This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Low regularity solutions for the surface quasi-geostrophic front equation

Albert Ai Department of Mathematics, University of Wisconsin, Madison [email protected]  and  Ovidiu-Neculai Avadanei Department of Mathematics, University of California at Berkeley [email protected]
Abstract.

In this article we consider the low regularity well-posedness of the surface quasi-geostrophic (SQG) front equation. Recent work on other quasilinear models, including the gravity water waves system and nonlinear waves, have demonstrated that in presence of a null structure, a normal form analysis can substantially improve the low regularity theory. In the current article, we observe a null structure in the context of SQG fronts, and establish improved local and global well-posedness results.

Key words and phrases:
SQG front equation, low regularity, normal forms, paralinearization, modified energies, frequency envelopes, wave packet testing
2020 Mathematics Subject Classification:
35Q35, 35B65

1. Introduction

The surface quasi-geostrophic (SQG) equation takes the form

(1.1) θt+uθ=0,u=(Δ)12θ\theta_{t}+u\cdot\nabla\theta=0,\qquad u=(-\Delta)^{-\frac{1}{2}}\nabla^{\perp}\theta

where θ\theta is a scalar evolution on 2{\mathbb{R}}^{2}, (Δ)12(-\Delta)^{-\frac{1}{2}} denotes a fractional Laplacian, and =(y,x)\nabla^{\perp}=(-\partial_{y},\partial_{x}). The SQG equation arises from oceanic and atmospheric science as a model for quasi-geostrophic flows confined to a surface. This equation is also of interest due to similarities with the three dimensional incompressible Euler equation. In particular, the question of singularity formation remains open for both problems.

The SQG equation is one member in a family of two-dimensional active scalar equations parameterized by the transport term in (1.1), with

(1.2) u=(Δ)α2θ,α(0,2].u=(-\Delta)^{-\frac{\alpha}{2}}\nabla^{\perp}\theta,\qquad\alpha\in(0,2].

The case α=2\alpha=2 gives the two dimensional incompressible Euler equation, while the α=1\alpha=1 case gives the SQG equation (1.1) above.

Front solutions to (1.1) refer to piecewise constant solutions taking the form

θ(t,x,y)={θ+if y>φ(t,x),θif y<φ(t,x),\theta(t,x,y)=\begin{cases}\theta_{+}\qquad\text{if }y>\varphi(t,x),\\ \theta_{-}\qquad\text{if }y<\varphi(t,x),\end{cases}

where the front is modeled by the graph y=φ(t,x)y=\varphi(t,x) with xx\in{\mathbb{R}}. Front solutions are closely related to patch solutions

θ(t,x,y)={θ+if (x,y)Ω(t),θif (x,y)Ω(t),\theta(t,x,y)=\begin{cases}\theta_{+}\qquad\text{if }(x,y)\in\Omega(t),\\ \theta_{-}\qquad\text{if }(x,y)\notin\Omega(t),\end{cases}

where Ω\Omega is a bounded, simply connected domain. For instance, when α(0,1)\alpha\in(0,1), the derivation and analysis of contour dynamics equations do not differ substantially between the case of patches and the case of fronts. Global well-posedness for the front equation for small and localized data was established by Córdoba-Gómez-Serrano-Ionescu in [7].

However, when α[1,2]\alpha\in[1,2], the derivation of contour dynamics equations for fronts has additional complexities relative to the case of patches, arising from the slow decay of Green’s functions. The derivation in this range was provided by Hunter-Shu [13] via a regularization procedure, and again by Hunter-Shu-Zhang in [15]. In the SQG case α=1\alpha=1, the evolution equation for the front φ\varphi takes the form

(1.3) (t2log|Dx|x)φ(t,x)\displaystyle(\partial_{t}-2\log|D_{x}|\partial_{x})\varphi(t,x) =Q(φ,xφ)(t,x),\displaystyle=Q(\varphi,\partial_{x}\varphi)(t,x),
φ(0,x)\displaystyle\varphi(0,x) =φ0(x),\displaystyle=\varphi_{0}(x),

where φ\varphi is a real-valued function φ:[0,)×\varphi:[0,\infty)\times{\mathbb{R}}\rightarrow{\mathbb{R}} and

(1.4) Q(f,g)(x)=(1|y|1y2+(f(x+y)f(x))2)(g(x+y)g(x))𝑑y.Q(f,g)(x)=\int\left(\frac{1}{|y|}-\frac{1}{\sqrt{y^{2}+(f(x+y)-f(x))^{2}}}\right)\cdot(g(x+y)-g(x))\,dy.

This can be rewritten using difference quotients as

(1.5) Q(f,g)(x)=F(δyf)|δ|yg𝑑y,Q(f,g)(x)=\int F({\delta}^{y}f)\cdot{|\delta|}^{y}g\,dy,

where

F(s)=111+s2,δyf(x)=f(x+y)f(x)y,|δ|yg(x)=g(x+y)g(x)|y|.\displaystyle F(s)=1-\frac{1}{\sqrt{1+s^{2}}},\qquad\displaystyle{\delta}^{y}f(x)=\frac{f(x+y)-f(x)}{y},\qquad\displaystyle{|\delta|}^{y}g(x)=\frac{g(x+y)-g(x)}{|y|}.

The equation (1.3) is invariant under the transformation

tκt,xκ(x+2log|κ|t),φκφ,\displaystyle t\rightarrow\kappa t,\qquad x\rightarrow\kappa(x+2\log|\kappa|t),\qquad\varphi\rightarrow\kappa\varphi,

which implies that H˙32()\dot{H}^{\frac{3}{2}}(\mathbb{R}) is the corresponding critical Sobolev space.

In the case of SQG patches, Gancedo-Nguyen-Patel proved in [8] that under a suitable parametrization, the contour dynamics evolution is locally well-posed in Hs(𝕋)H^{s}(\mathbb{T}) when s>2s>2. Local well-posedness for the generalized SQG family in the case α(0,2)\alpha\in(0,2) and α1\alpha\neq 1 was also considered by Gancedo-Patel in [9], establishing in particular local well-posedness in H2H^{2} for α(0,1)\alpha\in(0,1) and in H3H^{3} for α(1,2)\alpha\in(1,2). For a more recent result on enhanced lifespan for α\alpha-patches, see Berti-Cuccagna-Gancedo-Scrobogna [6].

Concerning ill-posedness for patches, Kiselev-Luo [23] proved results in Sobolev spaces with exponents p2p\neq 2, as well as in Hölder spaces. Further, Zlatoš [26] proved finite time blow up for patch solutions (both bounded and unbounded) for suitable initial data and α(0,1/4]\alpha\in(0,1/4], provided that local well-posedness for (1.1) is known in the Sobolev space H3(2)H^{3}(\mathbb{R}^{2}) (corresponding to solutions in H2()H^{2}(\mathbb{R}) in the contour dynamics formulation from [9]).

In the current article we are concerned with SQG fronts. Work in this area began with Hunter-Shu-Zhang, who studied the local well-posedness for a cubic approximation of (1.3) in [14], and subsequently in [17] established local well-posedness for the full equation (1.3) with initial data in HsH^{s}, s5s\geq 5, along with global well-posedness for small, localized, and essentially smooth (s1200s\geq 1200) initial data. These results were extended to the range α(1,2)\alpha\in(1,2) for the generalized SQG family in [16], while also improving the required regularity to s>72+3α2s>\frac{7}{2}+\frac{3\alpha}{2}. However, these well-posedness results require a small data assumption to ensure the coercivity of the modified energies used in the energy estimates, along with a convergence condition on an expansion of the nonlinearity Q(φ,φx)Q(\varphi,\varphi_{x}) appearing in (1.3).

In [1], the authors lowered the regularity thresholds for both the local and global theory, proving that the problem is locally well-posed in HsH^{s} when s>52s>\frac{5}{2}, which corresponds to the classical energy threshold of Hughes-Kato-Marsden [11] at one derivative above scaling; and globally well-posed for small and localized initial data in HsH^{s} when s>4s>4.

In the present article, our objective is to revisit and streamline the analysis of (1.3), while improving the established well-posedness results. Our contributions include:

  • establishing the local well-posedness in a significantly lower regularity setting at 12+ϵ\frac{1}{2}+\epsilon derivatives above scaling, by observing a null structure for the equation and carrying out an associated normal form analysis, and

  • establishing the global well-posedness in a low regularity setting, by applying the wave packet testing method of Ifrim-Tataru (see for instance [18, 21]).

We anticipate that our streamlined analysis will open the way to substantial simplifications and improvements in the analysis of related equations, including the generalized SQG family (1.2).

1.1. Main results

We recall for the purpose of comparison the energy estimate in [1] for (1.3),

(1.6) ddtE(s)(φ)AAB0E(s)(φ),\frac{d}{dt}E^{(s)}(\varphi)\lesssim_{A}AB_{0}\cdot E^{(s)}(\varphi),

where

A=xφL,B0=xφC1,δ.A=\|\partial_{x}\varphi\|_{L^{\infty}},\qquad B_{0}=\|\partial_{x}\varphi\|_{C^{1,\delta}}.

We remark that this energy estimate is cubic, which is consistent with the fact that the nonlinearity QQ of (1.3) is fully nonlinear, and cubic at leading order.

However, from the perspective of the balance of derivatives, (1.6) manifests quadratically, in that a full extra derivative is absorbed solely by the B0B_{0} control norm. This in turn can be understood by viewing the cubic nonlinearity QQ as a quadratic nonlinearity with a low frequency coefficient, and motivates our choice of notation Q=Q(f,g)Q=Q(f,g).

A key observation in the current article is that the SQG equation (1.3) satisfies a resonance structure, in the sense that, using the quadratic perspective, the nonlinearity can be viewed as

(1.7) Q(f,g)Ω(x1F(fx),g),Q(f,g)\approx\Omega(\partial_{x}^{-1}F(f_{x}),g),

where the symbol of Ω\Omega is

Ω(ξ1,ξ2)=ω(ξ1)+ω(ξ2)ω(ξ1+ξ2),ω(ξ)=2iξlog|ξ|.\Omega(\xi_{1},\xi_{2})=\omega(\xi_{1})+\omega(\xi_{2})-\omega(\xi_{1}+\xi_{2}),\qquad\omega(\xi)=2i\xi\log|\xi|.

For more details, see the discussion in Section 3.

As a result, we have access to normal form methods which open the way to a refined energy estimate with a better balance of derivatives,

ddtE(s)(φ)AB2E(s)(φ),\frac{d}{dt}E^{(s)}(\varphi)\lesssim_{A}B^{2}\cdot E^{(s)}(\varphi),

where here we have balanced the control norm

B:=xφC12+.B:=\|\partial_{x}\varphi\|_{C^{\frac{1}{2}+}}.

The gain obtained from the rebalanced energy estimate, along with its counterpart for the linearized equation, leads to our main local well-posedness result:

Theorem 1.1.

Equation (1.3) is locally well-posed for initial data in H˙s0H˙s\dot{H}^{s_{0}}\cap\dot{H}^{s} with s>2s>2 and s0<32s_{0}<\frac{3}{2}. Precisely, for every R>0R>0, there exists T=T(R)>0T=T(R)>0 such that for any φ0H˙s0H˙s\varphi_{0}\in\dot{H}^{s_{0}}\cap\dot{H}^{s} with φ0H˙s0H˙s<R\|\varphi_{0}\|_{\dot{H}^{s_{0}}\cap\dot{H}^{s}}<R, the Cauchy problem (1.3) has a unique solution φC([0,T],H˙s0H˙s)\varphi\in C([0,T],\dot{H}^{s_{0}}\cap\dot{H}^{s}). Moreover, the solution map φ0φ\varphi_{0}\mapsto\varphi from H˙s0H˙s\dot{H}^{s_{0}}\cap\dot{H}^{s} to C([0,T],H˙s0H˙s)C([0,T],\dot{H}^{s_{0}}\cap\dot{H}^{s}) is continuous.

Remark 1.2.

In order to keep the proofs simpler, we assume that the parameter AA is small. This assumption can be removed with a more careful definition of the paraproduct, at the expense of having to deal with more technical details.

Normal forms were first introduced by Shatah in [24] to study the long-time behavior of solutions to dispersive equations. However, in the quasilinear context, the normal form transformation is not readily applicable, because the resulting correction will not be bounded. Several approaches have been introduced to address this, and in the present article we primarily rely on two. First is the idea of carrying out the normal form analysis in a paradifferential fashion, which was first used by Alazard-Delort [5] in a paradiagonalization argument used to obtain Sobolev estimates for the solutions of the water waves equations in the Zakharov formulation. This approach was also used by Ifrim-Tataru [19] to obtain a new proof of the L2L^{2} global well-posedness for Benjamin-Ono equation, proved previously by Ionescu-Kenig [22].

Second is the use of modified energies, in lieu of the direct normal form transform at the level of the equation. This approach was first introduced by Hunter-Ifrim-Tataru-Wong [12] to study long time solutions of the Burgers-Hilbert equation.

The combination of these approaches to address the low regularity theory for quasilinear models was first introduced by the first author with Ifrim-Tataru in [2] for the gravity water waves system, through the proof of balanced energy estimates. Balanced energy estimates were subsequently further combined with Strichartz estimates in the context of the low regularity theory for the time-like minimal surface problem in the Minkowski space [3].

We remark that our local well-posedness threshold of s>2s>2 coincides with the result of Gancedo-Nguyen-Patel [8] for patches. However, the use of the null structure in our current work yields stronger energy estimates in the sense that our control norms AA and BB consist of only pointwise norms rather than L2L^{2}-based norms. This allows for further applications, including the analysis of long time behavior, which we discuss next.

We will consider global well-posedness for small and localized data. To describe localized solutions, we define the operator

L=x+2t+2tlog|Dx|,L=x+2t+2t\log|D_{x}|,

which commutes with the linear flow t2log|Dx|x\partial_{t}-2\log|D_{x}|\partial_{x}, and at time t=0t=0 is simply multiplication by xx. Then we define the time-dependent weighted energy space

φX:=φH˙s0H˙s+LxφL2,\|\varphi\|_{X}:=\|\varphi\|_{\dot{H}^{s_{0}}\cap\dot{H}^{s}}+\|L\partial_{x}\varphi\|_{L^{2}},

where s>3s>3 and s0<1s_{0}<1. To track the dispersive decay of solutions, we define the pointwise control norm

φY:=|Dx|1δDx12+2δφLx.\|\varphi\|_{Y}:=\||D_{x}|^{1-\delta}\langle D_{x}\rangle^{\frac{1}{2}+2\delta}\varphi\|_{L_{x}^{\infty}}.
Theorem 1.3.

Consider data φ0\varphi_{0} with

φ0Xϵ1.\|\varphi_{0}\|_{X}\lesssim{\epsilon}\ll 1.

Then the solution φ\varphi to (1.3) with initial data φ0\varphi_{0} exists globally in time, with energy bounds

φ(t)XϵtCϵ2\|\varphi(t)\|_{X}\lesssim{\epsilon}t^{C{\epsilon}^{2}}

and pointwise bounds

φ(t)Yϵt12.\|\varphi(t)\|_{Y}\lesssim{\epsilon}\langle t\rangle^{-\frac{1}{2}}.

Further, the solution φ\varphi exhibits a modified scattering behavior, with an asymptotic profile WH1C1ϵ2()W\in H^{1-C_{1}\epsilon^{2}}({\mathbb{R}}), in a sense that will be made precise in Section 9.

1.2. Outline of the paper

Our paper is organized as follows. In Section 2, we establish notation and preliminaries used through the rest of the paper, including estimates involving the paradifferential calculus and difference quotients.

In Section 3, we introduce the null structure of equation (1.3) and its linearization,

(1.8) tv2log|Dx|xv=xQ(φ,v).\partial_{t}v-2\log|D_{x}|\partial_{x}v=\partial_{x}Q(\varphi,v).

We also introduce the paradifferential flow associated to (1.8), which will play a central role in the subsequent analysis.

In Section 4, we reduce the energy estimates and well-posedness of the linearized equation (1.8) to that of the inhomogeneous paradifferential flow. The primary difficulty is ensuring that the paradifferential errors satisfy balanced cubic estimates. In order to achieve this, we carry out a paradifferential normal form analysis to remove the unbalanced components of the errors.

In Section 5, we establish energy estimates for the paradifferential flow. Here, we construct a quasilinear modified energy, which reproduces the one introduced by Hunter-Shu-Zhang in [17]. However, in the current article, we carefully observe cancellations which ensure that our estimates are balanced.

In Section 6, we establish higher order energy estimates. Extra care must be taken because the commutators are quadratic rather than cubic, and thus not perturbative. In order to eliminate them, we use an exponential Jacobian conjugation combined with a normal form correction.

In Section 7, we prove Theorem 1.1, the local well-posedness result for (1.3). We use the method of frequency envelopes to construct rough solutions as the unique limit of smooth solutions. This method was introduced by Tao in [25] to better track the evolution of energy distribution between dyadic frequencies. A systematic presentation of the use of frequency envelopes in the study of local well-posedness theory for quasilinear problems can be found in the expository paper [20].

In Section 8 we use the wave packet testing method of Ifrim-Tataru to prove the global-wellposedness part of Theorem 1.3, along with the dispersive bounds for the resulting solution. This method was systematically presented in [21]. Finally, in Section 9 we discuss the modified scattering behavior of the global solutions constructed in Section 8.

1.3. Acknowledgements

The first author was supported by the NSF grant DMS-2220519 and the RTG in Analysis and Partial Differential equations grant DMS-2037851. The second author was supported by the NSF grant DMS-2054975, as well as by the Simons Foundation.

The authors were also supported by the NSF under Grant No. DMS-1928930 while in residence at the Simons Laufer Mathematical Sciences Institute (formerly MSRI) in Berkeley, California, during the summer of 2023.

The authors would like to thank Mihaela Ifrim and Daniel Tataru for many helpful discussions.

2. Notations and classical estimates

In this section we discuss some notation and classical estimates that we use throughout the article. These include estimates involving the paradifferential calculus, and difference quotients.

2.1. Paradifferential operators and paraproducts

Let χ\chi be an even smooth function such that χ=1\chi=1 on [120,120][-\frac{1}{20},\frac{1}{20}] and χ=0\chi=0 outside [110,110][-\frac{1}{10},\frac{1}{10}], and define

χ~(θ1,θ2)=χ(|θ1|2M2+|θ2|2).\tilde{\chi}(\theta_{1},\theta_{2})=\chi\left(\frac{|\theta_{1}|^{2}}{M^{2}+|\theta_{2}|^{2}}\right).

Given a symbol a(x,η)a(x,\eta), we use the above cutoff symbol χ~\tilde{\chi} to define an MM dependent paradifferential quantization of aa by (see also [4])

Tau^(ξ)=(2π)1P^>M(ξ)χ~(ξη,ξ+η)a^(ξη,η)P^>M(η)u^(η)𝑑η,\displaystyle\widehat{T_{a}u}(\xi)=(2\pi)^{-1}\int\hat{P}_{>M}(\xi)\tilde{\chi}\left(\xi-\eta,\xi+\eta\right)\hat{a}(\xi-\eta,\eta)\hat{P}_{>M}(\eta)\hat{u}(\eta)\,d\eta,

where the Fourier transform of the symbol a=a(x,η)a=a(x,\eta) is taken with respect to the first argument.

This quantization was employed in [1], where the parameter MM was introduced to ensure the coercivity of the modified quasilinear energy without relying on a small data assumption. We recall in particular that in the case of a paraproduct, where a=a(x)a=a(x) is real-valued, TaT_{a} is self-adjoint.

The following commutator-type estimates are exact reproductions of statements from Lemmas 2.4 and 2.6 in Section 2 of [2], respectively:

Lemma 2.1 (Para-commutators).

Assume that γ1,γ2<1\gamma_{1},\gamma_{2}<1. Then we have

(2.1) TfTgTgTfH˙sH˙s+γ1+γ2|D|γ1fBMO|D|γ2gBMO,\|T_{f}T_{g}-T_{g}T_{f}\|_{\dot{H}^{s}\to\dot{H}^{s+\gamma_{1}+\gamma_{2}}}\lesssim\||D|^{\gamma_{1}}f\|_{BMO}\||D|^{\gamma_{2}}g\|_{BMO},
(2.2) TfTgTgTfB˙,sH˙s+γ1+γ2|D|γ1fL2|D|γ2gBMO.\|T_{f}T_{g}-T_{g}T_{f}\|_{\dot{B}^{s}_{\infty,\infty}\to\dot{H}^{s+\gamma_{1}+\gamma_{2}}}\lesssim\||D|^{\gamma_{1}}f\|_{L^{2}}\||D|^{\gamma_{2}}g\|_{BMO}.

A bound similar to (2.1) holds in the Besov scale of spaces, namely from B˙p,qs\dot{B}^{s}_{p,q} to B˙p,qs+γ1+γ2\dot{B}^{s+\gamma_{1}+\gamma_{2}}_{p,q} for real ss and 1p,q1\leq p,q\leq\infty.

The next paraproduct estimate, see Lemma 2.5 in [2], directly relates multiplication and paramultiplication:

Lemma 2.2 (Para-products).

Assume that γ1,γ2<1\gamma_{1},\gamma_{2}<1, γ1+γ20\gamma_{1}+\gamma_{2}\geq 0. Then

(2.3) TfTgTfgH˙sH˙s+γ1+γ2|D|γ1fBMO|D|γ2gBMO.\|T_{f}T_{g}-T_{fg}\|_{\dot{H}^{s}\to\dot{H}^{s+\gamma_{1}+\gamma_{2}}}\lesssim\||D|^{\gamma_{1}}f\|_{BMO}\||D|^{\gamma_{2}}g\|_{BMO}.

A similar bound holds in the Besov scale of spaces, namely from B˙p,qs\dot{B}^{s}_{p,q} to B˙p,qs+γ1+γ2\dot{B}^{s+\gamma_{1}+\gamma_{2}}_{p,q} for real ss and 1p,q1\leq p,q\leq\infty.

Next, we recall the following Moser-type estimate. See for instance [1].

Theorem 2.3 (Moser).

Let F:F:{\mathbb{R}}\rightarrow{\mathbb{R}} be a smooth function with F(0)=0F(0)=0, and

R(v)=F(v)TF(v)v.R(v)=F(v)-T_{F^{\prime}(v)}v.

Then

(2.4) R(v)W12,vL|D|12vL.\|R(v)\|_{W^{\frac{1}{2},\infty}}\lesssim_{\|v\|_{L^{\infty}}}\||D|^{\frac{1}{2}}v\|_{L^{\infty}}.

2.2. Difference quotients

We recall that we denote difference quotients by

δyh(x)=h(x+y)h(x)y,|δ|yh(x)=h(x+y)h(x)|y|,{\delta}^{y}h(x)=\frac{h(x+y)-h(x)}{y},\qquad{|\delta|}^{y}h(x)=\frac{h(x+y)-h(x)}{|y|},

as well as the smooth function

F(s)=111+s2,F(s)=1-\frac{1}{\sqrt{1+s^{2}}},

which in particular vanishes to second order at s=0s=0, satisfying F(0)=F(0)=0F(0)=F^{\prime}(0)=0. Using this notation, we may express

Q(φ,v)(t,x)=F(δyφ(t,x))|δ|yv(t,x)𝑑y.Q(\varphi,v)(t,x)=\int F({\delta}^{y}\varphi(t,x))\cdot{|\delta|}^{y}v(t,x)\,dy.

In addition, to facilitate the normal form analysis in later sections, we denote

ψ:=x1F(φx).\psi:=\partial_{x}^{-1}F(\varphi_{x}).

We have the following estimate which allows the balancing of up to one derivative over multilinear averages of difference quotients:

Lemma 2.4.

Let i=1,n¯i=\overline{1,n} and pi,r[1,]p_{i},r\in[1,\infty] and αi,βi[0,1]\alpha_{i},\beta_{i}\in[0,1] satisfying

i1pi=1r,n1<iαin,0iβi<n1.\sum_{i}\frac{1}{p_{i}}=\frac{1}{r},\qquad n-1<\sum_{i}\alpha_{i}\leq n,\qquad 0\leq\sum_{i}\beta_{i}<n-1.

Then

δyfidyLxr|D|αifiLpi+|D|βifiLpi.\left\|\int\prod{\delta}^{y}f_{i}\,dy\right\|_{L_{x}^{r}}\lesssim\prod\||D|^{\alpha_{i}}f_{i}\|_{L^{p_{i}}}+\prod\||D|^{\beta_{i}}f_{i}\|_{L^{p_{i}}}.
Proof.

We write

δyfidy=|y|1+|y|>1.\int\prod{\delta}^{y}f_{i}\,dy=\int_{|y|\leq 1}+\int_{|y|>1}.

For the former integral, we have by Hölder

|y|1δyfidyLxr|y|11|y|nαi|D|αifiLpidy|D|αifiLpi.\left\|\int_{|y|\leq 1}\prod{\delta}^{y}f_{i}\,dy\right\|_{L_{x}^{r}}\lesssim\int_{|y|\leq 1}\frac{1}{|y|^{n-\sum\alpha_{i}}}\prod\||D|^{\alpha_{i}}f_{i}\|_{L^{p_{i}}}\,dy\lesssim\prod\||D|^{\alpha_{i}}f_{i}\|_{L^{p_{i}}}.

The latter integral is treated similarly. ∎

3. The null structure and paradifferential equation

In this section and the next, we will reduce the energy estimates and well-posedness for the linearized equation (1.8),

tv2log|Dx|xv=xQ(φ,v),\partial_{t}v-2\log|D_{x}|\partial_{x}v=\partial_{x}Q(\varphi,v),

to that of a paradifferential equation.

One can achieve this by viewing (1.8) as a paradifferential equation with perturbative source, where the main task is to paralinearize the cubic term xQ(φ,v)\partial_{x}Q(\varphi,v). Such an analysis was performed by Hunter-Shu-Zhang in [17] and refined by the authors in [1].

In the current article however, we are interested in further refining the paralinearization of (1.8) by insisting that the perturbative errors satisfy balanced estimates. Precisely, we establish all of our estimates using only the control norms

A:=xφL,B:=xφC12+,A:=\|\partial_{x}\varphi\|_{L^{\infty}},\qquad B:=\|\partial_{x}\varphi\|_{C^{\frac{1}{2}+}},

where AA corresponds to the scaling-critical threshold, while BB lies half a derivative above scaling. For comparison, the local well-posedness analysis in [1] uses control norms with φC2+\varphi\in C^{2+}, a full derivative above scaling.

A direct estimate of the paralinearization errors will no longer suffice to establish estimates controlled by AA and BB. Instead, we will rely on an appropriate paradifferential normal form transformation to remove source components that do not directly satisfy the desired balanced cubic estimates. In this section, we first consider various formulations of the paradifferential equation which will be useful in the following sections.

3.1. Null structure

Although F(δyφ)F({\delta}^{y}\varphi) is principally quadratic in φ\varphi (and thus Q(φ,v)Q(\varphi,v) is cubic), estimates on derivatives of F(δyφ)F({\delta}^{y}\varphi) do not fully recognize its quadratic structure. This is because they are limited by the cases of low-high interaction where derivatives fall on the high frequency variable. As a result, from the perspective of establishing balanced estimates, F(δyφ)F({\delta}^{y}\varphi) behaves essentially like a linear coefficient.

However, we observe that QQ exhibits a null structure in the following sense. By writing

Ω(f,g)=δyf|δ|yg𝑑y\Omega(f,g)=\int{\delta}^{y}f\cdot{|\delta|}^{y}g\,dy

and using the heuristic approximation

F(δyφ)TF(φx)δyφ,F({\delta}^{y}\varphi)\approx T_{F^{\prime}(\varphi_{x})}{\delta}^{y}\varphi,

we may express QQ as a quadratic form with low frequency coefficient,

(3.1) Q(φ,v)TF(φx)Ω(φ,v).Q(\varphi,v)\approx T_{F^{\prime}(\varphi_{x})}\Omega(\varphi,v).

We then observe that the bilinear form Ω(φ,v)\Omega(\varphi,v) exhibits a null structure, since its symbol

Ω(ξ1,ξ2)=sgny(eiξ1y1)(eiξ2y1)y2dy\Omega(\xi_{1},\xi_{2})=\int\operatorname{sgn}{y}\cdot\frac{(e^{i\xi_{1}y}-1)(e^{i\xi_{2}y}-1)}{y^{2}}\,dy

satisfies the resonance identity

(3.2) Ω(ξ1,ξ2)=ω(ξ1)+ω(ξ2)ω(ξ1+ξ2),ω(ξ)=2iξlog|ξ|.\Omega(\xi_{1},\xi_{2})=\omega(\xi_{1})+\omega(\xi_{2})-\omega(\xi_{1}+\xi_{2}),\qquad\omega(\xi)=2i\xi\log|\xi|.

This null structure underlies the normal form analysis, which we perform in the next section.

We make the above discussion precise in the following lemma. Recall that we denote

ψ:=x1F(φx).\psi:=\partial_{x}^{-1}F(\varphi_{x}).
Lemma 3.1.

We have

Q(φ,v)=Ω(ψ,v)+R(x,D)vQ(\varphi,v)=\Omega(\psi,v)+R(x,D)v

where

(xR)(x,D)vL2AB2vL2.\|(\partial_{x}R)(x,D)v\|_{L^{2}}\lesssim_{A}B^{2}\|v\|_{L^{2}}.
Proof.

We write

(3.3) Q(φ,v)Ω(ψ,v)\displaystyle Q(\varphi,v)-\Omega(\psi,v) =F(δyφ)δyx1F(φx)|y|(v(x+y)v(x))dy=:R(x,D)v\displaystyle=\int\frac{F({\delta}^{y}\varphi)-{\delta}^{y}\partial_{x}^{-1}F(\varphi_{x})}{|y|}\cdot(v(x+y)-v(x))\,dy=:R(x,D)v

where

r(x,ξ)=F(δyφ)δyx1F(φx)|y|(eiξy1)𝑑y.r(x,\xi)=\int\frac{F({\delta}^{y}\varphi)-{\delta}^{y}\partial_{x}^{-1}F(\varphi_{x})}{|y|}(e^{i\xi y}-1)\,dy.

Then we have

(xR)(x,D)v\displaystyle(\partial_{x}R)(x,D)v =F(δyφ)δyφxδyF(φx)|y|(v(x+y)v(x))𝑑y\displaystyle=\int\frac{F^{\prime}({\delta}^{y}\varphi){\delta}^{y}\varphi_{x}-{\delta}^{y}F(\varphi_{x})}{|y|}\cdot(v(x+y)-v(x))\,dy
=:K(x,y)(v(x+y)v(x))dy.\displaystyle=:\int K(x,y)\cdot(v(x+y)-v(x))\,dy.

We first estimate KK, which we may write as

|y|K(x,y)\displaystyle|y|K(x,y) =1y(F(b)(ab)(F(a)F(b))+1y(F(δyφ)F(φx))(ab)\displaystyle=\frac{1}{y}(F^{\prime}(b)(a-b)-(F(a)-F(b))+\frac{1}{y}(F^{\prime}({\delta}^{y}\varphi)-F^{\prime}(\varphi_{x}))(a-b)
=:|y|K1(x,y)+|y|K2(x,y),\displaystyle=:|y|K_{1}(x,y)+|y|K_{2}(x,y),

where a=φx(x+y)a=\varphi_{x}(x+y), b=φx(x)b=\varphi_{x}(x). From K1K_{1} we obtain a Taylor expansion,

K1(,y)LxAabyLx2=δyφxLx2.\|K_{1}(\cdot,y)\|_{L^{\infty}_{x}}\lesssim_{A}\left\|\frac{a-b}{y}\right\|_{L^{\infty}_{x}}^{2}=\|{\delta}^{y}\varphi_{x}\|_{L^{\infty}_{x}}^{2}.

For K2K_{2}, we have

K2(,y)Lx\displaystyle\|K_{2}(\cdot,y)\|_{L^{\infty}_{x}} Aφ(x+y)φ(x)yφx(x)y2LxabyLx=δy,(2)φLxδyφxLx,\displaystyle\lesssim_{A}\left\|\frac{\varphi(x+y)-\varphi(x)-y\varphi_{x}(x)}{y^{2}}\right\|_{L^{\infty}_{x}}\left\|\frac{a-b}{y}\right\|_{L^{\infty}_{x}}=\|{\delta}^{y,(2)}\varphi\|_{L^{\infty}_{x}}\|{\delta}^{y}\varphi_{x}\|_{L^{\infty}_{x}},

where δy,(2){\delta}^{y,(2)} denotes the second-order difference quotient.

By Minkowski’s inequality,

(xR)(x,D)vL2\displaystyle\|(\partial_{x}R)(x,D)v\|_{L^{2}} K(,y)Lxv(+y)v()Lx2dy\displaystyle\lesssim\int\|K(\cdot,y)\|_{L^{\infty}_{x}}\|v(\cdot+y)-v(\cdot)\|_{L^{2}_{x}}\,dy
AδyφxLx(δyφxLx+δy,(2)φLx)vLx2𝑑y.\displaystyle\lesssim_{A}\int\|{\delta}^{y}\varphi_{x}\|_{L^{\infty}_{x}}(\|{\delta}^{y}\varphi_{x}\|_{L^{\infty}_{x}}+\|{\delta}^{y,(2)}\varphi\|_{L^{\infty}_{x}})\|v\|_{L^{2}_{x}}\,dy.

Applying the argument of Lemma 2.4 with α1=α2=12+\alpha_{1}=\alpha_{2}=\frac{1}{2}+ and β1=β2=12\beta_{1}=\beta_{2}=\frac{1}{2}-, we conclude

(xR)(x,D)vL2AB2vL2.\|(\partial_{x}R)(x,D)v\|_{L^{2}}\lesssim_{A}B^{2}\|v\|_{L^{2}}.

3.2. The paradifferential flow

Associated to the linearized equation (1.8), we have the corresponding inhomogeneous paradifferential flow,

(3.4) tv2log|Dx|xvxQlh(φ,v)=f,\partial_{t}v-2\log|D_{x}|\partial_{x}v-\partial_{x}Q_{lh}(\varphi,v)=f,

where we have expressed the frequency decomposition of the (essentially) quadratic form as

(3.5) Q(φ,v)\displaystyle Q(\varphi,v) =TF(δyφ)|δ|yv𝑑y+T|δ|yvF(δyφ)𝑑y+Π(|δ|yv,F(δyφ))𝑑y\displaystyle=\int T_{F({\delta}^{y}\varphi)}{|\delta|}^{y}v\,dy+\int T_{{|\delta|}^{y}v}F({\delta}^{y}\varphi)\,dy+\int\Pi({|\delta|}^{y}v,F({\delta}^{y}\varphi))\,dy
=:Qlh(φ,v)+Qhl(φ,v)+Qhh(φ,v).\displaystyle=:Q_{lh}(\varphi,v)+Q_{hl}(\varphi,v)+Q_{hh}(\varphi,v).

We frequency decompose Ω=Ωlh+Ωhl+Ωhh\Omega=\Omega_{lh}+\Omega_{hl}+\Omega_{hh} in the analogous way.

In Section 4, we show that the linearized equation (1.8) reduces to the paradifferential flow (3.4), with ff playing a perturbative role, in the sense that it satisfies balanced, cubic estimates. However, since QQ and hence its paradifferential errors Qhl(φ,v)Q_{hl}(\varphi,v) and Qhh(φ,v)Q_{hh}(\varphi,v) are essentially quadratic, this will become apparent only after an appropriate paradifferential normal form change of variables.

Here, we establish a preliminary quadratic estimate for the reduction, which will be useful in the course of constructing and evaluating the normal form transformation later in Section 4.

We first extract the principal components of Ωlh\Omega_{lh}, which include a transport term of order 0 and a dispersive term of logarithmic order:

Lemma 3.2.

We can express

(3.6) Ωlh(ψ,v)=2(Tlog|Dx|xψvTxψlog|Dx|v+x[Tψ,log|Dx|]v).\Omega_{lh}(\psi,v)=2(T_{\log|D_{x}|\partial_{x}\psi}v-T_{\partial_{x}\psi}\log|D_{x}|v+\partial_{x}[T_{\psi},\log|D_{x}|]v).

Further, we have

(3.7) Qlh(φ,v)=2(T(log|Dx|1)xψ+RvTxψlog|Dx|v)+Γ(x2ψ,x1v)Q_{lh}(\varphi,v)=2(T_{(\log|D_{x}|-1)\partial_{x}\psi+R}v-T_{\partial_{x}\psi}\log|D_{x}|v)+\Gamma(\partial_{x}^{2}\psi,\partial_{x}^{-1}v)

where

(3.8) |Dx|12ΓL2ABvL2,xΓL2AB|D|12vL2,\||D_{x}|^{\frac{1}{2}}\Gamma\|_{L^{2}}\lesssim_{A}B\|v\|_{L^{2}},\qquad\|\partial_{x}\Gamma\|_{L^{2}}\lesssim_{A}B\||D|^{\frac{1}{2}}v\|_{L^{2}},

as well the pointwise estimates

(3.9) |Dx|12ΓLABvL,\displaystyle\||D_{x}|^{\frac{1}{2}}\Gamma\|_{L^{\infty}}\lesssim_{A}B\|v\|_{L^{\infty}},\qquad xΓLAB|D|12vL.\displaystyle\|\partial_{x}\Gamma\|_{L^{\infty}}\lesssim_{A}B\||D|^{\frac{1}{2}}v\|_{L^{\infty}}.
Proof.

We use the resonance identity (3.2) to expand

(3.10) Ωlh(ψ,v)\displaystyle\Omega_{lh}(\psi,v) =2Tlog|Dx|xψv+2[Tψ,log|Dx|x]v\displaystyle=2T_{\log|D_{x}|\partial_{x}\psi}v+2[T_{\psi},\log|D_{x}|\partial_{x}]v
=2Tlog|Dx|xψv2Txψlog|Dx|v+2x[Tψ,log|Dx|]v,\displaystyle=2T_{\log|D_{x}|\partial_{x}\psi}v-2T_{\partial_{x}\psi}\log|D_{x}|v+2\partial_{x}[T_{\psi},\log|D_{x}|]v,

obtaining (3.6). Then the remaining commutator may be expressed as

2Txψv+Γ(x2ψ,x1v)-2T_{\partial_{x}\psi}v+\Gamma(\partial_{x}^{2}\psi,\partial_{x}^{-1}v)

and Γ\Gamma denotes the subprincipal remainder, which has a favorable balance of derivatives on the low frequency and thus may be estimated as (3.8) and (3.9). Combined with the low-high component of Lemma 3.1, we obtain (3.7). ∎

Proposition 3.3.

Consider a solution vv to (1.8). Then vv satisfies

(3.11) (t2T1xψlog|Dx|x2T(log|Dx|1)xψ+Rx)v=f(\partial_{t}-2T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}-2T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x})v=f

where

(3.12) |D|12fL2ABvL2.\||D|^{-\frac{1}{2}}f\|_{L^{2}}\lesssim_{A}B\|v\|_{L^{2}}.
Proof.

We express (1.8) in terms of the paradifferential equation (3.4) with source,

tv2log|Dx|xvxQlh(φ,v)=xQhl(φ,v)+xQhh(φ,v).\partial_{t}v-2\log|D_{x}|\partial_{x}v-\partial_{x}Q_{lh}(\varphi,v)=\partial_{x}Q_{hl}(\varphi,v)+\partial_{x}Q_{hh}(\varphi,v).

We estimate the source terms. We see directly from definition that xQhl(φ,v)\partial_{x}Q_{hl}(\varphi,v) has a favorable balance of derivatives which satisfies (3.12) and may be absorbed into ff. The balanced QhhQ_{hh} term similarly satisfies (3.12), so we have thus reduced (1.8) to (3.4).

It then suffices to apply (3.7) of Lemma 3.2 to the remaining paradifferential QlhQ_{lh} term on the left hand side of (3.4) to obtain (3.11). Here, the Γ\Gamma contribution may be absorbed into ff directly. Further, we have commuted the x\partial_{x} outside QlhQ_{lh} through the low frequency paracoefficients, since the cases where this derivative falls on the low frequency coefficients,

2(T(log|Dx|1)x2ψ+xRvTx2ψlog|Dx|v),2(T_{(\log|D_{x}|-1)\partial_{x}^{2}\psi+\partial_{x}R}v-T_{\partial_{x}^{2}\psi}\log|D_{x}|v),

have a favorable balance of derivatives, satisfying (3.12).

3.3. Nonlinear equations

We will also use the paradifferential equation (3.11) in the context of the nonlinear solutions φ\varphi. To conclude this section, we establish preliminary quadratic bounds on the inhomogenity of the paradifferential flow, in analogy with the preceding Proposition 3.3 for the linearized counterpart.

Proposition 3.4.

Consider a solution φ\varphi to (1.3). Then φ\varphi satisfies

(3.13) (t2T1xψlog|Dx|x2T(log|Dx|1)xψ+Rx)φ=f(\partial_{t}-2T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}-2T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x})\varphi=f

where

(3.14) |Dx|12fLAB,xfLAB2.\||D_{x}|^{\frac{1}{2}}f\|_{L^{\infty}}\lesssim_{A}B,\qquad\|\partial_{x}f\|_{L^{\infty}}\lesssim_{A}B^{2}.

The same holds for ψ\psi in the place of φ\varphi.

Proof.

We first consider the case of φ\varphi. We paradifferentially decompose Q(φ,xφ)Q(\varphi,\partial_{x}\varphi) in (1.3) to write it in terms of the paradifferential equation (3.4) with source,

tφ2log|Dx|xφQlh(φ,xφ)=Qhl(φ,xφ)+Qhh(φ,xφ).\partial_{t}\varphi-2\log|D_{x}|\partial_{x}\varphi-Q_{lh}(\varphi,\partial_{x}\varphi)=Q_{hl}(\varphi,\partial_{x}\varphi)+Q_{hh}(\varphi,\partial_{x}\varphi).

As with the linearized equation, we estimate the source terms. We see directly from definition that Qhl(φ,xφ)Q_{hl}(\varphi,\partial_{x}\varphi) has a favorable balance of derivatives which satisfies (3.14) and may be absorbed into ff. The balanced QhhQ_{hh} term similarly satisfies (3.14), so we have thus replaced Q(φ,xφ)Q(\varphi,\partial_{x}\varphi) in (1.3) with Qlh(φ,xφ)Q_{lh}(\varphi,\partial_{x}\varphi). In turn, it then suffices to apply Lemma 3.2 to obtain (3.13).

We next reduce the equation for TF(φx)φT_{F^{\prime}(\varphi_{x})}\varphi to that of φ\varphi. It suffices to apply the paracoefficient TF(φx)T_{F^{\prime}(\varphi_{x})} to (3.13), and estimate the commutators. This is straightforward for the spatial paradifferential terms, applying Lemma 2.1 and observing a favorable balance of derivatives.

For the time derivative, we substitute (3.13) for the time derivative of φ\varphi:

TF′′(φx)xtφφ=TF′′(φx)(2xT1xψlog|Dx|xφ+2xT(log|Dx|1)xψ+Rxφ+xf)φ.T_{F^{\prime\prime}(\varphi_{x})\partial_{x}\partial_{t}\varphi}\varphi=T_{F^{\prime\prime}(\varphi_{x})(2\partial_{x}T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}\varphi+2\partial_{x}T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}\varphi+\partial_{x}f)}\varphi.

The estimate (3.14) on xf\partial_{x}f in the paracoefficient implies that its contribution in this context also satisfies (3.14). For the remaining terms, the favorable balance of derivatives, with two or more derivatives on the low frequency paracoefficient, again implies that we may absorb their contribution into ff.

To conclude the proof for ψ\psi, it suffices to apply the Moser estimate of Theorem 2.3, other than for the time derivative, for which we need to estimate

x1(F(φx)xtφ)tTF(φx)φ.\partial_{x}^{-1}(F^{\prime}(\varphi_{x})\partial_{x}\partial_{t}\varphi)-\partial_{t}T_{F^{\prime}(\varphi_{x})}\varphi.

We decompose this into

[x1,TF(φx)]xtφ[\partial_{x}^{-1},T_{F^{\prime}(\varphi_{x})}]\partial_{x}\partial_{t}\varphi

which we estimate directly, using the favorable balance of derivatives, and

x1TxtφF(φx)+x1Π(xtφ,F(φx))\partial_{x}^{-1}T_{\partial_{x}\partial_{t}\varphi}F^{\prime}(\varphi_{x})+\partial_{x}^{-1}\Pi(\partial_{x}\partial_{t}\varphi,F^{\prime}(\varphi_{x}))

which is similar to the time derivative commutation in the previous reduction.

4. Reduction to the paradifferential equation

Our objective in this section is to reduce the energy estimates and well-posedness of the linearized equation (1.8) to that of the inhomogeneous paradifferential equation (3.4),

tv2log|Dx|xvxQlh(φ,v)=f.\partial_{t}v-2\log|D_{x}|\partial_{x}v-\partial_{x}Q_{lh}(\varphi,v)=f.

To ensure that the energy estimates are balanced, we require that the inhomogeneity ff satisfies balanced cubic estimates.

However, the paradifferential errors Qhl(φ,v)Q_{hl}(\varphi,v) and Qhh(φ,v)Q_{hh}(\varphi,v) are essentially quadratic rather than cubic, and in particular do not satisfy balanced cubic estimates. On the other hand, we saw in (3.1) that up to leading order and a low frequency coefficient, QQ is the quadratic form associated to the resonance function for the dispersion relation of (1.3). This motivates the normal form change of variables

(4.1) v~=vx(ψv),ψ=x1F(φx).\tilde{v}=v-\partial_{x}(\psi v),\qquad\psi=\partial_{x}^{-1}F(\varphi_{x}).

However, (4.1) suffers from two shortcomings:

  1. (1)

    We cannot make use of (4.1) directly, as it is an unbounded transformation, and

  2. (2)

    quartic (essentially cubic) residuals in the equation for v~\tilde{v} given by (4.1) are still unbalanced.

To address the first shortcoming, we instead consider a bounded paradifferential component of (4.1),

(4.2) v~=vx(Tvψ)xΠ(v,ψ)\tilde{v}=v-\partial_{x}(T_{v}\psi)-\partial_{x}\Pi(v,\psi)

which is compatible with our objective of reducing to the paradifferential equation (3.4). To address the second shortcoming, we refine (4.2) with a low frequency Jacobian coefficient which addresses the quartic and higher order residuals:

(4.3) v~=vxTTJvψxΠ(TJv,ψ),J=(1xψ)1.\tilde{v}=v-\partial_{x}T_{T_{J}v}\psi-\partial_{x}\Pi(T_{J}v,\psi),\qquad J=(1-\partial_{x}\psi)^{-1}.
Proposition 4.1.

Consider a solution vv to (1.8). Then we have

(4.4) tv~2log|Dx|xv~xQlh(φ,v~)=f~,\partial_{t}\tilde{v}-2\log|D_{x}|\partial_{x}\tilde{v}-\partial_{x}Q_{lh}(\varphi,\tilde{v})=\tilde{f},

where f~\tilde{f} satisfies balanced cubic estimates,

(4.5) f~L2AB2vL2.\|\tilde{f}\|_{L^{2}}\lesssim_{A}B^{2}\|v\|_{L^{2}}.
Proof.

We express vv satisfying (1.8) in terms of the paradifferential equation (3.4) with source,

tv2log|Dx|xvxQlh(φ,v)=xQhl(φ,v)+xQhh(φ,v).\partial_{t}v-2\log|D_{x}|\partial_{x}v-\partial_{x}Q_{lh}(\varphi,v)=\partial_{x}Q_{hl}(\varphi,v)+\partial_{x}Q_{hh}(\varphi,v).

Unlike in Proposition 3.3, we do not estimate the source terms directly. Instead, we will establish the following cancellation with the contribution from the normal form correction,

(4.6) txTTJvψ2log|Dx|x2TTJvψxQlh(ψ,xTTJvψ)=xQhl(φ,v)+f~,\partial_{t}\partial_{x}T_{T_{J}v}\psi-2\log|D_{x}|\partial_{x}^{2}T_{T_{J}v}\psi-\partial_{x}Q_{lh}(\psi,\partial_{x}T_{T_{J}v}\psi)=\partial_{x}Q_{hl}(\varphi,v)+\tilde{f},

with the analogous relationship for the balanced Π\Pi component of the correction, with QhhQ_{hh}.

To show (4.6), we first observe that using Lemma 3.2, we may replace xQlh\partial_{x}Q_{lh} on the left hand side of (4.6) by its principal components. The Γ\Gamma error is estimated using the second estimate of (3.8),

xΓL2AB|D|12xTTJvψL2AB2vL2\|\partial_{x}\Gamma\|_{L^{2}}\lesssim_{A}B\||D|^{\frac{1}{2}}\partial_{x}T_{T_{J}v}\psi\|_{L^{2}}\lesssim_{A}B^{2}\|v\|_{L^{2}}

and may be absorbed into f~\tilde{f}. It thus suffices to show

(4.7) (t2x(T1xψlog|Dx|T(log|Dx|1)xψ+R))xTTJvψ=xQhl(φ,v)+f~.(\partial_{t}-2\partial_{x}(T_{1-\partial_{x}\psi}\log|D_{x}|-T_{(\log|D_{x}|-1)\partial_{x}\psi+R}))\partial_{x}T_{T_{J}v}\psi=\partial_{x}Q_{hl}(\varphi,v)+\tilde{f}.

Next, we compute the time derivative in (4.7). The case where t\partial_{t} falls on the low frequency JJ may be absorbed into f~\tilde{f} due to a favorable balance of derivatives. More precisely, we use (3.13) to write

tJ=J2xtψ=J2x(2T1xψlog|Dx|xψ+2T(log|Dx|1)xψ+Rxψ+f)\partial_{t}J=J^{2}\partial_{x}\partial_{t}\psi=J^{2}\partial_{x}(2T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}\psi+2T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}\psi+f)

so that we can we can estimate for instance the contribution of the first term,

xTT2J2x2log|Dx|ψvψL2AB2vL2,\|\partial_{x}T_{T_{2J^{2}\partial_{x}^{2}\log|D_{x}|\psi}v}\psi\|_{L^{2}}\lesssim_{A}B^{2}\|v\|_{L^{2}},

with similar estimates for the other contributions, using the first estimate of (3.14) for the contribution of ff.

In the remaining cases, t\partial_{t} falls on the middle frequency vv or the high frequency ψ\psi, so we use (3.11) and (3.13) respectively to write

(4.8) xTTJtvψ\displaystyle\partial_{x}T_{T_{J}\partial_{t}v}\psi =xTTJ(2T1xψlog|Dx|xv+2T(log|Dx|1)xψ+Rxv+f)ψ,\displaystyle=\partial_{x}T_{T_{J}(2T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}v+2T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}v+f)}\psi,
xTTJvtψ\displaystyle\partial_{x}T_{T_{J}v}\partial_{t}\psi =xTTJv(2T1xψlog|Dx|xψ+2T(log|Dx|1)xψ+Rxψ+fψ).\displaystyle=\partial_{x}T_{T_{J}v}(2T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}\psi+2T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}\psi+f_{\psi}).

We consider the first, second, and third contributions from the two equations of (4.8) in pairs:

i) The first terms in (4.8) combine with the second term on the left in (4.7),

(4.9) 2x(TTJT1xψlog|Dx|xvψ+TTJvT1xψlog|Dx|xψT1xψlog|Dx|xTTJvψ),2\partial_{x}(T_{T_{J}T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}v}\psi+T_{T_{J}v}T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}\psi-T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}T_{T_{J}v}\psi),

to form xQhl(φ,v)\partial_{x}Q_{hl}(\varphi,v), modulo balanced errors which may be absorbed into f~\tilde{f}. To see this, we will use in each of the three terms that (1xψ)J=1(1-\partial_{x}\psi)J=1. As we do so, we need to take care that any paraproduct errors and commutators yield balanced errors.

First, we observe that in the third term, we can apply the commutator estimate

x[T1xψ,log|Dx|x]TTJvψL2AB2vL2.\|\partial_{x}[T_{1-\partial_{x}\psi},\log|D_{x}|\partial_{x}]T_{T_{J}v}\psi\|_{L^{2}}\lesssim_{A}B^{2}\|v\|_{L^{2}}.

Then using Lemma 2.2 to compose paraproducts in each of the three terms of (4.9), we have

2x(Tlog|Dx|xvψ+T(1xψ)TJvlog|Dx|xψlog|Dx|xT(1xψ)TJvψ).2\partial_{x}(T_{\log|D_{x}|\partial_{x}v}\psi+T_{(1-\partial_{x}\psi)T_{J}v}\log|D_{x}|\partial_{x}\psi-\log|D_{x}|\partial_{x}T_{(1-\partial_{x}\psi)T_{J}v}\psi).

For the latter two terms, we will also use Lemma 2.2 to compose paraproducts, before applying (1xψ)J=1(1-\partial_{x}\psi)J=1. To do so, we first need to exchange multiplication by (1xψ)(1-\partial_{x}\psi) with the paraproduct T1xψT_{1-\partial_{x}\psi}. However, the error from this exchange is not directly perturbative. Instead, we perform the exchange for the two terms simultaneously, to observe a cancellation in the form of the commutator

2x(TTTJv(1xψ)log|Dx|xψlog|Dx|xTTTJv(1xψ)ψ),2\partial_{x}(T_{T_{T_{J}v}(1-\partial_{x}\psi)}\log|D_{x}|\partial_{x}\psi-\log|D_{x}|\partial_{x}T_{T_{T_{J}v}(1-\partial_{x}\psi)}\psi),

which has a favorable balance of derivatives and may be absorbed into f~\tilde{f}. The same holds for the analogous cases with Π(1xψ,TJv)\Pi(1-\partial_{x}\psi,T_{J}v). We have thus reduced (4.9) to

2x(Tlog|Dx|xvψ+Tvlog|Dx|xψlog|Dx|xTvψ)=xΩhl(ψ,v)2\partial_{x}(T_{\log|D_{x}|\partial_{x}v}\psi+T_{v}\log|D_{x}|\partial_{x}\psi-\log|D_{x}|\partial_{x}T_{v}\psi)=\partial_{x}\Omega_{hl}(\psi,v)

which by Lemma 3.1 coincides with xQhl(φ,v)\partial_{x}Q_{hl}(\varphi,v) up to balanced errors, as desired.

ii) The second terms in (4.8),

(4.10) 2x(TTJT(log|Dx|1)xψ+Rxvψ+TTJvT(log|Dx|1)xψ+Rxψ),2\partial_{x}(T_{T_{J}T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}v}\psi+T_{T_{J}v}T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}\psi),

combine to cancel the third term on the left hand side of (4.7), up to balanced errors. To see this, we apply the commutator Lemma 2.1 to exchange the first term of (4.10) with

2xTT(log|Dx|1)xψ+RTJxvψ.2\partial_{x}T_{T_{(\log|D_{x}|-1)\partial_{x}\psi+R}T_{J}\partial_{x}v}\psi.

We can freely exchange the low frequency paraproduct T(log|Dx|1)xψ+RT_{(\log|D_{x}|-1)\partial_{x}\psi+R} with a standard product, since

(4.11) xTTTJxv(log|Dx|1)xψ+TTJxvRψL2AB2vL2\|\partial_{x}T_{T_{T_{J}\partial_{x}v}(\log|D_{x}|-1)\partial_{x}\psi+T_{T_{J}\partial_{x}v}R}\psi\|_{L^{2}}\lesssim_{A}B^{2}\|v\|_{L^{2}}

and likewise for the balanced Π\Pi case. We thus have

2xTTJxv(log|Dx|1)xψ+Rψ.2\partial_{x}T_{T_{J}\partial_{x}v\cdot(\log|D_{x}|-1)\partial_{x}\psi+R}\psi.

Then applying Lemma 2.2 for splitting paraproducts, and returning to (4.10), we arrive at

2x(TTJxvT(log|Dx|1)xψ+Rψ+TTJvT(log|Dx|1)xψ+Rxψ).2\partial_{x}(T_{T_{J}\partial_{x}v}T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\psi+T_{T_{J}v}T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}\psi).

Lastly, we factor out a derivative,

2x2TTJvT(log|Dx|1)xψ+Rψ2\partial_{x}^{2}T_{T_{J}v}T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\psi

where we have absorbed the cases where the factored derivative falls on JJ or (log|Dx|1)xψ+R(\log|D_{x}|-1)\partial_{x}\psi+R into f~\tilde{f}, similar to (4.11). After one more instance of the commutator Lemma 2.1, we arrive at the third term on the left hand side of (4.7) as desired.

iii) By Propositions 3.3 and 3.4 respectively, the contributions from ff and fψf_{\psi} satisfy (4.5) and may be absorbed into f~\tilde{f}.

We also obtain a similar but easier balanced estimate for the reduction of the nonlinear equation to the paradifferential flow, in the H˙s\dot{H}^{s} setting. Here the normal form correction consists only of a balanced Π\Pi component:

(4.12) φ~=φΠ(ψ,TJxφ).\tilde{\varphi}=\varphi-\Pi(\psi,T_{J}\partial_{x}\varphi).
Proposition 4.2.

Consider a solution φ\varphi to (1.3). Then we have

(4.13) tφ~2log|Dx|xφ~xQlh(φ,φ~)=f~,\partial_{t}\tilde{\varphi}-2\log|D_{x}|\partial_{x}\tilde{\varphi}-\partial_{x}Q_{lh}(\varphi,\tilde{\varphi})=\tilde{f},

where f~\tilde{f} satisfies balanced cubic estimates,

(4.14) f~H˙sAB2φH˙xs.\|\tilde{f}\|_{\dot{H}^{s}}\lesssim_{A}B^{2}\|\varphi\|_{\dot{H}_{x}^{s}}.
Proof.

First observe that we have

tφ2log|Dx|xφxQlh(φ,φ)=Qhh(φ,xφ).\partial_{t}\varphi-2\log|D_{x}|\partial_{x}\varphi-\partial_{x}Q_{lh}(\varphi,\varphi)=Q_{hh}(\varphi,\partial_{x}\varphi).

Then the normal form analysis is similar to the analysis for the (balanced) paradifferential errors of the linear equation in Proposition 4.1.

To see that we can obtain balanced estimates in the H˙s\dot{H}^{s} setting, first observe that in each of the estimates in the proof of Proposition 4.1, we can easily obtain at least one BB from the estimate of the low frequency variable. Then since we are in the balanced Π\Pi setting, we can obtain a second BB, with ss outstanding derivatives, which can then be placed on the remaining high frequency factor.

5. Energy estimates for the paradifferential equation

In this section we establish energy estimates for the paradifferential equation (3.4). We define the modified energy

E(v):=vT1xψv𝑑x.E(v):=\int v\cdot T_{1-\partial_{x}\psi}v\,dx.
Proposition 5.1.

We have

(5.1) ddtE(v)AB2vL22+fL2vL2.\frac{d}{dt}E(v)\lesssim_{A}B^{2}\|v\|_{L^{2}}^{2}+\|f\|_{L^{2}}\|v\|_{L^{2}}.
Proof.

Without loss of generality we assume f=0f=0. We consider first the linear component of the energy. Using the equation (3.4) for vv and skew adjointness of log|Dx|x\log|D_{x}|\partial_{x}, we have

12ddtvv𝑑x=(2log|Dx|xv+xQlh(φ,v))v𝑑x=xQlh(φ,v)vdx.\frac{1}{2}\frac{d}{dt}\int v\cdot v\,dx=\int(2\log|D_{x}|\partial_{x}v+\partial_{x}Q_{lh}(\varphi,v))\cdot v\,dx=\int\partial_{x}Q_{lh}(\varphi,v)\cdot v\,dx.

Using Lemma 3.2 to expand QlhQ_{lh}, this may be written

2x(Tlog|Dx|xψ+Rv+Tψlog|Dx|xvlog|Dx|xTψv)vdx.\int 2\partial_{x}(T_{\log|D_{x}|\partial_{x}\psi+R}v+T_{\psi}\log|D_{x}|\partial_{x}v-\log|D_{x}|\partial_{x}T_{\psi}v)\cdot v\,dx.

Cyclically integrating by parts (the first term individually, and the latter two terms paired), this may be expressed as

(5.2) (Tx2log|Dx|ψ+xRv+2Txψlog|Dx|xv)v𝑑x.\int(T_{\partial_{x}^{2}\log|D_{x}|\psi+\partial_{x}R}v+2T_{\partial_{x}\psi}\log|D_{x}|\partial_{x}v)\cdot v\,dx.

Here, the contribution with xR\partial_{x}R is balanced by Lemma 3.1 and may be discarded.

Next we evaluate the effect of the quasilinear modification to the energy, using (3.4) and (3.13) respectively to expand time derivatives:

(5.3) 12ddtvTxψv𝑑x\displaystyle\frac{1}{2}\frac{d}{dt}\int v\cdot T_{\partial_{x}\psi}v\,dx =tvTxψvdx+12vTxtψv𝑑x\displaystyle=\int\partial_{t}v\cdot T_{\partial_{x}\psi}v\,dx+\frac{1}{2}\int v\cdot T_{\partial_{x}\partial_{t}\psi}v\,dx
=(2log|Dx|xv+xQlh(φ,v))Txψv𝑑x\displaystyle=\int(2\log|D_{x}|\partial_{x}v+\partial_{x}Q_{lh}(\varphi,v))\cdot T_{\partial_{x}\psi}v\,dx
+12vTx(2T1xψlog|Dx|xψ+2T(log|Dx|1)xψ+Rxψ+f)v𝑑x.\displaystyle\quad+\frac{1}{2}\int v\cdot T_{\partial_{x}(2T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}\psi+2T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}\psi+f)}v\,dx.

The contribution from ff may be estimated using (3.14) and discarded. The cubic terms cancel with (5.2), so it remains to estimate the quartic terms,

(5.4) xQlh(φ,v)Txψv+vTx(T(log|Dx|1)xψ+RxψTxψlog|Dx|xψ)vdx.\int\partial_{x}Q_{lh}(\varphi,v)\cdot T_{\partial_{x}\psi}v+v\cdot T_{\partial_{x}(T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}\psi-T_{\partial_{x}\psi}\log|D_{x}|\partial_{x}\psi)}v\,dx.

We expand QlhQ_{lh} in the first term of (5.4), and will observe cancellations in two steps with the remaining terms. The expansion is similar to the expansion of the L2L^{2} energy above, except with an additional TxψT_{\partial_{x}\psi} paraproduct:

(5.5) 2x(Tlog|Dx|xψ+Rv+Tψlog|Dx|xvlog|Dx|xTψv)Txψvdx.\int 2\partial_{x}(T_{\log|D_{x}|\partial_{x}\psi+R}v+T_{\psi}\log|D_{x}|\partial_{x}v-\log|D_{x}|\partial_{x}T_{\psi}v)\cdot T_{\partial_{x}\psi}v\,dx.

i) From the first term in (5.5), we have after cyclically integrating by parts,

vTx2log|Dx|ψ+xRTxψvvTlog|Dx|xψ+RTx2ψv+v[Txψ,Tlog|Dx|xψ+R]xvdx.\int v\cdot T_{\partial_{x}^{2}\log|D_{x}|\psi+\partial_{x}R}T_{\partial_{x}\psi}v-v\cdot T_{\log|D_{x}|\partial_{x}\psi+R}T_{\partial_{x}^{2}\psi}v+v\cdot[T_{\partial_{x}\psi},T_{\log|D_{x}|\partial_{x}\psi+R}]\partial_{x}v\,dx.

The commutator satisfies (5.1) by Lemma 2.1, up to errors also satisfying (5.1), as well as the non-perturbative residual

(5.6) vTxTxψxψv𝑑x-\int v\cdot T_{\partial_{x}T_{\partial_{x}\psi}\partial_{x}\psi}v\,dx

which we will address in the next step. To see these cancellations, we use Lemma 2.2 to compose paraproducts, and observe that any contribution with two or more derivatives on the lowest frequency has a favorable balance of derivatives and satisfies (5.1). For instance, from the second term of (5.4), we have the perturbative component

|vTTx2log|Dx|ψxψv𝑑x|AB2vL2.\left|\int v\cdot T_{T_{\partial_{x}^{2}\log|D_{x}|\psi}\partial_{x}\psi}v\,dx\right|\lesssim_{A}B^{2}\|v\|_{L^{2}}.

ii) It remains to estimate the last two terms in (5.5), along with (5.6). In the last term of (5.5), the case where the x\partial_{x} falls on the low frequency ψ\psi vanishes by skew adjointness. From what remains, we have the commutator

2[Tψ,log|Dx|]xvxTxψvdx=2Txψx[Tψ,log|Dx|]xvvdx.-2\int[T_{\psi},\log|D_{x}|]\partial_{x}v\cdot\partial_{x}T_{\partial_{x}\psi}v\,dx=2\int T_{\partial_{x}\psi}\partial_{x}[T_{\psi},\log|D_{x}|]\partial_{x}v\cdot v\,dx.

On the other hand, due to skew adjointness, we are free to insert

2TxψxTxψvvdx=0\int 2T_{\partial_{x}\psi}\partial_{x}T_{\partial_{x}\psi}v\cdot v\,dx=0

which subtracts the principal component of the commutator. In addition, we can rewrite (5.6), up to perturbative errors, as

TxψTx2ψvv𝑑x.-\int T_{\partial_{x}\psi}T_{\partial_{x}^{2}\psi}v\cdot v\,dx.

Combined, we have

(5.7) TxψL(x2ψ,v)v𝑑x\int T_{\partial_{x}\psi}L(\partial_{x}^{2}\psi,v)\cdot v\,dx

where

L(x2ψ,v)=(2x[Tψ,log|Dx|]x+2xTxψTx2ψ)v.L(\partial_{x}^{2}\psi,v)=(2\partial_{x}[T_{\psi},\log|D_{x}|]\partial_{x}+2\partial_{x}T_{\partial_{x}\psi}-T_{\partial_{x}^{2}\psi})v.

Since the components

2x[Tψ,log|Dx|]x,2xTxψTx2ψ2\partial_{x}[T_{\psi},\log|D_{x}|]\partial_{x},\qquad 2\partial_{x}T_{\partial_{x}\psi}-T_{\partial_{x}^{2}\psi}

of L(x2ψ,)L(\partial_{x}^{2}\psi,\cdot) are both skew-adjoint, L(x2ψ,)L(\partial_{x}^{2}\psi,\cdot) is skew-adjoint as well. We thus have a commutator form for (5.7),

TxψL(x2ψ,v)v𝑑x=12(TxψL(x2ψ,v)L(x2ψ,Txψv))v𝑑x\int T_{\partial_{x}\psi}L(\partial_{x}^{2}\psi,v)\cdot v\,dx=\frac{1}{2}\int(T_{\partial_{x}\psi}L(\partial_{x}^{2}\psi,v)-L(\partial_{x}^{2}\psi,T_{\partial_{x}\psi}v))\cdot v\,dx

for which we have the desired balanced estimate.

By combining this result with the normal form analysis from the previous section, we obtain the following well-posedness result:

Proposition 5.2.

Assume that A1A\ll 1 and BLt2B\in L_{t}^{2}. There exists an energy functional Elin(v)E_{lin}(v) such that for every solution of (1.8), we have the following:

  1. a)

    Norm equivalence:

    Elin(v)AvLx22\displaystyle E_{lin}(v)\approx_{A}\|v\|^{2}_{L_{x}^{2}}
  2. b)

    Energy estimates:

    ddtElin(v)AB2vLx22\displaystyle\frac{d}{dt}E_{lin}(v)\lesssim_{A}B^{2}\|v\|^{2}_{L_{x}^{2}}
Remark 5.3.

It actually turns out that the linearized equation (1.8) is well-posed in Lx2L_{x}^{2}. We are not going to use this property in our paper, but we briefly discuss the key ideas behind its proof. The main point is to obtain a similar estimate for the adjoint equation, interpreted as a backward evolution in the space L2L^{2}. Namely, the adjoint equation corresponding to the linearized one has the form

tv2log|Dx|xvQ(φ,xv)=0\displaystyle\partial_{t}v-2\log|D_{x}|\partial_{x}v-Q(\varphi,\partial_{x}v)=0

By carrying out a paradifferential normal form transformation, akin to the one from the proof of Proposition 4.1, we reduce this to the equation

tv2log|Dx|xvQlh(φ,xv)=0.\displaystyle\partial_{t}v-2\log|D_{x}|\partial_{x}v-Q_{lh}(\varphi,\partial_{x}v)=0.

By considering the modified energy functional

vT11ψxv𝑑x,\displaystyle\int v\cdot T_{\frac{1}{1-\psi_{x}}}v\,dx,

and carrying out an analysis similar to the one from the proof of Proposition 5.1, we obtain the desired energy estimate for the dual problem. Now the existence follows by a standard duality argument (for the general theory, see Theorem 23.1.2 in Hörmander [10]).

Proof.

Let Elin(v)=E(v~)E_{lin}(v)=E(\tilde{v}), where E()E(\cdot) is defined in Proposition 5.1, and v~\tilde{v} is defined in Proposition 4.1.

Part a) is immediate, whereas part b) follows from Proposition 5.1. ∎

6. Higher order energy estimates

In this section we establish higher order energy estimates. Extra care must be taken because commutators with DsD^{s} are quadratic rather than cubic, and thus require a normal form correction.

Proposition 6.1.

Let s0s\geq 0. Given vv solving (4.4), there exists a normalized variable vsv^{s} such that

tvs2log|Dx|xvsxQlh(φ,vs)=f+(φ,v),\displaystyle\partial_{t}v^{s}-2\log|D_{x}|\partial_{x}v^{s}-\partial_{x}Q_{lh}(\varphi,v^{s})=f+\mathcal{R}(\varphi,v),

with

vs|Dx|svLx2\displaystyle\|v^{s}-|D_{x}|^{s}v\|_{L_{x}^{2}} AAvH˙xs\displaystyle\lesssim_{A}A\|v\|_{\dot{H}_{x}^{s}}

and (φ)\mathcal{R}(\varphi) satisfying balanced cubic estimates,

(6.1) (φ,v)L2AB2vL2.\|\mathcal{R}(\varphi,v)\|_{L^{2}}\lesssim_{A}B^{2}\|v\|_{L^{2}}.
Proof.

Let vv satisfy (4.4), where without loss of generality, f=0f=0. The natural approach is to reduce the equation for vs:=|Dx|svv^{s}:=|D_{x}|^{s}v to (4.4) with a perturbative inhomogeneity. However, the commutators arising from such a reduction are quadratic, and cannot satisfy balanced cubic estimates. In particular, they cannot be seen as directly perturbative. We will address these errors via a conjugation combined with a normal form correction.

In preparation, we use Lemmas 3.1 and 3.2 to rewrite QlhQ_{lh} in (4.4) and obtain

(6.2) tv2x(T1xψlog|Dx|+\displaystyle\partial_{t}v-2\partial_{x}(T_{1-\partial_{x}\psi}\log|D_{x}|+ Tlog|Dx|xψ+R+x[Tψ,log|Dx|])v=0.\displaystyle T_{\log|D_{x}|\partial_{x}\psi+R}+\partial_{x}[T_{\psi},\log|D_{x}|])v=0.

Then vs:=|Dx|svv^{s}:=|D_{x}|^{s}v satisfies

(6.3) tvs\displaystyle\partial_{t}v^{s} 2x(T1xψlog|Dx|+Tlog|Dx|xψ+R+x[Tψ,log|Dx|])vs\displaystyle-2\partial_{x}(T_{1-\partial_{x}\psi}\log|D_{x}|+T_{\log|D_{x}|\partial_{x}\psi+R}+\partial_{x}[T_{\psi},\log|D_{x}|])v^{s}
=2x([|Dx|s,Txψ]log|Dx|+[|Dx|s,Tlog|Dx|xψ+R]+x[|Dx|s,[Tψ,log|Dx|]])v\displaystyle=2\partial_{x}([|D_{x}|^{s},T_{-\partial_{x}\psi}]\log|D_{x}|+[|D_{x}|^{s},T_{\log|D_{x}|\partial_{x}\psi+R}]+\partial_{x}[|D_{x}|^{s},[T_{\psi},\log|D_{x}|]])v
=:L(x2ψ,log|Dx|vs)L(log|Dx|x2ψ,vs)+2x2[|Dx|s,[Tψ,log|Dx|]]v+\displaystyle=:L(\partial_{x}^{2}\psi,\log|D_{x}|v^{s})-L(\log|D_{x}|\partial_{x}^{2}\psi,v^{s})+2\partial_{x}^{2}[|D_{x}|^{s},[T_{\psi},\log|D_{x}|]]v+\mathcal{R}

where we have absorbed xR\partial_{x}R into \mathcal{R} and LL denotes an order zero paradifferential bilinear form,

(6.4) L(xf,u)\displaystyle L(\partial_{x}f,u) =2x[|Dx|s,Tf]|Dx|su.\displaystyle=-2\partial_{x}[|D_{x}|^{s},T_{f}]|D_{x}|^{-s}u.

In particular, observe that the principal term of LL is given by

L(g,u)2sTgu.L(g,u)\approx-2sT_{g}u.

To address the two LL contributions, which are quadratic and not directly perturbative, we apply two steps:

  1. a)

    We first apply a conjugation to vsv^{s} which improves the leading order of the contributions of the LL terms from, up to a logarithm, 0 to 1-1.

  2. b)

    We then apply a normal form transformation yielding cubic, balanced source terms.

a) We begin by computing the equation for the conjugated variable

v~s:=TJsvs.\tilde{v}^{s}:=T_{J^{-s}}v^{s}.

To do so, it suffices to apply TJsT_{J^{-s}} to (6.3) and consider the commutators. These will include a t\partial_{t} commutator, a x\partial_{x} commutator, and a log|Dx|\log|D_{x}| commutator.

i) First, we use (3.13) to expand the t\partial_{t} commutator,

(6.5) [TJs,t]vs\displaystyle\,[T_{J^{-s}},\partial_{t}]v^{s} =sTJ1sxtψvs=sTJ1sx(2T1xψlog|Dx|xψ+2T(log|Dx|1)xψ+Rxψ+f)vs.\displaystyle=-sT_{J^{1-s}\partial_{x}\partial_{t}\psi}v^{s}=-sT_{J^{1-s}\partial_{x}(2T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}\psi+2T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}\psi+f)}v^{s}.

Here the contribution from ff may be estimated using (3.14) and discarded. Further, due to a favorable balance of derivatives when x\partial_{x} falls on the lowest frequency variables, we can reduce to

2sTJs(TJT1xψlog|Dx|x2ψ+TJT(log|Dx|1)xψ+Rx2ψ)vs.-2sT_{J^{-s}(T_{J}T_{1-\partial_{x}\psi}\log|D_{x}|\partial_{x}^{2}\psi+T_{J}T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}^{2}\psi)}v^{s}.

Lastly, we apply Lemma 2.2 to merge and split paraproducts, reducing to

(6.6) 2sTlog|Dx|x2ψ+TJ(log|Dx|1)xψ+Rx2ψv~s.-2sT_{\log|D_{x}|\partial_{x}^{2}\psi+T_{J(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}^{2}\psi}\tilde{v}^{s}.

Observe that the first part of (6.6) cancels with the principal term of the second LL on the right hand side of (6.3). The second part of (6.6) will cancel with a contribution from ii) below.

ii) Next, we consider the commutator of TJsT_{J^{-s}} with the outer x\partial_{x}. We obtain

2sTJ1sx2ψ(T1xψlog|Dx|+Tlog|Dx|xψ+R+x[Tψ,log|Dx|])vs.2sT_{J^{1-s}\partial_{x}^{2}\psi}(T_{1-\partial_{x}\psi}\log|D_{x}|+T_{\log|D_{x}|\partial_{x}\psi+R}+\partial_{x}[T_{\psi},\log|D_{x}|])v^{s}.

Here it is convenient to apply (3.7) of Lemma 3.2 to write this as

2sTJ1sx2ψ((T1xψlog|Dx|+T(log|Dx|1)xψ+R)vs+Γ(x2ψ,x1vs)).2sT_{J^{1-s}\partial_{x}^{2}\psi}((T_{1-\partial_{x}\psi}\log|D_{x}|+T_{(\log|D_{x}|-1)\partial_{x}\psi+R})v^{s}+\Gamma(\partial_{x}^{2}\psi,\partial_{x}^{-1}v^{s})).

Applying Lemmas 2.2 and 2.1 to split, compose, and commute paraproducts, this may be reduced modulo perturbative terms to

2sTx2ψlog|Dx|v~s+2sTJ(log|Dx|1)xψx2ψ+x2ψRv~s.2sT_{\partial_{x}^{2}\psi}\log|D_{x}|\tilde{v}^{s}+2sT_{J(\log|D_{x}|-1)\partial_{x}\psi\cdot\partial_{x}^{2}\psi+\partial_{x}^{2}\psi\cdot R}\tilde{v}^{s}.

The first term above cancels with the principal term of the first LL. The second term cancels with the remaining part of the t\partial_{t} commutator above in (6.6). To see this cancellation, we have freely exchanged multiplication by J(log|Dx|1)xψJ(\log|D_{x}|-1)\partial_{x}\psi with a paraproduct, as the difference has a favorable balance of derivatives and is thus perturbative.

iii) Returning to the commutator of TJsT_{J^{-s}} with the dispersive term, it remains to consider the commutator with the inner log|Dx|\log|D_{x}|, where we have used Lemma 2.1 to discard any paraproduct commutators. We have

2xT1xψ[TJs,log|Dx|]vs-2\partial_{x}T_{1-\partial_{x}\psi}[T_{J^{-s}},\log|D_{x}|]v^{s}

whose principal term 2sTx2ψv~s2sT_{\partial_{x}^{2}\psi}\tilde{v}^{s} cancels with the principal term of the double commutator on the right hand side of (6.3).

To conclude, we have

(6.7) tv~s\displaystyle\partial_{t}\tilde{v}^{s} 2x(T1xψlog|Dx|+Tlog|Dx|xψ+R+x[Tψ,log|Dx|])v~s\displaystyle-2\partial_{x}(T_{1-\partial_{x}\psi}\log|D_{x}|+T_{\log|D_{x}|\partial_{x}\psi+R}+\partial_{x}[T_{\psi},\log|D_{x}|])\tilde{v}^{s}
=(L(x2ψ,log|Dx|v~s)+2sTx2ψlog|Dx|v~s)\displaystyle=(L(\partial_{x}^{2}\psi,\log|D_{x}|\tilde{v}^{s})+2sT_{\partial_{x}^{2}\psi}\log|D_{x}|\tilde{v}^{s})
(L(log|Dx|x2ψ,v~s)+2sTlog|Dx|x2ψv~s)\displaystyle\quad-(L(\log|D_{x}|\partial_{x}^{2}\psi,\tilde{v}^{s})+2sT_{\log|D_{x}|\partial_{x}^{2}\psi}\tilde{v}^{s})
+2TJsx2[|Dx|s,[Tψ,log|Dx|]]v2xT1xψ[TJs,log|Dx|]vs+f\displaystyle\quad+2T_{J^{-s}}\partial_{x}^{2}[|D_{x}|^{s},[T_{\psi},\log|D_{x}|]]v-2\partial_{x}T_{1-\partial_{x}\psi}[T_{J^{-s}},\log|D_{x}|]v^{s}+f
=:L0(x3ψ,log|Dx|x1v~s)L0(log|Dx|x3ψ,x1v~s)+L1(x3ψ,x1v~s)+f\displaystyle=:L_{0}(\partial_{x}^{3}\psi,\log|D_{x}|\partial_{x}^{-1}\tilde{v}^{s})-L_{0}(\log|D_{x}|\partial_{x}^{3}\psi,\partial_{x}^{-1}\tilde{v}^{s})+L_{1}(\partial_{x}^{3}\psi,\partial_{x}^{-1}\tilde{v}^{s})+f

where ff satisfies (6.1). Here L0L_{0} and L1L_{1} denote order zero paradifferential bilinear forms, respectively

L0(x2f,x1u)\displaystyle L_{0}(\partial_{x}^{2}f,\partial_{x}^{-1}u) =L(xf,u)+2sTxfu,\displaystyle=L(\partial_{x}f,u)+2sT_{\partial_{x}f}u,
L1(x2f,x1TJsu)\displaystyle L_{1}(\partial_{x}^{2}f,\partial_{x}^{-1}T_{J^{-s}}u) =(2TJsx2[|Dx|s,[Tx1f,log|Dx|]]|Dx|su2xT1xψ[TJs,log|Dx|]u).\displaystyle=(2T_{J^{-s}}\partial_{x}^{2}[|D_{x}|^{s},[T_{\partial_{x}^{-1}f},\log|D_{x}|]]|D_{x}|^{-s}u-2\partial_{x}T_{1-\partial_{x}\psi}[T_{J^{-s}},\log|D_{x}|]u).

Observe that since LiL_{i} are all order 0 paradifferential bilinear forms, we have reduced the terms of the inhomogeneity to order 1-1.

b) We next choose a normal form transformation to reduce the quadratic components of the inhomogeneity to balanced cubic terms. Let

w~s=12TJL0(x2ψ,x1v~s).\tilde{w}^{s}=\frac{1}{2}T_{J}L_{0}(\partial_{x}^{2}\psi,\partial_{x}^{-1}\tilde{v}^{s}).

Then we claim that u~s:=v~sw~s\tilde{u}^{s}:=\tilde{v}^{s}-\tilde{w}^{s} is the desired normal form transform. To see this, it remains to compute

(6.8) (t2x(T1xψlog|Dx|+Tlog|Dx|xψ+R+x[Tψ,log|Dx|]))w~s\displaystyle(\partial_{t}-2\partial_{x}(T_{1-\partial_{x}\psi}\log|D_{x}|+T_{\log|D_{x}|\partial_{x}\psi+R}+\partial_{x}[T_{\psi},\log|D_{x}|]))\tilde{w}^{s}

and observe cancellation with the three LiL_{i} bilinear forms on the right hand side of (6.7). To see this, we partition the computation into the following subgroups:

i) When the full equation of (6.8) falls on the high frequency v~s\tilde{v}^{s} input of L0L_{0}, we may use (6.7) to see that the contribution has a favorable balance of derivatives and may be absorbed into ff.

ii) We may commute the equation freely with the low frequency JJ due to a favorable balance of derivatives, absorbing the contribution again into ff.

It remains to consider commutators of the terms of the equation (6.8) across the low frequency x2ψ\partial_{x}^{2}\psi input of w~s\tilde{w}^{s}.

iii) We first consider the commutators involving the operators

2x(Tlog|Dx|xψ+R+x[Tψ,log|Dx|]).2\partial_{x}(T_{\log|D_{x}|\partial_{x}\psi+R}+\partial_{x}[T_{\psi},\log|D_{x}|]).

We may freely commute the x\partial_{x} forward, and also use (3.7) of Lemma 3.2 to rewrite, reducing to the operators

2T(log|Dx|1)xψ+Rx+Γ(x2ψ,x1())x.2T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}+\Gamma(\partial_{x}^{2}\psi,\partial_{x}^{-1}(\cdot))\circ\partial_{x}.

The contribution from the Γ\Gamma term may be absorbed into ff due to a favorable balance. The remaining contribution

TJL0(T(log|Dx|1)xψ+Rx3ψ,x1v~s)T_{J}L_{0}(T_{(\log|D_{x}|-1)\partial_{x}\psi+R}\partial_{x}^{3}\psi,\partial_{x}^{-1}\tilde{v}^{s})

will cancel with a contribution of step iv) below.

iv) For the case when t\partial_{t} falls on the low frequency input of L0L_{0}, we apply equation (3.13). Precisely, the two non-perturbative contributions on the left hand side of (3.13) cancel with the second L0L_{0} source term in (6.7), and the remaining contribution of step iii) above, respectively.

v) From the dispersive term 2TJ1xlog|Dx|2T_{J^{-1}}\partial_{x}\log|D_{x}|, the case when x\partial_{x} falls on the low frequency input of L0L_{0} while log|Dx|\log|D_{x}| has commuted to the high frequency input cancels with the first L0L_{0} source term in (6.7).

vi) From the dispersive term 2TJ1xlog|Dx|2T_{J^{-1}}\partial_{x}\log|D_{x}|, it remains to consider the commutators with log|Dx|\log|D_{x}|, where the x\partial_{x} remains in front. Using Lemma 2.2 with J(1xψ)=1J(1-\partial_{x}\psi)=1, and opening the definition of L0L_{0}, we have

2x2[log|Dx|,[|Dx|s,Tψ]]|Dx|sv~s2sx[log|Dx|,Txψ]v~s.2\partial_{x}^{2}[\log|D_{x}|,[|D_{x}|^{s},T_{\psi}]]|D_{x}|^{-s}\tilde{v}^{s}-2s\partial_{x}[\log|D_{x}|,T_{\partial_{x}\psi}]\tilde{v}^{s}.

We claim that these two terms cancel with the two terms of L1L_{1} respectively. Indeed, for the first term, we commute using Lemma 2.1 to reduce to

2TJsx2[log|Dx|,[|Dx|s,Tψ]]v2T_{J^{-s}}\partial_{x}^{2}[\log|D_{x}|,[|D_{x}|^{s},T_{\psi}]]v

which cancels with the double commutator term of L1L_{1}. For the second term, we also commute using Lemma 2.1 to reduce to

2sTJsx[Txψ,log|Dx|]vs=:2sTJsTx2ψvs+TJsL2(x3ψ,x1v).2sT_{J^{-s}}\partial_{x}[T_{\partial_{x}\psi},\log|D_{x}|]v^{s}=:-2sT_{J^{-s}}T_{\partial_{x}^{2}\psi}v^{s}+T_{J^{-s}}L_{2}(\partial_{x}^{3}\psi,\partial_{x}^{-1}v).

On the other hand, the second term of L1L_{1} may be expressed as

2xT1xψ[TJs,log|Dx|]vs=2sT1xψTJ1sx2ψvs+T1xψL2(J1sx3ψ,x1v).-2\partial_{x}T_{1-\partial_{x}\psi}[T_{J^{-s}},\log|D_{x}|]v^{s}=2sT_{1-\partial_{x}\psi}T_{J^{1-s}\partial_{x}^{2}\psi}v^{s}+T_{1-\partial_{x}\psi}L_{2}(J^{1-s}\partial_{x}^{3}\psi,\partial_{x}^{-1}v).

These cancel, up to applying Lemma 2.2 with J(1xψ)=1J(1-\partial_{x}\psi)=1 and perturbative errors. ∎

We thus obtain the following energy estimate:

Proposition 6.2.

Assume that A1A\ll 1 and BLt2B\in L_{t}^{2}. For every s0s\geq 0, there exist energy functionals E(s)(v)E^{(s)}(v) such that we have the following:

  1. a)

    Norm equivalence:

    E(s)(v)AvH˙xs2\displaystyle E^{(s)}(v)\approx_{A}\|v\|^{2}_{\dot{H}_{x}^{s}}
  2. b)

    Energy estimates:

    ddtE(s)(v)AB2vH˙xs2\displaystyle\frac{d}{dt}E^{(s)}(v)\lesssim_{A}B^{2}\|v\|^{2}_{\dot{H}_{x}^{s}}
Proof.

Let E(s)(v)=E(vs)E^{(s)}(v)=E(v^{s}), where E()E(\cdot) is defined in Proposition 5.1, and vsv^{s} is defined in Proposition 6.1.

Part a) is immediate, whereas part b) follows from Proposition 5.1. ∎

7. Local well-posedness

To establish the local well-posedness result at low regularity, we follow the approach outlined in [20]. We consider φ0H˙xs1H˙xs2\varphi_{0}\in\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}}, with s1<32s_{1}<\frac{3}{2}, s2>2s_{2}>2. Let φ0h=(φ0)h\varphi_{0}^{h}=(\varphi_{0})_{\leq h}, where hh\in\mathbb{N}. Since φ0hφ0\varphi_{0}^{h}\rightarrow\varphi_{0} in H˙xs1H˙xs2\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}}, we may assume that φ0hH˙xs1H˙xs2<R\|\varphi_{0}^{h}\|_{\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}}}<R for all hh.

We construct a uniform H˙xs1H˙xs2\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}} frequency envelope {ck}k\{c_{k}\}_{k\in\mathbb{Z}} for φ0\varphi_{0} having the following properties:

  1. a)

    Uniform bounds:

    Pk(φ0h)H˙xs1H˙xs2ck,\|P_{k}(\varphi_{0}^{h})\|_{\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}}}\lesssim c_{k},
  2. b)

    High frequency bounds:

    φ0hH˙xs1H˙xN2h(Ns2)ch,N>s2,\|\varphi_{0}^{h}\|_{\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{N}}\lesssim 2^{h(N-s_{2})}c_{h},\qquad N>s_{2},
  3. c)

    Difference bounds:

    φ0h+1φ0hLx22s2hch,\|\varphi_{0}^{h+1}-\varphi_{0}^{h}\|_{L_{x}^{2}}\lesssim 2^{-s_{2}h}c_{h},
  4. d)

    Limit as hh\rightarrow\infty:

    φ0hφ0H˙xs1H˙xs2.\varphi_{0}^{h}\rightarrow\varphi_{0}\in\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}}.

Let φh\varphi^{h} be the solutions with initial data φ0h\varphi_{0}^{h}, whose existence is guaranteed instance by [1]. Using the energy estimate for the solution φ\varphi of (1.3) from Proposition 6.2 and Proposition 4.2, we deduce that there exists T=T(φ0Hxs)>0T=T(\|\varphi_{0}\|_{H_{x}^{s}})>0 on which all of these solutions are defined, with high frequency bounds

φhCt0(H˙xs1H˙xN)φ0hH˙xs1H˙xN2h(Ns2)ch.\|\varphi^{h}\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{N})}\lesssim\|\varphi_{0}^{h}\|_{\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{N}}\lesssim 2^{h(N-s_{2})}c_{h}.

Further, by using the energy estimates for the solution of the linearized equation from Proposition 5.2, we have

φh+1φhCt0Lx22s2hch.\|\varphi^{h+1}-\varphi^{h}\|_{C_{t}^{0}L_{x}^{2}}\lesssim 2^{-s_{2}h}c_{h}.

By interpolation, we infer that

φh+1φhCt0(H˙xs1H˙xs2)ch.\|\varphi^{h+1}-\varphi^{h}\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})}\lesssim c_{h}.

As in [20], we get

PkφhCt0(H˙xs1H˙xs2)ck\|P_{k}\varphi^{h}\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})}\lesssim c_{k}

and that

φh+kφhCt0(H˙xs1H˙xs2)ch<h+k=(n=hh+k1cn2)12\|\varphi^{h+k}-\varphi^{h}\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})}\lesssim c_{h\leq\cdot<h+k}=\left(\sum_{\begin{subarray}{c}n=h\end{subarray}}^{h+k-1}c_{n}^{2}\right)^{\frac{1}{2}}

for every k1k\geq 1. Thus, φh\varphi^{h} converges to an element φ\varphi belonging to Ct0(H˙xs1H˙xs2)([0,T]×)C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})([0,T]\times\mathbb{R}). Moreover, we also obtain

(7.1) φhφCt0(H˙xs1H˙xs2)\displaystyle\|\varphi^{h}-\varphi\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})} ch=(n=hcn2)12.\displaystyle\lesssim c_{\geq h}=\left(\sum_{\begin{subarray}{c}n=h\end{subarray}}^{\infty}c_{n}^{2}\right)^{\frac{1}{2}}.

We now prove continuity with respect to the initial data. We consider a sequence

φ0jφ0(H˙xs1H˙xs2)\varphi_{0j}\rightarrow\varphi_{0}\in(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})

and an associated sequence of HxsH_{x}^{s}-frequency envelopes {ckj}k\{c^{j}_{k}\}_{k\in{\mathbb{Z}}}, each satisfying the analogous properties enumerated above for ckc_{k}, and further such that ckjckc^{j}_{k}\rightarrow c_{k} in l2()l^{2}(\mathbb{Z}). In particular,

(7.2) φjhφjCt0(H˙xs1H˙xs2)chj=(n=h(cnj)2)12.\|\varphi_{j}^{h}-\varphi_{j}\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})}\lesssim c^{j}_{\geq h}=\left(\sum_{\begin{subarray}{c}n=h\end{subarray}}^{\infty}(c^{j}_{n})^{2}\right)^{\frac{1}{2}}.

Using the triangle inequality with (7.1) and (7.2), we write

φjφCt0(H˙xs1H˙xs2)\displaystyle\|\varphi_{j}-\varphi\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})} φhφCt0(H˙xs1H˙xs2)+φjhφjCt0(H˙xs1H˙xs2)+φjhφhCt0(H˙xs1H˙xs2)\displaystyle\lesssim\|\varphi^{h}-\varphi\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})}+\|\varphi_{j}^{h}-\varphi_{j}\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})}+\|\varphi_{j}^{h}-\varphi^{h}\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})}
ch+chj+φjhφhCt0(H˙xs1H˙xs2).\displaystyle\lesssim c_{\geq h}+c^{j}_{\geq h}+\|\varphi_{j}^{h}-\varphi^{h}\|_{C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})}.

To address the third term, we observe that for every fixed hh, φjhφh\varphi_{j}^{h}\rightarrow\varphi^{h} in (H˙xs1H˙xs2)(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}}). We conclude that φjφ\varphi_{j}\rightarrow\varphi in Ct0(H˙xs1H˙xs2)([0,T]×)C_{t}^{0}(\dot{H}_{x}^{s_{1}}\cap\dot{H}_{x}^{s_{2}})([0,T]\times\mathbb{R}).

8. Global well-posedness

In this section we prove global well-posedness for the SQG equation (1.3) with small and localized initial data. We use the wave packet method of Ifrim-Tataru, which is systematically described in [21]. This section is companion to Section 6 in [1].

8.1. Notation

Consider the linear flow

itφA(D)φ=0i\partial_{t}\varphi-A(D)\varphi=0

and the linear operator

L=xtA(D).L=x-tA^{\prime}(D).

In our setting, we have the symbol

a(ξ)=2ξlog|ξ|a(\xi)=-2\xi\log|\xi|

and thus

A(D)=2Dlog|D|,L=x+2t+2tlog|D|.A(D)=-2D\log|D|,\qquad L=x+2t+2t\log|D|.

We define the weighted energy space (s0<1s_{0}<1 and s>3s>3)

φX=φH˙s0H˙s+LxφL2,\|\varphi\|_{X}=\|\varphi\|_{\dot{H}^{s_{0}}\cap\dot{H}^{s}}+\|L\partial_{x}\varphi\|_{L^{2}},

We also define the pointwise control norm

φY=|Dx|1δφLx+|Dx|12+δφxLx.\|\varphi\|_{Y}=\||D_{x}|^{1-\delta}\varphi\|_{L_{x}^{\infty}}+\||D_{x}|^{\frac{1}{2}+\delta}\varphi_{x}\|_{L_{x}^{\infty}}.

We partition the frequency space into dyadic intervals IλI_{\lambda} localized at dyadic frequencies λ2\lambda\in 2^{\mathbb{Z}}, and consider the associated partition of velocities

Jλ=a(Iλ)J_{\lambda}=a^{\prime}(I_{\lambda})

which form a covering of the real line, and have equal lengths. To these intervals JλJ_{\lambda} we select reference points vλJλv_{\lambda}\in J_{\lambda}, and consider an associated spatial partition of unity

1=λχλ(x),supp χλJλ¯,χλ=1 on Jλ,1=\sum_{\lambda}\chi_{\lambda}(x),\qquad\text{supp }\chi_{\lambda}\subseteq\overline{J_{\lambda}},\qquad\chi_{\lambda}=1\text{ on }J_{\lambda},

where Jλ¯\overline{J_{\lambda}} is a slight enlargement of JλJ_{\lambda}, of comparable length, uniformly in λ\lambda.

Lastly, we consider the related spatial intervals, tJλtJ_{\lambda}, with reference points xλ=tvλtJλx_{\lambda}=tv_{\lambda}\in tJ_{\lambda}.

8.2. Overview of the proof

We provide a brief overview of the proof.

1. We make the bootstrap assumption for the pointwise bound

(8.1) φ(t)YCϵt12\|\varphi(t)\|_{Y}\lesssim C{\epsilon}\langle t\rangle^{-\frac{1}{2}}

where CC is a large constant, in a time interval t[0,T]t\in[0,T] where T>1T>1.

2. The energy estimates for (1.3) and the linearized equation will imply

(8.2) φ(t)XtC2ϵ2φ(0)X.\|\varphi(t)\|_{X}\lesssim\langle t\rangle^{C^{2}{\epsilon}^{2}}\|\varphi(0)\|_{X}.

3. We aim to improve the bootstrap estimate (8.1) to

(8.3) φ(t)Yϵt12.\|\varphi(t)\|_{Y}\lesssim{\epsilon}\langle t\rangle^{-\frac{1}{2}}.

We use vector field inequalities to derive bounds of the form

(8.4) φ(t)Yϵt12+Cϵ2,\|\varphi(t)\|_{Y}\lesssim{\epsilon}\langle t\rangle^{-\frac{1}{2}+C{\epsilon}^{2}},

which is the desired bound but with an extra tCϵ2t^{C{\epsilon}^{2}} loss.

4. In order to rectify the extra loss, we use the wave packet testing method. Namely, we define a suitable asymptotic profile γ\gamma, which is then shown to be an approximate solution for an ordinary differential equation. This enables us to obtain suitable bounds for the asymptotic profile without the aforementioned loss, which can then be transferred back to the solution φ\varphi.

8.3. Energy estimates

From Proposition 6.2 and Grönwall’s lemma, together with the fact that ϵ1{\epsilon}\ll 1, we get that

φ(t,x)HxseC0tC(A(τ))B(τ)2𝑑τφ0Hxs.\displaystyle\|\varphi(t,x)\|_{H_{x}^{s}}\lesssim e^{C\int_{0}^{t}C(A(\tau))B(\tau)^{2}\,d\tau}\|\varphi_{0}\|_{H_{x}^{s}}.

Let u=Lxφ+tF(δyφ)|δ|yφx𝑑yu=L\partial_{x}\varphi+t\int F({\delta}^{y}\varphi){|\delta|}^{y}\varphi_{x}\,dy, which satisfies the linearized equation with error F(δyφ)δyφ|δ|yφx𝑑y\int F^{\prime}({\delta}^{y}\varphi){\delta}^{y}\varphi{|\delta|}^{y}\varphi_{x}\,dy, which is clearly balanced. From Proposition 5.2, along with Grönwall’s lemma and the fact that ϵ1{\epsilon}\ll 1, we have

u(t,x)Lx2eC0tC(A(τ))B(τ)2𝑑τu0Lx2.\displaystyle\|u(t,x)\|_{L_{x}^{2}}\lesssim e^{C\int_{0}^{t}C(A(\tau))B(\tau)^{2}\,d\tau}\|u_{0}\|_{L_{x}^{2}}.

Along with the bootstrap assumptions, these readily imply that

(8.5) φXφ(t)Hxs+u(t)Lx2ϵeC2ϵ20ts1𝑑sϵtC2ϵ2.\|\varphi\|_{X}\lesssim\|\varphi(t)\|_{H_{x}^{s}}+\|u(t)\|_{L_{x}^{2}}\lesssim{\epsilon}e^{C^{2}{\epsilon}^{2}\int_{0}^{t}\langle s\rangle^{-1}\,ds}\lesssim{\epsilon}\langle t\rangle^{C^{2}{\epsilon}^{2}}.

8.4. Vector field bounds

Proposition 2.1 from [21] implies that

φλLx2\displaystyle\|\varphi_{\lambda}\|^{2}_{L_{x}^{\infty}} 1t(φλLx2LxφλLx2+φλLx22).\displaystyle\lesssim\frac{1}{t}(\|\varphi_{\lambda}\|_{L_{x}^{2}}\|L\partial_{x}\varphi_{\lambda}\|_{L_{x}^{2}}+\|\varphi_{\lambda}\|^{2}_{L_{x}^{2}}).

When λ1\lambda\leq 1,

φλLx\displaystyle\|\varphi_{\lambda}\|_{L_{x}^{\infty}} 1tλ(1δδ1)(λ22δ2δ1φλLx21/2LxφλLx21/2+λ1δδ1φλLx2)1tλ(1δδ1)φX\displaystyle\lesssim\frac{1}{\sqrt{t}}\lambda^{-(1-\delta-\delta_{1})}(\|\lambda^{2-2\delta-2\delta_{1}}\varphi_{\lambda}\|^{1/2}_{L_{x}^{2}}\|L\partial_{x}\varphi_{\lambda}\|^{1/2}_{L_{x}^{2}}+\|\lambda^{1-\delta-\delta_{1}}\varphi_{\lambda}\|_{L_{x}^{2}})\lesssim\frac{1}{\sqrt{t}}\lambda^{-(1-\delta-\delta_{1})}\|\varphi\|_{X}

and when λ>1\lambda>1,

φλLx\displaystyle\|\varphi_{\lambda}\|_{L_{x}^{\infty}} 1tλ322δ(λ3+4δφλLx21/2LxφλLx21/2+λ32+2δφλLx2)1tλ(32+2δ)φX.\displaystyle\lesssim\frac{1}{\sqrt{t}}\lambda^{-\frac{3}{2}-2\delta}(\|\lambda^{3+4\delta}\varphi_{\lambda}\|^{1/2}_{L_{x}^{2}}\|L\partial_{x}\varphi_{\lambda}\|^{1/2}_{L_{x}^{2}}+\|\lambda^{\frac{3}{2}+2\delta}\varphi_{\lambda}\|_{L_{x}^{2}})\lesssim\frac{1}{\sqrt{t}}\lambda^{-\left(\frac{3}{2}+2\delta\right)}\|\varphi\|_{X}.

By dyadic summation and Bernstein’s inequality, we deduce the bound

(8.6) φY=Dx12+2δ|Dx|1δφLxφXt.\|\varphi\|_{Y}=\|\langle D_{x}\rangle^{\frac{1}{2}+2\delta}|D_{x}|^{1-\delta}\varphi\|_{L_{x}^{\infty}}\lesssim\frac{\|\varphi\|_{X}}{\sqrt{t}}.

By the localized dispersive estimate [21, Proposition 5.1],

|φλ(x)|21|xxλ|t1λ(LφλLx2+λ1φλLx2)2,\displaystyle|\varphi_{\lambda}(x)|^{2}\lesssim\frac{1}{|x-x_{\lambda}|t\frac{1}{\lambda}}(\|L\varphi_{\lambda}\|_{L_{x}^{2}}+\lambda^{-1}\|\varphi_{\lambda}\|_{L_{x}^{2}})^{2},

which implies that

(8.7) (1χλ)φλLxλ1/2t(LxφλLx2+φλLx2)λ1/2t(φX+φλLx2)\|(1-\chi_{\lambda})\varphi_{\lambda}\|_{L_{x}^{\infty}}\lesssim\frac{\lambda^{-1/2}}{t}(\|L\partial_{x}\varphi_{\lambda}\|_{L_{x}^{2}}+\|\varphi_{\lambda}\|_{L_{x}^{2}})\lesssim\frac{\lambda^{-1/2}}{t}(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}})

To end this section we record the following elliptic bounds:

Lemma 8.1.

We have

(8.8) |Dx|12+δx((1χλ)φλ)Lxλ1+δt(φX+φλLx2)\||D_{x}|^{\frac{1}{2}+\delta}\partial_{x}((1-\chi_{\lambda})\varphi_{\lambda})\|_{L_{x}^{\infty}}\lesssim\frac{\lambda^{1+\delta}}{t}(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}})
(8.9) |Dx|1δ((1χλ)φλ)Lxλ12δt(φX+φλLx2),\||D_{x}|^{1-\delta}((1-\chi_{\lambda})\varphi_{\lambda})\|_{L_{x}^{\infty}}\lesssim\frac{\lambda^{\frac{1}{2}-\delta}}{t}(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}}),

and

(8.10) (1χλ)φλLx2λ1t(φX+φλLx2),\|(1-\chi_{\lambda})\varphi_{\lambda}\|_{L_{x}^{2}}\lesssim\frac{\lambda^{-1}}{t}(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}}),

Moreover, the difference quotient satisfies the bounds

(1χλ)δyφλLx\displaystyle\|(1-\chi_{\lambda}){\delta}^{y}\varphi_{\lambda}\|_{L_{x}^{\infty}} λ1/2t(φX+φλLx2),\displaystyle\lesssim\frac{\lambda^{1/2}}{t}(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}}),

and

(1χλ)δyφλLx2\displaystyle\|(1-\chi_{\lambda}){\delta}^{y}\varphi_{\lambda}\|_{L_{x}^{2}} (φX+φλLx2)t.\displaystyle\lesssim\frac{(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}})}{t}.
Proof.

We use the bounds

|x(χλ(x/t)|\displaystyle|\partial_{x}(\chi_{\lambda}(x/t)| t1.\displaystyle\lesssim t^{-1}.

From 8.7 applied for xφ\partial_{x}\varphi,

x((1χλ)φλ)Lx\displaystyle\|\partial_{x}((1-\chi_{\lambda})\varphi_{\lambda})\|_{L_{x}^{\infty}} 1tχλφλLx+(1χλ)xφλLxλ1/2t(φX+φλLx2).\displaystyle\lesssim\frac{1}{t}\|\chi^{\prime}_{\lambda}\varphi_{\lambda}\|_{L_{x}^{\infty}}+\|(1-\chi_{\lambda})\partial_{x}\varphi_{\lambda}\|_{L_{x}^{\infty}}\lesssim\frac{\lambda^{1/2}}{t}(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}}).

The first two bounds immediately follow from 8.7, and the L2L^{2} elliptic estimate similarly follows from [21, Proposition 5.1].

For the bounds involving the difference quotient, from 8.7 applied for δyφ{\delta}^{y}\varphi, we have

(1χλ)δyφλLx\displaystyle\|(1-\chi_{\lambda}){\delta}^{y}\varphi_{\lambda}\|_{L_{x}^{\infty}} λ1/2t(LδyφλLx2+λ1δyφλLx2)\displaystyle\lesssim\frac{\lambda^{1/2}}{t}(\|L{\delta}^{y}\varphi_{\lambda}\|_{L_{x}^{2}}+\lambda^{-1}\|{\delta}^{y}\varphi_{\lambda}\|_{L_{x}^{2}})
λ1/2t(δy(Lφλ)Lx2+φλ(x+y)Lx2+φλLx2)\displaystyle\lesssim\frac{\lambda^{1/2}}{t}(\|{\delta}^{y}(L\varphi_{\lambda})\|_{L_{x}^{2}}+\|\varphi_{\lambda}(x+y)\|_{L_{x}^{2}}+\|\varphi_{\lambda}\|_{L_{x}^{2}})
λ1/2t(LxφλLx2+φλLx2)\displaystyle\lesssim\frac{\lambda^{1/2}}{t}(\|L\partial_{x}\varphi_{\lambda}\|_{L_{x}^{2}}+\|\varphi_{\lambda}\|_{L_{x}^{2}})
λ1/2t(φX+φλLx2)\displaystyle\lesssim\frac{\lambda^{1/2}}{t}(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}})

The other bound is proved similarly. ∎

8.5. Wave packets

We construct wave packets as follows. Given the dispersion relation a(ξ)a(\xi), the group velocity vv satisfies

v=a(ξ)=22log|ξ|,v=a^{\prime}(\xi)=-2-2\log|\xi|,

so we denote

ξv=e1v2.\xi_{v}=-e^{-1-\frac{v}{2}}.

Then we define the linear wave packet 𝐮v\mathbf{u}^{v} associated with velocity vv by

𝐮v=a′′(ξv)12χ(y)eitϕ(x/t),y=xvtt12a′′(ξv)12,\mathbf{u}^{v}=a^{\prime\prime}(\xi_{v})^{-\frac{1}{2}}\chi(y)e^{it\phi(x/t)},\qquad y=\frac{x-vt}{t^{\frac{1}{2}}a^{\prime\prime}(\xi_{v})^{\frac{1}{2}}},

where the phase ϕ\phi is given by

ϕ(v)=vξva(ξv),\phi(v)=v\xi_{v}-a(\xi_{v}),

and χ\chi is a unit bump function, such that χ(y)𝑑y=1\int\chi(y)\,dy=1.

We remark that we will typically apply frequency localizations of the form 𝐮λv=Pλ𝐮v\mathbf{u}^{v}_{\lambda}=P_{\lambda}\mathbf{u}^{v} with vJλv\in J_{\lambda}.

We observe that since

v(|ξv|12)=14|ξv|12,v(a′′(ξv)12)=14a′′(ξv)12,\partial_{v}(|\xi_{v}|^{\frac{1}{2}})=-\frac{1}{4}|\xi_{v}|^{\frac{1}{2}},\qquad\partial_{v}(a^{\prime\prime}(\xi_{v})^{-\frac{1}{2}})=-\frac{1}{4}a^{\prime\prime}(\xi_{v})^{-\frac{1}{2}},

we may write

(8.11) v𝐮v=L~𝐮v+𝐮v,II=t12a′′(ξv)12𝐮v+𝐮v,II\partial_{v}\mathbf{u}^{v}=-\tilde{L}\mathbf{u}^{v}+\mathbf{u}^{v,II}=t^{\frac{1}{2}}a^{\prime\prime}(\xi_{v})^{-\frac{1}{2}}\mathbf{u}^{v}+\mathbf{u}^{v,II}

where

L~=t(xiϕ(x/t))\tilde{L}=t(\partial_{x}-i\phi^{\prime}(x/t))

and 𝐮v,II\mathbf{u}^{v,II} has a similar wave packet form. We also recall from [21, Lemmas 4.4, 5.10] the sense in which 𝐮v\mathbf{u}^{v} is a good approximate solution:

Lemma 8.2.

The wave packet 𝐮v\mathbf{u}^{v} solves an equation of the form

(itA(D))𝐮v=t32(L𝐮v,I+𝐫v)(i\partial_{t}-A(D))\mathbf{u}^{v}=t^{-\frac{3}{2}}(L\mathbf{u}^{v,I}+\mathbf{r}^{v})

where 𝐮v,I,𝐫v\mathbf{u}^{v,I},\mathbf{r}^{v} have wave packet form,

𝐮v,Ia′′(ξv)12𝐮v,𝐫vξv1a′′(ξv)12𝐮v.\mathbf{u}^{v,I}\approx a^{\prime\prime}(\xi_{v})^{-\frac{1}{2}}\mathbf{u}^{v},\qquad\mathbf{r}^{v}\approx\xi_{v}^{-1}a^{\prime\prime}(\xi_{v})^{-\frac{1}{2}}\mathbf{u}^{v}.

The asymptotic profile at frequency λ\lambda is meaningful when the associated spatial region tJλtJ_{\lambda} dominates the wave packet scale at frequency λ\lambda:

δxt12a′′(λ)12|tJλ|tλa′′(λ).\delta x\approx t^{\frac{1}{2}}a^{\prime\prime}(\lambda)^{\frac{1}{2}}\lesssim|tJ_{\lambda}|\approx t\lambda a^{\prime\prime}(\lambda).

This corresponds to

tλ2a′′(λ)1λ1.t\gtrsim\lambda^{-2}a^{\prime\prime}(\lambda)^{-1}\approx\lambda^{-1}.

Accordingly we define

𝒟={(t,v)+×:vJλ,tλ1}.\mathcal{D}=\{(t,v)\in{\mathbb{R}}^{+}\times{\mathbb{R}}:v\in J_{\lambda},\ t\gtrsim\lambda^{-1}\}.

8.6. Wave packet testing

In this section we establish estimates on the asymptotic profile function

γλ(t,v):=φ,𝐮λvLx2=φλ,𝐮vLx2.\gamma^{\lambda}(t,v):=\langle\varphi,\mathbf{u}^{v}_{\lambda}\rangle_{L^{2}_{x}}=\langle\varphi_{\lambda},\mathbf{u}^{v}\rangle_{L^{2}_{x}}.

We will see that γλ\gamma^{\lambda} essentially has support vJλv\in J_{\lambda}.

We will also use the following crude bounds involving the higher regularity of γλ\gamma^{\lambda}:

Lemma 8.3 (Lemma 6.3, [1]).

We have

χλvnγλL\displaystyle\|\chi_{\lambda}\partial_{v}^{n}\gamma^{\lambda}\|_{L^{\infty}} t12(1+t12λ12)nφλLx,\displaystyle\lesssim t^{\frac{1}{2}}(1+t^{\frac{1}{2}}\lambda^{\frac{1}{2}})^{n}\|\varphi_{\lambda}\|_{L_{x}^{\infty}},
χλvnγλL2\displaystyle\|\chi_{\lambda}\partial_{v}^{n}\gamma^{\lambda}\|_{L^{2}} (tλ)14(1+t12λ12)nφλLx2,\displaystyle\lesssim(t\lambda)^{\frac{1}{4}}(1+t^{\frac{1}{2}}\lambda^{\frac{1}{2}})^{n}\|\varphi_{\lambda}\|_{L_{x}^{2}},

and

χλvγλL\displaystyle\|\chi_{\lambda}\partial_{v}\gamma^{\lambda}\|_{L^{\infty}} t14λ34φX+t12φλLx.\displaystyle\lesssim t^{\frac{1}{4}}\lambda^{-\frac{3}{4}}\|\varphi\|_{X}+t^{\frac{1}{2}}\|\varphi_{\lambda}\|_{L_{x}^{\infty}}.

The first two bounds are reflective of the fact that the pointwise and energy bounds can be transferred from φλ\varphi_{\lambda} to the approximate profile corresponding to the dyadic frequency λ\lambda. The last bound is more special, as it makes use of the fact that γλ\gamma^{\lambda} is defined in terms of the wave packet 𝐮v\mathbf{u}^{v}, in order to provide a pointwise estimate that uses the localized energy norm.

8.6.1. Approximate profile

We recall from [21] that γλ\gamma^{\lambda} provides a good approximation for the profile of φ\varphi. In our setting, we will also need to compare the profile with the differentiated flow xφ\partial_{x}\varphi. Define

rλ(t,x)=χλ(x/t)φλ(t,x)t12χλ(x/t)γλ(t,x/t)eitϕ(x/t).r^{\lambda}(t,x)=\chi_{\lambda}(x/t)\varphi_{\lambda}(t,x)-t^{-\frac{1}{2}}\chi_{\lambda}(x/t)\gamma^{\lambda}(t,x/t)e^{-it\phi(x/t)}.
Lemma 8.4 (Lemma 6.4, [1]).

Let t1t\geq 1. Then we have

χλ(x/t)rλLx\displaystyle\|\chi_{\lambda}(x/t)r^{\lambda}\|_{L^{\infty}_{x}} t34λ14L~φλLx2,\displaystyle\lesssim t^{-\frac{3}{4}}\lambda^{-\frac{1}{4}}\|\tilde{L}\varphi_{\lambda}\|_{L^{2}_{x}},
χλ(x/t)vrλLx\displaystyle\|\chi_{\lambda}(x/t)\partial_{v}r^{\lambda}\|_{L^{\infty}_{x}} t14λ14L~xφλLx2+(1+t12λ12)φλL.\displaystyle\lesssim t^{\frac{1}{4}}\lambda^{-\frac{1}{4}}\|\tilde{L}\partial_{x}\varphi_{\lambda}\|_{L^{2}_{x}}+(1+t^{\frac{1}{2}}\lambda^{\frac{1}{2}})\|\varphi_{\lambda}\|_{L^{\infty}}.

We also observe that on the wave packet scale, we may replace γ(t,v)\gamma(t,v) with γ(t,x/t)\gamma(t,x/t) up to acceptable errors. Denote

βvλ(t,x)=t1/2χλ(x/t)(γ(t,v)γ(t,x/t))eitϕ(x/t),\beta^{\lambda}_{v}(t,x)=t^{-1/2}\chi_{\lambda}(x/t)(\gamma(t,v)-\gamma(t,x/t))e^{it\phi(x/t)},
Lemma 8.5 (Lemma 6.5, [1]).

Let vJλv\in J_{\lambda}, and (t,v)𝒟(t,v)\in\mathcal{D}. Then, for every y0y\neq 0 and xx such that |xvt|δx=t1/2λ1/2\displaystyle|x-vt|\lesssim\delta x=t^{1/2}\lambda^{-1/2}, we have the bound

|δyβv|\displaystyle|{\delta}^{y}\beta_{v}| t3/4λ1/4φX\displaystyle\lesssim t^{-3/4}\lambda^{-1/4}\|\varphi\|_{X}

Lemmas 8.4 and 8.5 are proved by using the wave packet definition of the asymptotic profile γλ\gamma^{\lambda}, as well as the wave packet representation of v𝐮v\partial_{v}\mathbf{u}_{v} ((8.11)), in order to estimate the two errors in regular (Sobolev) or localized energy spaces.

8.7. Bounds for QQ

Write, slightly abusing notation,

Q(φ)=Q(φ,φ¯,φ):=13sgn(y)|δyφ|2δyφ𝑑y.Q(\varphi)=Q(\varphi,\overline{\varphi},\varphi):=\frac{1}{3}\int\operatorname{sgn}(y)\cdot|{\delta}^{y}\varphi|^{2}{\delta}^{y}\varphi\,dy.

We recall from [1] the following lemma:

Lemma 8.6 (See Lemma 6.6,[1]).

For 0<δ1\displaystyle 0<\delta\ll 1, we have the difference estimates

Q(φ1)Q(φ2)Lx+Lx1/δ\displaystyle\|Q(\varphi_{1})-Q(\varphi_{2})\|_{L_{x}^{\infty}+L_{x}^{1/\delta}} (x(φ1,φ2)Lx2+x(φ1,φ2)Lx12δ(φ1,φ2)Lx)x(φ1φ2)Lx,\displaystyle\lesssim(\|\partial_{x}(\varphi_{1},\varphi_{2})\|_{L_{x}^{\infty}}^{2}+\|\partial_{x}(\varphi_{1},\varphi_{2})\|_{L_{x}^{\frac{1}{2\delta}}}\|(\varphi_{1},\varphi_{2})\|_{L_{x}^{\infty}})\|\partial_{x}(\varphi_{1}-\varphi_{2})\|_{L_{x}^{\infty}},
Q(φ1)Q(φ2)Lx2\displaystyle\|Q(\varphi_{1})-Q(\varphi_{2})\|_{L_{x}^{2}} x(φ1,φ2)Lx2x(φ1,φ2)Lxx(φ1φ2)Lx\displaystyle\lesssim\|\partial_{x}(\varphi_{1},\varphi_{2})\|_{L_{x}^{2}}\|\partial_{x}(\varphi_{1},\varphi_{2})\|_{L_{x}^{\infty}}\|\partial_{x}(\varphi_{1}-\varphi_{2})\|_{L_{x}^{\infty}}
+|Dx|1δ(φ1,φ2)Lx2(φ1,φ2)Lxx(φ1φ2)Lx,\displaystyle+\||D_{x}|^{1-\delta}(\varphi_{1},\varphi_{2})\|_{L_{x}^{2}}\|(\varphi_{1},\varphi_{2})\|_{L_{x}^{\infty}}\|\partial_{x}(\varphi_{1}-\varphi_{2})\|_{L_{x}^{\infty}},
Q(φ1)Q(φ2)Lx+Lx1/δ\displaystyle\|Q(\varphi_{1})-Q(\varphi_{2})\|_{L_{x}^{\infty}+L_{x}^{1/\delta}} (Dxδ(φ1,φ2)Lxx(φ1,φ2)Lx+Lx12δx(φ1φ2)Lx,\displaystyle\lesssim(\|\langle D_{x}\rangle^{\delta}(\varphi_{1},\varphi_{2})\|_{L_{x}^{\infty}}\|\partial_{x}(\varphi_{1},\varphi_{2})\|_{L_{x}^{\infty}+L_{x}^{\frac{1}{2\delta}}}\|\partial_{x}(\varphi_{1}-\varphi_{2})\|_{L_{x}^{\infty}},
Q(φ1)Q(φ2)Lx2\displaystyle\|Q(\varphi_{1})-Q(\varphi_{2})\|_{L_{x}^{2}} (Dxδ(φ1,φ2)Lxx(φ1,φ2)Lx2x(φ1φ2)Lx.\displaystyle\lesssim(\|\langle D_{x}\rangle^{\delta}(\varphi_{1},\varphi_{2})\|_{L_{x}^{\infty}}\|\partial_{x}(\varphi_{1},\varphi_{2})\|_{L_{x}^{2}}\|\partial_{x}(\varphi_{1}-\varphi_{2})\|_{L_{x}^{\infty}}.

We note that only the first two estimates were proved in [1]. However, we omit the proofs for the other two, as they are similar.

We will be considering separately the balanced and unbalanced components of QQ. Precisely, we denote the diagonal set of frequencies by 𝒟\mathcal{D} and write

Q(φ,φ,φ)\displaystyle Q(\varphi,\varphi,\varphi) =(λ1,λ2,λ3,λ)𝒟Q(φλ1,φλ2,φλ3)+(λ1,λ2,λ3,λ)𝒟Q(φλ1,φλ2,φλ3)\displaystyle=\sum_{(\lambda_{1},\lambda_{2},\lambda_{3},\lambda)\in\mathcal{D}}Q(\varphi_{\lambda_{1}},\varphi_{\lambda_{2}},\varphi_{\lambda_{3}})+\sum_{(\lambda_{1},\lambda_{2},\lambda_{3},\lambda)\notin\mathcal{D}}Q(\varphi_{\lambda_{1}},\varphi_{\lambda_{2}},\varphi_{\lambda_{3}})
=Qbal(φ,φ,φ)+Qunbal(φ,φ,φ)=Qbal(φ)+Qunbal(φ).\displaystyle=Q^{bal}(\varphi,\varphi,\varphi)+Q^{unbal}(\varphi,\varphi,\varphi)=Q^{bal}(\varphi)+Q^{unbal}(\varphi).

The unbalanced portion of QQ satisfies the better bound as follows:

Lemma 8.7.

QunbalQ^{unbal} satisfies the bounds

χλ1xPλQunbal(φ)LxλδφX3t2\|\chi_{\lambda}^{1}\partial_{x}P_{\lambda}Q^{unbal}(\varphi)\|_{L_{x}^{\infty}}\lesssim\lambda^{-\delta}\frac{\|\varphi\|^{3}_{X}}{t^{2}}

and

χλ1xPλQunbal(φ)Lx2λδφX3t3/2,\|\chi_{\lambda}^{1}\partial_{x}P_{\lambda}Q^{unbal}(\varphi)\|_{L_{x}^{2}}\lesssim\lambda^{-\delta}\frac{\|\varphi\|^{3}_{X}}{t^{3/2}},

where χλ1\chi^{1}_{\lambda} is a cut-off widening χλ\chi_{\lambda}.

Proof.

We shall denote

Iλ1,λ2,λ3\displaystyle I_{\lambda_{1},\lambda_{2},\lambda_{3}} =sgn(y)δyφλ1δyφλ2δyφλ3𝑑y\displaystyle=\int_{\mathbb{R}}\operatorname{sgn}(y){\delta}^{y}\varphi_{\lambda_{1}}{\delta}^{y}\varphi_{\lambda_{2}}{\delta}^{y}\varphi_{\lambda_{3}}\,dy

and consider two cases in the frequency sum for xPλQunbal\partial_{x}P_{\lambda}Q^{unbal}.

First we consider the case in which we have two low separated frequencies. We assume without loss of generality that λ3=λ\lambda_{3}=\lambda and λ1<λ2λ\lambda_{1}<\lambda_{2}\ll\lambda. In this case, the elliptic estimates will be applied for the factor φλ1\varphi_{\lambda_{1}}. Precisely, from Lemma 2.4 and estimates 8.6, 8.7, and 8.10, we get that

χλ1Iλ1,λ2,λ3Lx\displaystyle\left\|\chi^{1}_{\lambda}I_{\lambda_{1},\lambda_{2},\lambda_{3}}\right\|_{L_{x}^{\infty}} λ1λ11/2tφX(λ212δ+λ2)φλ2Lxλ3δφλ3Lx\displaystyle\lesssim\lambda_{1}\frac{\lambda_{1}^{-1/2}}{t}\|\varphi\|_{X}(\lambda_{2}^{1-2\delta}+\lambda_{2})\|\varphi_{\lambda_{2}}\|_{L_{x}^{\infty}}\lambda_{3}^{\delta}\|\varphi_{\lambda_{3}}\|_{L_{x}^{\infty}}
λ11/2tφXλ2δ(λ213δ+λ21δ)φλ2Lxλ322δλ32+3δφλLx\displaystyle\lesssim\frac{\lambda_{1}^{1/2}}{t}\|\varphi\|_{X}\lambda_{2}^{\delta}(\lambda_{2}^{1-3\delta}+\lambda_{2}^{1-\delta})\|\varphi_{\lambda_{2}}\|_{L_{x}^{\infty}}\lambda^{-\frac{3}{2}-2\delta}\lambda^{\frac{3}{2}+3\delta}\|\varphi_{\lambda}\|_{L_{x}^{\infty}}
λ11/2λ2δλ322δφX3t2.\displaystyle\lesssim\lambda_{1}^{1/2}\lambda_{2}^{\delta}\lambda^{-\frac{3}{2}-2\delta}\frac{\|\varphi\|^{3}_{X}}{t^{2}}.

By using dyadic summation in λ1\lambda_{1} and λ2\lambda_{2}, we deduce that

χλ1xλ1<λ2λIλ1,λ2,λ3Lx\displaystyle\left\|\chi^{1}_{\lambda}\partial_{x}\sum_{\begin{subarray}{c}\lambda_{1}<\lambda_{2}\ll\lambda\end{subarray}}I_{\lambda_{1},\lambda_{2},\lambda_{3}}\right\|_{L_{x}^{\infty}} λδφX3t2.\displaystyle\lesssim\lambda^{-\delta}\frac{\|\varphi\|_{X}^{3}}{t^{2}}.

Similarly, we deduce that

χλ1xλ1<λ2λIλ1,λ2,λ3Lx2\displaystyle\left\|\chi^{1}_{\lambda}\partial_{x}\sum_{\begin{subarray}{c}\lambda_{1}<\lambda_{2}\ll\lambda\end{subarray}}I_{\lambda_{1},\lambda_{2},\lambda_{3}}\right\|_{L_{x}^{2}} λδφX3t3/2\displaystyle\lesssim\lambda^{-\delta}\frac{\|\varphi\|_{X}^{3}}{t^{3/2}}

We now analyze the situation in which λ1,λ2λ\lambda_{1},\lambda_{2}\gtrsim\lambda, and λ1\lambda_{1} and λ2\lambda_{2} are comparable and both separated from λ\lambda. Thus, we will be able to use λ1\lambda_{1} and λ2\lambda_{2} interchangeably. We replace χλ1\chi^{1}_{\lambda} by χ~λ\tilde{\chi}_{\lambda}, which has double support, and equals 11 on a comparably-sized neighbourhood of the support of χλ1\chi^{1}_{\lambda}. We write

χλ1xPλ=χλ1xPλχ~λ+χλ1xPλ(1χ~λ).\displaystyle\chi^{1}_{\lambda}\partial_{x}P_{\lambda}=\chi^{1}_{\lambda}\partial_{x}P_{\lambda}\tilde{\chi}_{\lambda}+\chi^{1}_{\lambda}\partial_{x}P_{\lambda}(1-\tilde{\chi}_{\lambda}).

For the first term, using Lemma 2.4, along with estimates 8.6, 8.7, 8.10, we get the bounds

χλ1Pλχ~λIλ1,λ2,λ3Lx\displaystyle\left\|\chi^{1}_{\lambda}P_{\lambda}\tilde{\chi}_{\lambda}I_{\lambda_{1},\lambda_{2},\lambda_{3}}\right\|_{L_{x}^{\infty}} λ21/2+δλ312δ+λ3tφXφλ2Lxφλ3Lx\displaystyle\lesssim\lambda_{2}^{1/2+\delta}\frac{\lambda_{3}^{1-2\delta}+\lambda_{3}}{t}\|\varphi\|_{X}\|\varphi_{\lambda_{2}}\|_{L_{x}^{\infty}}\|\varphi_{\lambda_{3}}\|_{L_{x}^{\infty}}
λ21δ/2λ3δ/2φXt(λ315δ/2+λ31δ/2)φλ3Lxλ23/2+3δ/2φλ2Lx\displaystyle\lesssim\lambda_{2}^{-1-\delta/2}\lambda_{3}^{\delta/2}\frac{\|\varphi\|_{X}}{t}(\lambda_{3}^{1-5\delta/2}+\lambda_{3}^{1-\delta/2})\|\varphi_{\lambda_{3}}\|_{L_{x}^{\infty}}\lambda_{2}^{3/2+3\delta/2}\|\varphi_{\lambda_{2}}\|_{L_{x}^{\infty}}
λ21δ/2λ3δ/2φX3t2\displaystyle\lesssim\lambda_{2}^{-1-\delta/2}\lambda_{3}^{\delta/2}\frac{\|\varphi\|^{3}_{X}}{t^{2}}

and

χλ1Pλχ~λIλ1,λ2,λ3Lx2\displaystyle\left\|\chi^{1}_{\lambda}P_{\lambda}\tilde{\chi}_{\lambda}I_{\lambda_{1},\lambda_{2},\lambda_{3}}\right\|_{L_{x}^{2}} λ2δλ312δ+λ3tφXφλ2Lxφλ3Lx\displaystyle\lesssim\lambda_{2}^{\delta}\frac{\lambda_{3}^{1-2\delta}+\lambda_{3}}{t}\|\varphi\|_{X}\|\varphi_{\lambda_{2}}\|_{L_{x}^{\infty}}\|\varphi_{\lambda_{3}}\|_{L_{x}^{\infty}}
λ213δ/2λ3δ/2φXt(λ315δ/2+λ31δ/2)φλ3Lxλ21+5δ/2φλ2Lx\displaystyle\lesssim\lambda_{2}^{-1-3\delta/2}\lambda_{3}^{\delta/2}\frac{\|\varphi\|_{X}}{t}(\lambda_{3}^{1-5\delta/2}+\lambda_{3}^{1-\delta/2})\|\varphi_{\lambda_{3}}\|_{L_{x}^{\infty}}\lambda_{2}^{1+5\delta/2}\|\varphi_{\lambda_{2}}\|_{L_{x}^{\infty}}
λ213δ/2λ3δ/2φX3t2.\displaystyle\lesssim\lambda_{2}^{-1-3\delta/2}\lambda_{3}^{\delta/2}\frac{\|\varphi\|^{3}_{X}}{t^{2}}.

By using dyadic summation in λ1\lambda_{1}, λ2\lambda_{2}, and λ3\lambda_{3} (and by using the fact that λ1\lambda_{1} and λ2\lambda_{2} are close), we deduce the bound

χλ1xPλχ~λλ3λ2,λ1λ2λIλ1,λ2,λ3LxLx2\displaystyle\left\|\chi^{1}_{\lambda}\partial_{x}P_{\lambda}\tilde{\chi}_{\lambda}\sum_{\begin{subarray}{c}\lambda_{3}\lesssim\lambda_{2},\lambda_{1}\simeq\lambda_{2}\gtrsim\lambda\end{subarray}}I_{\lambda_{1},\lambda_{2},\lambda_{3}}\right\|_{L_{x}^{\infty}\cap L_{x}^{2}} λδ1t2φX3.\displaystyle\lesssim\lambda^{-\delta}\frac{1}{t^{2}}\|\varphi\|^{3}_{X}.

We look at the second term. For every NN, we know that

χλ1xPλ(1χ~λ)L2L2,χλ1xPλ(1χ~λ)LL\displaystyle\|\chi^{1}_{\lambda}\partial_{x}P_{\lambda}(1-\tilde{\chi}_{\lambda})\|_{L^{2}\rightarrow L^{2}},\|\chi^{1}_{\lambda}\partial_{x}P_{\lambda}(1-\tilde{\chi}_{\lambda})\|_{L^{\infty}\rightarrow L^{\infty}} λ1NtN\displaystyle\lesssim\frac{\lambda^{1-N}}{t^{N}}

We take N=32N=\frac{3}{2}. By carrying out a similar analysis as above, along with Lemma 2.4 and dyadic summation, we deduce that the contributions corresponding to these terms are also acceptable. ∎

Lemma 8.8 (Lemma 6.8 [1]).

We have

χλ((x/t))3Q(eitϕ(x/t))\displaystyle\chi_{\lambda}((x/t))^{3}Q(e^{it\phi(x/t)}) =(χλ(x/t))3eitϕ(x/t)q(ϕ(x/t))+h(λ,t),\displaystyle=(\chi_{\lambda}(x/t))^{3}e^{it\phi(x/t)}q(\phi^{\prime}(x/t))+h(\lambda,t),

where for every a(0,1)a\in(0,1)

|h(λ,t)|\displaystyle|h(\lambda,t)| λ3t23a+λ2t1a+1t2a\displaystyle\lesssim\frac{\lambda^{3}}{t^{2-3a}}+\frac{\lambda^{2}}{t^{1-a}}+\frac{1}{t^{2a}}

This result can be viewed as a semiclassical expansion of the cubic form QQ applied to the wave packet phase correction, and will be useful in deriving an asymptotic ordinary differential equation for the profile γλ\gamma^{\lambda}.

8.8. The asymptotic equation for γ\gamma

Here we record the error bounds for the asymptotic equation for γ\gamma. The proof follows precisely that of Proposition 6.9 in [1]. The change in exponents corresponds to the one in Lemma 8.7.

Proposition 8.9.

Let vJλv\in J_{\lambda}. Under the assumption (t,v)𝒟(t,v)\in\mathcal{D}, we have

γ˙(t,v)=iq(ξv)ξvt1γ(t,v)|γ(t,v)|2+f(t,v),\displaystyle\dot{\gamma}(t,v)=iq(\xi_{v})\xi_{v}t^{-1}\gamma(t,v)|\gamma(t,v)|^{2}+f(t,v),

where

|f(t,v)|\displaystyle|f(t,v)| λδg(λ)t1δ+Cϵ2ϵ,\displaystyle\lesssim\lambda^{-\delta}g(\lambda)t^{-1-\delta+C{\epsilon}^{2}}{\epsilon},

where g(λ)g(\lambda) is a finite sum of powers of λ\lambda, and

f(t,v)Lv2(Jλ)\displaystyle\|f(t,v)\|_{L_{v}^{2}(J_{\lambda})} λδ(1+λ12)t1δ+Cϵ2ϵ.\displaystyle\lesssim\lambda^{-\delta}(1+\lambda^{-\frac{1}{2}})t^{-1-\delta+C{\epsilon}^{2}}{\epsilon}.

8.9. Closing the bootstrap argument

We recall that

φλLx\displaystyle\|\varphi_{\lambda}\|_{L_{x}^{\infty}} 1tλ(1δδ1)φX1tλ(1δδ1)ϵtCϵ2,\displaystyle\lesssim\frac{1}{\sqrt{t}}\lambda^{-(1-\delta-\delta_{1})}\|\varphi\|_{X}\lesssim\frac{1}{\sqrt{t}}\lambda^{-(1-\delta-\delta_{1})}{\epsilon}t^{C{\epsilon}^{2}},

when λ1\lambda\leq 1 and

φλLx1tλ(32+3δ/2)φX1tλ(32+3δ/2)ϵtCϵ2,\displaystyle\|\varphi_{\lambda}\|_{L_{x}^{\infty}}\lesssim\frac{1}{\sqrt{t}}\lambda^{-(\frac{3}{2}+3\delta/2)}\|\varphi\|_{X}\lesssim\frac{1}{\sqrt{t}}\lambda^{-(\frac{3}{2}+3\delta/2)}\epsilon t^{C\epsilon^{2}},

when λ>1\lambda>1.

Thus, if tλN\displaystyle t\lesssim\lambda^{N} when λ>1\lambda>1, and if tλN\displaystyle t\lesssim\lambda^{-N} when λ1\lambda\leq 1, where NN can be chosen appropriately, we get the desired bounds. We are left to analyze the cases tλN\displaystyle t\gtrsim\lambda^{N} when λ>1\lambda>1, and tλN\displaystyle t\gtrsim\lambda^{-N} when λ1\lambda\leq 1.

We recall that in the elliptic region,

|Dx|δ((1χλ)φλ(x))Lx\displaystyle\||D_{x}|^{\delta}((1-\chi_{\lambda})\varphi_{\lambda}(x))\|_{L_{x}^{\infty}} λδ1/2t(φX+φλLx2)λ1/2δ+λδtϵtC2ϵ2\displaystyle\lesssim\frac{\lambda^{\delta-1/2}}{t}(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}})\lesssim\frac{\lambda^{1/2-\delta}+\lambda^{-\delta}}{t}{\epsilon}t^{C^{2}{\epsilon}^{2}}
|Dx|12+δx((1χλ)φλ(x))Lx\displaystyle\||D_{x}|^{\frac{1}{2}+\delta}\partial_{x}((1-\chi_{\lambda})\varphi_{\lambda}(x))\|_{L_{x}^{\infty}} λ1+δt(φX+φλLx2)λ1+δ+λ1/2+δtϵtC2ϵ2\displaystyle\lesssim\frac{\lambda^{1+\delta}}{t}(\|\varphi\|_{X}+\|\varphi_{\lambda}\|_{L_{x}^{2}})\lesssim\frac{\lambda^{1+\delta}+\lambda^{1/2+\delta}}{t}{\epsilon}t^{C^{2}{\epsilon}^{2}}

which give the desired bounds in both cases. It remains to bound the non-elliptic region χλφλ\displaystyle\chi_{\lambda}\varphi_{\lambda}. We recall that, if x/tJλx/t\in J_{\lambda}, and r(t,x)=χλφλ(t,x)1tχλγ(t,x/t)eitϕ(x/t)\displaystyle r(t,x)=\chi_{\lambda}\varphi_{\lambda}(t,x)-\frac{1}{\sqrt{t}}\chi_{\lambda}\gamma(t,x/t)e^{it\phi(x/t)},

t1/2rλLx\displaystyle t^{1/2}\|r^{\lambda}\|_{L_{x}^{\infty}} t1/4λ5/4ϵtCϵ2\displaystyle\lesssim t^{-1/4}\lambda^{-5/4}{\epsilon}t^{C{\epsilon}^{2}}

When λ1\lambda\leq 1 and tλNt\gtrsim\lambda^{-N}, we note that

t1/4λ5/4ϵtCϵ2\displaystyle t^{-1/4}\lambda^{-5/4}{\epsilon}t^{C{\epsilon}^{2}} λ(1δδ1)ϵ.\displaystyle\lesssim\lambda^{-(1-\delta-\delta_{1})}{\epsilon}.

This is true because it is equivalent to

λ(1/4+δ+δ1)t1/4Cϵ2.\displaystyle\lambda^{-(1/4+\delta+\delta_{1})}\lesssim t^{1/4-C{\epsilon}^{2}}.

When λ>1\lambda>1 and tλNt\gtrsim\lambda^{N}, we can see that

t1/4λ5/4ϵtCϵ2\displaystyle t^{-1/4}\lambda^{-5/4}{\epsilon}t^{C{\epsilon}^{2}} λ(32+3δ/2)ϵ.\displaystyle\lesssim\lambda^{-(\frac{3}{2}+3\delta/2)}{\epsilon}.

This is true because it is equivalent to

λ1/4+3δ/2t1/4Cϵ2.\displaystyle\lambda^{1/4+3\delta/2}\lesssim t^{1/4-C{\epsilon}^{2}}.

This means that we only need the bounds

|γ(t,v)|ϵλ(1δδ1)\displaystyle|\gamma(t,v)|\lesssim{\epsilon}\lambda^{-(1-\delta-\delta_{1})}

when λ1\lambda\leq 1, and

|γ(t,v)|ϵλ(32+3δ/2)\displaystyle|\gamma(t,v)|\lesssim{\epsilon}\lambda^{-(\frac{3}{2}+3\delta/2)}

when λ>1\lambda>1. By initializing at time t=1t=1, up to which the bounds are known to be true from the energy estimates, and by using Proposition 8.9, we reach the desired conclusion.

9. Modified scattering

In this section we discuss the modified scattering behaviour of the global solutions constructed in Section 8. We recall that the solutions of (1.3) have conserved mass (as llng as it is well-defined):

Proposition 9.1 (Proposition 7.1, [1]).

For solutions φ\varphi of (1.3), φ(t)L22\|\varphi(t)\|^{2}_{L^{2}} is conserved in time.

Recall the asymptotic equation

γ˙(t,v)\displaystyle\dot{\gamma}(t,v) =iq(ξv)ξvt1|γ(t,v)|2γ(t,v)+f(t,v),\displaystyle=iq(\xi_{v})\xi_{v}t^{-1}\left|\gamma(t,v)\right|^{2}\gamma(t,v)+f(t,v),

As tt\rightarrow\infty, γ(t,v)\gamma(t,v) converges to the solution of the equation

γ~˙(t,v)\displaystyle\dot{\tilde{\gamma}}(t,v) =iq(ξv)ξvt1γ~(t,v)|γ~(t,v)|2,\displaystyle=iq(\xi_{v})\xi_{v}t^{-1}\tilde{\gamma}(t,v)|\tilde{\gamma}(t,v)|^{2},

whose solution is

γ~(t,v)\displaystyle\tilde{\gamma}(t,v) =W(v)eiq(ξv)ξvln(t)|W(v)|2\displaystyle=W(v)e^{iq(\xi_{v})\xi_{v}\ln(t)|W(v)|^{2}}

We can immediately see that W(v)W(v) is well-defined, as |W(v)|=|γ~(t,v)||W(v)|=|\tilde{\gamma}(t,v)|, which is a constant, and

W(v)=limsγ~(e2sπ/(q(ξv)ξv|W(v)|2),v).W(v)=\lim_{\begin{subarray}{c}s\rightarrow\infty\end{subarray}}\tilde{\gamma}(e^{2s\pi/(q(\xi_{v})\xi_{v}|W(v)|^{2})},v).
Corollary 9.2.

Let vJλv\in J_{\lambda}. Under the assumption (t,v)𝒟(t,v)\in\mathcal{D}, we have the asymptotic expansions

(9.1) γ(t,v)W(v)eiq(ξv)ξvlogt|W(v)|2L(Jλ)λδg(λ)tδ+C2ϵ2ϵ.\|\gamma(t,v)-W(v)e^{iq(\xi_{v})\xi_{v}\log t|W(v)|^{2}}\|_{L^{\infty}(J_{\lambda})}\lesssim\lambda^{-\delta}g(\lambda)t^{-\delta+C^{2}{\epsilon}^{2}}{\epsilon}.
(9.2) γ(t,v)W(v)eiq(ξv)ξvlogt|W(v)|2L2(Jλ)λδ(1+λ3/2)tδ+C2ϵ2ϵ.\|\gamma(t,v)-W(v)e^{iq(\xi_{v})\xi_{v}\log t|W(v)|^{2}}\|_{L^{2}(J_{\lambda})}\lesssim\lambda^{-\delta}(1+\lambda^{-3/2})t^{-\delta+C^{2}{\epsilon}^{2}}{\epsilon}.
Proof.

This is an immediate consequence of Proposition 8.9. ∎

Proposition 9.3.

Under the assumption

φ0Xϵ1,\displaystyle\|\varphi_{0}\|_{X}\lesssim{\epsilon}\ll 1,

the asymptotic profile WW defined above satisfies

ev(1+δ)2e|v|(1/2+δ/4)|Dv|1C1ϵ2W(v)Lv2ϵ.\displaystyle\|e^{-\frac{v(1+\delta)}{2}}e^{|v|(1/2+\delta/4)}|D_{v}|^{1-C_{1}\epsilon^{2}}W(v)\|_{L_{v}^{2}}\lesssim\epsilon.

Moreover, when s0=0s_{0}=0, we also have W(v)Lv2ϵ\|W(v)\|_{L_{v}^{2}}\lesssim{\epsilon}.

Proof.

We fix λ\lambda, and let tmax{1,λ1}t\gtrsim\max\{1,\lambda^{-1}\}. From Corollary 9.2 we know that

W(v)eiq(ξv)ξvlogt|γ(t,v)|2γ(t,v)Lv2(Jλ)λδ(1+λ3/2)tδ+C2ϵ2ϵ.\displaystyle\|W(v)-e^{-iq(\xi_{v})\xi_{v}\log t|\gamma(t,v)|^{2}}\gamma(t,v)\|_{L_{v}^{2}(J_{\lambda})}\lesssim\lambda^{-\delta}(1+\lambda^{-3/2})t^{-\delta+C^{2}{\epsilon}^{2}}{\epsilon}.

From the product and chain rules with Lemma 8.3, we have

v(eiq(ξv)ξvlogt|γ(t,v)|2γ(t,v))Lv2(Jλ)\displaystyle\left\|\partial_{v}\left(e^{-iq(\xi_{v})\xi_{v}\log t|\gamma(t,v)|^{2}}\gamma(t,v)\right)\right\|_{L_{v}^{2}(J_{\lambda})} λδ(1+λ2)log(t)ϵtC2ϵ2.\displaystyle\lesssim\lambda^{-\delta}(1+\lambda^{-2})\log(t){\epsilon}t^{C^{2}{\epsilon}^{2}}.

Putting these together, we find that for tmax{1,λ1}t\gtrsim\max\{1,\lambda^{-1}\},

W(v)=OH˙v1(Jλ)(λδ(1+λ2)log(t)ϵtC2ϵ2)+OLv2(Jλ)(λδ(1+λ3/2)tδ+C2ϵ2ϵ).\displaystyle W(v)=O_{\dot{H}^{1}_{v}(J_{\lambda})}(\lambda^{-\delta}(1+\lambda^{-2})\log(t){\epsilon}t^{C^{2}{\epsilon}^{2}})+O_{L_{v}^{2}(J_{\lambda})}(\lambda^{-\delta}(1+\lambda^{-3/2})t^{-\delta+C^{2}{\epsilon}^{2}}{\epsilon}).

By interpolation, this will imply that for C1C_{1} large enough we have

W(v)H˙v1C1ϵ2(Jλ)\displaystyle\|W(v)\|_{\dot{H}_{v}^{1-C_{1}\epsilon^{2}}(J_{\lambda})} λδ(1+λ2)ϵ.\displaystyle\lesssim\lambda^{-\delta}(1+\lambda^{-2})\epsilon.

By dyadic summation over λ1\lambda\geq 1 and λ1\lambda\leq 1,

ev(1+δ)2e|v|(1/2+δ/4)|Dv|1C1ϵ2W(v)Lv2ϵ.\displaystyle\|e^{-\frac{v(1+\delta)}{2}}e^{|v|(1/2+\delta/4)}|D_{v}|^{1-C_{1}\epsilon^{2}}W(v)\|_{L_{v}^{2}}\lesssim\epsilon.

The last part immediately follows from the conservation of mass. ∎

References

  • [1] Albert Ai and Ovidiu-Neculai Avadanei. Well-posedness for the surface quasi-geostrophic front equation. arXiv e-prints, page arXiv:2212.00117, November 2022.
  • [2] Albert Ai, Mihaela Ifrim, and Daniel Tataru. Two dimensional gravity waves at low regularity I: Energy estimates. arXiv e-prints, page arXiv:1910.05323, October 2019.
  • [3] Albert Ai, Mihaela Ifrim, and Daniel Tataru. The time-like minimal surface equation in Minkowski space: low regularity solutions. arXiv e-prints, page arXiv:2110.15296, October 2021.
  • [4] T. Alazard, N. Burq, and C. Zuily. On the Cauchy problem for gravity water waves. Invent. Math., 198(1):71–163, 2014.
  • [5] Thomas Alazard and Jean-Marc Delort. Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér. (4), 48(5):1149–1238, 2015.
  • [6] Massimiliano Berti, Scipio Cuccagna, Francisco Gancedo, and Stefano Scrobogna. Paralinearization and extended lifespan for solutions of the α\alpha-SQG sharp front equation. arXiv e-prints, page arXiv:2310.15963, October 2023.
  • [7] Diego Córdoba, Javier Gómez-Serrano, and Alexandru D. Ionescu. Global solutions for the generalized SQG patch equation. Arch. Ration. Mech. Anal., 233(3):1211–1251, 2019.
  • [8] Francisco Gancedo, Huy Q. Nguyen, and Neel Patel. Well-posedness for SQG sharp fronts with unbounded curvature. arXiv e-prints, page arXiv:2105.10982, May 2021.
  • [9] Francisco Gancedo and Neel Patel. On the local existence and blow-up for generalized SQG patches. Ann. PDE, 7(1):Paper No. 4, 63, 2021.
  • [10] Lars Hörmander. The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the 1994 edition.
  • [11] Thomas J. R. Hughes, Tosio Kato, and Jerrold E. Marsden. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Rational Mech. Anal., 63(3):273–294 (1977), 1976.
  • [12] John K. Hunter, Mihaela Ifrim, Daniel Tataru, and Tak Kwong Wong. Long time solutions for a Burgers-Hilbert equation via a modified energy method. Proc. Amer. Math. Soc., 143(8):3407–3412, 2015.
  • [13] John K. Hunter and Jingyang Shu. Regularized and approximate equations for sharp fronts in the surface quasi-geostrophic equation and its generalizations. Nonlinearity, 31(6):2480–2517, 2018.
  • [14] John K. Hunter, Jingyang Shu, and Qingtian Zhang. Local well-posedness of an approximate equation for SQG fronts. J. Math. Fluid Mech., 20(4):1967–1984, 2018.
  • [15] John K. Hunter, Jingyang Shu, and Qingtian Zhang. Contour dynamics for surface quasi-geostrophic fronts. Nonlinearity, 33(9):4699–4714, 2020.
  • [16] John K. Hunter, Jingyang Shu, and Qingtian Zhang. Global solutions for a family of GSQG front equations. arXiv e-prints, page arXiv:2005.09154, May 2020.
  • [17] John K. Hunter, Jingyang Shu, and Qingtian Zhang. Global solutions of a surface quasigeostrophic front equation. Pure Appl. Anal., 3(3):403–472, 2021.
  • [18] Mihaela Ifrim and Daniel Tataru. Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension. Nonlinearity, 28(8):2661–2675, 2015.
  • [19] Mihaela Ifrim and Daniel Tataru. Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation. Ann. Sci. Éc. Norm. Supér. (4), 52(2):297–335, 2019.
  • [20] Mihaela Ifrim and Daniel Tataru. Local well-posedness for quasilinear problems: a primer. arXiv e-prints, page arXiv:2008.05684, August 2020.
  • [21] Mihaela Ifrim and Daniel Tataru. Testing by wave packets and modified scattering in nonlinear dispersive pde’s. arXiv e-prints, page arXiv:2204.13285, April 2022.
  • [22] Alexandru D. Ionescu and Carlos E. Kenig. Global well-posedness of the Benjamin-Ono equation in low-regularity spaces. J. Amer. Math. Soc., 20(3):753–798, 2007.
  • [23] Alexander Kiselev and Xiaoyutao Luo. The α\alpha-SQG patch problem is illposed in C2,βC^{2,\beta} and W2,pW^{2,p}. arXiv e-prints, page arXiv:2306.04193, June 2023.
  • [24] Jalal Shatah. Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl. Math., 38(5):685–696, 1985.
  • [25] Terence Tao. Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Internat. Math. Res. Notices, (6):299–328, 2001.
  • [26] Andrej Zlatos. Local regularity and finite time singularity for the generalized SQG equation on the half-plane. arXiv e-prints, page arXiv:2305.02427, May 2023.