This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lower bounds for negative moments of Dirichlet LL-functions to a fixed modulus

Peng Gao School of Mathematical Sciences, Beihang University, Beijing 100191, China [email protected]
Abstract.

We establish lower bounds for the 2k2k-th moment of central values of the family of primitive Dirichlet LL-functions to a fixed prime modulus for all real k<0k<0, assuming the non-vanishing of these LL-values.

Mathematics Subject Classification (2020): 11M06

Keywords: lower bounds, negative moments, Dirichlet LL-functions

1. Introduction

The generalized Riemann hypothesis (GRH) asserts that all non-trivial zeros of Dirichlet LL-functions can be written as ρ=1/2+iγ\rho=1/2+i\gamma with γ\gamma\in\mathbb{R}. Moreover, it is believed that there are no \mathbb{Q}-linear relations among the non-negative γ\gamma’s. In particular, this implies that L(12,χ)0L(\tfrac{1}{2},\chi)\neq 0 for all primitive Dirichlet characters χ\chi and it is known as a conjecture of S. Chowla [chow] when χ\chi is quadratic.

One way to investigate the non-vanishing problem is to evaluate the one-level densities of low-lying zeros of families of LL-functions. In fact, the density conjecture of N. Katz and P. Sarnak [KS1, K&S] implies that L(1/2,χ)0L(1/2,\chi)\neq 0 for almost all primitive Dirichlet LL-functions. Computing essentially the one-level density of low-lying zeros of the corresponding families of Dirichlet LL-functions for test functions whose Fourier transforms being supported in (2,2)(-2,2), M. R. Murty [Murty] showed that under GRH, at least 50%50\% of the primitive Dirichlet LL-functions do not vanish at the central point. See also the work of H. P. Hughes and Z. Rudnick In [HuRu] regarding the one-level density of low-lying zeros of the family of primitive Dirichlet LL-functions to a fixed prime modulus.

Another way to address whether L(12,χ)=0L(\tfrac{1}{2},\chi)=0 or not is to study moments of families of LL-functions. In [BM], B. Balasubramanian and V. K. Murty showed that L(1/2,χ)0L(1/2,\chi)\neq 0 for at least 4%4\% of Dirichlet characters χ\chi to a fixed modulus qq by evaluating the first and second mollified moments of L(1/2,χ)L(1/2,\chi). For a prime qq, this proportion was improved to 1/31/3 by H. Iwaniec and P. Sarnak [I&S], to 34.11%34.11\% by H. M. Bui [Bui], to 3/83/8 by R. Khan and H. T. Ngo [KN], and to 5/135/13 by R. Khan, D. Milićević and H. T. Ngo [KMN22].

Because of the important role played by moments of LL-functions concerning the non-vanishing issue, a considerable amount of work has been done in this direction. For the family of Dirichlet LL-functions to a fixed modulus q2(mod4)q\not\equiv 2\pmod{4} (to ensure primitive Dirichlet characters modulo qq exist), it is widely believed that (see [R&Sound]) for all real k0k\geq 0,

(1.1) χ(modq)|L(12,χ)|2kCkϕ(q)(logq)k2,\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\sim C_{k}\phi^{*}(q)(\log q)^{k^{2}},

where the numbers CkC_{k} are explicit constants, ϕ(q)\phi^{*}(q) denotes the number of primitive characters modulo qq and where we denote \sideset{}{{}^{*}}{\sum} the sum over primitive Dirichlet characters modulo qq throughout the paper.

The formula given in (1.1) was conjectured by J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein and N. C. Snaith in [CFKRS] for all positive integral values of kk and is well-known for k=1k=1. The case k=2k=2 was established by D. R. Heath-Brown [HB81] for almost all qq and was later shown to hold for all qq by K. Soundararajan [Sound2007]. Subsequent improvements on the error terms in Soundararajan’s result can be found in [Young2011, BFKMM1, BFKMM, Wu2020, BPRZ].

Although it is challenging to prove (1.1) even for integers k3k\geq 3, much progress has been made for building upper and lower bounds of the conjectured order of magnitude for the expression on the left-hand side of (1.1). In fact, there are now several systematic approaches towards establishing sharp lower and upper bounds. Notably, there are the upper bounds principle due to M. Radziwiłł and K. Soundararajan [Radziwill&Sound] as well as the lower bounds principle due to W. Heap and K. Soundararajan [H&Sound]. Other methods can be found in [Sound01, HB2010, Harper, R&Sound1, Radziwill&Sound1, C&L, Gao2024-6]. These results together imply that for large prime qq and any real number k0k\geq 0, we have

(1.2) χ(modq)|L(12,χ)|2kϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\asymp\phi^{*}(q)(\log q)^{k^{2}}.

Here we note that one needs to assume GRH in order to show that χ(modq)|L(12,χ)|2kkϕ(q)(logq)k2\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\ll_{k}\phi^{*}(q)(\log q)^{k^{2}} for k>1k>1.

As the order of magnitude for the non-negative moments of the family of Dirichlet LL-functions to a fixed prime modulus are established in (1.2), it is natural to turn to the negative moments of this family and we assume that L(12,χ)0L(\tfrac{1}{2},\chi)\neq 0 for each χ\chi in the family in order for negative powers of |L(12,χ)||L(\tfrac{1}{2},\chi)| to be meaningful. An analogue case for the family of quadratic Dirichlet LL-functions has been considered by the author in [Gao2022-1]. As already being pointed out in [Gao2022-1], the behaviour of the negative moments may be more difficult to predict compared to that of the positive ones. One can also see this from the case β=2\beta=2 of [FK, Corollary 1], where computations by P. J. Forrester and J. P. Keating based on random matrix theory suggests certain phase changes in the asymptotic formulas for the 2k2k-th moment of the family of Dirichlet LL–functions to a fixed modulus when 2k=(2j1)2k=-(2j-1) for any positive integer jj.

In this paper, we establish lower bounds for negative moments of the family of primitive Dirichlet LL-functions to a fixed prime modulus. Our result is as follows.

Theorem 1.1.

Let qq be a large prime number and assume that L(12,χ)0L(\tfrac{1}{2},\chi)\neq 0 for any primitive Dirichlet character χ(modq)\chi\pmod{q}. Then we have for any real number k<0k<0,

χ(modq)|L(12,χ)|2kkϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\gg_{k}\phi^{*}(q)(\log q)^{k^{2}}.

We note that if one interprets 02k=+0^{2k}=+\infty for k<0k<0, then the statement of Theorem 1.1 is still valid without the assumption that L(12,χ)0L(\tfrac{1}{2},\chi)\neq 0. We shall derive Theorem 1.1 by applying a variant of the lower bounds principle of W. Heap and K. Soundararajan [H&Sound]. Such an approach has already been employed by W. Heap, J. Li and J. Zhao [HLZ], as well as by P. Gao and L. Zhao [G&Zhao2023] to study lower bounds of discrete negative moments of the derivative of the Riemann zeta function ζ(s)\zeta(s) at non-trivial zeros. We expect that the bounds given in Theorem 1.1 are sharp for 1<2k<0-1<2k<0, by taking account of the prediction in [FK] based on random matrix theory .

2. Proof of Theorem 1.1

2.1. Setup

For any real number \ell, we let =min{m:m}\lceil\ell\rceil=\min\{m\in\mathbb{Z}:\ell\leq m\} be the celing function of \ell. We define a sequence of even natural numbers {j}1jR\{\ell_{j}\}_{1\leq j\leq R} such that 1=2Nloglogq\ell_{1}=2\lceil N\log\log q\rceil and j+1=2Nlogj\ell_{j+1}=2\lceil N\log\ell_{j}\rceil for j1j\geq 1, where N,MN,M are two large natural numbers depending on kk only, and where RR is defined to be the largest natural number satisfying R>10M\ell_{R}>10^{M}. We choose MM large enough to ensure that j>j+12\ell_{j}>\ell_{j+1}^{2} for all 1jR11\leq j\leq R-1. It follows from this that

(2.1) j=1R1j2R.\displaystyle\sum^{R}_{j=1}\frac{1}{\ell_{j}}\leq\frac{2}{\ell_{R}}.

Let P1{P}_{1} be the set of odd primes not exceeding q1/12q^{1/\ell_{1}^{2}} and let Pj{P_{j}} be the set of primes lying in the interval (q1/j12,q1/j2](q^{1/\ell_{j-1}^{2}},q^{1/\ell_{j}^{2}}] for 2jR2\leq j\leq R. We write for each 1jR1\leq j\leq R,

𝒫j(χ)=pPj1pχ(p),𝒬j(χ,k)=(12(1+|k|)𝒫j(χ)j)(2k/(1k))j.{\mathcal{P}}_{j}(\chi)=\sum_{p\in P_{j}}\frac{1}{\sqrt{p}}\chi(p),\quad{\mathcal{Q}}_{j}(\chi,k)=\Big{(}\frac{12(1+|k|){\mathcal{P}}_{j}(\chi)}{\ell_{j}}\Big{)}^{(2-k/(1-k))\ell_{j}}.

We further define 𝒬R+1(χ,k)=1{\mathcal{Q}}_{R+1}(\chi,k)=1.

We define for any non-negative integer \ell and any complex number xx,

E(x)=j=0xjj!.E_{\ell}(x)=\sum_{j=0}^{\ell}\frac{x^{j}}{j!}.

Further, we define for each 1jR1\leq j\leq R and any real number α\alpha,

(2.2) 𝒩j(χ,α)=Ej(α𝒫j(χ)),𝒩(χ,α)=j=1R𝒩j(χ,α).\displaystyle{\mathcal{N}}_{j}(\chi,\alpha)=E_{\ell_{j}}(\alpha{\mathcal{P}}_{j}(\chi)),\quad\mathcal{N}(\chi,\alpha)=\prod_{j=1}^{R}{\mathcal{N}}_{j}(\chi,\alpha).

Similarly, we define for each 1jR1\leq j\leq R and any real number α\alpha,

(2.3) j(χ,α)=Ej(α𝒫j(χ)),(χ,α)=j=1Rj(χ,α).\displaystyle{\mathcal{M}}_{j}(\chi,\alpha)=E_{\ell_{j}}(\alpha\Re{\mathcal{P}}_{j}(\chi)),\quad\mathcal{M}(\chi,\alpha)=\prod_{j=1}^{R}{\mathcal{M}}_{j}(\chi,\alpha).

We now present a variant in our setting of the lower bounds principle of W. Heap and K. Soundararajan [H&Sound]. To do so, we first note that as j\ell_{j} is even for each jj, it follows from [Radziwill&Sound, Lemma 1] that j(χ,α)>0{\mathcal{M}}_{j}(\chi,\alpha)>0 for any real α\alpha, which then implies that (χ,α)>0\mathcal{M}(\chi,\alpha)>0 as well. Moreover, it follows from [Gao2021-2, Lemma 4.1] that for any real number α\alpha,

(χ,α)(χ,α)1.\displaystyle\mathcal{M}(\chi,\alpha)\mathcal{M}(\chi,-\alpha)\geq 1.

We apply the above to see for any c>0c>0,

(2.4) χ(modq)|𝒩(χ,k)|2χ(modq)|𝒩(χ,k)|2((χ,k1)(χ,1k))c=χ(modq)L(12,χ)c(L(12,χ)(χ,k1))c|𝒩(χ,k)|2(χ,1k)c.\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\Big{|}\mathcal{N}(\chi,k)\Big{|}^{2}\leq&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\Big{|}\mathcal{N}(\chi,k)\Big{|}^{2}\Big{(}\mathcal{M}(\chi,k-1)\mathcal{M}(\chi,1-k)\Big{)}^{c}\\ =&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\frac{1}{2},\chi)^{-c}\cdot\big{(}L(\frac{1}{2},\chi)\mathcal{M}(\chi,k-1)\big{)}^{c}\cdot\Big{|}\mathcal{N}(\chi,k)\Big{|}^{2}\mathcal{M}(\chi,1-k)^{c}.\end{split}

As k<0k<0, we fix a constant 0<c<2k/(1k)0<c<-2k/(1-k) satisfying

(2.5) 0<c2c2k<1.\displaystyle\begin{split}&0<\frac{c}{2}-\frac{c}{2k}<1.\end{split}

We then apply Hölder’s inequality with exponents 2k/c,2/c,(1+(1k)c/(2k))1-2k/c,2/c,(1+(1-k)c/(2k))^{-1} to the right-hand side expression in (2.4) to see that

(2.6) χ(modq)|𝒩(χ,k)|2(χ(modq)|L(12,χ)|2k)c/(2k)(χ(modq)|L(12,χ)|2|(χ,k1)|2)c/2×(χ(modq)|𝒩(χ,k)2(χ,1k)c|(1+(1k)c/(2k))1)1+(1k)c/(2k).\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\Big{|}\mathcal{N}(\chi,k)\Big{|}^{2}\leq&\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\Big{)}^{-c/(2k)}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2}|\mathcal{M}(\chi,k-1)|^{2}\Big{)}^{c/2}\\ &\times\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\Big{|}\mathcal{N}(\chi,k)^{2}\mathcal{M}(\chi,1-k)^{c}\Big{|}^{(1+(1-k)c/(2k))^{-1}}\Big{)}^{1+(1-k)c/(2k)}.\end{split}

In particular, we set c=k/(1k)c=-k/(1-k) to see that the condition (2.5) is satisfied. It then follows from (2.6) that we have

(2.7) χ(modq)|𝒩(χ,k)|2(χ(modq)|L(12,χ)|2k)1/(2(1k))(χ(modq)|L(12,χ)|2|(χ,k1)|2)k/(2(1k))×(χ(modq)|𝒩(χ,k)2(χ,1k)k/(1k)|2)1/2.\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\Big{|}\mathcal{N}(\chi,k)\Big{|}^{2}\leq&\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\Big{)}^{1/(2(1-k))}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2}|\mathcal{M}(\chi,k-1)|^{2}\Big{)}^{-k/(2(1-k))}\\ &\times\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\Big{|}\mathcal{N}(\chi,k)^{2}\mathcal{M}(\chi,1-k)^{-k/(1-k)}\Big{|}^{2}\Big{)}^{1/2}.\end{split}

We deduce from (2.7) that in order to prove Theorem 1.1, it suffices to establish the following three propositions.

Proposition 2.2.

With the notation as above, we have

χ(modq)|𝒩(χ,k)|2kϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\big{|}\mathcal{N}(\chi,k)\big{|}^{2}\gg_{k}\phi^{*}(q)(\log q)^{k^{2}}.
Proposition 2.3.

With the notation as above, we have

χ(modq)|𝒩(χ,k)2(χ,1k)k/(1k)|2kϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\Big{|}\mathcal{N}(\chi,k)^{2}\mathcal{M}(\chi,1-k)^{-k/(1-k)}\Big{|}^{2}\ll_{k}\phi^{*}(q)(\log q)^{k^{2}}.
Proposition 2.4.

With the notation as above, we have

χ(modq)|L(12,χ)(χ,k1)|2kϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\big{|}L(\tfrac{1}{2},\chi){\mathcal{M}}(\chi,k-1)\big{|}^{2}\ll_{k}\phi^{*}(q)(\log q)^{k^{2}}.

We shall prove the above Propositions in the rest of the paper.

2.5. Proof of Proposition 2.2

We denote w(n)w(n) the multiplicative function satisfying w(pα)=α!w(p^{\alpha})=\alpha! for prime powers pαp^{\alpha}. We also define functions bj(n),1jRb_{j}(n),1\leq j\leq R such that bj(n)=1b_{j}(n)=1 when Ω(n)j\Omega(n)\leq\ell_{j} and the primes dividing nn are all from the interval PjP_{j}, where Ω(n)\Omega(n) denotes the number of prime powers dividing nn. For other values of nn, we set bj(n)=0b_{j}(n)=0. Using these notations, we see that for any real number α\alpha,

(2.8) 𝒩j(χ,α)=nj1njαΩ(nj)w(nj)bj(nj)χ(nj),1jR.{\mathcal{N}}_{j}(\chi,\alpha)=\sum_{n_{j}}\frac{1}{\sqrt{n_{j}}}\frac{\alpha^{\Omega(n_{j})}}{w(n_{j})}b_{j}(n_{j})\chi(n_{j}),\quad 1\leq j\leq R.

Observe that each 𝒩j(χ,α){\mathcal{N}}_{j}(\chi,\alpha) is a short Dirichlet polynomial as bj(nj)=0b_{j}(n_{j})=0 unless nj(q1/j2)j=q1/jn_{j}\leq(q^{1/\ell_{j}^{2}})^{\ell_{j}}=q^{1/\ell_{j}}. This together with (2.1) implies that 𝒩(χ,k){\mathcal{N}}(\chi,k) is also a short Dirichlet polynomial whose lengths does not exceed q1/1++1/R<q2/10Mq^{1/\ell_{1}+\ldots+1/\ell_{R}}<q^{2/10^{M}}. Also, we see from (2.8) that for each χ\chi modulo qq, including the case with χ\chi being the principal character χ0\chi_{0} modulo qq,

|𝒩(χ,k)|2q2(1/1++1/R)<q4/10M.\displaystyle|{\mathcal{N}}(\chi,k)|^{2}\ll q^{2(1/\ell_{1}+\ldots+1/\ell_{R})}<q^{4/10^{M}}.

It follows from this that we have

(2.9) χ(modq)|𝒩(χ,k)|2χ(modq)|𝒩(χ,k)|2+O(q4/10M).\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|{\mathcal{N}}(\chi,k)|^{2}\geq\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|{\mathcal{N}}(\chi,k)|^{2}+O(q^{4/10^{M}}).\end{split}

Denote ϕ(q)\phi(q) the Euler totient function, we recall that the orthogonality relation for Dirichlet characters (see [MVa1, Corollary 4.5]) asserts

(2.10) χ(modq)χ(n)={φ(q)ifn1(modq),0otherwise.\displaystyle\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\chi(n)=\begin{cases}\varphi(q)\quad\text{if}\ n\equiv 1\pmod{q},\\ 0\quad\text{otherwise}.\end{cases}

As the length of the Dirichlet series 𝒩(χ,k){\mathcal{N}}(\chi,k) is q\leq q, we deduce from (2.10) that only the diagonal terms in the last sum of (2.9) survive. Thus, we have

χ(modq)|𝒩(χ,k)|2ϕ(q)j=1R(njk2Ω(nj)njw2(nj)bj(nj))ϕ(q)j=1R(njk2Ω(nj)njw2(nj)bj(nj))ϕ(q)(logq)k2,\displaystyle\begin{split}&\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|{\mathcal{N}}(\chi,k)|^{2}\geq\phi(q)\prod^{R}_{j=1}\Big{(}\sum_{n_{j}}\frac{k^{2\Omega(n_{j})}}{n_{j}w^{2}(n_{j})}b_{j}(n_{j})\Big{)}\geq\phi^{*}(q)\prod^{R}_{j=1}\Big{(}\sum_{n_{j}}\frac{k^{2\Omega(n_{j})}}{n_{j}w^{2}(n_{j})}b_{j}(n_{j})\Big{)}\gg\phi^{*}(q)(\log q)^{k^{2}},\end{split}

where the last estimation above follows from [Gao2024-6, (6.3)] and the treatments given in [Gao2024-6, Section 6]. This together with (2.9) now implies the assertions of Proposition 2.2.

2.6. Proof of Proposition 2.3

We notice that it follows from [Gao2024-6, (3.5)] that we have for |z|aK/10|z|\leq aK/10 with 0<a10<a\leq 1,

(2.11) |r=0Kzrr!ez||z|KK!(ae10)K.\displaystyle\Big{|}\sum_{r=0}^{K}\frac{z^{r}}{r!}-e^{z}\Big{|}\leq\frac{|z|^{K}}{K!}\leq\Big{(}\frac{ae}{10}\Big{)}^{K}.

For any fixed 1jR1\leq j\leq R, we apply (2.11) with z=k𝒫j(χ),K=jz=k{\mathcal{P}}_{j}(\chi),K=\ell_{j} and a=1a=1 to see that when |𝒫j(χ)|j/(10(1+|k|))|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/(10(1+|k|)),

(2.12) 𝒩j(χ,k)=\displaystyle{\mathcal{N}}_{j}(\chi,k)= exp(k𝒫j(χ))(1+O(exp(|k𝒫j(χ)|)(e10)j)=exp(k𝒫j(χ))(1+O(ej)).\displaystyle\exp(k{\mathcal{P}}_{j}(\chi))\Big{(}1+O\Big{(}\exp(|k{\mathcal{P}}_{j}(\chi)|)\Big{(}\frac{e}{10}\Big{)}^{\ell_{j}}\Big{)}=\exp(k{\mathcal{P}}_{j}(\chi))\Big{(}1+O\Big{(}e^{-\ell_{j}}\Big{)}\Big{)}.

Similarly, when |𝒫j(χ)|j/10(1+|k|)|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/10(1+|k|), we have

(2.13) j(χ,1k)=\displaystyle{\mathcal{M}}_{j}(\chi,1-k)= exp((1k)𝒫j(χ))(1+O(ej)).\displaystyle\exp((1-k)\Re{\mathcal{P}}_{j}(\chi))\Big{(}1+O\Big{(}e^{-\ell_{j}}\Big{)}\Big{)}.

It follows from (2.12) and (2.13) that when |𝒫j(χ)|j/(10(1+|k|))|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/(10(1+|k|)),

(2.14) |𝒩j(χ,k)2j(χ,1k)k/(1k)|2=\displaystyle\Big{|}\mathcal{N}_{j}(\chi,k)^{2}\mathcal{M}_{j}(\chi,1-k)^{-k/(1-k)}\Big{|}^{2}= exp(2k(𝒫j(χ)))(1+O(ej))=|𝒩j(χ,k)|2(1+O(ej)).\displaystyle\exp(2k\Re({\mathcal{P}}_{j}(\chi)))\Big{(}1+O\big{(}e^{-\ell_{j}}\big{)}\Big{)}=|{\mathcal{N}}_{j}(\chi,k)|^{2}\Big{(}1+O\big{(}e^{-\ell_{j}}\big{)}\Big{)}.

On the other hand, we notice that when |𝒫j(χ)|j/(10(1+|k|))|{\mathcal{P}}_{j}(\chi)|\geq\ell_{j}/(10(1+|k|)),

(2.15) |𝒩j(χ,k)|r=0j|k𝒫j(χ)|rr!|𝒫j(χ)|jr=0j(10(1+|k|)j)jr|k|rr!(12(1+|k|)|𝒫j(χ)|j)j.\displaystyle\begin{split}|{\mathcal{N}}_{j}(\chi,k)|&\leq\sum_{r=0}^{\ell_{j}}\frac{|k{\mathcal{P}}_{j}(\chi)|^{r}}{r!}\leq|{\mathcal{P}}_{j}(\chi)|^{\ell_{j}}\sum_{r=0}^{\ell_{j}}\Big{(}\frac{10(1+|k|)}{\ell_{j}}\Big{)}^{\ell_{j}-r}\frac{|k|^{r}}{r!}\leq\Big{(}\frac{12(1+|k|)|{\mathcal{P}}_{j}(\chi)|}{\ell_{j}}\Big{)}^{\ell_{j}}.\end{split}

Notice that the same bound above holds for |j(χ,1k)||{\mathcal{M}}_{j}(\chi,1-k)| as well. We then deduce from these estimations that when |𝒫j(χ)|j/(10(1+|k|))|{\mathcal{P}}_{j}(\chi)|\geq\ell_{j}/(10(1+|k|)), we have

(2.16) |𝒩j(χ,k)2j(χ,1k)k/(1k)|2\displaystyle\Big{|}\mathcal{N}_{j}(\chi,k)^{2}\mathcal{M}_{j}(\chi,1-k)^{-k/(1-k)}\Big{|}^{2} (12(1+|k|)|𝒫j(χ)|j)2(2k/(1k))j|𝒬j(χ,k)|2.\displaystyle\leq\Big{(}\frac{12(1+|k|)|{\mathcal{P}}_{j}(\chi)|}{\ell_{j}}\Big{)}^{2(2-k/(1-k))\ell_{j}}\leq|{\mathcal{Q}}_{j}(\chi,k)|^{2}.

It follows (2.2), (2.3), (2.14) and (2.16) that we have

χ(modq)|𝒩(χ,k)2(χ,1k)k/(1k)|2\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\Big{|}\mathcal{N}(\chi,k)^{2}\mathcal{M}(\chi,1-k)^{-k/(1-k)}\Big{|}^{2}\ll χ(modq)j=1R(|𝒩j(χ,k)|2(1+O(ej))+|𝒬j(χ,k)|2)\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\Big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}\Big{(}1+O\big{(}e^{-\ell_{j}}\big{)}\Big{)}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\Big{)}
\displaystyle\ll χ(modq)j=1R(1+O(ej/2))j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2)\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\Big{(}1+O(e^{-\ell_{j}/2})\Big{)}\prod^{R}_{j=1}\Big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\Big{)}
\displaystyle\ll χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2),\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\Big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\Big{)},

where the last estimation above follows from the observation that the sum over ej/2e^{-\ell_{j}/2} converges. Now, a straightforward adaption of the proof of [Gao2024-6, Proposition 3.5] implies that the last expression above is ϕ(q)(logq)k2\ll\phi^{*}(q)(\log q)^{k^{2}}. This completes the proof of Proposition 2.3.

2.7. Proof of Proposition 2.4

Note that similar estimations for 𝒩j(χ,k){\mathcal{N}}_{j}(\chi,k) given in (2.12) and (2.15) are valid for j(χ,k1)\mathcal{M}_{j}(\chi,k-1) as well. We thus conclude that for each 1jR1\leq j\leq R,

|j(χ,k1)|2|𝒩j(χ,k1)|2(1+O(ej))+|𝒬j(χ,k)|2(1+O(ej))(|𝒩j(χ,k1)|2+|𝒬j(χ,k)|2).\displaystyle\begin{split}|{\mathcal{M}}_{j}(\chi,k-1)|^{2}\leq&|{\mathcal{N}}_{j}(\chi,k-1)|^{2}\Big{(}1+O\Big{(}e^{-\ell_{j}}\Big{)}\Big{)}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\\ \leq&\Big{(}1+O\Big{(}e^{-\ell_{j}}\Big{)}\Big{)}\Big{(}|{\mathcal{N}}_{j}(\chi,k-1)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\Big{)}.\end{split}

It follows that

(2.17) χ(modq)|L(12,χ)(χ,k1)|2χ(modq)j=1R(1+O(ej/2))|L(12,χ)|2j=1R(|𝒩j(χ,k1)|2+|𝒬j(χ,k)|2)χ(modq)|L(12,χ)|2j=1R(|𝒩j(χ,k1)|2+|𝒬j(χ,k)|2)S,Scχ(modq)|L(12,χ)|2jS,iSc|𝒩j(χ,k1)|2|𝒬i(χ,k)|2,\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\big{|}L(\tfrac{1}{2},\chi){\mathcal{M}}(\chi,k-1)\big{|}^{2}\leq&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\Big{(}1+O(e^{-\ell_{j}/2})\Big{)}\big{|}L(\tfrac{1}{2},\chi)\big{|}^{2}\prod^{R}_{j=1}\Big{(}|{\mathcal{N}}_{j}(\chi,k-1)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\Big{)}\\ \leq&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\big{|}L(\tfrac{1}{2},\chi)\big{|}^{2}\prod^{R}_{j=1}\Big{(}|{\mathcal{N}}_{j}(\chi,k-1)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\Big{)}\\ \leq&\sum_{S,S^{c}}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\big{|}L(\tfrac{1}{2},\chi)\big{|}^{2}\prod_{j\in S,i\in S^{c}}|{\mathcal{N}}_{j}(\chi,k-1)|^{2}|{\mathcal{Q}}_{i}(\chi,k)|^{2},\end{split}

where the sum S\sum_{S} is over all subsets SS of the set {1,,R}\{1,\cdots,R\} and where we denote ScS^{c} for the complement of SS in {1,,R}\{1,\cdots,R\}. Now, an inspection of the proof of [Gao2024-6, Proposition 3.4] implies that for any fixed such SS, we have

|L(12,χ)|2jS,iSc|𝒩j(χ,k1)|2|𝒬i(χ,k)|2exp(iSci2)ϕ(q)(logq)k2.\displaystyle\big{|}L(\tfrac{1}{2},\chi)\big{|}^{2}\prod_{j\in S,i\in S^{c}}|{\mathcal{N}}_{j}(\chi,k-1)|^{2}|{\mathcal{Q}}_{i}(\chi,k)|^{2}\ll\exp(-\sum_{i\in S^{c}}\frac{\ell_{i}}{2})\phi^{*}(q)(\log q)^{k^{2}}.

We deduce from this and (2.17) that

χ(modq)|L(12,χ)(χ,k1)|2j=1R(1+O(ej/2))ϕ(q)(logq)k2ϕ(q)(logq)k2.\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\big{|}L(\tfrac{1}{2},\chi){\mathcal{M}}(\chi,k-1)\big{|}^{2}\ll&\prod^{R}_{j=1}\Big{(}1+O(e^{-\ell_{j}/2})\Big{)}\phi^{*}(q)(\log q)^{k^{2}}\ll\phi^{*}(q)(\log q)^{k^{2}}.\end{split}

This establishes the desired estimation given in Proposition 2.4 and hence completes the proof.

Acknowledgments. The author is supported in part by NSFC grant 11871082.

References