This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Luminosity and beam-beam tune shifts with crossing angle and hourglass effects in e+-e- colliders

Tanaji Sen
Accelerator Division, Fermilab
Batavia, IL 60510
Abstract

We develop theoretical expressions for the luminosity and beam-beam tune shifts in the presence of both a crossing angle and hourglass effects for the present and next generation of symmetric e+-e- colliders. The theory is applied to the design of the Fermilab site filler Higgs factory and to the FCC-ee collider.

1 Introduction

Introducing a crossing angle reduces both the luminosity and beam-beam tune shifts if no optics changes are made. The lowered beam-beam tune shifts however allow the possibility of further reducing the beta functions at the IP to increase the luminosity while keeping the beam-beam tune shifts within allowed limits. Specifically, in an e+-e- collider where βyβx\beta_{y}^{*}\ll\beta_{x}^{*}, a crossing angle in the horizontal plane allows a scheme where βx\beta_{x}^{*} is reduced sufficiently to increase the luminosity beyond values without a crossing angle. This has been investigated in recent designs of colliders such as Super KEKB [1], FCC-ee [2] etc. We include both the crossing angle and the hourglass effects on the luminosity and the beam-beam tune shifts. Analytic expressions for the combined effects do not appear to be available in the literature; instead they are approximated as acting independently. The only assumption in our treatment below is that of symmetric interaction region optics for the electrons and positrons so that the bunch sizes in all three dimensions are the same in both beams. After developing exact general expressions, we consider several limiting cases and show that they reduce to known forms where applicable. The purpose of this paper is to find appropriate combinations of the crossing angle and (βx,βy)(\beta_{x}^{*},\beta_{y}^{*}) which maximize the luminosity while restricting the beam-beam tune shifts to tolerable values.

We first apply the theory to the very preliminary design of a Higgs factory at Fermilab, called a site filler, and find parameters that increase the luminosity with a non-zero crossing angle. Next we apply the theory to the FCC-ee collider whose design is considerably more mature. We find that the luminosity in this design can also be increased with changes in the crossing angle and βx\beta_{x}^{*}.

2 Luminosity change with a crossing angle and hourglass effect

The relativistically invariant luminosity per bunch and unit time is [3]

=KfrevN+Ninftyinftyinftyinfty𝑑s𝑑t𝑑x𝑑yρ(xy,sct)ρ+(x,y,sct){\cal L}=Kf_{rev}N_{+}N_{-}\int_{-\infty}^{infty}\int_{-\infty}^{infty}\int_{-\infty}^{infty}\int_{-\infty}^{infty}ds\;dt\;dx\;dy\;\rho_{-}(xy,s-ct)\rho_{+}(x,y,s-ct) (2.1)

(N,ρN_{-},\rho_{-}), (N+,ρ+N_{+},\rho_{+}) are the (bunch intensities, three dimensional densities) of the electrons and positrons respectively and KK is a kinematic factor

K=(𝐯+𝐯)2(𝐯+×𝐯)𝟐c2K=\sqrt{({\bf v_{+}}-{\bf v_{-}})^{2}-\frac{(\bf v_{+}\times v_{-})^{2}}{c^{2}}} (2.2)

We assume that the electrons move along the positive ss direction and the positrons in the opposite direction. When the beams cross in the horizontal plane at a full angle of θC\theta_{C}, the coordinates in the two beam frames are

x\displaystyle x_{-} =\displaystyle= CCxSCs,s=CCs+SCx\displaystyle C_{C}x-S_{C}s,\;\;\;s_{-}=C_{C}s+S_{C}x
x+\displaystyle x_{+} =\displaystyle= CCxSCs,s+=CCs+SCx\displaystyle-C_{C}x-S_{C}s,\;\;\;s_{+}=-C_{C}s+S_{C}x (2.3)

where (x,s)(x,s) are the coordinates in the laboratory frame, CC=cos(θC/2),SC=sin(θC/2)C_{C}=\cos(\theta_{C}/2),S_{C}=\sin(\theta_{C}/2). The transverse velocities are orders of magnitude smaller than the longitudinal velocity (c\simeq c), so the only velocity components are the projections of the longitudinal velocity,

𝐯\displaystyle{\bf v_{-}} \displaystyle\equiv ddt(xx^+0y^+sz^)=(SCx^+0y^+CCz^)c\displaystyle\frac{d}{dt}(x_{-}\hat{x}+0\hat{y}+s_{-}\hat{z})=(-S_{C}\hat{x}+0\hat{y}+C_{C}\hat{z})c
𝐯+\displaystyle{\bf v_{+}} \displaystyle\equiv ddt(x+x^+0y^+s+z^)=(SCx^+0y^CCz^)c\displaystyle\frac{d}{dt}(x_{+}\hat{x}+0\hat{y}+s_{+}\hat{z})=(-S_{C}\hat{x}+0\hat{y}-C_{C}\hat{z})c
(𝐯𝐯+)2\displaystyle({\bf v_{-}}-{\bf v_{+}})^{2} =\displaystyle= (0x^+0y^+2CCz^)2c2=4CC2c2\displaystyle(0\hat{x}+0\hat{y}+2C_{C}\hat{z})^{2}c^{2}=4C_{C}^{2}c^{2}
(𝐯+×𝐯)\displaystyle(\bf v_{+}\times v_{-}) =\displaystyle= (0x^+2SCCCy^+0z^)c2\displaystyle(0\hat{x}+2S_{C}C_{C}\hat{y}+0\hat{z})c^{2}

where x^,y^,z^\hat{x},\hat{y},\hat{z} are unit vectors. Hence the kinematic factor is

K=c4CC24SC2CC2=2cCC2K=c\sqrt{4C_{C}^{2}-4S_{C}^{2}C_{C}^{2}}=2cC_{C}^{2} (2.4)

The normalized density of the electron and positron bunches are

ρ\displaystyle\rho_{-}\!\!\! =\displaystyle= 1(2π)3/2σxσyσsexp[(CCxSCs)22σx2y22σy2(CCs+SCxct)22σs2]\displaystyle\!\!\!\frac{1}{(2\pi)^{3/2}\sigma_{x-}\sigma_{y-}\sigma_{s-}}\exp\left[-\frac{(C_{C}x-S_{C}s)^{2}}{2\sigma_{x-}^{2}}-\frac{y^{2}}{2\sigma_{y-}^{2}}-\frac{(C_{C}s+S_{C}x-ct)^{2}}{2\sigma_{s-}^{2}}\right] (2.5)
ρ+\displaystyle\rho_{+}\!\!\!\!\!\! =\displaystyle= 1(2π)3/2σx+σy+σs+exp[(CCxSCs)22σx+2y22σy+2(SCxCCsct)22σs+2]\displaystyle\!\!\!\!\!\!\frac{1}{(2\pi)^{3/2}\sigma_{x+}\sigma_{y+}\sigma_{s+}}\exp\left[-\frac{(-C_{C}x-S_{C}s)^{2}}{2\sigma_{x+}^{2}}-\frac{y^{2}}{2\sigma_{y+}^{2}}-\frac{(S_{C}x-C_{C}s-ct)^{2}}{2\sigma_{s+}^{2}}\right] (2.6)

We assume that the bunches are symmetric at the IP so that the beam sizes in all 3 dimensions are matched, i.e.

σx+=σx,σy+=σy,σs+=σs=σs\sigma_{x+}^{*}=\sigma_{x-}^{*},\;\;\;\sigma_{y+}^{*}=\sigma_{y-}^{*},\;\;\;\sigma_{s+}=\sigma_{s-}=\sigma_{s} (2.7)

This assumption is true for equal high energy colliders that we consider but could be dropped to consider the more general case of asymmetric colliders. We ignore perturbative effects such as a non-zero dispersion or transverse offsets at the IP.

The beta functions depend only on the longitudinal coordinate ss in the lab frame, they do not depend on the coordinates in the beam frames. Thus

σx(s)\displaystyle\sigma_{x-}(s) =\displaystyle= σx+(s)=σx(s)=ϵx(βx+s2βx)=σx1+s2βx,2\displaystyle\sigma_{x+}(s)=\sigma_{x}(s)=\sqrt{\epsilon_{x}(\beta_{x}^{*}+\frac{s^{2}}{\beta_{x}^{*}})}=\sigma_{x}^{*}\sqrt{1+\frac{s^{2}}{\beta_{x}^{*,2}}} (2.8)
σy(s)\displaystyle\sigma_{y-}(s) =\displaystyle= σy+(s)=σy(s)=σy1+s2βy,2\displaystyle\sigma_{y+}(s)=\sigma_{y}(s)=\sigma_{y}^{*}\sqrt{1+\frac{s^{2}}{\beta_{y}^{*,2}}} (2.9)

Putting all the factors for the luminosity

\displaystyle{\cal L} =\displaystyle= 2cfrevN+NCC2(2π)3𝑑s𝑑t𝑑x𝑑y1σx(s)2σy(s)2σs2exp[(CCxSCs)22σx2]\displaystyle\frac{2cf_{rev}N_{+}N_{-}C_{C}^{2}}{(2\pi)^{3}}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}ds\;dt\;dx\;dy\;\frac{1}{\sigma_{x}(s)^{2}\sigma_{y}(s)^{2}\sigma_{s}^{2}}\exp[-\frac{(C_{C}x-S_{C}s)^{2}}{2\sigma_{x}^{2}}]
exp[y22σy2]exp[(CCs+SCxct)22σs2]exp[(CCxSCs)22σx2]exp[y22σy2]\displaystyle\exp[-\frac{y^{2}}{2\sigma_{y}^{2}}]\exp[-\frac{(C_{C}s+S_{C}x-ct)^{2}}{2\sigma_{s}^{2}}]\exp[-\frac{(-C_{C}x-S_{C}s)^{2}}{2\sigma_{x}^{2}}]\exp[-\frac{y^{2}}{2\sigma_{y}^{2}}]
exp[(CCsSCx+ct)22σs2]\displaystyle\exp[-\frac{(C_{C}s-S_{C}x+ct)^{2}}{2\sigma_{s}^{2}}]

The integrations over t,y,xt,y,x are straightforward. The last integration over ss is

dsσs1(1+s2βx2)(1+s2βx2)exp[CC2s2σs2SC2s2σx2]\displaystyle\int_{-\infty}^{\infty}\frac{ds}{\sigma_{s}}\;\frac{1}{\sqrt{(1+\frac{s^{2}}{\beta_{x}^{*2}})(1+\frac{s^{2}}{\beta_{x}^{*2}})}}\exp[-\frac{C_{C}^{2}s^{2}}{\sigma_{s}^{2}}-\frac{S_{C}^{2}s^{2}}{\sigma_{x}^{2}}]
=\displaystyle= 𝑑uexp[CCu2(1+TC2σs2/σx21+u2/(ux2))]1(1+u2ux2)(1+u2uy2)\displaystyle\int_{-\infty}^{\infty}du\;\exp[-C_{C}u^{2}(1+T_{C}^{2}\frac{\sigma_{s}^{2}/\sigma_{x}^{*2}}{1+u^{2}/(u_{x}^{2})})]\frac{1}{\sqrt{(1+\frac{u^{2}}{u_{x}^{2}})(1+\frac{u^{2}}{u_{y}^{2}})}}

where we defined

u=sσs,ux=βxσsuy=βyσsTC=tan(θC/2)u=\frac{s}{\sigma_{s}},\;\;\;u_{x}=\frac{\beta_{x}^{*}}{\sigma_{s}}\;\;\;u_{y}=\frac{\beta_{y}^{*}}{\sigma_{s}}\;\;\;T_{C}=\tan(\theta_{C}/2) (2.10)

Thus the general expression for the luminosity per bunch is

\displaystyle{\cal L} =\displaystyle= frevN+NCC4π3/2σxσy𝑑uexp[CC2u2(1+TC2σs2/σx21+u2/(ux2))]1(1+u2ux2)(1+u2uy2)\displaystyle\frac{f_{rev}N_{+}N_{-}C_{C}}{4\pi^{3/2}\sigma_{x}^{*}\sigma_{y}^{*}}\int_{-\infty}^{\infty}du\;\exp[-C_{C}^{2}u^{2}(1+T_{C}^{2}\frac{\sigma_{s}^{2}/\sigma_{x}^{*2}}{1+u^{2}/(u_{x}^{2})})]\frac{1}{\sqrt{(1+\frac{u^{2}}{u_{x}^{2}})(1+\frac{u^{2}}{u_{y}^{2}})}}

and the general correction factor is

RL\displaystyle R_{L}\!\!\! \displaystyle\equiv 0\displaystyle\frac{\cal L}{\cal L_{0}}
=\displaystyle= CCπ𝑑uexp[cos2(θC/2)u2(1+tan2(θC/2)σs2/σx21+u2/(ux2))]1(1+u2ux2)(1+u2uy2)\displaystyle\!\!\!\frac{C_{C}}{\sqrt{\pi}}\int_{-\infty}^{\infty}du\;\exp[-\cos^{2}(\theta_{C}/2)u^{2}(1+\tan^{2}(\theta_{C}/2)\frac{\sigma_{s}^{2}/\sigma_{x}^{*2}}{1+u^{2}/(u_{x}^{2})})]\frac{1}{\sqrt{(1+\frac{u^{2}}{u_{x}^{2}})(1+\frac{u^{2}}{u_{y}^{2}})}}

Limiting cases

  1. 1.

    No crossing angle or hourglass

    Setting CC=1,TC=0C_{C}=1,T_{C}=0 and ux,uyu_{x},u_{y}\to\infty, we have

    =frevN+N4π3/2σxσy𝑑uexp[u2]=frevN+N4πσxσy{\cal L}=\frac{f_{rev}N_{+}N_{-}}{4\pi^{3/2}\sigma_{x}^{*}\sigma_{y}^{*}}\int_{-\infty}^{\infty}du\;\exp[-u^{2}]=\frac{f_{rev}N_{+}N_{-}}{4\pi\sigma_{x}^{*}\sigma_{y}^{*}} (2.13)

    the standard expression for the nominal luminosity.

  2. 2.

    Only the hourglass effect, no crossing angle

    =frevN+N4π3/2σxσy𝑑uexp[u2]1(1+u2ux2)(1+u2uy2){\cal L}=\frac{f_{rev}N_{+}N_{-}}{4\pi^{3/2}\sigma_{x}^{*}\sigma_{y}^{*}}\int_{-\infty}^{\infty}du\;\exp[-u^{2}]\frac{1}{\sqrt{(1+\frac{u^{2}}{u_{x}^{2}})(1+\frac{u^{2}}{u_{y}^{2}})}} (2.14)

    Hence the luminosity correction factor is

    RL0=1π𝑑uexp[u2]1(1+u2ux2)(1+u2uy2)R_{L}\equiv\frac{\cal L}{\cal L_{0}}=\frac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty}du\;\exp[-u^{2}]\frac{1}{\sqrt{(1+\frac{u^{2}}{u_{x}^{2}})(1+\frac{u^{2}}{u_{y}^{2}})}} (2.15)

    which agrees with the expression Eq.(2.7) in [4].

  3. 3.

    Only the crossing angle, no hourglass effect

    In the limit that βx,βyσz\beta_{x}^{*},\beta_{y}^{*}\gg\sigma_{z}^{*}, there is very little variation in the transverse sizes across the bunch length. In this limit (tx2,ty21(t_{x}^{2},t_{y}^{2}\gg 1. The dominant contributions to the integral come from the regions close to t=0t=0 because of the exponential factor. In this limit we can assume (t/tx)2,(t/ty)21(t/t_{x})^{2},(t/t_{y})^{2}\ll 1 and the luminosity is

    \displaystyle{\cal L} =\displaystyle= frevN+NCC4π3/2σxσy𝑑uexp[CC2u2(1+TC2σs2σx2)]\displaystyle\frac{f_{rev}N_{+}N_{-}C_{C}}{4\pi^{3/2}\sigma_{x}^{*}\sigma_{y}^{*}}\int_{-\infty}^{\infty}du\;\exp[-C_{C}^{2}u^{2}(1+T_{C}^{2}\frac{\sigma_{s}^{2}}{\sigma_{x}^{*2}})] (2.16)
    =\displaystyle= frevN+NCC4π3/2σxσyπCC(1+TC2σs2σx2)\displaystyle\frac{f_{rev}N_{+}N_{-}C_{C}}{4\pi^{3/2}\sigma_{x}^{*}\sigma_{y}^{*}}\frac{\sqrt{\pi}}{C_{C}\sqrt{(1+T_{C}^{2}\frac{\sigma_{s}^{2}}{\sigma_{x}^{*2}})}}

    Hence the luminosity correction factor is

    RL=1(1+TC2σs2σx2)R_{L}=\frac{1}{\sqrt{(1+T_{C}^{2}\frac{\sigma_{s}^{2}}{\sigma_{x}^{*2}})}} (2.17)

    This is the standard correction factor for the crossing angle.

  4. 4.

    Flat bunch

    In this limit, σxσy\sigma_{x}^{*}\gg\sigma_{y}^{*}. Since the equilibrium emittances obey ϵxϵy\epsilon_{x}\gg\epsilon_{y}, this is easily satisfied if βxβy\beta_{x}^{*}\gg\beta_{y}^{*}, which typically is the case. In this limit we drop all terms with uxu_{x} from Eq.(LABEL:eq:_hg_cross)

    \displaystyle{\cal L} =\displaystyle= frevN+NCC4π3/2σxσy𝑑uexp[CC2u2(1+TC2σs2σx2)]1(1+u2uy2)\displaystyle\frac{f_{rev}N_{+}N_{-}C_{C}}{4\pi^{3/2}\sigma_{x}^{*}\sigma_{y}^{*}}\int_{-\infty}^{\infty}du\;\exp[-C_{C}^{2}u^{2}(1+T_{C}^{2}\frac{\sigma_{s}^{2}}{\sigma_{x}^{*2}})]\frac{1}{\sqrt{(1+\frac{u^{2}}{u_{y}^{2}})}} (2.18)

    The luminosity correction factor is

    Rflat\displaystyle R_{flat} =\displaystyle= CCπ𝑑uexp[CC2u2(1+TC2σs2σx2)]1(1+u2uy2)\displaystyle\frac{C_{C}}{\sqrt{\pi}}\int_{-\infty}^{\infty}du\;\exp[-C_{C}^{2}u^{2}(1+T_{C}^{2}\frac{\sigma_{s}^{2}}{\sigma_{x}^{*2}})]\frac{1}{\sqrt{(1+\frac{u^{2}}{u_{y}^{2}})}} (2.19)
    =\displaystyle= CCπuYexp[12b2uy2]K0(12b2uy2)\displaystyle\frac{C_{C}}{\sqrt{\pi}}u_{Y}\exp[\frac{1}{2}b^{2}u_{y}^{2}]K_{0}(\frac{1}{2}b^{2}u_{y}^{2}) (2.20)

    where

    b2=CC2[1+TC2σz2σx2]0b^{2}=C_{C}^{2}[1+T_{C}^{2}\frac{\sigma_{z}^{2}}{\sigma_{x}^{*2}}]\geq 0 (2.21)

    and K0K_{0} is a Bessel function. There is a similar expression Eq. (2) in [5].

    In the absence of a crossing angle so that CC=1,TC=0C_{C}=1,T_{C}=0, we have b=1b=1 and Eq, 2.20 is the same as Eq. (2.12) in Furman.

3 Beam-beam tune shifts

The beam-beam potential for electrons interacting with a positron bunch which has a longitudinally Gaussian density is

U(x,y)\displaystyle U(x,y) =\displaystyle= N+reγeexp[s2/(2σs2)]2πσs𝑑s0𝑑q1(2σx(s)2+q)1/2(2σy(s)2+q)1/2\displaystyle\frac{N_{+}r_{e}}{\gamma_{e}}\int\frac{\exp[-s^{2}/(2\sigma_{s}^{2})]}{\sqrt{2\pi}\sigma_{s}}\;ds\int_{0}^{\infty}dq\;\frac{1}{(2\sigma_{x}(s)^{2}+q)^{1/2}(2\sigma_{y}(s)^{2}+q)^{1/2}} (3.1)
{1exp[x22σx(s)2+qy22σy(s)2+q]}\displaystyle\left\{1-\exp[-\frac{x^{2}}{2\sigma_{x}(s)^{2}+q}-\frac{y^{2}}{2\sigma_{y}(s)^{2}+q}]\right\}

where the parameters are those of the positron bunch. The potential for electrons interacting with positrons at a full crossing angle θC\theta_{C} can be found by replacing

xCCxSCs,sCCs+SCxx\to C_{C}x-S_{C}s,\;\;\;s\to C_{C}s+S_{C}x (3.2)

The amplitude dependent beam-beam tune shifts can be obtained from the second derivatives of the potential as

Δνx(x,y)=βxN+re4πγe2Ux2,Δνy(x,y)=βyN+re4πγe2Uy2\Delta\nu_{x}(x,y)=-\frac{\beta_{x}^{*}N_{+}r_{e}}{4\pi\gamma_{e}}\frac{\partial^{2}U}{\partial x^{2}},\;\;\;\Delta\nu_{y}(x,y)=-\frac{\beta_{y}^{*}N_{+}r_{e}}{4\pi\gamma_{e}}\frac{\partial^{2}U}{\partial y^{2}} (3.3)

The beam-beam tune shift parameters are the values of the tune shifts at the origin, i.e.

ξx=Δνx(0,0),ξy=Δνy(0,0)\xi_{x}=\Delta\nu_{x}(0,0),\;\;\;\xi_{y}=\Delta\nu_{y}(0,0) (3.4)

Substituting the rotated forms in Eq.(3.2) into the potential, taking the derivatives, evaluating the terms at the origin and leads to

ξx\displaystyle\xi_{x} =\displaystyle= βxN+re2πγe0ds2πσs0𝑑q 2exp[s2CC2(2σs2)(s2SC2)(q+2σx2(s))](q+2σx2(s))3(q+2σy2(s))\displaystyle\frac{\beta_{x}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\int_{0}^{\infty}\frac{ds}{\sqrt{2\pi}\sigma_{s}}\int_{0}^{\infty}dq\;2\frac{\exp[-\frac{s^{2}C_{C}^{2}}{(2\sigma_{s}^{2})}-\frac{(s^{2}S_{C}^{2})}{(q+2\sigma_{x}^{2}(s))}]}{\sqrt{(q+2\sigma_{x}^{2}(s))^{3}(q+2\sigma_{y}^{2}(s))}} (3.5)
×CC2{1+2s2SC2[1σs21q+2σx2(s)]}\displaystyle\times C_{C}^{2}\left\{1+2s^{2}S_{C}^{2}[\frac{1}{\sigma_{s}^{2}}-\frac{1}{q+2\sigma_{x}^{2}(s)}]\right\}
exp[s2CC22σs2](1exp[s2SC2q+2σx2(s)])σs2(q+2σx2(s))(q+2σy2(s))SC2[1s2CC2σs2]\displaystyle-\frac{\exp[-\frac{s^{2}C_{C}^{2}}{2\sigma_{s}^{2}}]\left(1-\exp[-\frac{s^{2}S_{C}^{2}}{q+2\sigma_{x}^{2}(s)}]\right)}{\sigma_{s}^{2}\sqrt{(q+2\sigma_{x}^{2}(s))(q+2\sigma_{y}^{2}(s))}}S_{C}^{2}\left[1-\frac{s^{2}C_{C}^{2}}{\sigma_{s}^{2}}\right]
ξy\displaystyle\xi_{y} =\displaystyle= βyN+re2πγeds2πσs0𝑑q2exp(t2Sc2σs2q+2σx2t2CC22)(q+2σy2)(q+2σx2)(q+2σy2)\displaystyle\frac{\beta_{y}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\int_{-\infty}^{\infty}\frac{ds}{\sqrt{2\pi}\sigma_{s}}\int_{0}^{\infty}dq\frac{2\exp\left(-\frac{t^{2}S_{c}^{2}\sigma_{s}^{2}}{q+2\sigma_{x}^{2}}-\frac{t^{2}C_{C}^{2}}{2}\right)}{\left(q+2\sigma_{y}^{2}\right)\sqrt{\left(q+2\sigma_{x}^{2}\right)\left(q+2\sigma_{y}^{2}\right)}} (3.6)

The different integrations over ss cannot all be done analytically, so the 2D integrations have to be done numerically. Transform to dimensionless variables (u,t)(u,t) and define other dimensionless variables

t\displaystyle t =\displaystyle= sσs,tx=βxσs,ty=βyσs\displaystyle\frac{s}{\sigma_{s}},\;\;\;t_{x}=\frac{\beta_{x}*}{\sigma_{s}},\;\;\;t_{y}=\frac{\beta_{y}*}{\sigma_{s}} (3.7)
u\displaystyle u =\displaystyle= 2σx,2q+2σx,2q=2σx,2(1u1);   0u1\displaystyle\frac{2\sigma_{x}^{*,2}}{q+2\sigma_{x}^{*,2}}\;\;\;\Rightarrow q=2\sigma_{x}^{*,2}(\frac{1}{u}-1);\;\;\;0\leq u\leq 1 (3.8)
\displaystyle\Rightarrow σx(t)=σx1+s2βx,2=σx1+t2tx2\displaystyle\sigma_{x}(t)=\sigma_{x}^{*}\sqrt{1+\frac{s^{2}}{\beta_{x}^{*,2}}}=\sigma_{x}^{*}\sqrt{1+\frac{t^{2}}{t_{x}^{2}}} (3.9)
\displaystyle\Rightarrow σy(t)=σy1+s2βy,2=σy1+t2ty2\displaystyle\sigma_{y}(t)=\sigma_{y}^{*}\sqrt{1+\frac{s^{2}}{\beta_{y}^{*,2}}}=\sigma_{y}^{*}\sqrt{1+\frac{t^{2}}{t_{y}^{2}}} (3.10)
ryx\displaystyle r_{yx} =\displaystyle= σy2σx2,rsx=σs22σx2\displaystyle\frac{\sigma_{y}^{*2}}{\sigma_{x}^{*2}},\;\;\;r_{sx}=\frac{\sigma_{s}^{2}}{2\sigma_{x}^{*2}} (3.11)

The Jacobian of the transformation is J(q,s;u,t)=2σx,2σsu2J(q,s;u,t)=\frac{2\sigma_{x}^{*,2}\sigma_{s}}{u^{2}}. Carrying out the transformation leads to the equations for the general case

ξx\displaystyle\xi_{x} =\displaystyle= βxNpre2πγe{CC2(σx,2)0dt2πexp[CC2t22]01duexp[(rsxSC2ut2)1+u(t/tx)2]\displaystyle\frac{\beta_{x}^{*}N_{p}r_{e}}{2\pi\gamma_{e}}\left\{\frac{C_{C}^{2}}{(\sigma_{x}^{*,2})}\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\;\exp[-\frac{C_{C}^{2}t^{2}}{2}]\int_{0}^{1}du\;\exp[-\frac{(r_{sx}S_{C}^{2}ut^{2})}{1+u(t/t_{x})^{2}}]\right. (3.12)
×(1+2SC2t2[1rsxu1+u(t/tx)2])[1(1+u(t/tx)2)3(1+[ryx(1+(t/ty)2)1]u)]1/2\displaystyle\times\left(1+2S_{C}^{2}t^{2}[1-r_{sx}\frac{u}{1+u(t/t_{x})^{2}}]\right)\left[\frac{1}{(1+u(t/t_{x})^{2})^{3}(1+[r_{yx}(1+(t/t_{y})^{2})-1]u)}\right]^{1/2}
SC2σs20dt2πexp[CC2t22][1CC2t2]01duu(1exp[rsxSC2ut21+u(t/ty)2])\displaystyle-\frac{S_{C}^{2}}{\sigma_{s}^{2}}\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\;\exp[-\frac{C_{C}^{2}t^{2}}{2}]\left[1-C_{C}^{2}t^{2}\right]\int_{0}^{1}\frac{du}{u}\;\left(1-\exp[-\frac{r_{sx}S_{C}^{2}ut^{2}}{1+u(t/t_{y})^{2}}]\right)
×[1(1+u(t/tx)2)(1+[ryx(1+(t/ty)2)1]u)]1/2}\displaystyle\left.\times\left[\frac{1}{(1+u(t/t_{x})^{2})(1+[r_{yx}(1+(t/t_{y})^{2})-1]u)}\right]^{1/2}\right\}
ξy\displaystyle\xi_{y} =\displaystyle= βyNpreπγe1(2σx,2)0dt2πexp[CC2t22]01𝑑uexp[rsxSC2ut2(1+u(t/tx)2)]\displaystyle\frac{\beta_{y}^{*}N_{p}r_{e}}{\pi\gamma_{e}}\frac{1}{(2\sigma_{x}^{*,2})}\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\;\exp[-\frac{C_{C}^{2}t^{2}}{2}]\int_{0}^{1}du\;\exp\left[-\frac{r_{sx}S_{C}^{2}ut^{2}}{(1+u(t/t_{x})^{2})}\right] (3.13)
×[1(1+u(t/tx)2)(1+[ryx(1+(t/ty)2)1]u)3]1/2\displaystyle\times\left[\frac{1}{(1+u(t/t_{x})^{2})(1+[r_{yx}(1+(t/t_{y})^{2})-1]u)^{3}}\right]^{1/2}

These expressions involve a finite range of integration (from 010\to 1) over uu compared to the infinite range over qq in Eq.(3.5) and (3.6). In those equations, the convergence rate is poor and evaluate slowly while the double integrals evaluate quickly in the set Eq.(3.12) and (3.13) above. We note that the second set of terms in Eq.(3.12) proportional to SC2σs2\frac{S_{C}^{2}}{\sigma_{s}^{2}} are typically very small in the collider applications considered below and can be ignored.

Limiting cases

  1. 1.

    No crossing angle or hourglass effect

    In this case SC=0,CC=1S_{C}=0,C_{C}=1, so

    ξx\displaystyle\xi_{x} =\displaystyle= βyN+re2πγetx2(2σx,2)0dt2πexp[tx2t22]01𝑑u[1(1+(ryx1)u)]1/2\displaystyle\frac{\beta_{y}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}t_{x}\frac{2}{(2\sigma_{x}^{*,2})}\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-\frac{t_{x}^{2}t^{2}}{2}]\int_{0}^{1}du\;\left[\frac{1}{(1+(r_{yx}-1)u)}\right]^{1/2}
    ξy\displaystyle\xi_{y} =\displaystyle= βyN+reπγetx(2σx,2)0dt2πexp[tx2t22]01𝑑u[1(1+(ryx1)u)3]1/2\displaystyle\frac{\beta_{y}^{*}N_{+}r_{e}}{\pi\gamma_{e}}\frac{t_{x}}{(2\sigma_{x}^{*,2})}\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-\frac{t_{x}^{2}t^{2}}{2}]\int_{0}^{1}du\left[\frac{1}{(1+(r_{yx}-1)u)^{3}}\right]^{1/2}

    Using Eqs.(A.1) and (A.2) in the Appendix, we find

    ξx\displaystyle\xi_{x} =\displaystyle= βxN+re2πγe1σx(σy+σx)\displaystyle\frac{\beta_{x}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\frac{1}{\sigma_{x}^{*}(\sigma_{y}^{*}+\sigma_{x}^{*})} (3.14)
    ξy\displaystyle\xi_{y} =\displaystyle= βyN+re2πγe1σy(σy+σx)\displaystyle\frac{\beta_{y}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\frac{1}{\sigma_{y}^{*}(\sigma_{y}^{*}+\sigma_{x}^{*})} (3.15)

    These are the standard expressions for the tune shifts without a crossing angle or hourglass effects.

  2. 2.

    Only a crossing angle

    We use the expressions Eq.(3.12) and (3.13), let tx,tyt_{x},t_{y}\to\infty and do the integration over tt first. Define shorthand variables

    a2=rsxSC2,c2=12CC2a^{2}=r_{sx}S_{C}^{2},\;\;\;c^{2}=\frac{1}{2}C_{C}^{2} (3.16)

    We use the integration results in Eqs. (A.5) - (A.7) to obtain

    ξx\displaystyle\xi_{x} =\displaystyle= βxN+re2πγe14201du[1(1+[ryx1]u)]1/2{2CC2(2σx,2)2c2+2tx2SC2(c2+a2u)3/2\displaystyle\frac{\beta_{x}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\frac{1}{4\sqrt{2}}\int_{0}^{1}du\;\left[\frac{1}{(1+[r_{yx}-1]u)}\right]^{1/2}\left\{\frac{2C_{C}^{2}}{(2\sigma_{x}^{*,2})}\frac{2c^{2}+2t_{x}^{2}S_{C}^{2}}{(c^{2}+a^{2}u)^{3/2}}\right. (3.17)
    +SC2σs21u2a2u(c2+a2u)3/2}\displaystyle\left.+\frac{S_{C}^{2}}{\sigma_{s}^{2}}\frac{1}{u}\frac{2a^{2}u}{(c^{2}+a^{2}u)^{3/2}}\right\}
    =\displaystyle= βxN+re2πγe1CC31[σy+σx2+TC2σs2]σx2+TC2σs2\displaystyle\frac{\beta_{x}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\frac{1}{C_{C}^{3}}\frac{1}{[\sigma_{y}^{*}+\sqrt{\sigma_{x}^{*2}+T_{C}^{2}\sigma_{s}^{2}}]\sqrt{\sigma_{x}^{*2}+T_{C}^{2}\sigma_{s}^{2}}}
    ξy\displaystyle\xi_{y} =\displaystyle= βyN+re2πγe1CC01)𝑑u1(2(σy2σx2)u+1)3[1+2(TC2σs2)u/(2σx2)]\displaystyle\frac{\beta_{y}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\frac{1}{C_{C}}\int_{0}^{1)}du\frac{1}{\sqrt{(2(\sigma_{y}^{2}-\sigma_{x}^{2})u+1)^{3}[1+2(T_{C}^{2}\sigma_{s}^{2})u/(2\sigma_{x}^{2})]}} (3.18)
    =\displaystyle= βyN+re2πγe1CC1σy(σy+σx2+TC2σs2)\displaystyle\frac{\beta_{y}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\frac{1}{C_{C}}\frac{1}{\sigma_{y}(\sigma_{y}+\sqrt{\sigma_{x}^{2}+T_{C}^{2}\sigma_{s}^{2}})}

    These expressions can be obtained from the equations (3.14), (3.15) by replacing the transverse beam size σx\sigma_{x} in the crossing plane by the effective beam size σx2+TC2σs2)\sqrt{\sigma_{x}^{2}+T_{C}^{2}\sigma_{s}^{2}}) and including the factors 1/CC31/C_{C}^{3} in ξx\xi_{x}, 1/CC1/C_{C} in ξy\xi_{y} which are 1\sim 1 for typical crossing angles.

  3. 3.

    Only the hourglass, no crossing angle

    Setting CC=1,SC=0,=1C_{C}=1,S_{C}=0,=1 in the general forms Eq.(3.12), and (3.13)

    ξx\displaystyle\xi_{x}\!\!\! =\displaystyle= βxN+re2πγe{2(2σx,2)0dt2πexp[t22]\displaystyle\!\!\!\frac{\beta_{x}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\left\{\frac{2}{(2\sigma_{x}^{*,2})}\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-\frac{t^{2}}{2}]\right.
    ×01du[1(1+ut2/tx2)3(1+[ryx(1+t2/ty2)1]u)]1/2}\displaystyle\left.\times\int_{0}^{1}du\;\left[\frac{1}{(1+ut^{2}/t_{x}^{2})^{3}(1+[r_{yx}(1+t^{2}/t_{y}^{2})-1]u)}\right]^{1/2}\right\}
    ξy\displaystyle\xi_{y} =\displaystyle= βyNpreπγe1(2σx,2)0dt2πexp[t22]\displaystyle\frac{\beta_{y}^{*}N_{p}r_{e}}{\pi\gamma_{e}}\frac{1}{(2\sigma_{x}^{*,2})}\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\;\exp[-\frac{t^{2}}{2}]
    ×01du[1(1+u(t/tx)2)(1+[ryx(1+(t/ty)2)1]u)3]1/2\displaystyle\times\int_{0}^{1}du\;\left[\frac{1}{(1+u(t/t_{x})^{2})(1+[r_{yx}(1+(t/t_{y})^{2})-1]u)^{3}}\right]^{1/2}

    Integrating over uu yields the expressions

    ξx\displaystyle\xi_{x} =\displaystyle= βxN+reπγeσx,20dt2πexp[t2/2]1(1+t2tx2)[1+t2tx2+σyσx1+t2ty2]\displaystyle\frac{\beta_{x}^{*}N_{+}r_{e}}{\pi\gamma_{e}\sigma_{x}^{*,2}}\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-t^{2}/2]\frac{1}{\sqrt{(1+\frac{t^{2}}{t_{x}^{2}})}\left[\sqrt{1+\frac{t^{2}}{t_{x}^{2}}}+\frac{\sigma_{y}^{*}}{\sigma_{x}^{*}}\sqrt{1+\frac{t^{2}}{t_{y}^{2}}}\right]} (3.19)
    ξY\displaystyle\xi_{Y} =\displaystyle= βyN+re2πγeσy,2dt2πexp[t2/2]1(1+t2ty2)[1+t2ty2+σxσy1+t2tx2]\displaystyle\frac{\beta_{y}^{*}N_{+}r_{e}}{2\pi\gamma_{e}\sigma_{y}^{*,2}}\int\frac{dt}{\sqrt{2\pi}}\exp[-t^{2}/2]\frac{1}{\sqrt{(1+\frac{t^{2}}{t_{y}^{2}})}\left[\sqrt{1+\frac{t^{2}}{t_{y}^{2}}}+\frac{\sigma_{x}^{*}}{\sigma_{y}^{*}}\sqrt{1+\frac{t^{2}}{t_{x}^{2}}}\right]} (3.20)

    These agree with Eq.(3.4) (evaluated at s=0s=0) in[4].

  4. 4.

    Flat beams
    Here we consider the limit txt_{x}\to\infty in the general expressions in Eqs (3.12), (3.13). Interchanging the integrations and we drop the second set of terms SC2\propto S_{C}^{2} in ξx\xi_{x} that are negligibly small

    ξx\displaystyle\xi_{x} =\displaystyle= βxN+re2πγe2CC2(2σx,2)01𝑑u0dt2πexp[t2(12CC2+rsxSC2u)]\displaystyle\frac{\beta_{x}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\frac{2C_{C}^{2}}{(2\sigma_{x}^{*,2})}\int_{0}^{1}du\;\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-t^{2}(\frac{1}{2}C_{C}^{2}+r_{sx}S_{C}^{2}u)] (3.21)
    ×(1+2SC2t2[1rsxu])[1(1+(ryx1)u+ryxut2/ty2)]1/2\displaystyle\times\left(1+2S_{C}^{2}t^{2}[1-r_{sx}u]\right)\left[\frac{1}{(1+(r_{yx}-1)u+r_{yx}ut^{2}/t_{y}^{2})}\right]^{1/2}
    ξy\displaystyle\xi_{y} =\displaystyle= βyN+reπγe1(2σx,2)010dt2πexp[t2(12CC2+rsxSC2u)]\displaystyle\frac{\beta_{y}^{*}N_{+}r_{e}}{\pi\gamma_{e}}\frac{1}{(2\sigma_{x}^{*,2})}\int_{0}^{1}\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-t^{2}(\frac{1}{2}C_{C}^{2}+r_{sx}S_{C}^{2}u)] (3.22)
    ×[1(1+(ryx1)u+ryxut2/ty2)]3/2\displaystyle\times\left[\frac{1}{(1+(r_{yx}-1)u+r_{yx}ut^{2}/t_{y}^{2})}\right]^{3/2}

    The integrations over tt can be done and expressed in terms of confluent hypergeometric function UU and the Bessel function K0K_{0}. Using integration results in the Appendix and identifying the coefficients in the equations (7) and (A.9)

    a2\displaystyle a^{2} =\displaystyle= 12CC2+rsxSC2u,(Noteu0),b=2SC2[1rsxu]\displaystyle\frac{1}{2}C_{C}^{2}+r_{sx}S_{C}^{2}u,\;\;({\rm Note}\;\;u\geq 0),\;\;\;b=2S_{C}^{2}[1-r_{sx}u]
    c\displaystyle c =\displaystyle= 1+(ryx1)u,d=ryxu/ty2\displaystyle 1+(r_{yx}-1)u,\;\;\;d=r_{yx}u/t_{y}^{2}

    leads to the expressions for the tune shifts in the flat beam limit as

    ξx\displaystyle\xi_{x} =\displaystyle= βxN+re2πγe2CC22σx,22π01𝑑u14(12CC2+rsxSC2u)ryxu/ty2\displaystyle\frac{\beta_{x}^{*}N_{+}r_{e}}{2\pi\gamma_{e}}\frac{2C_{C}^{2}}{2\sigma_{x}^{*,2}\sqrt{2\pi}}\int_{0}^{1}du\;\frac{1}{4(\frac{1}{2}C_{C}^{2}+r_{sx}S_{C}^{2}u)\sqrt{r_{yx}u/t_{y}^{2}}}
    {(CC2+2rsxSC2u)exp[arg]K0(arg)+π2SC2[1rsxu]U(12,0,2arg))}\displaystyle\left\{(C_{C}^{2}+2r_{sx}S_{C}^{2}u)\exp[{\rm arg}]K_{0}({\rm arg})+\sqrt{\pi}2S_{C}^{2}[1-r_{sx}u]U(\frac{1}{2},0,2\;{\rm arg}))\right\}
    ξy\displaystyle\xi_{y} =\displaystyle= βyN+reπγe122σx,201𝑑u12(1+(ryx1)u)ryxu/ty2U(1/2,0,2arg)\displaystyle\frac{\beta_{y}^{*}N_{+}r_{e}}{\pi\gamma_{e}}\frac{1}{2\sqrt{2}\sigma_{x}^{*,2}}\int_{0}^{1}du\;\frac{1}{2(1+(r_{yx}-1)u)\sqrt{r_{yx}u/t_{y}^{2}}}U(1/2,0,2\;{\rm arg})
    arg\displaystyle{\rm arg} =\displaystyle= (12CC2+rsxSC2u)(1+(ryx1)u)2ryxu/ty2]\displaystyle\frac{(\frac{1}{2}C_{C}^{2}+r_{sx}S_{C}^{2}u)(1+(r_{yx}-1)u)}{2r_{yx}u/t_{y}^{2}}] (3.25)

    This in principle, leaves the integration over uu to be evaluated numerically. While the integrations over the hypergeometric function UU in both ξx,ξy\xi_{x},\xi_{y} converge rapidly for typical parameter values, the integration over the Bessel function KoK_{o} in ξx\xi_{x} is poorly convergent. We found it more convenient to use the double integration in Eq.(3.21) to evaluate ξx\xi_{x} and the single integration in Eq.(LABEL:eq:_xiy_fl_2) to evaluate ξy\xi_{y}. In the following sections, we have used the exact expressions for the luminosity and the beam-beam tune shifts for both the Fermi site filler and the FCC-ee but in both cases, the flat beam expressions are very good approximations.

4 Higgs Factory Site Filler

Beam energy [GeV] 120
Circumference [km] 16.0
Bunch intensity 8.34 ×1011\times 10^{11}
Number of bunches 2
Emittance x [nm] / y [pm] 0. /
βx/βy\beta_{x}^{*}/\beta_{y}^{*} [m] 0.2 / 0.001
σz\sigma_{z} [mm] 2.9
Nominal crossing angle [mrad] 0
Table 1: Parameters of the Fermilab site filler

Table 1 shows the parameters in the very preliminary design of a Higgs factory based at Fermilab [6]. The bunch length in the table above is the equilibrium value with only synchrotron radiation emitted in the arcs and does not include the beamsstrahlung effect that would increase the bunch length. Hence, the hourglass effects for the site filler are a slight underestimate of the exact values. Table 2 shows the luminosity and the beam-beam tune shifts with and without the hourglass effect.

Without hourglass With hourglass
Luminosity [cm-2-s-1] 1.56 ×1034\times 10^{34} 9.5 ×1033\times 10^{33}
Beam-beam tune shift ξx,/ξy\xi_{x},/\xi_{y} 0.00849 / 0.1197 0.00845 / 0.0614
Table 2: Luminosity and beam-beam tune shifts in the Fermi site filler with the parameters shown in Table 1.
Refer to caption
Refer to caption
Figure 1: (Left): Luminosity as a function of the Piwinski angle Φ\Phi for four values of βx\beta_{x}*. (Right): Luminosity as a function of Φ\Phi and βx\beta_{x}^{*}. βy\beta_{y}^{*} is constant at 1mm in both figures.
Refer to caption
Refer to caption
Refer to caption
Figure 2: Top: Vertical beam-beam tune shift ξy\xi_{y} as a function of βx\beta_{x}^{*} for different cases; no crossing angle (Cr) and no hourglass (Hg), only the crossing angle, only the hourglass and with both effects. Φ=0.5\Phi=0.5 in all cases. Bottom: Horizontal and vertical tune shifts as functions of of Φ\Phi and βx\beta_{x}^{*}. βy\beta_{y}^{*} is constant at 1mm in all figures.

The first plot in Fig.2 show the luminosity as a function of the so called Piwinski angle parameter Φ=tan(θC/2)σz/σx\Phi=\tan(\theta_{C}/2)\sigma_{z}/\sigma_{x}^{*} for four values of βx\beta_{x}^{*}. This shows that the luminosity is relatively flat upto Φ0.5\Phi\sim 0.5 which corresponds to θC=21\theta_{C}=21 mrad or 69 times the beam divergence, a relatively large value. The second plot shows the luminosity as function of Φ\Phi and βx\beta_{x}^{*} over the ranges 0Φ50\leq\Phi\leq 5 and 0.01[m]βx0.20[m]0.01[m]\leq\beta_{x}^{*}\leq 0.20[m] respectively. This plot shows that the luminosity varies slowly as a function of Φ\Phi over 0Φ0.50\leq\Phi\leq 0.5, more rapidly from 0.5Φ20.5\leq\Phi\leq 2 and then is relatively flat over 2Φ52\leq\Phi\leq 5 . Decreasing βx\beta_{x}^{*} from 0.2 m to 0.01 m increases the luminosity to nearly 4×10344\times 10^{34} cm-2 s-1 for 0Φ0.50\leq\Phi\leq 0.5. However, the vertical tune shift at these parameters is very large at 0.25\sim 0.25, as the next figure shows.

The top plot in Fig. 2 shows the vertical tune shift as a function of βx\beta_{x}^{*} at constant Φ=0.5\Phi=0.5 for different cases showing the relative impact of the crossing angle and hourglass effects. It is clear that the hourglass effect is dominant in determining the vertical tune shift. The bottom plots in this figure show the horizontal and vertical tune shifts as functions of βx\beta_{x}^{*} and Φ\Phi with both effects included. The horizontal tune shift ξx\xi_{x} varies more strongly with the crossing angle and is mostly independent of βx\beta_{x}^{*}. The vertical tune shift on the other hand, varies strongly with βx\beta_{x}^{*} and slowly with Φ\Phi. Assuming that tune shifts of 0.12\sim 0.12 are dynamically sustainable and the increased chromaticity can be corrected, this suggests that βx\beta_{x}^{*} could be lowered to values in the range 0.025βx0.050.025\leq\beta_{x}^{*}\leq 0.05m with βy=0.001\beta_{y}^{*}=0.001 m. These would increase luminosity to the range (22.5)×1034(2-2.5)\times 10^{34} cm-2s-1.

Refer to caption
Refer to caption
Figure 3: Luminosity and ξy\xi_{y} as functions of βx\beta_{x}^{*} and Φ\Phi at βy=0.5\beta_{y}^{*}=0.5mm.

We can be more aggressive by lowering βy\beta_{y}^{*} further. The plots in Fig. 3 show that with βx0.01m,βy=0.0005\beta_{x}^{*}\leq 0.01\;{\rm m},\;\beta_{y}^{*}=0.0005m, Φ<2\Phi<2, the vertical beam-beam tune shift ξy0.14\xi_{y}\leq 0.14 and the luminosity increases to 4×1034\sim 4\times 10^{34} cm-2s-1. The major challenge at these parameters will be to control the linear and non-linear IR chromaticities at these values of βx,βy\beta_{x}^{*},\beta_{y}^{*}.

5 FCC-ee collider

We apply the theory developed above to the FCC e+-e- collider. The required parameters are shown in Table 4 taken from [2].

Beam energy [GeV] 120
Circumference [km] 97.75
Bunch intensity 1.8 ×1011\times 10^{11}
Number of bunches 328
Emittance x [nm] / y [pm] 0.63 / 1.3
βx/βy\beta_{x}^{*}/\beta_{y}^{*} [m] 0.3 / 0.001
σz\sigma_{z} [mm] 5.3
Crossing angle (mrad) / Piwinski angle Φ\Phi 30 / 5.8
Table 3: Parameters of the FCC-ee
No Cr or Hg Hg only Cr only Hg and Cr FCC study
{\cal L} [103410^{34} cm-2s-1] 52 23 8.9 7.8 8.5
ξx/ξy\xi_{x}/\xi_{y} 0.544 / 0.692 0.539 / 0.253 0.0158 / 0.118 0.0159 / 0.096 0.016 / 0.118
Table 4: Luminosity and beam-beam tune shifts at the FCC parameter values used in the FCC study.

The bunch length in Table 4 has been calculated with beamsstrahlung effects included, according to reference [2].

Table 4 shows the luminosity and beam-beam tuneshifts calculated with different conditions in the several columns: (a) No crossing angle or hourglass, (b) hourglass only, (c) crossing angle only, (d) both hourglass and crossing angle. These are compared with the values found in the FCC study [2]. We find that our results with only the crossing angle are close to the FCC study values but our values with both effects are lower, especially the vertical beam-beam tune shift which is more than 20% lower. This is expected since βyσz\beta_{y}^{*}\ll\sigma_{z} while βx>σz\beta_{x}^{*}>\sigma_{z}.

Refer to caption
Refer to caption
Refer to caption
Figure 4: Top Left: The correction factor RLR_{L} vs Φ\Phi for the cases (a) only the crossing angle (Cr), (b) only the hourglass (hg), and (c) both crossing angle and the hourglass. Top right: Luminosity as a function of Φ\Phi for different values of βx\beta_{x}^{*} with both effects. Bottom: Luminosity as a function of βx\beta_{x}^{*} and Φ\Phi.

The left plot in Fig. 4 shows the luminosity correction factor RLR_{L} from Eq. (LABEL:eq:_RL_gen) as a function of the Piwinski angle Φ\Phi at nominal values of βx,βy\beta_{x}^{*},\beta_{y}^{*} for the cases with only the hourglass factor, only the crossing angle and with both effects included. For the FCC parameters, the reduction due to the crossing angle exceeds the reduction due to the hourglass factor when Φ>2\Phi>2. The right plot shows the luminosity as a function of Φ\Phi for different values of βx\beta_{x}^{*}. We observe, for example, that the luminosity at say βx=0.05\beta_{x}^{*}=0.05 m is in the range 1.21.2\leq{\cal L} [ cm-2 s-1] 6×1035\leq 6\times 10^{35} while the range at the nominal βx=0.3\beta_{x}^{*}=0.3m is 0.490.49\leq{\cal L} [ cm-2 s-1] 2.5×1035\leq 2.5\times 10^{35} . The increase in luminosity at lower βx\beta_{x}^{*} decreases at larger crossing angles.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Top row : Vertical beam-beam parameter as a function of Φ\Phi at βx=0.3\beta_{x}^{*}=0.3 m for different conditions (left) and different βx\beta_{x}^{*} values (right). Bottom: ξx\xi_{x} (left), and ξy\xi_{y} (right) as functions of βx\beta_{x}^{*} and Φ\Phi. In the right figure is also shown the plane (in blue) at ξy=0.12\xi_{y}=0.12 intersecting the function ξy(Φ,βx)\xi_{y}(\Phi,\beta_{x}^{*}).
Refer to caption
Refer to caption
Figure 6: Top: Φ\Phi as a function of βx\beta_{x} at a constant value of ξy=0.12\xi_{y}=0.12. Bottom: Luminosity (left vertical axis) and ξy\xi_{y} (right vertical axis) as functions of βx\beta_{x}^{*} with the crossing angle determined by the top figure.

The top plots in Fig. 5 show ξy\xi_{y} as a function of Φ\Phi with or without the two effects (left) and for different values of βx\beta_{x}. The left plot shows that at β)x=0.3\beta)x^{*}=0.3 and at zero crossing angle, ξy=0.67\xi_{y}=0.67 and 0.22 without and with the hourglass effect respectively. This value drops to 0.096 at the nominal crossing angle. The hourglass effect therefore significantly reduces the vertical beam-beam tuneshift. The right plot shows, among other observations, that ξy\xi_{y} is more sensitive to the value of βx\beta_{x}^{*} at smaller Φ\Phi than at larger Φ\Phi. The bottom plots in Fig. 5 show ξx,ξy\xi_{x},\xi_{y} as functions of βx,Φ\beta_{x}^{*},\Phi. As expected, ξx\xi_{x} is insensitive to βx\beta_{x}^{*} and falls sharply with increasing Φ\Phi. The right plot shows ξy(βx,Φ)\xi_{y}(\beta_{x}^{*},\Phi) intersected with a planar surface (in blue) at ξy=0.12\xi_{y}=0.12, assumed to be a target value. The intersection of the the surfaces is a curve Φ\Phi as a function of βX\beta_{X}^{*} along which ξy=0.12\xi_{y}=0.12. The left plot in Fig. 6 shows this curve explicitly, calculated numerically. Assuming that the bunch intensity is kept constant, this curve can be used to find the values of βx,Φ\beta_{x}^{*},\Phi that maximize the luminosity while keeping ξy\xi_{y} constant. The right plot in this figure shows the luminosity (in black) is 1035{\cal L}\sim 10^{35} cm-2 s-1 over the range 0.1βx0.50.1\leq\beta_{x}^{*}\leq 0.5 with the corresponding Φ\Phi found from the left plot. Compared to the luminosity =0.79×1034{\cal L}=0.79\times 10^{34} cm-2 s-1, this represents a 26% increase in luminosity. This is comparable to the 25% luminosity increase achievable by increasing the bunch intensity to increase ξy\xi_{y} from 0.096 to 0.12 at the nominal βx\beta_{x}^{*} and Φ\Phi. However the first method increases βx\beta_{x}^{*} from 0.3 to 0.5 and lowers the crossing angle from 30 mrad to 15\sim 15 mrad. This has additional benefits of keeping the synchrotron radiation power constant, lowering the IR chromaticity and reducing aperture restrictions, and other effects from the smaller crossing angle and avoids potential problems at higher currents.

6 Conclusions

We developed exact expressions for the luminosity and beam-beam tuneshifts with both crossing angle and hourglass effects. We showed that the expressions reduce to known expressions in the limit that one or the other effect is absent.

As mentioned earlier, the Fermi site filler design is very preliminary and detailed studies of the dynamics with beam-beam interactions need to be done. The nominal design has one Interaction Point, a zero crossing angle and achieves a peak luminosity 1034\sim 10^{34} cm-2 s-1. We find that with a crossing angle around 21 mrad, 0.025βx0.050.025\leq\beta_{x}^{*}\leq 0.05m would increase luminosity to the range (22.5)×1034(2-2.5)\times 10^{34} cm-2s-1 with ξy\xi_{y} nearly constant at 0.12. Since there is only one IP, it is possible that ξy\xi_{y} could be increased from this value with an accompanying increase in the luminosity.

The FCC-ee design is considerably more advanced. Applying the theory developed in this report, we have the following observations:

  • The crossing angle and the hourglass effect together reduce the luminosity and vertical beam-beam tuneshift compared to the values with the crossing angle alone. With both effects, the luminosity is 7.8×10347.8\times 10^{34} cm-2 s-1 compared to 8.9×10348.9\times 10^{34} cm-2 s-1 with only the crossing angle. The values with only the crossing angle are close to those obtained in the FCC study. More significantly, the values of ξy\xi_{y} under the same conditions are 0.096 and 0.118 respectively.

  • Assuming a target value of ξy=0.12\xi_{y}=0.12, this suggests that the luminosity can be increased from the present value.

  • We find the luminosity can be increased by 25%\sim 25\% to 1×10351\times 10^{35} cm-2 s-1 by simultaneously decreasing the crossing angle to θC15\theta_{C}\sim 15 mrad and increasing βx\beta_{x}^{*} to 0.5 m while keeping the vertical tuneshift at 0.12. This would be better than the alternative method of increasing the bunch intensity while keeping the nominal values θC=30\theta_{C}=30 mrad and βx=0.3\beta_{x}^{*}=0.3m .

Acknowledgments
Fermilab is operated by Fermi Research Alliance LLC under DOE contract No. DE-AC02CH11359.

References

  • [1] K. Akai et al, Super KEKB Collider, Nucl.Instrum.Meth. A 907, 188 (2018)
  • [2] A. Abada et al, FCC-ee: The Lepton Collider, Eur. Phys. J. Special Topics 228, 261–623 (2019)
  • [3] M.A. Furman and M.S. Zisman, Luminosity in Handbook of Accelerator Physics and Engineering, editors: A.W¿ Chao, M. Tigner and F. Zimmermann
  • [4] M.A. Furman, The hourglass reduction factor for asymmetric colliders, SLAC-ABC-81
  • [5] K. Hirata, Analysis of beam-beam interactions with a large crossing angle, Phys. Rev. Lett. , 74, 2228 (1995)
  • [6] P.C. Bhat et al, Future collider options for the US, e-Print: 2203.08088 (on arxiv)

7 Appendix: Integration results

The integrations for the tune shift without crossing angle or hourglass effects use

01𝑑u[1(1+(ryx1)u)]1/2\displaystyle\int_{0}^{1}du\;\left[\frac{1}{(1+(r_{yx}-1)u)}\right]^{1/2} =\displaystyle= 2σxσy+σx\displaystyle 2\frac{\sigma_{x}^{*}}{\sigma_{y}^{*}+\sigma_{x}^{*}} (A.1)
01𝑑u[1(1+(ryx1)u)3]1/2\displaystyle\int_{0}^{1}du\left[\frac{1}{(1+(r_{yx}-1)u)^{3}}\right]^{1/2} =\displaystyle= 2σx,2σy(σy+σx)\displaystyle 2\frac{\sigma_{x}^{*,2}}{\sigma_{y}^{*}(\sigma_{y}^{*}+\sigma_{x}^{*})} (A.2)

The integrations for the tune shifts with crossing angle only use the results below

0dt2πexp[a2t2](1+bt2)\displaystyle\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-a^{2}t^{2}](1+bt^{2}) =\displaystyle= 1422a2+ba3\displaystyle\frac{1}{4\sqrt{2}}\frac{2a^{2}+b}{a^{3}} (A.3)
01dz(1+Us)(1+Cz)3\displaystyle\int_{0}^{1}\frac{dz}{\sqrt{(1+U^{\prime}s)(1+Cz)^{3}}} =\displaystyle= 2(A+1+C+1)1+C\displaystyle\frac{2}{(\sqrt{A+1}+\sqrt{C+1})\sqrt{1+C}} (A.4)

Using these results, the integrals over tt for ξx,ξy\xi_{x},\xi_{y} yield

0dt2πexp[(c2+a2u)t2/tx2][1+2SC2(1rsxu)t2/tx2]\displaystyle\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-(c^{2}+a^{2}u)t^{2}/t_{x}^{2}]\left[1+2S_{C}^{2}(1-r_{sx}u)t^{2}/t_{x}^{2}\right] =\displaystyle= 142tx2c2+2SC2(c2+a2u)3/2\displaystyle\frac{1}{4\sqrt{2}}t_{x}\frac{2c^{2}+2S_{C}^{2}}{(c^{2}+a^{2}u)^{3/2}} (A.5)
0dt2πexp[cc2t2][12c2t2]\displaystyle\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-c_{c}^{2}t^{2}]\left[1-2c^{2}t^{2}\right] =\displaystyle= 0\displaystyle 0 (A.6)
0dt2πexp[(c2+a2u)t2][12c2t2]\displaystyle\int_{0}^{\infty}\frac{dt}{\sqrt{2\pi}}\exp[-(c^{2}+a^{2}u)t^{2}]\left[1-2c^{2}t^{2}\right] =\displaystyle= 1422a2u(c2+a2u)3/2\displaystyle\frac{1}{4\sqrt{2}}\frac{2a^{2}u}{(c^{2}+a^{2}u)^{3/2}} (A.7)

Beam-beam tune shifts for flat beams

0𝑑texp[a2t2]1+bt2c+dt2\displaystyle\int_{0}^{\infty}dt\;\exp[-a^{2}t^{2}]\frac{1+bt^{2}}{\sqrt{c+dt^{2}}} =\displaystyle= 14a2d{2a2exp[a2c)/(2d)]K0(a2c2d)+bπU(12,0,a2cd)}\displaystyle\frac{1}{4a^{2}\sqrt{d}}\left\{2a^{2}\exp[a^{2}c)/(2d)]K_{0}(\frac{a^{2}c}{2d})+b\sqrt{\pi}U(\frac{1}{2},0,\frac{a^{2}c}{d})\right\}
0𝑑texp[a2t2]1(c+dt2)3/2\displaystyle\int_{0}^{\infty}dt\;\exp[-a^{2}t^{2}]\frac{1}{(c+dt^{2})^{3/2}} =\displaystyle= π2cdU(1/2,0,a2cd)\displaystyle\frac{\sqrt{\pi}}{2c\sqrt{d}}U(1/2,0,\frac{a^{2}c}{d}) (A.9)

where U(12,0,x)U(\frac{1}{2},0,x) is the confluent geometric function which, to leading order, decays as 1/x1/\sqrt{x}.