This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lower Bound on the Optimal Access Bandwidth of (K+2,K,2K+2,K,2)-MDS Array Code with Degraded Read Friendly

Ting-Yi Wu1, Yunghsiang S. Han21, Zhengrui Li31, Bo Bai1, Gong Zhang1, Liang Chen1, Xiang Wu1

1Huawei Technologies Co., Ltd. 2Dongguan University of Technology 3University of Science and Technology of China

I Preliminary

Notation:

  • q{\mathcal{F}}_{q} denotes the field of size qq.

  • \emptyset denotes empty set.

  • [N]{1,2,3,,N}[N]\triangleq\{1,2,3,\ldots,N\} and [0][0]\triangleq\emptyset.

  • 𝕀[1001]{\mathbb{I}}\triangleq\begin{bmatrix}1&0\\ 0&1\end{bmatrix}.

  • 𝕆[0000]{\mathbb{O}}\triangleq\begin{bmatrix}0&0\\ 0&0\end{bmatrix}.

  • {[β10β20]:βiq for all i[2] and β1β20}{\mathcal{R}}\triangleq\left\{\begin{bmatrix}\beta_{1}&0\\ \beta_{2}&0\end{bmatrix}:\beta_{i}\in{\mathcal{F}}_{q}\mbox{ for all }i\in[2]\mbox{ and }\beta_{1}\beta_{2}\neq 0\right\}.

  • {[0β10β2]:βiq for all i[2] and β1β20}{\mathcal{L}}\triangleq\left\{\begin{bmatrix}0&\beta_{1}\\ 0&\beta_{2}\end{bmatrix}:\beta_{i}\in{\mathcal{F}}_{q}\mbox{ for all }i\in[2]\mbox{ and }\beta_{1}\beta_{2}\neq 0\right\}.

  • {𝔹=[β1β2β3β4]{𝕆}:βiq for all i[4]}{\mathcal{M}}\triangleq\left\{{\mathbb{B}}=\begin{bmatrix}\beta_{1}&\beta_{2}\\ \beta_{3}&\beta_{4}\end{bmatrix}\not\in\{{\mathcal{L}}\cup{\mathcal{R}}\cup{\mathbb{O}}\}:\beta_{i}\in{\mathcal{F}}_{q}\mbox{ for all }i\in[4]\right\}

  • inv{𝔹=[β1β2β3β4], and 𝔹 is invertible:βiq for all i[4]}{\mathcal{M}}_{\mathrm{inv}}\triangleq\left\{{\mathbb{B}}=\begin{bmatrix}\beta_{1}&\beta_{2}\\ \beta_{3}&\beta_{4}\end{bmatrix}\in{\mathcal{M}}\mbox{, and }{\mathbb{B}}\mbox{ is invertible}:\beta_{i}\in{\mathcal{F}}_{q}\mbox{ for all }i\in[4]\right\}

We let the parity-check matrix of the (K+2,KK+2,K)-MDS array be

=[𝕀𝕀𝕀𝔸1𝔸2𝔸N],{\mathbb{H}}=\begin{bmatrix}{\mathbb{I}}&{\mathbb{I}}&\cdots&{\mathbb{I}}\\ {\mathbb{A}}_{1}&{\mathbb{A}}_{2}&\cdots&{\mathbb{A}}_{N}\end{bmatrix}, (1)

where N=K+2N=K+2 and these upper identities make the degraded read friendly. To satisfy MDS property, [𝕀𝕀𝔸i𝔸j]\begin{bmatrix}{\mathbb{I}}&{\mathbb{I}}\\ {\mathbb{A}}_{i}&{\mathbb{A}}_{j}\end{bmatrix} must be invertible for any iji\neq j, which is equivalent to that (𝔸i+𝔸j)({\mathbb{A}}_{i}+{\mathbb{A}}_{j}) must be invertible [1] for any iji\neq j, For any node i[N]i\in[N], it stores two symbols as a vector α(i)[α1(i)α2(i)]\alpha^{(i)}\triangleq\begin{bmatrix}\alpha^{(i)}_{1}\\ \alpha^{(i)}_{2}\end{bmatrix}.

To repair the iith node, we have to find two check equations from the row space of {\mathbb{H}} in order to retrieve α(i)\alpha^{(i)}. Let 𝕄{\mathbb{M}} be a repair matrix of size 2×42\times 4, 𝕄{\mathbb{M}}{\mathbb{H}} denotes two check equations from the row space of {\mathbb{H}} such that

𝕄[12N],{\mathbb{M}}{\mathbb{H}}\triangleq\begin{bmatrix}{\mathbb{H}}_{1}&{\mathbb{H}}_{2}&\cdots&{\mathbb{H}}_{N}\end{bmatrix}, (2)

and

1α(1)+2α(2)++Nα(N)=[00],{\mathbb{H}}_{1}\alpha^{(1)}+{\mathbb{H}}_{2}\alpha^{(2)}+\cdots+{\mathbb{H}}_{N}\alpha^{(N)}=\begin{bmatrix}0\\ 0\end{bmatrix}, (3)

where i=𝕄[𝕀𝔸i]{\mathbb{H}}_{i}={\mathbb{M}}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix} for all i[N]i\in[N]. If 𝕄{\mathbb{M}} can be used to recover α(i)\alpha^{(i)}, we have to make sure that i{\mathbb{H}}_{i} is invertible and recover α(i)\alpha^{(i)} as

α(i)=i1[j[N]{i}jα(j)].\alpha^{(i)}={\mathbb{H}}_{i}^{-1}\left[\sum_{j\in[N]\setminus\{i\}}{\mathbb{H}}_{j}\alpha^{(j)}\right]. (4)

To be able to repair each node, we have to design the corresponding repair matrix for each α(i)\alpha^{(i)}. Since some repair matrices can be used to recover multiple nodes, i.e., 𝕄[𝕀𝔸i]{\mathbb{M}}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix} and 𝕄[𝕀𝔸j]{\mathbb{M}}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{j}\end{bmatrix} are both invertible for some iji\neq j, we are not restricted to find NN different repair matrices for recovering all NN nodes. Let RR be the number of repair matrices, 1RN1\leq R\leq N, and {(1),(2),,(R)}\{{\mathcal{I}}^{(1)},{\mathcal{I}}^{(2)},\ldots,{\mathcal{I}}^{(R)}\} be a partition of [N][N], a repair process of size RR is formed by RR repair matrices, 𝕄(1),𝕄(2),,𝕄(R){\mathbb{M}}^{(1)},{\mathbb{M}}^{(2)},\ldots,{\mathbb{M}}^{(R)}, where 𝕄(r){\mathbb{M}}^{(r)} can be used to recover α(i)\alpha^{(i)} is i(r)i\in{\mathcal{I}}^{(r)}. The formal definition of a repiar process of size RR is given below.

Definition 1.

A repair process PRP_{R} of RR repair matrices is defined as

PR{(𝕄(r),(r)):r[R]},P_{R}\triangleq\left\{\left({\mathbb{M}}^{(r)},{\mathcal{I}}^{(r)}\right):r\in[R]\right\}, (5)

such that (1){\mathcal{I}}^{(1)}, (2){\mathcal{I}}^{(2)}, \ldots, (R){\mathcal{I}}^{(R)} form a partition of [N][N] and 𝕄(r)[𝕀𝔸i]{\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix} is invertible for i(r)i\in{\mathcal{I}}^{(r)}.

We then explain the process of recovering α(i)\alpha^{(i)} by a PRP_{R}, where i(r)i\in{\mathcal{I}}^{(r)}. Let

𝕄(r)[1(r)2(r)N(r)],{\mathbb{M}}^{(r)}{\mathbb{H}}\triangleq\begin{bmatrix}{\mathbb{H}}^{(r)}_{1}&{\mathbb{H}}^{(r)}_{2}&\cdots&{\mathbb{H}}^{(r)}_{N}\end{bmatrix}, (6)

where i(r)=𝕄(r)[𝕀𝔸i]{\mathbb{H}}^{(r)}_{i}={\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix}. By Definition 1, i(r){\mathbb{H}}^{(r)}_{i} is invertible, therefore

α(i)=[i(r)]1[j[N]{i}j(r)α(j)].\alpha^{(i)}=\left[{\mathbb{H}}^{(r)}_{i}\right]^{-1}\left[\sum_{j\in[N]\setminus\{i\}}{\mathbb{H}}^{(r)}_{j}\alpha^{(j)}\right]. (7)
Definition 2.

The repair bandwidth for repairing node ii, where i(r)i\in{\mathcal{I}}^{(r)}, by using PRP_{R} is denoted by

Bi(PR)=j[N]{i}Bi,j(PR),B_{i}(P_{R})=\sum_{j\in[N]\setminus\{i\}}B_{i,j}(P_{R}), (8)

and

Bi,j(PR)={0,if i=j or j(r)=𝕆;1,if j(r) or j(r);2,otherwise.B_{i,j}(P_{R})=\begin{cases}0,&\mbox{if }i=j\mbox{ or }{\mathbb{H}}^{(r)}_{j}={\mathbb{O}};\\ 1,&\mbox{if }{\mathbb{H}}^{(r)}_{j}\in{\mathcal{L}}\mbox{ or }{\mathbb{H}}^{(r)}_{j}\in{\mathcal{R}};\\ 2,&\mbox{otherwise.}\end{cases} (9)

Note that Bi,j(PR)B_{i,j}(P_{R}) denotes the number of symbols needed to be download from jj to repair node ii by using repair process PRP_{R}.

Lemma 1.

Given a PRP_{R}, Bi,j(PR)=Bj,i(PR)=2B_{i,j}(P_{R})=B_{j,i}(P_{R})=2 if iji\neq j and i,j(r)i,j\in{\mathcal{I}}^{(r)} for r[R]r\in[R].

Proof:

By Definition 1, i(r){\mathbb{H}}^{(r)}_{i} and j(r){\mathbb{H}}^{(r)}_{j} are both invertible since i,j(r)i,j\in{\mathcal{I}}^{(r)}. Therefore, Bi,j(PR)=Bj,i(PR)=2B_{i,j}(P_{R})=B_{j,i}(P_{R})=2 by (9). ∎

Lemma 2.

Given a PRP_{R}, Bi(PR)=Bj(PR)B_{i}(P_{R})=B_{j}(P_{R}) when both i,j(r)i,j\in{\mathcal{I}}^{(r)} for some rr.

Proof:

By Definition 2, Bi(PR)=k[N]{i}Bi,k(PR)B_{i}(P_{R})=\sum_{k\in[N]\setminus\{i\}}B_{i,k}(P_{R}) and Bi,k(PR)=Bj,k(PR)B_{i,k}(P_{R})=B_{j,k}(P_{R}) for all k[N]{i,j}k\in[N]\setminus\{i,j\}. Since Bi,j(PR)=Bj,i(PR)B_{i,j}(P_{R})=B_{j,i}(P_{R}), we have

Bi(PR)\displaystyle B_{i}(P_{R}) =\displaystyle= k[N]{i}Bi,k(PR)\displaystyle\sum_{k\in[N]\setminus\{i\}}B_{i,k}(P_{R}) (10)
=\displaystyle= k[N]{i,j}Bi,k(PR)+Bi,j(PR)\displaystyle\sum_{k\in[N]\setminus\{i,j\}}B_{i,k}(P_{R})+B_{i,j}(P_{R}) (11)
=\displaystyle= k[N]{i,j}Bj,k(PR)+Bj,i(PR)\displaystyle\sum_{k\in[N]\setminus\{i,j\}}B_{j,k}(P_{R})+B_{j,i}(P_{R}) (12)
=\displaystyle= k[N]{j}Bj,k(PR)=Bj(PR).\displaystyle\sum_{k\in[N]\setminus\{j\}}B_{j,k}(P_{R})=B_{j}(P_{R}). (13)

From Lemma 2, we have Bi(PR)=Bj(PR)B_{i}(P_{R})=B_{j}(P_{R}) for all i,j(r)i,j\in{\mathcal{I}}^{(r)} and iji\neq j. Hence, we define B(r)(PR)B^{(r)}(P_{R}) as below.

Definition 3.

Let B(r)(PR)B^{(r)}(P_{R}) be the repair bandwidth for repairing the node in (r){\mathcal{I}}^{(r)}, i.e., B(r)(PR)=Bi(PR)B^{(r)}(P_{R})=B_{i}(P_{R}) for all i(r)i\in{\mathcal{I}}^{(r)}.

Lemma 3.

The total repair bandwidth of PRP_{R} is B(PR)i[N]Bi(PR)=r[R]|(r)|B(r)(PR)B(P_{R})\triangleq\sum_{i\in[N]}B_{i}(P_{R})=\sum_{r\in[R]}|{\mathcal{I}}^{(r)}|B^{(r)}(P_{R}), where |(r)||{\mathcal{I}}^{(r)}| is the number of distinct elements in set (r){\mathcal{I}}^{(r)}.

Proof:

By Definition 3,

i[N]Bi(PR)\displaystyle\sum_{i\in[N]}B_{i}(P_{R}) =\displaystyle= r[R]i(r)Bi(PR)\displaystyle\sum_{r\in[R]}\sum_{i\in{\mathcal{I}}^{(r)}}B_{i}(P_{R}) (14)
=\displaystyle= r[R]i(r)B(r)(PR)\displaystyle\sum_{r\in[R]}\sum_{i\in{\mathcal{I}}^{(r)}}B^{(r)}(P_{R}) (15)
=\displaystyle= r[R]|(r)|B(r)(PR).\displaystyle\sum_{r\in[R]}|{\mathcal{I}}^{(r)}|B^{(r)}(P_{R}). (16)

Example.
  • =[101010010101200408035191]{\mathbb{H}}=\begin{bmatrix}1&0&1&0&1&0\\ 0&1&0&1&0&1\\ 2&0&0&4&0&8\\ 0&3&5&1&9&1\end{bmatrix}, where N=3N=3.

  • P2=(𝕄(r),(r))r[2]P_{2}=\left({\mathbb{M}}^{(r)},{\mathcal{I}}^{(r)}\right)_{r\in[2]}, where

    𝕄(1)=[10000101]{\mathbb{M}}^{(1)}=\begin{bmatrix}1&0&0&0\\ 0&1&0&1\end{bmatrix} and (1)={1}{\mathcal{I}}^{(1)}=\{1\},

    𝕄(2)=[01000001]{\mathbb{M}}^{(2)}=\begin{bmatrix}0&1&0&0\\ 0&0&0&1\end{bmatrix} and (2)={2,3}{\mathcal{I}}^{(2)}=\{2,3\}.

  • 𝕄(1)=[1(1)2(1)3(1)]=[101010025090][𝔹12]{\mathbb{M}}^{(1)}{\mathbb{H}}=\begin{bmatrix}{\mathbb{H}}^{(1)}_{1}&{\mathbb{H}}^{(1)}_{2}&{\mathbb{H}}^{(1)}_{3}\end{bmatrix}=\begin{bmatrix}1&0&1&0&1&0\\ 0&2&5&0&9&0\end{bmatrix}\triangleq\begin{bmatrix}{\mathbb{B}}&{\mathbb{R}}_{1}&{\mathbb{R}}_{2}\end{bmatrix}, where 𝔹inv{\mathbb{B}}\in{\mathcal{M}}_{\mathrm{inv}} and i{\mathbb{R}}_{i}\in{\mathcal{R}} for all i[2]i\in[2].

    𝕄(2)=[1(2)2(2)3(2)]=[010101035191][𝕃𝔹1𝔹2]{\mathbb{M}}^{(2)}{\mathbb{H}}=\begin{bmatrix}{\mathbb{H}}^{(2)}_{1}&{\mathbb{H}}^{(2)}_{2}&{\mathbb{H}}^{(2)}_{3}\end{bmatrix}=\begin{bmatrix}0&1&0&1&0&1\\ 0&3&5&1&9&1\end{bmatrix}\triangleq\begin{bmatrix}{\mathbb{L}}&{\mathbb{B}}_{1}&{\mathbb{B}}_{2}\end{bmatrix}, where 𝔹iinv{\mathbb{B}}_{i}\in{\mathcal{M}}_{\mathrm{inv}} for all i[2]i\in[2] and 𝕃{\mathbb{L}}\in{\mathcal{R}}.

  • Repairing node 1:

    1(1)α(1)+2(1)α(2)+3(1)α(3)=[00]\displaystyle{\mathbb{H}}^{(1)}_{1}\alpha^{(1)}+{\mathbb{H}}^{(1)}_{2}\alpha^{(2)}+{\mathbb{H}}^{(1)}_{3}\alpha^{(3)}=\begin{bmatrix}0\\ 0\end{bmatrix} \displaystyle\Rightarrow α(1)=[1(1)]1(2(1)α(2)+3(1)α(3))\displaystyle\alpha^{(1)}=\begin{bmatrix}{\mathbb{H}}^{(1)}_{1}\end{bmatrix}^{-1}\left({\mathbb{H}}^{(1)}_{2}\alpha^{(2)}+{\mathbb{H}}^{(1)}_{3}\alpha^{(3)}\right) (18)
    \displaystyle\Rightarrow α(1)=[1002]1([1050]α(2)+[1090]α(3)).\displaystyle\alpha^{(1)}=\begin{bmatrix}1&0\\ 0&2\end{bmatrix}^{-1}\left(\begin{bmatrix}1&0\\ 5&0\end{bmatrix}\alpha^{(2)}+\begin{bmatrix}1&0\\ 9&0\end{bmatrix}\alpha^{(3)}\right). (19)
  • Repairing node 2:

    1(2)α(1)+2(2)α(2)+3(2)α(3)=[00]\displaystyle{\mathbb{H}}^{(2)}_{1}\alpha^{(1)}+{\mathbb{H}}^{(2)}_{2}\alpha^{(2)}+{\mathbb{H}}^{(2)}_{3}\alpha^{(3)}=\begin{bmatrix}0\\ 0\end{bmatrix} \displaystyle\Rightarrow α(2)=[2(2)]1(1(2)α(1)+3(2)α(3))\displaystyle\alpha^{(2)}=\begin{bmatrix}{\mathbb{H}}^{(2)}_{2}\end{bmatrix}^{-1}\left({\mathbb{H}}^{(2)}_{1}\alpha^{(1)}+{\mathbb{H}}^{(2)}_{3}\alpha^{(3)}\right) (20)
    \displaystyle\Rightarrow α(2)=[0151]1([0103]α(2)+[0191]α(3)).\displaystyle\alpha^{(2)}=\begin{bmatrix}0&1\\ 5&1\end{bmatrix}^{-1}\left(\begin{bmatrix}0&1\\ 0&3\end{bmatrix}\alpha^{(2)}+\begin{bmatrix}0&1\\ 9&1\end{bmatrix}\alpha^{(3)}\right). (21)
  • Repairing node 3:

    1(2)α(1)+2(2)α(2)+3(2)α(3)=[00]\displaystyle{\mathbb{H}}^{(2)}_{1}\alpha^{(1)}+{\mathbb{H}}^{(2)}_{2}\alpha^{(2)}+{\mathbb{H}}^{(2)}_{3}\alpha^{(3)}=\begin{bmatrix}0\\ 0\end{bmatrix} \displaystyle\Rightarrow α(3)=[3(2)]1(1(2)α(1)+2(2)α(2))\displaystyle\alpha^{(3)}=\begin{bmatrix}{\mathbb{H}}^{(2)}_{3}\end{bmatrix}^{-1}\left({\mathbb{H}}^{(2)}_{1}\alpha^{(1)}+{\mathbb{H}}^{(2)}_{2}\alpha^{(2)}\right) (22)
    \displaystyle\Rightarrow α(2)=[0191]1([0103]α(1)+[0151]α(2)).\displaystyle\alpha^{(2)}=\begin{bmatrix}0&1\\ 9&1\end{bmatrix}^{-1}\left(\begin{bmatrix}0&1\\ 0&3\end{bmatrix}\alpha^{(1)}+\begin{bmatrix}0&1\\ 5&1\end{bmatrix}\alpha^{(2)}\right). (23)
  • Bi,j(PR)=[011102120]B_{i,j}(P_{R})=\begin{bmatrix}0&1&1\\ 1&0&2\\ 1&2&0\end{bmatrix}, B1(PR)=2B_{1}(P_{R})=2, B2(PR)=3B_{2}(P_{R})=3, and B3(PR)=3B_{3}(P_{R})=3.

II Some properties

Lemma 4.

Given a PRP_{R} and r[R]r\in[R], if there is a Bi,j(PR)=0B_{i,j}(P_{R})=0 for some i(r)i\in{\mathcal{I}}^{(r)} and j[N](r)j\in[N]\setminus{\mathcal{I}}^{(r)}, then B(r)(PR)=Bi(PR)=2KB^{(r)}(P_{R})=B_{i}(P_{R})=2K.

Proof:

Since iji\neq j, Bi,j(PR)=0B_{i,j}(P_{R})=0 implies j(r)=𝕆{\mathbb{H}}^{(r)}_{j}={\mathbb{O}} due to (9)\eqref{eq:Bij}. Let 𝕄(r)=[𝕄1(r)𝕄2(r)]{\mathbb{M}}^{(r)}=\begin{bmatrix}{\mathbb{M}}^{(r)}_{1}&{\mathbb{M}}^{(r)}_{2}\end{bmatrix} be a repair matrix of PRP_{R}, we have an invertible matrix i(r){\mathbb{H}}^{(r)}_{i} such that

i(r)=i(r)+j(r)=𝕄(r)[𝕀𝔸i]+𝕄(r)[𝕀𝔸j]=𝕄(r)[𝕀+𝕀𝔸i+𝔸j]=[𝕄1(r)𝕄2(r)][𝕆𝔸i+𝔸j]=𝕄1(r)𝕆+𝕄2(r)(𝔸i+𝔸j)=𝕄2(r)(𝔸i+𝔸j).{\mathbb{H}}^{(r)}_{i}={\mathbb{H}}^{(r)}_{i}+{\mathbb{H}}^{(r)}_{j}={\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix}+{\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{j}\end{bmatrix}={\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}+{\mathbb{I}}\\ {\mathbb{A}}_{i}+{\mathbb{A}}_{j}\end{bmatrix}\\ =\begin{bmatrix}{\mathbb{M}}^{(r)}_{1}&{\mathbb{M}}^{(r)}_{2}\end{bmatrix}\begin{bmatrix}{\mathbb{O}}\\ {\mathbb{A}}_{i}+{\mathbb{A}}_{j}\end{bmatrix}={\mathbb{M}}^{(r)}_{1}{\mathbb{O}}+{\mathbb{M}}^{(r)}_{2}({\mathbb{A}}_{i}+{\mathbb{A}}_{j})={\mathbb{M}}^{(r)}_{2}({\mathbb{A}}_{i}+{\mathbb{A}}_{j}). (24)

Since i(r){\mathbb{H}}^{(r)}_{i} and (𝔸i+𝔸j)({\mathbb{A}}_{i}+{\mathbb{A}}_{j}) are invertible, we conclude that 𝕄2(r){\mathbb{M}}^{(r)}_{2} is also invertible. From (24), we have k(r)=𝕄2(r)(𝔸k+𝔸j){\mathbb{H}}^{(r)}_{k}={\mathbb{M}}^{(r)}_{2}({\mathbb{A}}_{k}+{\mathbb{A}}_{j}) for all k[N]k\in[N]. Since both 𝕄2(r){\mathbb{M}}^{(r)}_{2} and (𝔸k+𝔸j)({\mathbb{A}}_{k}+{\mathbb{A}}_{j}) are invertible if kjk\neq j, k(r){\mathbb{H}}^{(r)}_{k} is invertible if kjk\neq j. Therefore, from (9), we have B(r)(PR)=Bi(PR)=k[N]{i}Bi,k(PR)=k[N]{i,j}2=2(N2)=2KB^{(r)}(P_{R})=B_{i}(P_{R})=\sum_{k\in[N]\setminus\{i\}}B_{i,k}(P_{R})=\sum_{k\in[N]\setminus\{i,j\}}2=2(N-2)=2K. ∎

Example.
𝕄(r)=[1010100001234500][𝔹1𝔹2𝔹3𝕆]{\mathbb{M}}^{(r)}{\mathbb{H}}=\begin{bmatrix}1&0&1&0&1&0&0&0\\ 0&1&2&3&4&5&0&0\end{bmatrix}\triangleq\begin{bmatrix}{\mathbb{B}}_{1}&{\mathbb{B}}_{2}&{\mathbb{B}}_{3}&{\mathbb{O}}\end{bmatrix}

is okay, but

𝕄(r)=[1010100001234000][𝔹4𝔹5𝕆]{\mathbb{M}}^{(r)}{\mathbb{H}}=\begin{bmatrix}1&0&1&0&1&0&0&0\\ 0&1&2&3&4&0&0&0\end{bmatrix}\triangleq\begin{bmatrix}{\mathbb{B}}_{4}&{\mathbb{B}}_{5}&{\mathbb{R}}&{\mathbb{O}}\end{bmatrix}

is impossible, where {\mathbb{R}}\in{\mathcal{R}} and 𝔹iinv{\mathbb{B}}_{i}\in{\mathcal{M}}_{\mathrm{inv}} for all i[5]i\in[5].

Lemma 5.

Given a PRP_{R}, then 𝕄(r){\mathbb{M}}^{(r)} is of rank 22 for all r[R]r\in[R].

Note.

This lemma can be applied to NK2N-K\geq 2.

Proof:

Since rank(𝔸𝔹)min{rank(𝔸),rank(𝔹)}\mathrm{rank}({\mathbb{A}}{\mathbb{B}})\leq\min\{\mathrm{rank}({\mathbb{A}}),\mathrm{rank}({\mathbb{B}})\} and 𝕄(r)[𝕀𝔸i]{\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix} is invertible if i(r)i\in{\mathcal{I}}^{(r)},

rank(𝕄(r)[𝕀𝔸i])=2\displaystyle\mathrm{rank}\left({\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix}\right)=2 \displaystyle\leq min{rank(𝕄(r)),rank([𝕀𝔸i])}\displaystyle\min\left\{\mathrm{rank}({\mathbb{M}}^{(r)}),\mathrm{rank}\left(\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix}\right)\right\} (25)
\displaystyle\leq rank(𝕄(r))\displaystyle\mathrm{rank}({\mathbb{M}}^{(r)}) (26)
\displaystyle\leq 2.\displaystyle 2. (27)

Therefore, rank(𝕄(r))=2\mathrm{rank}({\mathbb{M}}^{(r)})=2 for all r[R]r\in[R]. ∎

Lemma 6.

Given a PRP_{R}, if i(r1){\mathbb{H}}^{(r_{1})}_{i} and i(r2){\mathbb{H}}^{(r_{2})}_{i} are both in {\mathcal{L}} (or {\mathcal{R}}), j(r1){\mathbb{H}}^{(r_{1})}_{j} and j(r2){\mathbb{H}}^{(r_{2})}_{j} are both in {\mathcal{L}} (or {\mathcal{R}}) for some r1,r2[R]r_{1},r_{2}\in[R], i,j[N]{(r1)(r2)}i,j\in[N]\setminus\{{\mathcal{I}}^{(r_{1})}\cup{\mathcal{I}}^{(r_{2})}\}, and iji\neq j, then [𝕄(r1)𝕄(r2)]\begin{bmatrix}{\mathbb{M}}^{(r_{1})}\\ {\mathbb{M}}^{(r_{2})}\end{bmatrix} is of rank 22.

Note.

This lemma can be applied to NK2N-K\geq 2.

Proof:

Since [𝕀𝕀𝔸i𝔸j]\begin{bmatrix}{\mathbb{I}}&{\mathbb{I}}\\ {\mathbb{A}}_{i}&{\mathbb{A}}_{j}\end{bmatrix} is invertible and rank(𝔸)=rank(𝔸𝔹)\mathrm{rank}({\mathbb{A}})=\mathrm{rank}({\mathbb{A}}{\mathbb{B}}) if 𝔹{\mathbb{B}} is of full rank,

rank([𝕄(r1)𝕄(r2)])=rank([𝕄(r1)𝕄(r2)][𝕀𝕀𝔸i𝔸j])=rank([i(r1)j(r2)i(r2)j(r2)])2.\mathrm{rank}\left(\begin{bmatrix}{\mathbb{M}}^{(r_{1})}\\ {\mathbb{M}}^{(r_{2})}\end{bmatrix}\right)=\mathrm{rank}\left(\begin{bmatrix}{\mathbb{M}}^{(r_{1})}\\ {\mathbb{M}}^{(r_{2})}\end{bmatrix}\begin{bmatrix}{\mathbb{I}}&{\mathbb{I}}\\ {\mathbb{A}}_{i}&{\mathbb{A}}_{j}\end{bmatrix}\right)=\mathrm{rank}\left(\begin{bmatrix}{\mathbb{H}}^{(r_{1})}_{i}&{\mathbb{H}}^{(r_{2})}_{j}\\ {\mathbb{H}}^{(r_{2})}_{i}&{\mathbb{H}}^{(r_{2})}_{j}\end{bmatrix}\right)\leq 2. (28)

Combining (28) with Lemma 5, we conclude that [𝕄(r1)𝕄(r2)]\begin{bmatrix}{\mathbb{M}}^{(r_{1})}\\ {\mathbb{M}}^{(r_{2})}\end{bmatrix} is of rank 22 for all r1,r2[R]r_{1},r_{2}\in[R]. ∎

Lemma 7.

If 𝕄(r1)=𝕋𝕄(r2){\mathbb{M}}^{(r_{1})}={\mathbb{T}}{\mathbb{M}}^{(r_{2})} for some r1,r2[R]r_{1},r_{2}\in[R], r1r2r_{1}\neq r_{2}, and invertible matrix 𝕋{\mathbb{T}}, then both 𝕄(r1){\mathbb{M}}^{(r_{1})} and 𝕄(r2){\mathbb{M}}^{(r_{2})} can be used to repair nodes in (r1)(r2){\mathcal{I}}^{(r_{1})}\cup{\mathcal{I}}^{(r_{2})} and B(r1)(PR)=B(r2)(PR)B^{(r_{1})}(P_{R})=B^{(r_{2})}(P_{R}).

Proof:

Since 𝕋{\mathbb{T}} is invertible, i(r2){\mathbb{H}}^{(r_{2})}_{i} is invertible if and only if i(r1)=𝕋i(r2){\mathbb{H}}^{(r_{1})}_{i}={\mathbb{T}}{\mathbb{H}}^{(r_{2})}_{i} is invertible. With the facts that i(r1){\mathbb{H}}^{(r_{1})}_{i} is invertible when i(r1)i\in{\mathcal{I}}^{(r_{1})} and j(r2){\mathbb{H}}^{(r_{2})}_{j} is invertible when j(r2)j\in{\mathcal{I}}^{(r_{2})}, we can conclude that both k(r1){\mathbb{H}}^{(r_{1})}_{k} and k(r2){\mathbb{H}}^{(r_{2})}_{k} are invertible when k(r1)(r2)k\in{\mathcal{I}}^{(r_{1})}\cup{\mathcal{I}}^{(r_{2})}. Therefore, both (r1){\mathbb{H}}^{(r_{1})} and (r2){\mathbb{H}}^{(r_{2})} can be used to repair nodes in (r1)(r2){\mathcal{I}}^{(r_{1})}\cup{\mathcal{I}}^{(r_{2})}.

From (9), Bi,j(PR)=1B_{i,j}(P_{R})=1, for some i(r2)i\in{\mathcal{I}}^{(r_{2})}, denotes that j(r2){}{\mathbb{H}}^{(r_{2})}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}, so j(r1)=𝕋j(r2){}{\mathbb{H}}^{(r_{1})}_{j}={\mathbb{T}}{\mathbb{H}}^{(r_{2})}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}. Also, Bi,j(PR)=1B_{i,j}(P_{R})=1, for some i(r1)i\in{\mathcal{I}}^{(r_{1})}, denotes that j(r1){}{\mathbb{H}}^{(r_{1})}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}, so j(r2)=𝕋1𝕄j(r1){}{\mathbb{H}}^{(r_{2})}_{j}={\mathbb{T}}^{-1}{\mathbb{M}}^{(r_{1})}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}.

Furthermore, Bi,j(PR)=0B_{i,j}(P_{R})=0, for some i(r2)i\in{\mathcal{I}}^{(r_{2})} and iji\neq j, denotes that j(r2)=𝕆{\mathbb{H}}^{(r_{2})}_{j}={\mathbb{O}}, so j(r1)=𝕋j(r2)=𝕆{\mathbb{H}}^{(r_{1})}_{j}={\mathbb{T}}{\mathbb{H}}^{(r_{2})}_{j}={\mathbb{O}}. Also, Bi,j(PR)=0B_{i,j}(P_{R})=0, for some i(r1)i\in{\mathcal{I}}^{(r_{1})} and iji\neq j, denotes that j(r1)=𝕆{\mathbb{H}}^{(r_{1})}_{j}={\mathbb{O}}, so j(r2)=𝕋1𝕄j(r1)=𝕆{\mathbb{H}}^{(r_{2})}_{j}={\mathbb{T}}^{-1}{\mathbb{M}}^{(r_{1})}_{j}={\mathbb{O}}.

We then prove that if Bi,j(PR)=2B_{i,j}(P_{R})=2 for some i(r1)i\in{\mathcal{I}}^{(r_{1})} and iji\neq j, then j(r2){𝕆}{\mathbb{H}}^{(r_{2})}_{j}\not\in\{{\mathbb{O}}\cup{\mathcal{R}}\cup{\mathcal{L}}\}. Assuming j(r2){𝕆}{\mathbb{H}}^{(r_{2})}_{j}\in\{{\mathbb{O}}\cup{\mathcal{R}}\cup{\mathcal{L}}\}, so j(r1)=𝕋1j(r2){𝕆}{\mathbb{H}}^{(r_{1})}_{j}={\mathbb{T}}^{-1}{\mathbb{H}}^{(r_{2})}_{j}\in\{{\mathbb{O}}\cup{\mathcal{R}}\cup{\mathcal{L}}\}. Hence we can conclude that Bi,j(PR)2B_{i,j}(P_{R})\neq 2 from (9). By contradiction, Bi,j(PR)=2B_{i,j}(P_{R})=2, for some i(r1)i\in{\mathcal{I}}^{(r_{1})} and iji\neq j, implies j(r2){𝕆}{\mathbb{H}}^{(r_{2})}_{j}\not\in\{{\mathbb{O}}\cup{\mathcal{R}}\cup{\mathcal{L}}\}. Following the similar way, we can also prove that if Bi,j(PR)=2B_{i,j}(P_{R})=2 for some i(r2)i\in{\mathcal{I}}^{(r_{2})} and iji\neq j, then j(r1){𝕆}{\mathbb{H}}^{(r_{1})}_{j}\not\in\{{\mathbb{O}}\cup{\mathcal{R}}\cup{\mathcal{L}}\}.

Combining above results and (9), we can conclude that Bi,k(PR)=Bj,k(PR)B_{i,k}(P_{R})=B_{j,k}(P_{R}) for some i(r1)i\in{\mathcal{I}}^{(r_{1})}, j(r2)j\in{\mathcal{I}}^{(r_{2})}, and for all k[N]{i,j}k\in[N]\setminus\{i,j\}. Therefore, B(r1)(PR)=B(r2)(PR)B^{(r_{1})}(P_{R})=B^{(r_{2})}(P_{R}). ∎

Theorem 1.

For any PRP_{R} such that i(r1){\mathbb{H}}^{(r_{1})}_{i} and i(r2){\mathbb{H}}^{(r_{2})}_{i} are both in {\mathcal{L}} (or {\mathcal{R}}), j(r1){\mathbb{H}}^{(r_{1})}_{j} and j(r2){\mathbb{H}}^{(r_{2})}_{j} are both in {\mathcal{L}} (or {\mathcal{R}}) for some r1,r2[R]r_{1},r_{2}\in[R], and i,j[N]{(r1)(r2)}i,j\in[N]\setminus\{{\mathcal{I}}^{(r_{1})}\cup{\mathcal{I}}^{(r_{2})}\}, where r1r2r_{1}\neq r_{2} and iji\neq j, then the repair process

PR1={(𝕄(r),(r)):r[R]{r1,r2}}{(𝕄(r1),(r1)(r2))}P_{R-1}=\left\{\left({\mathbb{M}}^{(r)},{\mathcal{I}}^{(r)}\right):r\in[R]\setminus\{r_{1},r_{2}\}\right\}\cup\left\{\left({\mathbb{M}}^{(r_{1})},{\mathcal{I}}^{(r_{1})}\cup{\mathcal{I}}^{(r_{2})}\right)\right\} (29)

has the same total repair bandwidth as PRP_{R} has.

Proof:

By Lemmas 5 and 6, we can have an invertible transform matrix 𝕋{\mathbb{T}} such that 𝕄(r1)=𝕋𝕄(r2){\mathbb{M}}^{(r_{1})}={\mathbb{T}}{\mathbb{M}}^{(r_{2})}. Then according to Lemma 7, 𝕄(r1){\mathbb{M}}^{(r_{1})} can repair nodes in (r2){\mathcal{I}}^{(r_{2})} and B(r1)(PR)=B(r2)(PR)B^{(r_{1})}(P_{R})=B^{(r_{2})}(P_{R}). Therefore,

B(PR)\displaystyle B(P_{R}) =\displaystyle= r[R]|(r)|B(r)(PR)\displaystyle\sum_{r\in[R]}|{\mathcal{I}}^{(r)}|B^{(r)}(P_{R}) (30)
=\displaystyle= r[R]{r1,r2}|(r)|B(r)(PR)+|(r1)|B(r1)(PR)+|(r2)|B(r2)(PR)\displaystyle\sum_{r\in[R]\setminus\{r_{1},r_{2}\}}|{\mathcal{I}}^{(r)}|B^{(r)}(P_{R})+|{\mathcal{I}}^{(r_{1})}|B^{(r_{1})}(P_{R})+|{\mathcal{I}}^{(r_{2})}|B^{(r_{2})}(P_{R}) (31)
=\displaystyle= r[R]{r1,r2}|(r)|B(r)(PR)+|(r1)|B(r1)(PR)+|(r2)|B(r1)(PR)\displaystyle\sum_{r\in[R]\setminus\{r_{1},r_{2}\}}|{\mathcal{I}}^{(r)}|B^{(r)}(P_{R})+|{\mathcal{I}}^{(r_{1})}|B^{(r_{1})}(P_{R})+|{\mathcal{I}}^{(r_{2})}|B^{(r_{1})}(P_{R}) (32)
=\displaystyle= r[R]{r1,r2}|(r)|B(r)(PR)+|(r1)+(r1)|B(r1)(PR)\displaystyle\sum_{r\in[R]\setminus\{r_{1},r_{2}\}}|{\mathcal{I}}^{(r)}|B^{(r)}(P_{R})+|{\mathcal{I}}^{(r_{1})}+{\mathcal{I}}^{(r_{1})}|B^{(r_{1})}(P_{R}) (33)
=\displaystyle= B(PR1).\displaystyle B(P_{R-1}). (34)

Lemma 8.

Given a PRP_{R}, if Bi(PR)<2KB_{i}(P_{R})<2K for some i(r)i\in{\mathcal{I}}^{(r)}, then

Bi(PR)\displaystyle B_{i}(P_{R}) =\displaystyle= 2(N1)|{j:j[N]{i} and j(r){}}|\displaystyle 2(N-1)-\left|\left\{j:j\in[N]\setminus\{i\}\mbox{ and }{\mathbb{H}}^{(r)}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}\right\}\right| (35)
=\displaystyle= 2(N1)|{j:j[N]{i} and Bi,j(PR)=1}|,\displaystyle 2(N-1)-\left|\left\{j:j\in[N]\setminus\{i\}\mbox{ and }B_{i,j}(P_{R})=1\right\}\right|, (36)

where j(r)=𝕄(r)[𝕀𝔸j]{\mathbb{H}}^{(r)}_{j}={\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{j}\end{bmatrix}.

Proof:

Due to Lemma 4 and Bi(PR)<2KB_{i}(P_{R})<2K, we can not have Bi,j(PR)=0B_{i,j}(P_{R})=0 for all j[N]{i}j\in[N]\setminus\{i\}. By Definition 2,

Bi(PR)\displaystyle B_{i}(P_{R}) =\displaystyle= j[N]{i}Bi,j(PR)\displaystyle\sum_{j\in[N]\setminus\{i\}}B_{i,j}(P_{R}) (37)
=\displaystyle= 2|{j:j[N]{i} and j(r)}|+|{j:j[N]{i} and j(r){}}|\displaystyle 2\left|\{j:j\in[N]\setminus\{i\}\mbox{ and }{\mathbb{H}}^{(r)}_{j}\in{\mathcal{M}}\}\right|+\left|\{j:j\in[N]\setminus\{i\}\mbox{ and }{\mathbb{H}}^{(r)}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}\}\right| (38)
=\displaystyle= 2(N1)|{j:j[N]{i} and j(r){}}|\displaystyle 2(N-1)-\left|\{j:j\in[N]\setminus\{i\}\mbox{ and }{\mathbb{H}}^{(r)}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}\}\right| (39)
=\displaystyle= 2(N1)|{j:j[N]{i} and Bi,j(PR)=1}|\displaystyle 2(N-1)-\left|\left\{j:j\in[N]\setminus\{i\}\mbox{ and }B_{i,j}(P_{R})=1\right\}\right| (40)

We then present the properties of repair matrices of any PRP_{R}.

Lemma 9.

Given a PRP_{R}, if Bi(PR)<2KB_{i}(P_{R})<2K for some i(r)i\in{\mathcal{I}}^{(r)}, then 𝕄2(r){\mathbb{M}}^{(r)}_{2} is not invertible, where 𝕄(r)=[𝕄1(r)𝕄2(r)]{\mathbb{M}}^{(r)}=\begin{bmatrix}{\mathbb{M}}^{(r)}_{1}&{\mathbb{M}}^{(r)}_{2}\end{bmatrix}.

Proof:

Since Bi(PR)<2KB_{i}(P_{R})<2K, we have

Bi(PR)=2(N1)|{j:j[N]{i} and j(r){}}|<2K,B_{i}(P_{R})=2(N-1)-\left|\left\{j:j\in[N]\setminus\{i\}\mbox{ and }{\mathbb{H}}^{(r)}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}\right\}\right|<2K, (41)

which induces

|{j:j[N]{i} and j(r){}}|>2(N1)2K=2.\left|\left\{j:j\in[N]\setminus\{i\}\mbox{ and }{\mathbb{H}}^{(r)}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}\right\}\right|>2(N-1)-2K=2. (42)

By pigeonhole principle, there must be j1,j2[N]{i}j_{1},j_{2}\in[N]\setminus\{i\}, such that j1j2j_{1}\neq j_{2} and both j1(r),j2(r){\mathbb{H}}^{(r)}_{j_{1}},{\mathbb{H}}^{(r)}_{j_{2}}\in{\mathcal{L}} (or {\mathcal{R}}). WLOG, we assume j1(r),j2(r){\mathbb{H}}^{(r)}_{j_{1}},{\mathbb{H}}^{(r)}_{j_{2}}\in{\mathcal{L}} and then we have

j1(r)+j2(r)\displaystyle{\mathbb{H}}^{(r)}_{j_{1}}+{\mathbb{H}}^{(r)}_{j_{2}} =\displaystyle= 𝕄(r)[𝕀𝔸j1]+𝕄(r)[𝕀𝔸j2]\displaystyle{\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{j_{1}}\end{bmatrix}+{\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{j_{2}}\end{bmatrix} (43)
=\displaystyle= [𝕄1(r)𝕄2(r)][𝕆𝔸j1+𝔸j2]\displaystyle\begin{bmatrix}{\mathbb{M}}^{(r)}_{1}&{\mathbb{M}}^{(r)}_{2}\end{bmatrix}\begin{bmatrix}{\mathbb{O}}\\ {\mathbb{A}}_{j_{1}}+{\mathbb{A}}_{j_{2}}\end{bmatrix} (44)
=\displaystyle= 𝕄2(r)(𝔸j1+𝔸j2).\displaystyle{\mathbb{M}}^{(r)}_{2}({\mathbb{A}}_{j_{1}}+{\mathbb{A}}_{j_{2}})\in{\mathcal{L}}. (45)

Since 𝕄2(r)(𝔸j1+𝔸j2){\mathbb{M}}^{(r)}_{2}({\mathbb{A}}_{j_{1}}+{\mathbb{A}}_{j_{2}}) is not invertible and 𝔸j1+𝔸j2{\mathbb{A}}_{j_{1}}+{\mathbb{A}}_{j_{2}} is invertible, we can conclude that 𝕄2(r){\mathbb{M}}^{(r)}_{2} is not invertible. ∎

Lemma 10.

Given a PR={(𝕄(r),(r)):r[R]}P_{R}=\left\{\left({\mathbb{M}}^{(r)},{\mathcal{I}}^{(r)}\right):r\in[R]\right\} and r^[R]{\hat{r}}\in[R] such that Bi(PR)<2KB_{i}(P_{R})<2K for some i(r^){i}\in{\mathcal{I}}^{({\hat{r}})}. By letting 𝕄^(r^)=[i(r^)]1𝕄(r^)\hat{{\mathbb{M}}}^{({\hat{r}})}=\left[{\mathbb{H}}^{({\hat{r}})}_{i}\right]^{-1}{\mathbb{M}}^{({\hat{r}})},

(1)

we can construct an repair process P^R\hat{P}_{R} as

P^R={(𝕄(r),(r)):r[R]{r^}}{(𝕄^(r^),(r^))},\hat{P}_{R}=\left\{\left({\mathbb{M}}^{(r)},{\mathcal{I}}^{(r)}\right):r\in[R]\setminus\{{\hat{r}}\}\right\}\cup\left\{\left(\hat{{\mathbb{M}}}^{({\hat{r}})},{\mathcal{I}}^{({\hat{r}})}\right)\right\}, (46)

where Bi(PR)=Bi(P^R)B_{i}(P_{R})=B_{i}(\hat{P}_{R}).

(2)

For P^R\hat{P}_{R},

𝕄^(r^)=[1000β1(r^)β2(r^)β3(r^)β4(r^)],\hat{{\mathbb{M}}}^{({\hat{r}})}=\begin{bmatrix}1&0&0&0\\ \beta^{({\hat{r}})}_{1}&\beta^{({\hat{r}})}_{2}&\beta^{({\hat{r}})}_{3}&\beta^{({\hat{r}})}_{4}\end{bmatrix}, (47)

if j1,j2[N]\exists j_{1},j_{2}\in[N] and j1j2j_{1}\neq j_{2} such that ^j1(r^),^j2(r^)\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{1}},\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{2}}\in{\mathcal{L}}, where ^j(r^)=𝕄^(r^)[𝕀𝔸j]\hat{{\mathbb{H}}}^{({\hat{r}})}_{j}=\hat{{\mathbb{M}}}^{({\hat{r}})}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{j}\end{bmatrix} for all j[N]j\in[N] and βk(r^)q\beta^{({\hat{r}})}_{k}\in{\mathcal{F}}_{q} for all k[4]k\in[4].

(3)

For P^R\hat{P}_{R},

𝕄^(r^)=[β1(r^)β2(r^)β3(r^)β4(r^)0100],\hat{{\mathbb{M}}}^{({\hat{r}})}=\begin{bmatrix}\beta^{({\hat{r}})}_{1}&\beta^{({\hat{r}})}_{2}&\beta^{({\hat{r}})}_{3}&\beta^{({\hat{r}})}_{4}\\ 0&1&0&0\end{bmatrix}, (48)

if j1,j2[N]\exists j_{1},j_{2}\in[N] and j1j2j_{1}\neq j_{2} such that ^j1(r^),^j2(r^)\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{1}},\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{2}}\in{\mathcal{R}}.

Proof:

(1) is followed directly from Lemma 7.

Next we prove (2). Since 𝕄^(r^)=[i(r^)]1𝕄(r^)\hat{{\mathbb{M}}}^{({\hat{r}})}=\left[{\mathbb{H}}^{({\hat{r}})}_{i}\right]^{-1}{\mathbb{M}}^{({\hat{r}})},

^i(r^)𝕄^(r^)[𝕀𝔸i]=[i(r^)]1𝕄(r^)[𝕀𝔸i]=[i(r^)]1i(r^)=𝕀.\hat{{\mathbb{H}}}^{({\hat{r}})}_{i}\triangleq\hat{{\mathbb{M}}}^{({\hat{r}})}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix}=\left[{\mathbb{H}}^{({\hat{r}})}_{i}\right]^{-1}{\mathbb{M}}^{({\hat{r}})}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix}=\left[{\mathbb{H}}^{({\hat{r}})}_{i}\right]^{-1}{\mathbb{H}}^{({\hat{r}})}_{i}={\mathbb{I}}. (49)

Since Bi(P^R)<2KB_{i}(\hat{P}_{R})<2K, 𝕄^2(r^)\hat{{\mathbb{M}}}^{({\hat{r}})}_{2} is not invertible due to Lemma 9.

We first prove that ^j(r^)=[10β0]\hat{{\mathbb{H}}}^{({\hat{r}})}_{j}=\begin{bmatrix}1&0\\ \beta&0\end{bmatrix} for some βq\beta\in{\mathcal{F}}_{q} if ^j(r^)\hat{{\mathbb{H}}}^{({\hat{r}})}_{j}\in{\mathcal{L}}. Let ^j(r^)=[β0β0]\hat{{\mathbb{H}}}^{({\hat{r}})}_{j}=\begin{bmatrix}\beta^{\prime}&0\\ \beta&0\end{bmatrix}\in{\mathcal{L}} for some β,βq\beta,\beta^{\prime}\in{\mathcal{F}}_{q}, then we have

^i(r^)+^j(r^)=𝕀+[β0β0]=[1+β0β1]=𝕄^2(r^)(𝔸i+𝔸j).\hat{{\mathbb{H}}}^{({\hat{r}})}_{i}+\hat{{\mathbb{H}}}^{({\hat{r}})}_{j}={\mathbb{I}}+\begin{bmatrix}\beta^{\prime}&0\\ \beta&0\end{bmatrix}=\begin{bmatrix}1+\beta^{\prime}&0\\ \beta&1\end{bmatrix}=\hat{{\mathbb{M}}}^{({\hat{r}})}_{2}({\mathbb{A}}_{i}+{\mathbb{A}}_{j}). (50)

Since 𝕄^2(r^)\hat{{\mathbb{M}}}^{({\hat{r}})}_{2} is not invertible, then [1+β0β1]\begin{bmatrix}1+\beta^{\prime}&0\\ \beta&1\end{bmatrix} is not invertible as well, which implies that the determinant of [1+β0β1]\begin{bmatrix}1+\beta^{\prime}&0\\ \beta&1\end{bmatrix} is 0. Therefore, 1×(1+β)=01\times(1+\beta^{\prime})=0 implies β=1\beta^{\prime}=1.

We next prove that 𝕄^2(r^)=[00β3(r^)β4(r^)]\hat{{\mathbb{M}}}^{({\hat{r}})}_{2}=\begin{bmatrix}0&0\\ \beta^{({\hat{r}})}_{3}&\beta^{({\hat{r}})}_{4}\end{bmatrix} for some β3(r^),β4(r^)q\beta^{({\hat{r}})}_{3},\beta^{({\hat{r}})}_{4}\in{\mathcal{F}}_{q}, if j1,j2[N]\exists j_{1},j_{2}\in[N] and j1j2j_{1}\neq j_{2} such that ^j1(r^),^j2(r^)\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{1}},\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{2}}\in{\mathcal{L}}. Let ^j1(r^)=[10β10]\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{1}}=\begin{bmatrix}1&0\\ \beta_{1}&0\end{bmatrix} and ^j2(r^)=[10β20]\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{2}}=\begin{bmatrix}1&0\\ \beta_{2}&0\end{bmatrix}, we have

^j1(r^)+^j2(r^)\displaystyle\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{1}}+\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{2}} =\displaystyle= [00β1+β20]\displaystyle\begin{bmatrix}0&0\\ \beta_{1}+\beta_{2}&0\end{bmatrix} (51)
=\displaystyle= 𝕄^2(r^)(𝔸j1+𝔸j2).\displaystyle\hat{{\mathbb{M}}}^{({\hat{r}})}_{2}({\mathbb{A}}_{j_{1}}+{\mathbb{A}}_{j_{2}}). (52)

Since (𝔸j1+𝔸j2)({\mathbb{A}}_{j_{1}}+{\mathbb{A}}_{j_{2}}) is invertible, then

𝕄^2(r^)=[00β1+β20](𝔸j1+𝔸j2)1=[00β3(r^)β4(r^)],\hat{{\mathbb{M}}}^{({\hat{r}})}_{2}=\begin{bmatrix}0&0\\ \beta_{1}+\beta_{2}&0\end{bmatrix}({\mathbb{A}}_{j_{1}}+{\mathbb{A}}_{j_{2}})^{-1}=\begin{bmatrix}0&0\\ \beta^{({\hat{r}})}_{3}&\beta^{({\hat{r}})}_{4}\end{bmatrix}, (53)

for some β3(r^),β4(r^)q\beta^{({\hat{r}})}_{3},\beta^{({\hat{r}})}_{4}\in{\mathcal{F}}_{q}. Lastly, we prove that 𝕄^1(r^)=[10β1(r^)β2(r^)]\hat{{\mathbb{M}}}^{({\hat{r}})}_{1}=\begin{bmatrix}1&0\\ \beta^{({\hat{r}})}_{1}&\beta^{({\hat{r}})}_{2}\end{bmatrix} for some β1(r^),β2(r^)q\beta^{({\hat{r}})}_{1},\beta^{({\hat{r}})}_{2}\in{\mathcal{F}}_{q} if 𝕄^2(r^)=[00β3(r^)β4(r^)]\hat{{\mathbb{M}}}^{({\hat{r}})}_{2}=\begin{bmatrix}0&0\\ \beta^{({\hat{r}})}_{3}&\beta^{({\hat{r}})}_{4}\end{bmatrix} for some β3(r^),β4(r^)q\beta^{({\hat{r}})}_{3},\beta^{({\hat{r}})}_{4}\in{\mathcal{F}}_{q}. Since

^i(r^)=[𝕄^1(r^)𝕄^2(r^)][𝕀𝔸i]=𝕄^1(r^)+𝕄^2(r^)𝔸i=𝕀\hat{{\mathbb{H}}}^{({\hat{r}})}_{i}=\begin{bmatrix}\hat{{\mathbb{M}}}^{({\hat{r}})}_{1}&\hat{{\mathbb{M}}}^{({\hat{r}})}_{2}\end{bmatrix}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{i}\end{bmatrix}=\hat{{\mathbb{M}}}^{({\hat{r}})}_{1}+\hat{{\mathbb{M}}}^{({\hat{r}})}_{2}{\mathbb{A}}_{i}={\mathbb{I}} (54)

and 𝕄^2(r^)=[00β3(r^)β4(r^)]\hat{{\mathbb{M}}}^{({\hat{r}})}_{2}=\begin{bmatrix}0&0\\ \beta^{({\hat{r}})}_{3}&\beta^{({\hat{r}})}_{4}\end{bmatrix}, 𝕄^1(r^)=𝕄^2(r^)𝔸i+𝕀=[10β1(r^)β2(r^)]\hat{{\mathbb{M}}}^{({\hat{r}})}_{1}=\hat{{\mathbb{M}}}^{({\hat{r}})}_{2}{\mathbb{A}}_{i}+{\mathbb{I}}=\begin{bmatrix}1&0\\ \beta^{({\hat{r}})}_{1}&\beta^{({\hat{r}})}_{2}\end{bmatrix} for some β1(r^),β2(r^)q\beta^{({\hat{r}})}_{1},\beta^{({\hat{r}})}_{2}\in{\mathcal{F}}_{q}.

Therefore, we can conclude that 𝕄^(r^)=[1000β1(r^)β2(r^)β3(r^)β4(r^)]\hat{{\mathbb{M}}}^{({\hat{r}})}=\begin{bmatrix}1&0&0&0\\ \beta^{({\hat{r}})}_{1}&\beta^{({\hat{r}})}_{2}&\beta^{({\hat{r}})}_{3}&\beta^{({\hat{r}})}_{4}\end{bmatrix}, if j1,j2[N]\exists j_{1},j_{2}\in[N] and j1j2j_{1}\neq j_{2} such that ^j1(r^),^j2(r^)\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{1}},\hat{{\mathbb{H}}}^{({\hat{r}})}_{j_{2}}\in{\mathcal{L}}.

A similar proof can be made for (3). ∎

Theorem 2.

Given a PRP_{R} and let 𝒥i{j:j[N] and Bi,j(PR)=1}{\mathcal{J}}_{i}\triangleq\{j:j\in[N]\mbox{ and }B_{i,j}(P_{R})=1\}, if Bi(PR)<2KB_{i}(P_{R})<2K for some i(r)i\in{\mathcal{I}}^{(r)}, then either j(r){\mathbb{H}}^{(r)}_{j}\in{\mathcal{L}} for all j𝒥ij\in{\mathcal{J}}_{i} or j(r){\mathbb{H}}^{(r)}_{j}\in{\mathcal{R}} for all j𝒥ij\in{\mathcal{J}}_{i}.

Proof:

From Lemma 8 and Bi(PR)<2KB_{i}(P_{R})<2K, we can find at least 33 different indexes from [N](r)[N]\setminus{\mathcal{I}}^{(r)}, j1j_{1}, j2j_{2}, and j3j_{3}, such that j1(r),j2(r),j3(r){}{\mathbb{H}}^{(r)}_{j_{1}},{\mathbb{H}}^{(r)}_{j_{2}},{\mathbb{H}}^{(r)}_{j_{3}}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}. Hence, |𝒥i|3|{\mathcal{J}}_{i}|\geq 3. By pigeonhole principle, there must be two of {j1(r),j2(r),j3(r)}\left\{{\mathbb{H}}^{(r)}_{j_{1}},{\mathbb{H}}^{(r)}_{j_{2}},{\mathbb{H}}^{(r)}_{j_{3}}\right\} are either in {\mathcal{L}} or {\mathcal{R}}.

WLOG, we assume j1(r),j2(r){\mathbb{H}}^{(r)}_{j_{1}},{\mathbb{H}}^{(r)}_{j_{2}}\in{\mathcal{L}}. By Lemma 10, we can construct a repair matrix

𝕄^(r)=[1000β1(r)β2(r)β3(r)β4(r)],\hat{{\mathbb{M}}}^{(r)}=\begin{bmatrix}1&0&0&0\\ \beta^{(r)}_{1}&\beta^{(r)}_{2}&\beta^{(r)}_{3}&\beta^{(r)}_{4}\end{bmatrix}, (55)

where 𝕄^(r)=[i(r)]1𝕄(r)\hat{{\mathbb{M}}}^{(r)}=\left[{\mathbb{H}}^{(r)}_{i}\right]^{-1}{\mathbb{M}}^{(r)} and βk(r)q\beta^{(r)}_{k}\in{\mathcal{F}}_{q} for all k[4]k\in[4]. Suppose there is a j^[N]{j1,j2}\hat{j}\in[N]\setminus\{j_{1},j_{2}\} such that j^(r){\mathbb{H}}^{(r)}_{\hat{j}}\in{\mathcal{R}}, then

j^(r)=𝕄(r)[𝕀𝔸j^]=i(r)𝕄^(r)[𝕀𝔸j^]=i(r)[10β1β2]=i(r)^j^(r){\mathbb{H}}^{(r)}_{\hat{j}}={\mathbb{M}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{\hat{j}}\end{bmatrix}={\mathbb{H}}^{(r)}_{i}\hat{{\mathbb{M}}}^{(r)}\begin{bmatrix}{\mathbb{I}}\\ {\mathbb{A}}_{\hat{j}}\end{bmatrix}={\mathbb{H}}^{(r)}_{i}\begin{bmatrix}1&0\\ \beta_{1}&\beta_{2}\end{bmatrix}={\mathbb{H}}^{(r)}_{i}\hat{{\mathbb{H}}}^{(r)}_{\hat{j}} (56)

for some β1,β2q\beta_{1},\beta_{2}\in{\mathcal{F}}_{q}. Since ^j^(r){}\hat{{\mathbb{H}}}^{(r)}_{\hat{j}}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}, we have β2=0\beta_{2}=0 and ^j^(r)\hat{{\mathbb{H}}}^{(r)}_{\hat{j}}\in{\mathcal{L}}. Therefore, j^(r)=i(r)^j^(r){\mathbb{H}}^{(r)}_{\hat{j}}={\mathbb{H}}^{(r)}_{i}\hat{{\mathbb{H}}}^{(r)}_{\hat{j}}\in{\mathcal{L}}, which contradicts to the assumption of j^(r){\mathbb{H}}^{(r)}_{\hat{j}}\in{\mathcal{R}}. Therefore, we can prove that, for all j𝒥ij\in{\mathcal{J}}_{i}, j(r){\mathbb{H}}^{(r)}_{j}\in{\mathcal{L}}.

A similar proof can be made for j(r){\mathbb{H}}^{(r)}_{j}\in{\mathcal{R}} for all j𝒥ij\in{\mathcal{J}}_{i} when we assume j1(r),j2(r){\mathbb{H}}^{(r)}_{j_{1}},{\mathbb{H}}^{(r)}_{j_{2}}\in{\mathcal{R}}. ∎

III Lower bound on B(PR)B(P_{R})

Let 𝒫R{\mathcal{P}}_{R} be the set of the all effective111From Theorem 1, we know that PRP_{R} can be reduced to PR1P_{R-1} if there exists different r1,r2[R]r_{1},r_{2}\in[R] and different i,j[N]i,j\in[N] such that i(r1),i(r2){\mathbb{H}}^{(r_{1})}_{i},{\mathbb{H}}^{(r_{2})}_{i}\in{\mathcal{L}} (or {\mathcal{R}}) and j(r1),j(r2){\mathbb{H}}^{(r_{1})}_{j},{\mathbb{H}}^{(r_{2})}_{j}\in{\mathcal{L}} (or {\mathcal{R}}). For those repair processes of size RR satisfy the above constraint are said to be not effective and excluded from 𝒫R{\mathcal{P}}_{R} to avoid duplicate computation. repair processes of size RR, our goal is to minimizes the total repair bandwidth over 𝒫R{\mathcal{P}}_{R} for a given RR, i.e.,

B(R)minPR𝒫RB(PR).B^{*}(R)\triangleq\min_{P_{R}\in{\mathcal{P}}_{R}}B(P_{R}). (57)

Let

𝒥r(PR){j:j[N] and j(r){}},{\mathcal{J}}_{r}(P_{R})\triangleq\left\{j:j\in[N]\mbox{ and }{\mathbb{H}}^{(r)}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}\right\}, (58)

as stated in Lemmas 3 and 8, the total repair bandwidth of PRP_{R} is

B(PR)\displaystyle B(P_{R}) =\displaystyle= r[R]|(r)|×[2(N1)|𝒥r(PR)|]\displaystyle\sum_{r\in[R]}|{\mathcal{I}}^{(r)}|\times\Big{[}2(N-1)-|{\mathcal{J}}_{r}(P_{R})|\Big{]} (59)
=\displaystyle= r[R]|(r)|×[2(N1)]r[R]|(r)|×|𝒥r(PR)|\displaystyle\sum_{r\in[R]}|{\mathcal{I}}^{(r)}|\times\Big{[}2(N-1)\Big{]}-\sum_{r\in[R]}|{\mathcal{I}}^{(r)}|\times|{\mathcal{J}}_{r}(P_{R})| (60)
=\displaystyle= N×[2(N1)]r[R]|(r)|×|𝒥r(PR)|.\displaystyle N\times\Big{[}2(N-1)\Big{]}-\sum_{r\in[R]}|{\mathcal{I}}^{(r)}|\times|{\mathcal{J}}_{r}(P_{R})|. (61)

Therefore,

B(R)=minPR𝒫RB(PR)=N×[2(N1)]maxPR𝒫Rr[R]|(r)|×|𝒥r(PR)|,B^{*}(R)=\min_{P_{R}\in{\mathcal{P}}_{R}}B(P_{R})=N\times\Big{[}2(N-1)\Big{]}-\max_{P_{R}\in{\mathcal{P}}_{R}}\sum_{r\in[R]}|{\mathcal{I}}^{(r)}|\times|{\mathcal{J}}_{r}(P_{R})|, (62)

which means that minimizing B(PR)B(P_{R}) over PR𝒫RP_{R}\in{\mathcal{P}}_{R} is equivalent to maximizing r[R]|(r)|×|𝒥r(PR)|\sum_{r\in[R]}|{\mathcal{I}}^{(r)}|\times|{\mathcal{J}}_{r}(P_{R})| over PR𝒫RP_{R}\in{\mathcal{P}}_{R}.

For any repair process PRP_{R}, we define PR{\mathbb{H}}_{P_{R}} as

PR[𝕄(1)𝕄(2)𝕄(R)]=[1(1)2(1)N(1)1(2)2(2)N(2)1(R)2(R)N(R)].{\mathbb{H}}_{P_{R}}\triangleq\begin{bmatrix}{\mathbb{M}}^{(1)}\\ {\mathbb{M}}^{(2)}\\ \vdots\\ {\mathbb{M}}^{(R)}\end{bmatrix}{\mathbb{H}}=\begin{bmatrix}{\mathbb{H}}^{(1)}_{1}&{\mathbb{H}}^{(1)}_{2}&\cdots&{\mathbb{H}}^{(1)}_{N}\\ {\mathbb{H}}^{(2)}_{1}&{\mathbb{H}}^{(2)}_{2}&\cdots&{\mathbb{H}}^{(2)}_{N}\\ \vdots&\vdots&\ddots&\vdots\\ {\mathbb{H}}^{(R)}_{1}&{\mathbb{H}}^{(R)}_{2}&\cdots&{\mathbb{H}}^{(R)}_{N}\end{bmatrix}. (63)

From Theorem 2, we know that either i(r){\mathbb{H}}^{(r)}_{i}\in{\mathcal{L}} for all i𝒥r(PR)i\in{\mathcal{J}}_{r}(P_{R}) or i(r){\mathbb{H}}^{(r)}_{i}\in{\mathcal{R}} for all i𝒥r(PR)i\in{\mathcal{J}}_{r}(P_{R}). Hence we can categorize all repair matrices into 22 types. Since we can swap any 𝕄(i){\mathbb{M}}^{(i)} and 𝕄(j){\mathbb{M}}^{(j)}, i,j[R]i,j\in[R], without effecting the total repair bandwidth, WLOG, we assume that there is a 0RLR0\leq R_{\mathrm{L}}\leq R such that

k(r) if k𝒥r(PR) and r[RL]{\mathbb{H}}^{(r)}_{k}\in{\mathcal{L}}\mbox{ if }k\in{\mathcal{J}}_{r}(P_{R})\mbox{ and }r\in[R_{\mathrm{L}}] (64)

and

k(r) if k𝒥r(PR) and r[R][RL].{\mathbb{H}}^{(r)}_{k}\in{\mathcal{R}}\mbox{ if }k\in{\mathcal{J}}_{r}(P_{R})\mbox{ and }r\in[R]\setminus[R_{\mathrm{L}}]. (65)

Since we can also swap any 𝔸i{\mathbb{A}}_{i} and 𝔸j{\mathbb{A}}_{j} in {\mathbb{H}} without effecting the total repair bandwidth of PRP_{R}, WLOG, we can assume that any i(r)i\in{\mathcal{I}}^{(r)} is less than any j(r+1)j\in{\mathcal{I}}^{(r+1)} for all r[R1]r\in[R-1]. Let r|(r)|\ell_{r}\triangleq|{\mathcal{I}}^{(r)}| for all r[R]r\in[R], then {(r)}r[R]\{{\mathcal{I}}^{(r)}\}_{r\in[R]} can be uniquely decided by (1,2,,R)\vec{\ell}\triangleq(\ell_{1},\ell_{2},\ldots,\ell_{R}) as

(1)\displaystyle{\mathcal{I}}^{(1)} =\displaystyle= {1,2,,1}=[1];\displaystyle\left\{1,2,\ldots,\ell_{1}\right\}=[\ell^{*}_{1}]; (66)
(2)\displaystyle{\mathcal{I}}^{(2)} =\displaystyle= {1+1,1+2,,2}=[2][1];\displaystyle\left\{\ell^{*}_{1}+1,\ell^{*}_{1}+2,\ldots,\ell^{*}_{2}\right\}=[\ell^{*}_{2}]\setminus[\ell^{*}_{1}]; (67)
\displaystyle\vdots (68)
(r)\displaystyle{\mathcal{I}}^{(r)} =\displaystyle= {r1+1,r1+2,,r}=[r][r1];\displaystyle\left\{\ell^{*}_{r-1}+1,\ell^{*}_{r-1}+2,\ldots,\ell^{*}_{r}\right\}=[\ell^{*}_{r}]\setminus[\ell^{*}_{r-1}]; (69)
\displaystyle\vdots (70)
(R)\displaystyle{\mathcal{I}}^{(R)} =\displaystyle= {R1+1,R1+2,,N}=[N][R1],\displaystyle\left\{\ell^{*}_{R-1}+1,\ell^{*}_{R-1}+2,\ldots,N\right\}=[N]\setminus[\ell^{*}_{R-1}], (71)

where rk[r]k\ell^{*}_{r}\triangleq\sum_{k\in[r]}\ell_{k}.

By summarizing Theorems 1 and 2, we can have the following constraints on PR{\mathbb{H}}_{P_{R}}.

  • Constraint 1-L: There exists no distinct r1,r2[RL]r_{1},r_{2}\in[R_{\mathrm{L}}] and distinct i,j[N]i,j\in[N] such that i(r1),i(r2),j(r1),j(r2){\mathbb{H}}^{(r_{1})}_{i},{\mathbb{H}}^{(r_{2})}_{i},{\mathbb{H}}^{(r_{1})}_{j},{\mathbb{H}}^{(r_{2})}_{j}\in{\mathcal{L}};

  • Constraint 1-R: There exists no distinct r1,r2[R][RL]r_{1},r_{2}\in[R]\setminus[R_{\mathrm{L}}] and distinct i,j[N]i,j\in[N] such that i(r1),i(r2),j(r1),j(r2){\mathbb{H}}^{(r_{1})}_{i},{\mathbb{H}}^{(r_{2})}_{i},{\mathbb{H}}^{(r_{1})}_{j},{\mathbb{H}}^{(r_{2})}_{j}\in{\mathcal{R}};

  • Constraint 2-L: If r[RL]r\in[R_{\mathrm{L}}], j(r){\mathbb{H}}^{(r)}_{j}\in{\mathcal{L}} for all j𝒥r(PR)j\in{\mathcal{J}}_{r}(P_{R});

  • Constraint 2-R: If r[R][RL]r\in[R]\setminus[R_{\mathrm{L}}], j(r){\mathbb{H}}^{(r)}_{j}\in{\mathcal{R}} for all j𝒥r(PR)j\in{\mathcal{J}}_{r}(P_{R}).

We then turn our attention to the block matrices which satisfy above constraints without considering the repair process PRP_{R}.

Given RR, RLR_{\mathrm{L}}, and =(1,2,,R)\vec{\ell}=(\ell_{1},\ell_{2},\ldots,\ell_{R}) such that 1RN1\leq R\leq N, 0RLR0\leq R_{\mathrm{L}}\leq R, and r[R]r=N\sum_{r\in[R]}\ell_{r}=N, we define a set of block matrices as

(R,RL,)={[1(1)2(1)N(1)1(2)2(2)N(2)1(R)2(R)N(R)]:i(r) is invertible if i[r][r1];The first RL rows satisfy Constraints 1-L and 2-L;The last RRL rows satisfy Constraints 1-R and 2-R},{\mathcal{H}}(R,R_{\mathrm{L}},\vec{\ell}\,)=\left\{\begin{bmatrix}{{\mathbb{H}}}^{(1)}_{1}&{{\mathbb{H}}}^{(1)}_{2}&\cdots&{{\mathbb{H}}}^{(1)}_{N}\\ {{\mathbb{H}}}^{(2)}_{1}&{{\mathbb{H}}}^{(2)}_{2}&\cdots&{{\mathbb{H}}}^{(2)}_{N}\\ \vdots&\vdots&\ddots&\vdots\\ {{\mathbb{H}}}^{(R)}_{1}&{{\mathbb{H}}}^{(R)}_{2}&\cdots&{{\mathbb{H}}}^{(R)}_{N}\end{bmatrix}:\,\begin{matrix}{{\mathbb{H}}}^{(r)}_{i}\mbox{ is invertible if }i\in[\ell^{*}_{r}]\setminus[\ell^{*}_{r-1}];\\ \mbox{The first $R_{\mathrm{L}}$ rows satisfy Constraints \ref{thm:girth4free}-L and \ref{thm:sametype}-L};\\ \mbox{The last $R-R_{\mathrm{L}}$ rows satisfy Constraints \ref{thm:girth4free}-R and \ref{thm:sametype}-R}\end{matrix}\right\}, (72)

where r=k[r]k\ell^{*}_{r}=\sum_{k\in[r]}\ell_{k}. For every ¯=[¯i(r)]r[R],i[N](R,RL,)\bar{{\mathbb{H}}}=\begin{bmatrix}\bar{{\mathbb{H}}}^{(r)}_{i}\end{bmatrix}_{r\in[R],i\in[N]}\in{\mathcal{H}}(R,R_{\mathrm{L}},\vec{\ell}\,), similar with the definitions of 𝒥r(PR){\mathcal{J}}_{r}(P_{R}) and B(PR)B(P_{R}), we define the 𝒥r(¯){\mathcal{J}}_{r}(\bar{{\mathbb{H}}}) and B(¯)B(\bar{{\mathbb{H}}}) as

𝒥r(¯)\displaystyle{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}) \displaystyle\triangleq {j:j[N] and ¯j(r){}},\displaystyle\left\{j:j\in[N]\mbox{ and }\bar{{\mathbb{H}}}^{(r)}_{j}\in\{{\mathcal{L}}\cup{\mathcal{R}}\}\right\}, (73)
B(¯)\displaystyle B(\bar{{\mathbb{H}}}) \displaystyle\triangleq N×[2(N1)]r[R]r×|𝒥r(¯)|.\displaystyle N\times\Big{[}2(N-1)\Big{]}-\sum_{r\in[R]}\ell_{r}\times|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|. (74)

It should be noted that, as discussed at the beginning of this section, we can construct a PRP^{\prime}_{R} for any repair process PRP_{R} such that B(PR)=B(PR)B(P_{R})=B(P^{\prime}_{R}) and PR(R,RL,){\mathbb{H}}_{P^{\prime}_{R}}\in{\mathcal{H}}(R,R_{\mathrm{L}},\vec{\ell}\,); on the contrary, there is no guarantee that we can construct a PRP_{R} such that PR=¯{\mathbb{H}}_{P_{R}}=\bar{{\mathbb{H}}} for any ¯(R,RL,)\bar{{\mathbb{H}}}\in{\mathcal{H}}(R,R_{\mathrm{L}},\vec{\ell}\,). Therefore, we can conclude that

B(R)=minPR𝒫RB(PR)min¯(R)B(¯)B¯(R),B^{*}(R)=\min_{P_{R}\in{\mathcal{P}}_{R}}B(P_{R})\geq\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}(R)}B(\bar{{\mathbb{H}}})\triangleq\bar{B}^{*}(R), (75)

where

(R){(1,,R):r[R]r=N}0RLR(R,RL,).{\mathcal{H}}(R)\triangleq\bigcup_{\vec{\ell}\in\{(\ell_{1},\ldots,\ell_{R}):\sum_{r\in[R]}\ell_{r}=N\}}\,\bigcup_{0\leq R_{\mathrm{L}}\leq R}{\mathcal{H}}(R,R_{\mathrm{L}},\vec{\ell}\,). (76)

We then turn our attention to B¯(R)\bar{B}^{*}(R) rather than B(R)B^{*}(R).

Theorem 3.

B¯(R=2)=2N(N1)2N22\bar{B}^{*}(R=2)=2N(N-1)-2\left\lfloor\frac{N^{2}}{2}\right\rfloor.

Proof:

Given an =(1,2)\vec{\ell}=(\ell_{1},\ell_{2}), we consider an ¯2(2,1,)\bar{{\mathbb{H}}}_{2}\in{\mathcal{H}}(2,1,\vec{\ell}\,) such that

¯2=[𝕀1(1)𝕀1(1)𝕃1+1(1)𝕃N(1)1(2)1(2)𝕀1+1(2)𝕀N(2)],\bar{{\mathbb{H}}}_{2}=\begin{bmatrix}{\mathbb{I}}^{(1)}_{1}&\cdots&{\mathbb{I}}^{(1)}_{\ell_{1}}&{\mathbb{L}}^{(1)}_{\ell_{1}+1}&\cdots&{\mathbb{L}}^{(1)}_{N}\\ {\mathbb{R}}^{(2)}_{1}&\cdots&{\mathbb{R}}^{(2)}_{\ell_{1}}&{\mathbb{I}}^{(2)}_{\ell_{1}+1}&\cdots&{\mathbb{I}}^{(2)}_{N}\end{bmatrix}, (77)

where 𝕀i(r)inv{\mathbb{I}}^{(r)}_{i}\in{\mathcal{M}}_{\mathrm{inv}}, 𝕃i(r){\mathbb{L}}^{(r)}_{i}\in{\mathcal{L}}, and i(r){\mathbb{R}}^{(r)}_{i}\in{\mathcal{R}}. Since there must be at least r\ell_{r}^{\prime} invertible matrices in the rrth blockwise row of any ¯(R,RL,=(1,,R))\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R,R_{\mathrm{L}},\vec{\ell}^{\prime}=(\ell^{\prime}_{1},\ldots,\ell^{\prime}_{R})\,\right), we have |𝒥r(¯)|Nr|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|\leq N-\ell^{\prime}_{r} for any ¯(R,RL,)\bar{{\mathbb{H}}}\in{\mathcal{H}}(R,R_{\mathrm{L}},\vec{\ell}^{\prime}). Since |𝒥r(¯2)|=Nr|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}_{2})|=N-\ell_{r} for all r[2]r\in[2], the total repair bandwidth of any ¯(2,RL,)\bar{{\mathbb{H}}}\in{\mathcal{H}}(2,R_{\mathrm{L}},\vec{\ell}\,) is lower bounded as

B(¯)\displaystyle B(\bar{{\mathbb{H}}}) =\displaystyle= 2N(N1)1|𝒥1(¯)|2|𝒥2(¯)|\displaystyle 2N(N-1)-\ell_{1}|{\mathcal{J}}_{1}(\bar{{\mathbb{H}}})|-\ell_{2}|{\mathcal{J}}_{2}(\bar{{\mathbb{H}}})| (78)
\displaystyle\geq 2N(N1)1(N1)2(N2)\displaystyle 2N(N-1)-\ell_{1}(N-\ell_{1})-\ell_{2}(N-\ell_{2}) (79)
=\displaystyle= min¯(2,RL,)B(¯)=B(2¯)\displaystyle\min_{\bar{{\mathbb{H}}^{\prime}}\in{\mathcal{H}}(2,R_{\mathrm{L}},\vec{\ell}\,)}B(\bar{{\mathbb{H}}^{\prime}})=B(\bar{{\mathbb{H}}_{2}}) (80)

for any 0RL20\leq R_{\mathrm{L}}\leq 2. Therefore,

B¯(R)\displaystyle\bar{B}^{*}(R) =\displaystyle= min{(1,2):1+2=N}min0RL2min¯(2,RL)B(¯)\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2}):\,\ell_{1}+\ell_{2}=N\}}\,\min_{0\leq R_{\mathrm{L}}\leq 2}\,\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}(2,R_{\mathrm{L}}\vec{\ell}\,)}B(\bar{{\mathbb{H}}}) (81)
=\displaystyle= min{(1,2):1+2=N}B(¯2)\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2}):\,\ell_{1}+\ell_{2}=N\}}B(\bar{{\mathbb{H}}}_{2}) (82)
=\displaystyle= min{(1,2):1+2=N}2N(N1)1(N1)2(N2)\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2}):\,\ell_{1}+\ell_{2}=N\}}2N(N-1)-\ell_{1}(N-\ell_{1})-\ell_{2}(N-\ell_{2}) (83)
=\displaystyle= min{(1,2):1+2=N}2N(N1)1(N1)(N1)1\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2}):\,\ell_{1}+\ell_{2}=N\}}2N(N-1)-\ell_{1}(N-\ell_{1})-(N-\ell_{1})\ell_{1} (84)
=\displaystyle= min{(1,2):1+2=N}2N(N1)+2122N1\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2}):\,\ell_{1}+\ell_{2}=N\}}2N(N-1)+2\ell_{1}^{2}-2N\ell_{1} (85)
=\displaystyle= min{(1,2):1+2=N}2N(N1)+2(1N2)2N22\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2}):\,\ell_{1}+\ell_{2}=N\}}2N(N-1)+2\left(\ell_{1}-\frac{N}{2}\right)^{2}-\frac{N^{2}}{2} (86)
=\displaystyle= 2N(N1)2N22.\displaystyle 2N(N-1)-2\left\lfloor\frac{N^{2}}{2}\right\rfloor. (87)

Lemma 11.

B¯(2)B¯(3)\bar{B}^{*}(2)\geq\bar{B}^{*}(3)

Proof:

Given an

¯=[𝕀1(1)𝕃2(1)𝕃1(1)𝔹1+1(1)𝔹N1(1)𝕃N(1)𝕃1(2)𝕀2(2)𝕀1(2)𝕃1+1(2)𝕃N1(2)𝕃N(2)1(3)2(3)1(3)𝕀1+1(3)𝕀N1(3)𝕀N(3)](3,2,),\bar{{\mathbb{H}}}=\begin{bmatrix}{\mathbb{I}}^{(1)}_{1}&{\mathbb{L}}^{(1)}_{2}&\cdots&{\mathbb{L}}^{(1)}_{\ell_{1}}&{\mathbb{B}}^{(1)}_{\ell_{1}+1}&\cdots&{\mathbb{B}}^{(1)}_{N-1}&{\mathbb{L}}^{(1)}_{N}\\ {\mathbb{L}}^{(2)}_{1}&{\mathbb{I}}^{(2)}_{2}&\cdots&{\mathbb{I}}^{(2)}_{\ell_{1}}&{\mathbb{L}}^{(2)}_{\ell_{1}+1}&\cdots&{\mathbb{L}}^{(2)}_{N-1}&{\mathbb{L}}^{(2)}_{N}\\ {\mathbb{R}}^{(3)}_{1}&{\mathbb{R}}^{(3)}_{2}&\cdots&{\mathbb{R}}^{(3)}_{\ell_{1}}&{\mathbb{I}}^{(3)}_{\ell_{1}+1}&\cdots&{\mathbb{I}}^{(3)}_{N-1}&{\mathbb{I}}^{(3)}_{N}\\ \end{bmatrix}\in{\mathcal{H}}(3,2,\vec{\ell}\,), (88)

where =(1,11,2)\vec{\ell}=(1,\ell_{1}-1,\ell_{2}), 1=N2\ell_{1}=\lceil\frac{N}{2}\rceil, and 2=N1\ell_{2}=N-\ell_{1}. We then have

B¯(3)\displaystyle\bar{B}^{*}(3) \displaystyle\leq B(¯)\displaystyle B(\bar{{\mathbb{H}}}) (89)
=\displaystyle= 2N(N1)1(11)(2+1)2(1)\displaystyle 2N(N-1)-\ell_{1}-(\ell_{1}-1)(\ell_{2}+1)-\ell_{2}(\ell_{1}) (90)
=\displaystyle= 2N(N1)1(11)(N1+1)(N1)1\displaystyle 2N(N-1)-\ell_{1}-(\ell_{1}-1)(N-\ell_{1}+1)-(N-\ell_{1})\ell_{1} (91)
=\displaystyle= 2N(N1)(N1+1)(211)\displaystyle 2N(N-1)-(N-\ell_{1}+1)(2\ell_{1}-1) (92)
=\displaystyle= {2N(N1)N22N2+1if N is even;2N(N1)N22N2if N is odd\displaystyle\begin{cases}2N(N-1)-\frac{N^{2}}{2}-\frac{N}{2}+1&\mbox{if $N$ is even};\\ 2N(N-1)-\frac{N^{2}}{2}-\frac{N}{2}&\mbox{if $N$ is odd}\end{cases} (93)
\displaystyle\leq 2N(N1)N22\displaystyle 2N(N-1)-\frac{N^{2}}{2} (94)
\displaystyle\leq B¯(2).\displaystyle\bar{B}^{*}(2). (95)

Lemma 12.

Given an =(1,2,3)\vec{\ell}=(\ell_{1},\ell_{2},\ell_{3}) such that r[3]r=N\sum_{r\in[3]}\ell_{r}=N and 12\ell_{1}\leq\ell_{2}. Let

¯3=[𝕀1(1)𝕀1(1)𝕃1+1(1)𝕃2(1)𝔹2+1(1)𝔹N1(1)𝕃N(1)𝕃1(2)𝕃1(2)𝕀1+1(2)𝕀2(2)𝕃2+1(2)𝕃N1(2)𝕃N(2)1(3)1(3)1+1(3)2(3)𝕀2+1(3)𝕀N1(3)𝕀N(3)](3,2,),\bar{{\mathbb{H}}}_{3}=\begin{bmatrix}{\mathbb{I}}^{(1)}_{1}&\cdots&{\mathbb{I}}^{(1)}_{\ell^{*}_{1}}&{\mathbb{L}}^{(1)}_{\ell^{*}_{1}+1}&\cdots&{\mathbb{L}}^{(1)}_{\ell^{*}_{2}}&{\mathbb{B}}^{(1)}_{\ell^{*}_{2}+1}&\cdots&{\mathbb{B}}^{(1)}_{N-1}&{\mathbb{L}}^{(1)}_{N}\\ {\mathbb{L}}^{(2)}_{1}&\cdots&{\mathbb{L}}^{(2)}_{\ell^{*}_{1}}&{\mathbb{I}}^{(2)}_{\ell^{*}_{1}+1}&\cdots&{\mathbb{I}}^{(2)}_{\ell^{*}_{2}}&{\mathbb{L}}^{(2)}_{\ell^{*}_{2}+1}&\cdots&{\mathbb{L}}^{(2)}_{N-1}&{\mathbb{L}}^{(2)}_{N}\\ {\mathbb{R}}^{(3)}_{1}&\cdots&{\mathbb{R}}^{(3)}_{\ell^{*}_{1}}&{\mathbb{R}}^{(3)}_{\ell^{*}_{1}+1}&\cdots&{\mathbb{R}}^{(3)}_{\ell^{*}_{2}}&{\mathbb{I}}^{(3)}_{\ell^{*}_{2}+1}&\cdots&{\mathbb{I}}^{(3)}_{N-1}&{\mathbb{I}}^{(3)}_{N}\\ \end{bmatrix}\in{\mathcal{H}}(3,2,\vec{\ell}\,), (96)

where r=k[r]k\ell^{*}_{r}=\sum_{k\in[r]}\ell_{k}, 𝕀i(r)inv{\mathbb{I}}^{(r)}_{i}\in{\mathcal{M}}_{\mathrm{inv}}, 𝔹i(r){\mathbb{B}}^{(r)}_{i}\in{\mathcal{M}}, 𝕃i(r){\mathbb{L}}^{(r)}_{i}\in{\mathcal{L}}, and i(r){\mathbb{R}}^{(r)}_{i}\in{\mathcal{R}}. Then,

B(¯3)=min0RLRmin¯(3,RL,)B(¯).B(\bar{{\mathbb{H}}}_{3})=\min_{0\leq R_{\mathrm{L}}\leq R}\,\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}(3,R_{\mathrm{L}},\vec{\ell}\,)}B(\bar{{\mathbb{H}}}). (97)
Proof:

According to (72), the constraints (1-L and 2-L) on the first RLR_{\mathrm{L}} rows of ¯\bar{{\mathbb{H}}} are different from the constraints (1-R and 2-R) on the last RRLR-R_{\mathrm{L}} rows of ¯\bar{{\mathbb{H}}}. Therefore, the design of the first RLR_{\mathrm{L}} row is irrelevant to the design of the remaining RRLR-R_{\mathrm{L}} rows and vice versa. Also, for any ¯(R,RL,)\bar{{\mathbb{H}}}\in{\mathcal{H}}(R,R_{\mathrm{L}},\vec{\ell}\,), we can replace the matrices in {\mathcal{L}} with the matrices in {\mathcal{R}} and the matrices in {\mathcal{R}} with the matrices in {\mathcal{L}} without effecting the total repair bandwidth of ¯\bar{{\mathbb{H}}}, hence we have

min¯(R,RL,)B(¯)=min¯(R,RRL,)B(¯),\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}(R,R_{\mathrm{L}},\vec{\ell}\,)}B(\bar{{\mathbb{H}}})=\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}(R,R-R_{\mathrm{L}},\vec{\ell}^{\prime}\,)}B(\bar{{\mathbb{H}}}), (98)

where =(1,2,,R)\vec{\ell}=(\ell_{1},\ell_{2},\ldots,\ell_{R}) and =(RL+1,RL+2,,R,1,2,,RL)\vec{\ell}^{\prime}=(\ell_{R_{\mathrm{L}}+1},\ell_{R_{\mathrm{L}}+2},\ldots,\ell_{R},\ell_{1},\ell_{2},\ldots,\ell_{R_{\mathrm{L}}}). WLOG, we assume RLR/2R_{\mathrm{L}}\geq R/2.

We first prove that, for any ¯(3,3,)\bar{{\mathbb{H}}}\in{\mathcal{H}}(3,3,\vec{\ell}\,), we can find an ¯(3,2,)\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}(3,2,\vec{\ell}\,) such that B(¯)B(¯)B(\bar{{\mathbb{H}}})\geq B(\bar{{\mathbb{H}}}^{\prime}). If ¯\bar{{\mathbb{H}}} is with RL=3R_{\mathrm{L}}=3, we can construct ¯\bar{{\mathbb{H}}}^{\prime} by replacing ¯k(3)\bar{{\mathbb{H}}}^{(3)}_{k}, for all k[2]k\in[\ell^{*}_{2}], with matrices in {\mathcal{R}} without violating any constraint. Then

B(¯)\displaystyle B(\bar{{\mathbb{H}}}) =\displaystyle= 2N(N1)r[3]r|𝒥r(¯)|\displaystyle 2N(N-1)-\sum_{r\in[3]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})| (99)
\displaystyle\geq 2N(N1)r[2]r|𝒥r(¯)|3(N2)=B(¯).\displaystyle 2N(N-1)-\sum_{r\in[2]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|-\ell_{3}(N-\ell^{*}_{2})=B(\bar{{\mathbb{H}}}^{\prime}). (100)

Therefore, we only need to consider those ¯(3,2,)\bar{{\mathbb{H}}}\in{\mathcal{H}}(3,2,\vec{\ell}\,) while minimizing the total repair bandwidth.

Let ¯\bar{{\mathbb{H}}} be with RL=2R_{\mathrm{L}}=2, as discussed before, we can have ¯k(3)\bar{{\mathbb{H}}}^{(3)}_{k}\in{\mathcal{R}} for all k[2]k\in[\ell^{*}_{2}] to minimize |𝒥3(¯)||{\mathcal{J}}_{3}(\bar{{\mathbb{H}}})| to be N3N-\ell_{3}. We then consider the first two rows of ¯\bar{{\mathbb{H}}}. All those ¯k(1)\bar{{\mathbb{H}}}^{(1)}_{k} for all k[2][1]k\in[\ell^{*}_{2}]\setminus[\ell^{*}_{1}] and ¯k(2)\bar{{\mathbb{H}}}^{(2)}_{k} for all k[1]k\in[\ell^{*}_{1}] can be in {\mathcal{L}} without violating Constraint 1-L. Hence, we have

¯=[𝕀1(1)𝕀1(1)𝕃1+1(1)𝕃2(1)¯2+1(1)¯N(1)𝕃1(2)𝕃1(2)𝕀1+1(2)𝕀2(2)¯2+1(2)¯N(2)1(3)1(3)1+1(3)2(3)𝕀2+1(3)𝕀N(3)],\bar{{\mathbb{H}}}=\begin{bmatrix}{\mathbb{I}}^{(1)}_{1}&\cdots&{\mathbb{I}}^{(1)}_{\ell^{*}_{1}}&{\mathbb{L}}^{(1)}_{\ell^{*}_{1}+1}&\cdots&{\mathbb{L}}^{(1)}_{\ell^{*}_{2}}&\bar{{\mathbb{H}}}^{(1)}_{\ell^{*}_{2}+1}&\cdots&\bar{{\mathbb{H}}}^{(1)}_{N}\\ {\mathbb{L}}^{(2)}_{1}&\cdots&{\mathbb{L}}^{(2)}_{\ell^{*}_{1}}&{\mathbb{I}}^{(2)}_{\ell^{*}_{1}+1}&\cdots&{\mathbb{I}}^{(2)}_{\ell^{*}_{2}}&\bar{{\mathbb{H}}}^{(2)}_{\ell^{*}_{2}+1}&\cdots&\bar{{\mathbb{H}}}^{(2)}_{N}\\ {\mathbb{R}}^{(3)}_{1}&\cdots&{\mathbb{R}}^{(3)}_{\ell^{*}_{1}}&{\mathbb{R}}^{(3)}_{\ell^{*}_{1}+1}&\cdots&{\mathbb{R}}^{(3)}_{\ell^{*}_{2}}&{\mathbb{I}}^{(3)}_{\ell^{*}_{2}+1}&\cdots&{\mathbb{I}}^{(3)}_{N}\end{bmatrix}, (101)

where its submatrix

[¯2+1(1)¯N(1)¯2+1(2)¯N(2)]\begin{bmatrix}\bar{{\mathbb{H}}}^{(1)}_{\ell^{*}_{2}+1}&\cdots&\bar{{\mathbb{H}}}^{(1)}_{N}\\ \bar{{\mathbb{H}}}^{(2)}_{\ell^{*}_{2}+1}&\cdots&\bar{{\mathbb{H}}}^{(2)}_{N}\end{bmatrix} (102)

must satisfy Constraint 1-L. Let Jr|{k:k[N][2] and ¯k(r)}|J_{r}\triangleq|\{k:k\in[N]\setminus[\ell^{*}_{2}]\mbox{ and }\bar{{\mathbb{H}}}^{(r)}_{k}\in{\mathcal{L}}\}|, if J1+J2(N2)+2=3+2J_{1}+J_{2}\geq(N-\ell^{*}_{2})+2=\ell_{3}+2, then the submatrix in (102) must violate Constraint 1-L according to the pigeonhole principle, which induces J1+J23+1J_{1}+J_{2}\leq\ell_{3}+1. Therefore,

B(¯)\displaystyle B(\bar{{\mathbb{H}}}) =\displaystyle= 2N(N1)1(2+J1)2(1+J2)3(N3)\displaystyle 2N(N-1)-\ell_{1}(\ell_{2}+J_{1})-\ell_{2}(\ell_{1}+J_{2})-\ell_{3}(N-\ell_{3}) (103)
\displaystyle\geq 2N(N1)1[2+(3+1J2)]2(1+J2)3(N3)\displaystyle 2N(N-1)-\ell_{1}\left[\ell_{2}+(\ell_{3}+1-J_{2})\right]-\ell_{2}(\ell_{1}+J_{2})-\ell_{3}(N-\ell_{3}) (104)
=\displaystyle= 2N(N1)2121313(N3)+(12)J2,\displaystyle 2N(N-1)-2\ell_{1}\ell_{2}-\ell_{1}\ell_{3}-\ell_{1}-\ell_{3}(N-\ell_{3})+(\ell_{1}-\ell_{2})J_{2}, (105)

where (105) can be minimized by maximizing J2J_{2} when 12\ell_{1}\leq\ell_{2}. Since J23J_{2}\leq\ell_{3} by (102) and J1+J23+1J_{1}+J_{2}\leq\ell_{3}+1, we can minimize (105)\eqref{eq:H3J2} by assigning J2=3J_{2}=\ell_{3} and J1=1J_{1}=1 as ¯3\bar{{\mathbb{H}}}_{3} did in (88). ∎

Theorem 4.
B¯(3)min{(1,2,3):1+2+3=N and 12}2N(N1)N2+12+22+32+1(31).\bar{B}^{*}(3)\geq\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3}):\,\ell_{1}+\ell_{2}+\ell_{3}=N\mbox{ and }\ell_{1}\leq\ell_{2}\}}2N(N-1)-N^{2}+\ell_{1}^{2}+\ell^{2}_{2}+\ell_{3}^{2}+\ell_{1}(\ell_{3}-1). (106)
Proof:

We have learned from Lemma 12 that

min0RL3min¯(3,RL,=(1,2,3))B(¯)\min_{0\leq R_{\mathrm{L}}\leq 3}\,\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(3,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ell_{2},\ell_{3})\right)}B(\bar{{\mathbb{H}}}) (107)

can be achieved by the ¯3\bar{{\mathbb{H}}}_{3} in (88) while 12\ell_{1}\leq\ell_{2}. For those ¯(3,RL,)\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}(3,R_{\mathrm{L}},\vec{\ell}^{\prime}), where =(1,2,3)=(2,1,3)\vec{\ell}^{\prime}=(\ell^{\prime}_{1},\ell^{\prime}_{2},\ell^{\prime}_{3})=(\ell_{2},\ell_{1},\ell_{3}), we can achieve

min0RL3min¯(3,RL,=(2,1,3))B(¯)\min_{0\leq R_{\mathrm{L}}\leq 3}\,\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(3,R_{\mathrm{L}},\vec{\ell}^{\prime}=(\ell_{2},\ell_{1},\ell_{3})\right)}B(\bar{{\mathbb{H}}}) (108)

by

¯3=[𝕀1(1)𝕀1(1)𝕃1+1(1)𝕃2(1)𝕃2+1(1)𝕃N1(1)𝕃N(1)𝕃1(2)𝕃1(2)𝕀1+1(2)𝕀2(2)𝔹2+1(2)𝔹N1(2)𝕃N(2)1(3)1(3)1+1(3)2(3)𝕀2+1(3)𝕀N1(3)𝕀N(3)]\bar{{\mathbb{H}}}^{\prime}_{3}=\begin{bmatrix}{\mathbb{I}}^{(1)}_{1}&\cdots&{\mathbb{I}}^{(1)}_{\ell^{\prime*}_{1}}&{\mathbb{L}}^{(1)}_{\ell^{\prime*}_{1}+1}&\cdots&{\mathbb{L}}^{(1)}_{\ell^{\prime*}_{2}}&{\mathbb{L}}^{(1)}_{\ell^{\prime*}_{2}+1}&\cdots&{\mathbb{L}}^{(1)}_{N-1}&{\mathbb{L}}^{(1)}_{N}\\ {\mathbb{L}}^{(2)}_{1}&\cdots&{\mathbb{L}}^{(2)}_{\ell^{\prime*}_{1}}&{\mathbb{I}}^{(2)}_{\ell^{\prime*}_{1}+1}&\cdots&{\mathbb{I}}^{(2)}_{\ell^{\prime*}_{2}}&{\mathbb{B}}^{(2)}_{\ell^{\prime*}_{2}+1}&\cdots&{\mathbb{B}}^{(2)}_{N-1}&{\mathbb{L}}^{(2)}_{N}\\ {\mathbb{R}}^{(3)}_{1}&\cdots&{\mathbb{R}}^{(3)}_{\ell^{\prime*}_{1}}&{\mathbb{R}}^{(3)}_{\ell^{\prime*}_{1}+1}&\cdots&{\mathbb{R}}^{(3)}_{\ell^{\prime*}_{2}}&{\mathbb{I}}^{(3)}_{\ell^{\prime*}_{2}+1}&\cdots&{\mathbb{I}}^{(3)}_{N-1}&{\mathbb{I}}^{(3)}_{N}\\ \end{bmatrix} (109)

and B(¯3)=B(¯3)B(\bar{{\mathbb{H}}}^{\prime}_{3})=B(\bar{{\mathbb{H}}}_{3}).

Therefore, we conclude that

B¯(3)\displaystyle\bar{B}^{*}(3) =\displaystyle= min{(1,2,3):1+2+3=N}min0RLRmin¯(3,RL,)B(¯)\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3}):\,\ell_{1}+\ell_{2}+\ell_{3}=N\}}\,\min_{0\leq R_{\mathrm{L}}\leq R}\,\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}(3,R_{\mathrm{L}},\vec{\ell}\,)}B(\bar{{\mathbb{H}}}) (110)
=\displaystyle= min{(1,2,3):1+2+3=N and 12}B(¯3)\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3}):\,\ell_{1}+\ell_{2}+\ell_{3}=N\mbox{ and }\ell_{1}\leq\ell_{2}\}}B(\bar{{\mathbb{H}}}_{3}) (111)
=\displaystyle= min{(1,2,3):1+2+3=N and 12}2N(N1)1(2+1)2(N2)3(N3)\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3}):\,\ell_{1}+\ell_{2}+\ell_{3}=N\mbox{ and }\ell_{1}\leq\ell_{2}\}}2N(N-1)-\ell_{1}(\ell_{2}+1)-\ell_{2}(N-\ell_{2})-\ell_{3}(N-\ell_{3}) (114)
=\displaystyle= min{(1,2,3):1+2+3=N and 12}2N(N1)\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3}):\,\ell_{1}+\ell_{2}+\ell_{3}=N\mbox{ and }\ell_{1}\leq\ell_{2}\}}2N(N-1)
1(N13+1)2(N2)3(N3)\displaystyle\hfill-\ell_{1}(N-\ell_{1}-\ell_{3}+1)-\ell_{2}(N-\ell_{2})-\ell_{3}(N-\ell_{3})
=\displaystyle= min{(1,2,3):1+2+3=N and 12}2N(N1)\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3}):\,\ell_{1}+\ell_{2}+\ell_{3}=N\mbox{ and }\ell_{1}\leq\ell_{2}\}}2N(N-1)
(1+2+3)N+12+22+32+1(31)\displaystyle\hfill-(\ell_{1}+\ell_{2}+\ell_{3})N+\ell_{1}^{2}+\ell_{2}^{2}+\ell_{3}^{2}+\ell_{1}(\ell_{3}-1)
=\displaystyle= min{(1,2,3):1+2+3=N and 12}2N(N1)N2+12+22+32+1(31).\displaystyle\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3}):\,\ell_{1}+\ell_{2}+\ell_{3}=N\mbox{ and }\ell_{1}\leq\ell_{2}\}}2N(N-1)-N^{2}+\ell_{1}^{2}+\ell_{2}^{2}+\ell_{3}^{2}+\ell_{1}(\ell_{3}-1). (115)

We then look into B¯(R)\bar{B}^{*}(R) when R>3R>3. From Constraints 1-L, 1-R, 2-L, and 2-R we notice that, among all ¯(R,RL,)\bar{{\mathbb{H}}}\in{\mathcal{H}}(R,R_{\mathrm{L}},\vec{\ell}\,), we can minimize the total bandwidth by separately minimizing bandwidth of the first RLR_{\mathrm{L}} rows in ¯\bar{{\mathbb{H}}} and the bandwidth of the remaining RRLR-R_{\mathrm{L}} rows in ¯\bar{{\mathbb{H}}}, i.e.,

min¯(R,RL,=(1,,R))B(¯)\displaystyle\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ldots,\ell_{R})\right)}B(\bar{{\mathbb{H}}}) (116)
=\displaystyle= min¯(R,RL,=(1,,R))2N(N1)r[R]r|𝒥r(¯)|\displaystyle\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ldots,\ell_{R})\right)}2N(N-1)-\sum_{r\in[R]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})| (117)
=\displaystyle= min¯(R,RL,=(1,,R))2RL(N1)r[RL]r|𝒥r(¯)|\displaystyle\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ldots,\ell_{R})\right)}2R_{\mathrm{L}}(N-1)-\sum_{r\in[R_{\mathrm{L}}]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})| (119)
+min¯(R,RL,=(1,,R))2(RRL)(N1)r[R][RL]r|𝒥r(¯)|.\displaystyle+\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ldots,\ell_{R})\right)}2(R-R_{\mathrm{L}})(N-1)-\sum_{r\in[R]\setminus[R_{\mathrm{L}}]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|.

Also as discussed in (62), we can turn the minimization problem in to a maximization program. Therefore, we first focus on the following problem,

max¯(R,RL,=(1,,R))r[RL]r|𝒥r(¯)|.\max_{\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ldots,\ell_{R})\right)}\sum_{r\in[R_{\mathrm{L}}]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|. (120)

The following lemma further simplifies (120).

Lemma 13.
max¯(R,RL,=(1,,R))r[RL]r|𝒥r(¯)|=max¯(RL+1,RL,L=(1,,RL,NRL))r[RL]r|𝒥r(¯)|,\max_{\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ldots,\ell_{R})\right)}\sum_{r\in[R_{\mathrm{L}}]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|=\max_{\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R_{\mathrm{L}}+1,R_{\mathrm{L}},\vec{\ell}_{\mathrm{L}}=(\ell_{1},\ldots,\ell_{R_{\mathrm{L}}},N-\ell^{*}_{R_{\mathrm{L}}})\right)}\sum_{r\in[R_{\mathrm{L}}]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|, (121)

where r=i[r]i\ell^{*}_{r}=\sum_{i\in[r]}\ell_{i}.

Proof:

Since the summation of r[RL]r|𝒥r(¯)|\sum_{r\in[R_{\mathrm{L}}]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})| only considers the first RLR_{\mathrm{L}} rows, the maximization is relevant to r[R][RL]r\sum_{r\in[R]\setminus[R_{\mathrm{L}}]}\ell_{r} but irrelevant of those individual r\ell_{r} for r[R][RL]r\in[R]\setminus[R_{\mathrm{L}}]. ∎

Lemma 14.

Given RL3R_{\mathrm{L}}\geq 3 and ={1,2,,RL,NRL}\vec{\ell}=\{\ell_{1},\ell_{2},\ldots,\ell_{R_{\mathrm{L}}},N-\ell^{*}_{R_{\mathrm{L}}}\}, for any ¯(RL+1,RL,)\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R_{\mathrm{L}}+1,R_{\mathrm{L}},\vec{\ell}\,\right), we can always construct a ¯(3,2,=(1,2,NRL))\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}\left(3,2,\vec{\ell}^{\prime}=(\ell^{\prime}_{1},\ell^{\prime}_{2},N-\ell^{*}_{R_{\mathrm{L}}})\right) such that

r[RL]r|𝒥r(¯)|r[2]r|𝒥r(¯)|.\sum_{r\in[R_{\mathrm{L}}]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|\leq\sum_{r\in[2]}\ell^{\prime}_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}^{\prime})|. (122)
Proof:

To simplify the problem formulation, for any ¯(RL+1,RL,=(1,,RL+1))\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R_{\mathrm{L}}+1,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ldots,\ell_{R_{\mathrm{L}}+1})\right), we define Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}) as

Ji(r)(¯)|{j:j[i][i1] and ¯j(r)}|,J^{(r)}_{i}(\bar{{\mathbb{H}}})\triangleq\left|\left\{j:j\in[\ell^{*}_{i}]\setminus[\ell^{*}_{i-1}]\mbox{ and }\bar{{\mathbb{H}}}^{(r)}_{j}\in{\mathcal{L}}\right\}\right|, (123)

which denotes the number of block matrices in [¯i1+1(r)¯i1+2(r)¯i(r)]\begin{bmatrix}\bar{{\mathbb{H}}}^{(r)}_{\ell^{*}_{i-1}+1}&\bar{{\mathbb{H}}}^{(r)}_{\ell^{*}_{i-1}+2}&\cdots&\bar{{\mathbb{H}}}^{(r)}_{\ell^{*}_{i}}\end{bmatrix} belongs to {\mathcal{L}}. By definition, we have Jr(r)(¯)=0J^{(r)}_{r}(\bar{{\mathbb{H}}})=0 and |𝒥r(¯)|=i[R+1]Ji(r)(¯)|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|=\sum_{i\in[R+1]}J^{(r)}_{i}(\bar{{\mathbb{H}}}).

Table I: Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}) for ¯(4,3,=(1,2,3,N3))\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(4,3,\vec{\ell}=(\ell_{1},\ell_{2},\ell_{3},N-\ell^{*}_{3})\right).
1\ell_{1} 2\ell_{2} 3\ell_{3} N3N-\ell^{*}_{3}
J1(1)(¯)=0J^{(1)}_{1}(\bar{{\mathbb{H}}})=0 J2(1)(¯)J^{(1)}_{2}(\bar{{\mathbb{H}}}) J3(1)(¯)J^{(1)}_{3}(\bar{{\mathbb{H}}}) J4(1)(¯)J^{(1)}_{4}(\bar{{\mathbb{H}}})
J1(2)(¯)J^{(2)}_{1}(\bar{{\mathbb{H}}}) J2(2)(¯)=0J^{(2)}_{2}(\bar{{\mathbb{H}}})=0 J3(2)(¯)J^{(2)}_{3}(\bar{{\mathbb{H}}}) J4(2)(¯)J^{(2)}_{4}(\bar{{\mathbb{H}}})
J1(3)(¯)J^{(3)}_{1}(\bar{{\mathbb{H}}}) J2(3)(¯)J^{(3)}_{2}(\bar{{\mathbb{H}}}) J3(3)(¯)=0J^{(3)}_{3}(\bar{{\mathbb{H}}})=0 J4(3)(¯)J^{(3)}_{4}(\bar{{\mathbb{H}}})

Let us consider the case of RL=3R_{\mathrm{L}}=3, i.e., ¯(4,3,=(1,2,3,N3))\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(4,3,\vec{\ell}=(\ell_{1},\ell_{2},\ell_{3},N-\ell^{*}_{3})\right). WLOG, we asumme 123\ell_{1}\leq\ell_{2}\leq\ell_{3}. The corresponding Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}) for all r[3]r\in[3] and i[4]i\in[4] are listed in Table I, and we have

r[3]r|𝒥r(¯)|=1[J2(1)(¯)+J3(1)(¯)+J4(1)(¯)]+2[J1(2)(¯)+J3(2)(¯)+J4(2)(¯)]+3[J1(3)(¯)+J2(3)(¯)+J4(3)(¯)].\sum_{r\in[3]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|=\ell_{1}\left[J^{(1)}_{2}(\bar{{\mathbb{H}}})+J^{(1)}_{3}(\bar{{\mathbb{H}}})+J^{(1)}_{4}(\bar{{\mathbb{H}}})\right]\\ +\ell_{2}\left[J^{(2)}_{1}(\bar{{\mathbb{H}}})+J^{(2)}_{3}(\bar{{\mathbb{H}}})+J^{(2)}_{4}(\bar{{\mathbb{H}}})\right]+\ell_{3}\left[J^{(3)}_{1}(\bar{{\mathbb{H}}})+J^{(3)}_{2}(\bar{{\mathbb{H}}})+J^{(3)}_{4}(\bar{{\mathbb{H}}})\right]. (124)

Combining Constraint 1-L and pigeonhole principle, we can have the following inequalities from Table I,

J2(1)(¯)+J4(1)(¯)+J2(3)(¯)+J4(3)(¯)\displaystyle J^{(1)}_{2}(\bar{{\mathbb{H}}})+J^{(1)}_{4}(\bar{{\mathbb{H}}})+J^{(3)}_{2}(\bar{{\mathbb{H}}})+J^{(3)}_{4}(\bar{{\mathbb{H}}}) \displaystyle\leq 2+(N3)+1\displaystyle\ell_{2}+(N-\ell^{*}_{3})+1 (125)
J1(2)(¯)+J4(2)(¯)+J1(3)(¯)+J4(3)(¯)\displaystyle J^{(2)}_{1}(\bar{{\mathbb{H}}})+J^{(2)}_{4}(\bar{{\mathbb{H}}})+J^{(3)}_{1}(\bar{{\mathbb{H}}})+J^{(3)}_{4}(\bar{{\mathbb{H}}}) \displaystyle\leq 1+(N3)+1\displaystyle\ell_{1}+(N-\ell^{*}_{3})+1 (126)
J3(1)(¯)+J4(1)(¯)+J3(2)(¯)+J4(2)(¯)\displaystyle J^{(1)}_{3}(\bar{{\mathbb{H}}})+J^{(1)}_{4}(\bar{{\mathbb{H}}})+J^{(2)}_{3}(\bar{{\mathbb{H}}})+J^{(2)}_{4}(\bar{{\mathbb{H}}}) \displaystyle\leq 3+(N3)+1\displaystyle\ell_{3}+(N-\ell^{*}_{3})+1 (127)
J3(1)(¯)+J3(2)(¯)\displaystyle J^{(1)}_{3}(\bar{{\mathbb{H}}})+J^{(2)}_{3}(\bar{{\mathbb{H}}}) \displaystyle\leq 3+1\displaystyle\ell_{3}+1 (128)
J2(1)(¯)+J2(3)(¯)\displaystyle J^{(1)}_{2}(\bar{{\mathbb{H}}})+J^{(3)}_{2}(\bar{{\mathbb{H}}}) \displaystyle\leq 2+1\displaystyle\ell_{2}+1 (129)
J1(2)(¯)+J1(3)(¯)\displaystyle J^{(2)}_{1}(\bar{{\mathbb{H}}})+J^{(3)}_{1}(\bar{{\mathbb{H}}}) \displaystyle\leq 1+1.\displaystyle\ell_{1}+1. (130)

Then we can have an upper bound of (124) by applying (126), (128), and (129) as

r[3]r|𝒥r(¯)|\displaystyle\sum_{r\in[3]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})| (132)
\displaystyle\leq 1[(2+1)J2(3)(¯)+(3+1)J3(2)(¯)+J4(1)(¯)]\displaystyle\ell_{1}\left[(\ell_{2}+1)-J^{(3)}_{2}(\bar{{\mathbb{H}}})+(\ell_{3}+1)-J^{(2)}_{3}(\bar{{\mathbb{H}}})+J^{(1)}_{4}(\bar{{\mathbb{H}}})\right]
+2[(1+N3+1)J1(3)(¯)J4(3)(¯)+J3(2)(¯)]\displaystyle+\ell_{2}\left[\Big{(}\ell_{1}+N-\ell^{*}_{3}+1\Big{)}-J^{(3)}_{1}(\bar{{\mathbb{H}}})-J^{(3)}_{4}(\bar{{\mathbb{H}}})+J^{(2)}_{3}(\bar{{\mathbb{H}}})\right]
+3[J1(3)(¯)+J2(3)(¯)+J4(3)(¯)]\displaystyle+\ell_{3}\left[J^{(3)}_{1}(\bar{{\mathbb{H}}})+J^{(3)}_{2}(\bar{{\mathbb{H}}})+J^{(3)}_{4}(\bar{{\mathbb{H}}})\right]
=\displaystyle= 1[2+3+2+J4(1)(¯)]+2[1+N3+1]\displaystyle\ell_{1}\left[\ell_{2}+\ell_{3}+2+J^{(1)}_{4}(\bar{{\mathbb{H}}})\right]+\ell_{2}\Big{[}\ell_{1}+N-\ell^{*}_{3}+1\Big{]}
+(31)J2(3)(¯)+(21)J3(2)(¯)+(32)J1(3)(¯)+(32)J4(3)(¯)\displaystyle+(\ell_{3}-\ell_{1})J^{(3)}_{2}(\bar{{\mathbb{H}}})+(\ell_{2}-\ell_{1})J^{(2)}_{3}(\bar{{\mathbb{H}}})+(\ell_{3}-\ell_{2})J^{(3)}_{1}(\bar{{\mathbb{H}}})+(\ell_{3}-\ell_{2})J^{(3)}_{4}(\bar{{\mathbb{H}}})
\displaystyle\leq 1[2+3+2+J4(1)(¯)]+2[1+N3+1]\displaystyle\ell_{1}\left[\ell_{2}+\ell_{3}+2+J^{(1)}_{4}(\bar{{\mathbb{H}}})\right]+\ell_{2}\Big{[}\ell_{1}+N-\ell^{*}_{3}+1\Big{]} (133)
+(31)2+(21)3+(32)1+(32)(N3)\displaystyle+(\ell_{3}-\ell_{1})\ell_{2}+(\ell_{2}-\ell_{1})\ell_{3}+(\ell_{3}-\ell_{2})\ell_{1}+(\ell_{3}-\ell_{2})(N-\ell^{*}_{3})
=\displaystyle= 1[2+J4(1)(¯)]+2[3+1]+3[1+2+N3],\displaystyle\ell_{1}\left[2+J^{(1)}_{4}(\bar{{\mathbb{H}}})\right]+\ell_{2}\Big{[}\ell_{3}+1\Big{]}+\ell_{3}\Big{[}\ell_{1}+\ell_{2}+N-\ell^{*}_{3}\Big{]}, (134)

where (133) is due to 123\ell_{1}\leq\ell_{2}\leq\ell_{3}, J2(3)(¯)2J^{(3)}_{2}(\bar{{\mathbb{H}}})\leq\ell_{2}, J3(2)(¯)3J^{(2)}_{3}(\bar{{\mathbb{H}}})\leq\ell_{3}, J1(3)(¯)1J^{(3)}_{1}(\bar{{\mathbb{H}}})\leq\ell_{1}, and J4(3)(¯)N3J^{(3)}_{4}(\bar{{\mathbb{H}}})\leq N-\ell^{*}_{3}. We then investigate the ¯\bar{{\mathbb{H}}} achieves (134) as Table II shown.

Table II: Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}) for the ¯\bar{{\mathbb{H}}} achieves (134).
1\ell_{1} 2\ell_{2} 3\ell_{3} N3N-\ell^{*}_{3}
J1(1)(¯)=0J^{(1)}_{1}(\bar{{\mathbb{H}}})=0 J2(1)(¯)=1J^{(1)}_{2}(\bar{{\mathbb{H}}})=1 J3(1)(¯)=1J^{(1)}_{3}(\bar{{\mathbb{H}}})=1 J4(1)(¯)J^{(1)}_{4}(\bar{{\mathbb{H}}})
J1(2)(¯)=1J^{(2)}_{1}(\bar{{\mathbb{H}}})=1 J2(2)(¯)=0J^{(2)}_{2}(\bar{{\mathbb{H}}})=0 J3(2)(¯)=3J^{(2)}_{3}(\bar{{\mathbb{H}}})=\ell_{3} J4(2)(¯)=0J^{(2)}_{4}(\bar{{\mathbb{H}}})=0
J1(3)(¯)=1J^{(3)}_{1}(\bar{{\mathbb{H}}})=\ell_{1} J2(3)(¯)=2J^{(3)}_{2}(\bar{{\mathbb{H}}})=\ell_{2} J3(3)(¯)=0J^{(3)}_{3}(\bar{{\mathbb{H}}})=0 J4(3)(¯)=N3J^{(3)}_{4}(\bar{{\mathbb{H}}})=N-\ell^{*}_{3}

Due to inequality (125), we have J4(1)(¯)=0J^{(1)}_{4}(\bar{{\mathbb{H}}})=0. Therefore, we upper bound (124) as

r[3]r|𝒥r(¯)|21+2(3+1)+3(1+2+(N3)).\sum_{r\in[3]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|\leq 2\ell_{1}+\ell_{2}(\ell_{3}+1)+\ell_{3}\Big{(}\ell_{1}+\ell_{2}+(N-\ell^{*}_{3})\Big{)}. (135)
Table III: Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}^{\prime}) for ¯(3,2,=(1+2,3,N3))\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}\left(3,2,\vec{\ell}=(\ell_{1}+\ell_{2},\ell_{3},N-\ell^{*}_{3})\right).
1+2\ell_{1}+\ell_{2} 3\ell_{3} N3N-\ell^{*}_{3}
J1(1)(¯)=0J^{(1)}_{1}(\bar{{\mathbb{H}}}^{\prime})=0 J2(1)(¯)=3J^{(1)}_{2}(\bar{{\mathbb{H}}}^{\prime})=\ell_{3} J3(1)(¯)=1J^{(1)}_{3}(\bar{{\mathbb{H}}}^{\prime})=1
J1(2)(¯)=1+2J^{(2)}_{1}(\bar{{\mathbb{H}}}^{\prime})=\ell_{1}+\ell_{2} J2(2)(¯)=0J^{(2)}_{2}(\bar{{\mathbb{H}}}^{\prime})=0 J3(2)(¯)=N3J^{(2)}_{3}(\bar{{\mathbb{H}}}^{\prime})=N-\ell^{*}_{3}

Next, we construct a ¯(3,2,=(1+2,3,N3))\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}\big{(}3,2,\vec{\ell}^{\prime}=(\ell_{1}+\ell_{2},\ell_{3},N-\ell^{*}_{3})\big{)} with the corresponding Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}^{\prime}) as shown in Table III. Therefore

r[2]r|𝒥r(¯)|=1(3+1)+2(3+1)+3(1+2+(N3)),\sum_{r\in[2]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}^{\prime})|=\ell_{1}(\ell_{3}+1)+\ell_{2}(\ell_{3}+1)+\ell_{3}\Big{(}\ell_{1}+\ell_{2}+(N-\ell^{*}_{3})\Big{)}, (136)

By subtracting (135) by (136), we have

r[3]r|𝒥r(¯)|r[2]r|𝒥r(¯)|1(13)0.\sum_{r\in[3]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|-\sum_{r\in[2]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}^{\prime})|\leq\ell_{1}(1-\ell_{3})\leq 0. (137)

Therefore, for any ¯(4,3,=(1,2,3,N3))\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(4,3,\vec{\ell}=(\ell_{1},\ell_{2},\ell_{3},N-\ell^{*}_{3})\right), we can always construct an ¯(3,2,)\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}\left(3,2,\vec{\ell}^{\prime}\right) such that L=(1+2,3,N3)\vec{\ell}^{\prime}_{\mathrm{L}}=(\ell_{1}+\ell_{2},\ell_{3},N-\ell^{*}_{3}) and

r[3]r|𝒥r(¯)|r[2]r|𝒥r(¯)|.\sum_{r\in[3]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|\leq\sum_{r\in[2]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}^{\prime})|. (138)

Next we consider an ¯(RL+1,RL,=(1,2,,RL,NRL))\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R_{\mathrm{L}}+1,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ell_{2},\ldots,\ell_{R_{\mathrm{L}}},N-\ell^{*}_{R_{\mathrm{L}}})\,\right) for RL>3R_{\mathrm{L}}>3, which is with the corresponding Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}) in Table IV.

Table IV: Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}) for ¯(RL+1,RL,=(1,2,,RL,NRL))\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R_{\mathrm{L}}+1,R_{\mathrm{L}},\vec{\ell}=(\ell_{1},\ell_{2},\ldots,\ell_{R_{\mathrm{L}}},N-\ell^{*}_{R_{\mathrm{L}}})\,\right).
1\ell_{1} 2\ell_{2} \cdots RL1\ell_{R_{\mathrm{L}}-1} RL\ell_{R_{\mathrm{L}}} NRLN-\ell^{*}_{R_{\mathrm{L}}}
J1(1)(¯)=0J^{(1)}_{1}(\bar{{\mathbb{H}}})=0 J2(1)(¯)J^{(1)}_{2}(\bar{{\mathbb{H}}}) \cdots JRL1(1)(¯)J^{(1)}_{R_{\mathrm{L}}-1}(\bar{{\mathbb{H}}}) JRL(1)(¯)J^{(1)}_{R_{\mathrm{L}}}(\bar{{\mathbb{H}}}) JRL+1(1)(¯)J^{(1)}_{R_{\mathrm{L}}+1}(\bar{{\mathbb{H}}})
J1(2)(¯)J^{(2)}_{1}(\bar{{\mathbb{H}}}) J2(2)(¯)=0J^{(2)}_{2}(\bar{{\mathbb{H}}})=0 \cdots JRL1(2)(¯)J^{(2)}_{R_{\mathrm{L}}-1}(\bar{{\mathbb{H}}}) JRL(2)(¯)J^{(2)}_{R_{\mathrm{L}}}(\bar{{\mathbb{H}}}) JRL+1(2)(¯)J^{(2)}_{R_{\mathrm{L}}+1}(\bar{{\mathbb{H}}})
\vdots \vdots \ddots \vdots \vdots \vdots
J1(RL1)(¯)J^{(R_{\mathrm{L}}-1)}_{1}(\bar{{\mathbb{H}}}) J2(RL1)(¯)J^{(R_{\mathrm{L}}-1)}_{2}(\bar{{\mathbb{H}}}) \cdots JRL1(RL1)(¯)=0J^{(R_{\mathrm{L}}-1)}_{R_{\mathrm{L}}-1}(\bar{{\mathbb{H}}})=0 JRL(RL1)(¯)J^{(R_{\mathrm{L}}-1)}_{R_{\mathrm{L}}}(\bar{{\mathbb{H}}}) JRL+1(RL1)(¯)J^{(R_{\mathrm{L}}-1)}_{R_{\mathrm{L}}+1}(\bar{{\mathbb{H}}})
J1(RL)(¯)J^{(R_{\mathrm{L}})}_{1}(\bar{{\mathbb{H}}}) J2(RL)(¯)J^{(R_{\mathrm{L}})}_{2}(\bar{{\mathbb{H}}}) \cdots JRL1(RL)(¯)J^{(R_{\mathrm{L}})}_{R_{\mathrm{L}}-1}(\bar{{\mathbb{H}}}) JRL(RL)(¯)=0J^{(R_{\mathrm{L}})}_{R_{\mathrm{L}}}(\bar{{\mathbb{H}}})=0 JRL+1(RL)(¯)J^{(R_{\mathrm{L}})}_{R_{\mathrm{L}}+1}(\bar{{\mathbb{H}}})

As discussed in (135), we have

r{r,RL1,RL}r|𝒥r(¯)|2r+RL1(RL+1)+RL(NRL),\sum_{r\in\{r^{\prime},R_{\mathrm{L}}-1,R_{\mathrm{L}}\}}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|\leq 2\ell_{r^{\prime}}+\ell_{R_{\mathrm{L}}-1}(\ell_{R_{\mathrm{L}}}+1)+\ell_{R_{\mathrm{L}}}(N-\ell_{R_{\mathrm{L}}}), (139)

for all r[RL2]r^{\prime}\in[R_{\mathrm{L}}-2]. Hence,

r[RL]r|𝒥r(¯)|2(r[RL2]r)+RL1(RL+1)+RL(NRL)=r[3]r|𝒥r(¯)|,\sum_{r\in[R_{\mathrm{L}}]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|\leq 2\left(\sum_{r\in[R_{\mathrm{L}}-2]}\ell_{r}\right)+\ell_{R_{\mathrm{L}}-1}(\ell_{R_{\mathrm{L}}}+1)+\ell_{R_{\mathrm{L}}}(N-\ell_{R_{\mathrm{L}}})=\sum_{r\in[3]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}^{\prime})|, (140)

where ¯\bar{{\mathbb{H}}}^{\prime} is with the corresponding Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}^{\prime}) in Table V.

Table V: Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}^{\prime}) for the ¯\bar{{\mathbb{H}}}^{\prime} in (140).
r[RL2]r\sum_{r\in[R_{\mathrm{L}}-2]}\ell_{r} RL1\ell_{R_{\mathrm{L}}-1} RL\ell_{R_{\mathrm{L}}} NRLN-\ell^{*}_{R_{\mathrm{L}}}
J1(1)(¯)=0J^{(1)}_{1}(\bar{{\mathbb{H}}})=0 J2(1)(¯)=1J^{(1)}_{2}(\bar{{\mathbb{H}}})=1 J3(1)(¯)=1J^{(1)}_{3}(\bar{{\mathbb{H}}})=1 J4(1)(¯)=0J^{(1)}_{4}(\bar{{\mathbb{H}}})=0
J1(2)(¯)=1J^{(2)}_{1}(\bar{{\mathbb{H}}})=1 J2(2)(¯)=0J^{(2)}_{2}(\bar{{\mathbb{H}}})=0 J3(2)(¯)=RLJ^{(2)}_{3}(\bar{{\mathbb{H}}})=\ell_{R_{\mathrm{L}}} J4(2)(¯)=0J^{(2)}_{4}(\bar{{\mathbb{H}}})=0
J1(3)(¯)=r[RL2]rJ^{(3)}_{1}(\bar{{\mathbb{H}}})=\sum_{r\in[R_{\mathrm{L}}-2]}\ell_{r} J2(3)(¯)=RL1J^{(3)}_{2}(\bar{{\mathbb{H}}})=\ell_{R_{\mathrm{L}}-1} J3(3)(¯)=0J^{(3)}_{3}(\bar{{\mathbb{H}}})=0 J4(3)(¯)=NRLJ^{(3)}_{4}(\bar{{\mathbb{H}}})=N-\ell^{*}_{R_{\mathrm{L}}}

Since

¯(4,3,(r[RL2]r,RL1,RL,NRL)),\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}\left(4,3,\bigg{(}\sum_{r\in[R_{\mathrm{L}}-2]}\ell_{r},\ell_{R_{\mathrm{L}}-1},\ell_{R_{\mathrm{L}}},N-\ell^{*}_{R_{\mathrm{L}}}\bigg{)}\right), (141)

as proven in (138), we can find an ¯′′(3,2,(1′′,2′′,NRL))\bar{{\mathbb{H}}}^{\prime\prime}\in{\mathcal{H}}\Big{(}3,2,(\ell^{\prime\prime}_{1},\ell^{\prime\prime}_{2},N-\ell^{*}_{R_{\mathrm{L}}})\Big{)} such that

r[RL+2]r|𝒥r(¯)|r[3]r|𝒥r(¯)|r[2]r|𝒥r(¯′′)|.\sum_{r\in[R_{\mathrm{L}}+2]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|\leq\sum_{r\in[3]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}^{\prime})|\leq\sum_{r\in[2]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}^{\prime\prime})|. (142)

Next, for those remaining RRLR-R_{\mathrm{L}} rows of ¯\bar{{\mathbb{H}}}, we can have a similar lemma below.

Lemma 15.

Given R13R-1\geq 3 and ={R1,1,2,,R1}\vec{\ell}=\{\ell^{*}_{R-1},\ell_{1},\ell_{2},\ldots,\ell_{R-1}\}, for any ¯(R,R1,)\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(R,R-1,\vec{\ell}\,\right), we can always construct a ¯(3,2,=(R1,1,2)\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}\left(3,2,\vec{\ell}^{\prime}=(\ell^{*}_{R-1},\ell^{\prime}_{1},\ell^{\prime}_{2}\right) such that

r[R][1]r|𝒥r(¯)|r{2,3}r|𝒥r(¯)|.\sum_{r\in[R]\setminus[1]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})|\leq\sum_{r\in\{2,3\}}\ell^{\prime}_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}}^{\prime})|. (143)
Proof:

The proof is similar to the proof of Lemma 14, hence we omit it here. ∎

Combining Theorems 3, 4 and Lemmas 14, 15, we can lower bound B¯(R)\bar{B}^{*}(R) for all R[N]R\in[N] in the following theorem.

Theorem 5.

Let

Δ3min{(1,2,3):r[3]r=N and 12}2N(N1)N2+12+22+32+1(31)\Delta_{3}\triangleq\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3}):\,\sum_{r\in[3]}\ell_{r}=N\mbox{ and }\ell_{1}\leq\ell_{2}\}}2N(N-1)-N^{2}+\ell_{1}^{2}+\ell^{2}_{2}+\ell_{3}^{2}+\ell_{1}(\ell_{3}-1) (144)

and

Δ4min{(1,2,3,4):r[4]r=N12, and 34}2N(N1)1(2+1)2(N2)3(4+1)4(N4),\Delta_{4}\triangleq\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3},\ell_{4}):\,\sum_{r\in[4]}\ell_{r}=N\mbox{, }\ell_{1}\leq\ell_{2}\mbox{, and }\ell_{3}\leq\ell_{4}\}}2N(N-1)-\\ \ell_{1}(\ell_{2}+1)-\ell_{2}(N-\ell_{2})-\ell_{3}(\ell_{4}+1)-\ell_{4}(N-\ell_{4}), (145)

then B¯(R)min{Δ3,Δ4}\bar{B}^{*}(R)\geq\min\{\Delta_{3},\Delta_{4}\} for all R[N]R\in[N].

Proof:

As discussed in (98), we only need to consider the case of RLRRL1R_{\mathrm{L}}\geq R-R_{\mathrm{L}}\geq 1.

Lemma 11 and Theorem 4 have proven B¯(1)B¯(2)B¯(3)Δ3\bar{B}^{*}(1)\geq\bar{B}^{*}(2)\geq\bar{B}^{*}(3)\geq\Delta_{3} for the case of R=2R=2. We next consider the case of R3R\geq 3.

For the case of R3R\geq 3 and RRL=1R-R_{\mathrm{L}}=1, any ¯{R,R1,(1,2,,R)}\bar{{\mathbb{H}}}\in{\mathcal{H}}\left\{R,R-1,(\ell_{1},\ell_{2},\ldots,\ell_{R})\right\} can be replaced by some ¯{3,2,(1,2,R)}\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}\left\{3,2,(\ell^{\prime}_{1},\ell^{\prime}_{2},\ell_{R})\right\} such that B()B()B({\mathbb{H}})\geq B({\mathbb{H}}^{\prime}) due to Lemma 14. Therefore, B¯(R)B¯(3)Δ3\bar{B}^{*}(R)\geq\bar{B}^{*}(3)\geq\Delta_{3} when R3R\geq 3 and RRL=1R-R_{\mathrm{L}}=1.

The remaining case is of R3R\geq 3 and RRL2R-R_{\mathrm{L}}\geq 2. Since RLRRLR_{\mathrm{L}}\geq R-R_{\mathrm{L}}, this case is equivalent to the case of RLRRL2R_{\mathrm{L}}\geq R-R_{\mathrm{L}}\geq 2. For the case of RLRRL2R_{\mathrm{L}}\geq R-R_{\mathrm{L}}\geq 2, any ¯{R,RL,(1,2,,R)}\bar{{\mathbb{H}}}\in{\mathcal{H}}\left\{R,R_{\mathrm{L}},(\ell_{1},\ell_{2},\ldots,\ell_{R})\right\} can be replaced by some ¯{4,2,(1,2,3,4)}\bar{{\mathbb{H}}}^{\prime}\in{\mathcal{H}}\left\{4,2,(\ell^{\prime}_{1},\ell^{\prime}_{2},\ell^{\prime}_{3},\ell^{\prime}_{4})\right\} such that 1+2=r[RL]r\ell^{\prime}_{1}+\ell^{\prime}_{2}=\sum_{r\in[R_{\mathrm{L}}]}\ell_{r}, 3+4=r[R][RL]r\ell^{\prime}_{3}+\ell^{\prime}_{4}=\sum_{r\in[R]\setminus[R_{\mathrm{L}}]}\ell_{r}, B()B()B({\mathbb{H}})\geq B({\mathbb{H}}^{\prime}). Therefore, we can conclude that

B¯(R)min{(1,2,3,4):r[4]r=N}min¯(4,2,)B(¯),\bar{B}^{*}(R)\geq\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3},\ell_{4}):\sum_{r\in[4]}\ell_{r}=N\}}\min_{\bar{{\mathbb{H}}}\in{\mathcal{H}}(4,2,\vec{\ell}\,)}B(\bar{{\mathbb{H}}}), (146)

when RLRRL2R_{\mathrm{L}}\geq R-R_{\mathrm{L}}\geq 2. We then prove that (146) can be further lower bounded by Δ4\Delta_{4}.

As discussed in the beginning of this section, we swap rows or columns without effecting the repairing bandwidth of ¯\bar{{\mathbb{H}}}. Hence, WLOG, we can assume 12\ell_{1}\leq\ell_{2} and 34\ell_{3}\leq\ell_{4} for any ¯{4,2,(1,2,3,4)}\bar{{\mathbb{H}}}\in{\mathcal{H}}\left\{4,2,(\ell_{1},\ell_{2},\ell_{3},\ell_{4})\right\}. By following the same trick in proving Lemma 12, we can have

r[4]r|𝒥r(¯)|\displaystyle\sum_{r\in[4]}\ell_{r}|{\mathcal{J}}_{r}(\bar{{\mathbb{H}}})| =\displaystyle= r[4]r(i[4]{r}Ji(r)(¯))\displaystyle\sum_{r\in[4]}\ell_{r}\left(\sum_{i\in[4]\setminus\{r\}}J^{(r)}_{i}(\bar{{\mathbb{H}}})\right) (147)
\displaystyle\leq 1(2+1)+2(N2)+3(4+1)+4(N4),\displaystyle\ell_{1}(\ell_{2}+1)+\ell_{2}(N-\ell_{2})+\ell_{3}(\ell_{4}+1)+\ell_{4}(N-\ell_{4}), (148)

as illustrated in Table VI.

Table VI: Ji(r)(¯)J^{(r)}_{i}(\bar{{\mathbb{H}}}) for ¯(4,2,(1,2,3,4))\bar{{\mathbb{H}}}\in{\mathcal{H}}\left(4,2,(\ell_{1},\ell_{2},\ell_{3},\ell_{4})\right).
1\ell_{1} 2\ell_{2} 3\ell_{3} 4\ell_{4}
J1(1)(¯)=0J^{(1)}_{1}(\bar{{\mathbb{H}}})=0 J2(1)(¯)=2J^{(1)}_{2}(\bar{{\mathbb{H}}})=\ell_{2} J3(1)(¯)=1J^{(1)}_{3}(\bar{{\mathbb{H}}})=1 J4(1)(¯)=0J^{(1)}_{4}(\bar{{\mathbb{H}}})=0
J1(2)(¯)=1J^{(2)}_{1}(\bar{{\mathbb{H}}})=\ell_{1} J2(2)(¯)=0J^{(2)}_{2}(\bar{{\mathbb{H}}})=0 J3(2)(¯)=3J^{(2)}_{3}(\bar{{\mathbb{H}}})=\ell_{3} J4(2)(¯)=4J^{(2)}_{4}(\bar{{\mathbb{H}}})=\ell_{4}
J1(3)(¯)=0J^{(3)}_{1}(\bar{{\mathbb{H}}})=0 J2(3)(¯)=1J^{(3)}_{2}(\bar{{\mathbb{H}}})=1 J3(3)(¯)=0J^{(3)}_{3}(\bar{{\mathbb{H}}})=0 J4(3)(¯)=4J^{(3)}_{4}(\bar{{\mathbb{H}}})=\ell_{4}
J1(4)(¯)=1J^{(4)}_{1}(\bar{{\mathbb{H}}})=\ell_{1} J2(4)(¯)=2J^{(4)}_{2}(\bar{{\mathbb{H}}})=\ell_{2} J3(4)(¯)=3J^{(4)}_{3}(\bar{{\mathbb{H}}})=\ell_{3} J4(4)(¯)=0J^{(4)}_{4}(\bar{{\mathbb{H}}})=0

Therefore, we can rewrite (146) as

B¯(R)min{(1,2,3,4):r[4]r=N,12,34}2N(N1)1(2+1)2(N2)3(4+1)4(N4)=Δ4,\bar{B}^{*}(R)\geq\min_{\vec{\ell}\in\{(\ell_{1},\ell_{2},\ell_{3},\ell_{4}):\sum_{r\in[4]}\ell_{r}=N,\,\ell_{1}\leq\ell_{2},\,\ell_{3}\leq\ell_{4}\}}2N(N-1)-\\ \ell_{1}(\ell_{2}+1)-\ell_{2}(N-\ell_{2})-\ell_{3}(\ell_{4}+1)-\ell_{4}(N-\ell_{4})=\Delta_{4}, (149)

when RLRRL2R_{\mathrm{L}}\geq R-R_{\mathrm{L}}\geq 2.

We finally conclude that B¯(R)min{Δ3,Δ4}\bar{B}^{*}(R)\geq\min\{\Delta_{3},\Delta_{4}\} for all R[N]R\in[N]. ∎

IV Numerical results

The derived lower bound, min{Δ3,Δ4}\min\{\Delta_{3},\Delta_{4}\} for 4N2004\leq N\leq 200, is plotted in Figure 1. The values at N=26N=26 and N=32N=32 are achieved by the codes provided by the department in Israel, which implies that the derived bound is so tight that it can be achieved. It should be noted that min{Δ3,Δ4}=Δ3\min\{\Delta_{3},\Delta_{4}\}=\Delta_{3} for all 4N2004\leq N\leq 200, except when N=4N=4 and 66.

Refer to caption
Figure 1: The lower bound min{Δ3,Δ4}\min\{\Delta_{3},\Delta_{4}\} from N=4N=4 to N=200N=200.

References

  • [1] John R. Silvester, “Determinants of Block Matrices,” The Mathematical Gazette, vol. 84, no. 501, pp. 460–467, Nov. 2000.