This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lorentz Violation in Electromagnetic Moments of Fermions

Javier Montaño-Domínguez    1 Héctor Novales-Sánchez    2 Mónica Salinas    2    and J. Jesús Toscano2 1Facultad de Ciencias Físico Matemáticas,
Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
2Facultad de Ciencias Físico Matemáticas,
Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, Mexico
Abstract

Lorentz-violating Yukawa couplings lying within the renormalizable part of the SME generate Lorentz-invariant one-loop contributions to electromagnetic moments of fermions. This note provides a discussion of such contributions and presents bounds on SME coefficients from experimental data on electromagnetic moments. Constraints as restrictive as 1014\sim 10^{-14} are found.

\bodymatter

1 Lorentz-violating Yukawa interactions

This paper is based on Refs. [\refciteAMNST], where a comprehensive discussion and further details can be found. The Yukawa sector of the minimal SME (mSME) reads[2]

YmSME=\displaystyle{\cal L}^{\rm mSME}_{\rm Y}= 12(HU)μνABQ¯Aϕ~σμνUB12(HD)μνABQ¯AϕσμνDB\displaystyle-\frac{1}{2}(H_{U})^{AB}_{\mu\nu}\overline{Q}_{A}\tilde{\phi}\sigma^{\mu\nu}U_{B}-\frac{1}{2}(H_{D})^{AB}_{\mu\nu}\overline{Q}_{A}\phi\sigma^{\mu\nu}D_{B} (1)
12(HL)μνABL¯AϕσμνRB+H.c.,\displaystyle-\frac{1}{2}(H_{L})^{AB}_{\mu\nu}\overline{L}_{A}\phi\sigma^{\mu\nu}R_{B}+{\rm H.c.},

with ϕ~=iσ2ϕ\tilde{\phi}=i\sigma^{2}\phi^{*} and ϕ\phi the SM Higgs doublet, QAQ_{A} an SU(2)L{\rm SU}(2)_{L} quark doublet, LAL_{A} an SU(2)L{\rm SU}(2)_{L} lepton doublet, UBU_{B} and DBD_{B} up- and down-type SU(2)L{\rm SU}(2)_{L} quark singlets, respectively, and RBR_{B} a charged-lepton singlet of SU(2)L{\rm SU}(2)_{L}. Capital-letter indices denote fermion flavors, whereas Greek indices label spacetime coordinates. The Lorentz-violation coefficients in YmSME{\cal L}_{\rm Y}^{\rm mSME} are (HU)μνAB(H_{U})_{\mu\nu}^{AB}, (HD)μνAB(H_{D})_{\mu\nu}^{AB}, and (HL)μνAB(H_{L})_{\mu\nu}^{AB}, all of them bearing both spacetime and fermion-flavor indices. After spontaneous symmetry breaking, coefficients (Yf)μν=ULf(Hf)μνURf(Y_{f})_{\mu\nu}=U^{f{\dagger}}_{L}(H_{f})_{\mu\nu}U^{f}_{R}, are defined, with ULfU_{L}^{f} and URfU_{R}^{f} the unitary matrices defining the fermion mass-eigenspinor basis in the SM. The resulting Lagrangian thus acquires the form

YmSME=12(v+H)f=l,u,df¯A[(Yf)μνABPL+(Yf)μνBAPR]σμνfB,{\cal L}^{\rm mSME}_{\rm Y}=-\frac{1}{2}(v+H)\sum_{f=l,u,d}\overline{f}_{A}\big{[}(Y_{f})_{\mu\nu}^{AB}P_{L}+(Y_{f})_{\mu\nu}^{BA*}P_{R}\big{]}\sigma^{\mu\nu}f_{B}, (2)

with HH the Higgs field, and PLP_{L}, PRP_{R} the chiral projectors. Since (Yf)μν=(Yf)νμ(Y_{f})_{\mu\nu}=-(Y_{f})_{\nu\mu}, which characterizes the electromagnetic tensor FμνF_{\mu\nu} as well, we define the 3-vector background fields 𝐞fAB{\bf e}_{f}^{AB} and 𝐛fAB{\bf b}_{f}^{AB}, for some fermion fAf_{A}, by (Yf)0jAB=(𝐞fAB)j(Y_{f})^{AB}_{0j}=({\bf e}^{AB}_{f})_{j} and (Yf)jmAB=ϵjmk(𝐛fAB)k(Y_{f})^{AB}_{jm}=\epsilon_{jmk}({\bf b}^{AB}_{f})^{k}. These are the mSME parameters to be compared with experimental data.

Feynman rules from Eq. (2) yield one-loop diagrams contributing to the electromagnetic moments (EMM) of fermions at second order in SME insertions. The large set of such diagrams is provided in Refs. [\refciteAMNST]. By summing all the diagrams together, we find a γfAfA\gamma f_{A}f_{A} vertex-function contribution

[Uncaptioned image]=𝒰¯A[FAM(q2)σμνqν+FAE(q2)σμνqνγ5+]𝒰A.\begin{gathered}\vspace{0.15cm}\includegraphics[width=51.21504pt]{ffA}\end{gathered}=\overline{{\cal U}}_{A}\Big{[}F_{A}^{\rm M}(q^{2})\sigma_{\mu\nu}q^{\nu}+F^{\rm E}_{A}(q^{2})\sigma_{\mu\nu}q^{\nu}\gamma_{5}+\cdots\Big{]}{\cal U}_{A}. (3)

Here, 𝒰A{\cal U}_{A} is the momentum-space spinor associated with the external fermion fAf_{A}. Moreover, qq is the incoming momentum of the external photon, which we assume to be off shell. Later, the on-shell condition q2=0q^{2}=0 is taken in order to define the mSME Yukawa-sector contributions to the anomalous magnetic moment (AMM), aASME=FAM(q2=0)a_{A}^{\rm SME}=F_{A}^{\rm M}(q^{2}=0), and to the electric dipole moment (EDM), dASME=FAE(q2=0)d^{\rm SME}_{A}=F^{\rm E}_{A}(q^{2}=0), of the fermion fAf_{A}. Note that the magnetic and electric form factors, FAM(q2)F_{A}^{\rm M}(q^{2}) and FAE(q2)F_{A}^{\rm E}(q^{2}), preserve symmetry under both observer and particle Lorentz transformations. The ellipsis in Eq. (3) represents other terms, involving various form factors, most of them violating Lorentz invariance. In the present paper contributions to diagonal EMMs are exclusively considered. While flavor changes in the mSME Yukawa sector induce contributions to transition moments, such a calculation lies beyond the scope of the present discussion.

Following the tensor-reduction method,[3] we executed an intricate calculation involving a plethora of contributing diagrams, in which either photons, or WW bosons, or ZZ bosons, or Higgs bosons participate through virtual loop lines. Since some of the contributing diagrams are gauge dependent, a gauge choice was mandatory, so we used unitary gauge, thus reducing the number of diagrams. In this framework, we made sure that the amplitude fulfills the Ward identity, with respect to the electromagnetic field. While a drawback of our gauge choice is a latent complication in the elimination of ultraviolet divergences from the AMM and EDM contributions, our results turned out to be finite in this sense.

A diagrammatic expression of the mSME Yukawa-sector contribution to γfAfA\gamma f_{A}f_{A}, previously displayed in Eq. (3), is

[Uncaptioned image]=\displaystyle\begin{gathered}\vspace{0.15cm}\includegraphics[width=51.21504pt]{ffA}\end{gathered}= B([Uncaptioned image]+[Uncaptioned image]+[Uncaptioned image])+,\displaystyle\displaystyle\sum_{B}\big{(}\begin{gathered}\vspace{-0.055cm}\includegraphics[width=33.0053pt]{dgb1AB}\end{gathered}+\begin{gathered}\vspace{-0.055cm}\includegraphics[width=33.0053pt]{dgb2AB}\end{gathered}+\begin{gathered}\vspace{-0.055cm}\includegraphics[width=33.0053pt]{dgb3AB}\end{gathered}\big{)}+\,\cdots, (8)

where those diagrams explicitly shown, with the internal loop line corresponding to a photon, are the ones producing the dominant contributions to EMMs. From such diagrams, flavor changes induced by SME two-point insertions can be appreciated. This contribution includes a sum over fermion flavors BB. The second and third diagrams carry infrared divergences, which do not vanish from the amplitude, thus meaning that these quantities are not observables. As discussed in detail in Refs. [\refciteAMNST], cancellation of such divergences is expected to happen at the cross-section level through Bremsstrahlung diagrams, with the assumption of final-state soft-photon emission. Taking this for granted, we find finite contributions to the electromagnetic factors, given by

af,ASME=\displaystyle\displaystyle a^{\rm SME}_{f,A}= B[a~f,AB(|Re𝐞fAB|2+|Re𝐛fAB|2)\displaystyle\displaystyle\sum_{B}\big{[}\tilde{a}_{f,AB}\big{(}|{\rm Re}\,{\bf e}_{f}^{AB}|^{2}+|{\rm Re}\,{\bf b}_{f}^{AB}|^{2}\big{)} (9)
+a^f,AB(|Im𝐞fAB|2+|Im𝐛fAB|2)],\displaystyle\displaystyle+\hat{a}_{f,AB}\big{(}|{\rm Im}\,{\bf e}_{f}^{AB}|^{2}+|{\rm Im}\,{\bf b}_{f}^{AB}|^{2}\big{)}\big{]},
df,ASME=\displaystyle\displaystyle d^{\rm SME}_{f,A}= Bd~f,AB(|Re𝐞fAB||Im𝐛fAB|+|Re𝐛fAB||Im𝐞fAB|).\displaystyle\displaystyle\sum_{B}\tilde{d}_{f,AB}\big{(}|{\rm Re}\,{\bf e}_{f}^{AB}||{\rm Im}\,{\bf b}_{f}^{AB}|+|{\rm Re}\,{\bf b}_{f}^{AB}||{\rm Im}\,{\bf e}_{f}^{AB}|\big{)}. (10)

In these equations, the coefficients a~f,AB\tilde{a}_{f,AB}, a^f,AB\hat{a}_{f,AB}, and d~f,AB\tilde{d}_{f,AB} are functions of the fermion masses. Sums over fermion flavors B\sum_{B} take into account all possible virtual-fermion lines in contributing diagrams.

Next, we consider the current best measurement of the proton magnetic moment, reported in Ref. [\refciteprotonmm] to be μp=2.7928473446(8)μN\mu_{p}=2.7928473446(8)\mu_{N}, with μN\mu_{N} the nuclear magneton. We use the most stringent bound on the neutron EDM as well, which, according to Ref. [\refciteneutronedm], is |dn|<1.8×1026ecm|d_{n}|<1.8\times 10^{-26}e\cdot{\rm cm}. To connect the contributions from individual up and down quarks to nucleon EMMs, we used apSME=auSME4/3adSME/3a^{\rm SME}_{p}=a^{\rm SME}_{u}4/3-a_{d}^{\rm SME}/3 and dnSME=ddSME4/3duSME/3d_{n}^{\rm SME}=d_{d}^{\rm SME}4/3-d_{u}^{\rm SME}/3. From the error in the measurement of μp\mu_{p}, a set of bounds within 10710^{-7} to 101110^{-11} is achieved.[1] The most restrictive constraints are set on |Re𝐞uut||{\rm Re}\,{\bf e}_{u}^{ut}|, |Re𝐛uut||{\rm Re}\,{\bf b}_{u}^{ut}|, |Im𝐞uut||{\rm Im}\,{\bf e}_{u}^{ut}|, |Im𝐛uut||{\rm Im}\,{\bf b}_{u}^{ut}|, all restricted to be <7.156×1011<7.156\times 10^{-11}. The neutron EDM experimental bound is used to further bound SME coefficients. Such restrictions, given in Ref. [\refciteAMNST], lie within 10910^{-9} to 101210^{-12}, with the most restrictive limits corresponding to |𝐞uuu||{\bf e}_{u}^{uu}| and |𝐛uuu||{\bf b}_{u}^{uu}|, found to be <4.308×1012<4.308\times 10^{-12}. This method to bound SME coefficients is advantageously sensitive to effects in the second and third quark families, even though nucleon EMMs are defined solely by up- and down-quark contributions. Regarding EMMs of charged leptons, we considered the experiment–theory differences ΔaA=aAexpaASM\Delta a_{A}=a_{A}^{\rm exp}-a_{A}^{\rm SM} for the electron and muon AMMs, given in Refs. [\refciteelectronamm,muonamm] as Δae=1.06(082)×1012\Delta a_{e}=-1.06(082)\times 10^{-12} and Δaμ=249(87)×1011\Delta a_{\mu}=249(87)\times 10^{-11}, respectively, and upper bounds on their EMDs, which, according to Refs. [\refciteelectronedm,muonedm], are |de|<8.7×1029ecm|d_{e}|<8.7\times 10^{-29}e\cdot{\rm cm} and |dμ|<1.8×1019ecm|d_{\mu}|<1.8\times 10^{-19}e\cdot{\rm cm}. The electron and muon AMMs constrain SME coefficients within the range 10710^{-7} to 101110^{-11}, with the most restrictive limits set on |Re𝐞eee||{\rm Re}\,{\bf e}_{e}^{ee}|, |Re𝐛eee||{\rm Re}\,{\bf b}_{e}^{ee}|, constrained to be <1.619×1011<1.619\times 10^{-11}, as well as |Im𝐛eee||{\rm Im}\,{\bf b}_{e}^{ee}| and |Re𝐛eee||{\rm Re}\,{\bf b}_{e}^{ee}|, restricted to be <3.620×1011<3.620\times 10^{-11}. We use experimental limits on the electron and muon EDMs to constrain SME coefficients,[1] finding values within 10510^{-5} to 101410^{-14}. The best limits are set on |𝐞eee||{\bf e}_{e}^{ee}| and |𝐛eee||{\bf b}_{e}^{ee}|, both restricted to be <5.282×1014<5.282\times 10^{-14}.

Acknowledgments

The authors acknowledge financial support from CONACYT (México).

References

  • [1] J.A. Ahuatzi-Avendaño, J. Montaño, H. Novales-Sánchez, M. Salinas, and J.J. Toscano, Phys. Rev. D 103, 055003 (2021); J. Montaño, H. Novales-Sánchez, M. Salinas, and J.J. Toscano, Phys. Rev. D 105, 075018 (2022).
  • [2] D. Colladay and V.A. Kostelecký, Phys. Rev. D 58, 116002 (1998).
  • [3] G. Passarino and M. Veltman, Nucl. Phys. B160, 151 (1979).
  • [4] G. Schneider et al., Science 358, 1081 (2017).
  • [5] J.M. Pendlebury et al., Phys. Rev. D 92, 092003 (2015).
  • [6] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111807 (2012); D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008); D. Hanneke, S.F. Hoogerheide, and G. Gabrielse, Phys. Rev. A 83, 052122 (2011).
  • [7] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111808 (2012); Muon (g – 2) Collaboration, G.W. Bennett et al., Phys. Rev. Lett. 92, 161802 (2004).
  • [8] J. Baron et al. [ACME Collaboration], Science 343, 269 (2014).
  • [9] G.W. Bennett et al., Phys. Rev. D 80, 052008 (2009).