This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\volnopage

Vol.0 (20xx) No.0, 000–000

11institutetext: School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China;
22institutetext: Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China; [email protected]
\vs\noReceived  20xx month day; accepted  20xx  month day

LsynEsyn,pδL_{\rm syn}-E_{\rm syn,p}-\delta relation in Active Galactic Nucleus Jets and Implication for the physical origin of the LpEp,zΓ0L_{\rm p}-E_{\rm p,z}-\Gamma_{0} relation of Gamma-Ray Bursts

Xiao-Li Huang 1122    En-Wei Liang 22
Abstract

High energy photon radiations of gamma-ray bursts (GRBs) and active galactic nuclei (AGNs) are dominated by their jet radiations. We examine wether the synchrotron radiations of jets in BL Lacs, flat spectrum radio quasars (FSRQs), and Narrow Line Seyfert 1 galaxies (NLS1s) follow the relation between the prompt gamma-ray emission and the initial Lorentz factor (Γ0\Gamma_{0}) of GRBs. It is showed that the AGNs sample does not agree with the LpEp,zΓ0L_{\rm p}-E_{\rm p,z}-\Gamma_{0} of GRBs. In addition, we obtain a tight relation of LsynEsyn,p0.45±0.15δ3.50±0.25L_{\rm syn}\propto E^{0.45\pm 0.15}_{\rm syn,p}\delta^{3.50\pm 0.25} for FSRQs and NLS1 galaxies, where LsynL_{\rm syn} is the luminosity at peak photon energy Esyn,pE_{\rm syn,p} of the synchrotron radiations. This relation is different from the LpEp,zΓ0L_{\rm p}-E_{\rm p,z}-\Gamma_{0} relation of GRBs. The dependence of LsynL_{\rm syn} to δ\delta is consistent with the expectation of the Doppler boosting effect for the FSRQs and NLS1 galaxies, but it is not for GBRs. We argue that Γ0\Gamma_{0} may be a representative of the kinetic power of the radiating region and the tight LpEp,zΓ0L_{\rm p}-E_{\rm p,z}-\Gamma_{0} relation is shaped by the radiation physics and the jet power together.

keywords:
Gamma-Ray Bursts; Active Galactic Nuclei; Relativistic Jets; Non-thermal Radiation

1 Introduction

Relativistic jets are ubiquitous in the Universe and have been detected in a very diverse range of black hole (BH) systems ranging from stellar mass to supermassive scale. It is believed that gamma-ray bursts (GRBs) are produced by an ultra-relativistic jet powered by stellar black holes from core collapses of massive stars (e.g. Woosley 1993) or mergers of two compact stars (e.g. Eichler et al. 1989; Paczynski 1991; Kumar & Zhang 2015), and the high energy photon radiations of active galactic nuclei (AGNs) are dominated by radiations from a mildly relativistic jet fed by accretion of their central super-massive BHs (Urry & Padovani 1995; Ghisellini et al. 2009; Zhang et al. 2012, 2015; Liang et al. 2015; Sun et al. 2015; Zhu et al. 2016).

The observed radiations from a jet are boosted by the Doppler effect in case of the jet toward the earth. It is generally believed that typical GRBs and blazars, including flat spectrum radio quasars (FSRQs) and BL Lacs, as well as GeV-selected Seyfert 1 galaxies, are on-axis or small angle off-axis observed to their jets (Urry & Padovani 1995; Kumar & Zhang 2015; Sun et al. 2015). Therefore, the Doppler boosting factor (δ\delta) is mainly dependent on the the Lorentz factor (Γ\Gamma) of a relativistic jet. There are three methods to estimate the initial Lorentz factor (Γ0\Gamma_{0}) of a GRB fireball. The first one is to use the fireball deceleration time derived from the onset peaks observed in early optical afterglow lightcurves (Sari & Piran 1999; Kobayashi et al. 1999; Liang et al. 2010). The second one is based on the ”compactness” argument by analysing the high energy spectral cutoffs or breaks of the prompt emission of GRBs (Lithwick & Sari 2001; Tang et al. 2015). The third method is to use the photosphere radiation in some GRBs (Pe’er et al. 2007; Peng et al. 2014; Zou et al. 2015). By deriving the Γ0\Gamma_{0} values with the first method for a sample of GRBs, Liang et al. (2010) discovered a relation between Γ0\Gamma_{0} and the isotropic gamma-ray energy EisoE_{\rm iso} of GRBs. Lü et al. (2012) showed that the isotropic luminosity LisoL_{\rm iso} also depends on Γ0\Gamma_{0}.

Most of confirmed extra-galactic GeV-TeV sources are blazars. The bimodal feature of their broadband SEDs is generally represented with the leptonic models of the synchrotron radiation and the inverse Compton (IC) scattering process (e.g. Ghisellini et al. 1996; Urry et al. 1999). The seed photons for the IC process can be from the synchrotron radiation photon field (SSC, Maraschi et al. 1992; Ghisellini et al. 1996; Urry et al. 1999; Zhang et al. 2012) or the external photon field(EC; Sikora et al. 1994, 2009). NLS1 galaxies were identified as a new class of GeV AGNs by the FermiFermi/LAT (Abdo et al. 2009). Their broadband SEDs can be also explained with synchrotron+IC leptonic jet model (Abdo et al. 2009), which are similar to that in FSRQs. In addition, their radiation physics and jet properties are also similar to that in FSRQs (Sun et al. 2015). By modeling the SEDs of 3C 279 (a typical FSRQ) and two NLS1s (PMN J0948+0022 and 1H 0323+342) in different stages, Zhu et al. (2016) found a universal correlation between Doppler factors (δ\delta) and peak luminosities (LcL_{\rm c}) of external Compton scattering bump.

Comparative studies the similarity between the jet radiations from GRBs and AGN outbursts have been presented. A uniform correlation between synchrotron luminosity (LsynL_{\rm syn}) and δ\delta in GRBs and blazars is found by Wu et al. (2011). Wang & Wei (2011) showed similar spectral energy distribution between GRB and AGN jet. Nemmen et al. (2012) illustrated that AGN jets and GRB jets exhibit the same correlation between the jet power and the gamma-ray luminosity, (see also Zhang et al. 2013a; Wang et al. 2014). Such a correlation may be also extended to the jets in black hole X-ray binaries (BXBs) in hard/quiescent states and low-luminosity active galactic nuclei, making this correlation may exist for jets with luminosity spreading more than 20 orders of magnitude, i.e., from 103110^{31} to 105210^{52} erg s-1 (Ma et al. 2014). Further more, Zhu et al. (2019) found that the gamma-ray luminosity and power of outflows of short GRBs and pulsar wind nebulae follow that same relation, and the radiation efficiency is independent of the gamma-ray luminosity for various relativistic jet systems. They suggested that the acceleration and emission mechanisms or efficiencies may be similar in all relativistic outflows regardless of their central engines. Lyu et al. (2014) presented a unified picture for the radiation physics of relativistic jets in GRBs and blazars within the framework of the leptonic synchrotron radiation models. Zhang et al. (2017) proposed a potential fundamental plane for low-synchrotron-peak blazar and GRBs.

The distribution of blazars in the logLsyn,pEsyn\log L_{\rm syn,p}-E_{\rm syn} plane illustrate as a blazar sequence, i.e., high-luminosity FSRQs tend to have a low peak frequency and low-luminosity BL Lacs tend to have a high peak frequency. This sequence may be related to the different environments of emitting regions for different types of blazars (e.g. Ghisellini et al. 1998). However, positive correlation between logLsyn,p\log L_{\rm syn,p} and EsynE_{\rm syn} is observed for outbursts in individuals (Massaro et al. 2008; Tramacere et al. 2009; Zhang et al. 2013a). It is quite similar to that the logLpEp,z\log L_{\rm p}-E_{\rm p,z} relation in individual GRBs (Amati et al. 2002; Yonetoku et al. 2004; Liang et al. 2004; Ghirlanda et al. 2004; Lu et al. 2012). Interestingly, Liang et al. (2015) found a tight correlation among the isotropic peak luminosity (LpL_{\rm p}), the peak energy (Ep,zE_{\rm p,z}) of the νfν\nu f_{\nu} spectrum in the GRBs rest frame, and Γ0\Gamma_{0} of GRBs jets. This LpEp,zΓ0L_{\rm p}-E_{\rm p,z}-\Gamma_{0} relation is much tighter than the logLpEp,z\log L_{\rm p}-E_{\rm p,z} relation. This paper investigates whether or not GeV-TeV selected AGNs have a similar Lsyn,pEsyn,pδL_{\rm syn,p}-E_{\rm syn,p}-\delta relation, and explore the possible implications for the physical origin of the LpEp,zΓ0L_{\rm p}-E_{\rm p,z}-\Gamma_{0} relation of GRBs. We present our samples in Section 2. Our analysis results are present in Section 3. Discussion and conclusions are given in section 4.

2 Sample and Data

Our samples of GeV/TeV-selected FSRQs, BL Lacs, and NLS1s are taken from Zhang et al. (2012, 2015) and Sun et al. (2015). They presented systematical broadband SED fits to these AGNs with the single-zone lepton model. Viewing angle effect significantly influences the measurement of the Doppler factor of a radiating region. Since the jets in these AGNs are only middle relativistic and the viewing angle to the jet axis of blazars is through to be small, it is usually set δ=Γ\delta=\Gamma in modeling the SEDs of blazars (e.g. Zhang et al. 2012, 2014). Using the model parameters reported by Zhang et al. (2012, 2015) and Sun et al. (2015), we obtain the values of Γ\Gamma, the peak luminosity (LsynL_{\rm syn}) and the peak photon energy (Esyn,pE_{\rm syn,p}) in the source frame of the synchrotron emission. The bolometric luminosity (LbolL_{\rm bol}) of these sources are also calculated with the SED fit results. Note that the model parameters for the BL Lacs are poorly constrained, and no error bars of the parameters are reported in Zhang et al. (2012). Thus, no error is available for our data of BL Lacs. There are 18 FSRQs, 19 BL Lac objects, and 5 NLS1s are included in our AGN samples. Since these sources are variable, several SEDs in different outbursts are derived for some sources. The data of our AGN samples are reported in Tables  1-3. Thirty-four GRBs are included in our GRB sample. They are taken from Liang et al. (2015). Liang et al. (2015) calculated the fireball initial Lorentz factors of these GRBs with the observed onset bump in the early optical afterglow lightcurves assuming that the onset bump is due to the deceleration of the fireballs by their ambient medium Sari et al. (1999). The peak luminosity (LpL_{\rm p}) and the corresponding photon energy (EpE_{\rm p}) of these GRBs are derived from the fits to the observed spectra accumulated in 1-second peak time slice with the Band function or a power law with an exponential cutoff model. The bolometric luminosity in 11041-10^{4} keV is calculated with the flux from spectral fits to the time-integrated spectra of these GRBs. The data are reported in Table 4.

Table 1: Data of Our FSRQs Samplea
Name zz δ\delta log(Esyn,z)\log(E_{\rm syn,z}) log(Lsyn,52)\log(L_{\rm syn,52}) log(Lbol,52)\log(L_{\rm bol,52})
(keV)(\rm keV) (ergs1)(\rm erg\ s^{-1}) (ergs1)(\rm erg\ s^{-1})
FSRQs
3C 279 0.536 12.0±\pm0.5 4.29±0.15-4.29\pm 0.15 5.56±0.05-5.56\pm 0.05 4.20±0.01-4.20\pm 0.01
3C 273 0.158 7.4±\pm0.9 3.97±0.20-3.97\pm 0.20 5.75±0.13-5.75\pm 0.13 4.89±0.03-4.89\pm 0.03
3C 454.3 0.859 17.6±0.617.6\pm 0.6 4.13±0.10-4.13\pm 0.10 4.40±0.10-4.40\pm 0.10 2.94±0.01-2.94\pm 0.01
PKS 1454-354 1.424 20.2±1.820.2\pm 1.8 3.83±0.40-3.83\pm 0.40 4.65±0.4-4.65\pm 0.4 3.08±0.04-3.08\pm 0.04
PKS 0208-512 1.003 15.2±1.315.2\pm 1.3 4.22±0.40-4.22\pm 0.40 5.13±0.40-5.13\pm 0.40 3.66±0.02-3.66\pm 0.02
PKS 0454-234 1.003 20.0±1.920.0\pm 1.9 4.18±0.30-4.18\pm 0.30 5.06±0.30-5.06\pm 0.30 3.47±0.02-3.47\pm 0.02
PKS 0727-11 1.589 20.6±1.220.6\pm 1.2 3.97±0.20-3.97\pm 0.20 4.82±0.15-4.82\pm 0.15 3.09±0.03-3.09\pm 0.03
PKS 0528+134 2.07 18.4±1.318.4\pm 1.3 4.10±0.20-4.10\pm 0.20 4.46±0.14-4.46\pm 0.14 3.01±0.06-3.01\pm 0.06
4C 66.2 0.657 12.2±1.212.2\pm 1.2 4.21±0.48-4.21\pm 0.48 5.59±0.15-5.59\pm 0.15 4.23±0.02-4.23\pm 0.02
4C 29.45 0.729 11.6±1.011.6\pm 1.0 3.65±0.25-3.65\pm 0.25 5.41±0.17-5.41\pm 0.17 4.40±0.03-4.40\pm 0.03
B2 1520+31 1.487 20.8±1.620.8\pm 1.6 3.99±0.30-3.99\pm 0.30 5.27±0.13-5.27\pm 0.13 3.36±0.05-3.36\pm 0.05
PKS 0420-01 0.916 12.8±0.712.8\pm 0.7 3.66±0.30-3.66\pm 0.30 5.23±0.13-5.23\pm 0.13 3.99±0.02-3.99\pm 0.02
1Jy 1308+326 0.997 12.6±0.912.6\pm 0.9 4.13±0.35-4.13\pm 0.35 5.76±0.20-5.76\pm 0.20 3.80±0.02-3.80\pm 0.02
PKS 1510-089 0.36 11.0±0.511.0\pm 0.5 4.30±0.06-4.30\pm 0.06 6.14±0.05-6.14\pm 0.05 4.54±0.03-4.54\pm 0.03
4C 28.07 1.213 14.6±1.114.6\pm 1.1 4.13±0.20-4.13\pm 0.20 5.16±0.17-5.16\pm 0.17 3.91±0.02-3.91\pm 0.02
PMN 2345-1555 0.621 13.8±1.313.8\pm 1.3 4.30±0.25-4.30\pm 0.25 5.87±0.13-5.87\pm 0.13 4.54±0.04-4.54\pm 0.04
S3 2141+17 0.213 8.0±1.08.0\pm 1.0 3.44±0.30-3.44\pm 0.30 5.97±0.11-5.97\pm 0.11 5.22±0.02-5.22\pm 0.02
S4 0133+47 0.859 13.1±1.213.1\pm 1.2 4.16±0.35-4.16\pm 0.35 5.20±0.13-5.20\pm 0.13 4.00±0.01-4.00\pm 0.01
S4 0917+44 2.19 18.2±1.318.2\pm 1.3 3.92±0.30-3.92\pm 0.30 4.54±0.15-4.54\pm 0.15 3.23±0.02-3.23\pm 0.02
PKS 0227-369 2.115 17.8±1.017.8\pm 1.0 3.79±0.30-3.79\pm 0.30 4.69±0.13-4.69\pm 0.13 3.20±0.03-3.20\pm 0.03
PKS 0347-211 2.944 26.2±1.526.2\pm 1.5 3.74±0.30-3.74\pm 0.30 4.25±0.15-4.25\pm 0.15 2.87±0.03-2.87\pm 0.03
PKS 2325+093 1.843 17.6±17.617.6\pm 17.6 3.33±0.30-3.33\pm 0.30 3.90±0.13-3.90\pm 0.13 3.16±0.03-3.16\pm 0.03
PKS 1502+106 1.839 27.0±2.327.0\pm 2.3 3.98±0.32-3.98\pm 0.32 4.40±014-4.40\pm 014 2.64±0.04-2.64\pm 0.04

a δ\delta is the Doppler boosting factor, Esyn,zE_{\rm syn,z} is the synchrotron peak photon energy in the source frame, LsynL_{\rm syn} and LbolL_{\rm bol} are the synchrotron peak luminosity and bolometric luminosity, respectively. They are derived from the SED fits with the single-zone leptonic model as reported in Zhang et al. (2015).

Table 2: Data of BL Lacs Samplea
Name zz δ\delta log(Esyn,z)\log(E_{\rm syn,z}) log(Lsyn,52)\log(L_{\rm syn,52}) log(Lbol,52)\log(L_{\rm bol,52})
(keV)(\rm keV) (ergs1)(\rm erg\ s^{-1}) (ergs1)(\rm erg\ s^{-1})
BL Lacs
Mkn 421L 0.031 29 0.295-0.295 7.126-7.126 6.201-6.201
Mkn 501L 0.034 14 0.914-0.914 7.709-7.709 6.745-6.745
Mkn 501H 0.034 15 1.8711.871 6.536-6.536 5.699-5.699
W ComL 0.102 15 2.159-2.159 7.090-7.090 6.000-6.000
W ComH 0.102 14 2.320-2.320 6.995-6.995 5.553-5.553
BL LacertaeL 0.069 19 3.304-3.304 6.937-6.937 6.000-6.000
BL LacertaeH 0.069 20 2.979-2.979 7.310-7.310 6.036-6.036
PKS 2005-489H 0.071 42 1.633-1.633 6.659-6.659 5.620-5.620
1ES 1959+650L 0.048 11 0.038 7.050-7.050 6.180-6.180
1ES 1959+650H 0.048 12 1.786 6.741-6.741 6.678-6.678
1ES 2344+514L 0.044 13 1.045-1.045 7.898-7.898 7.036-7.036
PKS 2155-304L 0.116 50 1.354-1.354 6.137-6.137 5.208-5.208
PKS 2155-304H 0.116 26 1.041-1.041 5.876-5.876 4.180-4.180
1ES 1101-232L 0.186 12 0.223-0.223 6.459-6.459 5.638-5.638
3C 66A 0.44 24 1.653-1.653 5.396-5.396 3.921-3.921
PG 1553+113 0.3 32 1.696-1.696 5.386-5.386 4.509-4.509
1ES 1218+30.4 0.182 20 0.867-0.867 6.612-6.612 5.638-5.638
1ES 1011+496 0.212 13 0.236-0.236 5.799-5.799 4.959-4.959
PKS 1424+240 0.5 33 1.319-1.319 4.952-4.952 4.180-4.180
1ES 0806+524 0.138 12 1.496-1.496 7.126-7.126 6.161-6.161
Mkn 180 0.045 6 1.092-1.092 8.123-8.123 7.174-7.174
RGB J0152+017 0.08 5 0.236-0.236 8.114-8.114 6.921-6.921
H1426+428 0.129 8.5 0.472 7.264-7.264 5.699-5.699
PKS 0548-322 0.069 6 0.263 7.692-7.692 6.796-6.796

a δ\delta is the Doppler boosting factor, Esyn,zE_{\rm syn,z} is the synchrotron peak photon energy in the source frame, LsynL_{\rm syn} and LbolL_{\rm bol} are the synchrotron peak luminosity and bolometric luminosity, respectively. They are derived from the SED fits with the single-zone leptonic model as reported in Zhang et al. (2012). Sources marked with “H” or “L” indicate the high and low states as defined in Zhang et al. (2012).

Table 3: Data of NLS1 Samplea
Name zz δ\delta log(Esyn,z)\log(E_{\rm syn,z}) log(Lsyn,52)\log(L_{\rm syn,52}) log(Lbol,52)\log(L_{\rm bol,52})
(keV)(\rm keV) (ergs1)(\rm erg\ s^{-1}) (ergs1)(\rm erg\ s^{-1})
NLS1
1H 0323+342(1) 0.0629 2.8±0.62.8\pm 0.6 3.96±0.40-3.96\pm 0.40 7.32±0.30-7.32\pm 0.30 6.30±0.01-6.30\pm 0.01
1H 0323+342(2) 0.0629 3.6±1.33.6\pm 1.3 4.43±0.45-4.43\pm 0.45 7.52±0.50-7.52\pm 0.50 6.52±0.02-6.52\pm 0.02
1H 0323+342(3) 0.0629 4.9±0.84.9\pm 0.8 4.62±0.40-4.62\pm 0.40 7.29±0.40-7.29\pm 0.40 6.37±0.01-6.37\pm 0.01
1H 0323+342(4) 0.0629 4.5±0.64.5\pm 0.6 4.80±0.40-4.80\pm 0.40 7.34±0.40-7.34\pm 0.40 6.26±0.01-6.26\pm 0.01
1H 0323+342(5) 0.0629 6.2±0.66.2\pm 0.6 4.76±0.15-4.76\pm 0.15 6.98±0.15-6.98\pm 0.15 5.95±0.01-5.95\pm 0.01
PMN J0948+0022(1) 0.5846 11.1±1.411.1\pm 1.4 4.38±0.42-4.38\pm 0.42 5.60±0.25-5.60\pm 0.25 4.60±0.02-4.60\pm 0.02
PMN J0948+0022(2) 0.5846 10.8±1.310.8\pm 1.3 4.20±0.25-4.20\pm 0.25 5.31±0.24-5.31\pm 0.24 4.60±0.01-4.60\pm 0.01
PMN J0948+0022(3) 0.5846 8.6±1.38.6\pm 1.3 4.22±0.40-4.22\pm 0.40 5.68±0.30-5.68\pm 0.30 4.79±0.01-4.79\pm 0.01
PMN J0948+0022(4) 0.5846 11.1±111.1\pm 1 4.48±0.32-4.48\pm 0.32 5.38±0.25-5.38\pm 0.25 4.65±0.02-4.65\pm 0.02
PMN J0948+0022(5) 0.5846 11.6±0.811.6\pm 0.8 4.45±0.25-4.45\pm 0.25 5.42±0.15-5.42\pm 0.15 4.43±0.02-4.43\pm 0.02
PMN J0948+0022(6) 0.5846 9.5±0.59.5\pm 0.5 4.54±0.17-4.54\pm 0.17 5.95±0.13-5.95\pm 0.13 4.67±0.02-4.67\pm 0.02
PMN J0948+0022(7) 0.5846 13.5±1.113.5\pm 1.1 4.89±0.20-4.89\pm 0.20 5.32±0.20-5.32\pm 0.20 3.76±0.02-3.76\pm 0.02
PMN J0948+0022(8) 0.5846 13.7±1.813.7\pm 1.8 5.08±0.45-5.08\pm 0.45 5.28±0.34-5.28\pm 0.34 3.92±0.02-3.92\pm 0.02
PMN J0948+0022(9) 0.5846 11.4±2.211.4\pm 2.2 4.08±0.40-4.08\pm 0.40 5.37±0.35-5.37\pm 0.35 4.30±0.01-4.30\pm 0.01
SBS 0846+513 0.5835 7.4±0.87.4\pm 0.8 4.51±0.15-4.51\pm 0.15 6.67±0.09-6.67\pm 0.09 5.15±0.03-5.15\pm 0.03
PKS 1502+036 0.409 9.5±0.89.5\pm 0.8 4.29±0.20-4.29\pm 0.20 6.47±0.15-6.47\pm 0.15 5.39±0.08-5.39\pm 0.08
PKS 2004-447 0.24 6.4±0.56.4\pm 0.5 4.29±0.15-4.29\pm 0.15 6.97±0.10-6.97\pm 0.10 6.18±0.02-6.18\pm 0.02

a δ\delta is the Doppler boosting factor, Esyn,zE_{\rm syn,z} is the synchrotron peak photon energy in the source frame, LsynL_{\rm syn} and LbolL_{\rm bol} are the synchrotron peak luminosity and bolometric luminosity, respectively. They are derived from the SED fits with the single-zone leptonic model as reported in Sun et al. (2015). Different flux states of two Narrow Line Seyfert 1 galaxies, 1H 0323+342 and PMN J0948+0022, are also reported in Sun et al. (2015).

Table 4: Data of Our GRB Sample Taken from Liang et al. (2015)a
GRB zz T90T_{\rm 90} Γ0\Gamma_{0} log(Ep,z)\rm log(E_{\rm p,z}) log(Lp,52)\log(L_{\rm p,52}) log(Lbol,52)\log(L_{\rm bol,52})
(s) (keV)(\rm keV) (ergs1)(\rm erg\ s^{-1}) (ergs1)(\rm erg\ s^{-1})
990123 1.6 63.3±0.2663.3\pm 0.26 600±80600\pm 80 3.13±0.023.13\pm 0.02 1.44±0.021.44\pm 0.02 0.75±0.010.75\pm 0.01
090924 0.544 48±348\pm 3 300±79300\pm 79 2.44±0.012.44\pm 0.01 0.32±0.030.32\pm 0.03 1.04±0.03-1.04\pm 0.03
080810 3.35 106±5106\pm 5 409±34409\pm 34 3.13±0.103.13\pm 0.10 0.98±0.040.98\pm 0.04 0.42±0.03-0.42\pm 0.03
060605 3.78 15±215\pm 2 197±30197\pm 30 2.69±0.222.69\pm 0.22 0.02±0.07-0.02\pm 0.07 0.72±0.09-0.72\pm 0.09
050820A 2.615 50±550\pm 5 282±29282\pm 29 2.950.12+0.222.95^{+0.22}_{-0.12} 0.510.06+0.040.51^{+0.04}_{-0.06} 0.50±0.05-0.50\pm 0.05
060607A 3.082 100±5100\pm 5 296±28296\pm 28 2.76±0.152.76\pm 0.15 0.30±0.060.30\pm 0.06 1.05±0.34-1.05\pm 0.34
060418 1.489 52±152\pm 1 263±23263\pm 23 2.760.06+0.232.76^{+0.23}_{-0.06} 0.28±0.030.28\pm 0.03 0.56±0.01-0.56\pm 0.01
070208 1.165 48±248\pm 2 115±23115\pm 23 1.820.22+1.181.82^{+1.18}_{-0.22} 1.03±0.05-1.03\pm 0.05 2.23±0.34-2.23\pm 0.34
081203A 2.1 294±71294\pm 71 219±21219\pm 21 3.19±0.213.19\pm 0.21 0.45±0.030.45\pm 0.03 0.92±0.11-0.92\pm 0.11
070419A 0.97 116±6116\pm 6 91±1191\pm 11 1.430.31+0.261.43^{+0.26}_{-0.31} 2.01±0.04-2.01\pm 0.04 1.82±0.43-1.82\pm 0.43
060904B 0.703 192±5192\pm 5 108±10108\pm 10 2.13±0.132.13\pm 0.13 1.13±0.08-1.13\pm 0.08 2.72±0.09-2.72\pm 0.09
080710 0.845 120±17120\pm 17 53±853\pm 8 2.480.29+0.722.48^{+0.72}_{-0.29} 1.10±0.04-1.10\pm 0.04 2.18±0.44-2.18\pm 0.44
080319C 1.95 34±934\pm 9 228±5228\pm 5 3.24±0.133.24\pm 0.13 0.98±0.010.98\pm 0.01 0.36±0.12-0.36\pm 0.12
071010B 0.947 35.7±0.535.7\pm 0.5 209±4209\pm 4 2.01±0.052.01\pm 0.05 0.26±0.02-0.26\pm 0.02 1.14±0.03-1.14\pm 0.03
070110 2.352 85±585\pm 5 127±4127\pm 4 2.57±0.202.57\pm 0.20 0.35±0.07-0.35\pm 0.07 1.19±0.12-1.19\pm 0.12
060210 3.91 46±1046\pm 10 264±4264\pm 4 2.860.10+1.172.86^{+1.17}_{-0.10} 0.870.08+0.120.87^{+0.12}_{-0.08} 0.08±0.170.08\pm 0.17
061007 1.261 75±575\pm 5 436±3436\pm 3 2.96±0.022.96\pm 0.02 1.160.07+0.061.16^{+0.06}_{-0.07} 0.10±0.040.10\pm 0.04
061121 1.314 81±581\pm 5 175±2175\pm 2 3.11±0.053.11\pm 0.05 1.15±0.011.15\pm 0.01 0.49±0.06-0.49\pm 0.06
090812 2.452 66.7±14.766.7\pm 14.7 501±46501\pm 46 3.300.12+0.193.30^{+0.19}_{-0.12} 1.000.06+0.041.00^{+0.04}_{-0.06} 0.20±0.11-0.20\pm 0.11
060218 0.0331 100±10100\pm 10 2.3±0.32.3\pm 0.3 0.71±0.030.71\pm 0.03 5.37±0.16-5.37\pm 0.16 5.03±0.06-5.03\pm 0.06
100621A 0.542 63.6±1.763.6\pm 1.7 52.0±4.852.0\pm 4.8 2.16±0.072.16\pm 0.07 0.50±0.03-0.50\pm 0.03 1.16±0.05-1.16\pm 0.05
050922C 2.198 5±15\pm 1 274±25274\pm 25 2.800.08+0.142.80^{+0.14}_{-0.08} 0.820.03+0.020.82^{+0.02}_{-0.03} 0.04±0.090.04\pm 0.09
091029 2.752 39.2±5.039.2\pm 5.0 221±20221\pm 20 2.36±0.132.36\pm 0.13 0.24±0.030.24\pm 0.03 0.62±0.070.62\pm 0.07
071112C 0.822 15±215\pm 2 244±22244\pm 22 2.630.09+0.142.63^{+0.14}_{-0.09} 0.02±0.040.02\pm 0.04 0.84±0.13-0.84\pm 0.13
080129 4.394 48±1048\pm 10 65±665\pm 6 3.130.26+0.853.13^{+0.85}_{-0.26} 0.43±0.040.43\pm 0.04 0.84±0.13-0.84\pm 0.13
081109A 0.98 190±60190\pm 60 68±768\pm 7 2.320.10+0.632.32^{+0.63}_{-0.10} 0.71±0.06-0.71\pm 0.06 1.67±0.25-1.67\pm 0.25
081008 1.967 185.5±40.3185.5\pm 40.3 250±23250\pm 23 2.430.10+0.552.43^{+0.55}_{-0.10} 0.26±0.01-0.26\pm 0.01 1.44±0.14-1.44\pm 0.14
091024 1.092 109.8±16.7109.8\pm 16.7 69±669\pm 6 2.90±0.132.90\pm 0.13 0.21±0.100.21\pm 0.10 0.59±0.08-0.59\pm 0.08
090102 1.547 27.0±2.227.0\pm 2.2 61±661\pm 6 3.060.06+0.073.06^{+0.07}_{-0.06} 0.77±0.060.77\pm 0.06 0.10±0.05-0.10\pm 0.05
110205A 2.22 257±25257\pm 25 177±16177\pm 16 2.85±0.152.85\pm 0.15 0.40±0.060.40\pm 0.06 0.66±0.06-0.66\pm 0.06
121217A 3.1 778±16778\pm 16 247±23247\pm 23 2.88±0.132.88\pm 0.13 0.55±0.070.55\pm 0.07 1.10±0.10-1.10\pm 0.10
100728B 2.106 12.1±2.412.1\pm 2.4 373±34373\pm 34 2.61±0.032.61\pm 0.03 0.27±0.030.27\pm 0.03 0.61±0.10-0.61\pm 0.10
110213A 1.46 48±1648\pm 16 223±21223\pm 21 2.38±0.022.38\pm 0.02 0.32±0.010.32\pm 0.01 0.88±0.15-0.88\pm 0.15
100906A 1.727 114.4±1.6114.4\pm 1.6 369±34369\pm 34 2.20±0.042.20\pm 0.04 0.39±0.020.39\pm 0.02 0.53±0.04-0.53\pm 0.04

a T90T_{90} is the GRB duration, Γ0\Gamma_{0} is the initial Lorentz factor of the GRB firballs, Ep,zE_{\rm p,z} is the peak photon energy of the GRBs derived from the fits with the Band function (Band et al. 1993) in the burst frame, LpL_{\rm p} and LbolL_{\rm bol} are the luminosity at the 1-second peak time slice and the time-integrated luminosity in the burst duration, respectively.

3 Correlation Analysis Results

We make Spearman pair correlation analysis between the luminosity and Doppler boosting factor for each sub-groups of the ANGs and for the entire samples of the AGNs and GRBs. Our results are reported in Table 5. It is found that both LsynL_{\rm syn} (or LpL_{\rm p}) and LbolL_{\rm bol} depend on Γ\Gamma (or Γ0\Gamma_{0}) with a power-law index ranging from 2.272.27 to 4.584.58 for different sub-classes of AGNs. We make correlation analysis for the entire AGN and GRB samples, as shown in Figure 1, the BL Lacs are separated from the FSRQs and NLS1 galaxies, and BL Lacs tend to be dimmer than the FSRQs and NLS1 galaxies with the same Γ\Gamma. Both GRBs and AGNs shape a clear sequence in the logLsynlogΓ\log L_{\rm syn}-\log\Gamma and logLbollogΓ\log L_{\rm bol}-\log\Gamma planes. Our correlation analysis yields logLsynΓ4.64±0.20\log L_{\rm syn}\propto\Gamma^{4.64\pm 0.20}, and logLbolΓ3.20±0.17\log L_{\rm bol}\propto\Gamma^{3.20\pm 0.17} (see also Wu et al. 2011). However, this relation has very large dispersion (Δ=1.20\Delta=1.20). Our Spearman correlation analysis between EsynE_{\rm syn} and δ\delta does not reveal any statistical correlation with a chance probability p<104p<10^{-4} between the two quantities in each sub-class of the AGNs.

Physically, the observed luminosity and photon energy are boosted by the jet bulk Doppler effect. As shown in Liang et al. (2015), by incorporating the Doppler boosting factor the derived LpEpΓ0L_{\rm p}-E_{\rm p}-\Gamma_{0} relation is much tighter than the LpEpL_{\rm p}-E_{\rm p} relation. We first examine whether the synchrotron radiations of the selected AGNs follow the LpEpΓ0L_{\rm p}-E_{\rm p}-\Gamma_{0} relation of GRBs, i.e., LpEp,z1.34±0.14Γ01.32±0.19L_{\rm p}\propto E_{\rm p,z}^{1.34\pm 0.14}\Gamma_{0}^{1.32\pm 0.19} (Liang et al. 2015). We calculate the synchrotron peak luminosity (LsynrL^{\rm r}_{\rm syn}) with this relation for the AGNs by using their Esyn,pE_{\rm syn,p} and Γ\Gamma values. Figure 2 shows LsynrL^{\rm r}_{\rm syn} as a function of the observed LsynL_{\rm syn}. It is found that the BL Lacs are in the low luminosity end of this relation with a very large scatter, and the derived LsynrL^{\rm r}_{\rm syn} of FSRQs and NLS1 galaxies are 4-5 orders of magnitude lower than the LpEpΓ0L_{\rm p}-E_{\rm p}-\Gamma_{0} relation of GRBs. The FSRQs and NLS1 seem to follow another tight relation which is different from that of GRBs.

We explore LEsyn,pΓL-E_{\rm syn,p}-\Gamma relation for each sub-classes of the AGNs, using the stepwise regression analysis method. Our model is logLr(logEsyn,p,logΓ)=a+blogEsyn,p+clogΓ\log L^{r}(\log E_{\rm syn,p},\log\Gamma)=a+b\log E_{\rm syn,p}+c\log\Gamma. Our results are reported in Table 6 and shown in Figure 3. We do not find a LEsyn,pΓL-E_{\rm syn,p}-\Gamma relation with pF<104p_{\rm F}<10^{-4} for the BL Lacs, where pFp_{\rm F} is the probability of the F-test for our regression analysis. Similar LsynEsyn,pΓL_{\rm syn}-E_{\rm syn,p}-\Gamma and LbolEsyn,pΓL_{\rm bol}-E_{\rm syn,p}-\Gamma relations are found for the FSRQs and NLS1 galaxies. Our regression analysis for the combined sample of the FSRQs and NLS1 galaxies yields logLsyn,52=(7.40±0.77)+(0.45±0.15)logEsyn,z/keV+(3.50±0.25)logΓ\log L_{\rm syn,52}=(-7.40\pm 0.77)+(0.45\pm 0.15)\log E_{\rm syn,z}/\rm keV+(3.50\pm 0.25)\log\Gamma and logLbol,52=(8.16±0.71)+(0.22±0.14)logEsyn,z/keV+(4.48±0.23)logΓ\log L_{\rm bol,52}=(-8.16\pm 0.71)+(0.22\pm 0.14)\log E_{\rm syn,z}/\rm keV+(4.48\pm 0.23)\log\Gamma, as shown in Figure 4. One can find that the dispersion of the three parameter relations are significantly tighter than the LΓL-\Gamma relations.

Table 5: Results of our Spearman linear correlation analysis for the AGNs and GRBs in our samples. rr and pp are the linear correlation coefficient and chance probability, and Δ\Delta is the 1σ1\sigma dispersion of the pair correlation.
relations Source Expressions\rm Expressions rr pp Δ\Delta
Lsyn(Γ)L_{\rm syn}(\Gamma) FSRQs Lsyn,52=10(9.04±0.68)Γ(3.33±0.57)L_{\rm syn,52}=10^{(-9.04\pm 0.68)}\Gamma^{(3.33\pm 0.57)} 0.79 <104<10^{-4} 0.39
BL Lacs Lsyn,52=10(9.51±0.63)Γ(2.27±0.51)L_{\rm syn,52}=10^{(-9.51\pm 0.63)}\Gamma^{(2.27\pm 0.51)} 0.69 2.14×1042.14\times 10^{-4} 0.64
NLS1 Lsyn,52=10(9.71±0.37)Γ(3.89±0.41)L_{\rm syn,52}=10^{(-9.71\pm 0.37)}\Gamma^{(3.89\pm 0.41)} 0.93 <104<10^{-4} 0.34
AGN+GRB Lsyn,52=10(10.88±0.32)Γ(4.64±0.20)L_{\rm syn,52}=10^{(-10.88\pm 0.32)}\Gamma^{(4.64\pm 0.20)} 0.92 <104<10^{-4} 1.20
Lbol(Γ)L_{\rm bol}(\Gamma) FSRQs Lbol,52=10(9.13±0.45)Γ(4.58±0.38)L_{\rm bol,52}=10^{(-9.13\pm 0.45)}\Gamma^{(4.58\pm 0.38)} 0.93 <104<10^{-4} 0.26
BL Lacs Lbol,52=10(8.57±0.70)Γ(2.32±0.57)L_{\rm bol,52}=10^{(-8.57\pm 0.70)}\Gamma^{(2.32\pm 0.57)} 0.66 4.87×1044.87\times 10^{-4} 0.71
NLS1 Lbol,52=10(8.87±0.40)Γ(4.13±0.43)L_{\rm bol,52}=10^{(-8.87\pm 0.40)}\Gamma^{(4.13\pm 0.43)} 0.93 <104<10^{-4} 0.36
AGN+GRB Lbol,52=10(8.29±0.27)Γ(3.20±0.17)L_{\rm bol,52}=10^{(-8.29\pm 0.27)}\Gamma^{(3.20\pm 0.17)} 0.89 <104<10^{-4} 1.03
Esyn,z(Γ)E_{\rm syn,z}(\Gamma) FSRQs Esyn,z=10(4.01±0.49)Γ(0.03±0.41)E_{\rm syn,z}=10^{(-4.01\pm 0.49)}\Gamma^{(-0.03\pm 0.41)} 0.02 0.94 -
BL Lacs Esyn,z=10(1.34±1.17)Γ(1.86±0.96)E_{\rm syn,z}=10^{(1.34\pm 1.17)}\Gamma^{(-1.86\pm 0.96)} -0.38 0.06 -
NLS1 Esyn,z=10(4.16±0.33)Γ(0.34±0.36)E_{\rm syn,z}=10^{(-4.16\pm 0.33)}\Gamma^{(-0.34\pm 0.36)} -0.24 0.34 -
Lsyn(Esyn,z)L_{\rm syn}(E_{\rm syn,z}) FSRQs Lsyn,52=10(1.83±1.82)Esyn,z(0.82±0.46)L_{\rm syn,52}=10^{(-1.83\pm 1.82)}E_{\rm syn,z}^{(0.82\pm 0.46)} 0.36 0.09 -
BL Lacs Lsyn,52=10(6.84±0.22)Esyn,z(0.05±0.14)L_{\rm syn,52}=10^{(-6.84\pm 0.22)}E_{\rm syn,z}^{(-0.05\pm 0.14)} -0.08 0.71 -
NLS1 Lsyn,52=10(7.06±3.39)Esyn,z(0.19±0.76)L_{\rm syn,52}=10^{(-7.06\pm 3.39)}E_{\rm syn,z}^{(-0.19\pm 0.76)} -0.06 0.81 -
Lbol(Esyn,z)L_{\rm bol}(E_{\rm syn,z}) FSRQs Lbol,52=103.03±2.25Esyn,z0.17±0.57L_{\rm bol,52}=10^{-3.03\pm 2.25}E_{\rm syn,z}^{0.17\pm 0.57} 0.07 0.76 -
BL Lacs Lbol,52=105.92±0.23Esyn,z0.16±0.15L_{\rm bol,52}=10^{-5.92\pm 0.23}E_{\rm syn,z}^{0.16\pm 0.15} -0.22 0.30 -
NLS1 Lbol,52=107.97±3.54Esyn,z0.63±0.79L_{\rm bol,52}=10^{-7.97\pm 3.54}E_{\rm syn,z}^{-0.63\pm 0.79} -0.20 0.44 -
Table 6: Results of our linear regression analysis with a model of logL=a+blogE+clogΓ\log L=a+b\log E+c\log\Gamma in the source frame for the AGNs (or GRBs) in our samples.
relations Source Expressions\rm Expressions pFap^{a}_{\rm F} rbr^{b} pbp^{b} Δb\Delta^{b}
Lsynr(Esyn,z,Γ)L^{r}_{\rm syn}(E_{\rm syn,z},\Gamma) FSRQs Lsyn,52r=10(5.86±1.78)Esyn,z(0.79±0.26)Γ(3.31±0.48)L^{r}_{\rm syn,52}=10^{(-5.86\pm 1.78)}E_{\rm syn,z}^{(0.79\pm 0.26)}\Gamma^{(3.31\pm 0.48)} 1.36×1061.36\times 10^{-6} 0.86 <104<10^{-4} 0.270.27
BL Lacs Lsyn,52r=10(9.71±0.64)Esyn,z(0.15±0.11)Γ(2.54±0.55)L^{r}_{\rm syn,52}=10^{(-9.71\pm 0.64)}E_{\rm syn,z}^{(0.15\pm 0.11)}\Gamma^{(2.54\pm 0.55)} 5.62×1045.62\times 10^{-4} 0.71 <104<10^{-4} 0.440.44
NLS1 Lsyn,52r=10(7.58±1.19)Esyn,z(0.51±0.27)Γ(4.07±0.39)L^{r}_{\rm syn,52}=10^{(-7.58\pm 1.19)}E_{\rm syn,z}^{(0.51\pm 0.27)}\Gamma^{(4.07\pm 0.39)} 2.39×1072.39\times 10^{-7} 0.94 <104<10^{-4} 0.280.28
FSRQs+NLS1 Lsyn,52r=10(7.40±0.77)Esyn,z(0.45±0.15)Γ(3.50±0.25)L^{r}_{\rm syn,52}=10^{(-7.40\pm 0.77)}E_{\rm syn,z}^{(0.45\pm 0.15)}\Gamma^{(3.50\pm 0.25)} 0 0.94 <104<10^{-4} 0.300.30
Lbolr(Esyn,z,Γ)L^{r}_{\rm bol}(E_{\rm syn,z},\Gamma) FSRQs Lbol,52r=108.59±0.94Esyn,z0.13±0.20Γ4.57±0.38L^{r}_{\rm bol,52}=10^{-8.59\pm 0.94}E_{\rm syn,z}^{0.13\pm 0.20}\Gamma^{4.57\pm 0.38} 8.11×10108.11\times 10^{-10} 0.94 <104<10^{-4} 0.230.23
BL Lacs Lbol,52r=108.60±0.73Esyn,z0.03±0.13Γ2.37±0.63L^{r}_{\rm bol,52}=10^{-8.60\pm 0.73}E_{\rm syn,z}^{0.03\pm 0.13}\Gamma^{2.37\pm 0.63} 2.6×1032.6\times 10^{-3} 0.67 4.77×1044.77\times 10^{-4} 0.470.47
NLS1 Lbol,52r=108.51±1.40Esyn,z0.09±0.32Γ4.17±0.46L^{r}_{\rm bol,52}=10^{-8.51\pm 1.40}E_{\rm syn,z}^{0.09\pm 0.32}\Gamma^{4.17\pm 0.46} 1.03×1061.03\times 10^{-6} 0.93 <104<10^{-4} 0.330.33
FSRQs+NLS1 Lbol,52r=10(8.16±0.71)Esyn,z(0.22±0.14)Γ(4.48±0.23)L^{r}_{\rm bol,52}=10^{(-8.16\pm 0.71)}E_{\rm syn,z}^{(0.22\pm 0.14)}\Gamma^{(4.48\pm 0.23)} 0 0.96 <104<10^{-4} 0.290.29

a pFp_{\rm F} is the probability of the F-test for our linear regression analysis results.
b rr and pp are the linear correlation coefficient and chance probability derived from the Spearman correlation analysis for each pairs of LrL_{\rm r} and LL. Δ\Delta is the 1σ1\sigma dispersion of the pair correlation.

Refer to caption
Refer to caption
Figure 1: Synchrotron peak luminosity and bolometric luminosity in the observed frames as a function of the jet Lorentz factor for the AGNs in our samples. GRBs in our sample are illustrated accordingly with their 1-second peak time luminosity (LpL_{\rm p}), time-integrated luminosity in the energy band of 11041-10^{4} keV. Lines are the best fit and the 2 σ\sigma dispersion derived from the Spearman linear correlation analysis for both the AGNs and GRBs.
Refer to caption
Refer to caption
Figure 2: Examination of whether or not the jet radiations of the AGNs share the same LEpΓ0L-E_{\rm p}-\Gamma_{0} relation as that derived from GRBs, in which LsynrL^{\rm r}_{\rm syn} and LbolrL^{\rm r}_{\rm bol} are calculated with the relations of Lpr(Ep,Γ0)L^{\rm r}_{\rm p}(E_{\rm p},\Gamma_{0}) or Lbolr(Ep,Γ0)L^{\rm r}_{\rm bol}(E_{\rm p},\Gamma_{0}) derived from the GRB sample. The best linear fit line together with their 2σ\sigma dispersion regions of the relations are shown with solid and dashed lines, respectively (e.g. Liang et al. 2015). The pink triangles are the data for Mkn 501 in different outbursts taken from Zhang et al. (2013b).
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Pair correlations of logLsynrlogLsyn\log L^{\rm r}_{\rm syn}-\log L_{\rm syn} and logLbolrlogLbol\log L^{\rm r}_{\rm bol}-\log L_{\rm bol} planes, where LsynrL^{\rm r}_{\rm syn} and LbolrL^{\rm r}_{\rm bol} are calculated with the relations of Lsynr(Esyn,p,Γ)L^{\rm r}_{\rm syn}(E_{\rm syn,p},\Gamma) or Lbolr(Esyn,p,Γ)L^{\rm r}_{\rm bol}(E_{\rm syn,p},\Gamma) derived from each subclasses of AGN samples, as marked in each panels. The best linear fit line together with their 2σ\sigma dispersion regions of the relations are shown with solid and dashed lines, respectively.
Refer to caption
Refer to caption
Figure 4: The same as Figure 2 but for the combined sample of the FSRQs and Narrow line Seyfert 1 galaxies.

4 Conclusion and Discussion

We have presented analysis on the Doppler boosting effect on the observed luminosity and photon energy in AGNs and GRBs. Our analysis show LsynΓ2.274L_{\rm syn}\propto\Gamma^{2.27\sim 4} for the individual samples of the FSRQs, BL Lacs, and NLS1 galaxies. Similar relations are also found for Lbol(Γ)L_{\rm bol}(\Gamma). They are also globally follow the same LΓL-\Gamma relation as LΓ4.64±0.20L\propto\Gamma^{4.64\pm 0.20} together with the GRBs. A tight relation LsynEsyn,z0.45±0.15Γ3.50±0.25L_{\rm syn}\propto E^{0.45\pm 0.15}_{\rm syn,z}\Gamma^{3.50\pm 0.25} is found in the combined sample of FSRQs and NLS1 galaxies. This relation is different from that derived from the GRB sample.

As shown in Lyu et al. (2014), the different distributions of GRBs and blazars in the Lsyn(orLiso)Esyn(orEsyn)L_{\rm syn}({\rm or\ }L_{\rm iso})-E_{\rm syn}({\rm or\ }E_{\rm syn}) plane may be due to both different radiation physics and jet environments. In addition, blazars have violent variability and a tentative flux-EsynE_{\rm syn} positive correlation is found in some blazars, such as 3C 279 and Mkn 501 (e.g. Zhang et al. 2013b; Wang et al. 2019). Taking the LsynL_{\rm syn}, EsynE_{\rm syn}, and δ\delta values of Mkn 501 from Zhang et al. (2013b), we show Mkn 501 in four bright outbursts in Figure  2. One can find that it deviates the Lp,zEp,zΓ0L_{\rm p,z}-E_{\rm p,z}-\Gamma_{0} relation of GRBs in these outbursts. Wang et al. (2019) studied the LpL_{\rm p}-EpE_{\rm p} relation for the Mkn 501 in different outbursts in a broad temporal coverage. They found that a weak LsynEsyn,zL_{\rm syn}-E_{\rm syn,z} correlations in some outbursts. We further examine whether it follows the the LisoEpL_{\rm iso}-E_{p} relation within individual GRBs (Liang et al. 2004; Lu et al. 2012) in these outbursts. As shown in Figure  5, it still does not follow the LisoEpL_{\rm iso}-E_{p} relation of GRBs.

The observed luminosity is boosted by a factor of Γp\Gamma^{p}, where p=2+βp=2+\beta for a continuous jet, p=3+βp=3+\beta for a moving sphere, and β\beta is spectral index of the synchrotron radiation emission (Ghisellini et al. 1993). Our analysis results for the different sub-classes of AGNs are consistent with the prediction of the Doppler boosting effect. The dependence of LL on Γ\Gamma in the LEsyn,pΓL-E_{\rm syn,p}-\Gamma relation of the FSRQs and NLS1 galaxies is still consistent with this prediction. However, the dependence of LL on Γ\Gamma for the GRBs significantly deviate this prediction. This may be due to the initial Lorentz factor Γ0\Gamma_{0} is not a true representative of the bulk motion of the radiating region. The Γ0\Gamma_{0} values in this analysis are the Lorentz factor of the forward shocked medium derived from the fireball deceleration time (the afterglow onset peak time) based on the standard afterglow model (e.g. Sari et al. 1998). In addition, GRB jets are episodic. They are composed of erratic shells with different initial Lorentz factor since their energy input and baryon matter loaded may be different. Therefore, the Γ0\Gamma_{0} values derived form the afterglow data may not be the true Lorentz factor of the radiating region of the prompt gamma-rays. For example, Wang et al. (2000) inferred that the initial Lorentz factor of the fireball of GRB 990123 is 1200 and the Lorentz factor at its prompt optical emission peak time is 300.

Nemmen et al. (2012) illustrated that GRB jet luminosity is correlated with the jet power, and this relation is consistent with the correlation between jet power and the synchrotron peak luminosity of some AGNs (see also Zhang et al. 2013a; Wang et al. 2014). Note that a substantial fraction of the kinetic energy of the baryons should transferred to a non-thermal population of relativistic electrons through Fermi acceleration in the shock (e.g. Meszaros & Rees 1993). LpL_{\rm p} is almost proportional to Γ0\Gamma_{0} is within the error of the power-law index in the LpEp,zΓ0L_{\rm p}-E_{\rm p,z}-\Gamma_{0} relation. We suspect that Γ0\Gamma_{0} may be a representative of the kinetic power, or at least the power carried by the radiating electrons, in the radiating region (jet or jet patch). As discussed in Lyu et al. 2014, the different LEpL-E_{\rm p} relation in GRBs and blazars may be resulted from different scenarios of synchrotron radiations. The tight LpEp,zΓ0L_{p}-E_{\rm p,z}-\Gamma_{0} relation may suggest that the observed gamma-ray luminosity of GRBs depends on the radiation physics and the jet power together.

Refer to caption
Figure 5: LsynEsyn,zL_{\rm syn}-E_{\rm syn,z} relation of Mkn 501 in different outbursts in comparison to the LpEp,zL_{p}-E_{\rm p,z} relation within individual GRBs in different time slices. The data of Mkn 501 are taken from Zhang et al. 2013b (the pink triangles) and Wang et al. 2019 (the green triangles). The GRB data are taken from Lu et al. 2012.
Acknowledgements.
We appreciate helpful comments from the anonymous referee. We thank J. Zhang, Y. J. Wang, and Y. Q. Xue for providing the data of Mkn 501 and suggestive discussion. This work is supported by the National Natural Science Foundation of China (Grant No.11533003, 11851304, and U1731239), Guangxi Science Foundation and special funding for Guangxi distinguished professors (2017AD22006).

References

  • Abdo et al. (2009) Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, ApJ, 707, L142
  • Amati et al. (2002) Amati, L., Frontera, F., Tavani, M., et al. 2002, A&A, 390, 81
  • Band et al. (1993) Band, D., Matteson, J., Ford, L., et al. 1993, ApJ, 413, 281
  • Eichler et al. (1989) Eichler, D., Livio, M., Piran, T., et al. 1989, Nature, 340, 126
  • Ghisellini et al. (1998) Ghisellini, G., Celotti, A., Fossati, G., et al. 1998, MNRAS, 301, 451
  • Ghirlanda et al. (2004) Ghirlanda, G., Ghisellini, G., & Lazzati, D. 2004, ApJ, 616, 331
  • Ghisellini et al. (1996) Ghisellini, G., Maraschi, L., & Dondi, L. 1996, A&AS, 120, 503
  • Ghisellini et al. (1993) Ghisellini, G., Padovani, P., Celotti, A., & Maraschi, L. 1993, ApJ, 407, 65
  • Ghisellini et al. (2009) Ghisellini, G., Tavecchio, F., & Ghirlanda, G. 2009, MNRAS, 399, 2041
  • Kobayashi et al. (1999) Kobayashi, S., Piran, T., & Sari, R. 1999, ApJ, 513, 669
  • Kumar & Zhang (2015) Kumar, P., & Zhang, B. 2015, Phys. Rep., 561, 1
  • Lü et al. (2012) Lü, J., Zou, Y.-C., Lei, W.-H., et al. 2012, ApJ, 751, 49
  • Liang et al. (2004) Liang, E. W., Dai, Z. G., & Wu, X. F. 2004, ApJ, 606, L29
  • Liang et al. (2015) Liang, E.-W., Lin, T.-T., Lü, J., et al. 2015, ApJ, 813, 116
  • Liang et al. (2010) Liang, E.-W., Yi, S.-X., Zhang, J., et al. 2010, ApJ, 725, 2209
  • Lithwick & Sari (2001) Lithwick, Y., & Sari, R. 2001, ApJ, 555, 540
  • Lu et al. (2012) Lu, R.-J., Wei, J.-J., Liang, E.-W., et al. 2012, ApJ, 756, 112
  • Lyu et al. (2014) Lyu, F., Liang, E.-W., Liang, Y.-F., et al. 2014, ApJ, 793, 36
  • Ma et al. (2014) Ma, R., Xie, F.-G., & Hou, S. 2014, ApJ, 780, L14
  • Maraschi et al. (1992) Maraschi, L., Ghisellini, G., & Celotti, A. 1992, ApJ, 397, L5
  • Massaro et al. (2008) Massaro, F., Tramacere, A., Cavaliere, A., et al. 2008, A&A, 478, 395
  • Meszaros & Rees (1993) Meszaros, P., & Rees, M. J. 1993, ApJ, 405, 278
  • Nemmen et al. (2012) Nemmen, R. S., Georganopoulos, M., Guiriec, S., et al. 2012, Science, 338, 1445
  • Pe’er et al. (2007) Pe’er, A., Ryde, F., Wijers, R. A. M. J., Mészáros, P., & Rees, M. J. 2007, ApJ, 664, L1
  • Peng et al. (2014) Peng, F.-K., Liang, E.-W., Wang, X.-Y., et al. 2014, ApJ, 795, 155
  • Paczynski (1991) Paczynski, B. 1991, actaa, 41, 257
  • Sari & Piran (1999) Sari, R., & Piran, T. 1999, ApJ, 520, 641
  • Sari et al. (1999) Sari, R., Piran, T., & Halpern, J. P. 1999, ApJ, 519, L17
  • Sari et al. (1998) Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, L17
  • Sikora et al. (1994) Sikora, M., Begelman, M. C., & Rees, M. J. 1994, ApJ, 421, 153
  • Sikora et al. (2009) Sikora, M., Stawarz, Ł., Moderski, R., Nalewajko, K., & Madejski, G. M. 2009, ApJ, 704, 38
  • Sun et al. (2015) Sun, X.-N., Zhang, J., Lin, D.-B., et al. 2015, ApJ, 798, 43
  • Tang et al. (2015) Tang, Q.-W., Peng, F.-K., Wang, X.-Y., & Tam, P.-H. T. 2015, ApJ, 806, 194
  • Tramacere et al. (2009) Tramacere, A., Giommi, P., Perri, M., et al. 2009, A&A, 501, 879
  • Urry et al. (1999) Urry, C. M., Falomo, R., Scarpa, R., et al. 1999, ApJ, 512, 88
  • Urry & Padovani (1995) Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
  • Wang et al. (2014) Wang, F. Y., Yi, S. X., & Dai, Z. G. 2014, ApJ, 786, L8
  • Wang & Wei (2011) Wang, J., & Wei, J. Y. 2011, ApJ, 726, L4
  • Wang et al. (2000) Wang, X. Y., Dai, Z. G., & Lu, T. 2000, MNRAS, 319, 1159
  • Wang et al. (2019) Wang, Y., Zhu, S., Xue, Y., et al. 2019, ApJ, 885, 8
  • Woosley (1993) Woosley, S. E. 1993, ApJ, 405, 273
  • Wu et al. (2011) Wu, Q., Zou, Y.-C., Cao, X., Wang, D.-X., & Chen, L. 2011, ApJ, 740, L21
  • Yonetoku et al. (2004) Yonetoku, D., Murakami, T., Nakamura, T., et al. 2004, ApJ, 609, 935
  • Zhang et al. (2013a) Zhang, J., Liang, E.-W., Sun, X.-N., et al. 2013, ApJ, 774, L5
  • Zhang et al. (2012) Zhang, J., Liang, E.-W., Zhang, S.-N., & Bai, J. M. 2012, ApJ, 752, 157
  • Zhang et al. (2014) Zhang, J., Sun, X.-N., Liang, E.-W., et al. 2014, ApJ, 788, 104
  • Zhang et al. (2015) Zhang, J., Xue, Z.-W., He, J.-J., Liang, E.-W., & Zhang, S.-N. 2015, ApJ, 807, 51
  • Zhang & Yan (2011) Zhang, B., & Yan, H. 2011, ApJ, 726, 90
  • Zhang et al. (2013b) Zhang, J., Zhang, S.-N., & Liang, E.-W. 2013, ApJ, 767, 8
  • Zhang et al. (2017) Zhang, X., Zhang, H., Zhang, X., et al. 2017, Ap&SS, 362, 224
  • Zou et al. (2015) Zou, Y.-C., Cheng, K. S., & Wang, F. Y. 2015, ApJ, 800, L23
  • Zhu et al. (2019) Zhu, B.-T., Zhang, L., & Fang, J. 2019, ApJ, 873, 120
  • Zhu et al. (2016) Zhu, Y.-K., Zhang, J., Zhang, H.-M., et al. 2016, RAA, 16, 170