This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Low-complexity and High-performance Receive Beamforming for Secure Directional Modulation Networks against an Eavesdropping-enabled Full-duplex Attacker

Yin Teng, Jiayu Li, Lin Liu, Guiyang Xia, Xiaobo Zhou, Feng Shu,
Jiangzhou Wang, FellowIEEE, and Xiaohu You, FellowIEEE
Yin Teng, Jiayu Li, Lin Liu, Guiyang Xia, and Feng Shu are with the School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 210094, CHINA. (e-mail: [email protected]). Xiaobo Zhou is with the School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236037, China. (e-mail:[email protected]).Feng Shu is also with the School of Information and Communication Engineering, Hainan University, Haikou, 570228, China.Jiangzhou Wang is with the School of Engineering and Digital Arts, University of Kent, Canterbury CT2 7NT, U.K. (e-mail: [email protected]).Xiaohu You is with the School of Information Science and Engineering, Southeast University, 210094, CHINA. (e-mail: [email protected]).
Abstract

In this paper, we present a novel scenario for directional modulation (DM) networks with a full-duplex (FD) malicious attacker (Mallory), where Mallory can eavesdrop the confidential message from Alice to Bob and simultaneously interfere Bob by sending a jamming signal. Considering that the jamming plus noise at Bob is colored, an enhanced receive beamforming (RBF), whitening-filter-based maximum ratio combining (MRC) (WFMRC), is proposed. Subsequently, two RBFs of maximizing the secrecy rate (Max-SR) and minimum mean square error (MMSE) are presented to show the same performance as WFMRC. To reduce the computational complexity of conventional MMSE, a low-complexity MMSE is also proposed. Eventually, to completely remove the jamming signal from Mallory and transform the residual interference plus noise to a white one, a new RBF, null-space projection (NSP) based maximizing WF receive power, called NSP-based Max-WFRP, is also proposed. From simulation results, we find that the proposed Max-SR, WFMRC, and low-complexity MMSE have the same SR performance as conventional MMSE, and achieve the best performance while the proposed NSP-based Max-WFRP performs better than MRC in the medium and high signal-to-noise ratio regions. Due to its low-complexity,the proposed low-complexity MMSE is very attractive. More important, the proposed methods are robust to the change in malicious jamming power compared to conventional MRC.

Index Terms:
Malicious attacker, secure, directional modulation, secrecy rate, receive beamforming, null-space projection (NSP).

I Introduction

In the past decade, physical layer security (PLS) has attracted wide attention from academia [1, 2, 3, 4, 5, 6, 7, 8]. Directional modulation (DM), as an advanced PLS transmission technique, is suitable for line-of-sight (LoS) propagation channel. Beamforming technology with artificial noise (AN) has a capability of creating a secure transmission in the LoS propagation channel [9, 10, 11, 4].

In [12], the authors presented a DM technique that uses the phased arrays to generate modulation and provides security by deliberately distorting signals in other directions and making the signal independent of direction. An orthogonal vector approach was proposed in [9] for the synthesis of multi-beam DM transmitters. In [10, 13], the authors developed robust synthesis schemes, in which DM is able to enhance the security performance of desired directions and distort the constellation points of undesired directions. These systems have the capability of concurrently projecting independent data streams along different specified spatial directions while simultaneously distorting signal constellations in all other directions. A directional modulation technique using frequency diverse array (FDA) for secure communications was proposed in [14, 15, 16, 17, 18, 19, 20]. In [14, 15], the authors developed a novel DM scheme based on random frequency diverse arrays with artificial noise (RFDA-DM-AN) to enhance physical layer security of wireless communications. In order to address the limitations of the previous works and further enhance physical layer (PHY) security, an AN-aided index modulation (IM) scheme with cooperative LUs based on FDA beamforming was proposed in [16]. Multi-beam directional modulation schemes based on FDA were investigated in [16, 17, 18]. Different from the traditional directional modulation that only implements angle dependent directional modulation, the authors proposed some precise secure transmission schemes of achieving two-dimensional dependence on angle and range dimensions in [14, 19, 20]. In the multi-carrier based DM antenna array system design, to solve the problems of high peak-to-average-power ratio (PAPR) and phase pattern formation simultaneously, a method, called wideband beam and phase pattern formation by Newton’s (WBPFN), was proposed in [21]. In [22], the authors developed a multi-carrier based DM framework using antenna arrays, which can realize data transmission on multiple frequencies simultaneously, so as to obtain a higher data rate. A practical wireless transmission scheme was proposed in [11] to transmit the confidential message (CM) to the desired user securely and precisely by jointly exploiting multiple techniques, including artificial noise (AN) projection, phase alignment/beamforming, and random subcarrier selection (RSCS) based on orthogonal frequency division multiplexing (OFDM)[23, 24], and DM. Particularly, if a DM transmitter intends to transmit CM to Bob and to interfere eavesdropper (Eve) with AN, she needs to know the directions of Bob and Eve in advance. In [25], two phase alignment (PA) methods, hybrid analog and digital PA and hybrid digital and analog PA, were proposed to estimate direction of arrival (DOA) based on the parametric method. In [26], the authors proposed an improved hybrid analog-digital (HAD) estimation of signal parameters via rotational invariance techniques (ESPRIT) at HAD transceiver to measure the DOA of a desired user.

However, the aforementioned existing works focused on the scenarios with only a passive eavesdropper Eve having no active malicious attacking capacity. In such a situation, it is hard for Alice to obtain the channel state information (CSI) from Alice to Eve. This is an embarrassing issue usually raised by secure expert. How to address this challenging issue? If Eve behaves like Mallory, with an active malicious attacking ability, this problem naturally disappears. By channel estimating, Alice may obtain the CSI from Alice to Mallory and Bob can obtain the CSI from Mallory to Bob. In [27], the authors proposed a jamming detection method for non-coherent single input multiple output (SIMO) systems without CSI. A hybrid wiretapping wireless system with a half-duplex adversary was proposed in [28], where the adversary can decide to either jam or eavesdrop the transmitter-to-receiver channel. In the presence of a full-duplex eavesdropper having both eavesdropping and jamming capabilities, the authors in [29] proposed a novel secure transmission strategy against eavesdropping by the sophisticated adversary. The authors in [30] studied the secrecy outage probability and mean SR of the system to evaluate the security performance of the system. In this paper, our focus is on how to suppress the malicious jamming and improve the secure performance by designing receive beamforming (RBF) at Bob in the presence of the malicious jamming.

In this paper, we present a novel DM scenario with a full-duplex (FD) malicious attacker Mallory. Moreover, Mallory also eavesdrops the CM conveyed from Alice to Bob. To reduce the impact of jamming from Mallory on Bob and improve the secure performance, four RBF methods are proposed. Our main contributions are summarized as follows:

  1. 1.

    To alleviate the jamming from Mallory on Bob and improve the secure performance, the conventional MRC RBF at Bob is presented to strengthen the confidential signal. To enhance its performance, a WFMRC RBF is proposed by converting the colored interference plus noise at Bob into a white one with its covariance matrix being a multiple of identity matrix. Then, two RBFs Max-SR and conventional MMSE are derived. From simulation results, the proposed two RBFs WFMRC and Max-SR obviously outperform the conventional MRC in the medium and high SNR regions and achieve the same performance as conventional MMSE in terms of SR and BER.

  2. 2.

    To completely remove the jamming from Mallory, a new RBF of maximizing the WF-based receive power at Bob is proposed to force the malicious jamming onto the null-space (NSP) of the channel spanning from Alice to Bob. By exploiting the rank-one property of channel steering vector, a low-complexity MMSE is proposed to reduce the complexity of conventional MMSE without performance loss. According to simulation, we find that the proposed NSP-based Max-WFRP is slightly worse than Max-SR, WFMRC and low-complexity MMSE in terms of the SR performance. Its main advantage is that its SR performance is independent of the change in malicious jamming power. Moreover, the proposed low-complexity MMSE has achieved the same performance as three proposed high-performance RBFs WFMRC, conventional MMSE, and Max-SR with an extremely low-complexity.

The remainder of this paper is organized as follows. Section II presents the DM system model. In Section III, four schemes of design RBF vector 𝐯BR\mathbf{v}_{BR} is proposed and its closed-form expression is given. Simulation and numerical results are shown in Section IV. Finally, we draw our conclusions in Section V.

Notations: Throughout the paper, matrices, vectors, and scalars are denoted by letters of bold upper case, bold lower case, and lower case, respectively. Signs ()T(\cdot)^{T}, ()1(\cdot)^{-1}, ()(\cdot)^{\dagger}, ()H(\cdot)^{H}, \parallel\cdot\parallel and tr()\rm tr(\cdot) represent transpose, inverse, Moore-Penrose, conjugate transpose, norm and trace, respectively. IN\textbf{I}_{N} denotes the N×NN\times N identity matrix. The notation 𝔼{}\mathbb{E}\{\cdot\} represents the expectation operation.

II System Model

Refer to caption
Figure 1: Block diagram of the DM network with FD malicious attacker.

The proposed DM system is illustrated in Fig. 1. It consists of an NAN_{A}-antennas base station (Alice), a legitimate NBN_{B}-antennas user (Bob) and an illegal NMN_{M}-antennas malicious attacker (Mallory). Here, the Alice sends CM to the Bob. In addition, there is an illegal malicious attacker Mallory trying to intercept the CM. Mallory operates on the FD model. That is, he/she can eavesdrop on CM, and simultaneously initiate an active attack on Bob. The baseband transmit signal can be expressed as

𝐬A=β1PA𝐯AdA+(1β1)PA𝐓A,AN𝐳A,AN,\mathbf{s}_{A}=\sqrt{\beta_{1}P_{A}}\mathbf{v}_{A}d_{A}+\sqrt{(1-\beta_{1})P_{A}}\mathbf{T}_{A,AN}\mathbf{z}_{A,AN}, (1)

where PAP_{A} is the total transmit power, β1\beta_{1} stands for the power allocation (PA) factor, 𝐯ANA×1\mathbf{v}_{A}\in\mathbb{C}^{N_{A}\times 1} denotes the transmit beamforming vector of the CM, and 𝐓A,ANNA×NA\mathbf{T}_{A,AN}\in\mathbb{C}^{N_{A}\times N_{A}} is the projection matrix for controlling AN to the undesired direction, where 𝐯AH𝐯A=1\mathbf{v}^{H}_{A}\mathbf{v}_{A}=1 and tr[𝐓A,AN𝐓A,ANH]=1\rm tr[\mathbf{T}_{A,AN}\mathbf{T}^{H}_{A,AN}]=1. In addition, 𝐯A\mathbf{v}_{A} is defined as the transmit beamforming vector for the CM. In (1), dAd_{A} is the CM with average power 𝔼[dA2]=1\mathbb{E}[\|d_{A}\|^{2}]=1 and 𝐳A,ANNA×1\mathbf{z}_{A,AN}\in\mathbb{C}^{N_{A}\times 1} denotes the AN vector with complex Gaussian distribution, i.e., 𝐳A,AN𝒞𝒩(0,𝐈NA)\mathbf{z}_{A,AN}\sim\mathcal{C}\mathcal{N}(0,\mathbf{I}_{N_{A}}). The malicious attacking signal at Mallory can be expressed as

𝐬𝐌=PM𝐓M,AN𝐳M,AN,\mathbf{s_{M}}=\sqrt{P_{M}}\mathbf{T}_{M,AN}\mathbf{z}_{M,AN}, (2)

where 𝐓M,ANNM×NJ\mathbf{T}_{M,AN}\in\mathbb{C}^{N_{M}\times N_{J}} is the projection matrix for forcing the jamming to Bob, NJ{1,2,.,NM1}N_{J}\in\left\{1,2,....,N_{M}-1\right\}. Herein, PMP_{M} is the transmit power at Mallory, 𝐳M,ANNJ×1\mathbf{z}_{M,AN}\in\mathbb{C}^{N_{J}\times 1} denotes the AN vector with complex Gaussian distribution, i.e., 𝐳M,AN𝒞𝒩(0,𝐈NJ)\mathbf{z}_{M,AN}\sim\mathcal{C}\mathcal{N}(0,\mathbf{I}_{N_{J}}).

The corresponding received signal at Bob can be written as

rB\displaystyle r_{B} =𝐯BRH(gAB𝐇H(θAB)𝐬A+gMB𝐇H(θMB)𝐬M+𝐧B)\displaystyle=\mathbf{v}^{H}_{BR}(\sqrt{g_{AB}}\mathbf{H}^{H}(\theta_{AB})\mathbf{s}_{A}+\sqrt{g_{MB}}\mathbf{H}^{H}(\theta_{MB})\mathbf{s}_{M}+\mathbf{n}_{B})
=𝐯BRH(gABβ1PA𝐇H(θAB)𝐯AdA+gAB(1β1)PA𝐇H(θAB)𝐓A,AN𝐳A,AN𝐧A\displaystyle=\mathbf{v}^{H}_{BR}(\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}d_{A}+\underbrace{\sqrt{g_{AB}(1-\beta_{1})P_{A}}\mathbf{H}^{H}(\theta_{AB})\mathbf{T}_{A,AN}\mathbf{z}_{A,AN}}_{\mathbf{n}_{A}}
+gMB𝐇H(θMB)𝐬M𝐧M+𝐧B)\displaystyle~{}~{}~{}+\underbrace{\sqrt{g_{MB}}\mathbf{H}^{H}(\theta_{MB})\mathbf{s}_{M}}_{\mathbf{n}_{M}}+\mathbf{n}_{B})
=𝐯BRH(gABβ1PA𝐇H(θAB)𝐯AdA+𝐧A+𝐧M+𝐧B𝐧¯B),\displaystyle=\mathbf{v}^{H}_{BR}(\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}d_{A}+\underbrace{\mathbf{n}_{A}+\mathbf{n}_{M}+\mathbf{n}_{B}}_{\bar{\mathbf{n}}_{B}}), (3)

where 𝐇H(θAB)=𝐡(θr,AB)𝐡H(θt,AB)\mathbf{H}^{H}(\theta_{AB})=\mathbf{h}(\theta_{r,AB})\mathbf{h}^{H}(\theta_{t,AB}) and 𝐇H(θMB)=𝐡(θr,MB)𝐡H(θt,MB)\mathbf{H}^{H}(\theta_{MB})=\mathbf{h}(\theta_{r,MB})\mathbf{h}^{H}(\theta_{t,MB}). 𝐇H(θAB)NB×NA\mathbf{H}^{H}(\theta_{AB})\in\mathbb{C}^{N_{B}\times N_{A}} denotes the channel matrix from Alice to Bob. 𝐇H(θMB)NB×NM\mathbf{H}^{H}(\theta_{MB})\in\mathbb{C}^{N_{B}\times N_{M}} denotes the channel matrix from Mallory to Bob. The normalized steering vector 𝐡(θ)\mathbf{h}(\theta) as

𝐡(θ)=1N[ej2πΨθ(1),,ej2πΨθ(n),,ej2πΨθ(N)]T,\displaystyle\mathbf{h}(\theta)=\frac{1}{\sqrt{N}}[e^{j2\pi\Psi_{\theta}(1)},...,e^{j2\pi\Psi_{\theta}(n)},...,e^{j2\pi\Psi_{\theta}(N)}]^{T}, (4)

where the phase function Ψθ(n)\Psi_{\theta}(n) is defined by [31]

Ψθ(n)(nN+12)dcosθλ,n=1,,N,\displaystyle\Psi_{\theta}(n)\triangleq-\left(n-\frac{N+1}{2}\right)\frac{d\cos\theta}{\lambda},~{}~{}n=~{}1,\cdots,~{}N, (5)

where θ\theta is the direction of arrival or departure, nn is the index of antenna, dd represents the element spacing in the transmit antenna array, and λ\lambda is the wavelength. In (II), 𝐧BNB×1\mathbf{n}_{B}\in\mathbb{C}^{N_{B}\times 1} is the complex additive white Gaussian noise (AWGN) vector, distributed as 𝐧B𝒞𝒩(0,σB2𝐈NB)\mathbf{n}_{B}\sim\mathcal{C}\mathcal{N}(0,\sigma_{B}^{2}\mathbf{I}_{N_{B}}). Notably, gAB=αdABcg_{AB}=\frac{\alpha}{d_{AB}^{c}} represents the path loss from Alice to Bob. Here, dABd_{AB} is the distance between Alice and Bob, cc denotes the path loss exponent and α\alpha means the path loss at reference distance d0d_{0}. Moreover, 𝐯BRNB×1\mathbf{v}_{BR}\in\mathbb{C}^{N_{B}\times 1} represents the receive beamforming vector of Bob. Using the concept of the null-space projection, we can design

𝐓A,AN=𝐈NA𝐇(θAB)[𝐇H(θAB)𝐇(θAB)]1𝐇H(θAB).\displaystyle\mathbf{T}_{A,AN}=\mathbf{I}_{N_{A}}-\mathbf{H}(\theta_{AB})[\mathbf{H}^{H}(\theta_{AB})\mathbf{H}(\theta_{AB})]^{-1}\mathbf{H}^{H}(\theta_{AB}). (6)

Similarly, the receive signal at Mallory is given by

rM\displaystyle r_{M} =𝐯MRH(gAM𝐇H(θAM)𝐬A+ρ𝐇MH𝐬𝐌+𝐧M)\displaystyle=\mathbf{v}^{H}_{MR}(\sqrt{g_{AM}}\mathbf{H}^{H}(\theta_{AM})\mathbf{s}_{A}+\sqrt{\rho}\mathbf{H}^{H}_{M}\mathbf{s_{M}}+\mathbf{n}_{M})
=𝐯MRH(gAMβ1PA𝐇H(θAM)𝐯AdA+gAM(1β1)PA𝐇H(θAM)𝐓A,AN𝐳A,AN\displaystyle=\mathbf{v}^{H}_{MR}(\sqrt{g_{AM}\beta_{1}P_{A}}\mathbf{H}^{H}(\theta_{AM})\mathbf{v}_{A}d_{A}+\sqrt{g_{AM}(1-\beta_{1})P_{A}}\mathbf{H}^{H}(\theta_{AM})\mathbf{T}_{A,AN}\mathbf{z}_{A,AN}
+ρPM𝐇MH𝐓M,AN𝐳M,AN+𝐧M),\displaystyle~{}~{}~{}+\sqrt{\rho P_{M}}\mathbf{H}^{H}_{M}\mathbf{T}_{M,AN}\mathbf{z}_{M,AN}+\mathbf{n}_{M}), (7)

where 𝐇H(θAM)=𝐡(θr,AM)𝐡H(θt,AM)\mathbf{H}^{H}(\theta_{AM})=\mathbf{h}(\theta_{r,AM})\mathbf{h}^{H}(\theta_{t,AM}). 𝐇H(θAM)NM×NA\mathbf{H}^{H}(\theta_{AM})\in\mathbb{C}^{N_{M}\times N_{A}} denotes the channel matrix from Alice to Mallory. gAM=αdAMcg_{AM}=\frac{\alpha}{d_{AM}^{c}} represents the corresponding path loss, and dAMd_{AM}is the distance between Alice and Mallory. Additionally, 𝐯MR\mathbf{v}_{MR} represents the receive beamforming vector at Mallory. The complex AWGN at Mallory is denoted by 𝐧M𝒞𝒩(0,σM2𝐈NM)\mathbf{n}_{M}\sim\mathcal{C}\mathcal{N}(0,\sigma_{M}^{2}\mathbf{I}_{N_{M}}). ρ𝐇MHNM×NM\sqrt{\rho}\mathbf{H}^{H}_{M}\in\mathbb{C}^{N_{M}\times N_{M}} is the residual self-interference (RSI) channel matrix of Mallory, ρ[0,1]\rho\in[0,1] denotes the residual self-interference parameter of the Mallory after self-interference cancelation [29].

As per (II) and (II), we can derive the achievable rate along Bob and Mallory as

RAB(𝐯BR)=log2(1+𝐯BRH𝐀𝐯BR𝐯BRH𝐁𝐯BR+𝐯BRH𝐃𝐯BR+σB2),\displaystyle R_{AB}(\mathbf{v}_{BR})=\log_{2}\left(1+\frac{\mathbf{v}^{H}_{BR}\mathbf{A}\mathbf{v}_{BR}}{\mathbf{v}^{H}_{BR}\mathbf{B}\mathbf{v}_{BR}+\mathbf{v}^{H}_{BR}\mathbf{D}\mathbf{v}_{BR}+\sigma_{B}^{2}}\right), (8)

and

RAM=log2(1+𝐯MRH𝐄𝐯MR𝐯MRH𝐅𝐯MR+𝐯MRH𝐑M𝐯MR+σM2),\displaystyle R_{AM}=\log_{2}\left(1+\frac{\mathbf{v}^{H}_{MR}\mathbf{E}\mathbf{v}_{MR}}{\mathbf{v}^{H}_{MR}\mathbf{F}\mathbf{v}_{MR}+\mathbf{v}^{H}_{MR}\mathbf{R}_{M}\mathbf{v}_{MR}+\sigma_{M}^{2}}\right), (9)

respectively, where 𝐑M\mathbf{R}_{M} is the covariance matrix of RSI channel,

𝐑M\displaystyle\mathbf{R}_{M} =ρPM𝐇MH𝐓M,AN𝐓M,ANH𝐇M,\displaystyle=\rho P_{M}\mathbf{H}^{H}_{M}\mathbf{T}_{M,AN}\mathbf{T}^{H}_{M,AN}\mathbf{H}_{M}, (10)
𝐀\displaystyle\mathbf{A} =gABβ1PA𝐇H(θAB)𝐯A𝐯AH𝐇(θAB),\displaystyle=g_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB}), (11)
𝐁\displaystyle\mathbf{B} =gAB(1β1)PA𝐇H(θAB)𝐓A,AN𝐓A,ANH𝐇(θAB),\displaystyle=g_{AB}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{T}_{A,AN}\mathbf{T}^{H}_{A,AN}\mathbf{H}(\theta_{AB}), (12)
𝐃\displaystyle\mathbf{D} =gMBPM𝐇H(θMB)𝐓M,AN𝐓M,ANH𝐇(θMB),\displaystyle=g_{MB}P_{M}\mathbf{H}^{H}(\theta_{MB})\mathbf{T}_{M,AN}\mathbf{T}^{H}_{M,AN}\mathbf{H}(\theta_{MB}), (13)
𝐄\displaystyle\mathbf{E} =gAMβ1PA𝐇H(θAM)𝐯A𝐯AH𝐇(θAM),\displaystyle=g_{AM}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AM})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AM}), (14)
𝐅\displaystyle\mathbf{F} =gAM(1β1)PA𝐇H(θAM)𝐓A,AN𝐓A,ANH𝐇(θAM).\displaystyle=g_{AM}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AM})\mathbf{T}_{A,AN}\mathbf{T}^{H}_{A,AN}\mathbf{H}(\theta_{AM}). (15)

Then we arrive the achievable SR, RsR_{s}, as follows:

Rs(𝐯BR)=max{0,RAB(𝐯BR)RAM}.R_{s}(\mathbf{v}_{BR})=\max\left\{0,R_{AB}(\mathbf{v}_{BR})-R_{AM}\right\}. (16)

III Proposed Four RBF Methods

In this section, to improve the security rate performance and reduce the effect of jamming from Mallory on Bob, four RBF schemes are proposed. Additionally, the conventional MRC is also presented as a performance benchmark for the future comparison.

III-A Conventional MRC and Proposed WFMRC

From the definition of conventional MRC, we have

𝐯BRH=(𝐇H(θAB)𝐯A)H(𝐇H(θAB)𝐯A)H2,\displaystyle\mathbf{v}^{H}_{BR}=\frac{\left(\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\right)^{H}}{\|(\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A})^{H}\|_{2}}, (17)

under the approximation that 𝐧¯B\overline{\mathbf{n}}_{B} is viewed as a white Gaussian noise vector with zero mean and covariance matrix being identity matrix multiplied by a scalar. However, 𝐧¯B\overline{\mathbf{n}}_{B} is a sum of three terms including malicious interference from Mallory, and is colored. Its covariance matrix is

𝐂n¯B=𝔼{𝐧¯B𝐧¯BH}=𝐁+𝐃+σB2𝐈NB\displaystyle\mathbf{C}_{\overline{n}_{B}}=\mathbb{E}\left\{\overline{\mathbf{n}}_{B}\overline{\mathbf{n}}^{H}_{B}\right\}=\mathbf{B}+\mathbf{D}+\sigma_{B}^{2}\mathbf{I}_{N_{B}} (18)

which is a positive definite Hermitian matrix, i.e., a normal matrix, and has the eigenvalue-decomposition (EVD) form [32]

𝐂𝐧¯B=𝐐Λ𝐐H,\displaystyle\mathbf{C}_{\overline{\mathbf{n}}_{B}}=\mathbf{Q}\Lambda\mathbf{Q}^{H}, (19)

where 𝐐\mathbf{Q} is a unitary matrix, Λ\Lambda is a diagonal matrix diag(d1,,dNB)\text{diag}~{}(d_{1},...,d_{N_{B}}) with did_{i} being the i-th eigenvalue of matrix 𝐂𝐧¯B\mathbf{C}_{\overline{\mathbf{n}}_{B}}. We can construct the following WF matrix

𝐖WF=(𝐐Λ12)1=Λ12𝐐H.\displaystyle\mathbf{W}_{WF}=(\mathbf{Q}\Lambda^{\frac{1}{2}})^{-1}=\Lambda^{-\frac{1}{2}}\mathbf{Q}^{H}. (20)

Left multiplication of 𝐫B\mathbf{r}_{B} by 𝐖WF\mathbf{W}_{WF} leads to

𝐫¯B\displaystyle\overline{\mathbf{r}}_{B} =𝐖WF𝐫B\displaystyle=\mathbf{W}_{WF}\mathbf{r}_{B}
=gABβ1PA𝐖WF𝐇H(θAB)𝐯AdA+𝐖WF𝐧¯B,\displaystyle=\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{W}_{WF}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}d_{A}+\mathbf{W}_{WF}\overline{\mathbf{n}}_{B}, (21)

where

𝐫B=gABβ1PA𝐇H(θAB)𝐯AdA+𝐧¯B.\displaystyle\mathbf{r}_{B}=\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}d_{A}+\overline{\mathbf{n}}_{B}. (22)

Obviously, the new noise vector 𝐖WF𝐧¯B\mathbf{W}_{WF}\overline{\mathbf{n}}_{B} becomes a white Gaussian vector with convariance matrix being an identity. Now, similar to (17), the WFMRC is directly given as

𝐯¯BRH=(𝐖WF𝐇H(θAB)𝐯A)H(𝐖WF𝐇H(θAB)𝐯A)H2.\displaystyle\overline{\mathbf{v}}^{H}_{BR}=\frac{(\mathbf{W}_{WF}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A})^{H}}{\|(\mathbf{W}_{WF}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A})^{H}\|_{2}}. (23)

III-B Proposed Max-SR Method

Now, we turn to the method of maximizing the SR in (16). Observing the SR in (16), it is evident that the available rate at Mallory is independent of 𝐯BR\mathbf{v}_{BR}. Thus, the optimization problem of the Max-SR

max𝐯BRRs(𝐯BR)\displaystyle\max_{\mathbf{v}_{BR}}~{}~{}~{}~{}R_{s}(\mathbf{v}_{BR})
s.t.𝐯BRH𝐯BR=1,\displaystyle~{}\text{s.t.}~{}~{}~{}~{}~{}\mathbf{v}_{BR}^{H}\mathbf{v}_{BR}=1, (24)

reduces to

max𝐯BRRAB(𝐯BR)\displaystyle\max_{\mathbf{v}_{BR}}~{}~{}~{}~{}R_{AB}(\mathbf{v}_{BR})
s.t.𝐯BRH𝐯BR=1,\displaystyle~{}\text{s.t.}~{}~{}~{}~{}~{}\mathbf{v}_{BR}^{H}\mathbf{v}_{BR}=1, (25)

which can be rewritten as

max𝐯BR𝐯BRH𝐀𝐯BR𝐯BRH𝐂𝐧¯B𝐯BR\displaystyle\max_{\mathbf{v}_{BR}}~{}~{}~{}\frac{\mathbf{v}^{H}_{BR}\mathbf{A}\mathbf{v}_{BR}}{\mathbf{v}^{H}_{BR}\mathbf{C}_{\overline{\mathbf{n}}_{B}}\mathbf{v}_{BR}}
s.t.𝐯BRH𝐯BR=1,\displaystyle~{}\text{s.t.}~{}~{}~{}~{}~{}\mathbf{v}_{BR}^{H}\mathbf{v}_{BR}=1, (26)

which is the Max-SJNR. Let us define

𝐯BRH=𝐯BRH(𝐂𝐧¯B12)H,\displaystyle\mathbf{v}^{\prime H}_{BR}=\mathbf{v}^{H}_{BR}(\mathbf{C}^{\frac{1}{2}}_{\overline{\mathbf{n}}_{B}})^{H}, (27)

then SJNR can be expressed as follows

SJNR=𝐯BRH(𝐂𝐧¯B12)H𝐀(𝐂𝐧¯B12)𝐑𝐯BR𝐯BRH𝐯BR,\displaystyle\rm SJNR=\frac{\mathbf{v}^{\prime H}_{BR}\overbrace{(\mathbf{C}^{-\frac{1}{2}}_{\overline{\mathbf{n}}_{B}})^{H}\mathbf{A}(\mathbf{C}^{-\frac{1}{2}}_{\overline{\mathbf{n}}_{B}})}^{\mathbf{R}}\mathbf{v}^{\prime}_{BR}}{\mathbf{v}^{\prime H}_{BR}\mathbf{v}^{\prime}_{BR}}~{}, (28)

Max-SJNR is rewritten as

max𝐯BR𝐯BRH𝐑𝐯BR\displaystyle\max_{\mathbf{v}^{\prime}_{BR}}~{}~{}~{}\mathbf{v}^{\prime H}_{BR}\mathbf{R}\mathbf{v}^{\prime}_{BR}
s.t.𝐯BRH𝐯BR=1.\displaystyle~{}\text{s.t.}~{}~{}~{}~{}~{}\mathbf{v}^{\prime H}_{BR}\mathbf{v}^{\prime}_{BR}=1. (29)

Let us differentiate the SJNR expression with respect to 𝐯BRH\mathbf{v}^{\prime H}_{BR} and set it to zero

𝐯BR(𝐯BRH𝐑𝐯BR𝐯BRH𝐯BR)=𝐑𝐯BR𝐯BRH𝐯BR𝐯BRH𝐑𝐯BR𝐯BR(𝐯BRH𝐯BR)2=0,\displaystyle\frac{\partial}{\partial\mathbf{v}^{\prime}_{BR}}(\frac{\mathbf{v}^{\prime H}_{BR}\mathbf{R}\mathbf{v}^{\prime}_{BR}}{\mathbf{v}^{\prime H}_{BR}\mathbf{v}^{\prime}_{BR}})=\frac{\mathbf{R}\mathbf{v}^{\prime}_{BR}\cdot\mathbf{v}^{\prime H}_{BR}\mathbf{v}^{\prime}_{BR}-\mathbf{v}^{\prime H}_{BR}\mathbf{R}\mathbf{v}^{\prime}_{BR}\cdot\mathbf{v}^{\prime}_{BR}}{(\mathbf{v}^{\prime H}_{BR}\mathbf{v}^{\prime}_{BR})^{2}}=0, (30)

which means that the numerator equals zero and

𝐑𝐯BR=𝐯BRH𝐑𝐯BR𝐯BRH𝐯BRλ𝐯BR𝐯.\displaystyle\mathbf{R}\mathbf{v}^{\prime}_{BR}=\underbrace{\frac{\mathbf{v}^{\prime H}_{BR}\mathbf{R}\mathbf{v}^{\prime}_{BR}}{\mathbf{v}^{\prime H}_{BR}\mathbf{v}^{\prime}_{BR}}}_{\lambda}\cdot\underbrace{\mathbf{v}^{\prime}_{BR}}_{\mathbf{v}}. (31)

Observing the above equation, λ\lambda is the eigenvalue and 𝐯\mathbf{v} is the eigenvector associated with λ\lambda. In other words, the maximum SJNR is achieved as 𝐯BR\mathbf{v}^{\prime}_{BR} is taken to be the eigenvector corresponding to the largest eigenvalue λmax\lambda_{max} of 𝐑\mathbf{R}. In particular, the semi-definite positive matrix 𝐑\mathbf{R} is rank one, written as

𝐑=𝐚𝐚H\displaystyle\mathbf{R}=\mathbf{a}\mathbf{a}^{H} (32)

with

𝐚=gABβ1PA(𝐂𝐧¯B12)H𝐇H(θAB)𝐯A.\displaystyle\mathbf{a}=\sqrt{g_{AB}\beta_{1}P_{A}}(\mathbf{C}^{-\frac{1}{2}}_{\overline{\mathbf{n}}_{B}})^{H}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}. (33)

Let us define

𝐯=𝐚𝐚2,\displaystyle\mathbf{v}=\frac{\mathbf{a}}{\|\mathbf{a}\|_{2}}, (34)

and multiplying the equality 𝐑=𝐚𝐚H\mathbf{R}=\mathbf{a}\mathbf{a}^{H} from right by 𝐯\mathbf{v} yields

𝐑𝐚𝐚2𝐯=(𝐚H𝐚)λmax𝐚𝐚2𝐯,\displaystyle\mathbf{R}\underbrace{\frac{\mathbf{a}}{\|\mathbf{a}\|_{2}}}_{\mathbf{v}}=\underbrace{\left(\mathbf{a}^{H}\mathbf{a}\right)}_{\lambda_{max}}\underbrace{\frac{\mathbf{a}}{\|\mathbf{a}\|_{2}}}_{\mathbf{v}}, (35)

which means

𝐯=𝐚𝐚2\displaystyle\mathbf{v}=\frac{\mathbf{a}}{\|\mathbf{a}\|_{2}} (36)

is the eigenvector corresponding to the largest eigenvalue of matrix 𝐑\mathbf{R}. Clearly, we have

𝐯BR=𝐯max=𝐯=𝐚𝐚2,\displaystyle\mathbf{v}^{\prime\ast}_{BR}=\mathbf{v}_{max}=\mathbf{v}=\frac{\mathbf{a}}{\|\mathbf{a}\|_{2}}, (37)

which is in agreement with the expression in (23). Substituting the above back into (27), we have

𝐯BR=𝐂𝐧¯B12𝐯BR=𝐂𝐧¯B12𝐚𝐚2.\displaystyle\mathbf{v}^{\ast}_{BR}=\mathbf{C}^{-\frac{1}{2}}_{\overline{\mathbf{n}}_{B}}\mathbf{v}^{\prime\ast}_{BR}=\mathbf{C}^{-\frac{1}{2}}_{\overline{\mathbf{n}}_{B}}\frac{\mathbf{a}}{\|\mathbf{a}\|_{2}}. (38)

III-C Proposed low-complexity MMSE Method

In the following, we propose a low-complexity MMSE algorithm based on the minimum mean square error criterion to design receive beamforming. We can derive the 𝐯BR\mathbf{v}_{BR} by the following optimization formula

min𝐯BRf(𝐯BR)\displaystyle\min_{\mathbf{v}_{BR}}~{}~{}~{}~{}f(\mathbf{v}_{BR}) =𝔼{(rBdA)(rBdA)}\displaystyle=\mathbb{E}\left\{(r_{B}-d_{A})(r_{B}-d_{A})^{*}\right\}
=tr[𝐯BRH(gABβ1PA𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)+𝐑𝐧A+𝐑𝐧M+𝐑𝐧B)𝐯BR\displaystyle=\rm tr[\mathbf{v}^{H}_{BR}(g_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})+\mathbf{R}_{\mathbf{n}_{A}}+\mathbf{R}_{\mathbf{n}_{M}}+\mathbf{R}_{\mathbf{n}_{B}})\mathbf{v}_{BR}
gABβ1PA𝐯BRH𝐇H(θAB)𝐯AgABβ1PA𝐯AH𝐇(θAB)𝐯BR+1],\displaystyle~{}~{}~{}-\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{v}^{H}_{BR}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}-\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})\mathbf{v}_{BR}+1], (39)

where 𝐑𝐧A=𝔼{𝐧A𝐧AH}=𝐁\mathbf{R}_{\mathbf{n}_{A}}=\mathbb{E}\left\{\mathbf{n}_{A}\mathbf{n}^{H}_{A}\right\}=\mathbf{B}, 𝐑𝐧M=𝔼{𝐧M𝐧MH}=𝐃\mathbf{R}_{\mathbf{n}_{M}}=\mathbb{E}\left\{\mathbf{n}_{M}\mathbf{n}^{H}_{M}\right\}=\mathbf{D} and 𝐑𝐧B=𝔼{𝐧B𝐧BH}=σB2𝐈NB\mathbf{R}_{\mathbf{n}_{B}}=\mathbb{E}\left\{\mathbf{n}_{B}\mathbf{n}^{H}_{B}\right\}=\sigma_{B}^{2}\mathbf{I}_{N_{B}}.

To obtain the optimal receive beamforming, we need to compute the derivative of m(𝐯BR)m(\mathbf{v}_{BR}) with respect to 𝐯BR\mathbf{v}_{BR},

f(𝐯BR)𝐯BR\displaystyle\frac{\partial f(\mathbf{v}_{BR})}{\partial\mathbf{v}_{BR}} =2(gABβ1PA𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)+𝐑𝐧A+𝐑𝐧M+𝐑𝐧B)𝐯BR\displaystyle=2(g_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})+\mathbf{R}_{\mathbf{n}_{A}}+\mathbf{R}_{\mathbf{n}_{M}}+\mathbf{R}_{\mathbf{n}_{B}})\mathbf{v}_{BR}
2gABβ1PA𝐇H(θAB)𝐯A.\displaystyle~{}~{}~{}-2\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}. (40)

It is easy to see from Eq.(III-C) that matrix gABβ1PA𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)+𝐑𝐧A+𝐑𝐧M+𝐑𝐧Bg_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})+\mathbf{R}_{\mathbf{n}_{A}}+\mathbf{R}_{\mathbf{n}_{M}}+\mathbf{R}_{\mathbf{n}_{B}} is positive definite. Let f(𝐯BR)𝐯BR=0\frac{\partial f(\mathbf{v}_{BR})}{\partial\mathbf{v}_{BR}}=0, we have the conventional MMSE

𝐯BR=gABβ1PA(gABβ1PA𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)+𝐑𝐧A+𝐑𝐧M+𝐑𝐧B𝐎)1𝐇H(θAB)𝐯A.\displaystyle\mathbf{v}_{BR}=\sqrt{g_{AB}\beta_{1}P_{A}}(\underbrace{g_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})+\mathbf{R}_{\mathbf{n}_{A}}+\mathbf{R}_{\mathbf{n}_{M}}+\mathbf{R}_{\mathbf{n}_{B}}}_{\mathbf{O}})^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}. (41)

However, the complexity of the conventional MMSE method mentioned above is the cubic function of NBN_{B}, which will become high as NBN_{B} tends to large-scale. Interestingly, since the rank of matrix 𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB}), 𝐑𝐧A\mathbf{R}_{\mathbf{n}_{A}}, and 𝐑𝐧M\mathbf{R}_{\mathbf{n}_{M}} in matrix 𝐎\mathbf{O} are one, the Sherman-Morrison formula can be applied to provide a low-complexity way of computing the inverse of matrix 𝐎\mathbf{O}. By exploiting the rank-one property of channel steering vector, a low-complexity MMSE is proposed in what follows.

By repeatedly making use of the Sherman-Morrison formula

(𝐙+𝐮𝐯T)1=𝐙1𝐙1𝐮𝐯T𝐙11+𝐯T𝐙1𝐮\displaystyle(\mathbf{Z}+\mathbf{u}\mathbf{v}^{T})^{-1}=\mathbf{Z}^{-1}-\frac{\mathbf{Z}^{-1}\mathbf{u}\mathbf{v}^{T}\mathbf{Z}^{-1}}{1+\mathbf{v}^{T}\mathbf{Z}^{-1}\mathbf{u}} (42)

where 𝐙n×n\mathbf{Z}\in\mathbb{R}^{n\times n}, 𝐮,𝐯n×1\mathbf{u},\mathbf{v}\in\mathbb{R}^{n\times 1}, 𝐙\mathbf{Z} and 𝐙+𝐮𝐯T\mathbf{Z}+\mathbf{u}\mathbf{v}^{T} are invertible, and 1+𝐯T𝐙1𝐮01+\mathbf{v}^{T}\mathbf{Z}^{-1}\mathbf{u}\neq 0, we have the low-complexity MMSE method as follows

𝐯BR\displaystyle\mathbf{v}_{BR} =gABβ1PA𝐎1𝐇H(θAB)𝐯A,\displaystyle=\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{O}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}, (43)

where

𝐎1\displaystyle\mathbf{O}^{-1} =𝐊1gMBPM𝐊1𝐇H(θMB)𝐓M,AN𝐓M,ANH𝐇(θMB)𝐊1gMBPM𝐓M,ANH𝐇(θMB)𝐊1𝐇H(θMB)𝐓M,AN+1,\displaystyle=\mathbf{K}^{-1}-\frac{g_{MB}P_{M}\mathbf{K}^{-1}\mathbf{H}^{H}(\theta_{MB})\mathbf{T}_{M,AN}\mathbf{T}^{H}_{M,AN}\mathbf{H}(\theta_{MB})\mathbf{K}^{-1}}{g_{MB}P_{M}\mathbf{T}^{H}_{M,AN}\mathbf{H}(\theta_{MB})\mathbf{K}^{-1}\mathbf{H}^{H}(\theta_{MB})\mathbf{T}_{M,AN}+1}, (44)

where

𝐊1\displaystyle\mathbf{K}^{-1} =𝐋1gAB(1β1)PA𝐋1𝐇H(θAB)𝐡(θt,AB)𝐡H(θr,AB)𝐋11+gAB(1β1)PA𝐡H(θr,AB)𝐋1𝐇H(θAB)𝐡(θt,AB),\displaystyle=\mathbf{L}^{-1}-\frac{g_{AB}(1-\beta_{1})P_{A}\mathbf{L}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})\mathbf{h}^{H}(\theta_{r,AB})\mathbf{L}^{-1}}{1+g_{AB}(1-\beta_{1})P_{A}\mathbf{h}^{H}(\theta_{r,AB})\mathbf{L}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})}, (45)

where

𝐋1\displaystyle\mathbf{L}^{-1} =𝐌1+2gAB(1β1)PA𝐌1𝐇H(θAB)𝐡(θt,AB)𝐡H(θr,AB)𝐌112gAB(1β1)PA𝐡H(θr,AB)𝐌1𝐇H(θAB)𝐡(θt,AB),\displaystyle=\mathbf{M}^{-1}+\frac{2g_{AB}(1-\beta_{1})P_{A}\mathbf{M}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})\mathbf{h}^{H}(\theta_{r,AB})\mathbf{M}^{-1}}{1-2g_{AB}(1-\beta_{1})P_{A}\mathbf{h}^{H}(\theta_{r,AB})\mathbf{M}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})}, (46)

where

𝐌1\displaystyle\mathbf{M}^{-1} =𝐍1gAB(1β1)PA𝐍1𝐇H(θAB)𝐡(θt,AB)𝐡H(θr,AB)𝐍11+gAB(1β1)PA𝐡H(θr,AB)𝐍1𝐇H(θAB)𝐡(θt,AB),\displaystyle=\mathbf{N}^{-1}-\frac{g_{AB}(1-\beta_{1})P_{A}\mathbf{N}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})\mathbf{h}^{H}(\theta_{r,AB})\mathbf{N}^{-1}}{1+g_{AB}(1-\beta_{1})P_{A}\mathbf{h}^{H}(\theta_{r,AB})\mathbf{N}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})}, (47)

where

𝐍1\displaystyle\mathbf{N}^{-1} =σB2𝐈NBσB4gABβ1PA𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)1+gABβ1PA𝐯AH𝐇(θAB)𝐇H(θAB)𝐯A.\displaystyle=\sigma_{B}^{-2}\mathbf{I}_{N_{B}}-\frac{\sigma_{B}^{-4}g_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})}{1+g_{AB}\beta_{1}P_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}}. (48)

Proof: See Appendix for detailed deriving process.

After we complete the above derivation, the complexity of the proposed low-complexity MMSE is reduced to the quadratic function of NBN_{B}.

III-D Proposed NSP-based Max-WFRP Method

We now trun our attention on solving the Max-RP problem, which can be cast as

max𝐯BR𝐯BRH𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)𝐯BR\displaystyle\max_{\mathbf{v}_{BR}}~{}~{}~{}~{}\mathbf{v}^{H}_{BR}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})\mathbf{v}_{BR}
s.t.(C1)𝐯BRH𝐇H(θMB)=𝟎1×NM\displaystyle~{}~{}\text{s.t.}~{}~{}~{}~{}~{}(\text{C1})~{}~{}~{}~{}\mathbf{v}^{H}_{BR}\mathbf{H}^{H}(\theta_{MB})=\mathbf{0}_{1\times N_{M}}
(C2)𝐯BRH𝐯BR=1,\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}(\text{C2})~{}~{}~{}~{}\mathbf{v}^{H}_{BR}\mathbf{v}_{BR}=1, (49)

where constraint (C1) ensures the malicious jamming lying in the null-space of Bob. To simplify the above optimization problem, constraint (C1) implies 𝐯BR=𝐆𝐯~BR\mathbf{v}_{BR}=\mathbf{G}\widetilde{\mathbf{v}}_{BR}, and

𝐆=𝐈NB𝐇H(θMB)[𝐇(θMB)𝐇H(θMB)]1𝐇(θMB),\displaystyle\mathbf{G}=\mathbf{I}_{N_{B}}-\mathbf{H}^{H}(\theta_{MB})[\mathbf{H}(\theta_{MB})\mathbf{H}^{H}(\theta_{MB})]^{-1}\mathbf{H}(\theta_{MB}), (50)

where 𝐯~BR\widetilde{\mathbf{v}}_{BR} is defined as a new optimization variable. Since (C1) has projected Malicious jamming into the null-space of Bob’s channel, we obtain the new model,

𝐫^B\displaystyle\mathbf{\hat{r}}_{B} =gABβ1PA𝐆H𝐇H(θAB)𝐯AdA+𝐆H(𝐧A+𝐧M+𝐧B)\displaystyle=\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{G}^{H}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}d_{A}+\mathbf{G}^{H}(\mathbf{n}_{A}+\mathbf{n}_{M}+\mathbf{n}_{B})
=gABβ1PA𝐆H𝐇H(θAB)𝐯AdA+𝐆H(𝐧A+𝐧B).\displaystyle=\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{G}^{H}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}d_{A}+\mathbf{G}^{H}(\mathbf{n}_{A}+\mathbf{n}_{B}). (51)

Similar to (III-A), the left multiplication of (III-D) by 𝐖~WF\widetilde{\mathbf{W}}_{WF} yields

𝐫~B\displaystyle\mathbf{\widetilde{r}}_{B} =β1PAgAB𝐖~WF𝐆H𝐇H(θAB)𝐯AdA+𝐖~WF𝐆H(𝐧A+𝐧B)𝐧~B,\displaystyle=\sqrt{\beta_{1}P_{A}g_{AB}}\widetilde{\mathbf{W}}_{WF}\mathbf{G}^{H}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}d_{A}+\widetilde{\mathbf{W}}_{WF}\underbrace{\mathbf{G}^{H}(\mathbf{n}_{A}+\mathbf{n}_{B})}_{\widetilde{\mathbf{n}}_{B}}, (52)

where 𝐖~WF\widetilde{\mathbf{W}}_{WF} is defined as

𝐖~WF=(𝐐~Λ~12)1=Λ~12𝐐~H,\displaystyle\widetilde{\mathbf{W}}_{WF}=(\widetilde{\mathbf{Q}}\widetilde{\Lambda}^{\frac{1}{2}})^{-1}=\widetilde{\Lambda}^{-\frac{1}{2}}\widetilde{\mathbf{Q}}^{H}, (53)

and

𝐐~Λ~𝐐~H=𝐂𝐧~B=𝔼{𝐧~B𝐧~BH}=𝐆H(𝐁+σB2𝐈NB)𝐆.\displaystyle\widetilde{\mathbf{Q}}\widetilde{\Lambda}\widetilde{\mathbf{Q}}^{H}=\mathbf{C}_{\mathbf{\widetilde{n}}_{B}}=\mathbb{E}\left\{\mathbf{\widetilde{n}}_{B}\mathbf{\widetilde{n}}^{H}_{B}\right\}=\mathbf{G}^{H}\left(\mathbf{B}+\sigma_{B}^{2}\mathbf{I}_{N_{B}}\right)\mathbf{G}. (54)

As such, the optimization problem of NSP-based Max-WFRP can be written as

max𝐯~BR𝐯~BRH𝐉𝐯~BR\displaystyle\max_{\widetilde{\mathbf{v}}_{BR}}~{}~{}~{}~{}\widetilde{\mathbf{v}}^{H}_{BR}\mathbf{J}\widetilde{\mathbf{v}}_{BR}
s.t.𝐯~BRH𝐯~BR=1,\displaystyle~{}\text{s.t.}~{}~{}~{}~{}~{}~{}\widetilde{\mathbf{v}}^{H}_{BR}\widetilde{\mathbf{v}}_{BR}=1, (55)

where

𝐉=𝐖~WF𝐆H𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)𝐆𝐖~WFH.\displaystyle\mathbf{J}=\widetilde{\mathbf{W}}_{WF}\mathbf{G}^{H}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})\mathbf{G}\widetilde{\mathbf{W}}^{H}_{WF}. (56)

Considering that the rank of the semi-definite positive matrix 𝐉\mathbf{J} is unit, 𝐉\mathbf{J} can be written as 𝐉=𝐛𝐛H\mathbf{J}=\mathbf{b}\mathbf{b}^{H}, with 𝐛=𝐖~WF𝐆H𝐇H(θAB)𝐯A\mathbf{b}=\widetilde{\mathbf{W}}_{WF}\mathbf{G}^{H}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}. Similar to (III-B), the optimal solution of 𝐯~BR\widetilde{\mathbf{v}}_{BR} is directly given by

𝐯~BR=𝐛𝐛2=𝐖~WF𝐆H𝐇H(θAB)𝐯A𝐖~WF𝐆H𝐇H(θAB)𝐯A2.\displaystyle\widetilde{\mathbf{v}}^{\ast}_{BR}=\frac{\mathbf{b}}{\|\mathbf{b}\|_{2}}=\frac{\widetilde{\mathbf{W}}_{WF}\mathbf{G}^{H}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}}{\|\widetilde{\mathbf{W}}_{WF}\mathbf{G}^{H}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\|_{2}}. (57)

III-E Computational Complexity Analysis

In this subsection, we turn to analyze the computational complexities of the above-mentioned schemes. The computational complexities of MRC, WFMRC, Max-SR, NSP-based Max-WFRP, low-complexity MMSE and conventional MMSE are respectively given by

CMRC=𝒪(3NANB+2NB),\displaystyle C_{MRC}=\mathcal{O}(3N_{A}N_{B}+2N_{B}), (58)
CWFMRC=𝒪(NB3+4NA2+7NB2+5NANB+3NBNM2NANB1),\displaystyle C_{WFMRC}=\mathcal{O}(N^{3}_{B}+4N^{2}_{A}+7N^{2}_{B}+5N_{A}N_{B}+3N_{B}N_{M}-2N_{A}-N_{B}-1), (59)
CMaxSR=𝒪(NB3+4NA2+8NB2+5NANB+3NBNM2NANB1),\displaystyle C_{Max-SR}=\mathcal{O}(N^{3}_{B}+4N^{2}_{A}+8N^{2}_{B}+5N_{A}N_{B}+3N_{B}N_{M}-2N_{A}-N_{B}-1), (60)
CMaxWFRP=𝒪(4NB3+NM3+4NA2+7NB2+4NANB+3NBNM+3NM2\displaystyle C_{Max-WFRP}=\mathcal{O}(4N^{3}_{B}+N^{3}_{M}+4N^{2}_{A}+7N^{2}_{B}+4N_{A}N_{B}+3N_{B}N_{M}+3N^{2}_{M}
2NANM2),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-2N_{A}-N_{M}-2), (61)
CLowcomplexityMMSE=𝒪(36NB2+12NANB+6NBNM+3NA+NM14NB6),\displaystyle C_{Low-complexity~{}MMSE}=\mathcal{O}(36N^{2}_{B}+12N_{A}N_{B}+6N_{B}N_{M}+3N_{A}+N_{M}-14N_{B}-6), (62)
CConventionalMMSE=𝒪(NB3+2NA2NB+2NB2NA+7NB2+NANB+2NBNMNB1).\displaystyle C_{Conventional~{}MMSE}=\mathcal{O}(N^{3}_{B}+2N^{2}_{A}N_{B}+2N^{2}_{B}N_{A}+7N^{2}_{B}+N_{A}N_{B}+2N_{B}N_{M}-N_{B}-1). (63)

float-point operations (FLOPs). Obviously, their complexities have a decreasing order: NSP-based Max-WFRP>>Conventional MMSE>>Max-SR>>WFMRC>>Low-complexity MMSE>>MRC. Observing equations from (56) to (62), we find the fact: as NBN_{B} tends to large-scale, the complexities of MRC, low-complexity MMSE , and remaining methods have the orders 𝒪(NB)\mathcal{O}(N_{B}),𝒪(NB2)\mathcal{O}(N^{2}_{B}), and 𝒪(NB3)\mathcal{O}(N^{3}_{B}). Clearly, the conventional MRC has the lowest complexity among six methods because its complexity is a linear function of NBN_{B}. The proposed MMSE, Max-SR, and WFMRC have the highest same order complexity 𝒪(NB3)\mathcal{O}(N^{3}_{B}) FLOPs. The proposed low-complexity MMSE is in between them because its complexity is a quadratic function of NBN_{B}.

IV Simulation Results and discussions

In this section, simulations are done to evaluate the performance of the proposed RBF schemes. System parameters are set as follows: quadrature phase shift keying (QPSK) modulation, PA=10WP_{A}=10W, NA=4N_{A}=4, NB=4N_{B}=4, NM=4N_{M}=4, ρ=1011\rho=10^{-11}, β1=0.9\beta_{1}=0.9, θt,AB=90\theta_{t,AB}=90^{\circ}, θt,AM=125\theta_{t,AM}=125^{\circ}, θt,MB=45\theta_{t,MB}=45^{\circ}, dAB=1kmd_{AB}=1km, dAM=4kmd_{AM}=4km, dMB=3kmd_{MB}=3km, σB2=σM2\sigma_{B}^{2}=\sigma_{M}^{2}.

Refer to caption
Figure 2: Curves of SR versus SNR with PM=10WP_{M}=10W.
Refer to caption
Figure 3: Curves of SR versus PMP_{M} with SNR=15dB\rm SNR=15dB and fixed PAP_{A}=10W.

Fig. 2 plots the curves of SR versus SNR of the four proposed methods with PM=10P_{M}=10W, where conventional MRC and MMSE are used as a performance benchmark. It can be seen from this figure that the proposed Max-SR, WFMRC, and low-complexity MMSE have the same SR performance as conventional MMSE, and achieve the best SR performance among all six methods. In the low SNR region, the SR performance of conventional MRC is close to those of the proposed Max-SR, WFMRC, and low-complexity MMSE and better than that of NSP-based Max-WFRP. The proposed NSP-based Max-WFRP performs much better than MRC and worse than the proposed WFMRC, Max-SR, and low-complexity MMSE in the medium and high SNR regions.

Fig. 3 demonstrates the curves of SR versus PMP_{M} for the proposed five different methods with SNR=15dB\rm SNR=15dB and fixed PAP_{A}=10W, where conventional MRC and MMSE are still used as a performance benchmark. From Fig. 3, it is seen that regardless of the value of PMP_{M}, the proposed WFMRC, Max-SR, and low-complexity MMSE still perform much better than the proposed NSP-based Max-WFRP and conventional MRC in terms of SR. As PMP_{M} increases, the SR performance of the proposed WFMRC, Max-SR , and low-complexity MMSE degrade gradually and finally converge to a SR floor. However, this SR floor is still larger than that of NSP-based Max-WFRP with NSP. Interestingly, the SR of NSP-based Max-WFRP with NSP keeps constant and is independent of the change in value of PMP_{M} due to the use of NSP operation. Additionally, the conventional MRC shows a dramatic reduction on SR as PMP_{M} increases. This means that the proposed NSP-based Max-WFRP with NSP is the most robust one among six methods. The conventional MRC becomes non-robust as the jamming power PMP_{M} increases. The proposed remaining methods are in between NSP-based Max-WFRP and MRC in accordance with robustiness.

Refer to caption
Figure 4: Curves of BER versus SNR with PMP_{M}=10W.

Fig. 4 demonstrates the curves of BER versus SNR of the proposed five methods with PM=10P_{M}=10W, where conventional MRC is still used as a BER performance benchmark. From Fig. 4, we can obtain the same performance tendency as Fig. 2. The proposed Max-SR, WFMRC, and low-complexity MMSE still have the best performance in our BER simulation. In the low SNR region, the NSP-based Max-WFRP has the worst BER performance, however when the SNR increases up to a certain level, for example SNR=20dB, its performance will be better than that of conventional MRC. Six RBF methods have an increasing order on BER performance: MRC, NSP-based Max-WFRP, Max-SR \approx WFMRC \approx conventional MMSE\approx low-complexity MMSE.

V Conclusion

In this paper, we have investigated RBF schemes in a DM network with a FD attacker Mallory. Four high-performance RBF schemes, WFMRC, Max-SR, NSP-based Max-WFRP, and low-complexity MMSE were proposed to mitigate the impact of the jamming signal on Bob. First, the conventional MRC was presented to strengthen CM. Due to the colored the jamming plus noise at Bob, the WFMRC was proposed to convert the colored noise to a white one. Then, the Max-SR and low-complexity MMSE were proposed and shown to be equivalent to WFMRC. Eventually, to completely remove the jamming from Mallory, a NSP-based Max-WFRP was proposed. Moreover, their closed-form expressions were derived with extremely low-complexities. Simulation results show that the proposed four methods perform much better than the conventional MRC in the medium and high SNR regions, and their SR performances are in an increasing order: MRC, NSP-based Max-WFRP, and Max-SR=WFMRC=low-complexity MMSE. Compared with conventional MRC, the proposed five methods are more robust against the change of jamming power at Mallory. In particular, the proposed NSP-based Max-WFRP is independent of the change in jamming power at Mallory, and the most robust one among six methods. More importantly, the proposed low-complexity MMSE achieve the same optimal performance as WFMRC, Max-SR, and conventional MMSE while its complexity is one order of magnitude lower than those of the latter methods. This is very attractive.

[Appendix: Derivation of low-complexity MMSE] In order to reduce the complexity of the conventional MMSE in (41), let us first define a new matrix

𝐎\displaystyle\mathbf{O} =gABβ1PA𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)+𝐑𝐧A+𝐑𝐧M+𝐑𝐧B\displaystyle=g_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})+\mathbf{R}_{\mathbf{n}_{A}}+\mathbf{R}_{\mathbf{n}_{M}}+\mathbf{R}_{\mathbf{n}_{B}}
=gABβ1PA𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)+gAB(1β1)PA𝐇H(θAB)𝐓A,AN𝐓A,ANH𝐇(θAB)\displaystyle=g_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})+g_{AB}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{T}_{A,AN}\mathbf{T}^{H}_{A,AN}\mathbf{H}(\theta_{AB})
+gMBPM𝐇H(θMB)𝐓M,AN𝐓M,ANH𝐇(θMB)+σB2𝐈NB,\displaystyle~{}~{}~{}+g_{MB}P_{M}\mathbf{H}^{H}(\theta_{MB})\mathbf{T}_{M,AN}\mathbf{T}^{H}_{M,AN}\mathbf{H}(\theta_{MB})+\sigma_{B}^{2}\mathbf{I}_{N_{B}}, (64)

where the rank of matrix 𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB}), 𝐑𝐧A\mathbf{R}_{\mathbf{n}_{A}}, and 𝐑𝐧M\mathbf{R}_{\mathbf{n}_{M}} in matrix 𝐎\mathbf{O} are one. The receive beamforming at Bob can be rewritten as

𝐯BR=gABβ1PA𝐎1𝐇H(θAB)𝐯A.\displaystyle\mathbf{v}_{BR}=\sqrt{g_{AB}\beta_{1}P_{A}}\mathbf{O}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}. (65)

In order to compute the inverse of matrix 𝐎\mathbf{O}, we rearrange its inverse in the following form

𝐎1\displaystyle\mathbf{O}^{-1} =[σB2𝐈NB+𝐀+gAB(1β1)PA𝐇H(θAB)𝐓A,AN𝐓A,ANH𝐇(θAB)𝐊\displaystyle=[\underbrace{\sigma_{B}^{2}\mathbf{I}_{N_{B}}+\mathbf{A}+g_{AB}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{T}_{A,AN}\mathbf{T}^{H}_{A,AN}\mathbf{H}(\theta_{AB})}_{\mathbf{K}}
+gMBPM𝐇H(θMB)𝐓M,AN𝐮𝐎𝐓M,ANH𝐇(θMB)𝐯𝐎T]1\displaystyle~{}~{}~{}+\underbrace{g_{MB}P_{M}\mathbf{H}^{H}(\theta_{MB})\mathbf{T}_{M,AN}}_{\mathbf{u}_{\mathbf{O}}}\underbrace{\mathbf{T}^{H}_{M,AN}\mathbf{H}(\theta_{MB})}_{\mathbf{v}_{\mathbf{O}}^{T}}]^{-1}
=(𝐊+𝐮𝐎𝐯𝐎T)1\displaystyle=(\mathbf{K}+\mathbf{u}_{\mathbf{O}}\mathbf{v}_{\mathbf{O}}^{T})^{-1}

Observing the above expression, it is clear that 𝐮𝐎\mathbf{u}_{\mathbf{O}} and 𝐯𝐎\mathbf{v}_{\mathbf{O}} are the rank-one column vectors, using the Sherman-Morrison formula, we directly have

𝐎1\displaystyle\mathbf{O}^{-1} =𝐊1𝐊1𝐮𝐎𝐯𝐎T𝐊11+𝐯𝐎T𝐊1𝐮𝐎\displaystyle=\mathbf{K}^{-1}-\frac{\mathbf{K}^{-1}\mathbf{u}_{\mathbf{O}}\mathbf{v}_{\mathbf{O}}^{T}\mathbf{K}^{-1}}{1+\mathbf{v}_{\mathbf{O}}^{T}\mathbf{K}^{-1}\mathbf{u}_{\mathbf{O}}}
=𝐊1gMBPM𝐊1𝐇H(θMB)𝐓M,AN𝐓M,ANH𝐇(θMB)𝐊11+gMBPM𝐓M,ANH𝐇(θMB)𝐊1𝐇H(θMB)𝐓M,AN,\displaystyle=\mathbf{K}^{-1}-\frac{g_{MB}P_{M}\mathbf{K}^{-1}\mathbf{H}^{H}(\theta_{MB})\mathbf{T}_{M,AN}\mathbf{T}^{H}_{M,AN}\mathbf{H}(\theta_{MB})\mathbf{K}^{-1}}{1+g_{MB}P_{M}\mathbf{T}^{H}_{M,AN}\mathbf{H}(\theta_{MB})\mathbf{K}^{-1}\mathbf{H}^{H}(\theta_{MB})\mathbf{T}_{M,AN}}, (67)

Similarly, in the following, by repeatedly making use of the Sherman-Morrison formula four times, we get the inverse matrix

𝐊1\displaystyle\mathbf{K}^{-1} =[σB2𝐈NB+𝐀+gAB(1β1)PA𝐇H(θAB)𝐇(θAB)2gAB(1β1)PA𝐇H(θAB)𝐇(θAB)𝐋\displaystyle=[\underbrace{\sigma_{B}^{2}\mathbf{I}_{N_{B}}+\mathbf{A}+g_{AB}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{H}(\theta_{AB})-2g_{AB}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{H}(\theta_{AB})}_{\mathbf{L}}
+gAB(1β1)PA𝐇H(θAB)𝐡(θt,AB)𝐮𝐊𝐡H(θr,AB)𝐯𝐊T]1\displaystyle~{}~{}~{}+\underbrace{g_{AB}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})}_{\mathbf{u}_{\mathbf{K}}}\underbrace{\mathbf{h}^{H}(\theta_{r,AB})}_{\mathbf{v}_{\mathbf{K}}^{T}}]^{-1}
=(𝐋+𝐮𝐊𝐯𝐊T)1\displaystyle=(\mathbf{L}+\mathbf{u}_{\mathbf{K}}\mathbf{v}_{\mathbf{K}}^{T})^{-1}
=𝐋1𝐋1𝐮𝐊𝐯𝐊T𝐋11+𝐯𝐊T𝐋1𝐮𝐊\displaystyle=\mathbf{L}^{-1}-\frac{\mathbf{L}^{-1}\mathbf{u}_{\mathbf{K}}\mathbf{v}_{\mathbf{K}}^{T}\mathbf{L}^{-1}}{1+\mathbf{v}_{\mathbf{K}}^{T}\mathbf{L}^{-1}\mathbf{u}_{\mathbf{K}}}
=𝐋1gAB(1β1)PA𝐋1𝐇H(θAB)𝐡(θt,AB)𝐡H(θr,AB)𝐋11+gAB(1β1)PA𝐡H(θr,AB)𝐋1𝐇H(θAB)𝐡(θt,AB),\displaystyle=\mathbf{L}^{-1}-\frac{g_{AB}(1-\beta_{1})P_{A}\mathbf{L}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})\mathbf{h}^{H}(\theta_{r,AB})\mathbf{L}^{-1}}{1+g_{AB}(1-\beta_{1})P_{A}\mathbf{h}^{H}(\theta_{r,AB})\mathbf{L}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})}, (68)

where 𝐮𝐊\mathbf{u}_{\mathbf{K}} and 𝐯𝐊\mathbf{v}_{\mathbf{K}} are the rank-one column vectors, which yields

𝐋1\displaystyle\mathbf{L}^{-1} =[σB2𝐈NB+𝐀+gAB(1β1)PA𝐇H(θAB)𝐇(θAB)𝐌2gAB(1β1)PA𝐇H(θAB)𝐡(θt,AB)𝐮𝐋\displaystyle=[\underbrace{\sigma_{B}^{2}\mathbf{I}_{N_{B}}+\mathbf{A}+g_{AB}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{H}(\theta_{AB})}_{\mathbf{M}}\underbrace{-2g_{AB}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})}_{\mathbf{u}_{\mathbf{L}}}
𝐡H(θr,AB)𝐯𝐋T]1\displaystyle~{}~{}~{}\bullet\underbrace{\mathbf{h}^{H}(\theta_{r,AB})}_{\mathbf{v}_{\mathbf{L}}^{T}}]^{-1}
=(𝐌+𝐮𝐋𝐯𝐋T)1\displaystyle=(\mathbf{M}+\mathbf{u}_{\mathbf{L}}\mathbf{v}_{\mathbf{L}}^{T})^{-1}
=𝐌1𝐌1𝐮𝐋𝐯𝐋T𝐌11+𝐯𝐋T𝐌1𝐮𝐋\displaystyle=\mathbf{M}^{-1}-\frac{\mathbf{M}^{-1}\mathbf{u}_{\mathbf{L}}\mathbf{v}_{\mathbf{L}}^{T}\mathbf{M}^{-1}}{1+\mathbf{v}_{\mathbf{L}}^{T}\mathbf{M}^{-1}\mathbf{u}_{\mathbf{L}}}
=𝐌1+2gAB(1β1)PA𝐌1𝐇H(θAB)𝐡(θt,AB)𝐡H(θr,AB)𝐌112gAB(1β1)PA𝐡H(θr,AB)𝐌1𝐇H(θAB)𝐡(θt,AB),\displaystyle=\mathbf{M}^{-1}+\frac{2g_{AB}(1-\beta_{1})P_{A}\mathbf{M}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})\mathbf{h}^{H}(\theta_{r,AB})\mathbf{M}^{-1}}{1-2g_{AB}(1-\beta_{1})P_{A}\mathbf{h}^{H}(\theta_{r,AB})\mathbf{M}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})}, (69)

where 𝐮𝐋\mathbf{u}_{\mathbf{L}} and 𝐯𝐋\mathbf{v}_{\mathbf{L}} are the rank-one column vectors, which yields

𝐌1\displaystyle\mathbf{M}^{-1} =[σB2𝐈NB+𝐀𝐍+gAB(1β1)PA𝐇H(θAB)𝐡(θt,AB)𝐮𝐌𝐡H(θr,AB)𝐯𝐌T]1\displaystyle=[\underbrace{\sigma_{B}^{2}\mathbf{I}_{N_{B}}+\mathbf{A}}_{\mathbf{N}}+\underbrace{g_{AB}(1-\beta_{1})P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})}_{\mathbf{u}_{\mathbf{M}}}\underbrace{\mathbf{h}^{H}(\theta_{r,AB})}_{\mathbf{v}_{\mathbf{M}}^{T}}]^{-1}
=(𝐍+𝐮𝐌𝐯𝐌T)1\displaystyle=(\mathbf{N}+\mathbf{u}_{\mathbf{M}}\mathbf{v}_{\mathbf{M}}^{T})^{-1}
=𝐍1𝐍1𝐮𝐌𝐯𝐌T𝐍11+𝐯𝐌T𝐍1𝐮𝐌\displaystyle=\mathbf{N}^{-1}-\frac{\mathbf{N}^{-1}\mathbf{u}_{\mathbf{M}}\mathbf{v}_{\mathbf{M}}^{T}\mathbf{N}^{-1}}{1+\mathbf{v}_{\mathbf{M}}^{T}\mathbf{N}^{-1}\mathbf{u}_{\mathbf{M}}}
=𝐍1gAB(1β1)PA𝐍1𝐇H(θAB)𝐡(θt,AB)𝐡H(θr,AB)𝐍11+gAB(1β1)PA𝐡H(θr,AB)𝐍1𝐇H(θAB)𝐡(θt,AB),\displaystyle=\mathbf{N}^{-1}-\frac{g_{AB}(1-\beta_{1})P_{A}\mathbf{N}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})\mathbf{h}^{H}(\theta_{r,AB})\mathbf{N}^{-1}}{1+g_{AB}(1-\beta_{1})P_{A}\mathbf{h}^{H}(\theta_{r,AB})\mathbf{N}^{-1}\mathbf{H}^{H}(\theta_{AB})\mathbf{h}(\theta_{t,AB})}, (70)

where 𝐮𝐌\mathbf{u}_{\mathbf{M}} and 𝐯𝐌\mathbf{v}_{\mathbf{M}} are the rank-one column vectors, which yields

𝐍1\displaystyle\mathbf{N}^{-1} =[σB2𝐈NB+gABβ1PA𝐇H(θAB)𝐯A𝐮𝐍𝐯AH𝐇(θAB)𝐯𝐍T]1\displaystyle=[\sigma_{B}^{2}\mathbf{I}_{N_{B}}+\underbrace{g_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}}_{\mathbf{u}_{\mathbf{N}}}\underbrace{\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})}_{\mathbf{v}_{\mathbf{N}}^{T}}]^{-1}
=(σB2𝐈NB+𝐮𝐍𝐯𝐍T)1\displaystyle=(\sigma_{B}^{2}\mathbf{I}_{N_{B}}+\mathbf{u}_{\mathbf{N}}\mathbf{v}_{\mathbf{N}}^{T})^{-1}
=σB2𝐈NBσB4𝐮𝐍𝐯𝐍T1+σB2𝐯𝐍T𝐮𝐍\displaystyle=\sigma_{B}^{-2}\mathbf{I}_{N_{B}}-\frac{\sigma_{B}^{-4}\mathbf{u}_{\mathbf{N}}\mathbf{v}_{\mathbf{N}}^{T}}{1+\sigma_{B}^{-2}\mathbf{v}_{\mathbf{N}}^{T}\mathbf{u}_{\mathbf{N}}}
=σB2𝐈NBσB4gABβ1PA𝐇H(θAB)𝐯A𝐯AH𝐇(θAB)1+gABβ1PA𝐯AH𝐇(θAB)𝐇H(θAB)𝐯A,\displaystyle=\sigma_{B}^{-2}\mathbf{I}_{N_{B}}-\frac{\sigma_{B}^{-4}g_{AB}\beta_{1}P_{A}\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})}{1+g_{AB}\beta_{1}P_{A}\mathbf{v}^{H}_{A}\mathbf{H}(\theta_{AB})\mathbf{H}^{H}(\theta_{AB})\mathbf{v}_{A}}, (71)

where 𝐮𝐍\mathbf{u}_{\mathbf{N}} and 𝐯𝐍\mathbf{v}_{\mathbf{N}} are still the rank-one column vectors.

References

  • [1] H. M. Wang, Q. Yin, and X.-G. Xia, “Distributed beamforming for physical-layer security of two-way relay networks,” IEEE Trans. Signal Process., vol. 60, no. 7, pp. 3532–3545, Jul. 2012.
  • [2] X. Chen, D. W. K. Ng, W. H. Gerstacker, and H. Chen, “A survey on multiple-antenna techniques for physical layer security,” IEEE Communications Surveys Tutorials, vol. 19, no. 2, pp. 1027–1053, 2017.
  • [3] N. Zhao, F. R. Yu, M. Li, and V. C. M. Leung, “Anti-eavesdropping schemes for interference alignment (ia)-based wireless networks,” IEEE Trans. Wirel. Commun., vol. 15, no. 8, pp. 5719–5732, 2016.
  • [4] Y. Wu, R. Schober, D. W. K. Ng, C. Xiao, and G. Caire, “Secure massive mimo transmission with an active eavesdropper,” IEEE Trans. Inf. Theory, vol. 62, no. 7, pp. 3880–3900, Jul. 2016.
  • [5] Y. Zou, J. Zhu, X. Li, and L. Hanzo, “Relay selection for wireless communications against eavesdropping: A security-reliability trade-off perspective,” IEEE Netw., vol. 30, no. 5, pp. 74–79, Oct. 2016.
  • [6] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Trans. Wirel. Commun., vol. 7, no. 6, pp. 2180–2189, Jun. 2008.
  • [7] L. Wang, Z. Zhang, M. Dong, L. Wang, Z. Cao, and Y. Yang, “Securing named data networking: Attribute-based encryption and beyond,” IEEE Commun Mag, vol. 56, no. 11, pp. 76–81, Nov. 2018.
  • [8] F. Shu, T. Shen, L. Xu, Y. Qin, S. Wan, S. Jin, X. You, and J. Wang, “Directional modulation: A physical-layer security solution to b5g and future wireless networks,” IEEE Network, vol. 34, no. 2, pp. 210–216, 2020.
  • [9] Y. Ding and V. Fusco, “Orthogonal vector approach for synthesis of multi-beam directional modulation transmitters,” IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 1330–1333, Feb. 2015.
  • [10] F. Shu, X. Wu, J. Li, R. Chen, and B. Vucetic, “Robust synthesis scheme for secure multi-beam directional modulation in broadcasting systems,” IEEE Access, vol. 4, pp. 6614–6623, Oct. 2016.
  • [11] F. Shu, X. Wu, J. Hu, J. Li, R. Chen, and J. Wang, “Secure and precise wireless transmission for random-subcarrier-selection-based directional modulation transmit antenna array,” IEEE J. Sel. Areas Commun., vol. 36, no. 4, pp. 890–904, Apr. 2018.
  • [12] M. P. Daly and J. T. Bernhard, “Directional modulation technique for phased arrays,” IEEE Trans. Antennas Propag., vol. 57, no. 9, pp. 2633–2640, Sep. 2009.
  • [13] J. Hu, F. Shu, and J. Li, “Robust synthesis method for secure directional modulation with imperfect direction angle,” IEEE Communications Letters, vol. 20, no. 6, pp. 1084–1087, 2016.
  • [14] J. Hu, S. Yan, F. Shu, J. Wang, J. Li, and Y. Zhang, “Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays,” IEEE Access, vol. 5, pp. 1658–1667, Jan. 2017.
  • [15] B. Qiu, J. Xie, L. Wang, and Y. Wang, “Artificial-noise-aided secure transmission for proximal legitimate user and eavesdropper based on frequency diverse arrays,” IEEE Access, vol. 6, pp. 52 531–52 543, 2018.
  • [16] B. Qiu, L. Wang, J. Xie, Z. Zhang, Y. Wang, and M. Tao, “Multi-beam index modulation with cooperative legitimate users schemes based on frequency diverse array,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11 028–11 041, 2020.
  • [17] Q. Cheng, V. Fusco, J. Zhu, S. Wang, and C. Gu, “Svd-aided multi-beam directional modulation scheme based on frequency diverse array,” IEEE Wireless Communications Letters, vol. 9, no. 3, pp. 420–423, 2020.
  • [18] Q. Cheng, V. Fusco, J. Zhu, S. Wang, and F. Wang, “Wfrft-aided power-efficient multi-beam directional modulation schemes based on frequency diverse array,” IEEE Transactions on Wireless Communications, vol. 18, no. 11, pp. 5211–5226, 2019.
  • [19] J. Xiong, S. Y. Nusenu, and W.-Q. Wang, “Directional modulation using frequency diverse array for secure communications,” Wireless Personal Communications, vol. 95, pp. 2679–2689, 2017.
  • [20] W. Wang, “Dm using fda antenna for secure transmission,” IET Microwaves, Antennas Propagation, vol. 11, no. 3, pp. 336–345, 2017.
  • [21] B. Zhang, W. Liu, and Q. Li, “Multi-carrier waveform design for directional modulation under peak to average power ratio constraint,” IEEE Access, vol. 7, pp. 37 528–37 535, 2019.
  • [22] B. Zhang and W. Liu, “Multi-carrier based phased antenna array design for directional modulation,” IET Microwaves, Antennas Propagation, vol. 12, no. 5, pp. 765–772, 2018.
  • [23] H. Zhu and J. Wang, “Chunk-based resource allocation in ofdma systems - part i: chunk allocation,” IEEE Transactions on Communications, vol. 57, no. 9, pp. 2734–2744, 2009.
  • [24] ——, “Chunk-based resource allocation in ofdma systems—part ii: Joint chunk, power and bit allocation,” IEEE Transactions on Communications, vol. 60, no. 2, pp. 499–509, 2012.
  • [25] F. Shu, Y. Qin, T. Liu, L. Gui, Y. Zhang, J. Li, and Z. Han, “Low-complexity and high-resolution doa estimation for hybrid analog and digital massive mimo receive array,” IEEE Trans Commun, vol. 66, no. 6, pp. 2487–2501, Jun. 2018.
  • [26] Z. Zhuang, L. Xu, J. Li, J. Hu, L. Sun, F. Shu, and J. Wang, “Machine-learning-based high-resolution doa measurement and robust directional modulation for hybrid analog-digital massive mimo transceiver,” Science China Information Sciences, vol. 63, 08 2020.
  • [27] S. Xu, W. Xu, C. Pan, and M. Elkashlan, “Detection of jamming attack in non-coherent massive simo systems,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 9, pp. 2387–2399, Sep. 2019.
  • [28] Y. O. Basciftci, O. Gungor, C. E. Koksal, and F. Ozguner, “On the secrecy capacity of block fading channels with a hybrid adversary,” IEEE Trans. Inf. Theory, vol. 61, no. 3, pp. 1325–1343, Mar. 2015.
  • [29] A. Mukherjee and A. L. Swindlehurst, “A full-duplex active eavesdropper in mimo wiretap channels: Construction and countermeasures,” in Proc. Asilomar Conf. Sign. Syst. Comput., Nov. 2011, pp. 265–269.
  • [30] H. Chen, X. Tao, N. Li, Y. Hou, J. Xu, and Z. Han, “Secrecy performance analysis for hybrid wiretapping systems using random matrix theory,” IEEE Trans. Wirel. Commun., vol. 18, no. 2, pp. 1101–1114, Feb. 2019.
  • [31] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.   Cambridge University Press, 2005.
  • [32] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed.   Cambridge University Press, 2012.