This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

LpL^{p}-strong convergence orders of fully discrete schemes for the SPDE driven by Lévy noise

Chuchu Chen, Tonghe Dang, Jialin Hong, Ziyi Lei LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China, and School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China, and Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong [email protected]; [email protected]; [email protected]; [email protected]
Abstract.

It is well known that for a stochastic differential equation driven by Lévy noise, the temporal Hölder continuity in LpL^{p} sense of the exact solution does not exceed 1/p1/p. This leads to that the LpL^{p}-strong convergence order of a numerical scheme will vanish as pp increases to infinity if the temporal Hölder continuity of the solution process is directly used. A natural question arises: can one obtain the LpL^{p}-strong convergence order that does not depend on pp? In this paper, we provide a positive answer for fully discrete schemes of the stochastic partial differential equation (SPDE) driven by Lévy noise. Two cases are considered: the first is the linear multiplicative Poisson noise with ν(χ)<\nu(\chi)<\infty and the second is the additive Poisson noise with ν(χ)\nu(\chi)\leq\infty, where ν\nu is the Lévy measure and χ\chi is the mark set. For the first case, we present a strategy by employing the jump-adapted time discretization, while for the second case, we introduce the approach based on the recently obtained Lê’s quantitative John–Nirenberg inequality. We show that proposed schemes converge in LpL^{p} sense with orders almost 1/21/2 in both space and time for all p2p\geq 2, which contributes novel results in the numerical analysis of the SPDE driven by Lévy noise.

Key words and phrases:
Fully discrete scheme \cdot LpL^{p}-strong convergence order \cdot Lévy noise \cdot Stochastic partial differential equation
This work is funded by the National key R&D Program of China under Grant (No. 2024YFA1015900 and No. 2020YFA0713701), National Natural Science Foundation of China (No. 12031020, No. 12461160278, No. 12471386, and No. 12288201), and by Youth Innovation Promotion Association CAS, China.

1. Introduction

Stochastic differential equations (SDEs) with Lévy noise are widely used to model sudden events and irregular changes in stochastic phenomenon, such as financial market crashes, abrupt phase transitions, and neural spiking patterns; see e.g. [3, 9, 12] and references therein. In numerical studies of SDEs, the LpL^{p}-strong convergence analysis of numerical methods has received much attention, as it assesses the accuracy of simulating the paths of the underlying solution process. The LpL^{p}-strong convergence analysis for SDEs with Lévy noise is different from that of the Gaussian noise case (see e.g. [5, 10]). For instance, there is an extra term appearing in the Burkholder–Davis–Gundy inequality of the stochastic integral with respect to the compensated Poisson measure compared with that in the Gaussian noise case. As a result, the temporal Hölder continuity in LpL^{p} sense of the exact solution to an SDE with Lévy noise does not exceed 1/p1/p, resulting in the deterioration of the LpL^{p}-strong convergence order of a numerical scheme for large pp if one uses the temporal Hölder continuity directly. A natural question arises:

  • Q:

    Can one obtain the LpL^{p}-strong convergence order of a numerical scheme for the SDE with Lévy noise that does not depend on pp?

A remarkable progress for this question has been made recently for the case of the stochastic ordinary differential equation (SODE) with Lévy noise: authors in [1] studied the LpL^{p}-strong convergence order of the Euler–Maruyama scheme for a multidimensional SODE with irregular Hölder drift, driven by additive Lévy process with exponent α(0,2]\alpha\in(0,2], and the obtained convergence order does not depend on pp. For the case of SPDEs, to the best of our knowledge, this question is still open so far. The aim of this paper is to provide a positive answer for fully discrete schemes of the SPDE driven by Lévy noise.

We consider the following SPDE driven by Lévy noise:

{dX(t)=AX(t)dt+F(X(t))dt+dW(t)+χG(X(t),z)N~(dz,dt),t(0,T],X(0)=x0,\displaystyle\begin{cases}dX(t)=AX(t)dt+F(X(t))dt+dW(t)+\int_{\chi}G(X(t),z)\tilde{N}(dz,dt),\ \ t\in(0,T],\\ X(0)=x_{0},\end{cases} (1)

where T>0T>0 and A:=Δ:Dom(A)HHA:=\Delta:\mbox{Dom}(A)\subset H\to H is the Laplacian with homogeneous Dirichlet boundary condition. Here H:=L2(0,1)H:=L^{2}(0,1) with usual inner product ,\langle\cdot,\cdot\rangle and norm \|\cdot\|, and χ:=H\{0}\chi:=H\backslash\{0\} is the mark set. The process {W(t)}t[0,T]\{W(t)\}_{t\in[0,T]} is an HH-valued Gaussian space-time white noise defined on a complete filtered probability space (Ω,,(t)t0,)(\Omega,\mathcal{F},(\mathcal{F}_{t})_{t\geq 0},\mathbb{P}) that satisfies usual conditions. Let N~(dz,dt):=N(dz,dt)ν(dz)dt\tilde{N}(dz,dt):=N(dz,dt)-\nu(dz)dt stand for a compensated Poisson random measure, where {N(,t)}t[0,T]\{N(\cdot,t)\}_{t\in[0,T]} is the Poisson random measure and ν\nu is a Lévy measure on Borel σ\sigma-algebra (χ)\mathcal{B}(\chi) satisfying ν({0})=0\nu(\{0\})=0 and χmin{1,z2}ν(dz)<.\int_{\chi}\min\{1,\|z\|^{2}\}\nu(dz)<\infty. Here {W(t)}t[0,T]\{W(t)\}_{t\in[0,T]} and {N~(,t)}t[0,T]\{\tilde{N}(\cdot,t)\}_{t\in[0,T]} are supposed to be independent. Precise assumptions on coefficients FF and GG will be given in Section 2.1. For the convergence analysis of numerical methods for  (1), we refer interested readers to [2] for the L2L^{2}-strong convergence and to [6] for the LpL^{p}-strong convergence with p2p\leq 2.

We apply the spectral Galerkin method to approximate (1) in space, and further use the Euler-type methods in time to obtain the fully discrete schemes. The corresponding mapping for the one-step approximation is given as follows:

Φ(XiN,Δti+1)\displaystyle\Phi(X^{N}_{i},\Delta t_{i+1}) :=E(Δti+1)XiN+titi+1E(ti+1s)FN(XiN)𝑑s\displaystyle:=E(\Delta t_{i+1})X^{N}_{i}+\int_{t_{i}}^{t_{i+1}}E(t_{i+1}-s)F_{N}(X^{N}_{i})ds
+titi+1E(ti+1s)PN𝑑W(s)\displaystyle~{}\quad+\int_{t_{i}}^{t_{i+1}}E(t_{i+1}-s)P_{N}dW(s)
+titi+1χE(Δti+1)GN(XiN,z)N~(dz,ds),i=0,1,,nT1,\displaystyle~{}\quad+\int_{t_{i}}^{t_{i+1}}\!\int_{\chi}E(\Delta t_{i+1})G_{N}(X^{N}_{i},z)\tilde{N}(dz,ds),\quad i=0,1,\ldots,n_{T}-1,

where nTn_{T} is the subscript corresponding to the time node TT (i.e., tnT=Tt_{n_{T}}=T), and we mention that the time step size Δti+1:=ti+1ti\Delta t_{i+1}:=t_{i+1}-t_{i} may be path-dependent. The main contribution of our work is that, we show for the first time that proposed schemes converge in LpL^{p} sense with orders almost 1/21/2 in both space and time for all p2p\geq 2. Indeed, the LpL^{p}-strong convergence analysis in time is more technical compared with that in space. This is related to the aforementioned issue yielding poor order for large pp. To overcome this order barrier, we present two different strategies for the cases of the linear multiplicative Poisson noise with ν(χ)<\nu(\chi)<\infty and the additive Poisson noise with ν(χ)\nu(\chi)\leq\infty, respectively. More precisely,

  • (i)

    Case of the linear multiplicative Poisson noise with ν(χ)<\nu(\chi)<\infty. In this case, there are a.s. finitely many jumps. We introduce the jump-adapted time discretization by a superposition of finitely many jump times to a deterministic equidistant grid. Then the jump-adapted fully discrete scheme is constructed as follows:

    Xi+1N=Φ(XiN,Δti+1),Xi+1N=Xi+1N+GN(Xi+1N,pti+1)𝟏{pti+10}.\displaystyle X^{N}_{i+1-}=\Phi(X^{N}_{i},\Delta t_{i+1}),\quad X^{N}_{i+1}=X^{N}_{i+1-}+G_{N}(X^{N}_{i+1-},p_{t_{i+1}})\mathbf{1}_{\{p_{t_{i+1}}\neq 0\}}. (2)

    Here {pti}i=0,1,,nT\{p_{t_{i}}\}_{i=0,1,...,n_{T}} is an ti\mathcal{F}_{t_{i}}-adapted Poisson point process with the intensity measure ν(dz)dt\nu(dz)dt. In the convergence analysis of this scheme, there are two critical steps to overcome the order barrier. First, this scheme evolves without jump between time grid points, which implies that the stochastic integral with respect to the compensated Poisson random measure in (2) can be transformed into the integral with respect to the intensity measure. Second, it requires establishing the ppth moment estimates on the terms involving the multiplicative noise or the jump process when accumulating the local errors into the global one.

  • (ii)

    Case of the additive Poisson noise with ν(χ)\nu(\chi)\leq\infty. In this case, there may be a.s. infinitely many jumps, in which the jump-adapted strategy is invalid. We consider the fully discrete scheme Xi+1N=Φ(XiN,Δt)X^{N}_{i+1}=\Phi(X^{N}_{i},\Delta t) with constant step size Δt\Delta t. In the LpL^{p}-strong convergence analysis of this scheme, new strategy is required to deal with the terms involving the temporal Hölder continuity of the stochastic convolution with respect to the compensated Poisson random measure of (1). Our idea is to bound the LpL^{p}-norm of these terms by moment estimates of the nested conditional “L1L^{1}-norm” based on the recently obtained Lê’s quantitative John–Nirenberg inequality. To this end, we carefully analyze some essential a priori estimates including the nested conditional “L2L^{2}-norms” of both the stochastic convolutions and the solution of the perturbed stochastic equation, which help us to obtain the rigorous bound of the nested conditional “L1L^{1}-norm” and then the desired convergence orders.

The rest of the paper is organized as follows. The preliminaries, including notations, assumptions, and the well-posedness of the exact solution are given in Section 2.1. Section 2.2 is devoted to the introduction of the fully discrete schemes and their LpL^{p}-strong convergence order results. In Section 3, we present the LpL^{p}-strong convergence analysis of the fully discrete scheme for (1) in the case of the linear multiplicative Poisson noise with ν(χ)<\nu(\chi)<\infty. In Section 4, we present the corresponding LpL^{p}-strong convergence analysis for the case of the additive Poisson noise with ν(χ)\nu(\chi)\leq\infty. Proofs of some essential propositions used in the convergence analysis are given in Section 5.

2. Fully discrete schemes and main results

In this section, we first give some preliminaries, including notations, assumptions, the well-posedness of the exact solution and some useful inequalities. Second, we present the fully discrete schemes of (1) for two different cases of noises, and respectively show their LpL^{p}-strong convergence orders, as the main results of this paper.

2.1. Preliminaries

Throughout this paper, we let C>0C>0 be a generic constant that may vary from one place to another. More specific constants which depend on certain parameters a,ba,b are numbered as Ca,bC_{a,b}. We use +\mathbb{N}_{+} to denote the set of positive natural numbers and let ϵ,δ>0\epsilon,\delta>0 be arbitrarily small parameters. Denote ab:=max{a,b}a\vee b:=\max\{a,b\}. The space of bounded linear operators on HH is denoted by (H)\mathcal{L}(H) with the operator norm (H)\|\cdot\|_{\mathcal{L}(H)}. The subspace 2(H)(H)\mathcal{L}_{2}(H)\subset\mathcal{L}(H) denotes the set of Hilbert–Schmidt operators on HH, with norm denoted by 2(H)\|\cdot\|_{\mathcal{L}_{2}(H)}. Let H˙s\dot{H}^{s}, ss\in\mathbb{R} be the Sobolev space generated by the fractional power of A-A, endowed with the inner product u,vH˙s:=(A)s2u,(A)s2v\langle u,v\rangle_{\dot{H}^{s}}:=\langle(-A)^{\frac{s}{2}}u,(-A)^{\frac{s}{2}}v\rangle and the norm uH˙s:=u,uH˙s\|u\|_{\dot{H}^{s}}:=\sqrt{\langle u,u\rangle_{\dot{H}^{s}}} for all u,vH˙su,v\in\dot{H}^{s}. We use the notation Lp(Ω,H˙s)L^{p}(\Omega,\dot{H}^{s}) to denote the space of random variables uu satisfying 𝔼[uH˙sp]<\mathbb{E}[\|u\|^{p}_{\dot{H}^{s}}]<\infty for p>0p>0.

It is known that there is a sequence of real numbers λi=π2i2,i+\lambda_{i}=\pi^{2}i^{2},i\in\mathbb{N}_{+} and an orthonormal basis {ei}i+\{e_{i}\}_{i\in\mathbb{N}_{+}} of HH with ei(x):=2sin(iπx)e_{i}(x):=\sqrt{2}\sin(i\pi x), x[0,1]x\in[0,1], such that Aei=λiei-Ae_{i}=\lambda_{i}e_{i}. In addition, operator AA generates the semigroup {E(t):=etA,t0}\{E(t):=e^{tA},t\geq 0\} on HH. For all t0t\geq 0, E(t)E(t) is a bounded self-adjoint linear operator on HH, with E(t)(H)etλ11\|E(t)\|_{\mathcal{L}(H)}\leq e^{-t\lambda_{1}}\leq 1. It is clear that, for all t0t\geq 0,

0tsαE(s)2(H)2𝑑s<if and only ifα[0,12).\int_{0}^{t}s^{-\alpha}\|E(s)\|_{\mathcal{L}_{2}(H)}^{2}ds<\infty\quad\quad\mbox{if and only if}\quad\alpha\in[0,\frac{1}{2}).

Moreover, the semigroup satisfies the following properties:

(A)γE(t)(H)\displaystyle\|(-A)^{\gamma}E(t)\|_{\mathcal{L}(H)} Ctγeλ12t,t(0,T],γ0,\displaystyle\leq Ct^{-\gamma}e^{-\frac{\lambda_{1}}{2}t},\quad t\in(0,T],~{}\gamma\geq 0, (3)
(A)ρ(E(t)E(s))(H)\displaystyle\|(-A)^{-\rho}(E(t)-E(s))\|_{\mathcal{L}(H)} C(ts)ρ,0s<tT,ρ[0,1].\displaystyle\leq C(t-s)^{\rho},\quad 0\leq s<t\leq T,~{}\rho\in[0,1]. (4)

Here we impose some assumptions on coefficients and the initial value of (1), which will be used throughout this paper.

Assumption 1 (Nonlinearity).

The measurable mapping F:HHF\colon H\to H satisfies that F(x)C(1+x)\|F(x)\|\leq C(1+\|x\|), xHx\in H with some constant C>0C>0. In addition, FF is differentiable and there are constants LF,C>0L_{F},C>0 such that

supxHDF(x)y\displaystyle\sup_{x\in H}\|DF(x)y\| LFy,yH,\displaystyle\leq L_{F}\|y\|,\quad y\in H,
(A)1+δ4DF(x)y\displaystyle\|(-A)^{-\frac{1+\delta}{4}}DF(x)y\| C(1+xH˙1δ2)yH˙1δ2,xH˙1δ2,yH˙1δ2.\displaystyle\leq C(1+\|x\|_{\dot{H}^{\frac{1-\delta}{2}}})\|y\|_{\dot{H}^{-\frac{1-\delta}{2}}},\quad x\in\dot{H}^{\frac{1-\delta}{2}},y\in\dot{H}^{-\frac{1-\delta}{2}}.
Remark 2.1.

The conditions in Assumption 1 are satisfied if FF is the Nemytskii operator defined by F(u)(x):=f(u(x)),x[0,1],uH,F(u)(x):=f(u(x)),\;x\in[0,1],\;u\in H, where f:f\colon\mathbb{R}\to\mathbb{R} is continuously differentiable with bounded first order derivative. Indeed, the mapping F:HHF\colon H\to H is then differentiable, and for all u,hHu,h\in H and x[0,1]x\in[0,1], we have [DF(u)h](x)=f(u(x))h(x).[DF(u)h](x)=f^{\prime}(u(x))h(x). This implies supuHDF(u)hLFh,hH\sup_{u\in H}\|DF(u)h\|\leq L_{F}\|h\|,h\in H with some constant LF>0.L_{F}>0. In addition, for all u1H˙1δ2u_{1}\in\dot{H}^{\frac{1-\delta}{2}} and u2H˙1δ2u_{2}\in\dot{H}^{-\frac{1-\delta}{2}}, we obtain

(A)1+δ4DF(u1)u2\displaystyle\big{\|}(-A)^{-\frac{1+\delta}{4}}DF(u_{1})u_{2}\big{\|} =suphH{0}(A)1+δ4DF(u1)u2,hh\displaystyle=\sup_{h\in H\setminus\{0\}}\frac{\langle(-A)^{-\frac{1+\delta}{4}}DF(u_{1})u_{2},h\rangle}{\|h\|}
suphH{0}(A)1δ4u2(A)1δ4DF(u1)(A)1+δ4hh\displaystyle\leq\sup_{h\in H\setminus\{0\}}\frac{\|(-A)^{-\frac{1-\delta}{4}}u_{2}\|\|(-A)^{\frac{1-\delta}{4}}DF(u_{1})(-A)^{-\frac{1+\delta}{4}}h\|}{\|h\|}
C(1+(A)1δ4u1)(A)1δ4u2.\displaystyle\leq C(1+\|(-A)^{\frac{1-\delta}{4}}u_{1}\|)\|(-A)^{-\frac{1-\delta}{4}}u_{2}\|.

where we used [11, Lemma 4.4] in the last step.

Assumption 2 (Jump coefficient).

The coefficient G:H×χHG\colon H\times\chi\to H is defined as G(x,z)=g1(z)x+g(z),xH,zχG(x,z)=g_{1}(z)x+g(z),\,x\in H,\,z\in\chi with mapping g1:χg_{1}\colon\chi\to\mathbb{R} being bounded by constant b>0b>0 and with some mapping g:χHg\colon\chi\to H. In addition, for each p>2,p>2, there exists a constant Cp>0C_{p}>0 such that

χ(|g1(z)|2|g1(z)|p)ν(dz)Cp,χ((A)14g(z)2(A)14g(z)p)ν(dz)Cp.\displaystyle\int_{\chi}\big{(}|g_{1}(z)|^{2}\vee|g_{1}(z)|^{p}\big{)}\nu(dz)\leq C_{p},\quad\int_{\chi}\big{(}\|(-A)^{\frac{1}{4}}g(z)\|^{2}\vee\|(-A)^{\frac{1}{4}}g(z)\|^{p}\big{)}\nu(dz)\leq C_{p}.
Assumption 3 (Initial value).

Let x0x_{0} be an 0\mathcal{F}_{0}-measurable random variable, and x0Lp(Ω,H˙1δ2)x_{0}\in L^{p}(\Omega,\dot{H}^{\frac{1-\delta}{2}}) for all p2p\geq 2.

We introduce the maximal inequality for the Lévy-type stochastic convolution as follows, see e.g. [8, Proposition 3.3] for details.

Lemma 2.2.

Let β:[0,T]×χH\beta:[0,T]\times\chi\to H be a predictable process such that the expectation on the right hand side of the inequality below is finite. Then for all p2p\geq 2, there exists a constant Cp,T>0C_{p,T}>0 such that

𝔼[supt[0,T]0tχE(ts)β(s,z)N~(dz,ds)p]\displaystyle\quad\mathbb{E}\Big{[}\sup_{t\in[0,T]}\Big{\|}\int_{0}^{t}\int_{\chi}E(t-s)\beta(s,z)\tilde{N}(dz,ds)\Big{\|}^{p}\Big{]}
Cp,T𝔼[0T{(χβ(s,z)2ν(dz))p/2+χβ(s,z)pν(dz)}𝑑s].\displaystyle\leq C_{p,T}\mathbb{E}\Big{[}\int_{0}^{T}\Big{\{}\Big{(}\int_{\chi}\|\beta(s,z)\|^{2}\nu(dz)\Big{)}^{p/2}+\int_{\chi}\|\beta(s,z)\|^{p}\nu(dz)\Big{\}}ds\Big{]}.

Under assumptions given above, the mild solution of (1) uniquely exists and the regularity estimate of the solution can be obtained, which are stated in the following proposition. The proof of the well-posedness is similar to that of [13, Theorem 2.1] and the one of the strong Markov property is similar to that of [13, Lemma 5.2], which are omitted here. For the proof of regularity estimate, we postpone it to Appendix.

Proposition 2.3.

Let Assumptions 13 hold. Then for each T>0,T>0, there exists a unique mild solution {X(t)}t[0,T]\{X(t)\}_{t\in[0,T]} of (1) which reads as

X(t)\displaystyle X(t) =E(t)x0+0tE(ts)F(X(s))𝑑s+0tE(ts)𝑑W(s)\displaystyle=E(t)x_{0}+\int_{0}^{t}E(t-s)F(X(s))ds+\int_{0}^{t}E(t-s)dW(s)
+0tχE(ts)G(X(s),z)N~(dz,ds),t(0,T]\displaystyle\quad+\int_{0}^{t}\int_{\chi}E(t-s)G(X(s),z)\tilde{N}(dz,ds),\quad t\in(0,T]

with the initial value x0x_{0} and satisfies that for any p2,p\geq 2, 𝔼[supt[0,T]X(t)p]<.\mathbb{E}[\sup_{t\in[0,T]}\|X(t)\|^{p}]<\infty. The process {X(t)}t[0,T]\{X(t)\}_{t\in[0,T]} has a càdlàg modification and is time-homogeneous strong Markovian. Moreover, for all p2p\geq 2 and all α[0,12)\alpha\in[0,\frac{1}{2}), there exists a constant Cp,T>0C_{p,T}>0 such that

supt[0,T]X(t)Lp(Ω,H˙α)Cp,T.\displaystyle\sup_{t\in[0,T]}\|X(t)\|_{L^{p}(\Omega,\dot{H}^{\alpha})}\leq C_{p,T}.

2.2. Fully discrete schemes and LpL^{p}-strong convergence orders

In this subsection, we first apply the spectral Galerkin method in the spatial direction and the Euler-type method in the temporal direction to obtain the fully discrete schemes for (1). Then we present the main results of this paper, namely, LpL^{p}-strong convergence orders of proposed schemes in both space and time.

For fixed N+N\in\mathbb{N}_{+}, let PNP_{N} be the orthogonal projection operator from HH onto HN:=span{e1,e2,,eN}H_{N}:=\mbox{span}\{e_{1},e_{2},\ldots,e_{N}\}. Applying the spectral Galerkin method to the spatial direction of (1) yields

dXN(t)\displaystyle dX^{N}(t) =(AXN(t)+FN(XN(t)))dt+PNdW(t)\displaystyle=\big{(}AX^{N}(t)+F_{N}(X^{N}(t))\big{)}dt+P_{N}dW(t)
+χGN(XN(t),z)N~(dz,dt),t(0,T]\displaystyle\quad+\int_{\chi}G_{N}(X^{N}(t),z)\tilde{N}(dz,dt),~{}~{}t\in(0,T] (5)

with the initial value XN(0)=PNx0,X^{N}(0)=P_{N}x_{0}, where FN:=PNFF_{N}:=P_{N}F and GN:=PNG=g1PN+PNgG_{N}:=P_{N}G=g_{1}P_{N}+P_{N}g. Further, in the temporal direction, we use the Euler-type method to obtain the one-step approximation:

Φ(XiN,Δti+1)\displaystyle\Phi(X^{N}_{i},\Delta t_{i+1}) =E(Δti+1)XiN+titi+1E(ti+1s)FN(XiN)𝑑s\displaystyle=E(\Delta t_{i+1})X^{N}_{i}+\int_{t_{i}}^{t_{i+1}}E(t_{i+1}-s)F_{N}(X^{N}_{i})ds
+titi+1E(ti+1s)PN𝑑W(s)\displaystyle~{}\quad+\int_{t_{i}}^{t_{i+1}}E(t_{i+1}-s)P_{N}dW(s)
+titi+1χE(Δti+1)GN(XiN,z)N~(dz,ds),i=0,1,,nT1,\displaystyle~{}\quad+\int_{t_{i}}^{t_{i+1}}\!\!\int_{\chi}E(\Delta t_{i+1})G_{N}(X^{N}_{i},z)\tilde{N}(dz,ds),\quad i=0,1,\ldots,n_{T}-1, (6)

where Δti+1=ti+1ti\Delta t_{i+1}=t_{i+1}-t_{i} with {ti}i=0,1,,nT\{t_{i}\}_{i=0,1,\ldots,n_{T}} being time grid points. With the one-step approximation at hand, below, we present the fully discrete schemes for two cases: the first is the linear multiplicative Poisson noise with ν(χ)<\nu(\chi)<\infty, and the second is the additive Poisson noise with ν(χ)\nu(\chi)\leq\infty. We remark that the choices of time step sizes {Δti}i=1,,nT\{\Delta t_{i}\}_{i=1,\ldots,n_{T}} are different in these two cases.

(i) Case of the linear multiplicative Poisson noise with ν(χ)<\nu(\chi)<\infty. In this case, since 𝔼[N(χ,[0,T])]=Tν(χ)<,\mathbb{E}[N(\chi,[0,T])]=T\nu(\chi)<\infty, there are a.s. finitely many jumps. The corresponding non-decreasing jump times are denoted by {σi(ω),i=1,2,,nJ(ω)}\{\sigma_{i}(\omega),i=1,2,\ldots,n_{J}(\omega)\}, where the random variable nJn_{J} denotes the number of jumps. We introduce the jump-adapted time partition by a superposition of finitely many jump times to a deterministic equidistant grid. More precisely, we first give a deterministic partition of the interval [0,T][0,T]:

𝒯0={0=t00<t10<<tM0=T},\mathcal{T}^{0}=\{0=t_{0}^{0}<t_{1}^{0}<\cdots<t_{M}^{0}=T\},

where Δt>0\Delta t>0 is a constant step size and ti0:=iΔt,i=0,1,,Mt_{i}^{0}:=i\Delta t,i=0,1,\ldots,M. For each sample path, we then merge 𝒯0\mathcal{T}^{0} and the partition from jump times 𝒯1:={0σ1<σ2<<σnJT}\mathcal{T}^{1}:=\{0\leq\sigma_{1}<\sigma_{2}<\cdots<\sigma_{n_{J}}\leq T\} to form a new partition

𝒯={0=t0<t1<<tnT=T},\mathcal{T}=\{0=t_{0}<t_{1}<\cdots<t_{n_{T}}=T\},

where nTn_{T} denotes the subscript corresponding to the time node TT and nJ+MnTn_{J}+M\geq n_{T}. Note that in the new partition 𝒯\mathcal{T}, step size Δti+1=ti+1ti\Delta t_{i+1}=t_{i+1}-t_{i} is path-dependent, and the maximal time step size of the resulting jump-adapted time partition is no larger than Δt\Delta t.

The jump-adapted fully discrete scheme is proposed as

Xi+1N=Φ(XiN,Δti+1),Xi+1N=Xi+1N+GN(Xi+1N,pti+1)𝟏{pti+10},\displaystyle X^{N}_{i+1-}=\Phi(X^{N}_{i},\Delta t_{i+1}),\quad X^{N}_{i+1}=X^{N}_{i+1-}+G_{N}(X^{N}_{i+1-},p_{t_{i+1}})\mathbf{1}_{\{p_{t_{i+1}}\neq 0\}},

with Φ(XiN,Δti+1)\Phi(X^{N}_{i},\Delta t_{i+1}) being given by (2.2), which is equivalent to

{Xi+1N=E(Δti+1)XiN+titi+1E(ti+1s)FN(XiN)𝑑s+titi+1E(ti+1s)PN𝑑W(s)titi+1χE(Δti+1)GN(XiN,z)ν(dz)𝑑s,Xi+1N=Xi+1N+GN(Xi+1N,pti+1)𝟏{pti+10},i=0,1,,nT1.\displaystyle\begin{cases}X^{N}_{i+1-}\!\!=E(\Delta t_{i+1})X^{N}_{i}+\int_{t_{i}}^{t_{i+1}}\!E(t_{i+1}\!-\!s)F_{N}(X^{N}_{i})ds+\int_{t_{i}}^{t_{i+1}}\!E(t_{i+1}\!-\!s)P_{N}dW(s)\\ \quad\quad\qquad-\int_{t_{i}}^{t_{i+1}}\int_{\chi}E(\Delta t_{i+1})G_{N}(X^{N}_{i},z)\nu(dz)ds,\\ X^{N}_{i+1}=X^{N}_{i+1-}+G_{N}(X^{N}_{i+1-},p_{t_{i+1}})\mathbf{1}_{\{p_{t_{i+1}}\neq 0\}},\quad i=0,1,\ldots,n_{T}-1.\end{cases} (7)

due to the following relation:

titi+1χE(Δti+1)\displaystyle\int_{t_{i}}^{t_{i+1}}\!\!\!\int_{\chi}E(\Delta t_{i+1}) GN(XiN,z)N~(dz,dt)\displaystyle G_{N}(X^{N}_{i},z)\tilde{N}(dz,dt)
=titi+1χE(Δti+1)GN(XiN,z)ν(dz)𝑑t,a.s.\displaystyle=-\int_{t_{i}}^{t_{i+1}}\!\!\!\int_{\chi}E(\Delta t_{i+1})G_{N}(X^{N}_{i},z)\nu(dz)dt,\quad a.s. (8)

for i=0,1,,nT1i=0,1,\ldots,n_{T}-1. We now give the LpL^{p}-strong convergence result of the scheme (7), whose proof is presented in Section 3.

Theorem 2.4.

Let Assumptions 13 hold. Then for all N+N\in\mathbb{N}_{+} and all p2p\geq 2, there exists a constant Cp,T>0C_{p,T}>0 independent of N,ΔtN,\Delta t such that

X(T)XnTNLp(Ω,H)Cp,T(N1δ2+(Δt)1δ2).\displaystyle\|X(T)-X^{N}_{n_{T}}\|_{L^{p}(\Omega,H)}\leq C_{p,T}\big{(}N^{-\frac{1-\delta}{2}}+(\Delta t)^{\frac{1-\delta}{2}}\big{)}.

(ii) Case of the additive Poisson noise with ν(χ)\nu(\chi)\leq\infty. In this case when ν(χ)<\nu(\chi)<\infty, we can obtain the same LpL^{p}-strong convergence orders as shown in Theorem 2.4 by applying the scheme (7). However, this jump-adapted numerical scheme is invalid when ν(χ)=\nu(\chi)=\infty, since there may be a.s. infinitely many jumps. In order to obtain the LpL^{p}-strong convergence orders in a wider case: ν(χ)\nu(\chi)\leq\infty, we consider the fully discrete scheme on the deterministic partition 𝒯0\mathcal{T}^{0} with constant step size Δt\Delta t. For simplicity, we write tit_{i} instead of time grid point ti0,i=0,1,,Mt_{i}^{0},i=0,1,\ldots,M and nT=M.n_{T}=M. Then the fully discrete scheme based on the one-step approximation (2.2) is given as

Xk+1N=Φ(XkN,Δt),k=0,1,,nT1,X0N=PNx.\displaystyle X^{N}_{k+1}=\Phi(X^{N}_{k},\Delta t),\;k=0,1,\ldots,n_{T}-1,\quad X^{N}_{0}=P_{N}x. (9)

New strategy is proposed in the LpL^{p}-strong convergence analysis of this scheme. We now give the LpL^{p}-strong convergence result of the scheme (9) for the case of the additive Poisson noise (g10g_{1}\equiv 0) as follows, and its proof is presented in Section 4.

Theorem 2.5.

Let Asumptions 13 hold and g10g_{1}\equiv 0. In addition, let gg satisfy that for all p2p\geq 2,

χ(A)1δ2g(z)pν(dz)<.\displaystyle\int_{\chi}\big{\|}(-A)^{\frac{1-\delta}{2}}g(z)\big{\|}^{p}\nu(dz)<\infty. (10)

Then for all N+N\in\mathbb{N}_{+} and all p2p\geq 2, there exists a constant Cp,T>0C_{p,T}>0 independent of N,ΔtN,\Delta t such that

X(T)XnTNLp(Ω,H)Cp,T(N1δ2+(Δt)1δ2).\displaystyle\big{\|}X(T)-X^{N}_{n_{T}}\big{\|}_{L^{p}(\Omega,H)}\leq C_{p,T}\big{(}N^{-\frac{1-\delta}{2}}+(\Delta t)^{\frac{1-\delta}{2}}\big{)}.

3. Proof of Theorem 2.4

In this section, we present the LpL^{p}-strong convergence analysis of fully discrete scheme (7) for (1) driven by the linear multiplicative Poisson noise with finite Lévy measure. Note that the stochastic integral with respect to the compensated Poisson random measure in (7) can be transformed into the integral with respect to the intensity measure, as shown in (2.2). This transformation is crucial to overcome the order barrier caused by the ppth moment estimates of the stochastic integral with respect to the compensated Poisson random measure.

Proof of Theorem 2.4.

The proof is split into two steps, based on the error between the solutions of (1) and the semi-discrete scheme (2.2), and the error between the solutions of (2.2) and the fully discrete scheme (7).

Step 1. Show that for all p2p\geq 2, there exists a constant Cp,T>0C_{p,T}>0 independent of NN such that X(T)XN(T)Lp(Ω,H)Cp,TN1δ2.\|X(T)-X^{N}(T)\|_{L^{p}(\Omega,H)}\leq C_{p,T}N^{-\frac{1-\delta}{2}}.

It follows from (1) and (2.2) that, for all N+N\in\mathbb{N}_{+},

X(T)XN(T)\displaystyle X(T)-X^{N}(T) =E(T)(IPN)x0+0TE(Ts)(IPN)F(X(s))𝑑s\displaystyle=E(T)(\mathrm{I}-P_{N})x_{0}+\int_{0}^{T}E(T\!-\!s)(\mathrm{I}-P_{N})F(X(s))ds
+0TE(Ts)PN(F(X(s))F(XN(s)))𝑑s+(IPN)0TE(Ts)𝑑W(s)\displaystyle\quad+\!\int_{0}^{T}E(T\!-\!s)P_{N}\big{(}F(X(s))-F(X^{N}(s))\big{)}ds\!+\!(\mathrm{I}-P_{N})\int_{0}^{T}E(T\!-\!s)dW(s)
+0TχE(Ts)(IPN)G(X(s),z)N~(dz,ds)\displaystyle\quad+\!\int_{0}^{T}\int_{\chi}E(T\!-\!s)(\mathrm{I}-P_{N})G(X(s),z)\tilde{N}(dz,ds)
+0TχE(Ts)PN(G(X(s),z)G(XN(s),z))N~(dz,ds),\displaystyle\quad+\!\int_{0}^{T}\int_{\chi}E(T\!-\!s)P_{N}\big{(}G(X(s),z)-G(X^{N}(s),z)\big{)}\tilde{N}(dz,ds),

where I:HH\mathrm{I}\colon H\to H is an identical mapping. Denote the stochastic convolution 𝒲(t):=0tE(ts)𝑑W(s)\mathcal{W}(t):=\int_{0}^{t}E(t-s)dW(s). Owing to properties of projection operator PNP_{N}, assumptions on coefficients FF and GG, Lemma 2.2, and Proposition 2.3, we obtain

𝔼[X(T)XN(T)p]\displaystyle\quad\mathbb{E}\big{[}\|X(T)-X^{N}(T)\|^{p}\big{]}
CpλN1δ4px0Lp(Ω,H˙1δ2)p+CpλN1δ4p(0T(Ts)1δ4𝑑s)psups[0,T]𝔼[F(X(s))p]\displaystyle\leq C_{p}\lambda_{N}^{-\frac{1-\delta}{4}p}\|x_{0}\|^{p}_{L^{p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}+C_{p}\lambda_{N}^{-\frac{1-\delta}{4}p}\Big{(}\int_{0}^{T}(T-s)^{-\frac{1-\delta}{4}}ds\Big{)}^{p}\sup_{s\in[0,T]}\mathbb{E}[\|F(X(s))\|^{p}]
+Cp,T0T𝔼[X(s)XN(s)p]𝑑s+CpλN1δ4p𝒲(T)Lp(Ω,H˙1δ2)p\displaystyle\quad+C_{p,T}\int_{0}^{T}\mathbb{E}\big{[}\big{\|}X(s)-X^{N}(s)\big{\|}^{p}\big{]}ds+C_{p}\lambda_{N}^{-\frac{1-\delta}{4}p}\big{\|}\mathcal{W}(T)\|^{p}_{L^{p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}
+Cp,TλN1δ4p𝔼[0T{χ(A)1δ4G(X(s),z)pν(dz)+(χ(A)1δ4G(X(s),z)2ν(dz))p2}𝑑s]\displaystyle\quad+C_{p,T}\lambda_{N}^{-\frac{1-\delta}{4}p}\mathbb{E}\Big{[}\int_{0}^{T}\!\!\!\Big{\{}\int_{\chi}\big{\|}(-A)^{\frac{1-\delta}{4}}G(X(s),z)\big{\|}^{p}\nu(dz)\!+\!\Big{(}\!\int_{\chi}\big{\|}(-A)^{\frac{1-\delta}{4}}G(X(s),z)\big{\|}^{2}\nu(dz)\Big{)}^{\frac{p}{2}}\Big{\}}ds\Big{]}
Cp,TλN1δ4p+Cp,T0T𝔼[X(s)XN(s)p]𝑑s\displaystyle\leq C_{p,T}\lambda_{N}^{-\frac{1-\delta}{4}p}+C_{p,T}\int_{0}^{T}\!\!\mathbb{E}\big{[}\big{\|}X(s)-X^{N}(s)\big{\|}^{p}\big{]}ds
+Cp,TλN1δ4psups[0,T]X(s)Lp(Ω,H˙1δ2)p.\displaystyle\quad+C_{p,T}\lambda_{N}^{-\frac{1-\delta}{4}p}\sup_{s\in[0,T]}\big{\|}X(s)\big{\|}^{p}_{L^{p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}.

Applying the Grönwall inequality finishes the proof of Step 1.

Step 2. Show that for all p2p\geq 2, there exists a constant Cp,T>0C_{p,T}>0 independent of Δt\Delta t and NN such that XN(T)XnTNLp(Ω,H)Cp,T(Δt)1δ2.\|X^{N}(T)-X^{N}_{n_{T}}\|_{L^{p}(\Omega,H)}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}.

On the partition 𝒯\mathcal{T}, the process {XN(t)}t[0,T]\{X^{N}(t)\}_{t\in[0,T]} can be rewritten as

{XN(ti+1)=E(Δti+1)XN(ti)+titi+1E(ti+1s)FN(XN(s))𝑑s+titi+1E(ti+1s)PN𝑑W(s)titi+1χE(ti+1s)GN(XN(s),z)ν(dz)𝑑s,XN(ti+1)=XN(ti+1)+GN(XN(ti+1),pti+1)𝟏{pti+10},i=0,1,,nT1.\displaystyle\begin{cases}X^{N}(t_{i+1}-)\!=E(\Delta t_{i+1})X^{N}(t_{i})+\int_{t_{i}}^{t_{i+1}}\!\!E(t_{i+1}\!-\!s)F_{N}(X^{N}(s))ds+\int_{t_{i}}^{t_{i+1}}\!\!E(t_{i+1}\!-\!s)P_{N}dW(s)\\ \quad\quad\quad\quad\quad\quad-\int_{t_{i}}^{t_{i+1}}\int_{\chi}E(t_{i+1}\!-\!s)G_{N}(X^{N}(s),z)\nu(dz)ds,\\ X^{N}(t_{i+1})\!=X^{N}(t_{i+1}-)+G_{N}(X^{N}(t_{i+1}-),p_{t_{i+1}})\mathbf{1}_{\{p_{t_{i+1}}\neq 0\}},\quad i=0,1,\ldots,n_{T}-1.\end{cases} (11)

On the time interval [ti,ti+1)[t_{i},t_{i+1}), it follows from  (7) and (11) that

Xi+1NXN(ti+1)\displaystyle\quad X^{N}_{i+1-}\!-\!X^{N}(t_{i+1}-)
=E(Δti+1)(XiNXN(ti))+titi+1E(ti+1s)(FN(XiN)FN(XN(s)))𝑑s\displaystyle=E(\Delta t_{i+1})(X^{N}_{i}\!-\!X^{N}(t_{i}))+\int_{t_{i}}^{t_{i+1}}E(t_{i+1}-s)\big{(}F_{N}(X^{N}_{i})\!-\!F_{N}(X^{N}(s))\big{)}ds
titi+1χ(E(ti+1ti)GN(XiN,z)E(ti+1s)GN(XN(s),z))ν(dz)𝑑s\displaystyle\quad-\int_{t_{i}}^{t_{i+1}}\!\!\int_{\chi}\big{(}E(t_{i+1}-t_{i})G_{N}(X^{N}_{i},z)\!-\!E(t_{i+1}-s)G_{N}(X^{N}(s),z)\big{)}\nu(dz)ds

and

Xi+1NXN(ti+1)=Xi+1NXN(ti+1)+(GN(Xi+1N,pti+1)GN(XN(ti+1),pti+1))𝟏{pti+10}.X^{N}_{i+1}-X^{N}(t_{i+1})=X^{N}_{i+1-}-X^{N}(t_{i+1}-)+\big{(}G_{N}(X^{N}_{i+1-},p_{t_{i+1}})-G_{N}(X^{N}(t_{i+1}-),p_{t_{i+1}})\big{)}\mathbf{1}_{\{p_{t_{i+1}}\neq 0\}}.

Denote ei:=XiNXN(ti)e_{i}:=X^{N}_{i}-X^{N}(t_{i}) and ei:=XiNXN(ti)e_{i-}:=X^{N}_{i-}-X^{N}(t_{i}-). Then it holds that

ei+1=(I+g1(pti+1)𝟏{pti+10})ei+1=:𝒢i+1ei+1.\displaystyle e_{i+1}=\big{(}\mathrm{I}+g_{1}(p_{t_{i+1}})\mathbf{1}_{\{p_{t_{i+1}}\neq 0\}}\big{)}e_{i+1-}=:\mathcal{G}_{i+1}e_{i+1-}. (12)

Using the definition of GNG_{N} gives that for i=0,1,,nT1,i=0,1,\ldots,n_{T}-1,

ei+1=E(Δti+1)Γi𝒢iei+Ξ(ti+1)+j=13j(ti+1),\displaystyle e_{i+1-}=E(\Delta t_{i+1})\Gamma_{i}\mathcal{G}_{i}e_{i-}+\Xi(t_{i+1})+\sum_{j=1}^{3}\mathcal{R}_{j}(t_{i+1}), (13)

where Γi:=IΔti+1χg1(z)ν(dz)\Gamma_{i}:=\mathrm{I}-\Delta t_{i+1}\int_{\chi}g_{1}(z)\nu(dz), Ξ(ti+1):=titi+1E(ti+1s)(FN(XiN)FN(XN(ti)))𝑑s\Xi(t_{i+1}):=\int_{t_{i}}^{t_{i+1}}E(t_{i+1}\!-\!s)\big{(}F_{N}(X^{N}_{i})-F_{N}(X^{N}(t_{i}))\big{)}ds, and

1(ti+1):=titi+1E(ti+1s)(FN(XN(ti))FN(XN(s)))𝑑s,\displaystyle\mathcal{R}_{1}(t_{i+1}):=\int_{t_{i}}^{t_{i+1}}E(t_{i+1}-s)\big{(}F_{N}(X^{N}(t_{i}))-F_{N}(X^{N}(s))\big{)}ds,
2(ti+1):=titi+1χE(ti+1ti)(GN(XN(s),z)GN(XN(ti),z))ν(dz)𝑑s,\displaystyle\mathcal{R}_{2}(t_{i+1}):=\int_{t_{i}}^{t_{i+1}}\int_{\chi}E(t_{i+1}-t_{i})\big{(}G_{N}(X^{N}(s),z)-G_{N}(X^{N}(t_{i}),z)\big{)}\nu(dz)ds,
3(ti+1):=titi+1χ(E(ti+1s)E(ti+1ti))GN(XN(s),z)ν(dz)𝑑s.\displaystyle\mathcal{R}_{3}(t_{i+1}):=\int_{t_{i}}^{t_{i+1}}\int_{\chi}\big{(}E(t_{i+1}-s)-E(t_{i+1}-t_{i})\big{)}G_{N}(X^{N}(s),z)\nu(dz)ds.

By iteratively applying the relation between ei+1e_{i+1-} and eie_{i-} (i.e., (13)), the local error is accumulated into the global one, namely, we have

ei+1=k=0i{l=k+1iE(Δtl+1)Γl𝒢l}(Ξ(tk+1)+j=13j(tk+1)),\displaystyle e_{i+1-}=\sum_{k=0}^{i}\Big{\{}\prod_{l=k+1}^{i}E(\Delta t_{l+1})\Gamma_{l}\mathcal{G}_{l}\Big{\}}\Big{(}\Xi(t_{k+1})+\sum_{j=1}^{3}\mathcal{R}_{j}(t_{k+1})\Big{)},

where we used e0=0e_{0}=0 and set i+1i:=1\prod_{i+1}^{i}:=1. Taking Lp(Ω,H)\|\cdot\|_{L^{p}(\Omega,H)}-norm yields

enTLp(Ω,H)k=0nT1{l=k+1nT1E(Δtl+1)Γl𝒢l}Ξ(tk+1)Lp(Ω,H)\displaystyle\|e_{n_{T}-}\|_{L^{p}(\Omega,H)}\leq\Big{\|}\sum_{k=0}^{n_{T}-1}\Big{\{}\prod_{l=k+1}^{n_{T}-1}E(\Delta t_{l+1})\Gamma_{l}\mathcal{G}_{l}\Big{\}}\Xi(t_{k+1})\Big{\|}_{L^{p}(\Omega,H)}
+k=0nT1{l=k+1nT1E(Δtl+1)Γl𝒢l}1(tk+1)Lp(Ω,H)+k=0nT1{l=k+1nT1E(Δtl+1)Γl𝒢l}2(tk+1)Lp(Ω,H)\displaystyle+\Big{\|}\sum_{k=0}^{n_{T}-1}\Big{\{}\prod_{l=k+1}^{n_{T}-1}\!\!E(\Delta t_{l+1})\Gamma_{l}\mathcal{G}_{l}\Big{\}}\mathcal{R}_{1}(t_{k+1})\Big{\|}_{L^{p}(\Omega,H)}\!\!+\Big{\|}\sum_{k=0}^{n_{T}-1}\Big{\{}\prod_{l=k+1}^{n_{T}-1}\!\!E(\Delta t_{l+1})\Gamma_{l}\mathcal{G}_{l}\Big{\}}\mathcal{R}_{2}(t_{k+1})\Big{\|}_{L^{p}(\Omega,H)}
+k=0nT1{l=k+1nT1E(Δtl+1)Γl𝒢l}3(tk+1)Lp(Ω,H)=:𝒥1+𝒥2+𝒥3+𝒥4.\displaystyle+\Big{\|}\sum_{k=0}^{n_{T}-1}\Big{\{}\prod_{l=k+1}^{n_{T}-1}E(\Delta t_{l+1})\Gamma_{l}\mathcal{G}_{l}\Big{\}}\mathcal{R}_{3}(t_{k+1})\Big{\|}_{L^{p}(\Omega,H)}=:\mathcal{J}_{1}+\mathcal{J}_{2}+\mathcal{J}_{3}+\mathcal{J}_{4}.

To proceed, we need to establish the ppth moment estimates on terms 𝒥1,,𝒥4\mathcal{J}_{1},\ldots,\mathcal{J}_{4} respectively, which involve the multiplicative noise or the jump process.

Let Δt0=0\Delta t_{0}=0 and s:=min{tn1,n{1,,nT+1}:i=0nΔti>sori=0n1Δti=s}\lfloor s\rfloor:=\min\{t_{n-1},n\in\{1,\ldots,n_{T}+1\}:\sum_{i=0}^{n}\Delta t_{i}>s~{}\mbox{or}~{}\sum_{i=0}^{n-1}\Delta t_{i}=s\} for any s[0,T]s\in[0,T], and use (s)\ell(\lfloor s\rfloor) to denote the subscript corresponding to time s\lfloor s\rfloor (i.e., t(s)=st_{\ell(\lfloor s\rfloor)}=\lfloor s\rfloor). For the term 𝒥1\mathcal{J}_{1}, we have

𝒥1\displaystyle\mathcal{J}_{1} =0TE(Ts){l=(s)+1nT1Γl𝒢l}(FN(X(s)N)FN(XN(s)))𝑑sLp(Ω,H)\displaystyle=\Big{\|}\int_{0}^{T}E(T-s)\Big{\{}\prod_{l=\ell(\lfloor s\rfloor)+1}^{n_{T}-1}\Gamma_{l}\mathcal{G}_{l}\Big{\}}\big{(}F_{N}(X^{N}_{\ell(\lfloor s\rfloor)})-F_{N}(X^{N}(\lfloor s\rfloor))\big{)}ds\Big{\|}_{L^{p}(\Omega,H)}
0T(𝔼[𝔼[l=(s)+1nT1Γl𝒢l(H)pFN(X(s)N)FN(XN(s))p|s]])1p𝑑s.\displaystyle\leq\int_{0}^{T}\Big{(}\mathbb{E}\Big{[}\mathbb{E}\Big{[}\Big{\|}\prod_{l=\ell(\lfloor s\rfloor)+1}^{n_{T}-1}\Gamma_{l}\mathcal{G}_{l}\Big{\|}^{p}_{\mathcal{L}(H)}\big{\|}F_{N}(X^{N}_{\ell(\lfloor s\rfloor)})-F_{N}(X^{N}(\lfloor s\rfloor))\big{\|}^{p}\Big{|}\mathcal{F}_{\lfloor s\rfloor}\Big{]}\Big{]}\Big{)}^{\frac{1}{p}}ds.

Note that random variables Γl\Gamma_{l}, 𝒢l\mathcal{G}_{l}, l(s)+1l\geq\ell(\lfloor s\rfloor)+1 and the σ\sigma-algebra s\mathcal{F}_{\lfloor s\rfloor} are independent, which together with the Lipschitz condition of FF, (12), and 𝒢l(H)C\|\mathcal{G}_{l}\|_{\mathcal{L}(H)}\leq C yields

𝒥1\displaystyle\mathcal{J}_{1} 0Tl=(s)+1nT1Γl𝒢lLp(Ω,(H))FN(X(s)N)FN(XN(s))Lp(Ω,H)𝑑s\displaystyle\leq\int_{0}^{T}\Big{\|}\prod_{l=\ell(\lfloor s\rfloor)+1}^{n_{T}-1}\Gamma_{l}\mathcal{G}_{l}\Big{\|}_{L^{p}(\Omega,\mathcal{L}(H))}\big{\|}F_{N}(X^{N}_{\ell(\lfloor s\rfloor)})-F_{N}(X^{N}(\lfloor s\rfloor))\big{\|}_{L^{p}(\Omega,H)}ds
LF(𝔼[supk{0,1,,nT1}l=k+1nT1Γl𝒢l(H)p])1p0T𝒢(s)e(s)Lp(Ω,H)𝑑s.\displaystyle\leq L_{F}\Big{(}\mathbb{E}\Big{[}\sup_{k\in\{0,1,...,n_{T}-1\}}\prod_{l=k+1}^{n_{T}-1}\|\Gamma_{l}\mathcal{G}_{l}\|_{\mathcal{L}(H)}^{p}\Big{]}\Big{)}^{\frac{1}{p}}\int_{0}^{T}\big{\|}\mathcal{G}_{\ell(\lfloor s\rfloor)}e_{\ell(\lfloor s\rfloor)-}\big{\|}_{L^{p}(\Omega,H)}ds.

According to Assumption 2 on coefficient GG, it holds that Γl(H)1+CGΔtl+1\|\Gamma_{l}\|_{\mathcal{L}(H)}\leq 1+C_{G}\Delta t_{l+1} with CG:=bν(χ)C_{G}:=b\nu(\chi), and 𝒢l(H)1+b𝟏{ptl0}\|\mathcal{G}_{l}\|_{\mathcal{L}(H)}\leq 1+b\mathbf{1}_{\{p_{t_{l}}\neq 0\}}. Set N(T):=N((0,T]×χ)N(T):=N((0,T]\times\chi). From Poisson distribution (N(T)=m)=(Tν(χ))mm!eTν(χ),\mathbb{P}(N(T)=m)=\frac{(T\nu(\chi))^{m}}{m!}e^{-T\nu(\chi)}, it follows that for all q1q\geq 1,

𝔼[supk{0,1,,nT1}l=k+1nT1Γl𝒢l(H)q]𝔼[(1+b)qN(T)l=1nT(1+CGΔtl)q]\displaystyle\mathbb{E}\Big{[}\sup_{k\in\{0,1,...,n_{T}-1\}}\prod_{l=k+1}^{n_{T}-1}\|\Gamma_{l}\mathcal{G}_{l}\|_{\mathcal{L}(H)}^{q}\Big{]}\leq\mathbb{E}\Big{[}(1+b)^{qN(T)}\prod_{l=1}^{n_{T}}\big{(}1+C_{G}\Delta t_{l}\big{)}^{q}\Big{]}
𝔼[(1+b)qN(T)eqCGl=1nTΔtl]Cq,Tm=1(1+b)qm(Tν(χ))mm!eTν(χ)<.\displaystyle\leq\mathbb{E}\Big{[}(1+b)^{qN(T)}e^{qC_{G}\sum_{l=1}^{n_{T}}\Delta t_{l}}\Big{]}\leq C_{q,T}\sum_{m=1}^{\infty}(1+b)^{qm}\frac{(T\nu(\chi))^{m}}{m!}e^{-T\nu(\chi)}<\infty. (14)

Hence we arrive at 𝒥1Cp,T0Te(s)Lp(Ω,H)𝑑s.\mathcal{J}_{1}\leq C_{p,T}\int_{0}^{T}\|e_{\ell(\lfloor s\rfloor)-}\|_{L^{p}(\Omega,H)}ds.

For the term 𝒥2,\mathcal{J}_{2}, by Assumption 1, we have

𝒥2\displaystyle\mathcal{J}_{2} =0T{l=(s)+1nT1Γl𝒢l}E(Ts)(A)1+δ4(A)1+δ4(FN(XN(s))FN(XN(s)))𝑑sLp(Ω,H)\displaystyle=\Big{\|}\int_{0}^{T}\Big{\{}\prod_{l=\ell(\lfloor s\rfloor)+1}^{n_{T}-1}\!\!\Gamma_{l}\mathcal{G}_{l}\Big{\}}E(T\!-\!s)(-A)^{\frac{1+\delta}{4}}(-A)^{-\frac{1+\delta}{4}}\big{(}F_{N}(X^{N}(s))\!-\!F_{N}(X^{N}(\lfloor s\rfloor))\big{)}ds\Big{\|}_{L^{p}(\Omega,H)}
C0Tl=(s)+1nT1Γl𝒢lL2p(Ω,(H))(Ts)1+δ4XN(s)XN(s)L4p(Ω,H˙1δ2)×\displaystyle\leq C\int_{0}^{T}\Big{\|}\prod_{l=\ell(\lfloor s\rfloor)+1}^{n_{T}-1}\!\!\Gamma_{l}\mathcal{G}_{l}\Big{\|}_{L^{2p}(\Omega,\mathcal{L}(H))}(T-s)^{-\frac{1+\delta}{4}}\big{\|}X^{N}(s)-X^{N}(\lfloor s\rfloor)\big{\|}_{L^{4p}(\Omega,\dot{H}^{-\frac{1-\delta}{2}})}\times
(1+XN(s)L4p(Ω,H˙1δ2)+XN(s)L4p(Ω,H˙1δ2))ds.\displaystyle\quad\quad\Big{(}1+\|X^{N}(s)\|_{L^{4p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}+\|X^{N}(\lfloor s\rfloor)\|_{L^{4p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}\Big{)}ds.

To estimate XN(s)XN(s)L2q(Ω,H˙1δ2)\|X^{N}(s)-X^{N}(\lfloor s\rfloor)\|_{L^{2q}(\Omega,\dot{H}^{-\frac{1-\delta}{2}})} for q1q\geq 1 and s[0,T]s\in[0,T], we note that

ss(A)1δ4E(sr)PN𝑑W(r)L2q(Ω,H)2q𝔼[𝔼[ζs(A)1δ4E(sr)PN𝑑W(r)2q]|ζ=s]\displaystyle\Big{\|}\int_{\lfloor s\rfloor}^{s}(-A)^{-\frac{1-\delta}{4}}E(s\!-\!r)P_{N}dW(r)\Big{\|}^{2q}_{L^{2q}(\Omega,H)}\leq\mathbb{E}\Big{[}\mathbb{E}\Big{[}\Big{\|}\int_{\zeta}^{s}\!(-A)^{-\frac{1-\delta}{4}}E(s\!-\!r)P_{N}dW(r)\Big{\|}^{2q}\Big{]}\Big{|}_{\zeta=\lfloor s\rfloor}\Big{]}
Cq𝔼[(ζs(A)δ2(A)1+δ4E(sr)2(H)2𝑑r)q|ζ=s]\displaystyle\leq C_{q}\mathbb{E}\Big{[}\Big{(}\int_{\zeta}^{s}\|(-A)^{\frac{\delta}{2}}(-A)^{-\frac{1+\delta}{4}}E(s-r)\|_{\mathcal{L}_{2}(H)}^{2}dr\Big{)}^{q}\Big{|}_{\zeta=\lfloor s\rfloor}\Big{]}
Cq(A)1+δ42(H)2q𝔼[(ss)q(1δ)]Cq(Δt)q(1δ),\displaystyle\leq C_{q}\|(-A)^{-\frac{1+\delta}{4}}\|_{\mathcal{L}_{2}(H)}^{2q}\mathbb{E}\big{[}(s-\lfloor s\rfloor)^{q(1-\delta)}\big{]}\leq C_{q}(\Delta t)^{q(1-\delta)},

where we used the Burkholder–Davis–Gundy inequality (see e.g. [4, Theorem 4.36]) and the Hölder inequality. This, combining Proposition 2.3 shows

XN(s)XN(s)L2q(Ω,H˙1δ2)\displaystyle\quad\big{\|}X^{N}(s)-X^{N}(\lfloor s\rfloor)\big{\|}_{L^{2q}(\Omega,\dot{H}^{-\frac{1-\delta}{2}})}
(A)1δ4(E(ss)I)XN(s)L2q(Ω,H)+(sΔt)0sFN(XN(r))L2q(Ω,H)𝑑r\displaystyle\leq\Big{\|}(-A)^{-\frac{1-\delta}{4}}(E(s-\lfloor s\rfloor)-\mathrm{I})X^{N}(\lfloor s\rfloor)\Big{\|}_{L^{2q}(\Omega,H)}+\int_{(s-\Delta t)\vee 0}^{s}\big{\|}F_{N}(X^{N}(r))\big{\|}_{L^{2q}(\Omega,H)}dr
+ss(A)1δ4E(sr)PN𝑑W(r)L2q(Ω,H)\displaystyle\quad+\Big{\|}\int_{\lfloor s\rfloor}^{s}(-A)^{-\frac{1-\delta}{4}}E(s-r)P_{N}dW(r)\Big{\|}_{L^{2q}(\Omega,H)}
+ssχ(A)1δ4E(sr)GN(XN(r),z)ν(dz)𝑑rL2q(Ω,H)\displaystyle\quad+\Big{\|}\int_{\lfloor s\rfloor}^{s}\int_{\chi}(-A)^{-\frac{1-\delta}{4}}E(s-r)G_{N}(X^{N}(r),z)\nu(dz)dr\Big{\|}_{L^{2q}(\Omega,H)}
Cq,T(Δt)1δ2+(sΔt)0sχ(|g1(z)|XN(r)L2q(Ω,H)+g(z))ν(dz)𝑑rCq,T(Δt)1δ2.\displaystyle\leq C_{q,T}(\Delta t)^{\frac{1-\delta}{2}}\!\!+\int_{(s-\Delta t)\vee 0}^{s}\int_{\chi}\Big{(}|g_{1}(z)|\big{\|}X^{N}(r)\big{\|}_{L^{2q}(\Omega,H)}+\|g(z)\|\Big{)}\nu(dz)dr\leq C_{q,T}(\Delta t)^{\frac{1-\delta}{2}}.

Hence, it follows from (3) that 𝒥2Cp,T(Δt)1δ2\mathcal{J}_{2}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}.

For the term 𝒥3,\mathcal{J}_{3}, by (3), similarly, we derive that

𝒥3\displaystyle\mathcal{J}_{3} C0Tl=(s)+1nT1Γl𝒢lL2p(Ω,(H))(Ts)1δ4XN(s)XN(s)L2p(Ω,H˙1δ2)𝑑sCp,T(Δt)1δ2.\displaystyle\!\leq\!C\!\!\int_{0}^{T}\!\Big{\|}\prod_{l=\ell(\lfloor s\rfloor)+1}^{n_{T}-1}\!\!\!\!\!\Gamma_{l}\mathcal{G}_{l}\Big{\|}_{L^{2p}(\Omega,\mathcal{L}(H))}(T\!-\!\lfloor s\rfloor)^{-\frac{1-\delta}{4}}\big{\|}X^{N}(s)\!-\!X^{N}(\lfloor s\rfloor)\big{\|}_{L^{2p}(\Omega,\dot{H}^{-\frac{1-\delta}{2}})}ds\!\leq\!C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}.

The term 𝒥4\mathcal{J}_{4} can be estimated as

𝒥4\displaystyle\mathcal{J}_{4} 0Tχ{l=(s)+1nT1Γl𝒢l}E(Ts)(A)12(E(ss)I)(A)12GN(XN(s),z)Lp(Ω,H)ν(dz)𝑑s\displaystyle\leq\int_{0}^{T}\!\!\!\int_{\chi}\Big{\|}\Big{\{}\prod_{l=\ell(\lfloor s\rfloor)+1}^{n_{T}-1}\!\!\!\!\!\Gamma_{l}\mathcal{G}_{l}\Big{\}}E(T\!-\!s)(-A)^{\frac{1}{2}}(E(s\!-\!\lfloor s\rfloor)\!-\!\mathrm{I})(-A)^{-\frac{1}{2}}G_{N}(X^{N}(s),z)\Big{\|}_{L^{p}(\Omega,H)}\nu(dz)ds
C(Δt)120Tχ(Ts)12(|g1(z)|XN(s)L2p(Ω,H)+g(z))ν(dz)𝑑sCp,T(Δt)12.\displaystyle\leq C(\Delta t)^{\frac{1}{2}}\int_{0}^{T}\!\!\!\int_{\chi}(T-s)^{-\frac{1}{2}}\big{(}|g_{1}(z)|\|X^{N}(s)\|_{L^{2p}(\Omega,H)}+\|g(z)\|\big{)}\nu(dz)ds\leq C_{p,T}(\Delta t)^{\frac{1}{2}}.

Combining estimates of terms 𝒥1,,𝒥4\mathcal{J}_{1},\ldots,\mathcal{J}_{4} above gives

enTLp(Ω,H)Cp,T0Te(s)Lp(Ω,H)𝑑s+Cp,T(Δt)1δ2,\displaystyle\|e_{n_{T}-}\|_{L^{p}(\Omega,H)}\leq C_{p,T}\int_{0}^{T}\|e_{\ell(\lfloor s\rfloor)-}\|_{L^{p}(\Omega,H)}ds+C_{p,T}(\Delta t)^{\frac{1-\delta}{2}},

which yields enTLp(Ω,H)Cp,T(Δt)1δ2\|e_{n_{T}-}\|_{L^{p}(\Omega,H)}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}} by using the Grönwall inequality. According to (12) and 𝒢l(H)C\|\mathcal{G}_{l}\|_{\mathcal{L}(H)}\leq C, we obtain

enTLp(Ω,H)CenTLp(Ω,H)Cp,T(Δt)1δ2.\displaystyle\|e_{n_{T}}\|_{L^{p}(\Omega,H)}\leq C\|e_{n_{T}-}\|_{L^{p}(\Omega,H)}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}.

Combining Steps 1-2 finishes the proof. ∎

4. Proof of Theorem 2.5.

In this section, we present the proof of the LpL^{p}-strong convergence orders of the fully discrete scheme (9) for (1) driven by the additive Poisson noise with ν(χ)\nu(\chi)\leq\infty, that is Theorem 2.5. The proof relies on estimates of the stochastic convolutions, the recently obtained Lê’s quantitative John–Nirenberg inequality and some a priori estimates on the nested conditional “L2L^{2}-norms” of both stochastic convolutions and the solution of the perturbed stochastic equation.

For N+N\in\mathbb{N}_{+} and t[0,T]t\in[0,T], denote stochastic convolutions 𝒲N(t):=0tE(ts)PN𝑑W(s)\mathcal{W}^{N}(t):=\int_{0}^{t}E(t-s)P_{N}dW(s) and 𝒩N(t):=0tχE(ts)gN(z)N~(dz,ds)\mathcal{N}^{N}(t):=\int_{0}^{t}\int_{\chi}E(t-s)g_{N}(z)\tilde{N}(dz,ds) with gN:=PNgg_{N}:=P_{N}g. Let YN(t):=XN(t)𝒲N(t)𝒩N(t)Y^{N}(t):=X^{N}(t)-\mathcal{W}^{N}(t)-\mathcal{N}^{N}(t), which satisfies the perturbed stochastic equation:

dYN(t)=AYN(t)dt+FN(YN(t)+𝒲N(t)+𝒩N(t))dt,t(0,T],\displaystyle dY^{N}(t)=AY^{N}(t)dt+F_{N}\big{(}Y^{N}(t)+\mathcal{W}^{N}(t)+\mathcal{N}^{N}(t)\big{)}dt,\quad t\in(0,T], (15)

with YN(0)=PNx0Y^{N}(0)=P_{N}x_{0}. It is known that YNY^{N} satisfies

YN(t)=E(t)PNx0+0tE(tρ)FN(YN(ρ)+𝒲N(ρ)+𝒩N(ρ))𝑑ρ.\displaystyle Y^{N}(t)=E(t)P_{N}x_{0}+\int_{0}^{t}E(t-\rho)F_{N}(Y^{N}(\rho)+\mathcal{W}^{N}(\rho)+\mathcal{N}^{N}(\rho))d\rho. (16)

We list properties of the stochastic convolution with respect to the Wiener process as follows, whose proofs are postponed to Appendix.

Lemma 4.1.

(i) For k1k\geq 1 and 0s<tT0\leq s<t\leq T, we have

supN+𝔼[supt(s,T]st(A)1δ4E(tr)PNdW(r)\displaystyle\sup_{N\in\mathbb{N}_{+}}\mathbb{E}\Big{[}\sup_{t\in(s,T]}\Big{\|}\int_{s}^{t}(-A)^{\frac{1-\delta}{4}}E(t-r)P_{N}dW(r) 2k]<.\displaystyle\Big{\|}^{2k}\Big{]}<\infty. (17)

(ii) For p1p\geq 1 and t[0,T]t\in[0,T], there exists a constant Cp,T>0C_{p,T}>0 independent of Δt\Delta t such that

supN+(A)1δ4(𝒲N(t)𝒲N(t))L2p(Ω,H)Cp,T(Δt)1δ2.\displaystyle\sup_{N\in\mathbb{N}_{+}}\big{\|}(-A)^{-\frac{1-\delta}{4}}\big{(}\mathcal{W}^{N}(t)-\mathcal{W}^{N}(\lfloor t\rfloor)\big{)}\big{\|}_{L^{2p}(\Omega,H)}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}. (18)

We then introduce the recently obtained Lê’s quantitative John–Nirenberg inequality, which provides a useful way to bound the LpL^{p}-norm of a stochastic process by moment estimates of the nested conditional “L1L^{1}-norm”. The conditional expectation given t\mathcal{F}_{t} is denoted by 𝔼t\mathbb{E}^{t}.

Lemma 4.2.

[7, Theorem 1.1] Let (E,d)(E,\mathrm{d}) be a metric space and Z:[0,)×Ω(E,d)Z\colon[0,\infty)\times\Omega\to(E,\mathrm{d}) be a right continuous with left limits and adapted integrable stochastic process. Then for every τ>0\tau>0 and p1p\geq 1, there exists a constant Cp>0C_{p}>0 such that

supt[0,τ]d(Z0,Zt)Lp(Ω,)Cpsupt[0,τ]𝔼t[sups[t,τ]𝔼s[d(Zs,Zτ)]]Lp(Ω,).\displaystyle\Big{\|}\sup_{t\in[0,\tau]}\mathrm{d}(Z_{0},Z_{t})\Big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p}\Big{\|}\sup_{t\in[0,\tau]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,\tau]}\mathbb{E}^{s}[\mathrm{d}(Z_{s-},Z_{\tau})]\big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}.

Let [a,b]<[a,b]_{<} denote {(s,t)[a,b]2:s<t}\{(s,t)\in[a,b]^{2}\colon s<t\}. For a random variable ϑ\vartheta, a sub-σ\sigma-algebra 𝒢\mathcal{G}\subset\mathcal{F}, and p1p\geq 1, we set ϑLp(Ω,H)|𝒢:=(𝔼[ϑp|𝒢])1/p\|\vartheta\|_{L^{p}(\Omega,H)|\mathcal{G}}:=\big{(}\mathbb{E}[\|\vartheta\|^{p}\big{|}\mathcal{G}]\big{)}^{1/p}. For a measurable mapping f:[0,T]×ΩHf\colon[0,T]\times\Omega\to H, we set f𝒞20|s,[s,t]:=supr[s,t]f(r)L2(Ω,H)|s\|f\|_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[s,t]}:=\sup_{r\in[s,t]}\|f(r)\|_{L^{2}(\Omega,H)|\mathcal{F}_{s}} for any s,t[0,T]<s,t\in[0,T]_{<}. Let s:=s+Δts^{\prime}:=\lfloor s\rfloor+\Delta t, that is, ss^{\prime} is the smallest grid point strictly bigger than ss.

The following propositions give some a priori estimates including nested conditional “L2L^{2}-norms” of both stochastic convolutions and the solution of the perturbed stochastic equation. The proofs are postponed to Section 5.

Proposition 4.3.

For each N+N\in\mathbb{N}_{+} and any time grid point tit_{i}, i=0,1,,Mi=0,1,...,M, we have

(A)1δ4(𝒩N()𝒩N())𝒞20|ti,[ti,T]\displaystyle\big{\|}(-A)^{-\frac{1-\delta}{4}}\big{(}\mathcal{N}^{N}(\cdot)-\mathcal{N}^{N}(\lfloor\cdot\rfloor)\big{)}\big{\|}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{t_{i}},[t_{i},T]} C(Δt)1δ2(1+𝒩N(ti)H˙1δ2).\displaystyle\leq C(\Delta t)^{\frac{1-\delta}{2}}\Big{(}1+\|\mathcal{N}^{N}(t_{i})\|_{\dot{H}^{\frac{1-\delta}{2}}}\Big{)}. (19)
Proposition 4.4.

For p2p\geq 2, there exists a constant Cp,T>0C_{p,T}>0 such that

supN+supt[0,T]𝔼t[sups[t,T]supr[0,T]𝔼s[𝒩N(r)]]Lp(Ω,)Cp,T,\displaystyle\sup_{N\in\mathbb{N}_{+}}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\sup_{r\in[0,T]}\mathbb{E}^{s}\big{[}\|\mathcal{N}^{N}(r)\|\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}, (20)
supN+supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4𝒩N(s)2]]Lp(Ω,)Cp,T,\displaystyle\sup_{N\in\mathbb{N}_{+}}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(s^{\prime})\big{\|}^{2}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}, (21)
supN+supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4𝒩N()𝒞20|s,[0,T]2]]Lp(Ω,)Cp,T,\displaystyle\sup_{N\in\mathbb{N}_{+}}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[0,T]}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}, (22)
supN+supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4𝒲N()𝒞20|s,[0,T]2]]Lp(Ω,)Cp,T.\displaystyle\sup_{N\in\mathbb{N}_{+}}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[0,T]}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}. (23)
Proposition 4.5.

(i) For p2p\geq 2 and t[0,T]t\in[0,T], there exists a constant Cp,T>0C_{p,T}>0 such that

supN+(A)1δ4(YN(t)\displaystyle\sup_{N\in\mathbb{N}_{+}}\big{\|}(-A)^{-\frac{1-\delta}{4}}(Y^{N}(t) YN(t))Lp(Ω,H)Cp,T(Δt)1δ2.\displaystyle-Y^{N}(\lfloor t\rfloor))\big{\|}_{L^{p}(\Omega,H)}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}. (24)

(ii) For p2p\geq 2, there exists a constant Cp,T>0C_{p,T}>0 such that

supN+supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4YN()𝒞20|s,[s,T]2]]Lp(Ω,)Cp,T.\displaystyle\sup_{N\in\mathbb{N}_{+}}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}Y^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[s^{\prime},T]}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}. (25)

With these preliminaries, we present the proof of Theorem 2.5.

Proof of Theorem 2.5.

The error between the exact solution and the semi-discrete numerical solution (i.e., X(T)XN(T)Lp(Ω,H)Cp,TN1δ2\|X(T)-X^{N}(T)\|_{L^{p}(\Omega,H)}\leq C_{p,T}N^{-\frac{1-\delta}{2}}) can be proved by Step 1 in the proof of Theorem 2.4 and thus is omitted. Hence it suffices to estimate the error XN(T)XnTNLp(Ω,H)\|X^{N}(T)-X^{N}_{n_{T}}\|_{L^{p}(\Omega,H)}.

It follows from assumptions on FF and gg, (4), and Lemma 2.2 that

XN(T)XnTNLp(Ω,H)0TE(Ts)(FN(XN(s))FN(X(s)N))𝑑sLp(Ω,H)\displaystyle\|X^{N}(T)-X^{N}_{n_{T}}\|_{L^{p}(\Omega,H)}\leq\Big{\|}\int_{0}^{T}E(T-s)\big{(}F_{N}(X^{N}(s))-F_{N}(X^{N}_{\ell(\lfloor s\rfloor)})\big{)}ds\Big{\|}_{L^{p}(\Omega,H)}
+0TχE(Ts)(IE(ss))(A)1δ2(A)1δ2gN(z)N~(dz,ds)Lp(Ω,H)\displaystyle\quad+\Big{\|}\int_{0}^{T}\int_{\chi}E(T-s)(\mathrm{I}-E(s-\lfloor s\rfloor))(-A)^{-\frac{1-\delta}{2}}(-A)^{\frac{1-\delta}{2}}g_{N}(z)\tilde{N}(dz,ds)\Big{\|}_{L^{p}(\Omega,H)}
I1+I2+I3+LF0TXN(s)X(s)NLp(Ω,H)ds+Cp,T(0T(IE(ss))(A)1δ2(H)p\displaystyle\leq I_{1}+I_{2}+I_{3}+L_{F}\int_{0}^{T}\!\!\big{\|}X^{N}(\lfloor s\rfloor)\!-\!X^{N}_{\ell(\lfloor s\rfloor)}\big{\|}_{L^{p}(\Omega,H)}ds+C_{p,T}\Big{(}\int_{0}^{T}\!\!\big{\|}(\mathrm{I}\!-\!E(s\!-\!\lfloor s\rfloor))(-A)^{-\frac{1-\delta}{2}}\big{\|}^{p}_{\mathcal{L}(H)}
×{χ(A)1δ2gN(z)pν(dz)+(χ(A)1δ2gN(z)2ν(dz))p2}ds)1p\displaystyle\quad\times\Big{\{}\int_{\chi}\big{\|}(-A)^{\frac{1-\delta}{2}}g_{N}(z)\big{\|}^{p}\nu(dz)\!+\!\Big{(}\int_{\chi}\big{\|}(-A)^{\frac{1-\delta}{2}}g_{N}(z)\big{\|}^{2}\nu(dz)\Big{)}^{\frac{p}{2}}\Big{\}}ds\Big{)}^{\frac{1}{p}}
Cp,T(Δt)1δ2+LF0TXN(s)X(s)NLp(Ω,H)𝑑s+I1+I2+I3,\displaystyle\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}+L_{F}\int_{0}^{T}\big{\|}X^{N}(\lfloor s\rfloor)\!-\!X^{N}_{\ell(\lfloor s\rfloor)}\big{\|}_{L^{p}(\Omega,H)}ds+I_{1}+I_{2}+I_{3},

where

I1:=0TE(Ts)(FN(YN(s)+𝒲N(s)+𝒩N(s))FN(XN(s)))𝑑sLp(Ω,H),\displaystyle I_{1}\!:=\!\!\Big{\|}\int_{0}^{T}E(T\!-\!s)\big{(}F_{N}(Y^{N}(s)+\mathcal{W}^{N}(\lfloor s\rfloor)+\mathcal{N}^{N}(\lfloor s\rfloor))-F_{N}(X^{N}(\lfloor s\rfloor)\big{)}\big{)}ds\Big{\|}_{L^{p}(\Omega,H)},
I2:=0TE(Ts)(FN(YN(s)+𝒲N(s)+𝒩N(s))FN(YN(s)+𝒲N(s)+𝒩N(s)))𝑑sLp(Ω,H),\displaystyle I_{2}\!:=\!\!\Big{\|}\int_{0}^{T}\!\!\!E(T\!-\!s)\big{(}F_{N}(Y^{N}(s)\!+\!\mathcal{W}^{N}(s)\!+\!\mathcal{N}^{N}(\lfloor s\rfloor))\!-\!F_{N}(Y^{N}(s)\!+\!\mathcal{W}^{N}(\lfloor s\rfloor)\!+\!\mathcal{N}^{N}(\lfloor s\rfloor))\big{)}ds\Big{\|}_{L^{p}(\Omega,H)},
I3:=0TE(Ts)(FN(XN(s))FN(YN(s)+𝒲N(s)+𝒩N(s)))𝑑sLp(Ω,H).\displaystyle I_{3}\!:=\!\!\Big{\|}\int_{0}^{T}E(T-s)\big{(}F_{N}(X^{N}(s))-F_{N}(Y^{N}(s)+\mathcal{W}^{N}(s)+\mathcal{N}^{N}(\lfloor s\rfloor))\big{)}ds\Big{\|}_{L^{p}(\Omega,H)}.

For the term I1I_{1}, by Assumption 1, we have

I1C0TE(Ts)(A)1+δ4(H)(A)1δ4(YN(s)YN(s))L2p(Ω,H)ds×\displaystyle I_{1}\leq C\int_{0}^{T}\big{\|}E(T-s)(-A)^{\frac{1+\delta}{4}}\big{\|}_{\mathcal{L}(H)}\big{\|}(-A)^{-\frac{1-\delta}{4}}(Y^{N}(s)-Y^{N}(\lfloor s\rfloor))\big{\|}_{L^{2p}(\Omega,H)}ds~{}\times
(1+sups[0,T]YN(s)L2p(Ω,H˙1δ2)+sups[0,T]𝒲N(s)L2p(Ω,H˙1δ2)+sups[0,T]𝒩N(s)L2p(Ω,H˙1δ2)).\displaystyle~{}~{}~{}\Big{(}1+\sup_{s\in[0,T]}\|Y^{N}(s)\|_{L^{2p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}+\sup_{s\in[0,T]}\|\mathcal{W}^{N}(s)\|_{L^{2p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}+\sup_{s\in[0,T]}\|\mathcal{N}^{N}(s)\|_{L^{2p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}\Big{)}.

Combining (24) and the same arguments as in the proof of Proposition 2.3 leads to

I1Cp,T(Δt)1δ20T(Ts)1+δ4𝑑sCp,T(Δt)1δ2.\displaystyle I_{1}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}\int_{0}^{T}(T-s)^{-\frac{1+\delta}{4}}ds\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}.

Similarly, by (18), we have

I2\displaystyle I_{2} C0T(Ts)1+δ4(A)1δ4(𝒲N(s)𝒲N(s))L2p(Ω,H)ds×(1+sups[0,T]YN(s)L2p(Ω,H˙1δ2)\displaystyle\leq C\int_{0}^{T}\!\!(T\!-\!s)^{-\frac{1+\delta}{4}}\big{\|}(-A)^{-\frac{1-\delta}{4}}\big{(}\mathcal{W}^{N}(s)\!-\!\mathcal{W}^{N}(\lfloor s\rfloor)\big{)}\big{\|}_{L^{2p}(\Omega,H)}ds\times\Big{(}1\!+\!\!\sup_{s\in[0,T]}\!\!\|Y^{N}(s)\|_{L^{2p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}\!
+sups[0,T]𝒲N(s)L2p(Ω,H˙1δ2)+sups[0,T]𝒩N(s)L2p(Ω,H˙1δ2))Cp,T(Δt)1δ2.\displaystyle\quad+\!\sup_{s\in[0,T]}\|\mathcal{W}^{N}(s)\|_{L^{2p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}\!+\!\sup_{s\in[0,T]}\|\mathcal{N}^{N}(s)\|_{L^{2p}(\Omega,\dot{H}^{\frac{1-\delta}{2}})}\Big{)}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}.

For the term I3I_{3}, we claim that

I3Cp,T(Δt)1δ2.\displaystyle I_{3}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}. (26)

Estimate of term I3I_{3} includes dealing with the temporal Hölder continuity of the stochastic convolution with respect to the compensated Poisson random measure to overcome the order barrier. To this end we aim to apply Lemma 4.2 to estimate the LpL^{p}-norm of I3I_{3}. For (s,t)[0,T]<(s,t)\in[0,T]_{<}, define an integrable t\mathcal{F}_{t}-adapted stochastic process:

𝒜N,Δ(t)\displaystyle\mathcal{A}^{N,\Delta}(t) :=0tE(Tr)(FN(XN(r))FN(YN(r)+𝒲N(r)+𝒩N(r)))𝑑r\displaystyle:=\int_{0}^{t}E(T-r)\big{(}F_{N}(X^{N}(r))-F_{N}(Y^{N}(r)+\mathcal{W}^{N}(r)+\mathcal{N}^{N}(\lfloor r\rfloor))\big{)}dr

with 𝒜N,Δ(0)=0\mathcal{A}^{N,\Delta}(0)=0. By the globally Lipschitz condition of FF, we have

𝔼[𝒜N,Δ(t)𝒜N,Δ(s)2]\displaystyle\mathbb{E}\big{[}\big{\|}\mathcal{A}^{N,\Delta}(t)-\mathcal{A}^{N,\Delta}(s)\big{\|}^{2}\big{]} LF|ts|st𝔼[𝒩N(r)𝒩N(r)2]𝑑r\displaystyle\leq L_{F}|t-s|\int_{s}^{t}\mathbb{E}\big{[}\big{\|}\mathcal{N}^{N}(r)-\mathcal{N}^{N}(\lfloor r\rfloor)\big{\|}^{2}\big{]}dr
C|ts|2supr[0,T]𝔼[𝒩N(r)2]CT|ts|2.\displaystyle\leq C|t-s|^{2}\sup_{r\in[0,T]}\mathbb{E}[\|\mathcal{N}^{N}(r)\|^{2}]\leq C_{T}|t-s|^{2}.

The Kolmogorov continuity theorem implies that 𝒜N,Δ\mathcal{A}^{N,\Delta} is a.s. continuous. Thus by Lemma 4.2, we arrive at

supt[0,T]𝒜N,Δ(t)Lp(Ω,)Cpsupt[0,T]𝔼t[sups[t,T]𝔼s[𝒜𝒩,Δ(T)𝒜𝒩,Δ(s)]]Lp(Ω,),\displaystyle\big{\|}\sup_{t\in[0,T]}\|\mathcal{A}^{N,\Delta}(t)\|\big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}\mathcal{A}^{\mathcal{N},\Delta}(T)-\mathcal{A}^{\mathcal{N},\Delta}(s)\big{\|}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})},

which yields that

I3=𝒜N,Δ(T)Lp(Ω,H)Cpsupt[0,T]𝔼t[sups[t,T]𝔼s[𝒜𝒩,Δ(T)𝒜𝒩,Δ(s)]]Lp(Ω,).\displaystyle I_{3}=\|\mathcal{A}^{N,\Delta}(T)\|_{L^{p}(\Omega,H)}\leq C_{p}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}\mathcal{A}^{\mathcal{N},\Delta}(T)-\mathcal{A}^{\mathcal{N},\Delta}(s)\big{\|}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}. (27)

Now we turn to estimating the term on the right hand side of the inequality in (27). We first show that, there exists a real-valued adapted stochastic process ξ\xi such that

𝔼s[𝒜N,Δ(T)𝒜N,Δ(s)]ξsa.s.\displaystyle\mathbb{E}^{s}\big{[}\big{\|}\mathcal{A}^{N,\Delta}(T)-\mathcal{A}^{N,\Delta}(s)\big{\|}\big{]}\leq\xi_{s}\quad a.s. (28)

Indeed, using Assumption 1 and the conditional Hölder inequality gives

𝔼s[𝒜N,Δ(T)𝒜N,Δ(s)]CsT(Tr)1+δ4(A)1δ4(𝒩N(r)𝒩N(r))L2(Ω,H)|s𝑑r\displaystyle\mathbb{E}^{s}\big{[}\big{\|}\mathcal{A}^{N,\Delta}(T)-\mathcal{A}^{N,\Delta}(s)\big{\|}\big{]}\leq C\int_{s}^{T}(T-r)^{-\frac{1+\delta}{4}}\big{\|}(-A)^{-\frac{1-\delta}{4}}\big{(}\mathcal{N}^{N}(r)-\mathcal{N}^{N}(\lfloor r\rfloor)\big{)}\big{\|}_{L^{2}(\Omega,H)|\mathcal{F}_{s}}dr
×(1+(A)1δ4YN()𝒞20|s,[s,T]+(A)1δ4𝒲N()𝒞20|s,[s,T]+(A)1δ4𝒩N()𝒞20|s,[0,T])\displaystyle\times\Big{(}1\!+\!\big{\|}(-A)^{\frac{1-\delta}{4}}Y^{N}(\cdot)\big{\|}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[s,T]}\!+\!\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}(\cdot)\big{\|}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[s,T]}\!+\!\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(\cdot)\big{\|}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[0,T]}\Big{)}
CT(A)1δ4(𝒩N()𝒩N())𝒞20|s,[s,T]×\displaystyle\leq C_{T}\big{\|}(-A)^{-\frac{1-\delta}{4}}\big{(}\mathcal{N}^{N}(\cdot)-\mathcal{N}^{N}(\lfloor\cdot\rfloor)\big{)}\big{\|}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[s,T]}\times
(1+(A)1δ4YN()𝒞20|s,[s,T]+(A)1δ4𝒲N()𝒞20|s,[s,T]+(A)1δ4𝒩N()𝒞20|s,[0,T]).\displaystyle\quad\Big{(}1\!+\!\big{\|}(-A)^{\frac{1-\delta}{4}}Y^{N}(\cdot)\big{\|}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[s,T]}\!+\!\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}(\cdot)\big{\|}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[s,T]}\!+\!\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(\cdot)\big{\|}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[0,T]}\Big{)}.

In the case of s{0,Δt,2Δt,,T}s\in\{0,\Delta t,2\Delta t,...,T\}, i.e., s=s\lfloor s\rfloor=s, it follows from (19) and the Young inequality that 𝔼s[𝒜N,Δ(T)𝒜N,Δ(s)]ξs1\mathbb{E}^{s}\big{[}\|\mathcal{A}^{N,\Delta}(T)-\mathcal{A}^{N,\Delta}(s)\|\big{]}\leq\xi^{1}_{s} almost surely with

ξs1:\displaystyle\xi^{1}_{s}: =CT(Δt)1δ2(1+(A)1δ4𝒩N(s)2+(A)1δ4YN()𝒞20|s,[s,T]2\displaystyle=C_{T}(\Delta t)^{\frac{1-\delta}{2}}\Big{(}1+\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(s)\big{\|}^{2}+\big{\|}(-A)^{\frac{1-\delta}{4}}Y^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[s,T]}
+(A)1δ4𝒲N()𝒞20|s,[s,T]2+(A)1δ4𝒩N()𝒞20|s,[0,T]2).\displaystyle\quad+\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[s,T]}+\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s},[0,T]}\Big{)}.

In the case that ss is not a grid point, i.e., ss\lfloor s\rfloor\neq s, we note that when TsΔtT-s\leq\Delta t,

𝔼s[𝒜N,Δ(T)𝒜N,Δ(s)]\displaystyle\mathbb{E}^{s}\big{[}\big{\|}\mathcal{A}^{N,\Delta}(T)\!-\!\mathcal{A}^{N,\Delta}(s)\big{\|}\big{]} CΔtsupr[s,T]𝔼s[𝒩N(r)𝒩N(r)]CΔtsupr[sΔt,T]𝔼s[𝒩N(r)].\displaystyle\leq C\Delta t\!\!\sup_{r\in[s,T]}\!\mathbb{E}^{s}\big{[}\big{\|}\mathcal{N}^{N}(r)\!-\!\mathcal{N}^{N}(\lfloor r\rfloor)\big{\|}\big{]}\leq C\Delta t\!\!\sup_{r\in[s\!-\!\Delta t,T]}\!\!\mathbb{E}^{s}\big{[}\big{\|}\mathcal{N}^{N}(r)\big{\|}\big{]}.

When Ts>ΔtT-s>\Delta t, we observe that ssΔts^{\prime}-s\leq\Delta t, sTs^{\prime}\leq T, and

𝔼s[𝒜N,Δ(T)𝒜N,Δ(s)]\displaystyle\mathbb{E}^{s}\big{[}\big{\|}\mathcal{A}^{N,\Delta}(T)-\mathcal{A}^{N,\Delta}(s)\big{\|}\big{]} 𝔼s[𝔼s[𝒜N,Δ(T)𝒜N,Δ(s)]]+𝔼s[𝒜N,Δ(s)𝒜N,Δ(s)]\displaystyle\leq\mathbb{E}^{s}\big{[}\mathbb{E}^{s^{\prime}}\big{[}\|\mathcal{A}^{N,\Delta}(T)-\mathcal{A}^{N,\Delta}(s^{\prime})\|\big{]}\big{]}+\mathbb{E}^{s}\big{[}\|\mathcal{A}^{N,\Delta}(s)-\mathcal{A}^{N,\Delta}(s^{\prime})\|\big{]}
𝔼s[ξs1]+𝔼s[𝒜N,Δ(s)𝒜N,Δ(s)].\displaystyle\leq\mathbb{E}^{s}\big{[}\xi^{1}_{s^{\prime}}\big{]}+\mathbb{E}^{s}\big{[}\|\mathcal{A}^{N,\Delta}(s)-\mathcal{A}^{N,\Delta}(s^{\prime})\|\big{]}.

Hence, we derive that 𝔼s[𝒜N,Δ(T)𝒜N,Δ(s)]ξs2\mathbb{E}^{s}\big{[}\|\mathcal{A}^{N,\Delta}(T)-\mathcal{A}^{N,\Delta}(s)\|\big{]}\leq\xi^{2}_{s} almost surely with

ξs2\displaystyle\xi_{s}^{2} :=CT(Δt)1δ2(1+𝔼s[(A)1δ4𝒩N(s)2+(A)1δ4YN()𝒞20|s,[s,T]2\displaystyle:=C_{T}(\Delta t)^{\frac{1-\delta}{2}}\Big{(}1+\mathbb{E}^{s}\Big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(s^{\prime})\big{\|}^{2}+\big{\|}(-A)^{\frac{1-\delta}{4}}Y^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[s^{\prime},T]}
+(A)1δ4𝒲N()𝒞20|s,[s,T]2+(A)1δ4𝒩N()𝒞20|s,[0,T]2]+supr[sΔt,T]𝔼s[𝒩N(r)]).\displaystyle\quad+\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[s^{\prime},T]}\!+\!\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[0,T]}\Big{]}\!+\!\!\sup_{r\in[s-\Delta t,T]}\!\mathbb{E}^{s}\big{[}\|\mathcal{N}^{N}(r)\|\big{]}\Big{)}.

Therefore (28) holds with ξs:=ξs1𝟏{s=s}+ξs2𝟏{ss}\xi_{s}:=\xi_{s}^{1}\mathbf{1}_{\{s=\lfloor s\rfloor\}}+\xi_{s}^{2}\mathbf{1}_{\{s\neq\lfloor s\rfloor\}}. To further estimate the term on the right hand side of (27), we use Propositions 4.34.5 to obtain

supt[0,T]𝔼t[sups[t,T]ξs2]Lp(Ω,)CT(Δt)1δ2{1+supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4𝒩N(s)2]]Lp(Ω,)\displaystyle\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\xi^{2}_{s}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{T}(\Delta t)^{\frac{1-\delta}{2}}\Big{\{}1+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(s^{\prime})\big{\|}^{2}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼t[sups[t,T]supr[sΔt,T]𝔼s[𝒩N(r)]]Lp(Ω,)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\sup_{r\in[s-\Delta t,T]}\mathbb{E}^{s}\big{[}\|\mathcal{N}^{N}(r)\|\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4𝒩N()𝒞20|s,[0,T]2]]Lp(Ω,)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[0,T]}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4𝒲N()𝒞20|s,[s,T]2]]Lp(Ω,)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[s^{\prime},T]}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4YN()𝒞20|s,[s,T]2]]Lp(Ω,)}Cp,T(Δt)1δ2.\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}Y^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[s^{\prime},T]}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}\Big{\}}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}.

Similarly, we can derive that supt[0,T]𝔼t[sups[t,T]ξs1]Lp(Ω,)Cp,T(Δt)1δ2.\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\xi^{1}_{s}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}. As a result, (26) is proved.

Combining estimates of terms I1I_{1}, I2I_{2}, and I3I_{3}, and applying the Grönwall inequality complete the proof of the theorem. ∎

Remark 4.6.

In Theorem 2.5, if we get rid of condition (10) imposed on the jump coefficient gg, then we obtain that XN(T)XMNLp(Ω,H)Cp,T(Δt)14,p2\|X^{N}(T)-X^{N}_{M}\|_{L^{p}(\Omega,H)}\leq C_{p,T}(\Delta t)^{\frac{1}{4}},\;p\geq 2 under Assumptions 13 and g10g_{1}\equiv 0. This is due to that the estimate of 0Tχ(E(Ts)E(Ts))gN(z)N~(dz,ds)Lp(Ω,H)\|\int_{0}^{T}\!\!\int_{\chi}(E(T\!-s)-E(T\!-\!\lfloor s\rfloor))g_{N}(z)\tilde{N}(dz,ds)\|_{L^{p}(\Omega,H)} can only provide the LpL^{p}-strong convergence order 14\frac{1}{4} for all p2p\geq 2.

5. Proofs of some essential propositions

In this section, we give proofs of Propositions 4.34.5. Note that the process tχE(r)gN(z)N~(dz,dr)\int^{\cdot}_{t}\int_{\chi}E(\cdot-r)g_{N}(z)\tilde{N}(dz,dr) is progressively measurable on product space (Ω×[t,T],T×([t,T]),×dr)(\Omega\times[t,T],\mathcal{F}_{T}\times\mathcal{B}([t,T]),\mathbb{P}\times dr). For any interval [a,b]([t,T])[a,b]\in\mathcal{B}([t,T]), due to the independent increments property of the compensated Poisson measure, it holds that

  • (P1)

    sups[a,b]tsχE(sr)(A)1δ4gN(z)N~(dz,dr)\sup\limits_{s\in[a,b]}\Big{\|}\int^{s}_{t}\int_{\chi}E(s-r)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,dr)\Big{\|} is t\mathcal{F}_{t}-independent.

This property will be frequently utilized in the following proofs.

Proof of Proposition 4.3.

For any time grid point tit_{i}, i=0,1,,Mi=0,1,\ldots,M, the property (P1) and the assumption on gg lead to

(A)1δ4(𝒩N()𝒩N())𝒞20|ti,[ti,T]\displaystyle\quad\big{\|}(-A)^{-\frac{1-\delta}{4}}\big{(}\mathcal{N}^{N}(\cdot)-\mathcal{N}^{N}(\lfloor\cdot\rfloor)\big{)}\big{\|}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{t_{i}},[t_{i},T]}
sups[ti,T]ssχ(A)1δ4E(sρ)gN(z)N~(dz,dρ)L2(Ω,H)\displaystyle\leq\sup_{s\in[t_{i},T]}\Big{\|}\int_{\lfloor s\rfloor}^{s}\int_{\chi}(-A)^{-\frac{1-\delta}{4}}E(s-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}_{L^{2}(\Omega,H)}
+sups[ti,T]0sχ(A)1δ4(E(sρ)E(sρ))gN(z)N~(dz,dρ)L2(Ω,H)|ti\displaystyle\quad+\sup_{s\in[t_{i},T]}\Big{\|}\int_{0}^{\lfloor s\rfloor}\!\!\!\int_{\chi}(-A)^{-\frac{1-\delta}{4}}\big{(}E(s\!-\!\rho)-E(\lfloor s\rfloor\!-\!\rho)\big{)}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}_{L^{2}(\Omega,H)|\mathcal{F}_{t_{i}}}
C(Δt)12+sups[ti,T](E(ss)I)(A)1δ2(H)0tiχ(A)1δ4E(sρ)gN(z)N~(dz,dρ)\displaystyle\leq C(\Delta t)^{\frac{1}{2}}\!+\!\!\sup_{s\in[t_{i},T]}\!\Big{\|}\big{(}E(s\!-\!\lfloor s\rfloor)\!-\!\mathrm{I}\big{)}(-A)^{-\frac{1-\delta}{2}}\Big{\|}_{\mathcal{L}(H)}\Big{\|}\!\!\int^{t_{i}}_{0}\!\!\!\int_{\chi}(-A)^{\frac{1-\delta}{4}}E(\lfloor s\rfloor\!-\!\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}
+sups[ti,T](E(ss)I)(A)1δ2(H)tisχ(A)1δ4E(sρ)gN(z)N~(dz,dρ)L2(Ω,H)\displaystyle\quad+\!\!\sup_{s\in[t_{i},T]}\Big{\|}\big{(}E(s\!-\!\lfloor s\rfloor)\!-\mathrm{I}\big{)}(-A)^{-\frac{1-\delta}{2}}\Big{\|}_{\mathcal{L}(H)}\Big{\|}\!\!\int_{t_{i}}^{\lfloor s\rfloor}\!\!\!\int_{\chi}(-A)^{\frac{1-\delta}{4}}E(\lfloor s\rfloor-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}_{L^{2}(\Omega,H)}
C(Δt)1δ2(1+0tiχE(tis)gN(z)N~(dz,ds)H˙1δ2).\displaystyle\leq C(\Delta t)^{\frac{1-\delta}{2}}\Big{(}1+\Big{\|}\int^{t_{i}}_{0}\int_{\chi}E(t_{i}-s)g_{N}(z)\tilde{N}(dz,ds)\Big{\|}_{\dot{H}^{\frac{1-\delta}{2}}}\Big{)}.

The proof is completed. ∎

Proof of Proposition  4.4.

(i) The proof of (20). It follows from the property (P1) that

supt[0,T]𝔼t[sups[t,T]supr[0,T]𝔼s[𝒩N(r)]]Lp(Ω,)\displaystyle\quad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\sup_{r\in[0,T]}\mathbb{E}^{s}\big{[}\|\mathcal{N}^{N}(r)\|\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}
supt[0,T]𝔼t[sups[t,T]supr[s,T]𝔼s[(s0+sr)χE(rρ)gN(z)N~(dz,dρ)]]Lp(Ω,)\displaystyle\leq\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\sup_{r\in[s,T]}\mathbb{E}^{s}\Big{[}\Big{\|}\Big{(}\int^{s}_{0}+\int_{s}^{r}\Big{)}\int_{\chi}E(r-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼t[sups[t,T]supr[0,s]𝔼s[r0χE(rρ)gN(z)N~(dz,dρ)]]Lp(Ω,)\displaystyle\quad+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\sup_{r\in[0,s]}\mathbb{E}^{s}\Big{[}\Big{\|}\int^{r}_{0}\int_{\chi}E(r-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
supt[0,T]𝔼t[sups[t,T]supr[s,T]𝔼[rsχE(rρ)gN(z)N~(dz,dρ)]]Lp(Ω,)\displaystyle\leq\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\sup_{r\in[s,T]}\mathbb{E}\Big{[}\Big{\|}\int^{r}_{s}\int_{\chi}E(r-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼t[sups[t,T](t0+ts)χE(sρ)gN(z)N~(dz,dρ)]Lp(Ω,)\displaystyle\quad+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\Big{\|}\Big{(}\int^{t}_{0}+\int_{t}^{s}\Big{)}\int_{\chi}E(s-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼t[supr[0,T]r0χE(rρ)gN(z)N~(dz,dρ)]Lp(Ω,),\displaystyle\quad+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{r\in[0,T]}\Big{\|}\int^{r}_{0}\int_{\chi}E(r-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})},

and further by Lemma 2.2, we have

supt[0,T]𝔼t[sups[t,T]supr[0,T]𝔼s[𝒩N(r)]]Lp(Ω,)\displaystyle\quad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\sup_{r\in[0,T]}\mathbb{E}^{s}\big{[}\|\mathcal{N}^{N}(r)\|\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cp,T+supt[0,T]t0χE(tρ)gN(z)N~(dz,dρ)Lp(Ω,)\displaystyle\leq C_{p,T}+\Big{\|}\sup_{t\in[0,T]}\Big{\|}\int^{t}_{0}\int_{\chi}E(t-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼[sups[t,T]tsχE(sρ)gN(z)N~(dz,dρ)]Lp(Ω,)\displaystyle\quad+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}\Big{[}\sup_{s\in[t,T]}\Big{\|}\int_{t}^{s}\int_{\chi}E(s-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼t[supr[0,t]0rχE(rρ)gN(z)N~(dz,dρ)]Lp(Ω,)\displaystyle\quad+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{r\in[0,t]}\Big{\|}\int_{0}^{r}\int_{\chi}E(r-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼t[supr[t,T](t0+rt)χE(rρ)gN(z)N~(dz,dρ)]Lp(Ω,)\displaystyle\quad+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{r\in[t,T]}\Big{\|}\Big{(}\int^{t}_{0}+\int^{r}_{t}\Big{)}\int_{\chi}E(r-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cp,T+supr[0,T]r0χE(rρ)gN(z)N~(dz,dρ)Lp(Ω,)\displaystyle\leq C_{p,T}+\Big{\|}\sup_{r\in[0,T]}\Big{\|}\int^{r}_{0}\int_{\chi}E(r-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+supt[0,T]𝔼[supr[t,T]rtχE(rρ)gN(z)N~(dz,dρ)]Lp(Ω,)Cp,T.\displaystyle\quad+\Big{\|}\sup_{t\in[0,T]}\mathbb{E}\Big{[}\sup_{r\in[t,T]}\Big{\|}\int^{r}_{t}\int_{\chi}E(r-\rho)g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}.

(ii) The proof of (21). The proof is similar to that of (20). We have

supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4𝒩N(s)2]]Lp(Ω,)\displaystyle\quad\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(s^{\prime})\big{\|}^{2}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
Csupt[0,T]𝔼t[sups[t,T]𝔼[ssχE(sr)(A)1δ4gN(z)N~(dz,dr)2]Lp(Ω,)\displaystyle\leq C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}\Big{[}\Big{\|}\int^{s^{\prime}}_{s}\int_{\chi}E(s^{\prime}-r)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,dr)\Big{\|}^{2}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[sups[t,T]s0χE(sr)(A)1δ4gN(z)N~(dz,dr)2]Lp(Ω,)\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\Big{\|}\int^{s}_{0}\int_{\chi}E(s^{\prime}-r)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,dr)\Big{\|}^{2}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
Csupt[0,T]𝔼t[sups[t,T]ssχE(sr)(A)1δ4gN(z)2ν(dz)dr]Lp(Ω,)\displaystyle\leq C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\int^{s^{\prime}}_{s}\int_{\chi}\big{\|}E(s^{\prime}-r)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\big{\|}^{2}\nu(dz)dr\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[sups[t,T](st+t0)χE(sr)(A)1δ4gN(z)N~(dz,dr)2]Lp(Ω,)\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\Big{\|}\Big{(}\int^{s}_{t}+\int^{t}_{0}\Big{)}\int_{\chi}E(s^{\prime}-r)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,dr)\Big{\|}^{2}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
CT+Csupt[0,T]𝔼[sups[t,T]stχE(sr)(A)1δ4gN(z)N~(dz,dr)2]Lp(Ω,)\displaystyle\leq C_{T}+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}\Big{[}\sup_{s\in[t,T]}\Big{\|}\int^{s}_{t}\int_{\chi}E(s-r)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,dr)\Big{\|}^{2}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]t0χE(tr)(A)1δ4gN(z)N~(dz,dr)2Lp(Ω,)Cp,T.\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\Big{\|}\int^{t}_{0}\int_{\chi}E(t-r)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,dr)\Big{\|}^{2}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}.
  • (iii)

    The proof of (22). Based on the property (P1), we have

supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4𝒩N()2𝒞20|s,[0,T]]]Lp(Ω,)\displaystyle\quad\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[0,T]}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
Csupt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,s]r0χE(rρ)(A)1δ4gN(z)N~(dz,dρ)2]]Lp(Ω,)\displaystyle\leq C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\Big{[}\sup_{r\in[0,s^{\prime}]}\Big{\|}\int^{r}_{0}\int_{\chi}E(r-\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[sups[t,T]𝔼s[supr[s,T]𝔼s[(rs+0s)χE(rρ)(A)1δ4gN(z)N~(dz,dρ)2]]]Lp(Ω,)\displaystyle+\!C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\Big{[}\sup_{r\in[s^{\prime},T]}\mathbb{E}^{s^{\prime}}\Big{[}\Big{\|}\Big{(}\int^{r}_{s^{\prime}}\!+\!\int_{0}^{s^{\prime}}\Big{)}\!\int_{\chi}E(r\!-\!\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
Csupt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,s]r0χE(rρ)(A)1δ4gN(z)N~(dz,dρ)2]]Lp(Ω,)\displaystyle\leq C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\Big{[}\sup_{r\in[0,s]}\Big{\|}\int^{r}_{0}\int_{\chi}E(r\!-\!\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[sups[t,T]𝔼s[supr[s,s](0s+rs)χE(rρ)(A)1δ4gN(z)N~(dz,dρ)2]]Lp(Ω,)\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\Big{[}\sup_{r\in[s,s^{\prime}]}\Big{\|}\Big{(}\int_{0}^{s}+\int^{r}_{s}\Big{)}\int_{\chi}E(r\!-\!\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[sups[t,T]𝔼s[supr[s,T]𝔼[rsχE(rρ)(A)1δ4gN(z)N~(dz,dρ)2]]]Lp(Ω,)\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\Big{[}\sup_{r\in[s^{\prime},T]}\mathbb{E}\Big{[}\Big{\|}\int^{r}_{s^{\prime}}\int_{\chi}E(r\!-\!\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[sups[t,T]𝔼s[(0s+ss)χE(sρ)(A)1δ4gN(z)N~(dz,dρ)2]]Lp(Ω,).\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\Big{[}\Big{\|}\Big{(}\int_{0}^{s}+\int_{s}^{s^{\prime}}\Big{)}\int_{\chi}E(s^{\prime}\!-\!\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}.

And using Lemma 2.2 again, we obtain

supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4𝒩N()2𝒞20|s,[0,T]]]Lp(Ω,)\displaystyle\quad\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}\mathcal{N}^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[0,T]}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cp,T+Csupt[0,T]𝔼t[supr[0,t]r0χE(rρ)(A)1δ4gN(z)N~(dz,dρ)2]Lp(Ω,)\displaystyle\leq C_{p,T}+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{r\in[0,t]}\Big{\|}\int^{r}_{0}\int_{\chi}E(r-\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[supr[t,T](0t+rt)χE(rρ)(A)1δ4gN(z)N~(dz,dρ)2]Lp(Ω,)\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{r\in[t,T]}\Big{\|}\Big{(}\int_{0}^{t}+\int^{r}_{t}\Big{)}\int_{\chi}E(r-\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[sups[t,T]𝔼[supr[s,s]rsχE(rρ)(A)1δ4gN(z)N~(dz,dρ)2]]Lp(Ω,)\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}\Big{[}\sup_{r\in[s,s^{\prime}]}\Big{\|}\int^{r}_{s}\int_{\chi}E(r-\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[sups[t,T](0t+ts)χE(sρ)(A)1δ4gN(z)N~(dz,dρ)2]Lp(Ω,)\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\Big{\|}\Big{(}\int_{0}^{t}+\int_{t}^{s}\Big{)}\int_{\chi}E(s-\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼t[sups[t,T]𝔼[ssχE(sρ)(A)1δ4gN(z)N~(dz,dρ)2]]Lp(Ω,)\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}\Big{[}\Big{\|}\int_{s}^{s^{\prime}}\int_{\chi}E(s^{\prime}-\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cp,T+Csupt[0,T]0tχE(tρ)(A)1δ4gN(z)N~(dz,dρ)2Lp(Ω,)\displaystyle\leq C_{p,T}+C\Big{\|}\sup_{t\in[0,T]}\Big{\|}\int_{0}^{t}\int_{\chi}E(t-\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+Csupt[0,T]𝔼[supr[t,T]rtχE(rρ)(A)1δ4gN(z)N~(dz,dρ)2]Lp(Ω,)Cp,T.\displaystyle\quad+C\Big{\|}\sup_{t\in[0,T]}\mathbb{E}\Big{[}\sup_{r\in[t,T]}\Big{\|}\int^{r}_{t}\int_{\chi}E(r-\rho)(-A)^{\frac{1-\delta}{4}}g_{N}(z)\tilde{N}(dz,d\rho)\Big{\|}^{2}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}.

(iv) The proof of (23). By using (17) in Lemma 4.1, the proof of (23) is similar to that of (22), which is omitted.

Combining (i)–(iv), the proof is completed. ∎

Proof of Proposition 4.5.

(i) Owing to the linear growth condition of FF, we derive that for any t[0,T]t\in[0,T] and p2p\geq 2,

(A)1δ4(YN(t)YN(t))Lp(Ω,H)\displaystyle\quad\big{\|}(-A)^{-\frac{1-\delta}{4}}(Y^{N}(t)-Y^{N}(\lfloor t\rfloor))\big{\|}_{L^{p}(\Omega,H)}
ttFN(XN(s))Lp(Ω,H)ds+(A)1δ2(E(tt)I)(H)×\displaystyle\leq\int_{\lfloor t\rfloor}^{t}\big{\|}F_{N}(X^{N}(s))\big{\|}_{L^{p}(\Omega,H)}ds+\big{\|}(-A)^{-\frac{1-\delta}{2}}(E(t-\lfloor t\rfloor)-\mathrm{I})\big{\|}_{\mathcal{L}(H)}\times
0t(A)1δ4E(ts)(H)FN(XN(s))Lp(Ω,H)dsCp,T(Δt)1δ2.\displaystyle\quad\int_{0}^{\lfloor t\rfloor}\big{\|}(-A)^{\frac{1-\delta}{4}}E(\lfloor t\rfloor-s)\big{\|}_{\mathcal{L}(H)}\big{\|}F_{N}(X^{N}(s))\big{\|}_{L^{p}(\Omega,H)}ds\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}}.

(ii) According to the estimates obtained in Propositions 4.34.4, we can derive that terms

supt[0,T]𝔼t[supζ[0,T]𝒲N(ζ)2]Lp(Ω,),supt[0,T]𝔼t[supζ[0,T]𝒩N(ζ)2]Lp(Ω,),\displaystyle\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{\zeta\in[0,T]}\big{\|}\mathcal{W}^{N}(\zeta)\big{\|}^{2}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})},\qquad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{\zeta\in[0,T]}\big{\|}\mathcal{N}^{N}(\zeta)\big{\|}^{2}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})},
supt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,T]𝒲N(r)2]]Lp(Ω,),\displaystyle\qquad\qquad\qquad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{r\in[0,T]}\big{\|}\mathcal{W}^{N}(r)\big{\|}^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})},
supt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,T]𝒩N(r)2]]Lp(Ω,),\displaystyle\qquad\qquad\qquad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{r\in[0,T]}\big{\|}\mathcal{N}^{N}(r)\big{\|}^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})},
supt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,T]𝔼s[𝒲N(r)2]]]Lp(Ω,),\displaystyle\qquad\qquad\qquad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{r\in[0,T]}\mathbb{E}^{s^{\prime}}\big{[}\big{\|}\mathcal{W}^{N}(r)\big{\|}^{2}\big{]}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})},
supt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,T]𝔼s[𝒩N(r)2]]]Lp(Ω,)\displaystyle\qquad\qquad\qquad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{r\in[0,T]}\mathbb{E}^{s^{\prime}}\big{[}\big{\|}\mathcal{N}^{N}(r)\big{\|}^{2}\big{]}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}

are all bounded for p2p\geq 2 with some constant Cp,TC_{p,T}.

Recall that YNY^{N} satisfies the perturbed stochastic equation (15). Using the linear growth condition of FF, it implies that for all ζ[0,T]\zeta\in[0,T],

supt[0,T]𝔼t[YN(ζ)2]Lp(Ω,)\displaystyle\quad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\|Y^{N}(\zeta)\|^{2}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cx0L2p(Ω,H)2+CTsupt[0,T]𝔼t[0ζFN(YN(η)+𝒲N(η)+𝒩N(η))2dη]Lp(Ω,)\displaystyle\leq C\|x_{0}\|_{L^{2p}(\Omega,H)}^{2}\!+C_{T}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\int_{0}^{\zeta}\big{\|}F_{N}(Y^{N}(\eta)\!+\!\mathcal{W}^{N}(\eta)\!+\!\mathcal{N}^{N}(\eta))\big{\|}^{2}d\eta\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
C+CTsupt[0,T]𝔼t[0ζYN(η)2dη]Lp(Ω,)\displaystyle\leq C+C_{T}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\int_{0}^{\zeta}\|Y^{N}(\eta)\|^{2}d\eta\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+CTsupt[0,T]𝔼t[supζ[0,T]𝒲N(ζ)2]Lp(Ω,)+CTsupt[0,T]𝔼t[supζ[0,T]𝒩N(ζ)2]Lp(Ω,)\displaystyle\quad+C_{T}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{\zeta\in[0,T]}\|\mathcal{W}^{N}(\zeta)\|^{2}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}+C_{T}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{\zeta\in[0,T]}\|\mathcal{N}^{N}(\zeta)\|^{2}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cp,T+CT0ζsupt[0,T]𝔼t[YN(η)2]Lp(Ω,)dη.\displaystyle\leq C_{p,T}+C_{T}\int_{0}^{\zeta}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\|Y^{N}(\eta)\|^{2}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}d\eta.

Applying the Grönwall inequality leads to supζ[0,T]supt[0,T]𝔼t[YN(ζ)2]Lp(Ω,)Cp,T.\sup\limits_{\zeta\in[0,T]}\big{\|}\sup\limits_{t\in[0,T]}\mathbb{E}^{t}\big{[}\big{\|}Y^{N}(\zeta)\big{\|}^{2}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}.

In addition, for all ϱ[0,T]\varrho\in[0,T],

supt[0,T]𝔼t[sups[t,T]𝔼s[YN(ϱ)2]]Lp(Ω,)\displaystyle\quad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\|Y^{N}(\varrho)\|^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cx0L2p(Ω,H)2+CTsupt[0,T]𝔼t[sups[t,T]𝔼s[0ϱFN(YN(r)+𝒲N(r)+𝒩N(r))2dr]]Lp(Ω,)\displaystyle\leq C\|x_{0}\|_{L^{2p}(\Omega,H)}^{2}+C_{T}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\Big{[}\int_{0}^{\varrho}\big{\|}F_{N}(Y^{N}(r)+\mathcal{W}^{N}(r)+\mathcal{N}^{N}(r))\big{\|}^{2}dr\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
CT+CT0ϱsupt[0,T]𝔼t[sups[t,T]𝔼s[YN(r)2]]Lp(Ω,)dr\displaystyle\leq C_{T}+C_{T}\int_{0}^{\varrho}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\|Y^{N}(r)\|^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}dr
+CTsupt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,T]𝒲N(r)2]]Lp(Ω,)\displaystyle\quad+C_{T}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{r\in[0,T]}\|\mathcal{W}^{N}(r)\|^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}
+CTsupt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,T]𝒩N(r)2]]Lp(Ω,)\displaystyle\quad+C_{T}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{r\in[0,T]}\|\mathcal{N}^{N}(r)\|^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cp,T+CT0ϱsupt[0,T]𝔼t[sups[t,T]𝔼s[YN(r)2]]Lp(Ω,)dr.\displaystyle\leq C_{p,T}+C_{T}\int_{0}^{\varrho}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\|Y^{N}(r)\|^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}dr.

The Grönwall inequality leads to supϱ[0,T]supt[0,T]𝔼t[sups[t,T]𝔼s[YN(ϱ)2]]Lp(Ω,)Cp,T.\sup\limits_{\varrho\in[0,T]}\big{\|}\sup\limits_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup\limits_{s\in[t,T]}\mathbb{E}^{s}\big{[}\|Y^{N}(\varrho)\|^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}\leq C_{p,T}.

Combining the above estimates, we obtain

supt[0,T]𝔼t[sups[t,T]𝔼s[(A)1δ4YN()2𝒞20|s,[s,T]]]Lp(Ω,)\displaystyle\quad\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\big{\|}(-A)^{\frac{1-\delta}{4}}Y^{N}(\cdot)\big{\|}^{2}_{\mathcal{C}_{2}^{0}|\mathcal{F}_{s^{\prime}},[s^{\prime},T]}\big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
C(A)1δ4x0L2p(Ω,H)2\displaystyle\leq C\big{\|}(-A)^{\frac{1-\delta}{4}}x_{0}\big{\|}_{L^{2p}(\Omega,H)}^{2}
+CTsupt[0,T]𝔼t[sups[t,T]𝔼s[supr[s,T]𝔼s[0r(A)1δ4E(rρ)F(YN(ρ)+𝒲N(ρ)+𝒩N(ρ))2dρ]]]Lp(Ω,)\displaystyle\quad+\!C_{T}\Big{\|}\!\sup_{t\in[0,T]}\!\mathbb{E}^{t}\Big{[}\!\sup_{s\in[t,T]}\!\mathbb{E}^{s}\Big{[}\!\sup_{r\in[s^{\prime},T]}\!\mathbb{E}^{s^{\prime}}\Big{[}\int_{0}^{r}\!\big{\|}(-A)^{\frac{1\!-\!\delta}{4}}E(r\!-\!\rho)F(Y^{N}(\rho)\!+\!\mathcal{W}^{N}(\rho)\!+\!\mathcal{N}^{N}(\rho))\big{\|}^{2}d\rho\Big{]}\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
C+CTsupt[0,T]𝔼t[sups[t,T]𝔼s[supr[s,T]supρ[0,r]𝔼s[YN(ρ)2]0rE(rη)(A)1δ42(H)dη]]Lp(Ω,)\displaystyle\leq C+C_{T}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\Big{[}\sup_{r\in[s^{\prime},T]}\sup_{\rho\in[0,r]}\mathbb{E}^{s^{\prime}}\big{[}\|Y^{N}(\rho)\|^{2}\big{]}\int_{0}^{r}\|E(r-\eta)(-A)^{\frac{1-\delta}{4}}\|^{2}_{\mathcal{L}(H)}d\eta\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+CTsupt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,T]𝔼s[𝒲N(r)2]]]Lp(Ω,)\displaystyle\quad+C_{T}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{r\in[0,T]}\mathbb{E}^{s^{\prime}}\big{[}\big{\|}\mathcal{W}^{N}(r)\big{\|}^{2}\big{]}\big{]}\big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
+CTsupt[0,T]𝔼t[sups[t,T]𝔼s[supr[0,T]𝔼s[𝒩N(r)2]]]Lp(Ω,)\displaystyle\quad+C_{T}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{r\in[0,T]}\mathbb{E}^{s^{\prime}}\big{[}\big{\|}\mathcal{N}^{N}(r)\big{\|}^{2}\big{]}\big{]}\big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cp,T+CTsupt[0,T]𝔼t[sups[t,T]𝔼s[supρ[0,T]𝔼s[YN(ρ)2]]]Lp(Ω,).\displaystyle\leq C_{p,T}+C_{T}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{\rho\in[0,T]}\mathbb{E}^{s^{\prime}}\big{[}\|Y^{N}(\rho)\|^{2}\big{]}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}. (29)

Note that

supt[0,T]𝔼t[sups[t,T]𝔼s[supρ[0,T]𝔼s[YN(ρ)2]]]Lp(Ω,)\displaystyle\quad\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\sup_{\rho\in[0,T]}\mathbb{E}^{s^{\prime}}\big{[}\|Y^{N}(\rho)\|^{2}\big{]}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}
CTx0L2p(Ω,H)2\displaystyle\leq C_{T}\|x_{0}\|_{L^{2p}(\Omega,H)}^{2}
+CTsupt[0,T]𝔼t[sups[t,T]𝔼s[0T𝔼s[YN(ϑ)+𝒲N(ϑ)+𝒩N(ϑ)2]dϑ]]Lp(Ω,)\displaystyle\quad+C_{T}\Big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\Big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\Big{[}\int_{0}^{T}\mathbb{E}^{s^{\prime}}\big{[}\|Y^{N}(\vartheta)+\mathcal{W}^{N}(\vartheta)+\mathcal{N}^{N}(\vartheta)\|^{2}\big{]}d\vartheta\Big{]}\Big{]}\Big{\|}_{L^{p}(\Omega,\mathbb{R})}
Cp,T+CT0Tsupt[0,T]𝔼t[sups[t,T]𝔼s[YN(ϑ)+𝒲N(ϑ)+𝒩N(ϑ)2]]Lp(Ω,)dϑ\displaystyle\leq C_{p,T}+C_{T}\int_{0}^{T}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\|Y^{N}(\vartheta)+\mathcal{W}^{N}(\vartheta)+\mathcal{N}^{N}(\vartheta)\|^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}d\vartheta
Cp,T+CT0Tsupt[0,T]𝔼t[sups[t,T]𝔼s[YN(ϑ)2]]Lp(Ω,)dϑ.\displaystyle\leq C_{p,T}+C_{T}\int_{0}^{T}\big{\|}\sup_{t\in[0,T]}\mathbb{E}^{t}\big{[}\sup_{s\in[t,T]}\mathbb{E}^{s}\big{[}\|Y^{N}(\vartheta)\|^{2}\big{]}\big{]}\big{\|}_{L^{p}(\Omega,\mathbb{R})}d\vartheta. (30)

Thus inserting (5) into (5) and then applying the Grönwall inequality yield the desired result. The proof is completed. ∎

Appendix.

Proof of Proposition 2.3.

For brevity, we set Y1(t):=X(t)𝒲(t)Y_{1}(t):=X(t)-\mathcal{W}(t) for all t[0,T]t\in[0,T]. Then {Y1(t)}t[0,T]\{Y_{1}(t)\}_{t\in[0,T]} satisfies

{dY1(t)=AY1(t)dt+F(Y1(t)+𝒲(t))dt+χG(Y1(t)+𝒲(t),z)N~(dz,dt),t(0,T],Y1(0)=x0.\left\{\begin{aligned} &dY_{1}(t)=AY_{1}(t)dt+F\big{(}Y_{1}(t)+\mathcal{W}(t)\big{)}dt+\int_{\chi}G\big{(}Y_{1}(t)+\mathcal{W}(t),z\big{)}\tilde{N}(dz,dt),\quad t\in(0,T],\\ &Y_{1}(0)=x_{0}.\end{aligned}\right.

For all p2p\geq 2 and all α[0,12)\alpha\in[0,\frac{1}{2}), we note that there exists a constant Cp,T>0C_{p,T}>0 such that supt[0,T]𝒲(t)Lp(Ω,H˙α)Cp,T.\sup_{t\in[0,T]}\|\mathcal{W}(t)\|_{L^{p}(\Omega,\dot{H}^{\alpha})}\leq C_{p,T}. Using Assumption 1 and Lemma 2.2 leads to

(A)α2Y1(t)Lp(Ω,H)\displaystyle\quad\|(-A)^{\frac{\alpha}{2}}Y_{1}(t)\|_{L^{p}(\Omega,H)}
(A)α2E(t)x0Lp(Ω,H)+0t(A)α2E(ts)F(Y1(s)+𝒲(s))Lp(Ω,H)ds\displaystyle\leq\|(-A)^{\frac{\alpha}{2}}E(t)x_{0}\|_{L^{p}(\Omega,H)}+\int_{0}^{t}\big{\|}(-A)^{\frac{\alpha}{2}}E(t\!-\!s)F\big{(}Y_{1}(s)+\mathcal{W}(s)\big{)}\big{\|}_{L^{p}(\Omega,H)}ds
+0tχ(A)α2E(ts)G(Y1(s)+𝒲(s),z)N~(dz,ds)Lp(Ω,H)\displaystyle\quad+\Big{\|}\int_{0}^{t}\int_{\chi}(-A)^{\frac{\alpha}{2}}E(t\!-\!s)G\big{(}Y_{1}(s)+\mathcal{W}(s),z\big{)}\tilde{N}(dz,ds)\Big{\|}_{L^{p}(\Omega,H)}
x0Lp(Ω,H˙α)+C0t(A)α2E(ts)(H)(1+Y1(s)Lp(Ω,H)+𝒲(s)Lp(Ω,H))ds\displaystyle\leq\|x_{0}\|_{L^{p}(\Omega,\dot{H}^{\alpha})}+C\int_{0}^{t}\|(-A)^{\frac{\alpha}{2}}E(t\!-\!s)\|_{\mathcal{L}(H)}\big{(}1+\|Y_{1}(s)\|_{L^{p}(\Omega,H)}+\|\mathcal{W}(s)\|_{L^{p}(\Omega,H)}\big{)}ds
+Cp,T(0t𝔼[χ(A)α2G(Y1(s)+𝒲(s),z)pν(dz)\displaystyle\quad+C_{p,T}\Big{(}\int_{0}^{t}\mathbb{E}\Big{[}\int_{\chi}\big{\|}(-A)^{\frac{\alpha}{2}}G\big{(}Y_{1}(s)+\mathcal{W}(s),z\big{)}\big{\|}^{p}\nu(dz)
+(χ(A)α2G(Y1(s)+𝒲(s),z)2ν(dz))p2]ds)1p.\displaystyle\quad+\Big{(}\int_{\chi}\big{\|}(-A)^{\frac{\alpha}{2}}G\big{(}Y_{1}(s)+\mathcal{W}(s),z\big{)}\big{\|}^{2}\nu(dz)\Big{)}^{\frac{p}{2}}\Big{]}ds\Big{)}^{\frac{1}{p}}.

When α=0\alpha=0, owing to the moment estimates of 𝒲\mathcal{W}, Assumption 2, and the Hölder inequality, we arrive at

Y1(t)pLp(Ω,H)\displaystyle\|Y_{1}(t)\|^{p}_{L^{p}(\Omega,H)} x0pLp(Ω,H)+Cp,T0t(1+Y1(s)pLp(Ω,H))ds\displaystyle\leq\|x_{0}\|^{p}_{L^{p}(\Omega,H)}+C_{p,T}\int_{0}^{t}\big{(}1+\|Y_{1}(s)\|^{p}_{L^{p}(\Omega,H)}\big{)}ds
+Cp,T0t𝔼[χ(|g1(z)|Y1(s)+𝒲(s)+g(z))pν(dz)\displaystyle\quad+C_{p,T}\int_{0}^{t}\mathbb{E}\Big{[}\int_{\chi}\big{(}|g_{1}(z)|\big{\|}Y_{1}(s)+\mathcal{W}(s)\big{\|}+\|g(z)\|\big{)}^{p}\nu(dz)
+(χ(|g1(z)|Y1(s)+𝒲(s)+g(z))2ν(dz))p2]ds\displaystyle\quad+\Big{(}\int_{\chi}\big{(}|g_{1}(z)|\big{\|}Y_{1}(s)+\mathcal{W}(s)\big{\|}+\|g(z)\|\big{)}^{2}\nu(dz)\Big{)}^{\frac{p}{2}}\Big{]}ds
Cp,T+x0pLp(Ω,H)+Cp,T0tY1(s)pLp(Ω,H)ds.\displaystyle\leq C_{p,T}+\|x_{0}\|^{p}_{L^{p}(\Omega,H)}+C_{p,T}\int_{0}^{t}\|Y_{1}(s)\|^{p}_{L^{p}(\Omega,H)}ds.

Applying the Grönwall inequality yields that Y1(t)Lp(Ω,H)Cp,T\|Y_{1}(t)\|_{L^{p}(\Omega,H)}\leq C_{p,T}.

Then for α(0,12)\alpha\in(0,\frac{1}{2}), we have

(A)α2Y1(t)pLp(Ω,H)\displaystyle\|(-A)^{\frac{\alpha}{2}}Y_{1}(t)\|^{p}_{L^{p}(\Omega,H)} Cpx0pLp(Ω,H˙α)+Cp,T(0t(ts)α2ds)psups[0,t](1+Y1(s)pLp(Ω,H))\displaystyle\leq C_{p}\|x_{0}\|^{p}_{L^{p}(\Omega,\dot{H}^{\alpha})}+C_{p,T}\Big{(}\int_{0}^{t}(t\!-\!s)^{-\frac{\alpha}{2}}ds\Big{)}^{p}\sup_{s\in[0,t]}\big{(}1+\|Y_{1}(s)\|^{p}_{L^{p}(\Omega,H)}\big{)}
+Cp,T0t𝔼[χg1(z)(A)α2(Y1(s)+𝒲(s))+(A)α2g(z)pν(dz)\displaystyle\quad+C_{p,T}\int_{0}^{t}\mathbb{E}\Big{[}\int_{\chi}\big{\|}g_{1}(z)(-A)^{\frac{\alpha}{2}}\big{(}Y_{1}(s)+\mathcal{W}(s)\big{)}+(-A)^{\frac{\alpha}{2}}g(z)\big{\|}^{p}\nu(dz)
+(χg1(z)(A)α2(Y1(s)+𝒲(s))+(A)α2g(z)2ν(dz))p2]ds\displaystyle\quad+\Big{(}\int_{\chi}\big{\|}g_{1}(z)(-A)^{\frac{\alpha}{2}}\big{(}Y_{1}(s)+\mathcal{W}(s)\big{)}+(-A)^{\frac{\alpha}{2}}g(z)\big{\|}^{2}\nu(dz)\Big{)}^{\frac{p}{2}}\Big{]}ds
Cp,T+Cp,T0t(A)α2Y1(s)pLp(Ω,H)ds.\displaystyle\leq C_{p,T}+C_{p,T}\int_{0}^{t}\|(-A)^{\frac{\alpha}{2}}Y_{1}(s)\|^{p}_{L^{p}(\Omega,H)}ds.

Applying the Grönwall inequality yields the desired assertion. ∎

Proof of Lemma 4.1.

(i) Denote 𝒲Ns,t:=stE(tr)PNdW(r)\mathcal{W}^{N}_{s,t}:=\int_{s}^{t}E(t-r)P_{N}dW(r) for all s[0,T]s\in[0,T] and t[s,T]t\in[s,T]. Based on the factorization method, we have expression 𝒲Ns,t=st(tr)α1eA(tr)𝒵Ns,rdr\mathcal{W}^{N}_{s,t}=\int_{s}^{t}(t-r)^{\alpha-1}e^{A(t-r)}\mathcal{Z}^{N}_{s,r}dr with 𝒵Ns,r=sin(πα)αsreA(rσ)(rσ)αPNdW(σ)\mathcal{Z}^{N}_{s,r}=\frac{\sin(\pi\alpha)}{\alpha}\int_{s}^{r}e^{A(r-\sigma)}(r-\sigma)^{-\alpha}P_{N}dW(\sigma) for r[s,t]r\in[s,t]; see e.g. [4, Proposition 5.9, Theorem 5.10] for details. Note that for all k1k\geq 1,

𝔼[supt[s,T](A)1δ4𝒲Ns,t2k]𝔼[supt[s,T]|st(tρ)α1eλ1(tρ)(A)1δ4𝒵Ns,ρdρ|2k]\displaystyle\mathbb{E}\Big{[}\sup_{t\in[s,T]}\|(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}_{s,t}\|^{2k}\Big{]}\leq\mathbb{E}\Big{[}\sup_{t\in[s,T]}\Big{|}\int_{s}^{t}(t-\rho)^{\alpha-1}e^{-\lambda_{1}(t-\rho)}\|(-A)^{\frac{1-\delta}{4}}\mathcal{Z}^{N}_{s,\rho}\|d\rho\Big{|}^{2k}\Big{]}
C𝔼[supt[s,T](st(tρ)p(α1)epλ1(tρ)dρ)2kp(sT(A)1δ4𝒵Ns,ρqdρ)2kq],\displaystyle\leq C\mathbb{E}\Big{[}\sup_{t\in[s,T]}\Big{(}\int_{s}^{t}(t-\rho)^{p(\alpha-1)}e^{-p\lambda_{1}(t-\rho)}d\rho\Big{)}^{\frac{2k}{p}}\Big{(}\int_{s}^{T}\|(-A)^{\frac{1-\delta}{4}}\mathcal{Z}^{N}_{s,\rho}\|^{q}d\rho\Big{)}^{\frac{2k}{q}}\Big{]},

where we utilized the Hölder inequality with p,q1p,q\geq 1, 1p+1q=1\frac{1}{p}+\frac{1}{q}=1 in the last step. When 2kq2k\geq q, by the Hölder inequality and the Burkholder–Davis–Gundy inequality, we derive

𝔼[(sT(A)1δ4𝒵Ns,rqdr)2kq]CT𝔼[sT(A)1δ4𝒵Ns,r2kdr]\displaystyle\quad\mathbb{E}\Big{[}\Big{(}\int_{s}^{T}\|(-A)^{\frac{1-\delta}{4}}\mathcal{Z}^{N}_{s,r}\|^{q}dr\Big{)}^{\frac{2k}{q}}\Big{]}\leq C_{T}\mathbb{E}\Big{[}\int_{s}^{T}\|(-A)^{\frac{1-\delta}{4}}\mathcal{Z}^{N}_{s,r}\|^{2k}dr\Big{]}
CTsT(sr(sin(πα)α)2(rσ)2α(A)2δ+ϵ4eA(rσ)2(H)(A)1+ϵ422(H)dσ)kdr\displaystyle\leq C_{T}\int_{s}^{T}\Big{(}\int_{s}^{r}(\frac{\sin(\pi\alpha)}{\alpha})^{2}(r-\sigma)^{-2\alpha}\|(-A)^{\frac{2-\delta+\epsilon}{4}}e^{A(r-\sigma)}\|^{2}_{\mathcal{L}(H)}\|(-A)^{-\frac{1+\epsilon}{4}}\|^{2}_{\mathcal{L}_{2}(H)}d\sigma\Big{)}^{k}dr
CTsT(sr(rσ)2α1+δϵ2dσ)kdr,\displaystyle\leq C_{T}\int_{s}^{T}\Big{(}\int_{s}^{r}(r-\sigma)^{-2\alpha-1+\frac{\delta-\epsilon}{2}}d\sigma\Big{)}^{k}dr,

which is finite if 2α+δϵ2>0,-2\alpha+\frac{\delta-\epsilon}{2}>0, i.e., α<δϵ4.\alpha<\frac{\delta-\epsilon}{4}. It means that 𝒵Ns,L2k(Ω×[s,T],D((A)1δ4))\mathcal{Z}^{N}_{s,\cdot}\in L^{2k}(\Omega\times[s,T],D((-A)^{\frac{1-\delta}{4}})). Hence, when positive parameters α\alpha and pp are chosen such that α<δϵ4\alpha<\frac{\delta-\epsilon}{4} and p<11αp<\frac{1}{1-\alpha}, we derive that supt[s,T](st(tρ)p(α1)epλ1(tρ)dρ)2kpCk,p,T.\sup_{t\in[s,T]}\Big{(}\int_{s}^{t}(t-\rho)^{p(\alpha-1)}e^{-p\lambda_{1}(t-\rho)}\mathrm{d}\rho\Big{)}^{\frac{2k}{p}}\leq C_{k,p,T}. Therefore, for all kk0k\geq k_{0} with large number k0q2k_{0}\geq\frac{q}{2}, we obtain 𝔼[supt[s,T](A)1δ4𝒲Ns,t2k]<.\mathbb{E}\Big{[}\sup_{t\in[s,T]}\|(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}_{s,t}\|^{2k}\Big{]}<\infty. For k<k0k<k_{0}, we have

𝔼[supt[s,T](A)1δ4𝒲Ns,t2k]𝔼[supt[s,T](A)1δ4𝒲Ns,t2k0]<.\displaystyle\mathbb{E}\Big{[}\sup_{t\in[s,T]}\|(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}_{s,t}\|^{2k}\Big{]}\leq\mathbb{E}\Big{[}\sup_{t\in[s,T]}\|(-A)^{\frac{1-\delta}{4}}\mathcal{W}^{N}_{s,t}\|^{2k_{0}}\Big{]}<\infty.

(ii) For p1p\geq 1 and any t[0,T]t\in[0,T], applying the Burkholder–Davis–Gundy inequality and properties (3)–(4) gives

(A)1δ4(𝒲N(t)𝒲N(t))L2p(Ω,H)tt(A)1δ4E(tr)PNdW(r)L2p(Ω,H)\displaystyle~{}~{}~{}\big{\|}(-A)^{-\frac{1-\delta}{4}}\big{(}\mathcal{W}^{N}(t)-\mathcal{W}^{N}(\lfloor t\rfloor)\big{)}\big{\|}_{L^{2p}(\Omega,H)}\leq\Big{\|}\int_{\lfloor t\rfloor}^{t}(-A)^{-\frac{1-\delta}{4}}E(t-r)P_{N}dW(r)\Big{\|}_{L^{2p}(\Omega,H)}
+0t(A)1δ4(E(tt)I)E(tr)PNdW(r)L2p(Ω,H)\displaystyle\quad+\Big{\|}\int_{0}^{\lfloor t\rfloor}(-A)^{-\frac{1-\delta}{4}}(E(t\!-\!\lfloor t\rfloor)\!-\!\mathrm{I})E(\lfloor t\rfloor\!-\!r)P_{N}dW(r)\Big{\|}_{L^{2p}(\Omega,H)}
Cp[|tt(tr)δ(A)1+δ42(H)2dr|12+(Δt)1δ2|0t(tr)1δ2eλ1(tr)dr|12]\displaystyle\leq C_{p}\Big{[}\Big{|}\int_{\lfloor t\rfloor}^{t}(t-r)^{-\delta}\|(-A)^{-\frac{1+\delta}{4}}\|_{\mathcal{L}_{2}(H)}^{2}dr\Big{|}^{\frac{1}{2}}+(\Delta t)^{\frac{1-\delta}{2}}\Big{|}\int_{0}^{\lfloor t\rfloor}(\lfloor t\rfloor-r)^{-\frac{1-\delta}{2}}e^{-\lambda_{1}(\lfloor t\rfloor-r)}dr\Big{|}^{\frac{1}{2}}\Big{]}
Cp,T(Δt)1δ2,\displaystyle\leq C_{p,T}(\Delta t)^{\frac{1-\delta}{2}},

where we used 0xη1exdx<,η>0\int_{0}^{\infty}x^{\eta-1}e^{-x}dx<\infty,\,\eta>0. The proof is completed. ∎

References

  • [1] O. Butkovsky, K. Dareiotis, and M. Gerencsér. Strong rate of convergence of the Euler scheme for SDEs with irregular drift driven by Lévy noise, arXiv preprint arXiv:2204.12926, 2024.
  • [2] C. Chen, T. Dang, and J. Hong. On structure preservation for fully discrete finite difference schemes of stochastic heat equation with Lévy space-time white noise, arXiv preprint arXiv:2409.14064, 2024.
  • [3] R. Cont and P. Tankov. Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004.
  • [4] G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 152 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 2014.
  • [5] T. Dunst, E. Hausenblas, and A. Prohl. Approximate Euler method for parabolic stochastic partial differential equations driven by space-time Lévy noise. SIAM J. Numer. Anal., 50(6):2873–2896, 2012.
  • [6] E. Hausenblas. Finite element approximation of stochastic partial differential equations driven by Poisson random measures of jump type. SIAM J. Numer. Anal., 46(1):437–471, 2007.
  • [7] K. Lê. Maximal inequalities and weighted BMO processes, arXiv preprint arXiv:2211.15550, 2022.
  • [8] C. Marinelli, C. Prévôt, and M. Röckner. Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise. J. Funct. Anal., 258(2):616–649, 2010.
  • [9] S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise: An evolution equation approach, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007.
  • [10] P. Przybył owicz, M. Sobieraj, and Ł. Stepień. Efficient approximation of SDEs driven by countably dimensional Wiener process and Poisson random measure. SIAM J. Numer. Anal., 60(2):824–855, 2022.
  • [11] X. Wang, S. Gan, and J. Tang. Higher order strong approximations of semilinear stochastic wave equation with additive space-time white noise. SIAM J. Sci. Comput., 36(6):A2611–A2632, 2014.
  • [12] W. A. Woyczyński. Lévy processes in the physical sciences. In Lévy processes, pages 241–266. Birkhäuser Boston, Boston, MA, 2001.
  • [13] B. Xie. Uniqueness of invariant measures of infinite dimensional stochastic differential equations driven by Lévy noises. Potential Anal., 36(1):35–66, 2012.