This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

MacWilliams Type Identities for Linear Block Codes on Certain Pomsets

Wen Ma   Jinquan Luo111The authors are with School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan China.
E-mails: [email protected](W.Ma), [email protected](J.Luo)

Abstract: Pomset block metric is a generalization of pomset metric. In this paper, we define weight enumerator of linear block codes in pomset metric over m\mathbb{Z}_{m} and establish MacWilliams type identities for linear block codes with respect to certain pomsets. The relation between weight enumerators of two linear pomset block codes and their direct sum is also investigated.

Key words: pomset, block codes, dual, weight enumerator, MacWilliams identity.

1 Introduction

The study of codes endowed with a metric other than the Hamming metric gained momentum since 1990’s with the introduction of poset metric by Brialdi et al. (see [References]). Feng et al. in [References] introduced block metric and studied MDS block codes. Poset block metric was introduced by Alves et al. in [References] unifying poset metric and block metric.

More recently in [References], Selvaraj and Sudha generalized the poset metric structure to a pomset metric structure. They introduced pomset metric and initialized the study of codes equipped with pomset metric. The concept of order ideals of a pomset is proposed and pomset metric is defined. We also refer the reader to [References, References] for two general metrics in poset space.

Weight distribution of a code describes the number of codewords of each possible weight. The MacWilliams identity for linear codes over finite fields is one of the most important identities in coding theory (see [References]). It expresses a connection between the weight enumerator of a linear codes and its dual code.

Kim and Oh classified all poset structures that admit the MacWilliams identity, and derived the MacWilliams identities for poset weight enumerators corresponding to such posets (see [References]). It is proved that being hierarchical is a necessary and sufficient condition for a poset to admit the MacWilliams identity. They also derived an explicit relation between the PP-weight distribution of a hierarchical poset code and the P¯\bar{P}-weight distribution of the dual code. Extending their observations, Pinheiro and Firer proved that a poset-block space admits a MacWilliams-type identity if and only if the poset is hierarchical, and at any level of the poset, all the blocks have the same dimension (see [References]). They explicitly stated the relation between the weight enumerators of a code and its dual when the poset-block admits the MacWilliams-type identity.

For codes over m\mathbb{Z}_{m}, pomset metric is a generalization of Lee metric when pomset is taken to be an antichain; in some sense, it is a generalization to poset metric as well. Sudha and Selvaraj defined pomset weight enumerator of a code 𝒞\mathcal{C} and established MacWilliams type identities for linear codes with respect to certain pomsets (see [References]). The identities for a particular type of linear codes are established by considering direct and ordinal sum of pomsets on them. For pomset block codes, it is natural to attempt to obtain some kind of MacWilliams identities for block codes in certain pomset metric. In this paper, we generalize the MacWilliams type identity given in [References] for pomset spaces to pomset-block spaces.

The paper is organized as follows, Section 2 contains basic notions of pomset block metric over mn\mathbb{Z}_{m}^{n} and defines weight enumerator for a linear pomset block code. In Section 3, we consider the relationship between the weight distribution of a pomset block code and its dual when the pomset is a chain pomset. In particular, an explicit relation is derived between the \mathbb{P}-weight distribution of a pomset block code and the ~\widetilde{\mathbb{P}}-weight distribution of the dual code when m\mathbb{Z}_{m} is a field and all blocks have dimension 2. We also give same examples to illustrate our conclusion. In Section 4, we give MacWilliams type identities on direct and ordinal sums of general pomsets. Lastly, we summarize our results and raise a question for further research.

2 Preliminaries

In this section, we introduce some basic notations and useful results of a pomset block metric.

A collection of elements which may contain duplicates is called a multiset (in short, mset). Girish and John defined a multiset relation and explored some of basic properties (see [References] and [References]).

Let XX be a set formally. A mset MM drawn from the set XX is represented by a function count CM:XC_{M}:X\rightarrow\mathbb{N} where \mathbb{N} represents the set of non-negative integers. For each aXa\in X, CM(a)C_{M}(a) indicates the number of occurrences of the element aa in MM.

An element aXa\in X appearing pp times in MM is denoted by p/aMp/a\in M and thus CM(a)=pC_{M}(a)=p. If we consider k/aMk/a\in M, the value of kk satisfies kpk\leq p. The mset drawn from the set X={a1,a2,,an}X=\{a_{1},a_{2},\ldots,a_{n}\} is represented as M={p1/a1,p2/a2,,pn/an}M=\{p_{1}/a_{1},p_{2}/a_{2},\ldots,p_{n}/a_{n}\}. The cardinality of an mset MM drawn from XX is |M|=aXCM(a)|M|=\sum_{a\in X}C_{M}(a). The root set of MM denoted by MM^{*} is defined as M={aX:CM(a)>0}M^{*}=\{a\in X:C_{M}(a)>0\}.

Let M1M_{1} and M2M_{2} be two msets drawn from a set XX. We call M1M_{1} a submset of M2M_{2} (M1M2M_{1}\subseteq M_{2}) if CM1(a)CM2(a)C_{M_{1}}(a)\leq C_{M_{2}}(a) for all aXa\in X. The union of M1M_{1} and M2M_{2} is an mset denoted by M=M1M2M=M_{1}\cup M_{2} such that for all aXa\in X, CM(a)=max{CM1(a),CM2(a)}C_{M}(a)=\text{max}\{C_{M_{1}}(a),C_{M_{2}}(a)\}.

Let M1M_{1} and M2M_{2} be two msets drawn from XX, the Cartesian product of M1M_{1} and M2M_{2} is also an mset defined as

M1×M2={pq/(p/a,q/b):p/aM1,q/bM2}.M_{1}\times M_{2}=\{pq/(p/a,q/b):p/a\in M_{1},q/b\in M_{2}\}.

Denote by C1(a,b)C_{1}(a,b) the count of the first coordinate in the ordered pair (a,b)(a,b) and by C2(a,b)C_{2}(a,b) the count of the second coordinate in the ordered pair (a,b)(a,b).

A submset RR of M×MM\times M is said to be an mset relation on MM if every member (p/a,q/b)(p/a,q/b) of RR has count C1(a,b)C2(a,b)C_{1}(a,b)\cdot C_{2}(a,b). An mset relation RR on an mset MM is said to be reflexive if m/aRm/am/a\ R\ m/a for all m/aMm/a\in M; antisymmetric if m/aRn/bm/a\ R\ n/b and n/bRm/an/b\ R\ m/a imply m=nm=n and a=ba=b; transitive if m/aRn/bm/a\ R\ n/b and n/bRk/cn/b\ R\ k/c imply m/aRk/cm/a\ R\ k/c. An mset relation RR is called a partially ordered mset relation (or order relation) if it is reflexive, antisymmetric and transitive. The pair (M,R)(M,R) is known as a partially ordered multiset (pomset) denoted by \mathbb{P}.

Let =(M,R)\mathbb{P}=(M,R) and m/aMm/a\in M. Then m/am/a is a maximal element of \mathbb{P} if there exists no n/bM(ba)n/b\in M\ (b\neq a) such that m/aRn/bm/a\ R\ n/b; m/am/a is a minimal element if there exists no n/bM(ba)n/b\in M\ (b\neq a) such that n/bRm/an/b\ R\ m/a. \mathbb{P} is called a chain if every distinct pair of points from MM is comparable in \mathbb{P}. \mathbb{P} is called an anti-chain if every distinct pair of points from MM is incomparable in \mathbb{P}.

A submset II of MM is called an order ideal (or simply an ideal) of \mathbb{P} if k/aIk/a\in I and q/bRk/aq/b\ R\ k/a (ba)(b\neq a) imply q/bIq/b\in I. An ideal generated by an element k/aMk/a\in M is defined as

k/a={k/a}{q/bM:q/bRk/aandba}.\langle k/a\rangle=\{k/a\}\cup\{q/b\in M:q/b\ R\ k/a\ \text{and}\ b\neq a\}.

An ideal generated by a submset SS of MM is defined by S=k/aSk/a\langle S\rangle=\bigcup\limits_{k/a\in S}\langle k/a\rangle.

For a given pomset =(M,R)\mathbb{P}=(M,R), the dual pomset ~=(M,R~)\widetilde{\mathbb{P}}=(M,\widetilde{R}) of \mathbb{P} is given by:

\mathbb{P} and ~\widetilde{\mathbb{P}} have the same underlying set MM and p/aRq/bp/a\ R\ q/b in \mathbb{P} if and only if q/bR~p/aq/b\ \widetilde{R}\ p/a in ~\widetilde{\mathbb{P}}.

Note that \mathbb{P} is a chain pomset implies that ~\widetilde{\mathbb{P}} is a chain pomset.

Consider m={0,1,,m1}\mathbb{Z}_{m}=\{0,1,\ldots,m-1\}, the ring of integers modulo mm. We consider a pomset \mathbb{P} defined on an mset M={m2/1,m2/2,,m2/s}M=\left\{\left\lfloor\frac{m}{2}\right\rfloor/1,\left\lfloor\frac{m}{2}\right\rfloor/2,\ldots,\left\lfloor\frac{m}{2}\right\rfloor/s\right\}.

Let π:[s]\pi:[s]\rightarrow\mathbb{N} be a map such that n=i=1sπ(i)n=\sum\limits_{i=1}\limits^{s}\pi(i). The map π\pi is said to be a labeling of the pomset \mathbb{P}, and the pair (,π)(\mathbb{P},\pi) is called a pomset block structure over [s][s]. Denote π(i)\pi(i) by kik_{i} and take ViV_{i} as free m\mathbb{Z}_{m}-module mki\mathbb{Z}_{m}^{k_{i}} for all 1is1\leq i\leq s. Define VV as

V=V1V2VsV=V_{1}\oplus V_{2}\oplus\cdots\oplus V_{s}

which is isomorphic to mn\mathbb{Z}_{m}^{n}. Each 𝒖V\boldsymbol{u}\in V can be written as

𝒖=(𝒖𝟏,𝒖𝟐,,𝒖𝒔)\boldsymbol{u}=(\boldsymbol{u_{1}},\boldsymbol{u_{2}},\ldots,\boldsymbol{u_{s}})

where 𝒖𝒊=(ui1,ui2,,uiki)mki\boldsymbol{u_{i}}=(u_{i1},u_{i2},\ldots,u_{ik_{i}})\in\mathbb{Z}_{m}^{k_{i}}, 1is1\leq i\leq s. For ama\in\mathbb{Z}_{m}, Lee weight wL(a)w_{L}(a) of aa is minimum of aa and mam-a. The Lee block support of 𝒖V\boldsymbol{u}\in V is defined as

supp(L,π)(𝒖)={si/i:si=w(L,π)(𝒖𝒊),si0},supp_{(L,\pi)}(\boldsymbol{u})=\left\{s_{i}/i:s_{i}=w_{(L,\pi)}(\boldsymbol{u_{i}}),s_{i}\neq 0\right\},

where

w(L,π)(𝒖𝒊)=max{wL(𝒖𝒊𝒕):1tπ(i)}.w_{(L,\pi)}(\boldsymbol{u_{i}})=\text{max}\left\{w_{L}(\boldsymbol{u_{i_{t}}}):1\leq t\leq\pi(i)\right\}.

The (,π)(\mathbb{P},\pi)-weight of 𝒖V\boldsymbol{u}\in V is defined to be the cardinality of the ideal generated by supp(L,π)(𝒖)supp_{(L,\pi)}(\boldsymbol{u}), that is

w(,π)(𝒖)=|supp(L,π)(𝒖)|.w_{(\mathbb{P},\pi)}(\boldsymbol{u})=\left|\langle supp_{(L,\pi)}(\boldsymbol{u})\rangle\right|.

The pomset block distance between two vectors 𝒖,𝒗V\boldsymbol{u},\boldsymbol{v}\in V is given by

d(,π)(𝒖,𝒗)=w(,π)(𝒖𝒗)d_{(\mathbb{P},\pi)}(\boldsymbol{u},\boldsymbol{v})=w_{(\mathbb{P},\pi)}(\boldsymbol{u}-\boldsymbol{v})

which induces a metric on mn\mathbb{Z}_{m}^{n} known as pomset block metric. The pair (V,d(,π))\left(V,d_{(\mathbb{P},\pi)}\right) is said to be a pomset block space. A subset 𝒞\mathcal{C} of (V,d(,π))\left(V,d_{(\mathbb{P},\pi)}\right) with cardinality KK is called an (n,K,d)(n,K,d) (,π)(\mathbb{P},\pi)-code, where VV is equipped with the pomset block metric d(,π)(.,.)d_{(\mathbb{P},\pi)}(.,.) and

d=d(,π)(𝒞)=min{d(,π)(𝒖,𝒗):𝒖𝒗𝒞}d=d_{(\mathbb{P},\pi)}(\mathcal{C})=\text{min}\left\{d_{(\mathbb{P},\pi)}(\boldsymbol{u},\boldsymbol{v}):\boldsymbol{u}\neq\boldsymbol{v}\in\mathcal{C}\right\}

is the (,π)(\mathbb{P},\pi)-minimum distance of 𝒞\mathcal{C}. If 𝒞\mathcal{C} is a submodule of VV with cardinality mkm^{k}, we call 𝒞\mathcal{C} a linear (n,mk,d)(n,m^{k},d) (,π)(\mathbb{P},\pi)-code. The dual of an (n,K,d)(n,K,d) (,π)(\mathbb{P},\pi)-code 𝒞\mathcal{C} is defined as

𝒞={𝒗V:𝒄¡¢𝒗=c1v1++cnvn=0for all𝒄𝒞}.\mathcal{C}^{\bot}=\left\{\boldsymbol{v}\in V:\boldsymbol{c}¡\textcent\cdot\boldsymbol{v}=c_{1}v_{1}+\cdots+c_{n}v_{n}=0\ \text{for all}\ \boldsymbol{c}\in\mathcal{C}\right\}.

For a linear (,π)(\mathbb{P},\pi)-code 𝒞\mathcal{C}, the (,π)(\mathbb{P},\pi)-weight enumerator for 𝒞\mathcal{C} is the polynomial

W(𝒞,π)(x,y;)=𝒖𝒞xsm2w(,π)(𝒖)yw(,π)(𝒖)=i=0sm2Ai,(,π)(𝒞)xsm2iyi,W_{(\mathcal{C},\pi)}\left(x,y;\mathbb{P}\right)=\sum\limits_{\boldsymbol{u}\in\mathcal{C}}x^{s\lfloor\frac{m}{2}\rfloor-w_{(\mathbb{P},\pi)}(\boldsymbol{u})}y^{w_{(\mathbb{P},\pi)}(\boldsymbol{u})}=\sum\limits_{i=0}^{s\lfloor\frac{m}{2}\rfloor}A_{i,(\mathbb{P},\pi)}(\mathcal{C})x^{s\lfloor\frac{m}{2}\rfloor-i}y^{i},

where Ai,(,π)(𝒞)=|{𝒖𝒞:w(,π)(𝒖)=i}|A_{i,(\mathbb{P},\pi)}(\mathcal{C})=\left|\{\boldsymbol{u}\in\mathcal{C}:w_{(\mathbb{P},\pi)}(\boldsymbol{u})=i\}\right|.

3 MacWilliams type identity in (,π)(\mathbb{P},\pi) spaces for chain pomset

Let [a]={1,2,,a}[a]=\{1,2,\ldots,a\} and [a,b][a,b] be the set of all integers between aa and bb. In this section, we will derive the MacWilliams type identity for linear block codes in the chain pomset metric. Without loss of generality, we define the pomset =(M,R)\mathbb{P}=(M,R) on the multiset M={m2/1,,m2/s}M=\{\lfloor\frac{m}{2}\rfloor/1,\ldots,\lfloor\frac{m}{2}\rfloor/s\} whose mset relation is given by

m2/iRm2/jij.\left\lfloor\frac{m}{2}\right\rfloor/i\ R\ \left\lfloor\frac{m}{2}\right\rfloor/j\Leftrightarrow i\leq j.

Let (,π)(\mathbb{P},\pi) be a pomset block structure on VV where π\pi is a labeling of \mathbb{P} such that i=1sπ(i)=n\sum\limits_{i=1}^{s}\pi(i)=n. Suppose that 𝒖=(𝒖𝟏,,𝒖𝒔)V\boldsymbol{u}=(\boldsymbol{u_{1}},\ldots,\boldsymbol{u_{s}})\in V such that 𝒖𝒊0mπ(i)\boldsymbol{u_{i}}\neq\textbf{0}\in\mathbb{Z}_{m}^{\pi(i)} and (𝒖𝒊+𝟏,𝒖𝒊+𝟐,,𝒖𝒔)=0mπ(i+1)++π(s)(\boldsymbol{u_{i+1}},\boldsymbol{u_{i+2}},\ldots,\boldsymbol{u_{s}})=\textbf{0}\in\mathbb{Z}_{m}^{\pi(i+1)+\cdots+\pi(s)}. By the definition of \mathbb{P}, we have that w(,π)(𝒖)=m2(i1)+w(L,π)(𝒖𝒊)w_{(\mathbb{P},\pi)}(\boldsymbol{u})=\left\lfloor\frac{m}{2}\right\rfloor(i-1)+w_{(L,\pi)}(\boldsymbol{u_{i}}). Given a linear (,π)(\mathbb{P},\pi)-code 𝒞\mathcal{C}, we define

𝒞i={𝒖𝒞:(𝒖𝒊,𝒖𝒊+𝟏,,𝒖𝒔)=0mπ(i)+π(i+1)++π(s)}\mathcal{C}_{i}=\left\{\boldsymbol{u}\in\mathcal{C}:(\boldsymbol{u_{i}},\boldsymbol{u_{i+1}},\cdots,\boldsymbol{u_{s}})=\textbf{0}\in\mathbb{Z}_{m}^{\pi(i)+\pi(i+1)+\cdots+\pi(s)}\right\}

and

𝒞i={𝒖𝒞:0𝒖𝒊mπ(i),(𝒖𝒊+𝟏,,𝒖𝒔)=0mπ(i+1)+π(s)}.\mathcal{C}_{i}^{{}^{\prime}}=\left\{\boldsymbol{u}\in\mathcal{C}:\textbf{0}\neq\boldsymbol{u_{i}}\in\mathbb{Z}_{m}^{\pi(i)},\ (\boldsymbol{u_{i+1}},\cdots,\boldsymbol{u_{s}})=\textbf{0}\in\mathbb{Z}_{m}^{\pi(i+1)+\cdots\pi(s)}\right\}.

Let \mathcal{R} be a finite ring. Recall that an additive character χ\chi on \mathcal{R} is just a group homomorphism from the additive group \mathcal{R} into the multiplicative group \mathbb{C}^{*}. The set of all additive character of \mathcal{R} forms a group ^\hat{\mathcal{R}}, called the character group whose group operation is the pointwise multiplication of characters. Moreover, ^\hat{\mathcal{R}} is a right \mathcal{R}-module with the function ×^^\mathcal{R}\times\hat{\mathcal{R}}\rightarrow\hat{\mathcal{R}} given by (a,χ)=χa(a,\chi)=\chi_{a} where χa^\chi_{a}\in\hat{\mathcal{R}} such that χa(b)=χ(ab)\chi_{a}(b)=\chi(ab) for all χ^\chi\in\hat{\mathcal{R}} and a,ba,b\in\mathcal{R}. A character χ\chi of \mathcal{R} is a right generating character if the mapping ϕ:^\phi:\mathcal{R}\rightarrow\hat{\mathcal{R}} given by ϕ(r)=χr\phi(r)=\chi_{r} is an isomorphism of \mathcal{R}-modules. See [References] for detailed discussion on additive characters.

Lemma 3.1.

([References]) Let χ\chi be a character of a finite ring \mathcal{R}. Then χ\chi is a right generating character if and only if ker χ\chi contains no non-zero right ideals.

The following lemmas are easy consequences of Lemma 3.1.

Lemma 3.2.

Let χ\chi be a nontrivial additive character on a finite communicative ring \mathcal{R} and 𝐚\boldsymbol{a} be a fixed element of \mathcal{R}. Then

𝒃χ(𝒂𝒃)={||,if𝒂=𝟎;0,if𝒂𝟎.\sum\limits_{\boldsymbol{b}\in\mathcal{R}}\chi(\boldsymbol{a}\cdot\boldsymbol{b})=\left\{\begin{array}[]{ll}|\mathcal{R}|,&\text{if}\ \boldsymbol{a}=\boldsymbol{0};\\[8.53581pt] 0,&\text{if}\ \boldsymbol{a}\neq\boldsymbol{0}.\end{array}\right.
Lemma 3.3.

Let χ\chi be a generating character on a finite communicative ring \mathcal{R}. For any submodule 𝒞n\mathcal{C}\subseteq\mathcal{R}^{n}, we have

𝒖χ(𝒖𝒗)={|𝒞|,if𝒗𝒞;0,if𝒗𝒞.\sum\limits_{\boldsymbol{u}\in\mathcal{R}}\chi(\boldsymbol{u}\cdot\boldsymbol{v})=\left\{\begin{array}[]{ll}|\mathcal{C}|,&\text{if}\ \boldsymbol{v}\in\mathcal{C}^{\bot};\\[8.53581pt] 0,&\text{if}\ \boldsymbol{v}\notin\mathcal{C}^{\bot}.\end{array}\right.

Let ff be a complex-valued function defined on n\mathcal{R}^{n} and χ\chi be a generating character of \mathcal{R}. The Fourier transform of ff is

f^(𝒖)=𝒗nχ(𝒖𝒗)f(𝒗).\hat{f}(\boldsymbol{u})=\sum\limits_{\boldsymbol{v}\in\mathcal{R}^{n}}\chi(\boldsymbol{u}\cdot\boldsymbol{v})f(\boldsymbol{v}).
Lemma 3.4.

Let 𝒞n\mathcal{C}\subseteq\mathcal{R}^{n} be a submodule and ff be a function defined on n\mathcal{R}^{n}. Then

𝒗𝒞f(𝒗)=1|𝒞|𝒖𝒞f^(𝒖).\sum\limits_{\boldsymbol{v}\in\mathcal{C}^{\bot}}f(\boldsymbol{v})=\frac{1}{|\mathcal{C}|}\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\hat{f}(\boldsymbol{u}).
Theorem 1.

Given a linear (,π)(\mathbb{P},\pi)-code 𝒞\mathcal{C} of length nn over m\mathbb{Z}_{m} on the chain pomset =(M,R)\mathbb{P}=(M,R), we have the following

  1. (1)

    if mm is odd then

    W(𝒞,π)(x,y;~)=xsm2+i=1s2mπ(i+1)++π(s)|𝒞|j=1m2(yx)(si)m2+j[βijW(𝒞i,π)(x,x;)+LW𝒞i,πjxsm2];W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{s\lfloor\frac{m}{2}\rfloor}+\sum\limits_{i=1}^{s}\frac{2m^{\pi(i+1)+\cdots+\pi(s)}}{|\mathcal{C}|}\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{(s-i)\lfloor\frac{m}{2}\rfloor+j}\left[\beta_{ij}W_{(\mathcal{C}_{i},\pi)}(x,x;\mathbb{P})+LW_{\mathcal{C}_{i}^{{}^{\prime}},\pi}^{j}x^{s\lfloor\frac{m}{2}\rfloor}\right];
  2. (2)

    if mm is even then

    W(𝒞,π)(x,y;~)=xsm2+i=1smπ(i+1)++π(s)|𝒞|(yx)(si)m2\displaystyle W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{s\frac{m}{2}}+\sum\limits_{i=1}^{s}\frac{m^{\pi(i+1)+\cdots+\pi(s)}}{|\mathcal{C}|}\left(\frac{y}{x}\right)^{(s-i)\frac{m}{2}}
    [(2j=1m21βij(yx)j+γi(yx)m2)W(𝒞i,π)(x,x;)+(2j=1m21(yx)jLW𝒞i,πj+(yx)m2LW𝒞i,πm2)xsm2],\displaystyle\left[\left(2\sum\limits_{j=1}^{\frac{m}{2}-1}\beta_{ij}\left(\frac{y}{x}\right)^{j}+\gamma_{i}\left(\frac{y}{x}\right)^{\frac{m}{2}}\right)W_{(\mathcal{C}_{i},\pi)}(x,x;\mathbb{P})+\left(2\sum\limits_{j=1}^{\frac{m}{2}-1}\left(\frac{y}{x}\right)^{j}LW_{\mathcal{C}_{i}^{{}^{\prime}},\pi}^{j}+\left(\frac{y}{x}\right)^{\frac{m}{2}}LW_{\mathcal{C}_{i}^{{}^{\prime}},\pi}^{\frac{m}{2}}\right)x^{s\frac{m}{2}}\right],

    where βij=(2j+1)π(i)(2j1)π(i)2\beta_{ij}=\frac{(2j+1)^{\pi(i)}-(2j-1)^{\pi(i)}}{2}, γi=mπ(i)(m1)π(i)\gamma_{i}=m^{\pi(i)}-(m-1)^{\pi(i)} and

    {LW𝒞i,πj=𝒖𝒞ia=1π(i)cos2πuiajmb<a(1+2t=1j1cos2πuibtm)b>a(1+2t=1jcos2πuibtm)1jm12;LW𝒞i,πm2=𝒖𝒞ia=1π(i)(1)uiab<a(1+2t=1m21cos2πuibtm)b>a(1+(1)uib+2t=1m21cos2πuibtm)j=m2.\left\{\begin{array}[]{ll}LW_{\mathcal{C}_{i}^{{}^{\prime}},\pi}^{j}=\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}}\sum\limits_{a=1}^{\pi(i)}\cos\frac{2\pi u_{i_{a}}j}{m}\prod\limits_{b<a}\left(1+2\sum\limits_{t=1}^{j-1}\cos\frac{2\pi u_{i_{b}}t}{m}\right)\prod\limits_{b>a}\left(1+2\sum\limits_{t=1}^{j}\cos\frac{2\pi u_{i_{b}}t}{m}\right)&1\leq j\leq\lfloor\frac{m-1}{2}\rfloor;\\[14.22636pt] LW_{\mathcal{C}_{i}^{{}^{\prime}},\pi}^{\frac{m}{2}}=\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}}\sum\limits_{a=1}^{\pi(i)}(-1)^{u_{i_{a}}}\prod\limits_{b<a}\left(1+2\sum\limits_{t=1}^{\frac{m}{2}-1}\cos\frac{2\pi u_{i_{b}}t}{m}\right)\prod\limits_{b>a}\left(1+(-1)^{u_{i_{b}}}+2\sum\limits_{t=1}^{\frac{m}{2}-1}\cos\frac{2\pi u_{i_{b}}t}{m}\right)&j=\frac{m}{2}\in\mathbb{Z}.\end{array}\right.
Proof.

Consider the function f:V𝒞(x,y)f:V\rightarrow\mathcal{C}(x,y) defined by

f(𝒖)=xsm2w(~,π)(𝒖)yw(~,π)(𝒖).f(\boldsymbol{u})=x^{s\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{u})}y^{w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{u})}.

Then it follows from Lemma 3.4 that

W(𝒞,π)(x,y;~)=𝒖𝒞f(𝒖)=1|𝒞|𝒖𝒞f^(𝒖).\displaystyle W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=\sum\limits_{\boldsymbol{u}\in\mathcal{C}^{\bot}}f(\boldsymbol{u})=\frac{1}{|\mathcal{C}|}\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\hat{f}(\boldsymbol{u}). (3.1)

We now analyze the value f^(𝒖)\hat{f}(\boldsymbol{u}) in detail. We have that

f^(𝒖)\displaystyle\hat{f}(\boldsymbol{u}) =\displaystyle= 𝒗Vχ(𝒖𝒗)xsm2w(~,π)(𝒗)yw(~,π)(𝒗)\displaystyle\sum\limits_{\boldsymbol{v}\in V}\chi(\boldsymbol{u}\cdot\boldsymbol{v})x^{s\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{v})}y^{w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{v})}
=\displaystyle= xsm2[1+0𝒗Vχ(𝒖𝒗)(yx)w(~,π)(𝒗)].\displaystyle x^{s\lfloor\frac{m}{2}\rfloor}\left[1+\sum\limits_{\textbf{0}\neq\boldsymbol{v}\in\ V}\chi(\boldsymbol{u}\cdot\boldsymbol{v})\left(\frac{y}{x}\right)^{w_{(\widetilde{\mathbb{P}},\pi)(\boldsymbol{v})}}\right].

Given i[s]i\in[s], j[m2]j\in\left[\lfloor\frac{m}{2}\rfloor\right] and a[π(i)]a\in[\pi(i)], set:

{Di={𝒗V{0}:min{k:𝒗𝒌0}=i};Eij={𝒗Di:w(L,π)(𝒗𝒊)=j};Eija={𝒗Eij:min{k:wL(vik)=j}=a}.\left\{\begin{array}[]{l}D_{i}=\{\boldsymbol{v}\in V\setminus\{\textbf{0}\}:\min\{k:\boldsymbol{v_{k}}\neq\textbf{0}\}=i\};\\[8.53581pt] E_{ij}=\{\boldsymbol{v}\in D_{i}:w_{(L,\pi)}(\boldsymbol{v_{i}})=j\};\\[8.53581pt] E_{ija}=\{\boldsymbol{v}\in E_{ij}:\min\{k:w_{L}(v_{i_{k}})=j\}=a\}.\end{array}\right.

With these definitions, we have

f^(𝒖)\displaystyle\hat{f}(\boldsymbol{u}) =\displaystyle= xsm2[1+i=1s𝒗Diχ(𝒖𝒗)(yx)(si)m2+w(L,π)(𝒗𝒊)]\displaystyle x^{s\lfloor\frac{m}{2}\rfloor}\left[1+\sum\limits_{i=1}^{s}\sum\limits_{\boldsymbol{v}\in D_{i}}\chi(\boldsymbol{u}\cdot\boldsymbol{v})\left(\frac{y}{x}\right)^{(s-i)\lfloor\frac{m}{2}\rfloor+w_{(L,\pi)}(\boldsymbol{v_{i}})}\right]
=\displaystyle= xsm2[1+i=1sj=1m2𝒗Eij(yx)(si)m2+jχ(𝒖𝒊𝒗𝒊++𝒖𝒔𝒗𝒔)]\displaystyle x^{s\lfloor\frac{m}{2}\rfloor}\left[1+\sum\limits_{i=1}^{s}\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\sum\limits_{\boldsymbol{v}\in E_{ij}}\left(\frac{y}{x}\right)^{(s-i)\lfloor\frac{m}{2}\rfloor+j}\chi(\boldsymbol{u_{i}}\cdot\boldsymbol{v_{i}}+\cdots+\boldsymbol{u_{s}}\cdot\boldsymbol{v_{s}})\right]
=\displaystyle= xsm2[1+i=1sj=1m2(yx)(si)m2+j𝒗Eijχ(𝒖𝒊𝒗𝒊++𝒖𝒔𝒗𝒔)]\displaystyle x^{s\lfloor\frac{m}{2}\rfloor}\left[1+\sum\limits_{i=1}^{s}\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{(s-i)\lfloor\frac{m}{2}\rfloor+j}\sum\limits_{\boldsymbol{v}\in E_{ij}}\chi(\boldsymbol{u_{i}}\cdot\boldsymbol{v_{i}}+\cdots+\boldsymbol{u_{s}}\cdot\boldsymbol{v_{s}})\right]
=\displaystyle= xsm2[1+i=1sj=1m2(yx)(si)m2+j0𝒗𝒊Viw(L,π)(𝒗𝒊)=jχ(𝒖𝒊𝒗𝒊)𝒗mπ(i+1)++π(s)χ(𝒖𝒗)],\displaystyle x^{s\lfloor\frac{m}{2}\rfloor}\left[1+\sum\limits_{i=1}^{s}\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{(s-i)\lfloor\frac{m}{2}\rfloor+j}\sum\limits_{\textbf{0}\neq\boldsymbol{v_{i}}\in V_{i}\atop w_{(L,\pi)}(\boldsymbol{v_{i}})=j}\chi(\boldsymbol{u_{i}}\cdot\boldsymbol{v_{i}})\sum\limits_{\boldsymbol{v^{\prime}}\in\mathbb{Z}_{m}^{\pi(i+1)+\cdots+\pi(s)}}\chi(\boldsymbol{u^{\prime}}\cdot\boldsymbol{v^{\prime}})\right],

where 𝒖=(𝒖𝒊+𝟏,,𝒖𝒔)mπ(i+1)++π(s)\boldsymbol{u^{\prime}}=(\boldsymbol{u_{i+1}},\ldots,\boldsymbol{u_{s}})\in\mathbb{Z}_{m}^{\pi(i+1)+\cdots+\pi(s)}. It follows from Lemma 3.2 that

𝒖𝒞f^(𝒖)=|𝒞|xsm2+i=1sxim2y(si)m2mπ(i+1)++π(s)j=1m2(yx)j𝒖𝒞i𝒞i0𝒗𝒊Viw(L,π)(𝒗𝒊)=jχ(𝒖𝒊𝒗𝒊).\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\hat{f}(\boldsymbol{u})=|\mathcal{C}|x^{s\lfloor\frac{m}{2}\rfloor}+\sum\limits_{i=1}^{s}x^{i\lfloor\frac{m}{2}\rfloor}y^{(s-i)\lfloor\frac{m}{2}\rfloor}m^{\pi(i+1)+\cdots+\pi(s)}\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{j}\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}\cup\mathcal{C}_{i}^{{}^{\prime}}}\sum\limits_{\textbf{0}\neq\boldsymbol{v_{i}}\in V_{i}\atop w_{(L,\pi)}(\boldsymbol{v_{i}})=j}\chi(\boldsymbol{u_{i}}\cdot\boldsymbol{v_{i}}). (3.2)

Set

Zi=j=1m2(yx)j𝒖𝒞i𝒞i0𝒗𝒊Viw(L,π)(𝒗𝒊)=jχ(𝒖𝒊𝒗𝒊).Z_{i}=\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{j}\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}\cup\mathcal{C}_{i}^{{}^{\prime}}}\sum\limits_{\textbf{0}\neq\boldsymbol{v_{i}}\in V_{i}\atop w_{(L,\pi)}(\boldsymbol{v_{i}})=j}\chi(\boldsymbol{u_{i}}\cdot\boldsymbol{v_{i}}).

If mm is odd then we observe that

Zi\displaystyle Z_{i} =\displaystyle= j=1m2(yx)j𝒖𝒞i𝒞ia=1π(i)𝒗Eijaχ(𝒖𝒊𝒗𝒊)\displaystyle\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{j}\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}\cup\mathcal{C}_{i}^{{}^{\prime}}}\sum\limits_{a=1}^{\pi(i)}\sum\limits_{\boldsymbol{v}\in E_{ija}}\chi(\boldsymbol{u_{i}}\cdot\boldsymbol{v_{i}})
=\displaystyle= j=1m2(yx)j𝒖𝒞i𝒞ia=1π(i)𝒗𝒊Vi,wL(via)=j;wL(vib)<jforb<a;wL(vib)jforb>aχ(𝒖𝒊𝒗𝒊)\displaystyle\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{j}\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}\cup\mathcal{C}_{i}^{{}^{\prime}}}\sum\limits_{a=1}^{\pi(i)}\sum\limits_{\boldsymbol{v_{i}}\in V_{i},w_{L}(v_{i_{a}})=j;\atop w_{L}(v_{i_{b}})<j\ \text{for}\ b<a;w_{L}(v_{i_{b}})\leq j\ \text{for}\ b>a}\chi(\boldsymbol{u_{i}}\cdot\boldsymbol{v_{i}})
=\displaystyle= 2j=1m2(yx)j𝒖𝒞i𝒞ia=1π(i)cos2πuiajmb<a(1+2t=1j1cos2πuibtm)b>a(1+2t=1jcos2πuibtm)\displaystyle 2\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{j}\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}\cup\mathcal{C}_{i}^{{}^{\prime}}}\sum\limits_{a=1}^{\pi(i)}\cos\frac{2\pi u_{i_{a}}j}{m}\prod\limits_{b<a}\left(1+2\sum\limits_{t=1}^{j-1}\cos\frac{2\pi u_{i_{b}}t}{m}\right)\prod\limits_{b>a}\left(1+2\sum\limits_{t=1}^{j}\cos\frac{2\pi u_{i_{b}}t}{m}\right)
=\displaystyle= 2j=1m2(yx)j[|𝒞i|(2j+1)π(i)(2j1)π(i)2+\displaystyle 2\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{j}\Bigg{[}|\mathcal{C}_{i}|\frac{(2j+1)^{\pi(i)}-(2j-1)^{\pi(i)}}{2}+
𝒖𝒞ia=1π(i)cos2πuiajmb<a(1+2t=1j1cos2πuibtm)b>a(1+2t=1jcos2πuibtm)].\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}}\sum\limits_{a=1}^{\pi(i)}\cos\frac{2\pi u_{i_{a}}j}{m}\prod\limits_{b<a}\left(1+2\sum\limits_{t=1}^{j-1}\cos\frac{2\pi u_{i_{b}}t}{m}\right)\prod\limits_{b>a}\left(1+2\sum\limits_{t=1}^{j}\cos\frac{2\pi u_{i_{b}}t}{m}\right)\Bigg{]}.

The result then follows from (3.1) and (3.2). The case for mm even can be proved in a similar way. ∎

Remark 3.1.

Note that when we consider the pomset block metric over 2s\mathbb{Z}_{2}^{s} and 3s\mathbb{Z}_{3}^{s}, the pomset block metric will coincide with poset block metric. Theorem 1 is consistent with the result in [References].

Example 3.1.

Let M={2/1,2/2}M=\{2/1,2/2\} and =(M,R)\mathbb{P}=(M,R) be a pomset whose order relation is chain relation. Let π\pi be a labeling of the pomset \mathbb{P} such that π(1)=2\pi(1)=2 and π(2)=1\pi(2)=1. Consider the (,π)(\mathbb{P},\pi)-code 𝒞43\mathcal{C}\subseteq\mathbb{Z}_{4}^{3} given by

𝒞={000,112,220,332}.\mathcal{C}=\{000,112,220,332\}.

Then by Theorem 1, one has

W(𝒞,π)(x,y;~)\displaystyle W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}}) =\displaystyle= x4+i=124π(i+1)++π(2)4(yx)42i\displaystyle x^{4}+\sum\limits_{i=1}^{2}\frac{4^{\pi(i+1)+\cdots+\pi(2)}}{4}\left(\frac{y}{x}\right)^{4-2i}
[(2βi1yx+γi(yx)2)W(𝒞i,π)(x,x;)+(2(yx)LW𝒞i,π1+(yx)2LW𝒞i,π2)x4].\displaystyle\left[\left(2\beta_{i1}\frac{y}{x}+\gamma_{i}\left(\frac{y}{x}\right)^{2}\right)W_{(\mathcal{C}_{i},\pi)}(x,x;\mathbb{P})+\left(2\left(\frac{y}{x}\right)LW_{\mathcal{C}_{i}^{{}^{\prime}},\pi}^{1}+\left(\frac{y}{x}\right)^{2}LW_{\mathcal{C}_{i}^{{}^{\prime}},\pi}^{2}\right)x^{4}\right].

Note that 𝒞1={000}\mathcal{C}_{1}=\{000\}, 𝒞2={000,220}\mathcal{C}_{2}=\{000,220\}, 𝒞1={220}\mathcal{C}_{1}^{{}^{\prime}}=\{220\} and 𝒞2={112,332}\mathcal{C}_{2}^{{}^{\prime}}=\{112,332\}. Hence

W(𝒞,π)(x,y;~)\displaystyle W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}}) =\displaystyle= x4+x2y2+8xy3+6y4.\displaystyle x^{4}+x^{2}y^{2}+8xy^{3}+6y^{4}.

On the other hand, the dual of 𝒞\mathcal{C} is

𝒞={000,111,222,333,130,220,310,021,002,023,201,203,113,132,312,331}.\mathcal{C}^{\bot}=\{000,111,222,333,130,220,310,021,002,023,201,203,113,132,312,331\}.

The (~,π)(\widetilde{\mathbb{P}},\pi)-weight enumerator for 𝒞\mathcal{C}^{\bot} is then

W(𝒞,π)(x,y;~)=x4+x2y2+8xy3+6y4,W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{4}+x^{2}y^{2}+8xy^{3}+6y^{4},

which coincides with Theorem 1. \hfill\square

Example 3.2.

Let M={2/1,2/2}M=\{2/1,2/2\} and =(M,R)\mathbb{P}=(M,R) be a pomset whose order relation is chain relation. Let π\pi be a labeling of the pomset \mathbb{P} such that π(1)=1\pi(1)=1 and π(2)=2\pi(2)=2. Consider the (,π)(\mathbb{P},\pi)-code 𝒞53\mathcal{C}\subseteq\mathbb{Z}_{5}^{3} given by

𝒞={000,132,214,341,423}.\mathcal{C}=\{000,132,214,341,423\}.

Then we have 𝒞1={000}=𝒞2\mathcal{C}_{1}=\{000\}=\mathcal{C}_{2}, 𝒞1=\mathcal{C}_{1}^{{}^{\prime}}=\emptyset and 𝒞2={132,214,341,423}\mathcal{C}_{2}^{{}^{\prime}}=\{132,214,341,423\}. It follows from Theorem 1 that

W(𝒞,π)(x,y;~)\displaystyle W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}}) =\displaystyle= x4+i=122×5π(i+1)++π(2)5j=12(yx)42i+j[βijW(𝒞i,π)(x,x;)+LW𝒞i,πjx4]\displaystyle x^{4}+\sum\limits_{i=1}^{2}\frac{2\times 5^{\pi(i+1)+\cdots+\pi(2)}}{5}\sum\limits_{j=1}^{2}\left(\frac{y}{x}\right)^{4-2i+j}\left[\beta_{ij}W_{(\mathcal{C}_{i},\pi)}(x,x;\mathbb{P})+LW_{\mathcal{C}_{i}^{{}^{\prime}},\pi}^{j}x^{4}\right]
=\displaystyle= x4+2x3y+2x2y2+10xy3+10y4.\displaystyle x^{4}+2x^{3}y+2x^{2}y^{2}+10xy^{3}+10y^{4}.

On the other hand, the dual of 𝒞\mathcal{C} is

𝒞={000,102,204,301,403,011,022,033,044,113,221,334,\mathcal{C}^{\bot}=\{000,102,204,301,403,011,022,033,044,113,221,334,
442,124,243,312,431,130,210,340,420,141,232,323,414}.442,124,243,312,431,130,210,340,420,141,232,323,414\}.

The (~,π)(\widetilde{\mathbb{P}},\pi)-weight enumerator for 𝒞\mathcal{C}^{\bot} is then

W(𝒞,π)(x,y;~)=x4+2x3y+2x2y2+10xy3+10y4,W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{4}+2x^{3}y+2x^{2}y^{2}+10xy^{3}+10y^{4},

which also coincides with Theorem 1. \hfill\square

Remark 3.2.

Let =(M,R)\mathbb{P}=(M,R) be a pomset on M={m2/1,m2/2,,m2/s}M=\left\{\lfloor\frac{m}{2}\rfloor/1,\lfloor\frac{m}{2}\rfloor/2,\ldots,\lfloor\frac{m}{2}\rfloor/s\right\} with chain relation and let π\pi be a labeling of the pomset \mathbb{P} with π(i)=1\pi(i)=1 for i[s]i\in[s]. Let 𝒞\mathcal{C} be a linear (,π)(\mathbb{P},\pi)-code. Then the (~,π)(\widetilde{\mathbb{P}},\pi)-weight enumerator for 𝒞\mathcal{C}^{\bot} is given by the followings.

  • when mm is odd,

    W(𝒞,π)(x,y;~)=xsm2+i=1s2msi|𝒞|j=1m2(yx)(si)m2+j(W(𝒞i,π)(x,x;)+l=1m2cos2πljmW𝒞il(x,x;)).W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{s\lfloor\frac{m}{2}\rfloor}+\sum\limits_{i=1}^{s}\frac{2m^{s-i}}{|\mathcal{C}|}\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{(s-i)\lfloor\frac{m}{2}\rfloor+j}\left(W_{(\mathcal{C}_{i},\pi)}(x,x;\mathbb{P})+\sum\limits_{l=1}^{\lfloor\frac{m}{2}\rfloor}\cos\frac{2\pi lj}{m}W_{\mathcal{C}_{il}^{{}^{\prime}}}(x,x;\mathbb{P})\right).
  • when mm is even,

    W(𝒞,π)(x,y;~)=xsm2+i=1smsi|𝒞|(yx)(si)m2W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{s\lfloor\frac{m}{2}\rfloor}+\sum\limits_{i=1}^{s}\frac{m^{s-i}}{|\mathcal{C}|}\left(\frac{y}{x}\right)^{(s-i)\frac{m}{2}}
    [(2j=1m21(yx)j+(yx)m2)W(𝒞i,π)(x,x;)+(2j=1m21(yx)ju𝒞icos(2πuijm)+(yx)m2u𝒞i(1)ui)xsm2].\left[\left(2\sum\limits_{j=1}^{\frac{m}{2}-1}\left(\frac{y}{x}\right)^{j}+\left(\frac{y}{x}\right)^{\frac{m}{2}}\right)W_{(\mathcal{C}_{i},\pi)}(x,x;\mathbb{P})+\left(2\sum\limits_{j=1}^{\frac{m}{2}-1}\left(\frac{y}{x}\right)^{j}\sum\limits_{u\in\mathcal{C}_{i}^{{}^{\prime}}}\cos(\frac{2\pi u_{i}j}{m})+\left(\frac{y}{x}\right)^{\frac{m}{2}}\sum\limits_{u\in\mathcal{C}_{i}^{{}^{\prime}}}(-1)^{u_{i}}\right)x^{\frac{sm}{2}}\right].

The result is the same as the MacWilliams type identity for the case of pomset metric (see [References]).

Before we proceed to prove the next corollary, we assume the following notations:

  1. (1)

    Given j[m2]j\in\left[\lfloor\frac{m}{2}\rfloor\right] even. Consider the ii-th block (ui1,ui2)(u_{i_{1}},u_{i_{2}}) of 𝒖𝒞\boldsymbol{u}\in\mathcal{C}.

    • 𝒞ij1={𝒖𝒞i:(ui1,ui1)=(1,±t)}\mathcal{C}_{ij}^{1}=\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{1}})=(1,\pm t)\}, where tt satisfies one of the following conditions:

      1. a)

        lm+1j1tlm1j+1(1lj21),tjortjbuta[j,j]s.t.at+j0(modm);\frac{lm+1}{j}-1\leq t\leq\frac{lm-1}{j}+1\ (1\leq l\leq\frac{j}{2}-1),\ t\mid j\ \text{or}\ t\nmid j\ \text{but}\ \exists\ a\in[-j,j]\ s.t.\ at+j\equiv 0\ (\text{mod}\ m);

      2. b)

        jm+22j1tm12,tjortjbuta[j,j]s.t.at+j0(modm).\frac{jm+2}{2j}-1\leq t\leq\frac{m-1}{2},\ t\mid j\ \text{or}\ t\nmid j\ \text{but}\ \exists\ a\in[-j,j]\ s.t.\ at+j\equiv 0\ (\text{mod}\ m).

    • 𝒞ij2={𝒖𝒞i:(ui1,ui1)=(1,±t)}\mathcal{C}_{ij}^{2}=\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{1}})=(1,\pm t)\}, where tt satisfies one of the following conditions:

      1. a)

        1tm+1j11\leq t\leq\frac{m+1}{j}-1, tjt\nmid j;

      2. b)

        lm1j+1<t<(l+1)m+1j1\frac{lm-1}{j}+1<t<\frac{(l+1)m+1}{j}-1 (1lj21)(1\leq l\leq\frac{j}{2}-1), tjt\nmid j and there does not exist a[j,j]s.t.at+j0a\in[-j,j]\ s.t.\ at+j\equiv 0 (mod mm).

    • 𝒞ij3={𝒖𝒞i:(ui1,ui2)=(1,±t),𝒖𝒞ij1𝒞ij2}{𝒖𝒞i:(ui1,ui2)=(0,1)}\mathcal{C}_{ij}^{3}=\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(1,\pm t),\ \boldsymbol{u}\notin\mathcal{C}_{ij}^{1}\cup\mathcal{C}_{ij}^{2}\}\cup\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(0,1)\}.

  2. (2)

    Given j[3,m2]j\in\left[3,\lfloor\frac{m}{2}\rfloor\right] odd. Consider the ii-th block (ui1,ui2)(u_{i_{1}},u_{i_{2}}) of 𝒖𝒞\boldsymbol{u}\in\mathcal{C}.

    • 𝒞ij1={𝒖𝒞i:(ui1,ui2)=(1,±t)}\mathcal{C}_{ij}^{1}=\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(1,\pm t)\} where tt satisfies

      lm+1j1tlm1j+1(1lj12),tjortjbuta[j,j]s.t.at+j0(modm);\frac{lm+1}{j}-1\leq t\leq\frac{lm-1}{j}+1\ (1\leq l\leq\frac{j-1}{2}),\ t\mid j\ \text{or}\ t\nmid j\ \text{but}\ \exists\ a\in[-j,j]\ s.t.\ at+j\equiv 0\ (\text{mod}\ m);
    • 𝒞ij2={𝒖𝒞i:(ui1,ui2)=(1,±t)}\mathcal{C}_{ij}^{2}=\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(1,\pm t)\} where tt satisfies one of the following conditions:

      1. a)

        1t<m+1j11\leq t<\frac{m+1}{j}-1, tjt\nmid j;

      2. b)

        lm1j+1t(l+1)m+1j1\frac{lm-1}{j}+1\leq t\leq\frac{(l+1)m+1}{j}-1 (1lj321\leq l\leq\frac{j-3}{2}), tjt\nmid j and there does not exist a[j,j]s.t.at+j0a\in[-j,j]\ s.t.\ at+j\equiv 0 (mod mm).

      3. c)

        (j1)m22j+1<tm12\frac{(j-1)m-2}{2j}+1<t\leq\frac{m-1}{2}, tjt\nmid j and there exists no a[j,j]s.t.at+j0a\in[-j,j]\ s.t.\ at+j\equiv 0 (mod mm).

    • 𝒞ij3={𝒖𝒞i:(ui1,ui2)=(1,±t),𝒖𝒞ij1𝒞ij2}{𝒖𝒞i:(ui1,ui2)=(0,1)}\mathcal{C}_{ij}^{3}=\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(1,\pm t),\ \boldsymbol{u}\notin\mathcal{C}_{ij}^{1}\cup\mathcal{C}_{ij}^{2}\}\cup\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(0,1)\}.

  3. (3)

    For j=1j=1, we put 𝒞i11=\mathcal{C}_{i1}^{1}=\emptyset,

    𝒞i12={𝒖𝒞i:(ui1,ui2)=(1,t),tm{±1,0}},\mathcal{C}_{i1}^{2}=\left\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(1,t),t\in\mathbb{Z}_{m}\setminus\{\pm 1,0\}\right\},

    and

    𝒞i13={𝒖𝒞i:(ui1,ui2)=(1,t),t{±1,0}or(ui1,ui2)=(0,1)}.\mathcal{C}_{i1}^{3}=\left\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(1,t),t\in\{\pm 1,0\}\ \text{or}\ (u_{i_{1}},u_{i_{2}})=(0,1)\right\}.
Corollary 3.1.

Let =(M,R)\mathbb{P}=(M,R) be a pomset on M={m2/1,m2/2,,m2/2s}M=\left\{\lfloor\frac{m}{2}\rfloor/1,\lfloor\frac{m}{2}\rfloor/2,\ldots,\lfloor\frac{m}{2}\rfloor/2s\right\} with chain relation and π\pi be a labeling of the pomset \mathbb{P} with π(i)=2\pi(i)=2 for i[s]i\in[s]. Let 𝒞\mathcal{C} be a linear (,π)(\mathbb{P},\pi)-code. If m\mathbb{Z}_{m} is a field (that is, mm is a prime number), then the (~,π)(\widetilde{\mathbb{P}},\pi)-weight enumerator for 𝒞\mathcal{C}^{\bot} is given by:

W(𝒞,π)(x,y;~)=xsm2+i=1s2m2(si)|𝒞|j=1m2(yx)(si)m2+jW_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{s\lfloor\frac{m}{2}\rfloor}+\sum\limits_{i=1}^{s}\frac{2m^{2(s-i)}}{|\mathcal{C}|}\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{(s-i)\lfloor\frac{m}{2}\rfloor+j}
[4jW(𝒞i,π)(x,y;)+(2m4j)W(𝒞ij1,π)(x,y;)4jW(𝒞ij2,π)(x,y;)+(m4j)W(𝒞ij3,π)(x,y;)].\Bigg{[}4jW_{(\mathcal{C}_{i}^{\bot},\pi)}(x,y;\mathbb{P})+(2m-4j)W_{({\mathcal{C}_{ij}^{1}}^{\bot},\pi)}(x,y;\mathbb{P})-4jW_{({\mathcal{C}_{ij}^{2}}^{\bot},\pi)}(x,y;\mathbb{P})+(m-4j)W_{({\mathcal{C}_{ij}^{3}}^{\bot},\pi)}(x,y;\mathbb{P})\Bigg{]}.
Proof.

By Theorem 1, we have

W(𝒞,π)(x,y;~)=xsm2+i=1s2m2(si)|𝒞|j=1m2(yx)(si)m2+j\displaystyle W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{s\lfloor\frac{m}{2}\rfloor}+\sum\limits_{i=1}^{s}\frac{2m^{2(s-i)}}{|\mathcal{C}|}\sum\limits_{j=1}^{\lfloor\frac{m}{2}\rfloor}\left(\frac{y}{x}\right)^{(s-i)\lfloor\frac{m}{2}\rfloor+j}
[4jW(𝒞i,π)(x,y;)+u𝒞ia=12cos2πuiajmb<a(1+2l=1j1cos2πuiblm)b>a(1+2l=1jcos2πuiblm)].\displaystyle\left[4jW_{(\mathcal{C}_{i},\pi)}(x,y;\mathbb{P})+\sum\limits_{u\in\mathcal{C}_{i}^{{}^{\prime}}}\sum\limits_{a=1}^{2}\cos\frac{2\pi u_{i_{a}}j}{m}\prod\limits_{b<a}\left(1+2\sum\limits_{l=1}^{j-1}\cos\frac{2\pi u_{i_{b}}l}{m}\right)\prod\limits_{b>a}\left(1+2\sum\limits_{l=1}^{j}\cos\frac{2\pi u_{i_{b}}l}{m}\right)\right].

Denote by

Zij𝒖=a=12cos2πuiajmb<a(1+2l=1j1cos2πuiblm)b>a(1+2l=1jcos2πuiblm).Z_{ij}^{\boldsymbol{u}}=\sum\limits_{a=1}^{2}\cos\frac{2\pi u_{i_{a}}j}{m}\prod\limits_{b<a}\left(1+2\sum\limits_{l=1}^{j-1}\cos\frac{2\pi u_{i_{b}}l}{m}\right)\prod\limits_{b>a}\left(1+2\sum\limits_{l=1}^{j}\cos\frac{2\pi u_{i_{b}}l}{m}\right).

For every 𝒖𝒞i\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}, we have that ui1u_{i_{1}} and ui2u_{i_{2}} are not all 0. Take 𝒖𝒞i\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}} whose ii-th block (ui1,ui2)(u_{i_{1}},u_{i_{2}}) has the form (ui1,ui2)=(1,0)(u_{i_{1}},u_{i_{2}})=(1,0). Since m\mathbb{Z}_{m} is a field, every element of m{0}\mathbb{Z}_{m}\setminus\{0\} appears same times at ui1u_{i_{1}}. Thus we have

𝒖𝒞i,ui2=0Zij𝒖\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}},u_{i_{2}}=0}Z_{ij}^{\boldsymbol{u}} =\displaystyle= 𝒖𝒞i,(ui1,ui2)=(1,0)[(2j+1)t=1m1cos2πtjm+t=1m1(1+2l=1j1cos2πtlm)]\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}},\atop(u_{i_{1}},u_{i_{2}})=(1,0)}\left[(2j+1)\sum\limits_{t=1}^{m-1}\cos\frac{2\pi tj}{m}+\sum\limits_{t=1}^{m-1}(1+2\sum\limits_{l=1}^{j-1}\cos\frac{2\pi tl}{m})\right]
=\displaystyle= 𝒖𝒞i,(ui1,ui2)=(1,0)[2j1+m1+2l=1j1t=1m1cos2πtlm]\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}},\atop(u_{i_{1}},u_{i_{2}})=(1,0)}\left[-2j-1+m-1+2\sum\limits_{l=1}^{j-1}\sum\limits_{t=1}^{m-1}\cos\frac{2\pi tl}{m}\right]
=\displaystyle= 𝒖𝒞i,(ui1,ui2)=(1,0)(m2j22j+2)\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}},\atop(u_{i_{1}},u_{i_{2}})=(1,0)}(m-2j-2-2j+2)
=\displaystyle= (m4j)|{𝒖𝒞i:(ui1,ui2)=(1,0)}|.\displaystyle(m-4j)\cdot\left|\left\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(1,0)\right\}\right|.

One can prove that 𝒖𝒞i,ui1=0Zij=(m4j)|{𝒖𝒞i:(ui1,ui2)=(0,1)}|\sum\limits_{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}},u_{i_{1}}=0}Z_{ij}=(m-4j)\cdot\left|\left\{\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}}:(u_{i_{1}},u_{i_{2}})=(0,1)\right\}\right| in the same way.

Suppose 𝒖𝒞i\boldsymbol{u}\in\mathcal{C}_{i}^{{}^{\prime}} satisfies that neither ui10u_{i_{1}}\neq 0 nor ui20u_{i_{2}}\neq 0. With out loss of generality, we assume that (ui1,ui2)=(1,t)(u_{i_{1}},u_{i_{2}})=(1,t) where tm{0}t\in\mathbb{Z}_{m}\setminus\{0\}. Then

𝒗𝒖m{0};(ui1,ui2)=(1,t)Zij𝒗=\displaystyle\sum\limits_{\boldsymbol{v}\in\boldsymbol{u}\mathbb{Z}_{m}\setminus\{\textbf{0}\};\atop(u_{i_{1}},u_{i_{2}})=(1,t)}Z_{ij}^{\boldsymbol{v}}= r=1m1cos2πrjm(1+2l=1jcos2πrtlm)+r=1m1cos2πrtjm(1+2l=1j1cos2πrlm)\displaystyle\sum\limits_{r=1}^{m-1}\cos\frac{2\pi rj}{m}\left(1+2\sum\limits_{l=1}^{j}\cos\frac{2\pi rtl}{m}\right)+\sum\limits_{r=1}^{m-1}\cos\frac{2\pi rtj}{m}\left(1+2\sum\limits_{l=1}^{j-1}\cos\frac{2\pi rl}{m}\right)
=\displaystyle= r=1m1[cos2πrjmei2πrtjmei2πrt(j+1)m1ei2πrtm+cos2πrtjmei2πr(j1)mei2πrjm1ei2πrm]\displaystyle\sum\limits_{r=1}^{m-1}\left[\cos\frac{2\pi rj}{m}\frac{e^{-i\frac{2\pi rtj}{m}}-e^{i\frac{2\pi rt(j+1)}{m}}}{1-e^{i\frac{2\pi rt}{m}}}+\cos\frac{2\pi rtj}{m}\frac{e^{-i\frac{2\pi r(j-1)}{m}}-e^{i\frac{2\pi rj}{m}}}{1-e^{i\frac{2\pi r}{m}}}\right]
=\displaystyle= r=1m1σr(ωj+ωj2ωtjωt(j+1)1ωt)+r=1m1σr(ωtj+ωtj2ω(j1)ωj1ω),\displaystyle\sum\limits_{r=1}^{m-1}\sigma_{r}\left(\frac{\omega^{j}+\omega^{-j}}{2}\frac{\omega^{-tj}-\omega^{t(j+1)}}{1-\omega^{t}}\right)+\sum\limits_{r=1}^{m-1}\sigma_{r}\left(\frac{\omega^{tj}+\omega^{-tj}}{2}\frac{\omega^{-(j-1)}-\omega^{j}}{1-\omega}\right), (3.3)

where ω=ei2πm\omega=e^{i\frac{2\pi}{m}} and {σr:1rm1}\{\sigma_{r}:1\leq r\leq m-1\} is the Galois group of mm-th cyclotomic field (ω)\mathbb{Q}(\omega). Note that 𝒗𝒖m{0};(ui1,ui2)=(1,t)Zij𝒗=𝒗𝒖m{0};(ui1,ui2)=(1,t)Zij𝒗\sum\limits_{\boldsymbol{v}\in\boldsymbol{u}\mathbb{Z}_{m}\setminus\{\textbf{0}\};\atop(u_{i_{1}},u_{i_{2}})=(1,t)}Z_{ij}^{\boldsymbol{v}}=\sum\limits_{\boldsymbol{v}\in\boldsymbol{u}\mathbb{Z}_{m}\setminus\{\textbf{0}\};\atop(u_{i_{1}},u_{i_{2}})=(1,-t)}Z_{ij}^{\boldsymbol{v}}. The first summation in (3) becomes

12r=1m1σr((ωj+ωj)ωtj(1+ωt+ω2t++ω2jt))\displaystyle\frac{1}{2}\sum\limits_{r=1}^{m-1}\sigma_{r}\left(\left(\omega^{j}+\omega^{-j})\omega^{-tj}(1+\omega^{t}+\omega^{2t}+\cdots+\omega^{2jt}\right)\right)
=\displaystyle= 12r=1m1σr(k=02jωjtj+kt+k=02jωjtj+kt)\displaystyle\frac{1}{2}\sum\limits_{r=1}^{m-1}\sigma_{r}\left(\sum\limits_{k=0}^{2j}\omega^{j-tj+kt}+\sum\limits_{k=0}^{2j}\omega^{-j-tj+kt}\right)
=\displaystyle= k=02jr=1m1σr(ωjtj+kt).\displaystyle\sum\limits_{k=0}^{2j}\sum\limits_{r=1}^{m-1}\sigma_{r}\left(\omega^{j-tj+kt}\right).

The second summation in (3) becomes

12r=1m1σr((ωtj+ωtj)ω(j1)(1+ω+ω2++ω2j2))\displaystyle\frac{1}{2}\sum\limits_{r=1}^{m-1}\sigma_{r}\left((\omega^{tj}+\omega^{-tj})\omega^{-(j-1)}(1+\omega+\omega^{2}+\cdots+\omega^{2j-2})\right)
=\displaystyle= 12r=1m1σr(k=12j1ωtjj+k+k=12j1ωtjj+k)\displaystyle\frac{1}{2}\sum\limits_{r=1}^{m-1}\sigma_{r}\left(\sum\limits_{k=1}^{2j-1}\omega^{tj-j+k}+\sum\limits_{k=1}^{2j-1}\omega^{-tj-j+k}\right)
=\displaystyle= k=12j1r=1m1σr(ωtjj+k).\displaystyle\sum\limits_{k=1}^{2j-1}\sum\limits_{r=1}^{m-1}\sigma_{r}(\omega^{tj-j+k}).

Hence

𝒗𝒖m{0};(ui1,ui2)=(1,t)Zij𝒗=k=02jr=1m1σr(ωjtj+kt)+k=12j1r=1m1σr(ωtjj+k).\sum\limits_{\boldsymbol{v}\in\boldsymbol{u}\mathbb{Z}_{m}\setminus\{\textbf{0}\};\atop(u_{i_{1}},u_{i_{2}})=(1,t)}Z_{ij}^{\boldsymbol{v}}=\sum\limits_{k=0}^{2j}\sum\limits_{r=1}^{m-1}\sigma_{r}(\omega^{j-tj+kt})+\sum\limits_{k=1}^{2j-1}\sum\limits_{r=1}^{m-1}\sigma_{r}(\omega^{tj-j+k}).

It follows from this observation that

𝒗𝒖m{𝟎};(ui1,ui2)=(1,±t)Zij𝒗={2m4j,ift𝒞ij1;4j,ift𝒞ij2;m4j,ift𝒞i𝒞ij1𝒞ij2.\sum\limits_{\boldsymbol{v}\in\boldsymbol{u}\mathbb{Z}_{m}\setminus\{\boldsymbol{0}\};\atop(u_{i_{1}},u_{i_{2}})=(1,\pm t)}Z_{ij}^{\boldsymbol{v}}=\left\{\begin{array}[]{ll}2m-4j,&\text{if}\ t\in\mathcal{C}_{ij}^{1};\\[5.69054pt] -4j,&\text{if}\ t\in\mathcal{C}_{ij}^{2};\\[5.69054pt] m-4j,&\text{if}\ t\in\mathcal{C}_{i}^{{}^{\prime}}\setminus\mathcal{C}_{ij}^{1}\cup\mathcal{C}_{ij}^{2}.\end{array}\right.

The result then follows. ∎

Example 3.3.

Let M={2/1,2/2}M=\{2/1,2/2\} and =(M,R)\mathbb{P}=(M,R) be a pomset whose order relation is chain relation. Let π\pi be a labeling of the pomset \mathbb{P} such that π(1)=π(2)=2\pi(1)=\pi(2)=2. Consider the (,π)(\mathbb{P},\pi)-code 𝒞54\mathcal{C}\subseteq\mathbb{Z}_{5}^{4} generated by the following matrix:

(10110120).\left(\begin{array}[]{cccc}1&0&1&1\\ 0&1&2&0\end{array}\right).

Then it follows from Corollary 3.1 that

W(𝒞,π)(x,y;~)=x4+i=122×542i25x2iy42ij=12(yx)j[4j|𝒞i|+(104j)|𝒞ij1|4j|𝒞ij2|+(54j)|𝒞ij3|].W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{4}+\sum\limits_{i=1}^{2}\frac{2\times 5^{4-2i}}{25}x^{2i}y^{4-2i}\sum\limits_{j=1}^{2}\left(\frac{y}{x}\right)^{j}\left[4j|\mathcal{C}_{i}|+(10-4j)|\mathcal{C}_{ij}^{1}|-4j|\mathcal{C}_{ij}^{2}|+(5-4j)|\mathcal{C}_{ij}^{3}|\right].

Note that 𝒞1=𝒞2={000}\mathcal{C}_{1}=\mathcal{C}_{2}=\{000\}; 𝒞111=𝒞112=𝒞113=𝒞121=𝒞122=𝒞123=𝒞211=𝒞222=\mathcal{C}_{11}^{1}=\mathcal{C}_{11}^{2}=\mathcal{C}_{11}^{3}=\mathcal{C}_{12}^{1}=\mathcal{C}_{12}^{2}=\mathcal{C}_{12}^{3}=\mathcal{C}_{21}^{1}=\mathcal{C}_{22}^{2}=\emptyset; 𝒞212={2212,3413}\mathcal{C}_{21}^{2}=\{2212,3413\}; 𝒞213={1011,4114,0310,1201}\mathcal{C}_{21}^{3}=\{1011,4114,0310,1201\}; 𝒞221={2212,3413}\mathcal{C}_{22}^{1}=\{2212,3413\}; 𝒞223={1011,0310,1201,4114}\mathcal{C}_{22}^{3}=\{1011,0310,1201,4114\}. Hence

W(𝒞,π)(x,y;~)\displaystyle W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}}) =\displaystyle= x4+2x2y2[4(yx)+8(yx)2]+\displaystyle x^{4}+2x^{2}y^{2}\left[4\left(\frac{y}{x}\right)+8\left(\frac{y}{x}\right)^{2}\right]+
225x4[(yx)(4+6|𝒞211|4|𝒞212|+|𝒞213|)+(yx)2(8+2|𝒞221|8|𝒞222|3|𝒞223|]\displaystyle\frac{2}{25}x^{4}\left[\left(\frac{y}{x}\right)(4+6|\mathcal{C}_{21}^{1}|-4|\mathcal{C}_{21}^{2}|+|\mathcal{C}_{21}^{3}|)+\left(\frac{y}{x}\right)^{2}(8+2|\mathcal{C}_{22}^{1}|-8|\mathcal{C}_{22}^{2}|-3|\mathcal{C}_{22}^{3}|\right]
=\displaystyle= x4+8xy3+16y4+2x425[(yx)(44×2+4)+(yx)2(8+2×23×4)]\displaystyle x^{4}+8xy^{3}+16y^{4}+\frac{2x^{4}}{25}\left[\left(\frac{y}{x}\right)(4-4\times 2+4)+\left(\frac{y}{x}\right)^{2}(8+2\times 2-3\times 4)\right]
=\displaystyle= x4+8xy3+16y4.\displaystyle x^{4}+8xy^{3}+16y^{4}.

On the other hand, the dual of 𝒞\mathcal{C} is

𝒞=\displaystyle\mathcal{C}^{\bot}= {1004,2003,3002,4001,0123,0241,0314,0432,1122,2244,3311,4433,\displaystyle\{1004,2003,3002,4001,0123,0241,0314,0432,1122,2244,3311,4433,
1240,2430,3120,4310,1313,2121,3434,4242,1431,2312,3243,4124}\displaystyle 1240,2430,3120,4310,1313,2121,3434,4242,1431,2312,3243,4124\}

and the (~,π)(\widetilde{\mathbb{P}},\pi)-weight enumerator of 𝒞\mathcal{C}^{\bot} is

W(𝒞,π)(x,y;~)=x4+8xy3+16y4,W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=x^{4}+8xy^{3}+16y^{4},

which coincides with Corollary 3.1. \hfill\square

4 MacWilliams type identities on direct and ordinal sum of general pomsets

For i{1,2}i\in\{1,2\}, let (i,πi)(\mathbb{P}_{i},\pi_{i}) be a pomset block structure over [si][s_{i}] where πi:[si]\pi_{i}:[s_{i}]\rightarrow\mathbb{N} is a map such that j=1siπi(j)=ni\sum\limits_{j=1}^{s_{i}}\pi_{i}(j)=n_{i} and i=(Mi,Ri)\mathbb{P}_{i}=(M_{i},R_{i}) with Mi={m2/1,,m2/ni}M_{i}=\{\lfloor\frac{m}{2}\rfloor/1,\ldots,\lfloor\frac{m}{2}\rfloor/n_{i}\}. Denote by n=n1+n2n=n_{1}+n_{2}. Suppose that 𝒞i\mathcal{C}_{i} is a linear (i,πi)(\mathbb{P}_{i},\pi_{i})-code. The direct sum of 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2} denoted by 𝒞=𝒞1𝒞2\mathcal{C}=\mathcal{C}_{1}\oplus\mathcal{C}_{2} is given by

𝒞={(𝒖,𝒗):𝒖𝒞1,𝒗𝒞2}.\mathcal{C}=\{(\boldsymbol{u,v}):\boldsymbol{u}\in\mathcal{C}_{1},\boldsymbol{v}\in\mathcal{C}_{2}\}.

Note that 𝒞\mathcal{C} is also a submodule of VV.

Let M=[m2/1,,m2/n1,m2/(n1+1),,m2/(n1+n2)]M=\left[\lfloor\frac{m}{2}\rfloor/1,\cdots,\lfloor\frac{m}{2}\rfloor/n_{1},\lfloor\frac{m}{2}\rfloor/(n_{1}+1),\ldots,\lfloor\frac{m}{2}\rfloor/(n_{1}+n_{2})\right]. Define a pomset relation RR on MM in the following way:

p/iRq/j(i,jn1andp/iR1q/j)or(i,j>n1andp/(in1)R2q/(jn1)).p/i\ R\ q/j\Leftrightarrow\left(i,j\leq n_{1}\ \text{and}\ p/i\ R_{1}\ q/j\right)\ \text{or}\ \left(i,j>n_{1}\ \text{and}\ p/(i-n_{1})\ R_{2}\ q/(j-n_{1})\right).

for any p/ip/i, q/jMq/j\in M. It is clear that =(M,R)\mathbb{P}=(M,R) is a pomset and is called as direct sum of 1\mathbb{P}_{1} and 2\mathbb{P}_{2} denoted by =12\mathbb{P}=\mathbb{P}_{1}\oplus\mathbb{P}_{2}.

Define a pomset relation RR on MM as:

p/iRq/j(i,jn1andp/iR1q/j)or(i,j>n1andp/(in1)R2q/(jn1))or(in1<j)p/i\ R\ q/j\Leftrightarrow\left(i,j\leq n_{1}\ \text{and}\ p/i\ R_{1}\ q/j\right)\ \text{or}\ \left(i,j>n_{1}\ \text{and}\ p/(i-n_{1})\ R_{2}\ q/(j-n_{1})\right)\ \text{or}\ \left(i\leq n_{1}<j\right)

for any p/ip/i, q/jMq/j\in M. Then =(M,R)\mathbb{P}=(M,R) is a pomset and is called as ordinal sum of 1\mathbb{P}_{1} and 2\mathbb{P}_{2} denoted by =1+2\mathbb{P}=\mathbb{P}_{1}+\mathbb{P}_{2}. See [References] for detailed discussion on sum of pomsets.

With these definitions, we have that 12~=~1~2\widetilde{\mathbb{P}_{1}\oplus\mathbb{P}_{2}}=\widetilde{\mathbb{P}}_{1}\oplus\widetilde{\mathbb{P}}_{2} and 1+2~=~2+~1\widetilde{\mathbb{P}_{1}+\mathbb{P}_{2}}=\widetilde{\mathbb{P}}_{2}+\widetilde{\mathbb{P}}_{1}. Define the sum of π1\pi_{1} and π2\pi_{2} denoted by π=π1π2\pi=\pi_{1}\oplus\pi_{2} as π:[s1+s2]\pi:[s_{1}+s_{2}]\rightarrow\mathbb{N} such that

π(i)={π1(i)ifin1;π2(in1)ifi>n1.\pi(i)=\left\{\begin{array}[]{ll}\pi_{1}(i)&\text{if}\ i\leq n_{1};\\[5.69054pt] \pi_{2}(i-n_{1})&\text{if}\ i>n_{1}.\end{array}\right.

We now consider the code 𝒞\mathcal{C} equipped with (12,π)(\mathbb{P}_{1}\oplus\mathbb{P}_{2},\pi) and (1+2,π)(\mathbb{P}_{1}+\mathbb{P}_{2},\pi) block structures respectively.

With notations introduced above, we obtain the following result.

Theorem 2.

(1) For a linear (12,π)(\mathbb{P}_{1}\oplus\mathbb{P}_{2},\pi)-code 𝒞=𝒞1𝒞2\mathcal{C}=\mathcal{C}_{1}\oplus\mathcal{C}_{2}, we have

W(𝒞,π)(x,y;12~)=W(𝒞1,π1)(x,y;~1)W(𝒞2,π2)(x,y;~2).W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}_{1}\oplus\mathbb{P}_{2}})=W_{(\mathcal{C}_{1}^{\bot},\pi_{1})}(x,y;\widetilde{\mathbb{P}}_{1})W_{(\mathcal{C}_{2}^{\bot},\pi_{2})}(x,y;\widetilde{\mathbb{P}}_{2}).

(2) For a linear (1+2,π)(\mathbb{P}_{1}+\mathbb{P}_{2},\pi)-code 𝒞=𝒞1𝒞2\mathcal{C}=\mathcal{C}_{1}\oplus\mathcal{C}_{2}, we have

W(𝒞,π)(x,y;1+2~)=xs1m2W(𝒞2,π2)(x,y;~2)+mn2|𝒞2|ys2m2(W(𝒞1,π1)(x,y;~1)xs1m2).W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}_{1}+\mathbb{P}_{2}})=x^{s_{1}\lfloor\frac{m}{2}\rfloor}W_{(\mathcal{C}_{2}^{\bot},\pi_{2})}(x,y;\widetilde{\mathbb{P}}_{2})+\frac{m^{n_{2}}}{|\mathcal{C}_{2}|}y^{s_{2}\lfloor\frac{m}{2}\rfloor}\left(W_{(\mathcal{C}_{1}^{\bot},\pi_{1})}(x,y;\widetilde{\mathbb{P}}_{1})-x^{s_{1}\lfloor\frac{m}{2}\rfloor}\right).
Proof.

Set =12\mathbb{P}=\mathbb{P}_{1}\oplus\mathbb{P}_{2}. Define a function f:mn[x,y]f:\mathbb{Z}_{m}^{n}\rightarrow\mathbb{C}[x,y] by

f(𝒖)=x(s1+s2)m2w(~,π)(𝒖)yw(~,π)(𝒖).f(\boldsymbol{u})=x^{(s_{1}+s_{2})\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{u})}y^{w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{u})}.

Then the Fourier transform f^\hat{f} of ff is

f^(𝒖)=(𝒗𝟏,𝒗𝟐)mnχ(𝒖𝒗)x(s1+s2)m2w(~,π)(𝒗)yw(~,π)(𝒗).\hat{f}(\boldsymbol{u})=\sum\limits_{(\boldsymbol{v_{1},v_{2}})\in\mathbb{Z}_{m}^{n}}\chi(\boldsymbol{u}\cdot\boldsymbol{v})x^{(s_{1}+s_{2})\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{v})}y^{w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{v})}.

The (~,π)(\widetilde{\mathbb{P}},\pi)-weight enumerator of 𝒞\mathcal{C}^{\bot} is

W(𝒞,π)(x,y;~)=𝒖𝒞f(𝒖)=1|𝒞|𝒖𝒞f^(𝒖)\displaystyle W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=\sum\limits_{\boldsymbol{u}\in\mathcal{C}^{\bot}}f(\boldsymbol{u})=\frac{1}{|\mathcal{C}|}\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\hat{f}(\boldsymbol{u})
=\displaystyle= 1|𝒞|𝒖𝒞(𝒗𝟏,𝒗𝟐)mnχ(𝒖𝒗)x(s1+s2)m2w(~,π)(𝒗)yw(~,π)(𝒗)\displaystyle\frac{1}{|\mathcal{C}|}\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\sum\limits_{(\boldsymbol{v_{1},v_{2}})\in\mathbb{Z}_{m}^{n}}\chi(\boldsymbol{u}\cdot\boldsymbol{v})x^{(s_{1}+s_{2})\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{v})}y^{w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{v})}
=\displaystyle= 1|𝒞|𝒖𝒞𝒗mnχ(𝒖𝟏𝒗𝟏)χ(𝒖𝟐𝒗𝟐)x(s1+s2)m2w(~1,π1)(𝒗𝟏)w(~2,π2)(𝒗𝟐)yw(~1,π1)(𝒗𝟏)+w(~2,π2)(𝒗𝟐)\displaystyle\frac{1}{|\mathcal{C}|}\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\sum\limits_{\boldsymbol{v}\in\mathbb{Z}_{m}^{n}}\chi(\boldsymbol{u_{1}}\cdot\boldsymbol{v_{1}})\chi(\boldsymbol{u_{2}}\cdot\boldsymbol{v_{2}})x^{(s_{1}+s_{2})\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})-w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}y^{w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})+w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}
=\displaystyle= i=121|𝒞i|𝒖𝒊𝒞i𝒗𝒊mniχ(𝒖𝒊𝒗𝒊)xsim2w(~i,πi)(𝒗𝒊)yw(~i,πi)(𝒗𝒊)\displaystyle\prod\limits_{i=1}^{2}\frac{1}{|\mathcal{C}_{i}|}\sum\limits_{\boldsymbol{u_{i}}\in\mathcal{C}_{i}}\sum\limits_{\boldsymbol{v_{i}}\in\mathbb{Z}_{m}^{n_{i}}}\chi(\boldsymbol{u_{i}}\cdot\boldsymbol{v_{i}})x^{s_{i}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{i},\pi_{i})}(\boldsymbol{v_{i}})}y^{w_{(\widetilde{\mathbb{P}}_{i},\pi_{i})}(\boldsymbol{v_{i}})}
=\displaystyle= W(𝒞1,π1)(x,y;~1)W(𝒞2,π2)(x,y;~2).\displaystyle W_{(\mathcal{C}_{1}^{\bot},\pi_{1})}(x,y;\widetilde{\mathbb{P}}_{1})W_{(\mathcal{C}_{2}^{\bot},\pi_{2})}(x,y;\widetilde{\mathbb{P}}_{2}).

If =1+2\mathbb{P}=\mathbb{P}_{1}+\mathbb{P}_{2}, then

𝒖𝒞f^(𝒖)\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\hat{f}(\boldsymbol{u}) =\displaystyle= 𝒖𝒞(𝒗𝟏,𝒗𝟐)mnχ(𝒖𝒗)x(s1+s2)m2w(~,π)(𝒗)yw(~,π)(𝒗)\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\sum\limits_{(\boldsymbol{v_{1},v_{2}})\in\mathbb{Z}_{m}^{n}}\chi(\boldsymbol{u}\cdot\boldsymbol{v})x^{(s_{1}+s_{2})\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{v})}y^{w_{(\widetilde{\mathbb{P}},\pi)}(\boldsymbol{v})} (4.1)
=\displaystyle= 𝒖𝒞[(0,𝒗𝟐)mnχ(𝒖𝟐𝒗𝟐)x(s1+s2)m2w(~2,π2)(𝒗𝟐)yw(~2,π2)(𝒗𝟐)+\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\left[\sum\limits_{(\textbf{0},\boldsymbol{v_{2}})\in\mathbb{Z}_{m}^{n}}\chi(\boldsymbol{u_{2}}\cdot\boldsymbol{v_{2}})x^{(s_{1}+s_{2})\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}y^{w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}+\right.
(𝒗𝟏,𝒗𝟐)mn𝒗𝟏𝟎χ(𝒖𝟏𝒗𝟏)χ(𝒖𝟐𝒗𝟐)x(s1+s2)m2w(~1,π1)(𝒗𝟏)s2m2yw(~1,π1)(𝒗𝟏)+s2m2]\displaystyle\left.\sum\limits_{(\boldsymbol{v_{1},v_{2}})\in\mathbb{Z}_{m}^{n}\atop\boldsymbol{v_{1}}\neq\boldsymbol{0}}\chi(\boldsymbol{u_{1}}\cdot\boldsymbol{v_{1}})\chi(\boldsymbol{u_{2}}\cdot\boldsymbol{v_{2}})x^{(s_{1}+s_{2})\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})-s_{2}\lfloor\frac{m}{2}\rfloor}y^{w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})+s_{2}\lfloor\frac{m}{2}\rfloor}\right]
=\displaystyle= 𝒖𝒞xs1m2𝒗𝟐mn2χ(𝒖𝟐𝒗𝟐)xs2m2w(~2,π2)(𝒗𝟐)yw(~2,π2)(𝒗𝟐)+\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}}x^{s_{1}\lfloor\frac{m}{2}\rfloor}\sum\limits_{\boldsymbol{v_{2}}\in\mathbb{Z}_{m}^{n_{2}}}\chi(\boldsymbol{u_{2}}\cdot\boldsymbol{v_{2}})x^{s_{2}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}y^{w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}+
𝒖𝒞ys2m2(𝒗𝟏,𝒗𝟐)mn𝒗𝟏𝟎χ(𝒖𝟏𝒗𝟏)χ(𝒖𝟐𝒗𝟐)xs1m2w(~1,π1)(𝒗𝟏)yw(~1,π1)(𝒗𝟏).\displaystyle\sum\limits_{\boldsymbol{u}\in\mathcal{C}}y^{s_{2}\lfloor\frac{m}{2}\rfloor}\sum\limits_{(\boldsymbol{v_{1},v_{2}})\in\mathbb{Z}_{m}^{n}\atop\boldsymbol{v_{1}}\neq\boldsymbol{0}}\chi(\boldsymbol{u_{1}}\cdot\boldsymbol{v_{1}})\chi(\boldsymbol{u_{2}}\cdot\boldsymbol{v_{2}})x^{s_{1}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}y^{w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}.

The first summation in (4.1) is

xs1m2(𝒖𝟏,𝒖𝟐)𝒞𝒗𝟐mn2χ(𝒖𝟐𝒗𝟐)xs2m2w(~2,π2)(𝒗𝟐)yw(~2,π2)(𝒗𝟐)\displaystyle x^{s_{1}\lfloor\frac{m}{2}\rfloor}\sum\limits_{(\boldsymbol{u_{1},u_{2}})\in\mathcal{C}}\sum\limits_{\boldsymbol{v_{2}}\in\mathbb{Z}_{m}^{n_{2}}}\chi(\boldsymbol{u_{2}}\cdot\boldsymbol{v_{2}})x^{s_{2}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}y^{w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}
=\displaystyle= |𝒞1|xs1m2𝒖𝟐𝒞2𝒗𝟐mn2χ(𝒖𝟐𝒗𝟐)xs2m2w(~2,π2)(𝒗𝟐)yw(~2,π2)(𝒗𝟐)\displaystyle|\mathcal{C}_{1}|x^{s_{1}\lfloor\frac{m}{2}\rfloor}\sum\limits_{\boldsymbol{u_{2}}\in\mathcal{C}_{2}}\sum\limits_{\boldsymbol{v_{2}}\in\mathbb{Z}_{m}^{n_{2}}}\chi(\boldsymbol{u_{2}}\cdot\boldsymbol{v_{2}})x^{s_{2}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}y^{w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}
=\displaystyle= |𝒞|xs1m2𝒗𝟐𝒞2xs2m2w(~2,π2)(𝒗𝟐)yw(~2,π2)(𝒗𝟐)\displaystyle|\mathcal{C}|x^{s_{1}\lfloor\frac{m}{2}\rfloor}\sum\limits_{\boldsymbol{v_{2}}\in\mathcal{C}_{2}^{\bot}}x^{s_{2}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}y^{w_{(\widetilde{\mathbb{P}}_{2},\pi_{2})}(\boldsymbol{v_{2}})}
=\displaystyle= |𝒞|xs1m2W(𝒞2,π2)(x,y;~2).\displaystyle|\mathcal{C}|x^{s_{1}\lfloor\frac{m}{2}\rfloor}W_{(\mathcal{C}_{2}^{\bot},\pi_{2})}(x,y;\widetilde{\mathbb{P}}_{2}).

The second summation in (4.1) is

ys2m2𝒖𝒞0𝒗𝟏mn1χ(𝒖𝟏𝒗𝟏)xs1m2w(~1,π1)(𝒗𝟏)yw(~1,π1)(𝒗𝟏)𝒗𝟐mn2χ(𝒖𝟐𝒗𝟐)\displaystyle y^{s_{2}\lfloor\frac{m}{2}\rfloor}\sum\limits_{\boldsymbol{u}\in\mathcal{C}}\sum\limits_{\textbf{0}\neq\boldsymbol{v_{1}}\in\mathbb{Z}_{m}^{n_{1}}}\chi(\boldsymbol{u_{1}}\cdot\boldsymbol{v_{1}})x^{s_{1}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}y^{w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}\sum\limits_{\boldsymbol{v_{2}}\in\mathbb{Z}_{m}^{n_{2}}}\chi(\boldsymbol{u_{2}}\cdot\boldsymbol{v_{2}})
=\displaystyle= mn2ys2m2(𝒖𝟏,0)𝒞0𝒗𝟏mn1χ(𝒖𝟏𝒗𝟏)xs1m2w(~1,π1)(𝒗𝟏)yw(~1,π1)(𝒗𝟏)\displaystyle m^{n_{2}}y^{s_{2}\lfloor\frac{m}{2}\rfloor}\sum\limits_{(\boldsymbol{u_{1}},\textbf{0})\in\mathcal{C}}\sum\limits_{\textbf{0}\neq\boldsymbol{v_{1}}\in\mathbb{Z}_{m}^{n_{1}}}\chi(\boldsymbol{u_{1}}\cdot\boldsymbol{v_{1}})x^{s_{1}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}y^{w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}
=\displaystyle= mn2ys2m2𝒖𝟏𝒞1(𝒗𝟏mn1χ(𝒖𝟏𝒗𝟏)xs1m2w(~1,π1)(𝒗𝟏)yw(~1,π1)(𝒗𝟏)xs1m2)\displaystyle m^{n_{2}}y^{s_{2}\lfloor\frac{m}{2}\rfloor}\sum\limits_{\boldsymbol{u_{1}}\in\mathcal{C}_{1}}\left(\sum\limits_{\boldsymbol{v_{1}}\in\mathbb{Z}_{m}^{n_{1}}}\chi(\boldsymbol{u_{1}}\cdot\boldsymbol{v_{1}})x^{s_{1}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}y^{w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}-x^{s_{1}\lfloor\frac{m}{2}\rfloor}\right)
=\displaystyle= mn2ys2m2(|𝒞1|𝒗𝟏𝒞1xs1m2w(~1,π1)(𝒗𝟏)yw(~1,π1)(𝒗𝟏)|𝒞1|xs1m2)\displaystyle m^{n_{2}}y^{s_{2}\lfloor\frac{m}{2}\rfloor}\left(|\mathcal{C}_{1}|\sum\limits_{\boldsymbol{v_{1}}\in\mathcal{C}_{1}^{\bot}}x^{s_{1}\lfloor\frac{m}{2}\rfloor-w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}y^{w_{(\widetilde{\mathbb{P}}_{1},\pi_{1})}(\boldsymbol{v_{1}})}-|\mathcal{C}_{1}|x^{s_{1}\lfloor\frac{m}{2}\rfloor}\right)
=\displaystyle= |𝒞1|mn2ys2m2(W(𝒞1,π1)(x,y;~1)xs1m2).\displaystyle|\mathcal{C}_{1}|m^{n_{2}}y^{s_{2}\lfloor\frac{m}{2}\rfloor}\left(W_{(\mathcal{C}_{1}^{\bot},\pi_{1})}(x,y;\widetilde{\mathbb{P}}_{1})-x^{s_{1}\lfloor\frac{m}{2}\rfloor}\right).

Hence

W(𝒞,π)(x,y;~)=1|𝒞|u𝒞f^(u)=xs1m2W(𝒞2,π2)(x,y;~2)+mn2|𝒞2|ys2m2(W(𝒞1,π1)(x,y;~1)xs1m2).W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=\frac{1}{|\mathcal{C}|}\sum\limits_{u\in\mathcal{C}}\hat{f}(u)=x^{s_{1}\lfloor\frac{m}{2}\rfloor}W_{(\mathcal{C}_{2}^{\bot},\pi_{2})}(x,y;\widetilde{\mathbb{P}}_{2})+\frac{m^{n_{2}}}{|\mathcal{C}_{2}|}y^{s_{2}\lfloor\frac{m}{2}\rfloor}\left(W_{(\mathcal{C}_{1}^{\bot},\pi_{1})}(x,y;\widetilde{\mathbb{P}}_{1})-x^{s_{1}\lfloor\frac{m}{2}\rfloor}\right).

Let 𝒞imni\mathcal{C}_{i}\subseteq\mathbb{Z}_{m}^{n_{i}} be a linear (i,πi)(\mathbb{P}_{i},\pi_{i})-code for i{1,2,,λ}i\in\{1,2,\ldots,\lambda\}. Let 𝒞=i=1λ𝒞i\mathcal{C}=\bigoplus\limits_{i=1}^{\lambda}\mathcal{C}_{i} and π=i=1λπi\pi=\bigoplus\limits_{i=1}^{\lambda}\pi_{i}. By the induction on λ\lambda, we obtain the following result.

Theorem 3.
  1. (1)

    If =i=1λi\mathbb{P}=\bigoplus\limits_{i=1}^{\lambda}\mathbb{P}_{i}, then 𝒞\mathcal{C} is a linear (,π)(\mathbb{P},\pi)-code and

    W(𝒞,π)(x,y;~)=i=1λW(𝒞i,πi)(x,y;~i).W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}})=\prod\limits_{i=1}^{\lambda}W_{(\mathcal{C}_{i}^{\bot},\pi_{i})}(x,y;\widetilde{\mathbb{P}}_{i}).
  2. (2)

    Set s=s1++sλs=s_{1}+\cdots+s_{\lambda}. If =1+2++λ\mathbb{P}=\mathbb{P}_{1}+\mathbb{P}_{2}+\cdots+\mathbb{P}_{\lambda}, then 𝒞\mathcal{C} is a linear (,π)(\mathbb{P},\pi)-code and

    W(𝒞,π)(x,y;~)\displaystyle W_{(\mathcal{C}^{\bot},\pi)}(x,y;\widetilde{\mathbb{P}}) =\displaystyle= xs1++sλ1m2W(𝒞λ,πλ)(x,y;~λ)+\displaystyle x^{s_{1}+\cdots+s_{\lambda-1}\lfloor\frac{m}{2}\rfloor}W_{(\mathcal{C}_{\lambda}^{\bot},\pi_{\lambda})}(x,y;\widetilde{\mathbb{P}}_{\lambda})+
    i=1λmni+1++nλysi+1++sλ|𝒞i+1||𝒞λ|xsi++sλs(W(𝒞i,πi)(x,y;~i)xsim2).\displaystyle\prod\limits_{i=1}^{\lambda}\frac{m^{n_{i+1}+\cdots+n_{\lambda}}y^{s_{i+1}+\cdots+s_{\lambda}}}{|\mathcal{C}_{i+1}|\cdots|\mathcal{C}_{\lambda}|x^{s_{i}+\cdots+s_{\lambda}-s}}\left(W_{(\mathcal{C}_{i}^{\bot},\pi_{i})}(x,y;\widetilde{\mathbb{P}}_{i})-x^{s_{i}\lfloor\frac{m}{2}\rfloor}\right).
Remark 4.1.

When the structure of blocks are trivial (that is, π(i)=1\pi(i)=1 for i[s]i\in[s]), then we have the result for pomset metric stated in [References].

5 Conclusion

In this paper, we consider the relation between the weight enumerators of a code and its dual when the pomset is a chain pomset. Note that when the metric is taken to be poset metric over 𝔽qn\mathbb{F}_{q}^{n} where 𝔽q\mathbb{F}_{q} is a finite field, it is known that a poset PP admits the MacWilliams identity if and only if PP is a hierarchical poset (see [References]) . Further, when the metric is considered to be a poset block metric over 𝔽qn\mathbb{F}_{q}^{n}, it is known that a poset-block space admits a MacWilliams type identity if and only if the poset is hierarchical, and at any level of the poset, all the blocks have the same dimension (see [References]). Nevertheless, being a chain pomset can not be a necessary and sufficient condition for a pomset to admit the MacWilliams identity.

Based on these observations, a natural question is brought up: is hierarchical a necessary condition for a pomset =(M,R)\mathbb{P}=(M,R) to admit the MacWilliams identity (here hierarchical pomset means that MM can be partitioned into ll nonempty anti-chains in \mathbb{P}, say, (A1,,Al)(A_{1},\ldots,A_{l}), such that for any i,j[s]i,j\in[s] with i<ji<j, it holds that p/aRq/bp/a\ R\ q/b for all aAia\in A_{i} and bAjb\in A_{j}) ?

References

  • [1] M.M.S. Alves, L. Panek, M. Firer, Error-block codes and poset metrics, Adv. Math. Commun. 2 (1) (2008) 95-111.
  • [2] R. Brualdi, J.S. Graves, M. Lawrence, Codes with a poset metric, Discrete Math. 147 (1) (1995) 57-72.
  • [3] K. Feng, L. Xu, F.J. Hickernell, Linear error-block codes, Finie Fields Appl. 12 (4) (2006) 638-652.
  • [4] K.P. Girish, S.J. John, General relations between partially ordered mulitisets and their chains and antichains, Math. Commun. 14 (2009) 193-205.
  • [5] K.P. Girish, S.J. John, Multiset topologies induced by multiset relations, Inf. Sci. 188 (2012) 298-313.
  • [6] H. K. Kim and D. Y. Oh, A Classfication of posets admitting the MacWilliams identity, IEEE Trans. Inf. Theory 51 (4) (2005) 1424-1431.
  • [7] R.A. Machado, M. Firer, Weightd which respect support and NN-decoding, IEEE Trans. Inf. Theory 66 (6) (2020) 3664-3674.
  • [8] F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting codes, North-Holland, Amsterdam, 1977.
  • [9] J. A. Pinheiro and M. Firer, Classification of poset-block spaces admitting MacWilliams-type Identity, IEEE Trans. Inf. Theory 58 (12) (2012) 7246-7252.
  • [10] L. Panek and J.A. Pinheiro, General approach to poset and additive metrics, IEEE Trans. Inf. Theory 68 (4) (2020) 6823-6834.
  • [11] I. G. Sudha and R. S. Selvaraj, Codes with a pomset metric and constructions, Des. Codes Cryptogr. 86 (4) (2018) 875-892.
  • [12] I. G. Sudha and R. S. Selvaraj, MacWilliams type identities for linear codes on certain pomsets: Chain, direct and ordinal sum of pomsets, Discrete Math. 343 (2020) 111782.
  • [13] J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999) 555-575.
  • [14]