This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


LpL^{p} estimations of fully coupled FBSDEs

Qingxin Meng  Shuzhen Yang School of Mathematical Sciences, Huzhou University, Huzhou 313000, China, Email: [email protected] work was supported by National Natural Science Foundation of China (No. 11871121), and by the Natural Science Foundation of Zhejiang Province (No. LY21A010001).Shandong University-Zhong Tai Securities Institute for Financial Studies, Shandong University, PR China, ([email protected]). This work was supported by the National Key R&D program of China (Grant No.2018YFA0703900), National Natural Science Foundation of China (Grant No.11701330), and Young Scholars Program of Shandong University.
Abstract

In this study, for any given terminal time TT, we establish an LpL^{p} (P>2P>2) estimations of fully coupled FBSDEs based on the L2L^{2} estimations. Yong [26] proposed that a natural question is whether an adapted L2L^{2}-solution is an adapted LpL^{p}-solution for some p>2p>2. In this study, we give a positive answer to this question. For any given terminal time TT, based on an observation of the relation between L2L^{2} and LpL^{p} estimations of FBSDEs, we prove that a unique L2L^{2}-solution of fully coupled FBSDEs is an LpL^{p}-solution under standard conditions on the coefficients. Furthermore, we show that the fully coupled FBSDEs developed in the linear quadratic optimal control problem or investigated by the decoupling random field method admit a unique LpL^{p}-solution.

KEYWORDS: LpL^{p} estimations; Optimal control; FBSDEs

MSC: 60H10; 49N05; 93E20

1 Introduction

Since Bismut [2] introduced the linear backward stochastic differential equations (BSDEs) from the stochastic optimal control problem, and Pardoux and Peng [15] established the existence and uniqueness theorem for nonlinear BSDEs. Many related studies on BSDEs have been conducted. Peng [18] and Pardoux and Peng [16] generalized the classical Feynman-Kac formula by establishing the relationship between BSDEs and systems of quasilinear parabolic PDEs. More details see Peng [19]. The application of BSDEs in finance was concluded in El Karoui et al. [5].

Subsequently, many authors have begun studying the fully coupled forward-backward SDEs (FBSDEs), which are related to the optimal control problem and a new quasilinear parabolic PDE. The fixed-point method, method of continuation, and decoupling random field are the three main methods used to study the existence and uniqueness of an adapted L2L^{2}-solution of fully coupled FBSDEs. Antonelli [1] investigated the existence and uniqueness results of fully coupled FBSDEs within a sufficiently small terminal time TT. Pardoux and Tang [17] extended these results based on a fixed-point approach. Using a decoupling random field method, Ma et al. [12] originally observed the well-known Four Step Scheme for fully coupled FBSDEs. Further results see Ma and Yong [11], Delarue [4], Zhang [27], Ma et al. [13, 14]. The monotonicity conditions and also called the method of continuation developed in Hu and Peng [8], and see Peng and Wu [20], Yong [24]. Additionally, the monographs Ma and Yong [11] and Cvitanić and Zhang [3] for the theories of FBSDEs and applications in finance.

The LpL^{p} estimations of fully coupled FBSDEs play an important role in theories and related applications. For example, stochastic optimal control problems for fully coupled FBSDEs can be developed. More details are available in Yong [25], Li and Wei [9, 10], Sun et al. [21], Hu [6], Hu et al. [7] for further details. However, there are many difficulties in deriving the LpL^{p} estimations for fully coupled FBSDEs. Currently, the LpL^{p} estimations of fully coupled FBSDEs are established based on some strong assumptions on the coefficients of FBSDEs and within a sufficiently small TT (Ma and Yong [11] and Cvitanić and Zhang [3]). Xie and Yu [23] established an LpL^{p}-Theory for fully FBSDEs with random coefficients on small durations when the Lipschatiz constant of ZZ in diffusion term does not to be small.

In the field of fully coupled FBSDEs, LpL^{p} (p>2p>2) estimations of fully coupled FBSDEs are different from L2L^{2} estimations, where the L2L^{2} estimations are derived by the continuation method and decoupling random field method for any given terminal time TT. One can only obtain a LpL^{p} (p>2p>2) estimations for a sufficiently small TT using the fixed-point method. Thus, for any given terminal time TT, obtaining LpL^{p} (p>2p>2) estimations of general fully coupled FBSDEs remains an open problem. In one-dimensional case, Ma et al. [14] developed a uniform approach for fully coupled FBSDEs by decoupling random field method, and established an LpL^{p} (p>2p>2) estimations when the diffusion term does not depend on solution ZZ. Recently, Yong [26] proposed the question of whether an adapted L2L^{2}-solution is an adapted LPL^{P}-solution for some p>2p>2. Following the question in Yong [26], we provide a positive answer to the open problem. For a given terminal time T>0T>0, we prove that a unique L2L^{2}-solution of fully coupled FBSDEs is an LpL^{p}-solution under the usual Lipschatiz ( Lipschatiz constant of ZZ in diffusion term should be sufficiently small) and linear growth conditions on the coefficients. Then, we apply our results to study fully coupled liner FBSDEs which are generalized by a linear quadratic optimal control problem, and obtain the LpL^{p} estimations for fully coupled liner FBSDEs with random coefficients. Based on the results of the decoupling random field method in fully coupled FBSDEs, under the same conditions, we improve the L2L^{2} estimations to the LpL^{p} estimations for any given terminal time TT.

The contributions of this study are given as follows:

i). Based on an L2L^{2} estimations of fully couple FBSDEs, we derive a uniform estimations for the solution of the backward SDE on the solution of the forward SDE;

ii). Applying the uniform estimations, we establish an LpL^{p} estimations for fully couple FBSDEs;

iii). Under the standard Lipschatiz ( Lipschatiz constant of ZZ in diffusion term should be sufficiently small) and linear growth conditions, we claim that the L2L^{2} estimations of fully couple FBSDEs are equivalent to LpL^{p} estimations;

iv). In one-dimensional case, Ma et al. [14] established an LpL^{p} (p>2p>2) estimations by decoupling random field method. Different from the method in Ma et al. [14], we use an L2L^{2} estimations to establish the LpL^{p} estimations for multi-dimensional case. Thus, our results can improve the wellposedness of fully coupled FBSDEs in L2L^{2} to LpL^{p}.

The remainder of this study is organized as follows. In Section 2, we introduce the notations, basic assumptions, and preliminary results. Then, we establish the main results that is the L2L^{2}-solution of a fully coupled FBSDE is an LpL^{p}-solution. In Section 3, we consider a linear-quadratic optimal control problem and prove that the fully coupled linear FBSDE admits the LpL^{p}-solution, especially for the random coefficient case. Based on the ”decoupling random field” method, we show that the L2L^{2}-solution of a fully coupled FBSDE is an LpL^{p}-solution in Section 4. We then extend the main results of this study in Section 5. Finally, we conclude the study in Section 6.

2 Main results

Let BB be a one-dimensional standard Brownian motion defined on a complete filtered probability space (Ω,,P;{(t)}t0)(\Omega,\mathcal{F},P;\{\mathcal{F}(t)\}_{t\geq 0}), where {(t)}t0\{\mathcal{F}(t)\}_{t\geq 0} is the PP-augmentation of the natural filtration generated by BB. We consider the following fully coupled FBSDE, parameterized by the initial condition (t,ξ)[0,T]×L2(Ω,t,P;n)(t,\xi)\in[0,T]\times L^{2}(\Omega,\mathcal{F}_{t},P;\mathbb{R}^{n}),

{dXst,ξ=b(s,Θst,ξ)ds+σ(s,Θst,ξ)dBs,dYst,ξ=f(s,Θst,ξ)ds+Zst,ξdBs,s[t,T],Xtt,ξ=ξ,YTt,ξ=Φ(XTt,ξ),\left\{\begin{array}[c]{llll}\mathrm{d}X_{s}^{t,\xi}&=&b(s,\Theta_{s}^{t,\xi})\mathrm{d}s+\sigma(s,\Theta_{s}^{t,\xi})\mathrm{d}B_{s},&\\ \mathrm{d}Y_{s}^{t,\xi}&=&-f(s,\Theta_{s}^{t,\xi})\mathrm{d}s+Z_{s}^{t,\xi}\mathrm{d}B_{s},\ \ \ \ \ s\in[t,T],&\\ X_{t}^{t,\xi}&=&\xi,&\\ Y_{T}^{t,\xi}&=&\Phi(X_{T}^{t,\xi}),&\end{array}\right. (2.1)

where Θst,ξ=(Xst,ξ,Yst,ξ,Zst,ξ),tsT\Theta_{s}^{t,\xi}=(X_{s}^{t,\xi},Y_{s}^{t,\xi},Z_{s}^{t,\xi}),\ t\leq s\leq T, and

b:Ω×[0,T]×n×m×mn,σ:Ω×[0,T]×n×m×mn,f:Ω×[0,T]×n×m×mm,Φ:Ω×nm,\begin{array}[c]{ll}&\!\!\!\!\!b:\Omega\times[0,T]\times\mathbb{R}^{n}\times\mathbb{R}^{m}\times\mathbb{R}^{m}\longrightarrow\mathbb{R}^{n},\\ &\!\!\!\!\!\sigma:\Omega\times[0,T]\times\mathbb{R}^{n}\times\mathbb{R}^{m}\times\mathbb{R}^{m}\longrightarrow\mathbb{R}^{n},\\ &\!\!\!\!\!f:\Omega\times[0,T]\times\mathbb{R}^{n}\times\mathbb{R}^{m}\times\mathbb{R}^{m}\longrightarrow\mathbb{R}^{m},\\ &\!\!\!\!\!\Phi:\Omega\times\mathbb{R}^{n}\longrightarrow\mathbb{R}^{m},\end{array}

satisfy the following linear growth, Lipschatiz continuous assumptions.

(𝐇𝟐.1)(\mathbf{H2.1})

For any t[0,T]t\in[0,T], and (x,y,z)n×m×m,P-a.s.,(x,y,z)\in\mathbb{R}^{n}\times\mathbb{R}^{m}\times\mathbb{R}^{m},\ \mbox{P-a.s.}, there exists LL such that

|b(t,x,y,z)|+|σ(t,x,y,z)|+|f(t,x,y,z)|+|Φ(x)|L(1+|x|+|y|+|z|).|b(t,x,y,z)|+|\sigma(t,x,y,z)|+|f(t,x,y,z)|+|\Phi(x)|\leq L(1+|x|+|y|+|z|).
(𝐇𝟐.2)(\mathbf{H2.2})

There exist constant KK and a sufficiently small constant Lσ0L_{\sigma}\geq 0 such that for all t[0,T],x1,x2n,y1,y2m,z1,z2mt\in[0,T],\ x_{1},x_{2}\in\mathbb{R}^{n},\ y_{1},y_{2}\in\mathbb{R}^{m},\ z_{1},z_{2}\in\mathbb{R}^{m},

|b(t,x1,y1,z1)b(t,x2,y2,z2)|K(|x1x2|+|y1y2|+|z1z2|),|b(t,x_{1},y_{1},z_{1})-b(t,x_{2},y_{2},z_{2})|\leq K(|x_{1}-x_{2}|+|y_{1}-y_{2}|+|z_{1}-z_{2}|),
|σ(t,x1,y1,z1)σ(t,x2,y2,z2)|K(|x1x2|+|y1y2|)+Lσ|z1z2|,|\sigma(t,x_{1},y_{1},z_{1})-\sigma(t,x_{2},y_{2},z_{2})|\leq K(|x_{1}-x_{2}|+|y_{1}-y_{2}|)+L_{\sigma}|z_{1}-z_{2}|,
|f(t,x1,y1,z1)f(t,x2,y2,z2)|K(|x1x2|+|y1y2|+|z1z2|),|f(t,x_{1},y_{1},z_{1})-f(t,x_{2},y_{2},z_{2})|\leq K(|x_{1}-x_{2}|+|y_{1}-y_{2}|+|z_{1}-z_{2}|),
|Φ(x1)Φ(x2)|K|x1x2|.|\Phi(x_{1})-\Phi(x_{2})|\leq K|x_{1}-x_{2}|.

Based on Assumptions (𝐇𝟐.1)(\mathbf{H2.1}) and (𝐇𝟐.2)(\mathbf{H2.2}), we obtain the following classical results, which can be found in Antonelli [1], Delarue [4], Li and Wei [9, 10], Yong [26].

Lemma 2.1.

Let Assumptions (𝐇𝟐.1),(𝐇𝟐.2)(\mathbf{H2.1}),\ (\mathbf{H2.2}) hold. Then, there exists a constant δ>0\delta>0 depending on (K,Lσ)(K,L_{\sigma}), such that FBSDE (2.1) admits a unique solution Θst,ξ\Theta_{s}^{t,\xi} on a interval [t,t+δ][t,t+\delta], where t+δ=Tt+\delta=T.

Lemma 2.2.

Let Assumptions (𝐇𝟐.1),(𝐇𝟐.2)(\mathbf{H2.1}),\ (\mathbf{H2.2}) hold. Then, for any given p2,p\geq 2, there exists a constant δ>0{\delta}>0 that depends on (K,Lσ)(K,L_{\sigma}), and constant C0{C}_{0} that depends on (p,L,K,Lσ)(p,L,K,L_{\sigma}) such that for every ξLp(Ω,t,P;n),\xi\in L^{p}(\Omega,\mathcal{F}_{t},P;\mathbb{R}^{n}),

E[suptst+δ|Xst,ξ|p+suptst+δ|Yst,ξ|p+(tt+δ|Zst,ξ|2ds)p2t]C0(1+|ξ|p).\begin{array}[c]{llll}&E[\mathop{\rm sup}\limits_{t\leq s\leq t+\delta}|X^{t,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{t\leq s\leq t+\delta}|Y^{t,\xi}_{s}|^{p}+(\int_{t}^{t+\delta}|Z^{t,\xi}_{s}|^{2}\mathrm{d}s)^{\frac{p}{2}}\mid\mathcal{F}_{t}]\leq{C}_{0}(1+|\xi|^{p}).&\\ \end{array}

2.1 LpL^{p} estimations

We first consider an example which motivates this study.

Example 2.1.

Let Ps=tsardrP_{s}=\int_{t}^{s}a_{r}\mathrm{d}r, and let a(),b(),c()a(\cdot),b(\cdot),c(\cdot) be a real-valued one-dimensional bounded progressively measurable process on [t,T][t,T].

{dXst,ξ=bsYst,ξds+csdBs,dYst,ξ=[asXst,ξ+bsPsYst,ξ]ds+Zst,ξdBs,s[t,T],Xtt,ξ=ξ,YTt,ξ=PTXTt,ξ.\left\{\begin{array}[c]{llll}\mathrm{d}X^{t,\xi}_{s}&=&b_{s}Y^{t,\xi}_{s}\mathrm{d}s+c_{s}\mathrm{d}B_{s},&\\ \mathrm{d}Y^{t,\xi}_{s}&=&[a_{s}X^{t,\xi}_{s}+b_{s}P_{s}Y^{t,\xi}_{s}]\mathrm{d}s+Z^{t,\xi}_{s}\mathrm{d}B_{s},\ \ \ \ \ s\in[t,T],&\\ X^{t,\xi}_{t}&=&\xi,&\\ Y^{t,\xi}_{T}&=&P_{T}X^{t,\xi}_{T}.&\end{array}\right. (2.2)

It is easy to verify that Yst,ξ=PsXst,ξY^{t,\xi}_{s}=P_{s}X^{t,\xi}_{s} satisfies the backward equation of (2.2). Then, the forward equation can be rewritten as follows:

dXst,ξ=bsPsXst,ξds+csdBs,Xtt,ξ=ξ.\mathrm{d}X^{t,\xi}_{s}=b_{s}P_{s}X^{t,\xi}_{s}\mathrm{d}s+c_{s}\mathrm{d}B_{s},\ X^{t,\xi}_{t}=\xi. (2.3)

In the following, we assume that Equation (2.2) admits a unique L2L^{2}-solution. From Yst,ξ=PsXst,ξY^{t,\xi}_{s}=P_{s}X^{t,\xi}_{s}, we have the following:

|Yst,ξYst,ξ|C|Xst,ξXst,ξ|,tsT.\left|Y^{t,\xi}_{s}-Y^{t,\xi^{\prime}}_{s}\right|\leq C\left|X^{t,\xi}_{s}-X^{t,\xi^{\prime}}_{s}\right|,\ t\leq s\leq T. (2.4)

From Equation (2.3), we can obtain the LpL^{p} estimations for suptsT|Xst,ξXst,ξ|\sup_{t\leq s\leq T}\left|X^{t,\xi}_{s}-X^{t,\xi^{\prime}}_{s}\right|, that is,

E[suptsT|Xst,ξXst,ξ|p]C1|ξξ|p.E[\sup_{t\leq s\leq T}\left|X^{t,\xi}_{s}-X^{t,\xi^{\prime}}_{s}\right|^{p}]\leq C_{1}\left|\xi-\xi^{\prime}\right|^{p}.

Combining with Equation (2.4), we obtain the LpL^{p} (p>2p>2) estimations for suptsT|Yst,ξYst,ξ|\sup_{t\leq s\leq T}\left|Y^{t,\xi}_{s}-Y^{t,\xi^{\prime}}_{s}\right|,

E[suptsT|Yst,ξYst,ξ|p]C1|ξξ|p.E[\sup_{t\leq s\leq T}\left|Y^{t,\xi}_{s}-Y^{t,\xi^{\prime}}_{s}\right|^{p}]\leq C_{1}\left|\xi-\xi^{\prime}\right|^{p}.

Then, using the backward equation of (2.2), we have the following LpL^{p} estimations:

E[suptsT|Xst,ξXst,ξ|p+suptsT|Yst,ξYst,ξ|p+(tT|Zst,ξZst,ξ|2ds)p2]C1|ξξ|p.E[\mathop{\rm sup}\limits_{t\leq s\leq T}|X^{t,\xi}_{s}-X^{t,\xi^{\prime}}_{s}|^{p}+\mathop{\rm sup}\limits_{t\leq s\leq T}|Y^{t,\xi}_{s}-Y^{t,\xi^{\prime}}_{s}|^{p}+\big{(}\int_{t}^{T}|Z^{t,\xi}_{s}-Z^{t,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\big{)}^{\frac{p}{2}}]\leq{C}_{1}|\xi-\xi^{\prime}|^{p}.

We can see that (2.3) is a useful condition for proving the general LpL^{p} estimations of some fully coupled FBSDE. Thus, in the following, we use an L2L^{2} estimations of fully coupled FBSDE to obtain the condition (2.4).

In the following, we establish the equivalence between the L2L^{2} and LpL^{p} (p>2p>2) estimations of FBSDE (2.1) under Assumptions (𝐇𝟐.1),(𝐇𝟐.2)(\mathbf{H2.1}),\ (\mathbf{H2.2}).

Theorem 2.1.

Let Assumptions (𝐇𝟐.1),(𝐇𝟐.2)(\mathbf{H2.1}),\ (\mathbf{H2.2}) hold, and we assume that for every ξ,ξLp(Ω,t,P;n)\xi,\xi^{\prime}\in L^{p}(\Omega,\mathcal{F}_{t},P;\mathbb{R}^{n}), L2L^{2} estimations of FBSDE (2.1) are right,

E[suptsT|Xst,ξ|2+suptsT|Yst,ξ|2+(tT|Zst,ξ|2ds)t]C1(1+|ξ|2),E[\mathop{\rm sup}\limits_{t\leq s\leq T}|X^{t,\xi}_{s}|^{2}+\mathop{\rm sup}\limits_{t\leq s\leq T}|Y^{t,\xi}_{s}|^{2}+(\int_{t}^{T}|Z^{t,\xi}_{s}|^{2}\mathrm{d}s)\mid\mathcal{F}_{t}]\leq{C}_{1}(1+|\xi|^{2}), (2.5)
E[suptsT|Xst,ξXst,ξ|2+suptsT|Yst,ξYst,ξ|2+tT|Zst,ξZst,ξ|2dst]C1|ξξ|2,E[\mathop{\rm sup}\limits_{t\leq s\leq T}|X^{t,\xi}_{s}-X^{t,\xi^{\prime}}_{s}|^{2}+\mathop{\rm sup}\limits_{t\leq s\leq T}|Y^{t,\xi}_{s}-Y^{t,\xi^{\prime}}_{s}|^{2}+\int_{t}^{T}|Z^{t,\xi}_{s}-Z^{t,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t}]\leq{C}_{1}|\xi-\xi^{\prime}|^{2}, (2.6)

where C1C_{1} is a positive constant and independent from t[0,T]t\in[0,T].

Then, FBSDE (2.1) admits a unique LpL^{p} (p>2p>2) solution with t=0t=0 and any given terminal time TT, that is,

E[sup0sT|Xs0,ξ|p+sup0sT|Ys0,ξ|p+(0T|Zs0,ξ|2ds)p2]C2(1+|ξ|p),E[sup0sT|Xs0,ξXs0,ξ|p+sup0sT|Ys0,ξYs0,ξ|p+(0T|Zs0,ξZs0,ξ|2ds)p2]C2|ξξ|p.\begin{array}[c]{llll}&E[\mathop{\rm sup}\limits_{0\leq s\leq T}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq T}|Y^{0,\xi}_{s}|^{p}+(\int_{0}^{T}|Z^{0,\xi}_{s}|^{2}\mathrm{d}s)^{\frac{p}{2}}]\leq{C}_{2}(1+|\xi|^{p}),&\\ &E[\mathop{\rm sup}\limits_{0\leq s\leq T}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq T}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{p}+(\int_{0}^{T}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s)^{\frac{p}{2}}]\leq{C}_{2}|\xi-\xi^{\prime}|^{p}.&\\ \end{array}

Proof: Based on L2L^{2} estimations (2.5) and (2.6), FBSDE (2.1) admits a unique L2L^{2}-solution in the interval [t,T][t,T] for any given (t,ξ)[0,T]×L2(Ω,t,P;n)(t,\xi)\in[0,T]\times L^{2}(\Omega,\mathcal{F}_{t},P;\mathbb{R}^{n}).

We consider FBSDE (2.1) at the initial time 0:

{dXs0,ξ=b(s,Θs0,ξ)ds+σ(s,Θs0,ξ)dBs,dYs0,ξ=f(s,Θs0,ξ)ds+Zs0,ξdBs,s[0,T],YT0,ξ=Φ(XT0,ξ).\left\{\begin{array}[c]{llll}dX_{s}^{0,\xi}&=&b(s,\Theta_{s}^{0,\xi})\mathrm{d}s+\sigma(s,\Theta_{s}^{0,\xi})\mathrm{d}B_{s},&\\ dY_{s}^{0,\xi}&=&-f(s,\Theta_{s}^{0,\xi})\mathrm{d}s+Z_{s}^{0,\xi}\mathrm{d}B_{s},\ \ \ \ \ s\in[0,T],&\\ Y_{T}^{0,\xi}&=&\Phi(X_{T}^{0,\xi}).&\end{array}\right. (2.7)

Using inequality (2.6), we have the following:

E[suptsT|Xs0,ξXs0,ξ|2+suptsT|Ys0,ξYs0,ξ|2+tT|Zs0,ξZs0,ξ|2dst]C1|Xt0,ξXt0,ξ|2,E[\mathop{\rm sup}\limits_{t\leq s\leq T}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{2}+\mathop{\rm sup}\limits_{t\leq s\leq T}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{2}+\int_{t}^{T}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t}]\leq{C}_{1}|X^{0,\xi}_{t}-X^{0,\xi^{\prime}}_{t}|^{2},

and thus

|Yt0,ξYt0,ξ|2E[suptrT|Yr0,ξYr0,ξ|2t]C1|Xt0,ξXt0,ξ|2,t[0,T].\left|Y_{t}^{0,\xi}-Y_{t}^{0,\xi^{\prime}}\right|^{2}\leq E[\sup_{t\leq r\leq T}\left|Y_{r}^{0,\xi}-Y_{r}^{0,\xi^{\prime}}\right|^{2}\mid\mathcal{F}_{t}]\leq C_{1}\left|X_{t}^{0,\xi}-X_{t}^{0,\xi^{\prime}}\right|^{2},\quad t\in[0,T].

Thus, the solution (Yt0,ξ,Yt0,ξ)(Y_{t}^{0,\xi},Y_{t}^{0,\xi^{\prime}}) satisfies

|Yt0,ξYt0,ξ|C1|Xt0,ξXt0,ξ|,t[0,T].\left|Y_{t}^{0,\xi}-Y_{t}^{0,\xi^{\prime}}\right|\leq\sqrt{C_{1}}\left|X_{t}^{0,\xi}-X_{t}^{0,\xi^{\prime}}\right|,\quad t\in[0,T]. (2.8)

Now, we consider FBSDE (2.1) in the interval [0,δ][0,\delta], where δ>0\delta>0 is a constant which be given later. Based on Assumptions (𝐇𝟐.1)(\mathbf{H2.1}), and (𝐇𝟐.2)(\mathbf{H2.2}) and inequality (2.8), using Lemma 2.2, there exists a constant δ>0\delta>0 such that

E[sup0sδ|Xs0,ξ|p+sup0sδ|Ys0,ξ|p+(0δ|Zs0,ξ|2𝑑s)p20]C1(1)(1+|X00,ξ|p),\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{0\leq s\leq\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{0}^{\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{0}]\leq{C}^{(1)}_{1}(1+|X^{0,\xi}_{0}|^{p}),\\ \end{array}

where C1(1)C^{(1)}_{1} depends on the constants C1{C_{1}} and L,K,LσL,K,L_{\sigma} in Assumptions (𝐇𝟐.1),(𝐇𝟐.2)(\mathbf{H2.1}),\ (\mathbf{H2.2}). Note that, the coefficients of FBSDE (2.1) satisfy the same assumptions in the interval [0,T][0,T]. Then, combining inequality (2.8), we can obtain the following inequality by inductive method for the same δ\delta,

E[sup(i1)δsiδ|Xs0,ξ|p+sup(i1)δsiδ|Ys0,ξ|p+((i1)δiδ|Zs0,ξ|2𝑑s)p2(i1)δ]C1(1)(1+|X(i1)δ0,ξ|p),\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{(i-1)\delta\leq s\leq i\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{(i-1)\delta\leq s\leq i\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{(i-1)\delta}^{i\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{(i-1)\delta}]\leq{C}^{(1)}_{1}(1+|X^{0,\xi}_{(i-1)\delta}|^{p}),\\ \end{array}

where 1ik1\leq i\leq k, and kk is a positive integer. Without loss of generality, we assume that T=kδT=k\delta.

We first consider the cases where i=1,2i=1,2,

E[sup0sδ|Xs0,ξ|p+sup0sδ|Ys0,ξ|p+(0δ|Zs0,ξ|2𝑑s)p20]C1(1)(1+|ξ|p),\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{0\leq s\leq\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{0}^{\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{0}]\leq C^{(1)}_{1}(1+|\xi|^{p}),&\\ \end{array}

and

E[supδs2δ|Xs0,ξ|p+supδs2δ|Ys0,ξ|p+(δ2δ|Zs0,ξ|2𝑑s)p2δ]C1(1)(1+|Xδ0,ξ|p).\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{\delta\leq s\leq 2\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{\delta\leq s\leq 2\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{\delta}^{2\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{\delta}]\leq C^{(1)}_{1}(1+|X^{0,\xi}_{\delta}|^{p}).&\\ \end{array}

From the case i=1i=1, we have

E[C1(1)(1+|Xδ0,ξ|p)0]C1(1)(1+C1(1)(1+|ξ|p))(C1(1)+(C1(1))2)(1+|ξ|p).E[{C}^{(1)}_{1}(1+|X^{0,\xi}_{\delta}|^{p})\mid\mathcal{F}_{0}]\leq C^{(1)}_{1}\left(1+C^{(1)}_{1}(1+|\xi|^{p})\right)\leq(C^{(1)}_{1}+(C^{(1)}_{1})^{2})(1+|\xi|^{p}).

Let C1(2)=2C1(1)+(C1(1))2{C}^{(2)}_{1}=2{C}^{(1)}_{1}+({C}^{(1)}_{1})^{2}, it follows that

C1(1)(1+|ξ|p)+E[C1(1)(1+|Xδ0,ξ|p)0]C1(2)(1+|ξ|p).{C}^{(1)}_{1}(1+|\xi|^{p})+E[{C}^{(1)}_{1}(1+|X^{0,\xi}_{\delta}|^{p})\mid\mathcal{F}_{0}]\leq{C}^{(2)}_{1}(1+|\xi|^{p}).

Adding on both sides of cases i=1i=1 and i=2i=2, we have

E[sup0s2δ|Xs0,ξ|p+sup0s2δ|Ys0,ξ|p+(0δ|Zs0,ξ|2𝑑s)p2+(δ2δ|Zs0,ξ|2𝑑s)p20]C1(2)(1+|ξ|p).\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{0\leq s\leq 2\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq 2\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{0}^{\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}+(\int_{\delta}^{2\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{0}]\leq{C}^{(2)}_{1}(1+|\xi|^{p}).&\\ \end{array}

Combining the inequality,

(a+b)k2k(ak+bk), 0a,b, 1k.(a+b)^{k}\leq 2^{k}(a^{k}+b^{k}),\ 0\leq a,b,\ 1\leq k.

Let C^1(2)=2p2C1(2)\hat{C}^{(2)}_{1}=2^{\frac{p}{2}}{C}^{(2)}_{1}, one obtains

E[sup0s2δ|Xs0,ξ|p+sup0s2δ|Ys0,ξ|p+(02δ|Zs0,ξ|2𝑑s)p20]C^1(2)(1+|ξ|p).\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{0\leq s\leq 2\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq 2\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{0}^{2\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{0}]\leq\hat{C}^{(2)}_{1}(1+|\xi|^{p}).&\\ \end{array}

Then, we consider the case i=3i=3,

E[sup2δs3δ|Xs0,ξ|p+sup2δs3δ|Ys0,ξ|p+(2δ3δ|Zs0,ξ|2𝑑s)p22δ]C1(1)(1+|X2δ0,ξ|p).\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{2\delta\leq s\leq 3\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{2\delta\leq s\leq 3\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{2\delta}^{3\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{2\delta}]\leq{C}^{(1)}_{1}(1+|X^{0,\xi}_{2\delta}|^{p}).&\\ \end{array}

Similar with the above analysis, we have

E[sup0s3δ|Xs0,ξ|p+sup0s3δ|Ys0,ξ|p+(03δ|Zs0,ξ|2𝑑s)p20]C^1(3)(1+|ξ|p).\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{0\leq s\leq 3\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq 3\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{0}^{3\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{0}]\leq\hat{C}^{(3)}_{1}(1+|\xi|^{p}).&\\ \end{array}

Then, considering the case i=4,,ki=4,\cdots,k, we can obtain the LpL^{p} estimations

E[sup0skδ|Xs0,ξ|p+sup0skδ|Ys0,ξ|p+(0kδ|Zs0,ξ|2𝑑s)p20]C^1(k)(1+|ξ|p),\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{0\leq s\leq k\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq k\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{0}^{k\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{0}]\leq\hat{C}^{(k)}_{1}(1+|\xi|^{p}),&\\ \end{array}

where kδ=Tk\delta=T.

Now, let C2=C^1(k)C_{2}=\hat{C}^{(k)}_{1}. Then, FBSDE (2.1) admits a unique LpL^{p}-solution with t=0t=0. This completes the proof. \quad\qquad\Box

Remark 2.1.

Theorem 2.1 establishes the LpL^{p} estimations for fully coupled FBSDE with any given terminal time TT. From the proof of Theorem 2.1, we can see that the basic Lipschatiz and linear growth conditions on b,σ,f,Φb,\sigma,f,\Phi and sufficiently small Lipschatiz constant LσL_{\sigma} of the diffusion term σ\sigma on ZZ are necessary. Furthermore, we obtain the following inequality

|Ys0,ξYs0,ξ|C1|Xs0,ξXs0,ξ|,s[0,T],\left|Y_{s}^{0,\xi}-Y_{s}^{0,\xi^{\prime}}\right|\leq\sqrt{C_{1}}\left|X_{s}^{0,\xi}-X_{s}^{0,\xi^{\prime}}\right|,\quad s\in[0,T],

from the L2L^{2} conditional expectation estimations. Thus, we can establish the following corollary from Theorem 2.1.

Corollary 2.1.

Let Assumptions (𝐇𝟐.1),(𝐇𝟐.2)(\mathbf{H2.1}),\ (\mathbf{H2.2}) hold, and we assume that for every ξ,ξLp(Ω,t,P;n)\xi,\xi^{\prime}\in L^{p}(\Omega,\mathcal{F}_{t},P;\mathbb{R}^{n}), there exists a positive constant C1>0C_{1}>0 such that

|Ys0,ξYs0,ξ|C1|Xs0,ξXs0,ξ|,s[0,T].\left|Y_{s}^{0,\xi}-Y_{s}^{0,\xi^{\prime}}\right|\leq{C_{1}}\left|X_{s}^{0,\xi}-X_{s}^{0,\xi^{\prime}}\right|,\quad s\in[0,T].

Then, FBSDE (2.1) admits a unique LpL^{p} (p>2p>2) solution with t=0t=0, and

E[sup0sT|Xs0,ξ|p+sup0sT|Ys0,ξ|p+(0T|Zs0,ξ|2ds)p2]C2(1+|ξ|p),E[sup0sT|Xs0,ξXs0,ξ|p+sup0sT|Ys0,ξYs0,ξ|p+(0T|Zs0,ξZs0,ξ|2ds)p2]C2|ξξ|p.\begin{array}[c]{llll}&E[\mathop{\rm sup}\limits_{0\leq s\leq T}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq T}|Y^{0,\xi}_{s}|^{p}+(\int_{0}^{T}|Z^{0,\xi}_{s}|^{2}\mathrm{d}s)^{\frac{p}{2}}]\leq{C}_{2}(1+|\xi|^{p}),&\\ &E[\mathop{\rm sup}\limits_{0\leq s\leq T}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq T}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{p}+(\int_{0}^{T}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s)^{\frac{p}{2}}]\leq{C}_{2}|\xi-\xi^{\prime}|^{p}.&\\ \end{array}

Proof: For t=0t=0, based on Assumptions (𝐇𝟐.1),(𝐇𝟐.2)(\mathbf{H2.1}),\ (\mathbf{H2.2}), and

|Ys0,ξYs0,ξ|C1|Xs0,ξXs0,ξ|,s[0,T],\left|Y_{s}^{0,\xi}-Y_{s}^{0,\xi^{\prime}}\right|\leq{C_{1}}\left|X_{s}^{0,\xi}-X_{s}^{0,\xi^{\prime}}\right|,\quad s\in[0,T],

using Lemma 2.2, FBSDE (2.1) admits a unique LpL^{p}-solution in the interval [0,δ][0,\delta]. Then, by the inductive method, FBSDE (2.1) admits a unique LpL^{p}-solution in the interval [iδ,(i+1)δ], 0ik[i\delta,(i+1)\delta],\ 0\leq i\leq k, where T=kδT=k\delta (without loss of generality).

Similar to the proof in Theorem 2.1, we can extend the LPL^{P} estimations from the interval [iδ,(i+1)δ][i\delta,(i+1)\delta] to [0,T][0,T]. Thus, FBSDE (2.1) admits a unique LpL^{p}-solution in interval [0,T][0,T] . The proof is complete. \qquad\qquad\Box

3 Linear quadratic optimal control problem

In the following, we use Theorem 2.1 to study a linear-quadratic optimal control problem. The controlled stochastic system is expressed as follows:

{dXsu=[AsXsu+Bsus+bs]ds+[CsXsu+Dsus+σs]dBs,dXtu=x,\left\{\begin{array}[c]{llll}\mathrm{d}X^{u}_{s}&=&\left[A_{s}X^{u}_{s}+B_{s}u_{s}+b_{s}\right]\mathrm{d}s+\left[C_{s}X^{u}_{s}+D_{s}u_{s}+\sigma_{s}\right]\mathrm{d}B_{s},&\\ \mathrm{d}X^{u}_{t}&=&x,\end{array}\right. (3.1)

where A,B,CA,B,C, and DD are given bounded stochastic matrix-valued functions with proper dimensions, and b,σb,\sigma are vector-valued progressively measurable processes. Xu():[t,T]×ΩnX^{u}(\cdot):[t,T]\times\Omega\to\mathbb{R}^{n}, and the set of controls:

𝒰[t,T]={u():[t,T]×Ωm|u()is quadratic integrable progressively measurable process}.\mathcal{U}[t,T]=\{u(\cdot):[t,T]\times\Omega\to\mathbb{R}^{m}|\ u(\cdot)\ \text{is quadratic integrable progressively measurable process}\}.

The cost functional is given as follows:

J(t,x;u())=E[tT(QsXsu,Xsu+2SsXsu,us+Rsus,us+2qs,Xsu+2ρs,us)ds+HXTu,XTu+2h,XTu].\begin{array}[c]{ll}J(t,x;u(\cdot))=&E\big{[}\int_{t}^{T}\left(\langle Q_{s}X^{u}_{s},X^{u}_{s}\rangle+2\langle S_{s}X^{u}_{s},u_{s}\rangle+\langle R_{s}u_{s},u_{s}\rangle+2\langle q_{s},X^{u}_{s}\rangle+2\langle\rho_{s},u_{s}\rangle\right)\mathrm{d}s\\ &+\langle HX^{u}_{T},X^{u}_{T}\rangle+2\langle h,X^{u}_{T}\rangle\big{]}.\\ \end{array}

Thus, the related optimal control problem is to find an optimal control u¯()𝒰[t,T]\bar{u}(\cdot)\in\mathcal{U}[t,T] such that

J(t,x;u¯())=infu𝒰[t,T]J(t,x;u()).J(t,x;\bar{u}(\cdot))=\inf_{u\in\mathcal{U}[t,T]}J(t,x;u(\cdot)).

We assume that (u¯(),X¯())(\bar{u}(\cdot),\bar{X}(\cdot)) is an optimal pair of optimal control problems with a cost functional J(t,x;u())J(t,x;u(\cdot)). For any given control u()𝒰[t,T]u(\cdot)\in\mathcal{U}[t,T], it follows that

Xsu¯+εu=X¯s+εXs0,u,tsT,{X}^{\bar{u}+\varepsilon u}_{s}=\bar{X}_{s}+\varepsilon X^{0,u}_{s},\ t\leq s\leq T,

where Xu¯+εu(){X}^{\bar{u}+\varepsilon u}(\cdot) is the solution of Equation (3.1) with control u¯()+εu()\bar{u}(\cdot)+\varepsilon u(\cdot) and X0,u()X^{0,u}(\cdot) is the solution of the following equation

{dXs0,u=[AsXs0,u+Bsus]ds+[CsXs0,u+Dsus]dBs,dXt0,u=0.\left\{\begin{array}[c]{llll}\mathrm{d}X^{0,u}_{s}&=&\left[A_{s}X^{0,u}_{s}+B_{s}u_{s}\right]\mathrm{d}s+\left[C_{s}X^{0,u}_{s}+D_{s}u_{s}\right]\mathrm{d}B_{s},&\\ \mathrm{d}X^{0,u}_{t}&=&0.\end{array}\right. (3.2)

Thus, from

0=limε0J(t,x;u¯()+εu())J(t,x;u¯())ε,0=\lim_{\varepsilon\to 0}\frac{J(t,x;\bar{u}(\cdot)+\varepsilon u(\cdot))-J(t,x;\bar{u}(\cdot))}{\varepsilon},

we have that

0=E[tT(QsX¯s+Ssu¯s+qs,Xs0,u+Rsu¯s+SsX¯s+ρs,us)ds+HX¯T+h,XT0,u].0=E\big{[}\int_{t}^{T}\big{(}\langle Q_{s}\bar{X}_{s}+S^{\top}_{s}\bar{u}_{s}+q_{s},X^{0,u}_{s}\rangle+\langle R_{s}\bar{u}_{s}+S_{s}\bar{X}_{s}+\rho_{s},u_{s}\rangle\big{)}\mathrm{d}s+\langle H\bar{X}_{T}+h,X^{0,u}_{T}\rangle\big{]}.

Then, using the following adjoint equation

{dYs=[AsYs+CsZs+QsX¯s+Ssu¯s+qs]ds+ZsdBs,YT=HX¯T+h,\left\{\begin{array}[c]{llll}dY_{s}&=&-\big{[}A_{s}Y_{s}+C_{s}Z_{s}+Q_{s}\bar{X}_{s}+S_{s}^{\top}\bar{u}_{s}+q_{s}\big{]}\mathrm{d}s+Z_{s}\mathrm{d}B_{s},&\\ Y_{T}&=&H\bar{X}_{T}+h,&\end{array}\right. (3.3)

it follows that for any u()𝒰[t,T]u(\cdot)\in\mathcal{U}[t,T],

BsYs+DsZs+SsX¯s+Rsu¯s+ρs=0,a.e.s[t,T].B^{\top}_{s}Y_{s}+D^{\top}_{s}Z_{s}+S_{s}\bar{X}_{s}+R_{s}\bar{u}_{s}+\rho_{s}=0,\quad a.e.\ s\in[t,T].

Thus when RR is positive, we have

u¯s=Rs1[BsYs+DsZs+SsX¯s+ρs].\bar{u}_{s}=-R^{-1}_{s}\big{[}B^{\top}_{s}Y_{s}+D^{\top}_{s}Z_{s}+S_{s}\bar{X}_{s}+\rho_{s}\big{]}.

We put u¯s\bar{u}_{s} into controlled stochastic system (3.1) and adjoint Equation (3.3),

{dX¯s=[(AsBsRs1Ss)X¯sBsRs1BsYsBsRs1DsZsBsRs1ρs+bs]ds+[(CsDsRs1Ss)X¯sDsRs1BsYsDsRs1DsZsDsRs1ρs+σs]dBs,dYs=[(QsSsRs1Ss)X¯s+(AsSsRs1Bs)Ys+(CsSsRs1Ds)ZsSsRs1ρs+qs]ds+ZsdBs,YT=HX¯T+h,X¯t=x.\left\{\begin{array}[c]{llll}\mathrm{d}\bar{X}_{s}=&\left[(A_{s}-B_{s}R^{-1}_{s}S_{s})\bar{X}_{s}-B_{s}R^{-1}_{s}B^{\top}_{s}Y_{s}-B_{s}R^{-1}_{s}D^{\top}_{s}Z_{s}-B_{s}R^{-1}_{s}\rho_{s}+b_{s}\right]\mathrm{d}s\\ &+\left[(C_{s}-D_{s}R^{-1}_{s}S_{s})\bar{X}_{s}-D_{s}R^{-1}_{s}B^{\top}_{s}Y_{s}-D_{s}R^{-1}_{s}D^{\top}_{s}Z_{s}-D_{s}R^{-1}_{s}\rho_{s}+\sigma_{s}\right]\mathrm{d}B_{s},&\\ dY_{s}=&-\big{[}(Q_{s}-S_{s}^{\top}R^{-1}_{s}S_{s})\bar{X}_{s}+(A_{s}-S_{s}^{\top}R^{-1}_{s}B^{\top}_{s})Y_{s}+(C_{s}-S_{s}^{\top}R^{-1}_{s}D^{\top}_{s})Z_{s}-S_{s}^{\top}R^{-1}_{s}\rho_{s}+q_{s}\big{]}\mathrm{d}s\\ &+Z_{s}\mathrm{d}B_{s},&\\ Y_{T}=&H\bar{X}_{T}+h,\ \bar{X}_{t}=x.&\end{array}\right. (3.4)

To guarantee the solvability of FBSDE (3.4), we add the following assumptions.

(𝐇𝟑.1)(\mathbf{H3.1}).

As,Bs,Cs,Ds,s0A_{s},B_{s},C_{s},D_{s},\ s\geq 0 are bounded random matrices.

(𝐇𝟑.2)(\mathbf{H3.2}).

QsSsRs1Ss0Q_{s}-S_{s}^{\top}R^{-1}_{s}S_{s}\geq 0, Rs>δI,δ>0,s0R_{s}>\delta I,\ \delta>0,\ s\geq 0, and H0H\geq 0.

(𝐇𝟑.3)(\mathbf{H3.3}).

The norm of matrix DsD_{s} is sufficiently small, that is, |Ds|=tr(DsDs),s0|D_{s}|=\sqrt{\text{tr}(D_{s}D_{s}^{\top})},\ s\geq 0.

Lemma 3.1.

Let Assumptions (𝐇𝟑.1),(𝐇𝟑.2)(\mathbf{H3.1}),\ (\mathbf{H3.2}) hold, FBSDE (3.4) admits a unique L2L^{2}-solution (X¯,Y,Z)(\bar{X},Y,Z). For the initial value of X¯t=ξ\bar{X}_{t}=\xi and X¯t=ξ\bar{X}^{\prime}_{t}=\xi^{\prime}, where ξ,ξLp(Ω,t,P;n)\xi,\xi^{\prime}\in L^{p}(\Omega,\mathcal{F}_{t},P;\mathbb{R}^{n}). Then, we can obtain the L2L^{2} estimations of FBSDE (3.4),

E[suptsT|X¯sX¯s|2+suptsT|YsYs|2+tT|ZsZs|2dst]C|ξξ|2,E[\mathop{\rm sup}\limits_{t\leq s\leq T}|\bar{X}_{s}-\bar{X}^{\prime}_{s}|^{2}+\mathop{\rm sup}\limits_{t\leq s\leq T}|Y_{s}-Y^{\prime}_{s}|^{2}+\int_{t}^{T}|Z_{s}-Z^{\prime}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t}]\leq{C}|\xi-\xi^{\prime}|^{2}, (3.5)

where (X¯,Y,Z)(\bar{X},Y,Z) is the solution of (3.4) with the initial value ξ\xi, (X¯,Y,Z)(\bar{X}^{\prime},Y^{\prime},Z^{\prime}) with ξ\xi^{\prime}, and CC depends on the coefficients of FBSDE (3.4).

Proof: Denoting the coefficients of the fully coupled FBSDE (3.4) as follows:

F(s,x,y,z)=((QsSsRs1Ss)x(AsSsRs1Bs)y(CsSsRs1Ds)z(AsBsRs1Ss)xBsRs1BsyBsRs1Dsz(CsDsRs1Ss)xDsRs1BsyDsRs1Dsz).F(s,x,y,z)=\begin{pmatrix}-(Q_{s}-S_{s}^{\top}R^{-1}_{s}S_{s})x-(A_{s}-S_{s}^{\top}R^{-1}_{s}B^{\top}_{s})y-(C_{s}-S_{s}^{\top}R^{-1}_{s}D^{\top}_{s})z\\ (A_{s}-B_{s}R^{-1}_{s}S_{s})x-B_{s}R^{-1}_{s}B^{\top}_{s}y-B_{s}R^{-1}_{s}D^{\top}_{s}z\\ (C_{s}-D_{s}R^{-1}_{s}S_{s})x-D_{s}R^{-1}_{s}B^{\top}_{s}y-D_{s}R^{-1}_{s}D^{\top}_{s}z\\ \end{pmatrix}. (3.6)

Based on Assumption (𝐇𝟑.2)(\mathbf{H3.2}), one obtains

F(s,x,y,z),(x,y,z)=[(QsSsRs1Ss)x,x+Rs1(Bsy+Dsz),(Bsy+Dsz)].\langle F(s,x,y,z),(x,y,z)\rangle=-\left[\langle(Q_{s}-S_{s}^{\top}R^{-1}_{s}S_{s})x,x\rangle+\langle R_{s}^{-1}(B_{s}^{\top}y+D_{s}^{\top}z),(B_{s}^{\top}y+D_{s}^{\top}z)\rangle\right].

Thus, there exist constants c10c_{1}\geq 0 and c2>0c_{2}>0 such that

F(s,x,y,z),(x,y,z)c1|x|2c2|Bsy+Dsz|2.\langle F(s,x,y,z),(x,y,z)\rangle\leq-c_{1}|x|^{2}-c_{2}|B_{s}^{\top}y+D_{s}^{\top}z|^{2}.

and

Hx,x0.\langle Hx,x\rangle\geq 0.

These are the monotonicity conditions in Hu and Peng [8] and Peng and Wu [20]. Then, by Theorem 3.1 of Peng and Wu [20], FBSDE (3.4) admits a unique L2L^{2}-solution (X¯,Y,Z)(\bar{X},Y,Z).

Now, we calculate the distance between (X¯,Y,Z)(\bar{X},Y,Z) and (X¯,Y,Z)(\bar{X}^{\prime},Y^{\prime},Z^{\prime}) with initial values (ξ,ξ)(\xi,\xi^{\prime}). First, by Assumption (𝐇𝟑.1)(\mathbf{H3.1}), for the forward SDE of X¯\bar{X} and X¯\bar{X}^{\prime}, we have the inequality of X^=X¯X¯\hat{X}=\bar{X}-\bar{X}^{\prime},

Et[suptsT|X^s|2]+Et[tT|X^s|2ds]K{Et[|ξξ|2]+Et[tT(|BsY^s+DsZ^s|2)ds]},\displaystyle\begin{split}&E_{t}\bigg{[}\displaystyle\sup_{t\leqslant s\leqslant T}|\hat{X}_{s}|^{2}\bigg{]}+E_{t}\bigg{[}\displaystyle\int_{t}^{T}|\hat{X}_{s}|^{2}\mathrm{d}s\bigg{]}\leqslant K\bigg{\{}E_{t}\bigg{[}|\xi-\xi^{\prime}|^{2}\bigg{]}+E_{t}\bigg{[}\int_{t}^{T}(|B_{s}^{\top}\hat{Y}_{s}+D_{s}^{\top}\hat{Z}_{s}|^{2})\mathrm{d}s\bigg{]}\bigg{\}},\end{split} (3.7)

where Et[]E_{t}[\cdot] is the conditional expectation based on information t\mathcal{F}_{t}. Second, from Assumption (𝐇𝟑.1)(\mathbf{H3.1}), for the backward SDE of (Y,Z)(Y,Z) and (Y,Z)(Y^{\prime},Z^{\prime}), it follows that

Et[suptsT|Y^s|2]+Et[tT(|Y^s|2+|Z^s|2)ds]K{Et[tT|X^s|2ds]+Et[|X^T|2]}.\displaystyle\begin{split}&E_{t}\bigg{[}\displaystyle\sup_{t\leqslant s\leqslant T}|\hat{Y}_{s}|^{2}\bigg{]}+E_{t}\bigg{[}\displaystyle\int_{t}^{T}(|\hat{Y}_{s}|^{2}+|\hat{Z}_{s}|^{2})\mathrm{d}s\bigg{]}\leqslant K\bigg{\{}E_{t}\bigg{[}\int_{t}^{T}|\hat{X}_{s}|^{2}\mathrm{d}s\bigg{]}+E_{t}\big{[}|\hat{X}_{T}|^{2}\big{]}\bigg{\}}.\end{split} (3.8)

Applying Itô formula to X^(s),Y^(s),\langle\hat{X}(s),\hat{Y}(s)\rangle, we have

Et[X^T,HX^T]=Et[tTF(s,Us)F(s,Us),UsUsds]+Et[Y^t,ξξ],\displaystyle\begin{split}&E_{t}[\langle\hat{X}_{T},H\hat{X}_{T}\rangle]=E_{t}[\int_{t}^{T}\langle F(s,U_{s})-F(s,U^{\prime}_{s}),U_{s}-U^{\prime}_{s}\rangle\mathrm{d}s]+E_{t}[\langle\hat{Y}_{t},\xi-\xi^{\prime}\rangle],\end{split} (3.9)

where Us=(X¯s,Ys,Zs)U_{s}=(\bar{X}_{s},Y_{s},Z_{s}), Us=(X¯s,Ys,Zs)U^{\prime}_{s}=(\bar{X}^{\prime}_{s},Y^{\prime}_{s},Z^{\prime}_{s}), and F()F(\cdot) is given in (3.6). From the monotone properties of F()F(\cdot) and HH, we have

Et[tT(|BsY^s+DsZ^s|2)ds]εc2Et[suptsT|Y^s|2]+14εc2Et[|ξξ|2],\displaystyle\begin{split}&E_{t}\bigg{[}\int_{t}^{T}(|B_{s}^{\top}\hat{Y}_{s}+D_{s}^{\top}\hat{Z}_{s}|^{2})\mathrm{d}s\bigg{]}\leq\frac{\varepsilon}{c_{2}}E_{t}\bigg{[}\displaystyle\sup_{t\leqslant s\leqslant T}|\hat{Y}_{s}|^{2}\bigg{]}+\frac{1}{4\varepsilon c_{2}}E_{t}[|\xi-\xi^{\prime}|^{2}],\end{split} (3.10)

where ε>0\varepsilon>0, which is given later. Combining inequalities (LABEL:eq:3.3-2) and (LABEL:eq:3.3-3), it follows that

Et[suptsT|Y^s|2]+Et[tT(|Y^s|2+|Z^s|2)ds]K2{Et[|ξξ|2]+Et[tT(|BsY^s+DsZ^s|2)ds]}.\displaystyle\begin{split}&E_{t}\bigg{[}\displaystyle\sup_{t\leqslant s\leqslant T}|\hat{Y}_{s}|^{2}\bigg{]}+E_{t}\bigg{[}\displaystyle\int_{t}^{T}(|\hat{Y}_{s}|^{2}+|\hat{Z}_{s}|^{2})\mathrm{d}s\bigg{]}\\ \leqslant&K^{2}\bigg{\{}E_{t}\bigg{[}|\xi-\xi^{\prime}|^{2}\bigg{]}+E_{t}\bigg{[}\int_{t}^{T}(|B_{s}^{\top}\hat{Y}_{s}+D_{s}^{\top}\hat{Z}_{s}|^{2})\mathrm{d}s\bigg{]}\bigg{\}}.\end{split} (3.11)

Now, applying inequality (3.10), we can obtain that

Et[suptsT|Y^s|2]+Et[tT(|Y^s|2+|Z^s|2)ds]εK2c2Et[suptsT|Y^s|2]+(1+4εc2)K24εc2Et[|ξξ|2].\displaystyle\begin{split}&E_{t}\bigg{[}\displaystyle\sup_{t\leqslant s\leqslant T}|\hat{Y}_{s}|^{2}\bigg{]}+E_{t}\bigg{[}\displaystyle\int_{t}^{T}(|\hat{Y}_{s}|^{2}+|\hat{Z}_{s}|^{2})\mathrm{d}s\bigg{]}\\ \leqslant&\frac{\varepsilon K^{2}}{c_{2}}E_{t}\bigg{[}\displaystyle\sup_{t\leqslant s\leqslant T}|\hat{Y}_{s}|^{2}\bigg{]}+\frac{(1+4\varepsilon c_{2})K^{2}}{4\varepsilon c_{2}}E_{t}[|\xi-\xi^{\prime}|^{2}].\end{split} (3.12)

Let ε<c2K2\displaystyle\varepsilon<\frac{c_{2}}{K^{2}}, then there exists a constant C>0C>0 such that

Et[suptsT|Y^s|2]+Et[tT(|Y^s|2+|Z^s|2)ds]CEt[|ξξ|2],\displaystyle\begin{split}&E_{t}\bigg{[}\displaystyle\sup_{t\leqslant s\leqslant T}|\hat{Y}_{s}|^{2}\bigg{]}+E_{t}\bigg{[}\displaystyle\int_{t}^{T}(|\hat{Y}_{s}|^{2}+|\hat{Z}_{s}|^{2})\mathrm{d}s\bigg{]}\leqslant CE_{t}[|\xi-\xi^{\prime}|^{2}],\end{split} (3.13)

where CC depends on the coefficients of FBSDE (3.4). Then, by combining (LABEL:eq:3.3-2) and (3.10), we can obtain inequality (3.5). The proof is complete. \qquad\qquad\Box


The main results of this section are given as follows:

Theorem 3.1.

Let Assumptions (𝐇𝟑.1),(𝐇𝟑.2),(𝐇𝟑.3)(\mathbf{H3.1}),\ (\mathbf{H3.2}),\ (\mathbf{H3.3}) hold. Then, FBSDE (3.4) admits a unique LpL^{p}-solution (X¯,Y,Z)(\bar{X},Y,Z) with p>2p>2.

Proof: Based on Assumptions (𝐇𝟑.1),(𝐇𝟑.2)(\mathbf{H3.1}),\ (\mathbf{H3.2}) and Lemma 3.1, we have that FBSDE (3.4) admits a unique L2L^{2}-solution (X¯,Y,Z)(\bar{X},Y,Z). Let (X¯,Y,Z)(\bar{X},Y,Z) be the solution of (3.4) with initial value ξ\xi, (X¯,Y,Z)(\bar{X}^{\prime},Y^{\prime},Z^{\prime}) with ξ\xi^{\prime}, where ξ,ξLp(Ω,t,P;n)\xi,\xi^{\prime}\in L^{p}(\Omega,\mathcal{F}_{t},P;\mathbb{R}^{n}). By using Lemma 3.1, we have

E[suptsT|X¯sX¯s|2+suptsT|YsYs|2+tT|ZsZs|2dst]C|ξξ|2.E[\mathop{\rm sup}\limits_{t\leq s\leq T}|\bar{X}_{s}-\bar{X}^{\prime}_{s}|^{2}+\mathop{\rm sup}\limits_{t\leq s\leq T}|Y_{s}-Y^{\prime}_{s}|^{2}+\int_{t}^{T}|Z_{s}-Z^{\prime}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t}]\leq{C}|\xi-\xi^{\prime}|^{2}. (3.14)

Then, combining Assumption (𝐇𝟑.3)(\mathbf{H3.3}) and Theorem 2.1, FBSDE (3.4) admits a unique LpL^{p}-solution (X¯,Y,Z)(\bar{X},Y,Z). The proof is complete. \qquad\qquad\Box


In the following, we extend the results of Theorem 3.1 to a general linear coupled FBSDE,

{dXs=[A1Xs+B1Ys+D1Zs]ds+[A2Xs+B2Ys+D2Zs]dBs,dYs=[A3Xs+B3Ys+D3Zs]ds+ZsdBs,YT=HXT,X(0)=x,\left\{\begin{array}[c]{llll}\mathrm{d}X_{s}&=&[A_{1}X_{s}+B_{1}Y_{s}+D_{1}Z_{s}]\mathrm{d}s+[A_{2}X_{s}+B_{2}Y_{s}+D_{2}Z_{s}]\mathrm{d}B_{s},&\\ \mathrm{d}Y_{s}&=&-[A_{3}X_{s}+B_{3}Y_{s}+D_{3}Z_{s}]\mathrm{d}s+Z_{s}\mathrm{d}B_{s},&\\ Y_{T}&=&HX_{T},\ X(0)=x,&\end{array}\right. (3.15)

where (Ai,Bi,Di)i=13(A_{i},B_{i},D_{i})_{i=1}^{3} are bounded stochastic matrices of time. For convenience, we omit time ss.

Corollary 3.1.

Let the coefficients of FBSDE (3.15) satisfy the monotonicity conditions, and the norm of D2D_{2} is sufficiently small. Then, FBSDE (3.15) admits a unique LpL^{p}-solution (X,Y,Z)({X},Y,Z) with p>2p>2.

Proof: The monotonicity conditions of FBSDE (3.15) show that FBSDE (3.4) admits a unique L2L^{2}-solution with L2L^{2} estimations, which is the same as the results given in Lemma 3.1. Thus, FBSDE (3.15) admits a unique LpL^{p}-solution (X,Y,Z)({X},Y,Z). The proof is complete. \qquad\qquad\Box

4 Special case of FBSDEs

Now, we consider the following FBSDE:

{dXs0,ξ=b(s,Xs0,ξ,Ys0,ξ,Zs0,ξ)ds+σ(s,Xs0,ξ,Ys0,ξ)dBs,dYs0,ξ=f(s,Xs0,ξ,Ys0,ξ,Zs0,ξ)ds+Zs0,ξdBs,s[0,T],X00,ξ=ξ,YT0,ξ=Φ(XT0,ξ),\left\{\begin{array}[c]{llll}dX_{s}^{0,\xi}&=&b(s,X_{s}^{0,\xi},Y_{s}^{0,\xi},Z_{s}^{0,\xi})\mathrm{d}s+\sigma(s,X_{s}^{0,\xi},Y_{s}^{0,\xi})\mathrm{d}B_{s},&\\ dY_{s}^{0,\xi}&=&-f(s,X_{s}^{0,\xi},Y_{s}^{0,\xi},Z_{s}^{0,\xi})\mathrm{d}s+Z_{s}^{0,\xi}\mathrm{d}B_{s},\ \ \ \ \ s\in[0,T],&\\ X_{0}^{0,\xi}&=&\xi,&\\ Y_{T}^{0,\xi}&=&\Phi(X_{T}^{0,\xi}),&\end{array}\right. (4.1)

where the diffusion term σ(s,)\sigma(s,\cdot) in forward SDE does not depend on Zs0,ξ,s0Z_{s}^{0,\xi},\ s\geq 0.

We first introduce the results of Cvitanić and Zhang [3].

Lemma 4.1.

Let Assumptions (𝐇𝟐.1)(\mathbf{H2.1}) and (𝐇𝟐.2)(\mathbf{H2.2}) hold, there exists a random field u(t,x)u(t,x) satisfying

(i). u(T,x)=Φ(x)u(T,x)=\Phi(x);

(ii). u(t,x)u(t,x) is t\mathcal{F}_{t} measurable;

(iii). |u(t,x1)u(t,x2)|K|x1x2|,x1,x2n|u(t,x_{1})-u(t,x_{2})|\leq K|x_{1}-x_{2}|,\ x_{1},x_{2}\in\mathbb{R}^{n};

(iv). For any 0t1t2T0\leq t_{1}\leq t_{2}\leq T such that |t2t1|δ(K)|t_{2}-t_{1}|\leq\delta(K), where δ(K)\delta(K) is a sufficiently small constant, a unique solution to FBSDE (4.1) over [t1,t2][t_{1},t_{2}], satisfies Yt20,ξ=u(t2,Xt20,ξ)Y^{0,\xi}_{t_{2}}=u(t_{2},X^{0,\xi}_{t_{2}}) and Yt10,ξ=u(t1,Xt10,ξ)Y^{0,\xi}_{t_{1}}=u(t_{1},X^{0,\xi}_{t_{1}}).

Thus, for any given T>0T>0, FBSDE (4.1) admits a unique solution in the interval [0,T][0,T] and Yt0,ξ=u(t,Xt0,ξ)Y^{0,\xi}_{t}=u(t,X_{t}^{0,\xi}).

Based on Lemma 4.1, we can obtain L2L^{2} estimations for the solution of FBSDE (4.1).

Lemma 4.2.

Let Assumptions (𝐇𝟐.1)(\mathbf{H2.1}) and (𝐇𝟐.2)(\mathbf{H2.2}) hold, and u(t,x)u(t,x) satisfies the conditions in Lemma 4.1. Then, we obtain the L2L^{2} estimations of FBSDE (4.1),

E[sup0sT|Xs0,ξXs0,ξ|2+sup0sT|Ys0,ξYs0,ξ|2+0T|Zs0,ξZs0,ξ|2ds0]C|ξξ|2,E[\mathop{\rm sup}\limits_{0\leq s\leq T}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{2}+\mathop{\rm sup}\limits_{0\leq s\leq T}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{2}+\int_{0}^{T}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{0}]\leq{C}|\xi-\xi^{\prime}|^{2}, (4.2)

and thus

E[suptsT|Xs0,ξXs0,ξ|2+suptsT|Ys0,ξYs0,ξ|2+tT|Zs0,ξZs0,ξ|2dst]C|Xt0,ξXt0,ξ|2,E[\mathop{\rm sup}\limits_{t\leq s\leq T}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{2}+\mathop{\rm sup}\limits_{t\leq s\leq T}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{2}+\int_{t}^{T}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t}]\leq{C}|X^{0,\xi}_{t}-X^{0,\xi^{\prime}}_{t}|^{2}, (4.3)

where C>0C>0 is a constant which depends on the constants LL and KK given in (𝐇𝟐.1)(\mathbf{H2.1}) and (𝐇𝟐.2)(\mathbf{H2.2}).

Proof: For a given partition 0=t0<t1<<tk=T0=t_{0}<t_{1}<\cdots<t_{k}=T, satisfies |titi1|<δ(K)|t_{i}-t_{i-1}|<\delta(K). Thus, we have the L2L^{2} estimations for 1ik1\leq i\leq k,

E[supti1sti|Xs0,ξXs0,ξ|2+supti1sti|Ys0,ξYs0,ξ|2+ti1ti|Zs0,ξZs0,ξ|2dsti1]C0|Xti10,ξXti10,ξ|2.E[\mathop{\rm sup}\limits_{t_{i-1}\leq s\leq t_{i}}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{2}+\mathop{\rm sup}\limits_{t_{i-1}\leq s\leq t_{i}}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{2}+\int_{t_{i-1}}^{t_{i}}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t_{i-1}}]\leq{C}_{0}|X^{0,\xi}_{t_{i-1}}-X^{0,\xi^{\prime}}_{t_{i-1}}|^{2}.

First, we consider the case i=1i=1,

E[supt0st1|Xs0,ξXs0,ξ|2+supt0st1|Ys0,ξYs0,ξ|2+t0t1|Zs0,ξZs0,ξ|2dst0]C0|ξξ|2E[\mathop{\rm sup}\limits_{t_{0}\leq s\leq t_{1}}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{2}+\mathop{\rm sup}\limits_{t_{0}\leq s\leq t_{1}}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{2}+\int_{t_{0}}^{t_{1}}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t_{0}}]\leq{C}_{0}|\xi-\xi^{\prime}|^{2}

and i=2i=2,

E[supt1st2|Xs0,ξXs0,ξ|2+supt1st2|Ys0,ξYs0,ξ|2+t1t2|Zs0,ξZs0,ξ|2dst1]C0|Xt10,ξXt10,ξ|2.E[\mathop{\rm sup}\limits_{t_{1}\leq s\leq t_{2}}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{2}+\mathop{\rm sup}\limits_{t_{1}\leq s\leq t_{2}}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{2}+\int_{t_{1}}^{t_{2}}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t_{1}}]\leq{C}_{0}|X^{0,\xi}_{t_{1}}-X^{0,\xi^{\prime}}_{t_{1}}|^{2}.

Based on a similar idea in the proof of Theorem 2.1, there exists a constant C1>0C_{1}>0 such that

E[supt0st2|Xs0,ξXs0,ξ|2+supt0st2|Ys0,ξYs0,ξ|2+t0t2|Zs0,ξZs0,ξ|2dst0]C1|ξξ|2.E[\mathop{\rm sup}\limits_{t_{0}\leq s\leq t_{2}}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{2}+\mathop{\rm sup}\limits_{t_{0}\leq s\leq t_{2}}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{2}+\int_{t_{0}}^{t_{2}}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t_{0}}]\leq{C}_{1}|\xi-\xi^{\prime}|^{2}.

Then, using the inductive method, we can obtain inequality (4.2). In a similar manner to the proof in inequality (4.2), we can establish inequality (4.3), which completes this proof. \qquad\qquad\Box

Theorem 4.1.

Let the conditions in Lemma 4.1 hold. Then, FBSDE (4.1) admits a unique LpL^{p}-solution with p>2p>2.

Proof: Combining Lemma 4.1 and Lemma 4.2, FBSDE (4.1) admits a unique L2L^{2}-solution. Applying Theorem 2.1, FBSDE (4.1) admits a unique LpL^{p}-solution. The proof is complete. \qquad\qquad\Box


Based on a method similar to the proof of Theorem 4.1, we can improve the L2L^{2}-solution of Theorem 11.3.3 in Cvitanić and Zhang [3] and Theorem 7.3 in Ma et al. [14] to the LpL^{p}-solution with p>2p>2.

Corollary 4.1.

Let Assumptions (𝐇𝟐.1)(\mathbf{H2.1}) and (𝐇𝟐.2)(\mathbf{H2.2}) hold, b,σ,f,Φb,\sigma,f,\Phi are deterministic functions, and σ>δI\sigma>\delta I. Then, FBSDE (4.1) admits a unique LpL^{p}-solution with p>2p>2.

Corollary 4.2.

Let the conditions of Theorem 7.3 in Ma et al. [14] be correct. Then, FBSDE (4.1) admits a unique LpL^{p}-solution with p>2p>2.

5 Extensions of the main results

In this section, we apply the results of Yong [26] to improve the main results of Theorem 2.1. We first introduce a constant Kp,p>1K_{p},\ p>1 which is given by Yong [26],

Kp=K¯p1/p(pp+1+2K¯p1/p2p1p1),K_{p}=\overline{K}^{1/p}_{p}\big{(}\frac{p}{p+1}+2\underline{K}^{-1/p}_{p}\frac{2p-1}{p-1}\big{)},

where K¯p,K¯p\underline{K}_{p},\overline{K}_{p} satisfy the following Burkholder-Davis-Gundy’s inequalities,

K¯pEt(tT|Zs|2ds)p/2Et(supr[t,T]|trZsdBs|p)K¯pEt(tT|Zs|2ds)p/2.\underline{K}_{p}E_{t}\bigg{(}\int_{t}^{T}\left|Z_{s}\right|^{2}\mathrm{d}s\bigg{)}^{p/2}\leq E_{t}\bigg{(}\sup_{r\in[t,T]}\left|\int_{t}^{r}Z_{s}\mathrm{d}B_{s}\right|^{p}\bigg{)}\leq\overline{K}_{p}E_{t}\bigg{(}\int_{t}^{T}\left|Z_{s}\right|^{2}\mathrm{d}s\bigg{)}^{p/2}.

Based on constant KpK_{p}, we give the following assumption.

(𝐇𝟓.1)(\mathbf{H5.1})

There exist constants KK and Lσ0L_{\sigma}\geq 0 such that for all t[0,T],x1,x2n,y1,y2m,z1,z2mt\in[0,T],\ x_{1},x_{2}\in\mathbb{R}^{n},\ y_{1},y_{2}\in\mathbb{R}^{m},\ z_{1},z_{2}\in\mathbb{R}^{m},

|b(t,x1,y1,z1)b(t,x2,y2,z2)|K(|x1x2|+|y1y2|+|z1z2|),|b(t,x_{1},y_{1},z_{1})-b(t,x_{2},y_{2},z_{2})|\leq K(|x_{1}-x_{2}|+|y_{1}-y_{2}|+|z_{1}-z_{2}|),
|σ(t,x1,y1,z1)σ(t,x2,y2,z2)|K(|x1x2|+|y1y2|)+Lσ|z1z2|,|\sigma(t,x_{1},y_{1},z_{1})-\sigma(t,x_{2},y_{2},z_{2})|\leq K(|x_{1}-x_{2}|+|y_{1}-y_{2}|)+L_{\sigma}|z_{1}-z_{2}|,
|f(t,x1,y1,z1)f(t,x2,y2,z2)|K(|x1x2|+|y1y2|+|z1z2|),|f(t,x_{1},y_{1},z_{1})-f(t,x_{2},y_{2},z_{2})|\leq K(|x_{1}-x_{2}|+|y_{1}-y_{2}|+|z_{1}-z_{2}|),
|Φ(x1)Φ(x2)|K|x1x2|,|\Phi(x_{1})-\Phi(x_{2})|\leq K|x_{1}-x_{2}|,
KpLσK<1.K_{p}L_{\sigma}K<1.

We introduce the results of Theorem 2.3 of Yong [26] as follows. More details see Wu et al. [22], in which they further established the probabilistic interpretation for a system of quasilinear parabolic partial differential-algebraic equations by fully coupled FBSDEs.

Lemma 5.1.

Let Assumptions (𝐇𝟐.1),(𝐇𝟓.1)(\mathbf{H2.1}),\ (\mathbf{H5.1}) hold. Then, for any given p>2,p>2, there exist constants δ>0{\delta}>0 depending on (K,Lσ)(K,L_{\sigma}), and C0{C}_{0} depends on (p,L,K,Lσ)(p,L,K,L_{\sigma}), such that for every ξ,ξLp(Ω,t,P;n),\xi,\xi^{\prime}\in L^{p}(\Omega,\mathcal{F}_{t},P;\mathbb{R}^{n}),

E[suptst+δ|Xst,ξ|p+suptst+δ|Yst,ξ|p+(tt+δ|Zst,ξ|2ds)p2t]C0(1+|ξ|p).\begin{array}[c]{llll}&E[\mathop{\rm sup}\limits_{t\leq s\leq t+\delta}|X^{t,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{t\leq s\leq t+\delta}|Y^{t,\xi}_{s}|^{p}+(\int_{t}^{t+\delta}|Z^{t,\xi}_{s}|^{2}\mathrm{d}s)^{\frac{p}{2}}\mid\mathcal{F}_{t}]\leq{C}_{0}(1+|\xi|^{p}).&\\ \end{array}

Then, FBSDE (2.1) admits a unique LpL^{p} solution in the interval [t,t+δ][t,t+\delta] with p>2p>2.

Based on Lemma 5.1, we show the relation between L2L^{2} and LpL^{p} estimations under Assumptions (𝐇𝟐.1),(𝐇𝟓.1)(\mathbf{H2.1}),\ (\mathbf{H5.1}).

Theorem 5.1.

Let Assumptions (𝐇𝟐.1),(𝐇𝟓.1)(\mathbf{H2.1}),\ (\mathbf{H5.1}) hold, and we assume that for every ξ,ξLp(Ω,t,P;n)\xi,\xi^{\prime}\in L^{p}(\Omega,\mathcal{F}_{t},P;\mathbb{R}^{n}), L2L^{2} estimations of FBSDE (2.1) are right,

E[suptsT|Xst,ξ|2+suptsT|Yst,ξ|2+(tT|Zst,ξ|2ds)t]C1(1+|ξ|2),E[\mathop{\rm sup}\limits_{t\leq s\leq T}|X^{t,\xi}_{s}|^{2}+\mathop{\rm sup}\limits_{t\leq s\leq T}|Y^{t,\xi}_{s}|^{2}+(\int_{t}^{T}|Z^{t,\xi}_{s}|^{2}\mathrm{d}s)\mid\mathcal{F}_{t}]\leq{C}_{1}(1+|\xi|^{2}), (5.1)
E[suptsT|Xst,ξXst,ξ|2+suptsT|Yst,ξYst,ξ|2+tT|Zst,ξZst,ξ|2dst]C1|ξξ|2,E[\mathop{\rm sup}\limits_{t\leq s\leq T}|X^{t,\xi}_{s}-X^{t,\xi^{\prime}}_{s}|^{2}+\mathop{\rm sup}\limits_{t\leq s\leq T}|Y^{t,\xi}_{s}-Y^{t,\xi^{\prime}}_{s}|^{2}+\int_{t}^{T}|Z^{t,\xi}_{s}-Z^{t,\xi^{\prime}}_{s}|^{2}\mathrm{d}s\mid\mathcal{F}_{t}]\leq{C}_{1}|\xi-\xi^{\prime}|^{2}, (5.2)

where C1C_{1} is a constants and independent from t[0,T]t\in[0,T]. Furthermore, we assume that KpLσC1<1K_{p}L_{\sigma}\sqrt{C_{1}}<1.

Then, FBSDE (2.1) admits a unique LpL^{p} (p>2p>2) solution with t=0t=0, and

E[sup0sT|Xs0,ξ|p+sup0sT|Ys0,ξ|p+(0T|Zs0,ξ|2ds)p2]C2(1+|ξ|p),E[sup0sT|Xs0,ξXs0,ξ|p+sup0sT|Ys0,ξYs0,ξ|p+(0T|Zs0,ξZs0,ξ|2ds)p2]C2|ξξ|p.\begin{array}[c]{llll}&E[\mathop{\rm sup}\limits_{0\leq s\leq T}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq T}|Y^{0,\xi}_{s}|^{p}+(\int_{0}^{T}|Z^{0,\xi}_{s}|^{2}\mathrm{d}s)^{\frac{p}{2}}]\leq{C}_{2}(1+|\xi|^{p}),&\\ &E[\mathop{\rm sup}\limits_{0\leq s\leq T}|X^{0,\xi}_{s}-X^{0,\xi^{\prime}}_{s}|^{p}+\mathop{\rm sup}\limits_{0\leq s\leq T}|Y^{0,\xi}_{s}-Y^{0,\xi^{\prime}}_{s}|^{p}+(\int_{0}^{T}|Z^{0,\xi}_{s}-Z^{0,\xi^{\prime}}_{s}|^{2}\mathrm{d}s)^{\frac{p}{2}}]\leq{C}_{2}|\xi-\xi^{\prime}|^{p}.&\\ \end{array}

Proof: Based on Assumptions (𝐇𝟐.1),(𝐇𝟓.1)(\mathbf{H2.1}),\ (\mathbf{H5.1}) and KpLσC1<1K_{p}L_{\sigma}\sqrt{C_{1}}<1, using Lemma 5.1, we can show that there exists δ>0\delta>0 such that

E[sup(i1)δsiδ|Xs0,ξ|p+sup(i1)δsiδ|Ys0,ξ|p+((i1)δiδ|Zs0,ξ|2𝑑s)p2(i1)δ]C^1(1+|X(i1)δ0,ξ|p),\begin{array}[c]{llll}&&E[\mathop{\rm sup}\limits_{(i-1)\delta\leq s\leq i\delta}|X^{0,\xi}_{s}|^{p}+\mathop{\rm sup}\limits_{(i-1)\delta\leq s\leq i\delta}|Y^{0,\xi}_{s}|^{p}+(\int_{(i-1)\delta}^{i\delta}|Z^{0,\xi}_{s}|^{2}ds)^{\frac{p}{2}}\mid\mathcal{F}_{(i-1)\delta}]\leq\hat{C}_{1}(1+|X^{0,\xi}_{(i-1)\delta}|^{p}),\\ \end{array}

where 1ik1\leq i\leq k, T=kδT=k\delta, and C^1\hat{C}_{1} depends on constants C1C_{1} and L,K,LσL,K,L_{\sigma} in Assumptions (𝐇𝟐.1),(𝐇𝟓.1)(\mathbf{H2.1}),\ (\mathbf{H5.1}). The following proof is the same as that in Theorem 2.1. Thus, we complete the proof. \qquad\qquad\Box

6 Conclusion

We studied whether an adapted L2L^{2}-solution of fully coupled FBSDEs is an adapted LPL^{P}-solution for some p>2p>2 which was proposed in Yong [26]. Based on the usual Lipschatiz (Lipschatiz constant of ZZ in diffusion term should be sufficiently small) and linear growth conditions on the coefficients, we established a uniform LpL^{p} estimations for fully coupled FBSDEs in different small time intervals. Then, we extend the small time interval LpL^{p} estimations to a global time interval. That is, for a given terminal time T>0T>0, we proved that the unique L2L^{2}-solution of fully coupled FBSDE is an LpL^{p}-solution with p>2p>2.

Based on the main results of this study, we further considered the fully coupled linear FBSDEs which are generalized by a linear quadratic optimal control problem, and established the LpL^{p} estimations for the fully coupled linear FBSDEs with random coefficients. We also improved the L2L^{2}-solution of fully coupled FBSDEs to the LpL^{p}-solution based on the ”decoupling random field” method.

References

  • Antonelli [1993] F. Antonelli. Backward-forward stochastic differential equations. Ann. Appl. Probab., 3:777–793, 1993.
  • Bismut [1973] J. M. Bismut. Conjugate convex functions in optimal stochastic control. Journal of Mathenmatical Analysis and Applications, 44:384–404, 1973.
  • Cvitanić and Zhang [2013] J. Cvitanić and J. Zhang. Contract theory in continuous-time models. Finance, 1–255:Springer Berlin Heidelberg, 2013.
  • Delarue [2002] F. Delarue. On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case. Stoch. Process. Appl., 99:209–286, 2002.
  • El Karoui et al. [1997] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations in finance. Math. Finance, 7:1–71, 1997.
  • Hu [2017] M. Hu. Stochastic global maximum principle for optimization with recursive utilities. Probab. Uncertain. Quant. Risk, 2:1–20, 2017.
  • Hu et al. [2018] M. Hu, S. Ji, and X. Xue. A global stochastic maximum principle for fully coupled forwardbackward stochastic systems. SIAM J. Control Optim., 56:4309–4335, 2018.
  • Hu and Peng [1995] Y. Hu and S. Peng. Solution of forward-backward stochastic differential equations. Probab. Theory Relat. Fields, 103:273–283, 1995.
  • Li and Wei [2014a] J. Li and Q. Wei. Optimal control problems of fully coupled FSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim., 52:1622–1662, 2014a.
  • Li and Wei [2014b] J. Li and Q. Wei. LpL^{p} estimates for fully coupled FBSDEs with jumps. Stochastic Process. Appl., 124:1582–1611, 2014b.
  • Ma and Yong [1999] J. Ma and J. Yong. Forward-backward stochastic differential equations and their applications. Lecture Notes in Mathematics, 1702:Springer, Berlin, 1999.
  • Ma et al. [1994] J. Ma, P. Protter, and J. Yong. Solving forward-backward stochastic differential equations explicitly-a four step scheme. Probab. Theory Relat. Fields, 98:339–359, 1994.
  • Ma et al. [2012] J. Ma, H. Yin, and J. Zhang. On the non-markovian forward-backward sdes and backward stochastic PDEs. Stoch. Process. Appl., 122:3980–4004, 2012.
  • Ma et al. [2015] J. Ma, Z. Wu, D. Zhang, and J. Zhang. On wellposedness of forward backward SDEs a unified approach. Ann. Appl. Probab., 25:2168–2214, 2015.
  • Pardoux and Peng [1990] E. Pardoux and S. Peng. Adapted solutions of backward stochastic equations. Systerm and Control Letters, 14:55–61, 1990.
  • Pardoux and Peng [1992] E. Pardoux and S. Peng. Backward stochastic equations and quasilinear parabolic partial differential equation, in: B. l. rozuvskii and r. b. soeers (eds). Notes Control Inf. Sci. Berlin Heidelberg New York: Springer, 176:200–217, 1992.
  • Pardoux and Tang [1999] E. Pardoux and S. Tang. Forward-backward stochastic differential equations and quasilinear parabolic pdes. Probab. Theory Relat. Fields, 114:123–150, 1999.
  • Peng [1991] S. Peng. Probabilistic interpretation for systems of quaslinear parabolic partial differential equation. Stochastic, 37:61–74, 1991.
  • Peng [2010] S. Peng. Backward stochastic differential equation, nonlinear expectation and their application. Proceedings of the International congress of Mathematicians Hyderabad, India, 2010.
  • Peng and Wu [1999] S. Peng and Z. Wu. Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim., 37:825–843, 1999.
  • Sun et al. [2016] J. Sun, X. Li, and J. Yong. Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems. SIAM J. Control Optim., 54:2274–2308, 2016.
  • Wu et al. [2018] Z. Wu, B. Xie, and Z. Yu. Probabilistic interpretation for a system of quasilinear parabolic partial differential-algebraic equations: the classical solution. submitted, 2018.
  • Xie and Yu [2019] B. Xie and Z. Yu. An exploration of L-theory for forward-backward stochastic differential equations with random coefficients on small durations. Journal of Mathematical Analysis and Applications, 483:123642, 2019.
  • Yong [1997] J. Yong. Finding adapted solutions of forward-backward stochastic differential equations: method of continuation. Probab. Theory Relat. Fields, 107:537–572, 1997.
  • Yong [2010] J. Yong. Forward backward stochastic differential equations with mixed initial-terminal conditions. Trans. Amer. Math. Soc., 362:1047–1096, 2010.
  • Yong [2020] J. Yong. LpL^{p}-theory for forward-backward stochastic differential equations. Stochastic Modeling and Control Banach Center Publications, 122:255–286, 2020.
  • Zhang [2006] J. Zhang. The well-posedness of FBSDEs. Discrete Contin. Dyn. Syst. Ser. B, 6:927–940, 2006.