This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Magnetized Accretion Disks with Outflows for Changing-look AGNs

Wen-Biao Wu Wei-Min Gu Department of Astronomy, Xiamen University, Xiamen, Fujian 361005, P. R. China; [email protected]
Abstract

Changing-look active galactic nuclei (CL-AGNs) challenges the standard accretion theory owing to its rapid variability. Recent numerical simulations have shown that, for the sub-Eddington accretion case, the disk is magnetic pressure-dominated, thermally stable, and geometrically thicker than the standard disk. In addition, outflows were found in the simulations. Observationally, high blueshifted velocities absorption lines indicate that outflows exist in AGNs. In this work, based on the simulation results, we investigate the magnetic pressure-dominated disk, and find that the accretion timescale is significantly shorter than that of the standard thin disk. However, such a timescale is still longer than that of the CL-AGNs. Moreover, if the role of outflows is taken into account, then the accretion timescale can be even shortened. By the detailed comparison of the theoretical accretion timescale with the observations, we propose that the magnetic pressure-dominated disk incorporating outflows can be responsible for the rapid variability of CL-AGNs.

Accretion (14) — Active galactic nuclei (16) — Galaxy accretion disks (562) — Magnetic fields (994)

1 Introduction

Active galactic nuclei (AGNs) have strong flux variations from infrared to X-rays and are typically classified into two types: type 1, which shows broad emission lines, and type 2, which does not. According to the AGNs unified model, these two types differ in their orientations with respect to the observer’s line of sight to the dust torus surrounding the AGNs (e.g., Antonucci, 1993). However, an increasing number of multi-wavelength observations (including X-ray (e.g., Krumpe et al., 2017; Noda & Done, 2018; Parker et al., 2019; Jana et al., 2021), infrared (e.g., Sheng et al., 2017; Yang et al., 2018; Kokubo & Minezaki, 2020), and radio (e.g., Koay et al., 2016; Panessa et al., 2019; Yang et al., 2021; Lyu et al., 2021)) have identified a sub-class of AGNs referred to as changing-look AGNs (CL-AGNs), which are capable of transforming from type 1 to type 2 or vice versa over relatively short timescales. Due to the difficulties in explaining the timescale of CL-AGNs using the standard model (Shakura & Sunyaev, 1973, hereafter SSD), it has become an increasingly interesting topic.

Several schemes have been proposed to explain the contradictions between theory and observation. The obscuration mechanism, based on the AGNs unified model (Goodrich & Miller, 1989) where obstructions enter or leave our line of sight, can cause the appearance or disappearance of broad emission lines. However, this scheme is ruled out due to significant variation of CL-AGNs’ mid-infrared emissions and the absence of polarization or weak polarization (e.g., MacLeod et al., 2016; Sheng et al., 2017; Hutsemékers et al., 2019). Another candidate is tidal disruption events (e.g., Merloni et al., 2015; Runnoe et al., 2016; Ricci et al., 2020), which predicts a change in the light curve with t5/3t^{-5/3}. Although it explains some cases, most observations do not support this model (Sheng et al., 2020). It is generally accepted that these intrinsic changes from the accretion disk and variations in the accretion rate dominate this phenomenon. However, the viscosity timescale of the standard disk, which varies with the accretion rate, is much larger than that of the CL-AGNs (e.g., Stern et al., 2018; Ricci & Trakhtenbrot, 2022). Therefore, new models or modifications to the standard model have been proposed to address the issue. The role of the magnetic field in accretion disks has been studied and applied to the CL-AGNs (e.g., Dexter & Begelman, 2019; Feng et al., 2021; Scepi et al., 2021, 2023). The limit cycle of magnetically dominated disks or disk instabilities located in the narrow region between the inner ADAF and the outer standard disk is used to explain the repeating CL-AGNs (e.g., Sniegowska et al., 2020; Pan et al., 2021; Kaur et al., 2022). Wang & Bon (2020) demonstrated that tidal interaction between disks in supermassive black hole binaries can also trigger CL-AGNs.

The standard thin disk model has served as the foundation for understanding various astronomical phenomena since its proposal. However, it still faces challenges such as observations of cataclysmic variables and low-mass X-rays binaries, where the disk appears to be geometrically thicker than expected (see Begelman & Pringle (2007) for details). Most recently, numerical simulations (Huang et al., 2023) have shown that, for the sub-Eddington accretion case, the disk is dominated by the magnetic pressure and exhibits distinct properties from the standard thin disk. The magnetic pressure-dominated accretion disk is thermally stable, geometrically thicker than the standard thin disk, and has flatter effective temperature profiles. In addition, outflows were found in the simulations. These features are consistent with Begelman & Pringle (2007)’s magnetically dominated viscous disks and some previous numerical simulations (e.g., Salvesen et al., 2016; Sadowski, 2016; Jiang et al., 2019) except for outflow. The two-dimensional radiation-magnetohydrodynamic numerical simulation by Ohsuga & Mineshige (2011) likewise discovers outflows driven by magnetic pressure on standard-type thin disks.

Highly blueshifted absorption lines are frequently detected in the UV and X-ray spectra of AGNs (e.g., Tombesi et al., 2010; Serafinelli et al., 2019), indicating the presence of high-velocity winds/outflows in these systems. These outflows, particularly ultrafast ones, are presumed to originate in the inner regions of accretion disks and could be powered by the magnetic field (e.g., Yang et al., 2021; Wang et al., 2022). Recent observations have also validated the existence of outflows in CL-AGNs, such as MrK590 (Gupta et al., 2015) and NGC1566 (Jana et al., 2021). In this study, we utilized the results of numerical simulations to elucidate the CL-AGNs phenomenon by considering the impact of outflows. The remainder is organized as fellows. In Section 2, we provide basic physics and equations for our model. Section 3 shows numerical results and analyses. Section 4 presents the conclusions and discussion.

2 Basic Equations

For simplicity, a steady-state axisymmetric magnetized accretion disk with outflows is considered under the well-known pseudo-Newtonian potential Φ=GMBH/(RRg)\Phi=-GM_{\rm{BH}}/(R-R_{\rm{g}}) (Paczyńsky & Wiita, 1980), where MBHM_{\rm{BH}} is the mass of the black hole and Rg=2GMBH/c2R_{\rm{g}}=2GM_{\rm{BH}}/c^{2} is the Schwarzschild radius. Therefore, we assume the angular velocity is Keplerian, i.e., Ω=ΩK=[GMBH/R(RRg)2]1/2\Omega=\Omega_{\rm{K}}=[GM_{\rm{BH}}/R(R-R_{\rm{g}})^{2}]^{1/2}.

In this work, the magnetic pressure Pm=B2/8πP_{\rm{m}}=B^{2}/8\pi, BB is the mean mid-plane magnetic field strength. The gas pressure Pg=ρkBTc/μmpP_{\rm{g}}=\rho k_{\rm{B}}T_{\rm{c}}/\mu m_{\rm{p}}, the radiation pressure Pr=aTc4/3P_{\rm{r}}=aT_{\rm{c}}^{4}/3, where TcT_{\rm{c}} is the mid-plane temperature, ρ\rho is the mid-plane density, μ=0.617\mu=0.617 is the mean molecular weight, kBk_{\rm{B}} is the Boltzmann constant, and aa is the radiation constant. We adopt Begelman & Pringle (2007) in assuming that the magneto-rotational instability-riven dynamo could amplify the turbulent (toroidal) field until saturation. The saturation is determined by the Alfve´\acute{\rm{e}}n speed VAPm/ρV_{\rm{A}}\equiv\sqrt{P_{\rm{m}}/\rho} and roughly equals the geometric means of the Keplerian velocity VKV_{\rm{K}} and the gas sound speed cg=Pg/ρc_{\rm{g}}=\sqrt{P_{\rm{g}}/\rho}, i.e.,

VA2=λVKcg,V_{\rm{A}}^{2}=\lambda V_{\rm{K}}c_{\rm{g}}\ , (1)

where we have introduced a parameter λ\lambda, which represents the strength of the turbulent (toroidal) magnetic field, and λ\lambda is in the range [0,1][0,1]. The condition λ=1\lambda=1 corresponds to the saturation case of the turbulent (toroidal) magnetic field and has been observed by numerical simulations (e.g., Huang et al., 2023).

Due to the additional magnetic pressure, the total pressure P=Pm+Pg+PrP=P_{\rm{m}}+P_{\rm{g}}+P_{\rm{r}}, the sound speed is written as

cs2=Pρ.c_{\rm{s}}^{2}=\frac{P}{\rho}\ . (2)

Numerical simulations have demonstrated the above magnetically dominated viscous disks (e.g., Salvesen et al., 2016; Sadowski, 2016; Jiang et al., 2019; Huang et al., 2023). The model shows a geometrically thicker disk and higher color temperatures, which would be stable against thermal and viscous instabilities. In addition, outflows were found in the simulations (Huang et al., 2023). The two-dimensional radiation-magnetohydrodynamic numerical simulation of Ohsuga & Mineshige (2011) also found outflows driven by magnetic pressure on standard-type thin disks (in their numerical simulation, the toroidal component of the magnetic field is dominant, i.e., |Bφ|/Bp>1|B_{\varphi}|/B_{\rm{p}}>1). Taking inspiration from the simulations above, we developed a new outflow model. The fundamental equations describing accretion disks with outflows employed in this study can be found in our previous work (Wu et al., 2022). The continuity equation is

M˙=2πRΣVR,\dot{M}=-2\pi R\Sigma V_{\rm{R}}\ , (3)

where VRV_{\rm{R}} is the inflow speed, which is defined to be negative when the flow is inward, and Σ\Sigma is the surface density

Σ=2ρH.\Sigma=2\rho H\ . (4)

The scaleheight can be redefined based on the above analysis

H=csΩK,H=\frac{c_{\rm{s}}}{\Omega_{\rm{K}}}, (5)

Similarly, we redefine the kinematic viscosity as

ν=αcsH,\nu=\alpha c_{\rm{s}}H, (6)

where α\alpha is the viscosity parameter. In principle, α\alpha is related to the magnetization of the disk (Salvesen et al., 2016). Thus, for high viscosity, such as α=0.1\alpha=0.1, the parameter λ\lambda may not be negligible. The relationship between α\alpha and the magnetization of the disk is beyond the scope of this paper. For simplicity, we take both α\alpha and λ\lambda as free parameters in this work.

Due to the effect of outflow, we assume that the mass accretion rate varies with the radius (Ferreira & Pelletier, 1995; Blandford & Begelman, 1999) M˙=M˙out(R/Rout)p\dot{M}=\dot{M}_{\rm{out}}(R/R_{\rm{out}})^{p}, where M˙out\dot{M}_{\rm{out}} is the mass accretion rate at the outer boundary RoutR_{\rm{out}}, in the present investigation, we set pp as a free parameter.

The azimuthal momentum equation is reduced to the algebraic form (Wu et al., 2022):

νΣ=M˙fg13π(1l2pp+12),\nu\Sigma=\frac{\dot{M}fg^{-1}}{3\pi}\left(1-\frac{l^{2}p}{p+\frac{1}{2}}\right)\ , (7)

where g=(2/3)(dlnΩK/dlnR)g=-\left(2/3\right)\left(d\ln\Omega_{\rm{K}}/d\ln R\right) and the factor f=1[ΩK(3Rg)/ΩK(R)](3Rg/R)p+2f=1-[\Omega_{\rm{K}}\left(3R_{\rm{g}}\right)/\Omega_{\rm{K}}(R)]\left(3R_{\rm{g}}/R\right)^{p+2}. ll is the parameter that characterizes the angular momentum taken away by the outflow (Knigge, 1999). In this study, we set l>1l>1 due to the presence of a strong magnetic field.

The energy equation is written as

Qvis=Qrad,Q_{\rm{vis}}=Q_{\rm rad}\ , (8)

where QvisQ_{\rm{vis}} and QradQ_{\rm rad} are the viscous heating rate and the radiative cooling rate, respectively. Their expressions are as follows (Wu et al., 2022),

Qvis=3M˙ΩK2fg4π(1l2pp+12),Q_{\rm{vis}}=\frac{3\dot{M}\Omega_{\rm{K}}^{2}fg}{4\pi}\left(1-\frac{l^{2}p}{p+\frac{1}{2}}\right)\\ , (9)
Qrad=16σTc43τ,Q_{\rm rad}=\frac{16\sigma T_{\rm{c}}^{4}}{3\tau}\ , (10)

where τ=κesρH\tau=\kappa_{\rm{es}}\rho H represents the optical depth, with κes=0.34cm2g1\kappa_{\rm{es}}=0.34\rm{\ cm^{2}\ g^{-1}} being the electric scattering opacity. In the inner region of the accretion disk, electric scattering opacity dominates over free-free absorption, leading the latter to be neglected when calculating the disk’s structure.

The equation of state concerning the sound speed csc_{\rm{s}} is

ρcs2=ρVA2+ρkBTcμmp+13aTc4.\rho c_{\rm{s}}^{2}=\rho V_{\rm{A}}^{2}+\frac{\rho k_{\rm{B}}T_{\rm{c}}}{\mu m_{\rm{p}}}+\frac{1}{3}aT_{\rm{c}}^{4}\ . (11)

Considering the viscosity prescription, we have

32ρνΩK=αP.\frac{3}{2}\rho\nu\Omega_{\rm{K}}=\alpha P\ . (12)

By solving the ten equations, Equations (1-8), and (11-12), for the ten variables VAV_{\rm{A}}, PP, cgc_{\rm{g}}, csc_{\rm{s}}, HH, Σ\Sigma, VRV_{\rm R}, ν\nu, ρ\rho and TcT_{\rm{c}} with given parameters MBHM_{\rm BH}, α\alpha, M˙\dot{M}, λ\lambda, and ll. We obtain the accretion timescale tacc=R/VRt_{\rm{acc}}=-R/V_{\rm{R}}. In the following calculations, we define as M˙Edd=16LEdd/c2=64πGMBH/κesc\dot{M}_{\rm{Edd}}=16L_{\rm{Edd}}/c^{2}=64\pi GM_{\rm{BH}}/\kappa_{\rm{es}}c, and fix Rout=50RgR_{\rm{out}}=50R_{\rm{g}}, where a typical region of the optical/UV emission.

3 Numerical Results

Before detailed numerical calculations, we do some analysis of the basic characteristic timescales of the accretion disk, including the dynamical, thermal, and viscous timescales. Their expressions are as follows (Frank et al., 1985; Kato et al., 2008),

tdyn1ΩK,t_{\rm{dyn}}\sim\frac{1}{\Omega_{\rm{K}}}, (13)
tth1αΩK,t_{\rm{th}}\sim\frac{1}{\alpha\Omega_{\rm{K}}}, (14)
tvis1αΩK(HSSDR)2,t_{\rm{vis}}\sim\frac{1}{\alpha\Omega_{\rm{K}}}\left(\frac{H_{\rm{SSD}}}{R}\right)^{-2}, (15)

Regarding the observed timescales of CL-AGNs, tdynt_{\rm{dyn}} and ttht_{\rm{th}} are too short, while tvist_{\rm{vis}} is too long (e.g., Stern et al., 2018; Ricci & Trakhtenbrot, 2022). From Equations  (14) and  (15), it is seen that tth(HSSD/R)0t_{\rm{th}}\propto(H_{\rm{SSD}}/R)^{0} and tvis(HSSD/R)2t_{\rm{vis}}\propto(H_{\rm{SSD}}/R)^{-2}. Some researchers (e.g., Stern et al., 2018; Ricci & Trakhtenbrot, 2022) have suggested that setting t(HSSD/R)1t\propto(H_{\rm{SSD}}/R)^{-1} may help address these inconsistencies. When outflows are not considered (i.e., l=0,p=0l=0,p=0), this corresponds to the case of magnetically dominated viscous disks. By using Equations  (3) and  (6), Equation  (7) can reduce to

VR=3νf1g2R,V_{\rm{R}}=-\frac{3\nu f^{-1}g}{2R}\ , (16)

then, the accretion timescale

tacc=RVR=2fg13αΩK(HR)2(HR)2.t_{\rm{acc}}=-\frac{R}{V_{\rm{R}}}=\frac{2fg^{-1}}{3\alpha\Omega_{\rm{K}}}\left(\frac{H}{R}\right)^{-2}\propto\left(\frac{H}{R}\right)^{-2}\ . (17)

For λ=1\lambda=1, VAcgV_{\rm{A}}\gg c_{\rm{g}}, using Equations (1-2) and (5), we have csVAc_{\rm{s}}\approx V_{\rm{A}}, then

tacc(HR)2(cgVK)1(HSSDR)1.t_{\rm{acc}}\propto\left(\frac{H}{R}\right)^{-2}\propto\left(\frac{c_{\rm{g}}}{V_{\rm{K}}}\right)^{-1}\propto\left(\frac{H_{\rm{SSD}}}{R}\right)^{-1}\ . (18)

According to the above analysis, we have shown that tacc(H/R)2(HSSD/R)1t_{\rm{acc}}\propto(H/R)^{-2}\sim(H_{\rm{SSD}}/R)^{-1}. However, based on the following numerical calculations, we find that tacc(HSSD/R)1t_{\rm{acc}}\propto(H_{\rm{SSD}}/R)^{-1} cannot fully explain the rapid variability of CL-AGNs. On the other hand, we propose that outflows play an important role in explaining the phenomenon of CL-AGNs.

Figure 1 shows the relationship of outflow parameter pp and the strength of the turbulent (toroidal) magnetic field λ\lambda for a given timescale when the Lbol/LEdd=0.05L_{\rm{bol}}/L_{\rm{Edd}}=0.05, where MBH=108MM_{\rm{BH}}=10^{8}M_{\sun}, α=0.1\alpha=0.1, and LbolL_{\rm{bol}} (=2πRQrad𝑑R=\int 2\pi RQ_{\rm{rad}}dR) is the bolometric luminosity. The dashed line represents (l=2)(l=\sqrt{2}) and the solid line corresponds to (l=2)(l=2), We would like to stress that, the scaleheight of the disk in our model (magnetically dominated viscous disks with outflows), is significantly larger than that of a standard thin disk (see Appendix  A for the derivation of scaleheight). Therefore, it is possible to further shorten the accretion timescale. The blue, red, and black lines represent 20,1020,10, and 55 years, respectively. For comparison, we calculated the accretion timescale of the standard thin disks (λ=0,l=0,p=0\lambda=0,\ l=0,\ p=0, note that for standard thin disks: λ1\lambda\ll 1. In this work, for simplicity, we followed the conventional approach λ=0\lambda=0 for standard thin disks, as described in some classic literature, e.g., Eq.(5.36) of Frank et al. (2002) and Eq. (3.41) of Kato et al. (2008)) and the magnetically dominated viscous disks (0<λ1,l=0,p=00<\lambda\leq 1,\ l=0,\ p=0) under the same conditions (α=0.1,Lbol/LEdd=0.05\alpha=0.1,\ L_{\rm{bol}}/L_{\rm{Edd}}=0.05): tacc3.35×103t_{\rm{acc}}\sim 3.35\times 10^{3} year and tacc63.36t_{\rm{acc}}\geq 63.36 year. Our calculations demonstrate that if the role of outflows is considered in the magnetic pressure-dominated disk, the accretion timescale can be shortened to several decades or a few years.

Refer to caption
Figure 1: Timescales are shown in the {p,λ}\left\{p,\lambda\right\}- plane for a given Lbol/LEdd=0.05L_{\rm{bol}}/L_{\rm{Edd}}=0.05. The dashed line represents (l=2)(l=\sqrt{2}) and the solid line corresponds to (l=2)(l=2). Each of the color lines corresponds to a specific value on the timescale.

To further understand the impact of the outflow, we adopt MBH=108MM_{\rm{BH}}=10^{8}M_{\sun} and fix λ=1\lambda=1 based on simulation results (Huang et al., 2023). We set l=2l=2, which corresponds to the case that significant angular momentum is carried away by outflows. The range of the parameter pp is constrained by the given values of λ\lambda and ll. In our case, the range 0<p0.160<p\leq 0.16 corresponds to λ=1\lambda=1 and l=2l=2. In addition, by varying the viscosity parameter α(0.010.3)\alpha\ (0.01\sim 0.3) and the range of Lbol(0.001Lbol/LEdd0.1)L_{\rm{bol}}\ (0.001\leq L_{\rm{bol}}/L_{\rm{Edd}}\leq 0.1), we therefore obtain a decade range in accretion timescale in Figure 2. The blue region is the accretion timescale of standard thin disks, the green region is the accretion timescale of magnetically dominated viscous disks, and the yellow region takes into account the role of outflows. Black dots denote the high state (turn-on) of CL-AGNs discovered by Jin et al. (2022) via SDSS, with physical quantities listed in Table 1. Figure 2 shows that the timescale of magnetically dominated viscous disks is significantly shorter than that of standard thin disks, but still longer than the observed timescale. However, when the angular momentum is carried away by the outflow, the radial velocity of the accretion disk can be significantly increased, as shown in Equation (A2). Thus, magnetically dominated viscous disks with outflows can further shorten the accretion timescale and satisfy the rapid variability observed in CL-AGNs, as shown by the yellow region in Figure 2.

Refer to caption
Figure 2: The accretion timescale of accretion disks at MBH=108MM_{\rm{BH}}=10^{8}M_{\sun} for different α\alpha and LbolL_{\rm{bol}}. The regions of color correspond to the cases for the standard thin disks (blue), magnetically dominated viscous disks (green), and our model (magnetically dominated viscous disks with outflows, yellow). The black dots are the high state (turn-on) of CL-AGNs in Table 1.
Table 1: Information about sources.
Name LbolL_{\rm bol} MBH,virM_{\rm BH,vir} Δt\Delta t (yr)
log(ergs1)\rm log(erg\,s^{-1}) log(M/M){\rm log}(M/M_{\odot}) yr
on off
(1) (2) (3) (4)
J0126-0839 44.52±0.0144.52\pm 0.01 43.72±0.0343.72\pm 0.03 7.700.10+0.117.70^{+0.11}_{-0.10} 6.0
J0159+0033 44.70±0.0144.70\pm 0.01 44.18±0.0144.18\pm 0.01 7.710.10+0.127.71^{+0.12}_{-0.10} 9.0
ZTF18aaabltn 43.13±0.0143.13\pm 0.01 42.25±0.1142.25\pm 0.11 7.130.11+0.137.13^{+0.13}_{-0.11} 12.0
J0831+3646 43.81±0.0243.81\pm 0.02 43.35±0.0543.35\pm 0.05 8.050.17+0.188.05^{+0.18}_{-0.17} 14.0
J0909+4747 43.92±0.0143.92\pm 0.01 43.50±0.0143.50\pm 0.01 7.320.12+0.137.32^{+0.13}_{-0.12} 14.0
J0937+2602 43.84±0.0443.84\pm 0.04 43.72±0.0143.72\pm 0.01 7.330.19+0.207.33^{+0.20}_{-0.19} 8.0
J1003+3525 43.81±0.0343.81\pm 0.03 43.50±0.0243.50\pm 0.02 8.150.15+0.168.15^{+0.16}_{-0.15} 12.0
J1104+6343 43.19±0.0243.19\pm 0.02 43.07±0.0643.07\pm 0.06 7.720.10+0.127.72^{+0.12}_{-0.10} 6.0
J1110-0003 44.25±0.0344.25\pm 0.03 44.07±0.0144.07\pm 0.01 8.020.11+0.128.02^{+0.12}_{-0.11} 16.0
J1115+0544 43.93±0.0143.93\pm 0.01 42.70±0.0742.70\pm 0.07 7.250.08+0.107.25^{+0.10}_{-0.08} 14.0
J1132+0357 44.12±0.0244.12\pm 0.02 42.86±0.0442.86\pm 0.04 7.170.13+0.147.17^{+0.14}_{-0.13} 13.0
ZTF18aasuray 43.95±0.0143.95\pm 0.01 42.54±0.0242.54\pm 0.02 7.240.15+0.167.24^{+0.16}_{-0.15} 17.0
ZTF18aasszwr 45.20±0.0045.20\pm 0.00 43.01±0.0643.01\pm 0.06 8.680.09+0.108.68^{+0.10}_{-0.09} 16.0
ZTF18aahiqf 43.77±0.0143.77\pm 0.01 42.70±0.0442.70\pm 0.04 8.260.13+0.158.26^{+0.15}_{-0.13} 15.0
J1259+5515 44.02±0.0444.02\pm 0.04 43.48±0.0643.48\pm 0.06 7.390.10+0.117.39^{+0.11}_{-0.10} 14.0
J1319+6753 44.07±0.0344.07\pm 0.03 43.81±0.0243.81\pm 0.02 7.170.17+0.187.17^{+0.18}_{-0.17} 16.0
J1358+4934 43.95±0.0143.95\pm 0.01 43.35±0.0243.35\pm 0.02 7.150.12+0.137.15^{+0.13}_{-0.12} 3.0
J1447+2833 44.46±0.0144.46\pm 0.01 44.03±0.0044.03\pm 0.00 7.460.10+0.127.46^{+0.12}_{-0.10} 9.0
ZTF18aajupnt 42.04±0.1342.04\pm 0.13 41.92±0.1541.92\pm 0.15 6.450.10+0.116.45^{+0.11}_{-0.10} 16.0
J1533+0110 43.78±0.0143.78\pm 0.01 43.49±0.0243.49\pm 0.02 7.380.10+0.117.38^{+0.11}_{-0.10} 7.0
J1545+2511 43.95±0.0143.95\pm 0.01 43.70±0.0143.70\pm 0.01 7.340.10+0.117.34^{+0.11}_{-0.10} 11.0
J1550+4139 44.18±0.0744.18\pm 0.07 43.53±0.0543.53\pm 0.05 7.250.08+0.107.25^{+0.10}_{-0.08} 15.0
J1552+2737 43.21±0.0343.21\pm 0.03 42.84±0.0542.84\pm 0.05 7.940.11+0.127.94^{+0.12}_{-0.11} 9.0
J1554+3629 44.82±0.0244.82\pm 0.02 42.93±0.0842.93\pm 0.08 8.000.14+0.158.00^{+0.15}_{-0.14} 12.0
PS1-13cbe 43.78±0.0043.78\pm 0.00 42.54±0.0942.54\pm 0.09 6.890.08+0.106.89^{+0.10}_{-0.08} 10.0

Based on the preceding analysis, our model predicts a timescale that can be as short as several years, which aligns with the observed timescale of CL-AGNs. However, this result is based on a fixed mass assumption and may not accurately reflect timescales for CL-AGNs with different masses. Figure 3 illustrates the variations in accretion time with mass. Similar to Figure 2, we choose λ=1,l=2,\lambda=1,\ l=2, and 0<p0.160<p\leq 0.16. By varying α(0.010.3)\alpha\ (0.01\sim 0.3) and Lbol(0.001Lbol/LEdd0.1)L_{\rm{bol}}\ (0.001\leq L_{\rm{bol}}/L_{\rm{Edd}}\leq 0.1), as well as a given range for MBH(106MMBH109M)M_{\rm{BH}}\ (10^{6}M_{\sun}\leq M_{\rm{BH}}\leq 10^{9}M_{\sun}), we therefore obtain a decade range in accretion timescale. As depicted in Figure 3, while the magnetically dominated viscous disks model can satisfy CL-AGNs with masses less than 107.5M10^{7.5}M_{\sun}, it is ineffective for higher masses. In contrast, our model can accommodate all sources’ timescales. Therefore, the magnetic pressure-dominated disk model, with outflows taken into account, appears to be particularly promising for resolving the inconsistencies between observed timescales and disk theory.

Refer to caption
Figure 3: The variations of the accretion timescale with mass under the λ=1,l=2,α=0.010.3,Lbol/LEdd=0.0010.1\lambda=1,l=2,\alpha=0.01\sim 0.3,L_{\rm{bol}}/L_{\rm{Edd}}=0.001\sim 0.1. The meaning of the colors and symbols is the same as in Figure 2. For the standard thin disks, the accretion timescale is much larger than the observed timescale. Magnetically dominated viscous disks only explain part of the CL-AGNs. However, our model (magnetically dominated viscous disks with outflows) can naturally explain all the observed sources.

4 Conclusions and Discussion

In this work, following the recent simulation results of Huang et al. (2023), we have investigated the accretion timescale of the magnetic pressure-dominated accretion disk. Our results show that, even the timescale is significantly shorter than that of the standard thin disk, it is still beyond the rapid variability of CL-AGNs. Furthermore, by taking into account the role of outflows, which were generally found in simulations and observations, we have shown that the accretion timescale can be even shortened. By the detailed comparison of the theoretical accretion timescale with the observations, we propose that the magnetic pressure-dominated disk with outflows can be responsible for the rapid variability of CL-AGNs.

The effects of magnetic fields on accretion disks have been extensively studied, and some early research (Ferreira & Pelletier, 1995; Ferreira, 1997; Jacquemin-Ide et al., 2019) found that magnetic winds can significantly decrease the accretion timescale. This finding has been confirmed by numerical simulations (Jacquemin-Ide et al., 2021; Scepi et al., 2023) and has been used to explain observed phenomena such as YSOs (Combet & Ferreira, 2008; Martel & Lesur, 2022) and X-ray binaries (Ferreira et al., 2006; Marcel et al., 2018). Full MHD models (Ferreira, 1997) relate various parameters, such as pp with disk magnetization, α\alpha with disk magnetization, and ll with pp. However, these models do not fully consider the role of magnetic (turbulence) pressure. We would point out that our model includes magnetic pressure and utilizes a simple parameterization, and it is worth further investigation on the relationship among these parameters.

Quasi-periodic eruptions (QPEs) are a newly discovered type of changing-look phenomenon characterized by rapid and extreme X-ray bursts with mass MBH1056MM_{\rm{BH}}\sim 10^{5-6}M_{\sun}, and periods as short as a few hours (e.g., Miniutti et al., 2019; Giustini et al., 2020; Chakraborty et al., 2021; Arcodia et al., 2021). However, these short timescales cannot be explained even at R=50RgR=50R_{\rm{g}} and α=0.3\alpha=0.3 using our present one-zone model. In order to interpret QPEs, a thicker disk may be necessary. Begelman et al. (2015) proposed a vertically stratified model with a larger characteristic scale height HRH\sim R which agrees with Bai & Stone (2013)’s vertically stratified, local shearing box ideal MHD. Subsequent numerical simulations (Salvesen et al., 2016) have also confirmed this model. In addition, Bai & Stone (2013) also shows that a magnetocentrifugal mechanism could excite a strong outflow. Therefore, our future work will focus on a new outflow model based on these findings to explain the QPE phenomenon.

We thank Zhi-Xiang Zhang for helpful discussions, and the anonymous referee for constructive suggestions that improved the paper. This work was supported by the National Natural Science Foundation of China under grants 11925301, 12033006, and 12221003.

Appendix  \Appendixsection A expression of scaleheight

In this Appendix, we will derive the detailed expression of scaleheight, which is mentioned in Section 3.

For λ=1,VAcg\lambda=1,V_{\rm{A}}\gg c_{\rm{g}}, according to Equations (1-2) and (5), the scaleheight takes the form:

HR=(cgVK)1/2.\frac{H}{R}=\left(\frac{c_{\rm{g}}}{V_{\rm{K}}}\right)^{1/2}\ . (A1)

Combining Equations (3) and (6-7), we have

VR=32αf1gR(1l2pp+1/2)1cg.V_{\rm{R}}=-\frac{3}{2}\frac{\alpha f^{-1}g}{R}\left(1-\frac{l^{2}p}{p+1/2}\right)^{-1}c_{\rm{g}}\ . (A2)

The surface density is

Σ=M˙fg13παcgR(1l2pp+1/2).\Sigma=\frac{\dot{M}fg^{-1}}{3\pi\alpha c_{\rm{g}}R}\left(1-\frac{l^{2}p}{p+1/2}\right)\ . (A3)

Defining m˙M˙/M˙Edd\dot{m}\equiv\dot{M}/\dot{M}_{\rm{Edd}} and xR/Rgx\equiv R/R_{\rm{g}}, we obtain an expression for the optical depth through the disk:

τ=163m˙fg1cαcgx1(1l2pp+1/2).\tau=\frac{16}{3}\frac{\dot{m}fg^{-1}c}{\alpha c_{\rm{g}}}x^{-1}\left(1-\frac{l^{2}p}{p+1/2}\right)\ . (A4)

QvisQ_{\rm{vis}} can be reduced to

Qvis=6m˙c5fgκesGMBHx1(x1)2(1l2pp+1/2),Q_{\rm{vis}}=\frac{6\dot{m}c^{5}fg}{\kappa_{\rm{es}}GM_{\rm{BH}}}x^{-1}(x-1)^{-2}\left(1-\frac{l^{2}p}{p+1/2}\right)\ , (A5)

Due to Qrad=4Prc/τ=QvisQ_{\rm{rad}}=4P_{\rm{r}}c/\tau=Q_{\rm{vis}}, we can get

Pr=8m˙2c5f2ακesGMBHx2(x1)2(1l2pp+1/2)2cg1.P_{\rm{r}}=\frac{8\dot{m}^{2}c^{5}f^{2}}{\alpha\kappa_{\rm{es}}GM_{\rm{BH}}}x^{-2}(x-1)^{-2}\left(1-\frac{l^{2}p}{p+1/2}\right)^{2}c_{\rm{g}}^{-1}\ . (A6)

According to the radiation pressure, we have

Tc=(3Pra)1/4.T_{\rm c}=\left(\frac{3P_{\rm{r}}}{a}\right)^{1/4}\ . (A7)

For PgPrP_{\rm{g}}\gg P_{\rm{r}}, we have

cg=(kBTcμmp)1/2.c_{\rm{g}}=\left(\frac{k_{\rm{B}}T_{\rm c}}{\mu m_{\rm{p}}}\right)^{1/2}\ . (A8)

Using Equations (A6-A8), we get the expression of cgc_{\rm{g}}:

cg=(kBμmp)4/9[24m˙2c5f2aακesGMBHx2(x1)2(1l2pp+1/2)2]1/9.c_{\rm{g}}=\left(\frac{k_{\rm{B}}}{\mu}m_{\rm{p}}\right)^{4/9}\left[\frac{24\dot{m}^{2}c^{5}f^{2}}{a\alpha\kappa_{\rm{es}}GM_{\rm{BH}}}x^{-2}(x-1)^{-2}\left(1-\frac{l^{2}p}{p+1/2}\right)^{2}\right]^{1/9}\ . (A9)

Substituting Equation (A9) into (A1) to get the H/RH/R:

HR=3.5×102(αm)1/18m˙1/9x13/36(x1)7/18(1l2pp+1/2)1/9f1/9,\frac{H}{R}=3.5\times 10^{-2}\left(\alpha m\right)^{-1/18}\dot{m}^{1/9}x^{-13/36}\left(x-1\right)^{7/18}\left(1-\frac{l^{2}p}{p+1/2}\right)^{1/9}f^{1/9}\ , (A10)

where m=MBH/(108M)m=M_{\rm{BH}}/(10^{8}M_{\rm{\sun}}). This is similar to the case of Scepi et al. (2023) with H/R=0.03H/R=0.03.

For non-outflow cases (l=0,p=0l=0,p=0, see Equation (19) of Begelman & Pringle (2007)), we have

HR=3.5×102(αm)1/18m˙1/9x13/36(x1)7/18f1/9,\frac{H}{R}=3.5\times 10^{-2}\left(\alpha m\right)^{-1/18}\dot{m}^{1/9}x^{-13/36}\left(x-1\right)^{7/18}f^{1/9}\ , (A11)

For λ=0,l=0,p=0\lambda=0,\ l=0,\ p=0, our model returns to the standard thin model. Similarly, we can obtain (see, e.g., Equation (3.66) of (Kato et al., 2008))

HSSDR=2.4×103(αm)1/10m˙1/5x13/20(x1)7/10f1/5.\frac{H_{\rm{SSD}}}{R}=2.4\times 10^{-3}\left(\alpha m\right)^{-1/10}\dot{m}^{1/5}x^{-13/20}\left(x-1\right)^{7/10}f^{1/5}\ . (A12)

By comparing Equation (A11) with Equation (A12), we find HSSD/R(H/R)1.8H_{\rm{SSD}}/R\sim(H/R)^{1.8}, which is quite close to the simple analytic result HSSD/R(H/R)2H_{\rm{SSD}}/R\sim(H/R)^{2} (Equation (18)).

References

  • Antonucci (1993) Antonucci, R. 1993, ARA&A, 31, 473. doi:10.1146/annurev.aa.31.090193.002353
  • Arcodia et al. (2021) Arcodia, R., Merloni, A., Nandra, K., et al. 2021, Nature, 592, 704. doi:10.1038/s41586-021-03394-6
  • Blandford & Begelman (1999) Blandford, R. D. & Begelman, M. C. 1999, MNRAS, 303, L1. doi:10.1046/j.1365-8711.1999.02358.x
  • Begelman & Pringle (2007) Begelman, M. C. & Pringle, J. E. 2007, MNRAS, 375, 1070. doi:10.1111/j.1365-2966.2006.11372.x
  • Begelman et al. (2015) Begelman, M. C., Armitage, P. J., & Reynolds, C. S. 2015, ApJ, 809, 118. doi:10.1088/0004-637X/809/2/118
  • Bai & Stone (2013) Bai, X.-N. & Stone, J. M. 2013, ApJ, 767, 30. doi:10.1088/0004-637X/767/1/30
  • Chakraborty et al. (2021) Chakraborty, J., Kara, E., Masterson, M., et al. 2021, ApJ, 921, L40. doi:10.3847/2041-8213/ac313b
  • Combet & Ferreira (2008) Combet, C. & Ferreira, J. 2008, Astronomy and Astrophysics, 479, 481. doi:10.1051/0004-6361:20078734
  • Dexter & Begelman (2019) Dexter, J. & Begelman, M. C. 2019, MNRAS, 483, L17. doi:10.1093/mnrasl/sly213
  • Frank et al. (1985) Frank, J., King, A. R., & Raine, D. J. 1985, Cambridge Astrophysics Series, Cambridge: University Press, 1985
  • Frank et al. (2002) Frank, J., King, A., & Raine, D. J. 2002, Accretion Power in Astrophysics, by Juhan Frank and Andrew King and Derek Raine, pp. 398. ISBN 0521620538. Cambridge, UK: Cambridge University Press, February 2002., 398
  • Ferreira & Pelletier (1995) Ferreira, J. & Pelletier, G. 1995, Astronomy and Astrophysics, 295, 807
  • Ferreira (1997) Ferreira, J. 1997, Astronomy and Astrophysics, 319, 340. doi:10.48550/arXiv.astro-ph/9607057
  • Ferreira et al. (2006) Ferreira, J., Petrucci, P.-O., Henri, G., et al. 2006, Astronomy and Astrophysics, 447, 813. doi:10.1051/0004-6361:20052689
  • Feng et al. (2021) Feng, J., Cao, X., Li, J.-. wen ., et al. 2021, ApJ, 916, 61. doi:10.3847/1538-4357/ac07a6
  • Goodrich & Miller (1989) Goodrich, R. W. & Miller, J. S. 1989, ApJ, 346, L21. doi:10.1086/185569
  • Gupta et al. (2015) Gupta, A., Mathur, S., & Krongold, Y. 2015, ApJ, 798, 4. doi:10.1088/0004-637X/798/1/4
  • Giustini et al. (2020) Giustini, M., Miniutti, G., & Saxton, R. D. 2020, A&A, 636, L2. doi:10.1051/0004-6361/202037610
  • Hutsemékers et al. (2019) Hutsemékers, D., Agís González, B., Marin, F., et al. 2019, A&A, 625, A54. doi:10.1051/0004-6361/201834633
  • Huang et al. (2023) Huang, J., Jiang, Y.-F., Feng, H., et al. 2023, The Astrophysical Journal, 945, 57. doi:10.3847/1538-4357/acb6fc
  • Jacquemin-Ide et al. (2019) Jacquemin-Ide, J., Ferreira, J., & Lesur, G. 2019, Monthly Notices of the Royal Astronomical Society, 490, 3112. doi:10.1093/mnras/stz2749
  • Jacquemin-Ide et al. (2021) Jacquemin-Ide, J., Lesur, G., & Ferreira, J. 2021, Astronomy and Astrophysics, 647, A192. doi:10.1051/0004-6361/202039322
  • Jiang et al. (2019) Jiang, Y.-F., Blaes, O., Stone, J. M., et al. 2019, ApJ, 885, 144. doi:10.3847/1538-4357/ab4a00
  • Jana et al. (2021) Jana, A., Kumari, N., Nandi, P., et al. 2021, MNRAS, 507, 687. doi:10.1093/mnras/stab2155
  • Jana et al. (2021) Jana, A., Kumari, N., Nandi, P., et al. 2021, MNRAS, 507, 687. doi:10.1093/mnras/stab2155
  • Jin et al. (2022) Jin, J.-J., Wu, X.-B., & Feng, X.-T. 2022, ApJ, 926, 184. doi:10.3847/1538-4357/ac410c
  • Knigge (1999) Knigge, C. 1999, MNRAS, 309, 409. doi:10.1046/j.1365-8711.1999.02839.x
  • Kato et al. (2008) Kato, S., Fukue, J., & Mineshige, S. 2008, Black-Hole Accretion Disks — Towards a New Paradigm (Kyoto: Kyoto Univ.Press)
  • Krumpe et al. (2017) Krumpe, M., Husemann, B., Tremblay, G. R., et al. 2017, A&A, 607, L9. doi:10.1051/0004-6361/201731967
  • Kokubo & Minezaki (2020) Kokubo, M. & Minezaki, T. 2020, MNRAS, 491, 4615. doi:10.1093/mnras/stz3397
  • Koay et al. (2016) Koay, J. Y., Vestergaard, M., Bignall, H. E., et al. 2016, MNRAS, 460, 304. doi:10.1093/mnras/stw975
  • Kaur et al. (2022) Kaur, K., Stone, N. C., & Gilbaum, S. 2022, arXiv:2211.00704
  • Lyu et al. (2021) Lyu, B., Yan, Z., Yu, W., et al. 2021, MNRAS, 506, 4188. doi:10.1093/mnras/stab1581
  • MacLeod et al. (2016) MacLeod, C. L., Ross, N. P., Lawrence, A., et al. 2016, MNRAS, 457, 389. doi:10.1093/mnras/stv2997
  • Merloni et al. (2015) Merloni, A., Dwelly, T., Salvato, M., et al. 2015, MNRAS, 452, 69. doi:10.1093/mnras/stv1095
  • Miniutti et al. (2019) Miniutti, G., Saxton, R. D., Giustini, M., et al. 2019, Nature, 573, 381. doi:10.1038/s41586-019-1556-x
  • Marcel et al. (2018) Marcel, G., Ferreira, J., Petrucci, P.-O., et al. 2018, Astronomy and Astrophysics, 615, A57. doi:10.1051/0004-6361/201732069
  • Martel & Lesur (2022) Martel, É. & Lesur, G. 2022, Astronomy and Astrophysics, 667, A17. doi:10.1051/0004-6361/202142946
  • Noda & Done (2018) Noda, H. & Done, C. 2018, MNRAS, 480, 3898. doi:10.1093/mnras/sty2032
  • Ohsuga & Mineshige (2011) Ohsuga, K. & Mineshige, S. 2011, The Astrophysical Journal, 736, 2. doi:10.1088/0004-637X/736/1/2
  • Panessa et al. (2019) Panessa, F., Baldi, R. D., Laor, A., et al. 2019, Nature Astronomy, 3, 387. doi:10.1038/s41550-019-0765-4
  • Parker et al. (2019) Parker, M. L., Schartel, N., Grupe, D., et al. 2019, MNRAS, 483, L88. doi:10.1093/mnrasl/sly224
  • Pan et al. (2021) Pan, X., Li, S.-L., & Cao, X. 2021, ApJ, 910, 97. doi:10.3847/1538-4357/abe766
  • Paczyńsky & Wiita (1980) Paczyńsky, B. & Wiita, P. J. 1980, A&A, 88, 23
  • Runnoe et al. (2016) Runnoe, J. C., Cales, S., Ruan, J. J., et al. 2016, MNRAS, 455, 1691. doi:10.1093/mnras/stv2385
  • Ricci et al. (2020) Ricci, C., Kara, E., Loewenstein, M., et al. 2020, ApJ, 898, L1. doi:10.3847/2041-8213/ab91a1
  • Ricci & Trakhtenbrot (2022) Ricci, C. & Trakhtenbrot, B. 2022, arXiv:2211.05132
  • Stern et al. (2018) Stern, D., McKernan, B., Graham, M. J., et al. 2018, ApJ, 864, 27. doi:10.3847/1538-4357/aac726
  • Shakura & Sunyaev (1973) Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337
  • Sheng et al. (2017) Sheng, Z., Wang, T., Jiang, N., et al. 2017, ApJ, 846, L7. doi:10.3847/2041-8213/aa85de
  • Sheng et al. (2020) Sheng, Z., Wang, T., Jiang, N., et al. 2020, The Astrophysical Journal, 889, 46. doi:10.3847/1538-4357/ab5af9
  • Scepi et al. (2021) Scepi, N., Begelman, M. C., & Dexter, J. 2021, MNRAS, 502, L50. doi:10.1093/mnrasl/slab002
  • Scepi et al. (2023) Scepi, N., Begelman, M. C., & Dexter, J. 2023, arXiv:2302.10226. doi:10.48550/arXiv.2302.10226
  • Sniegowska et al. (2020) Sniegowska, M., Czerny, B., Bon, E., et al. 2020, A&A, 641, A167. doi:10.1051/0004-6361/202038575
  • Salvesen et al. (2016) Salvesen, G., Armitage, P. J., Simon, J. B., et al. 2016, MNRAS, 460, 3488. doi:10.1093/mnras/stw1231
  • Sadowski (2016) Sadowski, A. 2016, MNRAS, 459, 4397. doi:10.1093/mnras/stw913
  • Serafinelli et al. (2019) Serafinelli, R., Tombesi, F., Vagnetti, F., et al. 2019, Astronomy and Astrophysics, 627, A121. doi:10.1051/0004-6361/201935275
  • Tombesi et al. (2010) Tombesi, F., Cappi, M., Reeves, J. N., et al. 2010, Astronomy and Astrophysics, 521, A57. doi:10.1051/0004-6361/200913440
  • Wu et al. (2022) Wu, W.-B., Gu, W.-M., & Sun, M. 2022, ApJ, 930, 108. doi:10.3847/1538-4357/ac6588
  • Wang & Bon (2020) Wang, J.-M. & Bon, E. 2020, A&A, 643, L9. doi:10.1051/0004-6361/202039368
  • Wang et al. (2022) Wang, W., Bu, D.-F., & Yuan, F. 2022, Monthly Notices of the Royal Astronomical Society, 513, 5818. doi:10.1093/mnras/stac1348
  • Yang et al. (2021) Yang, X.-H., Ablimit, K., & Li, Q.-X. 2021, The Astrophysical Journal, 914, 31. doi:10.3847/1538-4357/abf8b5
  • Yang et al. (2021) Yang, J., Paragi, Z., Beswick, R. J., et al. 2021, MNRAS, 503, 3886. doi:10.1093/mnras/stab706
  • Yang et al. (2018) Yang, Q., Wu, X.-B., Fan, X., et al. 2018, ApJ, 862, 109. doi:10.3847/1538-4357/aaca3a