincon. Chiral kinetic theory from the on-shell effective field theory: Derivation of collision terms. Phys. Rev. D, 102(1):016003, 2020.
  • [45] Yu-Chen Liu, Lan-Lan Gao, Kazuya Mameda, and Xu-Guang Huang. Chiral kinetic theory in curved spacetime. Phys. Rev. D, 99(8):085014, 2019.
  • [46] Nora Weickgenannt, Xin-Li Sheng, Enrico Speranza, Qun Wang, and Dirk H. Rischke. Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism. Phys. Rev. D, 100(5):056018, 2019.
  • [47] Jian-Hua Gao and Zuo-Tang Liang. Relativistic Quantum Kinetic Theory for Massive Fermions and Spin Effects. Phys. Rev. D, 100(5):056021, 2019.
  • [48] Koichi Hattori, Yoshimasa Hidaka, and Di-Lun Yang. Axial Kinetic Theory and Spin Transport for Fermions with Arbitrary Mass. Phys. Rev. D, 100(9):096011, 2019.
  • [49] Ziyue Wang, Xingyu Guo, Shuzhe Shi, and Pengfei Zhuang. Mass Correction to Chiral Kinetic Equations. Phys. Rev. D, 100(1):014015, 2019.
  • [50] Di-Lun Yang, Koichi Hattori, and Yoshimasa Hidaka. Effective quantum kinetic theory for spin transport of fermions with collsional effects. JHEP, 07:070, 2020.
  • [51] Yu-Chen Liu, Kazuya Mameda, and Xu-Guang Huang. Covariant Spin Kinetic Theory I: Collisionless Limit. Chin. Phys. C, 44(9):094101, 2020.
  • [52] Tomoya Hayata, Yoshimasa Hidaka, and Kazuya Mameda. Second order chiral kinetic theory under gravity and antiparallel charge-energy flow. 12 2020.
  • [53] Shile Chen, Ziyue Wang, and Pengfei Zhuang. Equal-time kinetic equations in a rotational field, 2021.
  • [54] D. Vasak, M. Gyulassy, and H. T. Elze. Quantum Transport Theory for Abelian Plasmas. Annals Phys., 173:462–492, 1987.
  • [55] H. T. Elze, M. Gyulassy, and D. Vasak. Transport Equations for the {QCD} Quark Wigner Operator. Nucl. Phys. B, 276:706–728, 1986.
  • [56] Hans-Thomas Elze and Ulrich W. Heinz. Quark - Gluon Transport Theory. Phys. Rept., 183:81–135, 1989.
  • [57] P. Zhuang and Ulrich W. Heinz. Relativistic quantum transport theory for electrodynamics. Annals Phys., 245:311–338, 1996.
  • [58] One can equivalently switch between pμp^{\mu} and qμq^{\mu} to arrive at the same final solution.
  • [59] In making the comparison, we note that [19] uses a different signature in metric. Also their definition of electromagnetic field or alternatively current differs from ours by a sign. We quote the converted constitutive relations of MHD.
  • [60] Here it is more appropriate to regard bb as the spin direction of LLL states rather than the magnetic field direction.
  • [61] Pavel Kovtun. Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A, 45:473001, 2012.
  • [62] Though we study vortical and drift perturbations individually at O()O({\partial}), the generation of charge density in vortical solution and generation of heat current in drift solution are connected by Onsager relation [16].
  • [63] Shi-Zheng Yang, Jian-Hua Gao, Zuo-Tang Liang, and Qun Wang. Second-order charge currents and stress tensor in a chiral system. Phys. Rev. D, 102(11):116024, 2020.
  • [64] Defu Hou and Shu Lin. Polarization Rotation of Chiral Fermions in Vortical Fluid. 8 2020.