This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\titlecontents

section[2em]\contentslabel1.5em\titlerule*[5pt]\cdot\contentspage \titlecontentssubsection[4.2em]\contentslabel2.3em\titlerule*[5pt]\cdot\contentspage \titlecontentssubsubsection[7.3em]\contentslabel3.2em\titlerule*[5pt]\cdot\contentspage

Long-time behavior of a nonlocal dispersal logistic model with seasonal succession

Zhenzhen Li, Binxiang Dai111Corresponding author. Email address: [email protected] (Z. Li), [email protected] (B. Dai)
School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha, Hunan, 410083, PR China
Abstract

This paper is devoted to a nonlocal dispersal logistic model with seasonal succession in one-dimensional bounded habitat, where the seasonal succession accounts for the effect of two different seasons. Firstly, we provide the persistence-extinction criterion for the species, which is different from that for local diffusion model. Then we show the asymptotic profile of the time-periodic positive solution as the species persists in long run.

Keywords: Nonlocal dispersal; Seasonal succession; Persistence-extinction

MSC(2020): 35B40; 35K57; 92D25

1 Introduction

The nonlocal diffusion as a long range process can well describe some natural phenomena in many situations (Andreu-Vaillo et al. [1], Fife [9]). Recently, nonlocal diffusion equations have attracted much attention and have been used to simulate different dispersal phenomena in material science (Bates [2]), neurology (Sun, Yang and Li [25]), population ecology (Hutson et al. [13], Kao, Lou and Shen [15]), etc. Especially, the spectral properties of nonlocal dispersal operators and the essential differences between them and local dispersal operators are studied in Coville [5], Coville, Dávila and Martínez [6], García-Melián and Rossi [10], Shen and Zhang [22] and Sun, Yang and Li [25]. A widely used nonlocal diffusion operator has the form

(Juu)(t,x):=J(xy)u(t,y)dyu(t,x),(J*u-u)(t,x):=\int_{\mathbb{R}}J(x-y)u(t,y)\mathrm{d}y-u(t,x),

which can capture the factors of ‘long-range dispersal’ as well as ‘short-range dispersal’.

Time-varying environmental conditions are important for the growth and survival of species. Seasonal forces in nature are a common cause of environmental change, affecting not only the growth of species but also the composition of communities [7, 8]. The growth of species is actually driven by both external and internal dynamics. For instance, in temperate lakes, phytoplankton and zooplankton grow during the warmer months and may die or lie dormant during the winter. This phenomenon is termed as seasonal succession.

In the present paper, we are concerned with the nonlocal dispersal logistic model with seasonal succession as follows:

{ut=δu,iω<t(i+ρ)ω,l1xl2,ut=d(Juu)(t,x)+u(abu),(i+ρ)ω<t(i+1)ω,l1xl2,u(0,x)=u0(x),x[l1,l2],\begin{cases}u_{t}=-\delta u,&i\omega<t\leq(i+\rho)\omega,\ l_{1}\leq x\leq l_{2},\\ \displaystyle u_{t}=d(J*u-u)(t,x)+u(a-bu),&(i+\rho)\omega<t\leq(i+1)\omega,\ l_{1}\leq x\leq l_{2},\\ u(0,x)=u_{0}(x),&x\in[l_{1},l_{2}],\end{cases} (1.1)

where u(t,x)u(t,x) is the population density of a species at time tt and location xx in the one-dimensional bounded habitat [l1,l2][l_{1},l_{2}]\subset\mathbb{R}. All parameters δ,a,b\delta,a,b and dd are positive constants. The kernel function J:J:\mathbb{R}\to\mathbb{R} is assumed to satisfy

  1. (𝐉):{\bf(J):}

    JC()L()J\in C(\mathbb{R})\cap L^{\infty}(\mathbb{R}) is nonnegative, even, J(0)>0J(0)>0 and J(x)dx=1\int_{\mathbb{R}}J(x)\mathrm{d}x=1.

Here the parameter dd stands for the diffusion rate of the species. Let J(xy)J(x-y) be the probability distribution of the species jumping from location yy to location xx, then J(xy)u(t,y)dy\int_{\mathbb{R}}J(x-y)u(t,y)\mathrm{d}y represents the rate where individuals are arriving at location xx from all other places and u(t,x)=J(xy)u(t,x)dy-u(t,x)=-\int_{\mathbb{R}}J(x-y)u(t,x)\mathrm{d}y is the rate at which they are leaving location xx to travel to all other sites. In such model, u=0u=0 on [l1,l2]\mathbb{R}\setminus[l_{1},l_{2}] represents homogeneous Dirichlet type boundary condition, which implies that the exterior environment is hostile and the individuals will die when they reach the boundary of habitat [l1,l2][l_{1},l_{2}]. The initial function u0(x)u_{0}(x) is nonnegative continuous function. Here and in what follows, unless specified otherwise, we always take i+={0,1,2,}i\in\mathbb{Z}_{+}=\{0,1,2,\cdots\}.

In (1.1), it is assumed that the species uu undergoes two different seasons: the bad season and the good season. In the bad season: iω<t<(i+ρ)ωi\omega<t<(i+\rho)\omega, for instance, from winter to spring, the species can notcan not get enough food to feed themselves and its density are declining exponentially. During this season, the population has no ability to move in space. In the good season (for instance, from summer and autumn): (i+ρ)ω<t(i+1)ω(i+\rho)\omega<t\leq(i+1)\omega, we assume that the spatiotemporal distribution of the species uu are governed by the classical nonlocal dispersal logistic equation. Parameters ω\omega and 1ρ1-\rho represent the period of seasonal succession and the duration of the good season, respectively.

In fact, if we define the time-periodic finctions

D(t)={0,t(iω,(i+ρ)ω],d,t((i+ρ)ω,(i+1)ω],a¯(t)={δ,t(iω,(i+ρ)ω],a,t((i+ρ)ω,(i+1)ω],b¯(t)={0,t(iω,(i+ρ)ω],b,t((i+ρ)ω,(i+1)ω],\small D(t)=\begin{cases}0,&t\in(i\omega,(i+\rho)\omega],\\ d,&t\in((i+\rho)\omega,(i+1)\omega],\end{cases}\bar{a}(t)=\begin{cases}-\delta,&t\in(i\omega,(i+\rho)\omega],\\ a,&t\in((i+\rho)\omega,(i+1)\omega],\end{cases}\bar{b}(t)=\begin{cases}0,&t\in(i\omega,(i+\rho)\omega],\\ b,&t\in((i+\rho)\omega,(i+1)\omega],\end{cases} (1.2)

then model (1.1) can be rewritten as

{ut=D(t)(Juu)(t,x)+u(t,x)(a¯(t)b¯(t)u(t,x)),t>0,l1xl2,u(0,x)=u0(x),x[l1,l2],\begin{cases}u_{t}=D(t)(J*u-u)(t,x)+u(t,x)(\bar{a}(t)-\bar{b}(t)u(t,x)),&t>0,l_{1}\leq x\leq l_{2},\\ u(0,x)=u_{0}(x),&x\in[l_{1},l_{2}],\end{cases} (1.3)

which is a nonlocal dispersal piecewise smooth time-periodic system.

The models with seasonal succession have been investigated by several authors. Ignoring the spatial evolution of the involved species, the effects of seasonal succession on the dynamics of population can be analysed by ODE models, see [14, 16] and references therein. There are also some investigations on it by the numerical method, see, e.g. [12, 20]. In [14], Hsu and Zhao first considered the single species model with seasonal succession:

{zt=δ,iω<t(i+ρ)ω,zt=z(abz),(i+ρ)ω<t(i+1)ω,z(0)=z0+:=[0,),\begin{cases}z_{t}=-\delta,&i\omega<t\leq(i+\rho)\omega,\\ z_{t}=z(a-bz),&(i+\rho)\omega<t\leq(i+1)\omega,\\ z(0)=z_{0}\in\mathbb{R}_{+}:=[0,\infty),&\end{cases} (1.4)

where z(t)z(t) denotes the population density of a species at time tt. They showed the threshold dynamics of model (1.4): when a(1ρ)δρ0a(1-\rho)-\delta\rho\leq 0, the unique solution of (1.4) converges to zero among all nonnegative initial value, while when a(1ρ)δρ>0a(1-\rho)-\delta\rho>0, it converges to the unique positive ω\omega-periodic solution of (1.4) for all positive initial value.

Taking spatial factor into account, Peng and Zhao [18] investigated the following local diffusion model with seasonal succession:

{ut=δu,iω<t(i+ρ)ω,x(l1,l2),utduxx=u(abu),(i+ρ)ω<t(i+1)ω,x(l1,l2),u(t,l1)=u(t,l2)=0,t0,u(0,x)=u0(x)0,x(l1,l2),\begin{cases}u_{t}=-\delta u,&i\omega<t\leq(i+\rho)\omega,\ x\in(l_{1},l_{2}),\\ u_{t}-du_{xx}=u(a-bu),&(i+\rho)\omega<t\leq(i+1)\omega,\ x\in(l_{1},l_{2}),\\ u(t,l_{1})=u(t,l_{2})=0,&t\geq 0,\\ u(0,x)=u_{0}(x)\geq 0,&x\in(l_{1},l_{2}),\end{cases} (1.5)

where the parameter dd stands for the intensity of random diffusion. The positive constants ω,ρ,δ,a,b\omega,\rho,\delta,a,b have the same biological interpretations as in (1.1), and the initial function u0C2([l1,l2])u_{0}\in C^{2}([l_{1},l_{2}]). Denote by λ1l\lambda_{1}^{l} the principal eigenvalue of the eigenvalue problem

{φt=δφ+λφ,iω<t(i+ρ)ω,x(l1,l2),φtdφxx=aφ+λφ,(i+ρ)ω<t(i+1)ω,x(l1,l2),φ>0,(i+ρ)ω<t(i+1)ω,x(l1,l2),φ(t,l1)=φ(t,l2)=0,t0,φ(t,x)=φ(t+ω,x),x(l1,l2).\begin{cases}\varphi_{t}=-\delta\varphi+\lambda\varphi,&i\omega<t\leq(i+\rho)\omega,\ x\in(l_{1},l_{2}),\\ \varphi_{t}-d\varphi_{xx}=a\varphi+\lambda\varphi,&(i+\rho)\omega<t\leq(i+1)\omega,\ x\in(l_{1},l_{2}),\\ \varphi>0,&(i+\rho)\omega<t\leq(i+1)\omega,\ x\in(l_{1},l_{2}),\\ \varphi(t,l_{1})=\varphi(t,l_{2})=0,&t\geq 0,\\ \varphi(t,x)=\varphi(t+\omega,x),&x\in(l_{1},l_{2}).\end{cases}

One can calculate exactly that λ1l=(1ρ)(π2d(l2l1)2a)+ρδ\lambda_{1}^{l}=(1-\rho)(\frac{\pi^{2}d}{(l_{2}-l_{1})^{2}}-a)+\rho\delta. By the consequence of [27, Theorem 2.3.4], Peng and Zhao [18] has showed that, the solution of (1.5) converges to zero among all nonnegative initial value if λ1l0\lambda_{1}^{l}\geq 0, while when λ1l<0\lambda_{1}^{l}<0, it converges to the unique positive ω\omega-periodic solution of (1.5) for all nonnegative and not identically zero initial value. Specially, we can observe that

  1. (i)

    if (1ρ)aρδ>0(1-\rho)a-\rho\delta>0, then the solution of (1.5) converges to the unique positive ω\omega-periodic solution of (1.5) for all nonnegative and not identically zero initial value;

  2. (ii)

    if (1ρ)aρδ<0(1-\rho)a-\rho\delta<0, then there exists a critical value l^\hat{l} such that the solution of (1.5) converges to the unique positive ω\omega-periodic solution of (1.5) for all nonnegative and not identically zero initial value if and only if l2l1>l^l_{2}-l_{1}>\hat{l}.

The dynamics of the time-periodic nonlocal dispersal logistic equation have been studied by many authors (see [19, 24, 21, 23]). In [19], Rawal and Shen studied the eigenvalue problems of time-periodic nonlocal dispersal operator, and then showed that the existence of positive periodic solution relies on the sign of principal eigenvalue of a linearized eigenvalue problem. Sun et al. [24] considered a time-periodic nonlocal dispersal logistic equation in spatial degenerate environment. Shen and Vo [21] and Su et al. [23] have studied the asymptotic profiles of the generalised principal eigenvalue of time-periodic nonlocal dispersal operators under Dirichlet type boundary conditions and Neumann type boundary conditions, respectively. The models considered in the above mentioned work are all smooth periodic systems.

The purpose of current paper is to study the dynamical properties of nonlocal dispersal model (1.1). Clearly, system (1.1) is in time-periodic environment and the dispersal term and reaction term are both discontinuous and periodic in tt caused by the seasonal succession. Note that, by general semigroup theory (see [17]), (1.1) has a unique local solution u(t,;u0)u(t,\cdot;u_{0}) with initial value u(0,;u0)=u0C([l1,l2])u(0,\cdot;u_{0})=u_{0}\in C([l_{1},l_{2}]), which is continuous in tt. If u0u_{0} is nonnegative over [l1,l2][l_{1},l_{2}], then by a comparison argument, u(t,;u0)u(t,\cdot;u_{0}) exists and is nonnegative for all t>0t>0 (see Lemma 2.2). Next, we have the following theorem on the long time behavior of model (1.1).

Theorem 1.1.

Assume that (𝐉){\bf(J)} holds and <l1<l2<+-\infty<l_{1}<l_{2}<+\infty. Let u(t,;u0)u(t,\cdot;u_{0}) be the unique solution to (1.1) with the initial value u0(x)C([l1,l2])u_{0}(x)\in C([l_{1},l_{2}]), where u0(x)u_{0}(x) is nonnegative and not identically zero. Then the following statements are true:

  1. (1)

    If (1ρ)aρδ>(1ρ)d(1-\rho)a-\rho\delta>(1-\rho)d, then limnu(t+nω,x;u0)=u(l1,l2)(t,x)\lim\limits_{n\to\infty}u(t+n\omega,x;u_{0})=u_{(l_{1},l_{2})}^{*}(t,x) in C([0,ω]×[l1,l2])C([0,\omega]\times[l_{1},l_{2}]), where u(l1,l2)(t,x)u_{(l_{1},l_{2})}^{*}(t,x) is the unique ω\omega-periodic positive solution of

    {ut=δu,iω<t(i+ρ)ω,l1xl2,ut=dl1l2J(xy)u(t,y)dydu(t,x)+u(abu),(i+ρ)ω<t(i+1)ω,l1xl2,u(t,x)=u(t+ω,x),t0,x[l1,l2];\begin{cases}u_{t}=-\delta u,&i\omega<t\leq(i+\rho)\omega,\ l_{1}\leq x\leq l_{2},\\ \displaystyle u_{t}=d\int_{l_{1}}^{l_{2}}J(x-y)u(t,y)\mathrm{d}y-du(t,x)+u(a-bu),&(i+\rho)\omega<t\leq(i+1)\omega,\ l_{1}\leq x\leq l_{2},\\ u(t,x)=u(t+\omega,x),&t\geq 0,\ x\in[l_{1},l_{2}];\end{cases} (1.6)
  2. (2)

    If 0<(1ρ)aρδ(1ρ)d0<(1-\rho)a-\rho\delta\leq(1-\rho)d, then there exists a unique >0\ell^{*}>0 such that limnu(t+nω,x;u0)=u(l1,l2)(t,x)\lim\limits_{n\to\infty}u(t+n\omega,x;u_{0})=u_{(l_{1},l_{2})}^{*}(t,x) in C([0,ω]×[l1,l2])C([0,\omega]\times[l_{1},l_{2}]) if and only if l2l1>l_{2}-l_{1}>\ell^{*};

  3. (3)

    If (1ρ)aρδ0(1-\rho)a-\rho\delta\leq 0, then 0 is the unique nonnegative solution of (1.6), and limtu(t,x;u0)=0\lim\limits_{t\to\infty}u(t,x;u_{0})=0 uniformly for x[l1,l2]x\in[l_{1},l_{2}].

Theorem 1.1 shows a complete classification on all possible long time behavior of system (1.1) with the assumption (𝐉){\bf(J)}. The criteria governing persistence and extinction of the species show that: (i) When the duration of the bad season is too long (namely, ρ\rho is close to 11), or the season is too bad (for example, bad weather and food shortages contributes to the large death rate δ\delta) such that (1ρ)aρδ0(1-\rho)a-\rho\delta\leq 0, then the species will die out eventually regardless the initial population size; (ii) If the bad season is not long, or the food resource aa is not small such that ρδ<(1ρ)a(1ρ)d+ρδ\rho\delta<(1-\rho)a\leq(1-\rho)d+\rho\delta, then both persistence and extinction are determined by the range of the habitat of the species; (iii) When the good season is very long (i.e., ρ\rho is close to 0), or the species has enough food such that (1ρ)(ad)ρδ>0(1-\rho)(a-d)-\rho\delta>0, then the species can persist for long time, which is different from that for the local diffusion model (1.5).

The following conclusion concerns the asymptotic profile of the ω\omega-periodic positive solution u(l1,l2)u_{(l_{1},l_{2})}^{*} of (1.6).

Theorem 1.2.

Assume that (𝐉){\bf(J)} holds. If (1ρ)aρδ>0(1-\rho)a-\rho\delta>0, then there exists ^>0\hat{\ell}>0 such that λ1(L(l1,l2))<0\lambda_{1}(-L_{(l_{1},l_{2})})<0 for every interval (l1,l2)(l_{1},l_{2}) with l2l1>^l_{2}-l_{1}>\hat{\ell} and hence (1.6) admits a unique positive ω\omega-periodic solution u(l1,l2)(t,x)u_{(l_{1},l_{2})}^{*}(t,x). Moreover,

liml1,l2+u(l1,l2)(t,x)=z(t)inCloc([0,ω]×),\lim_{-l_{1},l_{2}\to+\infty}u_{(l_{1},l_{2})}^{*}(t,x)=z^{*}(t)\ \ \mathrm{in}\ C_{\mathrm{loc}}([0,\omega]\times\mathbb{R}),

where z(t)z^{*}(t) is the unique ω\omega-periodic positive solution of the following equation

{zt=δz,iω<t(i+ρ)ω,zt=z(abz),(i+ρ)ω<t(i+1)ω,z(t+ω)=z(t),t0.\begin{cases}z_{t}=-\delta z,&i\omega<t\leq(i+\rho)\omega,\\ z_{t}=z(a-bz),&(i+\rho)\omega<t\leq(i+1)\omega,\\ z(t+\omega)=z(t),&t\geq 0.\end{cases} (1.7)

The rest part of this paper is organized as follows. Sections 2 are devoted to the global existence and uniqueness of solution of (1.1). In Section 3, we then study the long-time dynamical behavior of system (1.1) based on the results for the time-periodic eigenvalue problem and time periodic upper-lower solutions. We also show some discussion in the final section.

2 Well-posedness

In this section, we show the existence and uniqueness of the global solution of (1.1). Before the statement of well-posedness of solution to (1.1), we provide a maximum principle.

Lemma 2.1 (Maximum principle).

Let mm be a positive integer. Assume that (𝐉){\bf(J)} holds and <l1<l2<+-\infty<l_{1}<l_{2}<+\infty. Suppose that v,vtC([0,mω]×[l1,l2]),cL([0,mω]×[l1,l2])v,v_{t}\in C([0,m\omega]\times[l_{1},l_{2}]),c\in L^{\infty}([0,m\omega]\times[l_{1},l_{2}]) and

{vtδv,iω<t(i+ρ)ω,l1xl2,vtdl1l2J(xy)v(t,y)dydv(t,x)+c(t,x)v,(i+ρ)ω<t(i+1)ω,l1xl2,v(0,x)0,x[l1,l2],\begin{cases}v_{t}\geq-\delta v,&i\omega<t\leq(i+\rho)\omega,\ l_{1}\leq x\leq l_{2},\\ \displaystyle v_{t}\geq d\int_{l_{1}}^{l_{2}}J(x-y)v(t,y)\mathrm{d}y-dv(t,x)+c(t,x)v,&(i+\rho)\omega<t\leq(i+1)\omega,\ l_{1}\leq x\leq l_{2},\\ v(0,x)\geq 0,&x\in[l_{1},l_{2}],\end{cases} (2.1)

where i=0,1,,m1i=0,1,\cdots,m-1. Then v(t,x)0v(t,x)\geq 0 for (t,x)[0,mω]×[l1,l2](t,x)\in[0,m\omega]\times[l_{1},l_{2}]. Moreover, if v(0,x)0v(0,x)\not\equiv 0 in [l1,l2][l_{1},l_{2}], then v(t,x)>0v(t,x)>0 for (t,x)(ρω,mω]×(l1,l2)(t,x)\in(\rho\omega,m\omega]\times(l_{1},l_{2}); if v(0,x)>0v(0,x)>0 in (l1,l2)(l_{1},l_{2}), then v(t,x)>0v(t,x)>0 for (t,x)(0,mω]×(l1,l2)(t,x)\in(0,m\omega]\times(l_{1},l_{2}).

Proof.

Let V(t,x)=ektv(t,x)V(t,x)=e^{kt}v(t,x). Then V(0,)0V(0,\cdot)\geq 0 and V(t,x)V(t,x) satisfies

{Vtp0V(t,x),iω<t(i+ρ)ω,x[l1,l2],Vtdl1l2J(xy)V(t,y)dy+p1(t,x)V(t,x),(i+ρ)ω<t(i+1)ω,x[l1,l2],\begin{cases}V_{t}\geq p_{0}V(t,x),&i\omega<t\leq(i+\rho)\omega,\ x\in[l_{1},l_{2}],\\ \displaystyle V_{t}\geq d\int_{l_{1}}^{l_{2}}J(x-y)V(t,y)\mathrm{d}y+p_{1}(t,x)V(t,x),&(i+\rho)\omega<t\leq(i+1)\omega,\ x\in[l_{1},l_{2}],\end{cases} (2.2)

where p0=kδp_{0}=k-\delta, p1(t,x)=k+c(t,x)dp_{1}(t,x)=k+c(t,x)-d. Due to the boundedness of cc, there exists k>0k>0 such that

p0>0andinft[0,mω],x[l1,l2]p1(t,x)>0.p_{0}>0\ \mathrm{and}\ \inf_{t\in[0,m\omega],x\in[l_{1},l_{2}]}p_{1}(t,x)>0.

We now claim that V(t,x)0V(t,x)\geq 0 in [0,mω]×[l1,l2][0,m\omega]\times[l_{1},l_{2}].

Let p1,0=supt[0,mω],t[l1,l2]p1(t,x)p_{1,0}=\sup_{t\in[0,m\omega],t\in[l_{1},l_{2}]}p_{1}(t,x) and T0=min{mω,12(p0+d+p1,0)}T_{0}=\min\Big{\{}m\omega,\frac{1}{2(p_{0}+d+p_{1,0})}\Big{\}}. In the following, we will show that the claim holds for t(0,T0],x[l1,l2]t\in(0,T_{0}],x\in[l_{1},l_{2}]. Assume to the contrary that Vinf:=inft(0,T0),x[l1,l2]V(t,x)<0V_{\mathrm{inf}}:=\inf_{t\in(0,T_{0}),x\in[l_{1},l_{2}]}V(t,x)<0. Then there exists (t0,x0)(0,T0]×[l1,l2](t_{0},x_{0})\in(0,T_{0}]\times[l_{1},l_{2}] such that Vinf=V(t0,x0)<0V_{\mathrm{inf}}=V(t_{0},x_{0})<0. Notice that there are tn(0,t0]t_{n}\in(0,t_{0}] and xn[l1,l2]x_{n}\in[l_{1},l_{2}] such that

V(tn,xn)Vinfasn.V(t_{n},x_{n})\to V_{\mathrm{inf}}\ \ \mathrm{as}\ \ n\to\infty.

We only need to consider the following two cases.

Case 1. t0(i0ω,(i0+ρ)ω]t_{0}\in(i_{0}\omega,(i_{0}+\rho)\omega] for some i0{0,1,,m1}i_{0}\in\{0,1,\cdots,m-1\}.

In this case, tn(i0ω,t0]t_{n}\in(i_{0}\omega,t_{0}] for large nn. Then it follows from (2.2) that

V(tn,xn)V(0,xn)\displaystyle V(t_{n},x_{n})-V(0,x_{n}) =i=0i01(iω(i+ρ)ωVtdt+(i+ρ)ω(i+1)ωVtdt)+i0ωtnVtdt\displaystyle=\sum_{i=0}^{i_{0}-1}\left(\int_{i\omega}^{(i+\rho)\omega}V_{t}\mathrm{d}t+\int_{(i+\rho)\omega}^{(i+1)\omega}V_{t}\mathrm{d}t\right)+\int_{i_{0}\omega}^{t_{n}}V_{t}\mathrm{d}t
i=0i01iω(i+ρ)ωp0V(t,xn)dt+i0ωtnp0V(t,xn)dt\displaystyle\geq\sum_{i=0}^{i_{0}-1}\int_{i\omega}^{(i+\rho)\omega}p_{0}V(t,x_{n})\mathrm{d}t+\int_{i_{0}\omega}^{t_{n}}p_{0}V(t,x_{n})\mathrm{d}t
+i=0i01(i+ρ)ω(i+1)ω[dl1l2J(xny)V(t,y)dy+p1(t,xn)V(t,xn)]dt\displaystyle\phantom{=\ }+\sum_{i=0}^{i_{0}-1}\int_{(i+\rho)\omega}^{(i+1)\omega}\Big{[}d\int_{l_{1}}^{l_{2}}J(x_{n}-y)V(t,y)\mathrm{d}y+p_{1}(t,x_{n})V(t,x_{n})\Big{]}\mathrm{d}t
0tnp0Vinfdt+d0tnl1l2J(xny)Vinfdydt+0tnp1,0Vinfdt\displaystyle\geq\int_{0}^{t_{n}}p_{0}V_{\mathrm{inf}}\mathrm{d}t+d\int_{0}^{t_{n}}\int_{l_{1}}^{l_{2}}J(x_{n}-y)V_{\mathrm{inf}}\mathrm{d}y\mathrm{d}t+\int_{0}^{t_{n}}p_{1,0}V_{\mathrm{inf}}\mathrm{d}t
tn(p0+d+p1,0)Vinf\displaystyle\geq t_{n}(p_{0}+d+p_{1,0})V_{\mathrm{inf}}
t0(p0+d+p1,0)Vinf\displaystyle\geq t_{0}(p_{0}+d+p_{1,0})V_{\mathrm{inf}}

for large nn. Recall that V(0,xn)0V(0,x_{n})\geq 0 for n=0,1,2,n=0,1,2,\cdots. Thus we have

V(tn,xn)t0(p0+d+p1,0)VinfV(t_{n},x_{n})\geq t_{0}(p_{0}+d+p_{1,0})V_{\mathrm{inf}}

for large nn. Taking the limit as nn\to\infty, it holds that

Vinft0(p0+d+p1,0)Vinf12Vinf,V_{\mathrm{inf}}\geq t_{0}(p_{0}+d+p_{1,0})V_{\mathrm{inf}}\geq\frac{1}{2}V_{\mathrm{inf}},

which is a contradiction.

Case 2. t0((i0+ρ)ω,(i0+1)ω]t_{0}\in((i_{0}+\rho)\omega,(i_{0}+1)\omega] for some i0{0,1,,m1}i_{0}\in\{0,1,\cdots,m-1\}.

Similarly, we can also derive a contradiction since

V(tn,xn)V(0,xn)\displaystyle V(t_{n},x_{n})-V(0,x_{n}) =i=0i01(iω(i+ρ)ωVtdt+(i+ρ)ω(i+1)ωVtdt)+i0ω(i0+ρ)ωVtdt+(i0+ρ)ωtnVtdt\displaystyle=\sum_{i=0}^{i_{0}-1}\left(\int_{i\omega}^{(i+\rho)\omega}V_{t}\mathrm{d}t+\int_{(i+\rho)\omega}^{(i+1)\omega}V_{t}\mathrm{d}t\right)+\int_{i_{0}\omega}^{(i_{0}+\rho)\omega}V_{t}\mathrm{d}t+\int_{(i_{0}+\rho)\omega}^{t_{n}}V_{t}\mathrm{d}t
tn(p0+d+p1,0)Vinft0(p0+d+p1,0)Vinf\displaystyle\geq t_{n}(p_{0}+d+p_{1,0})V_{\mathrm{inf}}\geq t_{0}(p_{0}+d+p_{1,0})V_{\mathrm{inf}}

for large nn. Therefore, V(t,x)0V(t,x)\geq 0 for (t,x)(0,T0]×[l1,l2](t,x)\in(0,T_{0}]\times[l_{1},l_{2}] and then v(t,)0v(t,\cdot)\geq 0 for t[0,T0]t\in[0,T_{0}].

If T0=mωT_{0}=m\omega, then v(t,x)0v(t,x)\geq 0 in [0,mω]×[l1,l2][0,m\omega]\times[l_{1},l_{2}] follows directly; while if T0<mωT_{0}<m\omega, we can repeat the above process by replacing V(0,)V(0,\cdot) and (0,T0](0,T_{0}] as V(T0,)V(T_{0},\cdot) and (T0,mω](T_{0},m\omega]. Obviously, this process can be repeated in finite many times, and consequently, v(t,)0v(t,\cdot)\geq 0 for t[0,mω]t\in[0,m\omega].

Now we assume that v(0,x)0v(0,x)\not\equiv 0 in [l1,l2][l_{1},l_{2}]. To finish the proof, it suffices to prove that V>0V>0 in (ρω,ω]×(l1,l2)(\rho\omega,\omega]\times(l_{1},l_{2}). Suppose that there exists a point (t,x)(ρω,ω]×(l1,l2)(t_{*},x_{*})\in(\rho\omega,\omega]\times(l_{1},l_{2}) such that V(t,x)=0V(t_{*},x_{*})=0.

First, we prove that

V(t,x)=0forx(l1,l2).V(t_{*},x)=0\ \ \mathrm{for}\ \ x\in(l_{1},l_{2}).

Otherwise, we can find

x~[l1,l2]{x(l1,l2):V(t,x)>0}.\tilde{x}\in[l_{1},l_{2}]\cap\partial\{x\in(l_{1},l_{2}):V(t_{*},x)>0\}.

Then V(t,x~)=0V(t_{*},\tilde{x})=0 and it follows from (2.2) that

0Vt(t,x~)dl1l2J(x~y)V(t,y)dy>0,0\geq V_{t}(t_{*},\tilde{x})\geq d\int_{l_{1}}^{l_{2}}J(\tilde{x}-y)V(t_{*},y)\mathrm{d}y>0,

by assumption (𝐉){\bf(J)}. This is impossible, and hence V(t,x)=0V(t_{*},x)=0 for x(l1,l2)x\in(l_{1},l_{2}). Thus, we can derive from (2.2) that for x[l1,l2]x\in[l_{1},l_{2}]

V(0,x)\displaystyle-V(0,x) =V(t,x)V(0,x)=0ρωVtdt+ρωtVtdt\displaystyle=V(t_{*},x)-V(0,x)=\int_{0}^{\rho\omega}V_{t}\mathrm{d}t+\int_{\rho\omega}^{t_{*}}V_{t}\mathrm{d}t
p00ρωV(t,x)dt+dρωtl1l2J(xy)V(t,y)dydt+ρωtp1(t,x)V(t,x)dt0.\displaystyle\geq p_{0}\int_{0}^{\rho\omega}V(t,x)\mathrm{d}t+d\int_{\rho\omega}^{t_{*}}\int_{l_{1}}^{l_{2}}J(x-y)V(t,y)\mathrm{d}y\mathrm{d}t+\int_{\rho\omega}^{t_{*}}p_{1}(t,x)V(t,x)\mathrm{d}t\geq 0.

This means that v(0,x)0v(0,x)\equiv 0 in [l1,l2][l_{1},l_{2}], which is a contradiction. \Box

Lemma 2.2 (Existence and uniqueness).

Assume that (𝐉){\bf(J)} holds and <l1<l2<+-\infty<l_{1}<l_{2}<+\infty. Then for any nonnegative and bounded initial value u0(x)C([l1,l2])u_{0}(x)\in C([l_{1},l_{2}]), problem (1.1) admits a unique global solution uC1,0((iω,(i+ρ)ω]×[l1,l2])C1,0(((i+ρ)ω,(i+1)ω]×[l1,l2])u\in C^{1,0}((i\omega,(i+\rho)\omega]\times[l_{1},l_{2}])\cap C^{1,0}(((i+\rho)\omega,(i+1)\omega]\times[l_{1},l_{2}]) for i+i\in\mathbb{Z}_{+}. Moreover, u(t,x)>0u(t,x)>0 for t>0t>0 and x(l1,l2)x\in(l_{1},l_{2}), if u0(x)>0u_{0}(x)>0 in (l1,l2)(l_{1},l_{2}).

Proof.

At first, we set

u^=eδtu0(x)\hat{u}=e^{-\delta t}u_{0}(x)

for t[0,ρω]t\in[0,\rho\omega]. Then u^C1,0((0,ρω]×[l1,l2])\hat{u}\in C^{1,0}((0,\rho\omega]\times[l_{1},l_{2}]) satisfies

{u^t=δu^,0<tρω,l1xl2,u^(0,x)=u0(x),l1xl2.\begin{cases}\hat{u}_{t}=-\delta\hat{u},&0<t\leq\rho\omega,\ l_{1}\leq x\leq l_{2},\\ \hat{u}(0,x)=u_{0}(x),&l_{1}\leq x\leq l_{2}.\end{cases}

Consider the following problem

{ut=dl1l2J(xy)u(t,y)dydu(t,x)+u(abu),ρω<tω,x(l1,l2),u(ρω,x)=eδρωu0(x),x[l1,l2].\begin{cases}\displaystyle u_{t}=d\int_{l_{1}}^{l_{2}}J(x-y)u(t,y)\mathrm{d}y-du(t,x)+u(a-bu),&\rho\omega<t\leq\omega,\ x\in(l_{1},l_{2}),\\ u(\rho\omega,x)=e^{-\delta\rho\omega}u_{0}(x),&x\in[l_{1},l_{2}].\end{cases} (2.3)

Then one can apply the Banach’s fixed theorem and comparison argument (see [1]) to conclude that (2.3) has a unique solution u¯(t,x)C1,0((ρω,ω]×[l1,l2])\bar{u}(t,x)\in C^{1,0}((\rho\omega,\omega]\times[l_{1},l_{2}]). Moreover, by the Maximum principle and comparison argument, we have that

0<u¯(t,x)max{ab,maxh0xh0u0(x)}fort(ρω,ω],x(l1,l2).0<\bar{u}(t,x)\leq\max\left\{\frac{a}{b},\max_{-h_{0}\leq x\leq h_{0}}u_{0}(x)\right\}\ \mathrm{for}\ t\in(\rho\omega,\omega],x\in(l_{1},l_{2}).

Define

u(t,x)={u^(t,x)in[0,ρω]×[l1,l2],u¯(t,x)in[ρω,ω]×[l1,l2].u(t,x)=\left\{\begin{aligned} &\hat{u}(t,x)\ \mathrm{in}\ [0,\rho\omega]\times[l_{1},l_{2}],\\ &\bar{u}(t,x)\ \mathrm{in}\ [\rho\omega,\omega]\times[l_{1},l_{2}].\end{aligned}\right.

We have that uu^C1,0((0,ρω]×[l1,l2])C1,0((ρω,ω]×[l1,l2])u\in\hat{u}\in C^{1,0}((0,\rho\omega]\times[l_{1},l_{2}])\cap C^{1,0}((\rho\omega,\omega]\times[l_{1},l_{2}]).

Based on the above obtained function uu, we let

u1(t,x)=eδ(tω)u(ω,x)u_{1}(t,x)=e^{-\delta(t-\omega)}u(\omega,x)

for ωt(1+ρ)ω\omega\leq t\leq(1+\rho)\omega. Then u1C1,0((ω,(1+ρ)ω]×[l1,l2])u_{1}\in C^{1,0}((\omega,(1+\rho)\omega]\times[l_{1},l_{2}]) satisfies

{u1,t=δu1,ω<t(1+ρ)ω,l1xl2,u1(ω,x)=u(ω,x),l1xl2.\begin{cases}u_{1,t}=-\delta u_{1},&\omega<t\leq(1+\rho)\omega,\ l_{1}\leq x\leq l_{2},\\ u_{1}(\omega,x)=u(\omega,x),&l_{1}\leq x\leq l_{2}.\end{cases}

Likewise, the nonlocal dispersal problem

{ut=dl1l2J(xy)u(t,y)dydu(t,x)+u(abu),(1+ρ)ω<t2ω,x(l1,l2),u((1+ρ)ω,x)=eδρωu(ω,x),x[l1,l2]\begin{cases}\displaystyle u_{t}=d\int_{l_{1}}^{l_{2}}J(x-y)u(t,y)\mathrm{d}y-du(t,x)+u(a-bu),&(1+\rho)\omega<t\leq 2\omega,\ x\in(l_{1},l_{2}),\\ u((1+\rho)\omega,x)=e^{-\delta\rho\omega}u(\omega,x),&x\in[l_{1},l_{2}]\end{cases}

has a unique solution u¯1C1,0(((1+ρ)ω,2ω]×[l1,l2])\bar{u}_{1}\in C^{1,0}(((1+\rho)\omega,2\omega]\times[l_{1},l_{2}]), in which

0<u¯1(t,x)max{ab,maxh0xh0u0(x)}fort((1+ρ)ω,2ω],x(l1,l2).0<\bar{u}_{1}(t,x)\leq\max\left\{\frac{a}{b},\max_{-h_{0}\leq x\leq h_{0}}u_{0}(x)\right\}\ \mathrm{for}\ t\in((1+\rho)\omega,2\omega],x\in(l_{1},l_{2}).

Define

u(t,x)={u(t,x)in[0,ω]×[l1,l2],u1(t,x)in[ω,(1+ρ)ω]×[l1,l2],u¯1(t,x)in[(1+ρ)ω,2ω]×[l1,l2].u(t,x)=\left\{\begin{aligned} &u(t,x)\ \mathrm{in}\ [0,\omega]\times[l_{1},l_{2}],\\ &u_{1}(t,x)\ \mathrm{in}\ [\omega,(1+\rho)\omega]\times[l_{1},l_{2}],\\ &\bar{u}_{1}(t,x)\ \mathrm{in}\ [(1+\rho)\omega,2\omega]\times[l_{1},l_{2}].\end{aligned}\right.

Then it holds that uC1,0((iω,(i+ρ)ω]×[l1,l2])C1,0(((i+ρ)ω,(i+1)ω]×[l1,l2])u\in C^{1,0}((i\omega,(i+\rho)\omega]\times[l_{1},l_{2}])\cap C^{1,0}(((i+\rho)\omega,(i+1)\omega]\times[l_{1},l_{2}]) for i=0,1i=0,1.

By repeating the above procedure, we therefore obtain the existence and uniqueness of the solution (u,g,h)(u,g,h) of (1.1). \Box

3 Global dynamics

In this subsection, we first establish the periodic upper-lower solutions method for model (1.1). Using this method, we can consider the long time behavior of model (1.1).

3.1 The method of periodic upper-lower solutions

Following Hess [11], we can define the upper-lower solutions of (1.6) as follows.

Definition 3.1.

A bounded and continuous function u~(t,x)\tilde{u}(t,x) is called an upper-solution of (1.6) if u~(t,x)C1,0((iω,(i+ρ)ω]×[l1,l2])C1,0(((i+ρ)ω,(i+1)ω]×[l1,l2])\tilde{u}(t,x)\in C^{1,0}((i\omega,(i+\rho)\omega]\times[l_{1},l_{2}])\cap C^{1,0}(((i+\rho)\omega,(i+1)\omega]\times[l_{1},l_{2}]) satisfies

{u~tδu~,iω<t(i+ρ)ω,l1xl2,u~tdl1l2J(xy)u~(t,y)dydu~(t,x)+u~(abu~),(i+ρ)ω<t(i+1)ω,l1xl2,u~(0,x)u~(ω,x),x[l1,l2].\begin{cases}\tilde{u}_{t}\geq-\delta\tilde{u},&i\omega<t\leq(i+\rho)\omega,\ l_{1}\leq x\leq l_{2},\\ \displaystyle\tilde{u}_{t}\geq d\int_{l_{1}}^{l_{2}}J(x-y)\tilde{u}(t,y)\mathrm{d}y-d\tilde{u}(t,x)+\tilde{u}(a-b\tilde{u}),&(i+\rho)\omega<t\leq(i+1)\omega,\ l_{1}\leq x\leq l_{2},\\ \tilde{u}(0,x)\geq\tilde{u}(\omega,x),&x\in[l_{1},l_{2}].\end{cases} (3.1)

for i+i\in\mathbb{Z}_{+}. Meanwhile, the function u^(t,x)C1,0((iω,(i+ρ)ω]×[l1,l2])C1,0(((i+ρ)ω,(i+1)ω]×[l1,l2])\hat{u}(t,x)\in C^{1,0}((i\omega,(i+\rho)\omega]\times[l_{1},l_{2}])\cap C^{1,0}(((i+\rho)\omega,(i+1)\omega]\times[l_{1},l_{2}]) is called a lower-solution of (1.6) if the inequalities in (3.1) are reversed.

Similarly, we can define the upper-solution (resp. lower-solution) of (1.1) by replacing the inequality u~(0,x)u~(ω,x)\tilde{u}(0,x)\geq\tilde{u}(\omega,x) in (3.1) as u~(0,x)u~0(x)\tilde{u}(0,x)\geq\tilde{u}_{0}(x) (resp. u^(0,x)u^0(x)\hat{u}(0,x)\leq\hat{u}_{0}(x)). We say that a pair of upper-lower solution u~\tilde{u} and u^\hat{u} are ordered if u~(t,x)u^(t,x)\tilde{u}(t,x)\geq\hat{u}(t,x) in [0,+)×[l1,l2][0,+\infty)\times[l_{1},l_{2}].

Using the semigroup theory, we have the following result.

Lemma 3.2.

Let D(t),a¯(t)D(t),\bar{a}(t) and b¯(t)\bar{b}(t) be defined as in (1.4). Assume that u(t,x)u(t,x) is bounded for (t,x)[0,+]×[l1,l2](t,x)\in[0,+\infty]\times[l_{1},l_{2}]. Then u(t,x)u(t,x) is a solution of (1.1) if and only if

u(t,x)\displaystyle u(t,x) =u(0,x)+0t[D(s)(l1l2J(xy)u(s,y)dyu(s,x))\displaystyle=u(0,x)+\int_{0}^{t}\bigg{[}D(s)\bigg{(}\int_{l_{1}}^{l_{2}}J(x-y)u(s,y)\mathrm{d}y-u(s,x)\bigg{)} (3.2)
+u(s,x)[a¯(s)b¯(s)u(s,x)]]ds,\displaystyle\phantom{=}+u(s,x)[\bar{a}(s)-\bar{b}(s)u(s,x)]\bigg{]}\mathrm{d}s, t>0,x[l1,l2].\displaystyle t>0,\ x\in[l_{1},l_{2}].
Proof.

It follows from the semigroup method [17], we have that

u(t,x)=etu(0,x)\displaystyle u(t,x)=e^{-t}u(0,x) (3.3)
+0te(ts)[D(s)(l1l2J(xy)u(s,y)dyu(s,x))+u(s,x)+u(s,x)[a¯(s)b¯(s)u(s,x)]]ds,\displaystyle\phantom{==}+\int_{0}^{t}e^{-(t-s)}\bigg{[}D(s)\bigg{(}\int_{l_{1}}^{l_{2}}J(x-y)u(s,y)\mathrm{d}y-u(s,x)\bigg{)}+u(s,x)+u(s,x)[\bar{a}(s)-\bar{b}(s)u(s,x)]\bigg{]}\mathrm{d}s,

which implies

0tu(s,x)ds=(1et)u(0,x)+I1[u](t,x),\int_{0}^{t}u(s,x)\mathrm{d}s=(1-e^{-t})u(0,x)+I_{1}[u](t,x), (3.4)

where

I1[u](t,x)\displaystyle I_{1}[u](t,x) =0t0se(sz)[D(z)(l1l2J(xy)u(z,y)dyu(z,x))+u(z,x)[1+a¯(z)b¯(z)u(z,x)]]dzds\displaystyle=\int_{0}^{t}\int_{0}^{s}e^{-(s-z)}\bigg{[}D(z)\bigg{(}\int_{l_{1}}^{l_{2}}J(x-y)u(z,y)\mathrm{d}y-u(z,x)\bigg{)}+u(z,x)[1+\bar{a}(z)-\bar{b}(z)u(z,x)]\bigg{]}\mathrm{d}z\mathrm{d}s
=0tzte(sz)[D(z)(l1l2J(xy)u(z,y)dyu(z,x))+u(z,x)[1+a¯(z)b¯(z)u(z,x)]]dsdz\displaystyle=\int_{0}^{t}\int_{z}^{t}e^{-(s-z)}\bigg{[}D(z)\bigg{(}\int_{l_{1}}^{l_{2}}J(x-y)u(z,y)\mathrm{d}y-u(z,x)\bigg{)}+u(z,x)[1+\bar{a}(z)-\bar{b}(z)u(z,x)]\bigg{]}\mathrm{d}s\mathrm{d}z
+0t(1est)[D(s)(l1l2J(xy)u(s,y)dyu(s,x))+u(s,x)[1+a¯(s)b¯(s)u(s,x)]]ds.\displaystyle\phantom{=\ }+\int_{0}^{t}(1-e^{s-t})\bigg{[}D(s)\bigg{(}\int_{l_{1}}^{l_{2}}J(x-y)u(s,y)\mathrm{d}y-u(s,x)\bigg{)}+u(s,x)[1+\bar{a}(s)-\bar{b}(s)u(s,x)]\bigg{]}\mathrm{d}s.

Therefore, (3.2) can be derived from (3.3) and (3.4). On the other hand, if uu satisfies (3.2), then we can also show that (3.3) holds. \Box

Similarly, we have the following result for (1.6).

Lemma 3.3.

Assume that u(t,x)u(t,x) is bounded for (t,x)[0,+]×[l1,l2](t,x)\in[0,+\infty]\times[l_{1},l_{2}]. Then u(t,x)u(t,x) is a solution of (1.6) if and only if

{u(t,x)=u(0,x)+0t[D(s)(l1l2J(xy)u(s,y)dyu(s,x))+u(s,x)[a¯(s)b¯(s)u(s,x)]]ds,t>0,x[l1,l2],u(t,x)=u(t+ω,x),t0,x[l1,l2].\begin{cases}\displaystyle u(t,x)=u(0,x)+\int_{0}^{t}\bigg{[}D(s)\bigg{(}\int_{l_{1}}^{l_{2}}J(x-y)u(s,y)\mathrm{d}y-u(s,x)\bigg{)}&\\ \displaystyle\phantom{=====}+u(s,x)[\bar{a}(s)-\bar{b}(s)u(s,x)]\bigg{]}\mathrm{d}s,&t>0,\ x\in[l_{1},l_{2}],\\ u(t,x)=u(t+\omega,x),&t\geq 0,\ x\in[l_{1},l_{2}].\end{cases} (3.5)
Corollary 3.4.

Assume that u(t,x)u(t,x) is bounded for (t,x)[0,+]×[l1,l2](t,x)\in[0,+\infty]\times[l_{1},l_{2}]. Then u(t,x)u(t,x) is a solution of (1.6) if and only if

{u(t,x)=eCtu(0,x)+0teC(ts)[D(s)(l1l2J(xy)u(s,y)dyu(s,x))+u(s,x)[C+a¯(s)b¯(s)u(s,x)]]ds,t>0,x[l1,l2],u(t,x)=u(t+ω,x),t0,x[l1,l2],\begin{cases}\displaystyle u(t,x)=e^{-Ct}u(0,x)+\int_{0}^{t}e^{-C(t-s)}\bigg{[}D(s)\bigg{(}\int_{l_{1}}^{l_{2}}J(x-y)u(s,y)\mathrm{d}y-u(s,x)\bigg{)}&\\ \displaystyle\phantom{=====}+u(s,x)[C+\bar{a}(s)-\bar{b}(s)u(s,x)]\bigg{]}\mathrm{d}s,&t>0,\ x\in[l_{1},l_{2}],\\ u(t,x)=u(t+\omega,x),&t\geq 0,\ x\in[l_{1},l_{2}],\end{cases} (3.6)

where CC is a constant.

The following conclusion establishes a method of periodic upper-lower solutions.

Theorem 3.5.

Assume that (𝐉){\bf(J)} holds and u0(x)C([l1,l2])u_{0}(x)\in C([l_{1},l_{2}]) is bounded. Let u(t,x)u(t,x) be the unique solution to (1.1) and u~(t,x),u^(t,x)\tilde{u}(t,x),\hat{u}(t,x) be a pair of ordered and bounded upper-lower solutions to (1.6) satisfying

u^(0,x)u0(x)u~(0,x)on[l1,l2].\hat{u}(0,x)\leq u_{0}(x)\leq\tilde{u}(0,x)\ \ \mathrm{on}\ [l_{1},l_{2}].

Then the time periodic problem (1.6) admits a minimal solution u¯C1,0((iω,(i+ρ)ω]×[l1,l2])C1,0(((i+ρ)ω,(i+1)ω]×[l1,l2])\underline{u}\in C^{1,0}((i\omega,(i+\rho)\omega]\times[l_{1},l_{2}])\cap C^{1,0}(((i+\rho)\omega,(i+1)\omega]\times[l_{1},l_{2}]) and a maximal solution u¯C1,0((iω,(i+ρ)ω]×[l1,l2])C1,0(((i+ρ)ω,(i+1)ω]×[l1,l2])\overline{u}\in C^{1,0}((i\omega,(i+\rho)\omega]\times[l_{1},l_{2}])\cap C^{1,0}(((i+\rho)\omega,(i+1)\omega]\times[l_{1},l_{2}]) (iZ+)(i\in Z_{+}) satisfying

u^(t,x)u¯(t,x)lim¯nu(t+nω,x)lim¯nu(t+nω,x)u¯(t,x)u~(t,x)fort0,x[l1,l2].\hat{u}(t,x)\leq\underline{u}(t,x)\leq\varliminf_{n\to\infty}u(t+n\omega,x)\leq\varlimsup_{n\to\infty}u(t+n\omega,x)\leq\overline{u}(t,x)\leq\tilde{u}(t,x)\ \ \mathrm{for}\ t\geq 0,x\in[l_{1},l_{2}].
Proof.

For notational convenience, denote Q=(0,+)×[l1,l2]Q=(0,+\infty)\times[l_{1},l_{2}] and Ju(t,x)=l1l2J(xy)u(t,y)dyJ*u(t,x)=\int_{l_{1}}^{l_{2}}J(x-y)u(t,y)\mathrm{d}y for uC(Q¯)u\in C(\overline{Q}). Set

I=[u^L(Q)u~L(Q),u^L(Q)+u~L(Q)].I=\Big{[}-\|\hat{u}\|_{L^{\infty}(Q)}-\|\tilde{u}\|_{L^{\infty}(Q)},\|\hat{u}\|_{L^{\infty}(Q)}+\|\tilde{u}\|_{L^{\infty}(Q)}\Big{]}.

At first we take K>1K>1 such that for uIu\in I, u[a¯(t)b¯u]+Kuu[\bar{a}(t)-\bar{b}u]+Ku and a¯(t)u2(u^L(Q)+u~L(Q))b¯(t)u+Ku\bar{a}(t)u-2(\|\hat{u}\|_{L^{\infty}(Q)}+\|\tilde{u}\|_{L^{\infty}(Q)})\bar{b}(t)u+Ku are both increasing with respect to uu. Define

[u](t,x)=u(t,x)eKtu(0,x)0teK(ts)D(s)[Ju(s,x)u(s,x)]ds\mathcal{L}[u](t,x)=u(t,x)-e^{-Kt}u(0,x)-\int_{0}^{t}e^{-K(t-s)}D(s)\left[J*u(s,x)-u(s,x)\right]\mathrm{d}s

and

F(t,u)=u(t,x)[a¯(t)b¯(t)u(t,x)]+Ku(t,x).F(t,u)=u(t,x)[\bar{a}(t)-\bar{b}(t)u(t,x)]+Ku(t,x).

We construct two iterations sequences by the following linear nonlocal evolution equations

{[u¯n](t,x)=0teK(ts)F(s,u¯n1(s,x))ds,(t,x)Q,u¯n(0,x)=u¯n1(ω,x),x[l1,l2]\begin{cases}\mathcal{L}[\overline{u}^{n}](t,x)=\int_{0}^{t}e^{-K(t-s)}F(s,\overline{u}^{n-1}(s,x))\mathrm{d}s,&(t,x)\in Q,\\ \overline{u}^{n}(0,x)=\overline{u}^{n-1}(\omega,x),&x\in[l_{1},l_{2}]\end{cases} (3.7)

and

{[u¯n](t,x)=0teK(ts)F(s,u¯n1(s,x))ds,(t,x)Q,u¯n(0,x)=u¯n1(ω,x),x[l1,l2],\begin{cases}\mathcal{L}[\underline{u}^{n}](t,x)=\int_{0}^{t}e^{-K(t-s)}F(s,\underline{u}^{n-1}(s,x))\mathrm{d}s,&(t,x)\in Q,\\ \underline{u}^{n}(0,x)=\underline{u}^{n-1}(\omega,x),&x\in[l_{1},l_{2}],\end{cases} (3.8)

where n1,u¯0(t,x)=u~(t,x)n\geq 1,\overline{u}^{0}(t,x)=\tilde{u}(t,x) and u¯0(t,x)=u^(t,x)\underline{u}^{0}(t,x)=\hat{u}(t,x). We can check that a sufficiently large constant is an upper-solution of (3.7) (resp. (3.8)) since K>1K>1. Then an application of Banach’s fixed point theorem and comparison principle yields that the linear initial value problem (3.7) (resp. (3.8)) has a unique bounded global solution u¯n(t,x)\overline{u}^{n}(t,x) (resp. u¯n(t,x)\underline{u}^{n}(t,x)) for any n1n\geq 1. We complete the proof of this theorem by the following four steps.

Step 1. The sequences {u¯n}n=1\{\overline{u}^{n}\}_{n=1}^{\infty} and {u¯n}n=1\{\underline{u}^{n}\}_{n=1}^{\infty} satisfy

u^(t,x)u¯n(t,x)u¯n+1(t,x)u(t+nω,x)u¯n+1(t,x)u¯n(t,x)u~(t,x),(t,x)Q¯,\hat{u}(t,x)\leq\underline{u}^{n}(t,x)\leq\underline{u}^{n+1}(t,x)\leq u(t+n\omega,x)\leq\overline{u}^{n+1}(t,x)\leq\overline{u}^{n}(t,x)\leq\tilde{u}(t,x),\ \ (t,x)\in\overline{Q}, (3.9)

for n1n\geq 1.

Since u~(t,x)\tilde{u}(t,x) is a bounded upper-solution of (1.6) and u~(0,x)u0(x)\tilde{u}(0,x)\geq u_{0}(x), we see that u~(t,x)\tilde{u}(t,x) is also a bounded upper-solution of (1.1). Then by Lemma 2.1, we have u~(t,x)u(t,x)\tilde{u}(t,x)\geq u(t,x) in Q¯\overline{Q}. It follows from (3.7) and Corollary 3.4 that u¯1(t,x)\overline{u}^{1}(t,x) satisfies

{u¯t1(t,x)=D(t)[Ju¯1(t,x)u¯1(t,x)]+u~(t,x)[a¯(t)b¯(t)u~(t,x)]+K[u~(t,x)u¯1(t,x)],(t,x)Q,u¯1(0,x)=u~(ω,x),x[l1,l2].\begin{cases}\overline{u}_{t}^{1}(t,x)=D(t)\left[J*\overline{u}^{1}(t,x)-\overline{u}^{1}(t,x)\right]+\tilde{u}(t,x)[\bar{a}(t)-\bar{b}(t)\tilde{u}(t,x)]+K[\tilde{u}(t,x)-\overline{u}^{1}(t,x)],&(t,x)\in Q,\\ \overline{u}^{1}(0,x)=\tilde{u}(\omega,x),&x\in[l_{1},l_{2}].\end{cases} (3.10)

Set w1(t,x)=u¯0(t,x)u¯1(t,x)=u~(t,x)u¯1(t,x)w^{1}(t,x)=\overline{u}^{0}(t,x)-\overline{u}^{1}(t,x)=\tilde{u}(t,x)-\overline{u}^{1}(t,x). Since

{u~t(t,x)D(t)[Ju~(t,x)u~(t,x)]+u~(t,x)[a¯(t)b¯(t)u~(t,x)],(t,x)Q,u~(0,x)u~(ω,x),x[l1,l2],\begin{cases}\tilde{u}_{t}(t,x)\geq D(t)\left[J*\tilde{u}(t,x)-\tilde{u}(t,x)\right]+\tilde{u}(t,x)[\bar{a}(t)-\bar{b}(t)\tilde{u}(t,x)],&(t,x)\in Q,\\ \tilde{u}(0,x)\geq\tilde{u}(\omega,x),&x\in[l_{1},l_{2}],\end{cases}

there holds that

{wt1(t,x)D(t)[Jw1(t,x)w1(t,x)]Kw1(t,x),(t,x)Q,w1(0,x)0,x[l1,l2],\begin{cases}w^{1}_{t}(t,x)\geq D(t)\left[J*w^{1}(t,x)-w^{1}(t,x)\right]-Kw^{1}(t,x),&(t,x)\in Q,\\ w^{1}(0,x)\geq 0,&x\in[l_{1},l_{2}],\end{cases}

which together with Lemma 2.1 implies that w1(t,x)0w^{1}(t,x)\geq 0 and so

u¯1(t,x)u¯0(t,x)=u~(t,x)for(t,x)Q¯.\overline{u}^{1}(t,x)\leq\overline{u}^{0}(t,x)=\tilde{u}(t,x)\ \ \mathrm{for}\ (t,x)\in\overline{Q}.

By a similar manner for lower-solution u^(t,x)\hat{u}(t,x), we have

u(t,x)u^(t,x)andu¯1(t,x)u¯0(t,x)=u^(t,x)for(t,x)Q¯.u(t,x)\geq\hat{u}(t,x)\ \ \mathrm{and}\ \ \underline{u}^{1}(t,x)\geq\underline{u}^{0}(t,x)=\hat{u}(t,x)\ \ \mathrm{for}\ (t,x)\in\overline{Q}.

Now we let w2(t,x)=u¯1(t,x)u¯1(t,x)w^{2}(t,x)=\overline{u}^{1}(t,x)-\underline{u}^{1}(t,x). In view of u^(t,x)u(t,x)u~(t,x)\hat{u}(t,x)\leq u(t,x)\leq\tilde{u}(t,x) in Q¯\overline{Q}, by (3.7) and (3.8), we have w2(0,x)=u~(ω,x)u^(ω,x)0w^{2}(0,x)=\tilde{u}(\omega,x)-\hat{u}(\omega,x)\geq 0 and

wt2(t,x)\displaystyle w^{2}_{t}(t,x) =D(t)[Jw2(t,x)w2(t,x)]Kw2(t,x)\displaystyle=D(t)\left[J*w^{2}(t,x)-w^{2}(t,x)\right]-Kw^{2}(t,x)
+a¯(t)[u~(t,x)u^(t,x)]b¯(t)[u~2(t,x)u^2(t,x)]+K[u~(t,x)u^(t,x)]\displaystyle\phantom{=\ }+\bar{a}(t)[\tilde{u}(t,x)-\hat{u}(t,x)]-\bar{b}(t)[\tilde{u}^{2}(t,x)-\hat{u}^{2}(t,x)]+K[\tilde{u}(t,x)-\hat{u}(t,x)]
D(t)[Jw2(t,x)w2(t,x)]Kw2(t,x)inQ¯,\displaystyle\geq D(t)\left[J*w^{2}(t,x)-w^{2}(t,x)\right]-Kw^{2}(t,x)\ \ \mathrm{in}\ \overline{Q},

where the conditions satisfied by KK are used here. It follows from Lemma 2.1 that w2(t,x)0w^{2}(t,x)\geq 0 and hence u¯1(t,x)u¯1(t,x)\overline{u}^{1}(t,x)\geq\underline{u}^{1}(t,x) in Q¯\overline{Q}.

Next, we show that u¯1(t,x)u(t+ω)u¯1(t,x)\underline{u}^{1}(t,x)\leq u(t+\omega)\leq\overline{u}^{1}(t,x) in Q¯\overline{Q}. Let w3(t,x)=u¯1(t,x)u(t+ω,x)w^{3}(t,x)=\overline{u}^{1}(t,x)-u(t+\omega,x). Notice that u(t+ω,x)u(t+\omega,x) satisfies

ut(t+ω,x)\displaystyle u_{t}(t+\omega,x) =D(t+ω)[Ju~(t+ω,x)u~(t+ω,x)]+u~(t+ω,x)[a¯(t+ω)b¯(t+ω)u~(t+ω,x)]\displaystyle=D(t+\omega)\left[J*\tilde{u}(t+\omega,x)-\tilde{u}(t+\omega,x)\right]+\tilde{u}(t+\omega,x)[\bar{a}(t+\omega)-\bar{b}(t+\omega)\tilde{u}(t+\omega,x)]
=D(t)[Ju~(t+ω,x)u~(t+ω,x)]+u~(t+ω,x)[a¯(t)b¯(t)u~(t+ω,x)]inQ¯.\displaystyle=D(t)\left[J*\tilde{u}(t+\omega,x)-\tilde{u}(t+\omega,x)\right]+\tilde{u}(t+\omega,x)[\bar{a}(t)-\bar{b}(t)\tilde{u}(t+\omega,x)]\ \ \mathrm{in}\ \overline{Q}. (3.11)

Combining (3.10) and (3.11), there holds that w3(0,x)=u¯1(0,x)u(ω,x)=u~(ω,x)u(ω,x)0w^{3}(0,x)=\overline{u}^{1}(0,x)-u(\omega,x)=\tilde{u}(\omega,x)-u(\omega,x)\geq 0 for x[l1,l2]x\in[l_{1},l_{2}] and

wt3(t,x)\displaystyle w^{3}_{t}(t,x) =D(t)[Jw3(t,x)w3(t,x)]+u~(t,x)[a¯(t)b¯(t)u~(t,x)]+K[u~(t,x)u¯1(t,x)]\displaystyle=D(t)\left[J*w^{3}(t,x)-w^{3}(t,x)\right]+\tilde{u}(t,x)\big{[}\bar{a}(t)-\bar{b}(t)\tilde{u}(t,x)\big{]}+K\big{[}\tilde{u}(t,x)-\overline{u}^{1}(t,x)\big{]}
u(t+ω)[a¯(t)b¯(t)u(t+ω,x)]\displaystyle\phantom{=\ }-u(t+\omega)\big{[}\bar{a}(t)-\bar{b}(t)u(t+\omega,x)\big{]}
=D(t)[Jw3(t,x)w3(t,x)]+[a¯(t)b¯(t)(u¯1(t,x)+u(t+ω,x))]w3(t,x)\displaystyle=D(t)\left[J*w^{3}(t,x)-w^{3}(t,x)\right]+\big{[}\bar{a}(t)-\bar{b}(t)\big{(}\overline{u}^{1}(t,x)+u(t+\omega,x)\big{)}\big{]}w^{3}(t,x)
+a¯(t)[u~(t,x)u¯1(t,x)]b¯(t)[u~(t,x)+u¯1(t,x)][u~(t,x)u¯1(t,x)]+K[u~(t,x)u¯1(t,x)].\displaystyle\phantom{=\ }+\bar{a}(t)\big{[}\tilde{u}(t,x)-\overline{u}^{1}(t,x)\big{]}-\bar{b}(t)\big{[}\tilde{u}(t,x)+\overline{u}^{1}(t,x)\big{]}\big{[}\tilde{u}(t,x)-\overline{u}^{1}(t,x)\big{]}+K\big{[}\tilde{u}(t,x)-\overline{u}^{1}(t,x)\big{]}.

Since u~(t,x)u¯1(t,x)u¯1(t,x)u^(t,x)\tilde{u}(t,x)\geq\overline{u}^{1}(t,x)\geq\underline{u}^{1}(t,x)\geq\hat{u}(t,x), by the condition satisfied by KK, we see that

a¯(t)[u~(t,x)u¯1(t,x)]b¯(t)[u~(t,x)+u¯1(t,x)][u~(t,x)u¯1(t,x)]+K[u~(t,x)u¯1(t,x)]0inQ¯,\bar{a}(t)\big{[}\tilde{u}(t,x)-\overline{u}^{1}(t,x)\big{]}-\bar{b}(t)\big{[}\tilde{u}(t,x)+\overline{u}^{1}(t,x)\big{]}\big{[}\tilde{u}(t,x)-\overline{u}^{1}(t,x)\big{]}+K\big{[}\tilde{u}(t,x)-\overline{u}^{1}(t,x)\big{]}\geq 0\ \ \mathrm{in}\ \overline{Q},

which leads to that

wt3(t,x)D(t)[Jw3(t,x)w3(t,x)]+[a¯(t)b¯(t)(u¯1(t,x)+u(t+ω,x))]w3(t,x)inQ¯.w^{3}_{t}(t,x)\geq D(t)\left[J*w^{3}(t,x)-w^{3}(t,x)\right]+\big{[}\bar{a}(t)-\bar{b}(t)\big{(}\overline{u}^{1}(t,x)+u(t+\omega,x)\big{)}\big{]}w^{3}(t,x)\ \ \mathrm{in}\ \overline{Q}.

Due to the boundedness of u1(t,x)u^{1}(t,x) and u(t+ω,x)u(t+\omega,x), we can derive from Lemma 2.1 that w3(t,x)0w^{3}(t,x)\geq 0 and then u¯1(t,x)u(t+ω,x)\overline{u}^{1}(t,x)\geq u(t+\omega,x) in Q¯\overline{Q}. Similarly, we also have u¯1(t,x)u(t+ω,x)\underline{u}^{1}(t,x)\leq u(t+\omega,x) in Q¯\overline{Q}. Therefore, the following inequalities are true:

u^(t,x)u¯1(t,x)u(t+ω,x)u¯1(t,x)u~(t,x),(t,x)Q¯.\hat{u}(t,x)\leq\underline{u}^{1}(t,x)\leq u(t+\omega,x)\leq\overline{u}^{1}(t,x)\leq\tilde{u}(t,x),\ \ (t,x)\in\overline{Q}.

An induction argument implies the monotone property (3.9) immediately. Since {u¯n}\{\overline{u}^{n}\} and {u¯n}\{\underline{u}^{n}\} monotonically bounded sequences, there exist two bounded function u¯(t,x)\overline{u}(t,x) and u¯(t,x)\underline{u}(t,x) such that

limnu¯n(t,x)=u¯(t,x)andlimnu¯n(t,x)=u¯(t,x)\lim_{n\to\infty}\overline{u}^{n}(t,x)=\overline{u}(t,x)\ \mathrm{and}\ \lim_{n\to\infty}\underline{u}^{n}(t,x)=\underline{u}(t,x)

and

u¯(t,x)lim¯nu(t+nω,x)lim¯nu(t+nω,x)u¯(t,x)\underline{u}(t,x)\leq\varliminf_{n\to\infty}u(t+n\omega,x)\leq\varlimsup_{n\to\infty}u(t+n\omega,x)\leq\overline{u}(t,x)

for each (t,x)Q¯(t,x)\in\overline{Q}. Thus from the dominated convergence theorem, we obtain that u¯(t,x)\overline{u}(t,x) and u¯(t,x)\underline{u}(t,x) are bounded solutions of the initial value problem

{ut(t,x)=D(t)[Ju(t,x)u(t,x)]+u(t,x)[a¯(t)b¯(t)u(t,x)],(t,x)Q,u(0,x)=u(ω,x),x[l1,l2].\begin{cases}u_{t}(t,x)=D(t)\left[J*u(t,x)-u(t,x)\right]+u(t,x)[\bar{a}(t)-\bar{b}(t)u(t,x)],&(t,x)\in Q,\\ u(0,x)=u(\omega,x),&x\in[l_{1},l_{2}].\end{cases}

Step 2. We prove that u¯(t,x),u¯(t,x)C1,0((iω,(i+ρ)ω]×[l1,l2])C1,0(((i+ρ)ω,(i+1)ω]×[l1,l2])\overline{u}(t,x),\underline{u}(t,x)\in C^{1,0}((i\omega,(i+\rho)\omega]\times[l_{1},l_{2}])\cap C^{1,0}(((i+\rho)\omega,(i+1)\omega]\times[l_{1},l_{2}]) for all i+i\in\mathbb{Z}_{+}.

Since u¯(t,x)=0\overline{u}(t,x)=0 in QQ^{\prime} and

u¯(t,x)=u¯(0,x)+0t[D(s)[Ju¯(s,x)u¯(s,x)]+u¯(s,x)[a¯(s)b¯(s)u¯(s,x)]]ds,\overline{u}(t,x)=\overline{u}(0,x)+\int_{0}^{t}\Big{[}D(s)\big{[}J*\overline{u}(s,x)-\overline{u}(s,x)\big{]}+\overline{u}(s,x)\big{[}\bar{a}(s)-\bar{b}(s)\overline{u}(s,x)\big{]}\Big{]}\mathrm{d}s,

it holds that

u¯(t+ε,x)u¯(t,x)=tt+ε[D(s)[Ju¯(s,x)u¯(s,x)]+u¯(s,x)[a¯(s)b¯(s)u¯(s,x)]]ds\overline{u}(t+\varepsilon,x)-\overline{u}(t,x)=\int_{t}^{t+\varepsilon}\Big{[}D(s)\big{[}J*\overline{u}(s,x)-\overline{u}(s,x)\big{]}+\overline{u}(s,x)\big{[}\bar{a}(s)-\bar{b}(s)\overline{u}(s,x)\big{]}\Big{]}\mathrm{d}s

for each fixed (t,x)Q¯(t,x)\in\overline{Q}, where |ε|>0|\varepsilon|>0 is sufficiently small. Then, we have

|u¯(t+ε,x)u¯(t,x)|tt+ε|[D(s)[Ju¯(s,x)u¯(s,x)]+u¯(s,x)[a¯(s)b¯(s)u¯(s,x)]]|dsC|ε|,|\overline{u}(t+\varepsilon,x)-\overline{u}(t,x)|\leq\int_{t}^{t+\varepsilon}\left|\Big{[}D(s)\big{[}J*\overline{u}(s,x)-\overline{u}(s,x)\big{]}+\overline{u}(s,x)\big{[}\bar{a}(s)-\bar{b}(s)\overline{u}(s,x)\big{]}\Big{]}\right|\mathrm{d}s\leq C|\varepsilon|,

where C>0C>0 is a constant independent of ε\varepsilon. This means that u¯(t,x)\overline{u}(t,x) is continuous in t[0,+)t\in[0,+\infty). The continuity of u¯(t,x)\overline{u}(t,x) in x[l1,l2]x\in[l_{1},l_{2}] follows from the argument in [1].

For any t0(0,+)t_{0}\in(0,+\infty), there must exist a unique i0+i_{0}\in\mathbb{Z}_{+} such that either t0(i0ω,(i0+ρ)ω]t_{0}\in(i_{0}\omega,(i_{0}+\rho)\omega], or t0((i0+ρ)ω,(i0+1)ω]t_{0}\in((i_{0}+\rho)\omega,(i_{0}+1)\omega]. When t0,t0+ε(i0ω,(i0+ρ)ω]t_{0},t_{0}+\varepsilon\in(i_{0}\omega,(i_{0}+\rho)\omega], we see that

limε0u¯(t+ε,x)u¯(t,x)ε\displaystyle\lim_{\varepsilon\to 0}\dfrac{\overline{u}(t+\varepsilon,x)-\overline{u}(t,x)}{\varepsilon} =limε01εtt+ε[δu¯(s,x)]ds\displaystyle=\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\int_{t}^{t+\varepsilon}\Big{[}-\delta\overline{u}(s,x)\Big{]}\mathrm{d}s
=δlimε0u¯(t+θε,x)(0<θ<1)\displaystyle=-\delta\lim_{\varepsilon\to 0}\overline{u}(t+\theta\varepsilon,x)\ (0<\theta<1)
=δu¯(t,x).\displaystyle=-\delta\overline{u}(t,x).

When t0,t0+ε((i0+ρ)ω,(i0+1)ω]t_{0},t_{0}+\varepsilon\in((i_{0}+\rho)\omega,(i_{0}+1)\omega], we have

limε0u¯(t+ε,x)u¯(t,x)ε\displaystyle\lim_{\varepsilon\to 0}\dfrac{\overline{u}(t+\varepsilon,x)-\overline{u}(t,x)}{\varepsilon} =limε01εtt+ε[d[Ju¯(s,x)u¯(s,x)]+u¯(s,x)[abu¯(s,x)]]ds\displaystyle=\lim_{\varepsilon\to 0}\frac{1}{\varepsilon}\int_{t}^{t+\varepsilon}\Big{[}d\big{[}J*\overline{u}(s,x)-\overline{u}(s,x)\big{]}+\overline{u}(s,x)\big{[}a-b\overline{u}(s,x)\big{]}\Big{]}\mathrm{d}s
=limε0d[Ju¯(t+θε,x)u¯(t+θε,x)]+u¯(t+θε,x)[abu¯(t+θε,x)](0<θ<1)\displaystyle=\lim_{\varepsilon\to 0}d\big{[}J*\overline{u}(t+\theta\varepsilon,x)-\overline{u}(t+\theta\varepsilon,x)\big{]}+\overline{u}(t+\theta\varepsilon,x)\big{[}a-b\overline{u}(t+\theta\varepsilon,x)\big{]}\ (0<\theta<1)
=d[Ju¯(t,x)u¯(t,x)]+u¯(t,x)[abu¯(t,x)].\displaystyle=d\big{[}J*\overline{u}(t,x)-\overline{u}(t,x)\big{]}+\overline{u}(t,x)\big{[}a-b\overline{u}(t,x)\big{]}.

Hence, u¯(t,x)C1,0((iω,(i+ρ)ω]×[l1,l2])C1,0(((i+ρ)ω,(i+1)ω]×[l1,l2])\overline{u}(t,x)\in C^{1,0}((i\omega,(i+\rho)\omega]\times[l_{1},l_{2}])\cap C^{1,0}(((i+\rho)\omega,(i+1)\omega]\times[l_{1},l_{2}]) for all i0i\geq 0 due to the arbitrariness of t0t_{0}.

The proof for u¯(t,x)\underline{u}(t,x) is similar.

Step 3. We prove that u¯(t,x)=u¯(t+ω,x)\overline{u}(t,x)=\overline{u}(t+\omega,x) and u¯(t,x)=u¯(t+ω,x)\underline{u}(t,x)=\underline{u}(t+\omega,x) for all t0t\geq 0.

Let v(t,x)=u¯(t+ω,x)u¯(t,x)v(t,x)=\overline{u}(t+\omega,x)-\overline{u}(t,x). Note that D(t),a¯(t)D(t),\bar{a}(t) and b¯(t)\bar{b}(t) are all ω\omega-periodic in tt. Then

vt(t,x)=D(t)[ΩJ(xy)v(t,y)dyv(t,x)]+a¯(t)v(t,x)b¯(t)[u¯(t+ω,x)+u¯(t,x)]v(t,x).v_{t}(t,x)=D(t)\left[\int_{\Omega}J(x-y)v(t,y)\mathrm{d}y-v(t,x)\right]+\bar{a}(t)v(t,x)-\bar{b}(t)[\overline{u}(t+\omega,x)+\overline{u}(t,x)]v(t,x). (3.12)

Since v(0,x)=u¯(ω,x)u¯(0,x)=0v(0,x)=\overline{u}(\omega,x)-\overline{u}(0,x)=0, the uniqueness of solution of initial value problem (3.12) implies that v(t,x)0v(t,x)\equiv 0 in QQ, equivalently, u¯(t,x)\overline{u}(t,x) is ω\omega-periodic in tt.

Similarly, we can also prove that u¯(t,x)=u¯(t+ω,x)\underline{u}(t,x)=\underline{u}(t+\omega,x), and omit the details here.

Step 4. We show the maximality of u¯(t,x)\overline{u}(t,x) and minimality of u¯(t,x)\underline{u}(t,x). Notice that every ω\omega-periodic solution u(t,x)u^{*}(t,x) of (1.6) satisfies u^(t,x)u(t,x)u~(t,x)\hat{u}(t,x)\leq u^{*}(t,x)\leq\tilde{u}(t,x). Meanwhile, u(t,x)u^{*}(t,x) is a lower-solution as well as a upper-solution of (1.6). By choosing u~\tilde{u} and uu^{*} as a pair of upper-lower solutions to (1.6), there holds that u(t,x)u¯n(t,x)u~(t,x)u^{*}(t,x)\leq\overline{u}^{n}(t,x)\leq\tilde{u}(t,x) and hence u(t,x)u¯(t,x)u~(t,x)u^{*}(t,x)\leq\overline{u}(t,x)\leq\tilde{u}(t,x). On the other hand, if we take uu^{*} and u^\hat{u} as a pair of upper-lower solutions to (1.6), then u^(t,x)u¯(t,x)u(t,x)\hat{u}(t,x)\leq\underline{u}(t,x)\leq u^{*}(t,x). \Box

3.2 Proof of Theorems 1.1 and 1.2

In this subsection, we complete the proof of Theorems 1.1 and 1.2. Linearizing model (1.1) at zero, we obtain the time-periodic eigenvalue problem

{vt+δv=λv,iω<t(i+ρ)ω,l1xl2,vtd(Jvv)(t,x)+av=λv,(i+ρ)ω<t(i+1)ω,l1xl2.\begin{cases}v_{t}+\delta v=\lambda v,&i\omega<t\leq(i+\rho)\omega,\ l_{1}\leq x\leq l_{2},\\ \displaystyle v_{t}-d(J*v-v)(t,x)+av=\lambda v,&(i+\rho)\omega<t\leq(i+1)\omega,\ l_{1}\leq x\leq l_{2}.\end{cases} (3.13)

It is well known (see, e.g., [3, 5, 6]) that the time independent eigenvalue equation

d(Jϕϕ)(t,x)+aϕ(x)=σϕ(x),x[l1,l2].d(J*\phi-\phi)(t,x)+a\phi(x)=-\sigma\phi(x),\quad x\in[l_{1},l_{2}]. (3.14)

admits a principal eigenvalue σ1\sigma_{1}, which satisfies σ1<da\sigma_{1}<d-a. Moreover, from [4, Proposition 3.4], we see that

Proposition 3.6.

Assume that (𝐉){\bf(J)} holds and <l1<l2<+-\infty<l_{1}<l_{2}<+\infty. Then the following hold true:

  1. (1)

    σ1\sigma_{1} is strictly decreasing and continuous in :=l2l1\ell:=l_{2}-l_{1};

  2. (2)

    liml2ł1+σ1=a\lim_{l_{2}-\l_{1}\to+\infty}\sigma_{1}=-a;

  3. (3)

    liml2ł10+σ1=da\lim_{l_{2}-\l_{1}\to 0^{+}}\sigma_{1}=d-a.

Let ϕ1(x)\phi_{1}(x) be the positive eigenfunction of (3.14) associated with σ1\sigma_{1}. By defining

σ(t)={δ,t(iω,(i+ρ)ω],σ1,t((i+ρ)ω,(i+1)ω],\sigma(t)=\begin{cases}\delta,&t\in(i\omega,(i+\rho)\omega],\\ \sigma_{1},&t\in((i+\rho)\omega,(i+1)\omega],\end{cases}

we see that

D(t)[Jϕ1(x)ϕ1(x)]+a¯(t)ϕ1(x)=σ(t)ϕ1(x),t,xΩ¯.D(t)\left[J*\phi_{1}(x)-\phi_{1}(x)\right]+\bar{a}(t)\phi_{1}(x)=-\sigma(t)\phi_{1}(x),\ \ \forall t\in\mathbb{R},x\in\overline{\Omega}.

Set

φ(t,x)=exp[((1ρ)σ1+ρδ)t0tσ(s)ds]ϕ1(x).\varphi(t,x)=\exp\left[\big{(}(1-\rho)\sigma_{1}+\rho\delta\big{)}t-\int_{0}^{t}\sigma(s)\mathrm{d}s\right]\phi_{1}(x). (3.15)

Then there holds that

{φt+δφ=[(1ρ)σ1+ρδ]φ,iω<t(i+ρ)ω,l1xl2,φtd(Jφφ)(t,x)+aφ=[(1ρ)σ1+ρδ]φ,(i+ρ)ω<t(i+1)ω,l1xl2,φ(t,x)=φ(t+ω,x),t0,l1xl2.\begin{cases}\varphi_{t}+\delta\varphi=[(1-\rho)\sigma_{1}+\rho\delta]\varphi,&i\omega<t\leq(i+\rho)\omega,\ l_{1}\leq x\leq l_{2},\\ \displaystyle\varphi_{t}-d(J*\varphi-\varphi)(t,x)+a\varphi=[(1-\rho)\sigma_{1}+\rho\delta]\varphi,&(i+\rho)\omega<t\leq(i+1)\omega,\ l_{1}\leq x\leq l_{2},\\ \varphi(t,x)=\varphi(t+\omega,x),&t\geq 0,l_{1}\leq x\leq l_{2}.\end{cases}

This means that (1ρ)σ1+ρδ(1-\rho)\sigma_{1}+\rho\delta is a eigenvalue of (3.13) with the positive eigenfunction φ(t,x)\varphi(t,x). In the proof of Theorems 1.1, we will show that (1ρ)σ1+ρδ(1-\rho)\sigma_{1}+\rho\delta serves as a threshold which determines whether the species can persist.

Proof of Theorem 1.1.

Let λ1=(1ρ)σ1+ρδ\lambda_{1}=(1-\rho)\sigma_{1}+\rho\delta. we first consider two cases on the sign of λ1\lambda_{1}.

Case 1. Suppose that λ1<0\lambda_{1}<0.

One can easily check that a sufficiently large positive constant MM is a upper-solution of (1.1) as well as the upper-solution of (1.6). Following the comparison argument in Theorem 3.5, we see that for any (t,x)[0,ω]×[l1,l2](t,x)\in[0,\omega]\times[l_{1},l_{2}], u(t+nω,x;M)u(t+n\omega,x;M) is non-increasing with respect to nn. Then the function

u+(t,x):=limnu(t+nω,x;M),(t,x)[0,ω]×[l1,l2]u^{+}(t,x):=\lim_{n\to\infty}u(t+n\omega,x;M),\ \ (t,x)\in[0,\omega]\times[l_{1},l_{2}]

is well-defined and upper semi-continuous. On the other hand, let φ(t,x)\varphi(t,x) be defined as in (3.15). For any 0<ε10<\varepsilon\ll 1, by λ1<0\lambda_{1}<0, we see that εφ\varepsilon\varphi is a lower-solution of (1.1) as well as a lower-solution of (1.6). Again, by the comparison argument, u(t+nω,x;εφ(0,x))u(t+n\omega,x;\varepsilon\varphi(0,x)) is non-decreasing as nn increases for any (t,x)[0,ω]×[l1,l2](t,x)\in[0,\omega]\times[l_{1},l_{2}]. Thus, the function

u(t,x):=limnu(t+nω,x;εφ),(t,x)[0,ω]×[l1,l2]u^{-}(t,x):=\lim_{n\to\infty}u(t+n\omega,x;\varepsilon\varphi),\ \ (t,x)\in[0,\omega]\times[l_{1},l_{2}]

is well-defined and lower semi-continuous. Obviously, uu+u^{-}\leq u^{+}.

Next, we show u(t,x)u+(t,x)u^{-}(t,x)\equiv u^{+}(t,x). For this purpose, we define

γn:=inf{lnα:1αu(t+nω,x;M)u(t+nω,x;εφ(0,x))αu(t+nω,x;M),(t,x)[0,ω]×[l1,l2]}.\gamma_{n}:=\inf\left\{\ln\alpha:\frac{1}{\alpha}u(t+n\omega,x;M)\leq u(t+n\omega,x;\varepsilon\varphi(0,x))\leq\alpha u(t+n\omega,x;M),\ (t,x)\in[0,\omega]\times[l_{1},l_{2}]\right\}.

Since the sequence {u(+nω,;εφ(0,))}n\{u(\cdot+n\omega,\cdot;\varepsilon\varphi(0,\cdot))\}_{n} is non-decreasing and {u(+nω,;M)}n\{u(\cdot+n\omega,\cdot;M)\}_{n} is non-increasing, u(+nω,;εφ(0,))u(\cdot+n\omega,\cdot;\varepsilon\varphi(0,\cdot)) and u(+nω,;M)u(\cdot+n\omega,\cdot;M) will be closer to each other when nn decreases. Consequently, {γn}n\{\gamma_{n}\}_{n} is a non-increasing sequence, and then the limit γ:=limnγn\gamma_{*}:=\lim_{n\to\infty}\gamma_{n} exists. If γ>0\gamma_{*}>0, then by the comparison argument, we can construct some α>1\alpha_{*}>1 and 0<σ10<\sigma\ll 1 such that 1αu(+nω,;M)u(+nω,;εφ(0,))αu(+nω,;M)\frac{1}{\alpha_{*}}u(\cdot+n\omega,\cdot;M)\leq u(\cdot+n\omega,\cdot;\varepsilon\varphi(0,\cdot))\leq\alpha_{*}u(\cdot+n\omega,\cdot;M) and lnα<γnσ\ln\alpha_{*}<\gamma_{n}-\sigma for sufficiently large nn. This causes a contradiction with the definition of γ\gamma_{*}. Hence, γ=0\gamma_{*}=0 and the equality u+=uu^{+}=u^{-} follows.

Notice that u+u^{+} is upper semi-continuous and uu^{-} is lower semi-continuous. Then u:=u+u^{*}:=u^{+} is continuous and inf[0,ω]×[l1,l2]u>0\inf\limits_{[0,\omega]\times[l_{1},l_{2}]}u^{*}>0. Using Dini’s Theorem, we have limnu(+nω,;M)=limnu(+nω,;εφ(0,))=u\lim_{n\to\infty}u(\cdot+n\omega,\cdot;M)=\lim_{n\to\infty}u(\cdot+n\omega,\cdot;\varepsilon\varphi(0,\cdot))=u^{*} uniformly for (t,x)[0,ω]×[l1,l2](t,x)\in[0,\omega]\times[l_{1},l_{2}]. This also means that

u(t+ω,x;u(0,x))=limnu(t+ω,x;u(nω,;M))=limnu(t+(n+1)ω,x;M)=u(t,x).u(t+\omega,x;u^{*}(0,x))=\lim_{n\to\infty}u(t+\omega,x;u(n\omega,\cdot;M))=\lim_{n\to\infty}u(t+(n+1)\omega,x;M)=u^{*}(t,x).

This is, u(t,x;u(0,x))u(t,x;u^{*}(0,x)) is ω\omega-periodic in tt. The existence of time periodic positive solution of (1.6) is established.

By the above contraction argument, we can obtain the existence of the solutions of (1.6). The uniqueness follows directly from Theorem 3.5 and the above argument. To emphasize the dependence of u(t,x)u^{*}(t,x) on l1,l2l_{1},l_{2}, denote by u(l1,l2)(t,x)u_{(l_{1},l_{2})}^{*}(t,x) the unique time periodic positive solution of (1.6). Since

εφ(t,x)u(t,x;u0)M,(t,x)[0,ω]×[l1,l2]\varepsilon\varphi(t,x)\leq u(t,x;u_{0})\leq M,\ \ (t,x)\in[0,\omega]\times[l_{1},l_{2}]

for 0<ε10<\varepsilon\ll 1 and M1M\gg 1, the above contraction argument also implies that

limnu(t+nω,x;u0)=u(l1,l2)(t,x)\lim_{n\to\infty}u(t+n\omega,x;u_{0})=u_{(l_{1},l_{2})}^{*}(t,x)

uniformly in C([0,ω]×[l1,l2])C([0,\omega]\times[l_{1},l_{2}]). The global stability of u(l1,l2)u_{(l_{1},l_{2})}^{*} can also be inferred from Theorem 3.5 and the uniqueness of the solutions of (1.6).

Case 2. Suppose that λ10\lambda_{1}\geq 0.

At first, we show the nonexistence of positive solution of (1.6). By way of contradiction, suppose that vv^{*} is a positive solution of (1.6). Then we can choose ϵ>0\epsilon>0 small enough such that ϵφ<v\epsilon\varphi<v^{*} in [0,+)×[l1,l2][0,+\infty)\times[l_{1},l_{2}]. There holds that

0\displaystyle 0 λ1φ(t,x)\displaystyle\leq\lambda_{1}\varphi(t,x)
=tφ(t,x)D(t)[l1l2J(xy)φ(t,y)dyφ(t,x)]a¯(t)φ(t,x)\displaystyle=\partial_{t}\varphi(t,x)-D(t)\bigg{[}\int_{l_{1}}^{l_{2}}J(x-y)\varphi(t,y)\mathrm{d}y-\varphi(t,x)\bigg{]}-\bar{a}(t)\varphi(t,x)
tφ(t,x)D(t)[l1l2J(xy)φ(t,y)dyφ(t,x)]a¯(t)φ(t,x)+b¯(t)φ2(t,x)\displaystyle\leq\partial_{t}\varphi(t,x)-D(t)\bigg{[}\int_{l_{1}}^{l_{2}}J(x-y)\varphi(t,y)\mathrm{d}y-\varphi(t,x)\bigg{]}-\bar{a}(t)\varphi(t,x)+\bar{b}(t)\varphi^{2}(t,x)

in [0,+)×[l1,l2][0,+\infty)\times[l_{1},l_{2}], which means φ\varphi is an upper-solution of (1.6). It follows from the comparison argument that vφv^{*}\leq\varphi in [0,+)×[l1,l2][0,+\infty)\times[l_{1},l_{2}]. This is a contradiction. Hence the equation (1.6) admits no positive solution.

Since λ10\lambda_{1}\geq 0, a simple calculation gives that for large e>0e>0, eφ(t,x)e\varphi(t,x) and 0 are a pair of upper-lower solutions of (1.1) as well as a pair of upper-lower solutions of (1.6). It then follows from Theorem 3.5 that the time periodic problem (1.6) admits a minimal solution u¯\underline{u} and a maximal solution u¯\overline{u} satisfying

0u¯(t,x)lim¯nu(t+nω,x;u0)lim¯nu(t+nω,x;u0)u¯(t,x)eφ(t,x)in[0,+)×[l1,l2].0\leq\underline{u}(t,x)\leq\varliminf_{n\to\infty}u(t+n\omega,x;u_{0})\leq\varlimsup_{n\to\infty}u(t+n\omega,x;u_{0})\leq\overline{u}(t,x)\leq e\varphi(t,x)\ \ \mathrm{in}\ [0,+\infty)\times[l_{1},l_{2}].

The nonexistence of positive solution to (1.6) implies that u¯=u¯=0\overline{u}=\underline{u}=0. Thus, the solution u(t,x;u0)u(t,x;u_{0}) of (1.1) converges to 0 point by point. Since u¯,u¯C([0,+)×[l1,l2])\overline{u},\underline{u}\in C([0,+\infty)\times[l_{1},l_{2}]) and the sequences constructed in (3.9) are monotone, we have limtu(t,x;u0)=0\lim\limits_{t\to\infty}u(t,x;u_{0})=0 uniformly for x[l1,l2]x\in[l_{1},l_{2}] by Dini’s Theorem.

From the above two cases, one can obtain that the sign of (1ρ)σ1+ρδ(1-\rho)\sigma_{1}+\rho\delta can completely determine the long time behavior of the species. Therefore, the conclusions of Theorem 1.1 follows from the above argument and Proposition 3.6. \Box

We further discuss the behaviors of the positive ω\omega-periodic solution to (1.6). Look at the ODE system (1.4). It is known from [14, Theorem 2.1] that (1.4) admits a unique positive ω\omega-periodic solution zz^{*} satisfying the equation (1.7), if and only if (1ρ)aρδ>0(1-\rho)a-\rho\delta>0, where zC1((iω,(i+ρ)ω])C1(((i+ρ)ω,(i+1)ω])z^{*}\in C^{1}((i\omega,(i+\rho)\omega])\cap C^{1}(((i+\rho)\omega,(i+1)\omega]) is bounded. Moreover, if (1ρ)aρδ0(1-\rho)a-\rho\delta\leq 0, then the solution z(t;z0)z(t;z_{0}) of (1.4) converges to 0 for all z0[0,+)z_{0}\in[0,+\infty) as t+t\to+\infty, while if (1ρ)aρδ>0(1-\rho)a-\rho\delta>0, then limn(z(t+nω;z0)z(t))=0\lim_{n\to\infty}(z(t+n\omega;z_{0})-z^{*}(t))=0 in C([0,ω])C([0,\omega]) for all z0(0,+)z_{0}\in(0,+\infty). Using this fact, we can prove Theorem 1.2.

Proof of Theorem 1.2.

Since (1ρ)aρδ>0(1-\rho)a-\rho\delta>0, by Proposition 3.6, there holds that

liml2l1+[(1ρ)σ1+ρδ]=ρδ(1ρ)a<0,\lim_{l_{2}-l_{1}\to+\infty}\big{[}(1-\rho)\sigma_{1}+\rho\delta\big{]}=\rho\delta-(1-\rho)a<0,

and thus there exists a large ^>0\hat{\ell}>0 such that

(1ρ)σ1+ρδ<0asl2l1>^.(1-\rho)\sigma_{1}+\rho\delta<0\ \ \mathrm{as}\ l_{2}-l_{1}>\hat{\ell}.

The existence and uniqueness of u(l1,l2)(t,x)u_{(l_{1},l_{2})}^{*}(t,x) follow from Theorem 1.1. Note that z(t)z^{*}(t) satisfies

{zt=δz,0<tρω,zt=z(abz),ρω<tω,z(0)=z(ω).\begin{cases}z_{t}=-\delta z,&0<t\leq\rho\omega,\\ z_{t}=z(a-bz),&\rho\omega<t\leq\omega,\\ z(0)=z(\omega).\end{cases}

Then z(t)=eδtz(0)z^{*}(t)=e^{-\delta t}z^{*}(0) for 0tρω0\leq t\leq\rho\omega. Meanwhile, u(l1,l2)(t,x)=eδtu(l1,l2)(0,x)u^{*}_{(l_{1},l_{2})}(t,x)=e^{-\delta t}u^{*}_{(l_{1},l_{2})}(0,x) for 0tρω0\leq t\leq\rho\omega and l1xl2l_{1}\leq x\leq l_{2}.

We make an assertion that for each 0<ϵ10<\epsilon\ll 1, there exists ϵ^>0\ell_{\epsilon}\geq\hat{\ell}>0 such that for each l1(,ϵ)l_{1}\in(-\infty,-\ell_{\epsilon}) and l2(ϵ,+)l_{2}\in(\ell_{\epsilon},+\infty),

z(t)ϵu(l1,l2)(t,x)z(t)+ϵ,(t,x)[ρω,ω]×[l1,l2].z^{*}(t)-\epsilon\leq u^{*}_{(l_{1},l_{2})}(t,x)\leq z^{*}(t)+\epsilon,\ \ (t,x)\in[\rho\omega,\omega]\times[l_{1},l_{2}]. (3.16)

Only the proof for the lower bound will be given here since that for the upper bound is similar. Clearly, min[0,ω]z(t)>0\min_{[0,\omega]}z^{*}(t)>0. In fact, if there is t0>0t_{0}>0 such that z(t0)=0z^{*}(t_{0})=0, then z(t)=0z^{*}(t)=0 for all tt0t\geq t_{0}, which is impossible as zz^{*} is periodic in tt. Set 0<ϵ10<\epsilon\ll 1. Then there exists η(ϵ)>0\eta(\epsilon)>0 such that

z^(t):=(1η)z(t)z(t)ϵ>0,t[ρω,ω].\hat{z}(t):=(1-\eta)z^{*}(t)\geq z^{*}(t)-\epsilon>0,\ \ t\in[\rho\omega,\omega].

Observe that

z^t(t)d[l1l2J(xy)z^(t)dyz^(t)]z^(t)[abz^(t)]\displaystyle\hat{z}_{t}(t)-d\bigg{[}\int_{l_{1}}^{l_{2}}J(x-y)\hat{z}(t)\mathrm{d}y-\hat{z}(t)\bigg{]}-\hat{z}(t)\big{[}a-b\hat{z}(t)\big{]}
=(1η)zt(t)(1η)z(t)d[l1l2J(xy)dy1]\displaystyle\phantom{=}=(1-\eta)z^{*}_{t}(t)-(1-\eta)z^{*}(t)d\bigg{[}\int_{l_{1}}^{l_{2}}J(x-y)\mathrm{d}y-1\bigg{]}
(1η)z(t)[abz(t)]z^(t)[abz^(t)]+(1η)z(t)[abz(t)]\displaystyle\phantom{==\ }-(1-\eta)z^{*}(t)\big{[}a-bz^{*}(t)\big{]}-\hat{z}(t)\big{[}a-b\hat{z}(t)\big{]}+(1-\eta)z^{*}(t)\big{[}a-bz^{*}(t)\big{]}
=d(1η)z(t)[l1l2J(xy)dy1]bη(1η)z2(t),ρω<tω,l1xl2.\displaystyle\phantom{=}=-d(1-\eta)z^{*}(t)\bigg{[}\int_{l_{1}}^{l_{2}}J(x-y)\mathrm{d}y-1\bigg{]}-b\eta(1-\eta){z^{*}}^{2}(t),\ \ \rho\omega<t\leq\omega,\ l_{1}\leq x\leq l_{2}.

Denote

El(t,x):=d(1η)z(t)[llJ(xy)dy1],(t,x)(ρω,ω]×.E_{l}(t,x):=d(1-\eta)z^{*}(t)\bigg{[}\int_{-l}^{l}J(x-y)\mathrm{d}y-1\bigg{]},\ \ (t,x)\in(\rho\omega,\omega]\times\mathbb{R}.

Since JC()L()J\in C(\mathbb{R})\cap L^{\infty}(\mathbb{R}) is nonnegative and liml+llJ(x)dx=1\lim\limits_{l\to+\infty}\int_{-l}^{l}J(x)\mathrm{d}x=1, we know that ElE_{l} is non-decreasing with respect to l>0l>0 and continuous, bounded for all (l,t,x)(0,+)×(ρω,ω]×(l,t,x)\in(0,+\infty)\times(\rho\omega,\omega]\times\mathbb{R}. It then follows from Dini’s Theorem that El(t,x)E_{l}(t,x) converges to zero locally uniformly in (ρω,ω]×(\rho\omega,\omega]\times\mathbb{R} as l+l\to+\infty. Hence, there exists ϵ^>0\ell_{\epsilon}\geq\hat{\ell}>0 such that for each l1(,ϵ),l2(ϵ,+)l_{1}\in(-\infty,-\ell_{\epsilon}),l_{2}\in(\ell_{\epsilon},+\infty), the following inequality holds

z^(t)d[l1l2J(xy)z^(t)dyz^(t)]z^(t)[abz^(t)]<0,(t,x)(ρω,ω]×[l1,l2].\hat{z}(t)-d\bigg{[}\int_{l_{1}}^{l_{2}}J(x-y)\hat{z}(t)\mathrm{d}y-\hat{z}(t)\bigg{]}-\hat{z}(t)\big{[}a-b\hat{z}(t)\big{]}<0,\ \ (t,x)\in(\rho\omega,\omega]\times[l_{1},l_{2}]. (3.17)

It suffices to prove that for each l1(,ϵ),l2(ϵ,+)l_{1}\in(-\infty,-\ell_{\epsilon}),l_{2}\in(\ell_{\epsilon},+\infty), we have z^(t)u(l1,l2)(t,x)\hat{z}(t)\leq u^{*}_{(l_{1},l_{2})}(t,x) in [ρω,ω]×[l1,l2][\rho\omega,\omega]\times[l_{1},l_{2}]. To this end, we fix any l1(,ϵ),l2(ϵ,+)l_{1}\in(-\infty,-\ell_{\epsilon}),l_{2}\in(\ell_{\epsilon},+\infty) and set

β=inf{β>0:z^(t)βu(l1,l2)(t,x)forall(t,x)(ρω,ω)×[l1,l2]}.\beta_{*}=\inf\Big{\{}\beta>0:\hat{z}(t)\leq\beta u^{*}_{(l_{1},l_{2})}(t,x)\ \mathrm{for\ all}\ (t,x)\in(\rho\omega,\omega)\times[l_{1},l_{2}]\Big{\}}.

We see that β\beta_{*} is well-defined and positive since min[ρω,ω]×[l1,l2]u(l1,l2)(t,x)>0\min\limits_{[\rho\omega,\omega]\times[l_{1},l_{2}]}u_{(l_{1},l_{2})}^{*}(t,x)>0 and z^(t)\hat{z}(t) is bounded. It follows from the continuity of u(l1,l2)u_{(l_{1},l_{2})}^{*} and z^\hat{z} that z^(t)βu(l1,l2)(t,x)\hat{z}(t)\leq\beta_{*}u^{*}_{(l_{1},l_{2})}(t,x) for all (t,x)(ρω,ω)×[l1,l2](t,x)\in(\rho\omega,\omega)\times[l_{1},l_{2}]. In particular, there must exist (t0,x0)(ρω,ω)×[l1,l2](t_{0},x_{0})\in(\rho\omega,\omega)\times[l_{1},l_{2}] such that z^(t0)=βu(l1,l2)(t0,x0)\hat{z}(t_{0})=\beta_{*}u^{*}_{(l_{1},l_{2})}(t_{0},x_{0}).

When β1\beta_{*}\leq 1, the lower bound in (3.16) holds immediately. On the contrary, suppose that β>1\beta_{*}>1. Let w(t,x)=z^(t)βu(l1,l2)(t,x)w(t,x)=\hat{z}(t)-\beta_{*}u^{*}_{(l_{1},l_{2})}(t,x). Then by (3.17) and the equation satisfied by u(l1,l2)(t,x)u^{*}_{(l_{1},l_{2})}(t,x), a simple calculation yields that

wt(t,x)<d[l1l2J(xy)w(t,y)dyw(t,x)]+z^(t)[abz^(t)]βu(l1,l2)(t,x)[abu(l1,l2)(t,x)]w_{t}(t,x)<d\bigg{[}\int_{l_{1}}^{l_{2}}J(x-y)w(t,y)\mathrm{d}y-w(t,x)\bigg{]}+\hat{z}(t)\big{[}a-b\hat{z}(t)\big{]}-\beta_{*}u^{*}_{(l_{1},l_{2})}(t,x)[a-bu^{*}_{(l_{1},l_{2})}(t,x)]

for (t,x)(ρω,ω)×[l1,l2](t,x)\in(\rho\omega,\omega)\times[l_{1},l_{2}]. However, by the definition of β\beta_{*}, we have that wt(t0,x0)=0w_{t}(t_{0},x_{0})=0. This together with l1l2J(x0y)w(t0,y)dyw(t0,x0)0\int_{l_{1}}^{l_{2}}J(x_{0}-y)w(t_{0},y)\mathrm{d}y-w(t_{0},x_{0})\leq 0 leads to that

0\displaystyle 0 =wt(t0,x0)\displaystyle=w_{t}(t_{0},x_{0})
z^(t0)[abz^(t0)]βu(l1,l2)(t0,x0)[abu(l1,l2)(t0,x0)]\displaystyle\leq\hat{z}(t_{0})\big{[}a-b\hat{z}(t_{0})\big{]}-\beta_{*}u^{*}_{(l_{1},l_{2})}(t_{0},x_{0})[a-bu^{*}_{(l_{1},l_{2})}(t_{0},x_{0})]
<z^(t0)[abz^(t0)]βu(l1,l2)(t0,x0)[abβu(l1,l2)(t0,x0)]=0,\displaystyle<\hat{z}(t_{0})\big{[}a-b\hat{z}(t_{0})\big{]}-\beta_{*}u^{*}_{(l_{1},l_{2})}(t_{0},x_{0})[a-b\beta_{*}u^{*}_{(l_{1},l_{2})}(t_{0},x_{0})]=0,

which is a contradiction. Consequently, β1\beta_{*}\leq 1 and so z^(t)u(l1,l2)(t,x)\hat{z}(t)\leq u^{*}_{(l_{1},l_{2})}(t,x) for all (t,x)(ρω,ω)×[l1,l2](t,x)\in(\rho\omega,\omega)\times[l_{1},l_{2}]. In fact, the domain (ρω,ω)×[l1,l2](\rho\omega,\omega)\times[l_{1},l_{2}] can be extended to [ρω,ω]×[l1,l2][\rho\omega,\omega]\times[l_{1},l_{2}] since z^(t)\hat{z}(t) and u(l1,l2)(t,x)u^{*}_{(l_{1},l_{2})}(t,x) are both continuous and bounded. Hence, (3.16) holds true and so limł1,l2+u(l1,l2)(t,x)=z(t)\lim_{-\l_{1},l_{2}\to+\infty}u_{(l_{1},l_{2})}^{*}(t,x)=z^{*}(t) in Cloc([ρω,ω]×)C_{\mathrm{loc}}([\rho\omega,\omega]\times\mathbb{R}).

On the other hand, when t[0,ρω]t\in[0,\rho\omega], it holds that z(t)=eδtz(0)=eδtz(ω)z^{*}(t)=e^{-\delta t}z^{*}(0)=e^{-\delta t}z^{*}(\omega) and u(l1,l2)(t,x)=eδtu(l1,l2)(0,x)=eδtu(l1,l2)(ω,x)u^{*}_{(l_{1},l_{2})}(t,x)=e^{-\delta t}u^{*}_{(l_{1},l_{2})}(0,x)=e^{-\delta t}u^{*}_{(l_{1},l_{2})}(\omega,x) for 0tρω0\leq t\leq\rho\omega and l1xl2l_{1}\leq x\leq l_{2}. This means that liml1,l2+u(l1,l2)(t,x)=z(t)\lim\limits_{-l_{1},l_{2}\to+\infty}u_{(l_{1},l_{2})}^{*}(t,x)=z^{*}(t) in Cloc([0,ρω]×)C_{\mathrm{loc}}([0,\rho\omega]\times\mathbb{R}). As a result, liml1,l2+u(l1,l2)(t,x)=z(t)\lim\limits_{-l_{1},l_{2}\to+\infty}u_{(l_{1},l_{2})}^{*}(t,x)=z^{*}(t) in Cloc([0,ω]×)C_{\mathrm{loc}}([0,\omega]\times\mathbb{R}). The proof is completed. \Box

4 Simulations

In this section, we present the simulations to illustrate some of our results. Referring to [26], we choose the form of JJ to be a simple Laplace kernel:

J(x)=12De|x|Dwith D=20.J(x)=\frac{1}{2D}e^{-\frac{|x|}{D}}\quad\mbox{with $D=20$.}

Consider the following parameter sets:

  1. (P1)

    δ=0.2,d=0.6,a=1.2,b=0.6,ρ=0.6,ω=1\delta=0.2,d=0.6,a=1.2,b=0.6,\rho=0.6,\omega=1;

  2. (P2)

    δ=0.2,d=1,a=1.2,b=0.6,ρ=0.6,ω=1\delta=0.2,d=1,a=1.2,b=0.6,\rho=0.6,\omega=1;

  3. (P3)

    δ=0.8,d=0.6,a=1.2,b=0.6,ρ=0.6,ω=1\delta=0.8,d=0.6,a=1.2,b=0.6,\rho=0.6,\omega=1;

and the initial condition

  1. (IC)

    u0(x)=cos(πxl),x(l,l)u_{0}(x)=\cos(\dfrac{\pi x}{l}),x\in(-l,l).

Refer to caption
Figure 1: Numerical simulations of (1.1) with parameter set (P1) and initial condition (IC), where l=0.2l=0.2.
Refer to caption
Refer to caption
Figure 2: Numerical simulations of (1.1) with parameter set (P2) and initial condition (IC). Left: l=0.2l=0.2; Right: l=4l=4.
Refer to caption
Figure 3: Numerical simulations of (1.1) with parameter set (P3) and initial condition (IC), where l=4l=4.

Clearly, the parameter set (P1) satisfies the condition in Theorem 1.1 (1). Then Figure 1 shows that when the domain length L:=2l=0.4L:=2l=0.4, the solution of (1.1) satisfying (P1) and (IC) converges to a spatially nonhomogeneous positive periodic solution. This is consistent with the conclusion of Theorem 1.1 (1).

The parameter set (P2) satisfies the condition in Theorem 1.1 (2). Then Figure 2 shows that when the domain length L=2l=0.4L=2l=0.4, the solution of (1.1) satisfying (P2) and (IC) converges to a spatially nonhomogeneous positive periodic solution, but when L=2l=8L=2l=8, the solution of (1.1) with the same parameters and initial condition converges to zero. This is consistent with the conclusion of Theorem 1.1 (2).

The parameter set (P3) satisfies the condition in Theorem 1.1 (3). Then Figure 3 shows that when the domain length L=2l=8L=2l=8, the solution of (1.1) satisfying (P3) and (IC) converges to zero. This is consistent with the conclusion of Theorem 1.1 (3).

5 Discussion

In this paper, we mainly examine a nonlocal dispersal logistic model with seasonal succession subject to Dirichlet type boundary condition. In Section 3, in order to study the long time behavior of the solutions to (1.1), we establish a method of time periodic upper-lower solutions, and show that the sign of the eigenvalue (1ρ)σ1+ρδ(1-\rho)\sigma_{1}+\rho\delta of the linearized operator can completely determine the asymptotic behavior of the solutions to (1.1). Meanwhile, we see that the ω\omega-periodic positive solution corresponding to the nonlocal dispersal model (1.1) behaves like the ω\omega-periodic positive solution corresponding to the ODE model (1.4) when the range of the habitat tends to the entire space \mathbb{R}.

In the following, we give some remarks on a nonlocal dispersal logistic model under Neumann type boundary condition, which is associated with model (1.1), that is,

{ut=δu,iω<t(i+ρ)ω,l1xl2,ut=dl1l2J(xy)(u(t,y)u(t,x))dy+u(abu),(i+ρ)ω<t(i+1)ω,l1xl2,u(0,x)=u0(x)0,x[l1,l2],\begin{cases}u_{t}=-\delta u,&i\omega<t\leq(i+\rho)\omega,\ l_{1}\leq x\leq l_{2},\\ \displaystyle u_{t}=d\int_{l_{1}}^{l_{2}}J(x-y)\big{(}u(t,y)-u(t,x)\big{)}\mathrm{d}y+u(a-bu),&(i+\rho)\omega<t\leq(i+1)\omega,\ l_{1}\leq x\leq l_{2},\\ u(0,x)=u_{0}(x)\geq 0,&x\in[l_{1},l_{2}],\end{cases} (5.1)

The kernel function J:J:\mathbb{R}\to\mathbb{R} is assumed to satisfy (𝐉){\bf(J)}. The integral operator l1l2J(xy)(u(t,y)u(t,x))dy\int_{l_{1}}^{l_{2}}J(x-y)\big{(}u(t,y)-u(t,x)\big{)}\mathrm{d}y describes diffusion processes, where l1l2J(xy)u(t,y)dy\int_{l_{1}}^{l_{2}}J(x-y)u(t,y)\mathrm{d}y is the rate at which individuals are arriving at position xx from all other places and l1l2J(xy)u(t,x)dy\int_{l_{1}}^{l_{2}}J(x-y)u(t,x)\mathrm{d}y is the rate at which they are leaving location xx to travel to all other sites. Since diffusion takes places only in [l1,l2][l_{1},l_{2}] and individuals may not enter or leave the domain [l1,l2][l_{1},l_{2}], we call it Neumann type boundary condition.

Linearizing system (5.1) at u=0u=0, we obtain the time-periodic operator:

L~(l1,l2)[v](t,x)={vtδv,t(iω,(i+ρ)ω],x[l1,l2],vt+dl1l2J(xy)(u(t,y)u(t,x))dy+av,t((i+ρ)ω,(i+1)ω],x[l1,l2].\tilde{L}_{(l_{1},l_{2})}[v](t,x)=\begin{cases}-v_{t}-\delta v,&t\in(i\omega,(i+\rho)\omega],\ x\in[l_{1},l_{2}],\\ \displaystyle-v_{t}+d\int_{l_{1}}^{l_{2}}J(x-y)\big{(}u(t,y)-u(t,x)\big{)}\mathrm{d}y+av,&t\in((i+\rho)\omega,(i+1)\omega],\ x\in[l_{1},l_{2}].\end{cases} (5.2)

A easy calculation yields that λ1=δρa(1ρ)\lambda_{1}=\delta\rho-a(1-\rho) is a eigenvalue of L~(l1,l2)-\tilde{L}_{(l_{1},l_{2})} with a positive eigenfunction. Moreover, one can also derive as in Theorem 1.1 that

Theorem 5.1.

Assume that (𝐉){\bf(J)} holds and <l1<l2<+-\infty<l_{1}<l_{2}<+\infty. Let u(t,;u0)u(t,\cdot;u_{0}) be the unique solution to (5.2) with the initial value u0(x)C([l1,l2])u_{0}(x)\in C([l_{1},l_{2}]), where u0(x)u_{0}(x) is bounded, nonnegative and not identically zero. The following statements are true:

  1. (1)

    If δρa(1ρ)<0\delta\rho-a(1-\rho)<0, then limnu(t+nω,x;u0)=z(t)\lim\limits_{n\to\infty}u(t+n\omega,x;u_{0})=z^{*}(t) in C([0,ω]×[l1,l2])C([0,\omega]\times[l_{1},l_{2}]), where z(t)z^{*}(t) is the unique positive ω\omega-solution to (1.7);

  2. (2)

    If δρa(1ρ)0\delta\rho-a(1-\rho)\geq 0, then limtu(t,x;u0)=0\lim\limits_{t\to\infty}u(t,x;u_{0})=0 uniformly for x[l1,l2]x\in[l_{1},l_{2}].

Form above discussion, we can conclude that in spatial homogeneous environment, the nonlocal diffusion model with seasonal succession under Neumann boundary condition has the same dynamical behavior as that of the corresponding ODE model. When the environment is spatially dependent (e.g., the parameter aa in model (1.1) or (5.1) is replaced by a spatially dependent function a(x)a(x)), one can also obtain the existence of a eigenvalue of the linearized operator associated with a positive eigenfunction under the additional compact support condition on the kernel function J(x)J(x). Likewise, the sign of such obtained eigenvalue can completely determine the dynamical behavior of model (1.1) or (5.1). However, in spatially heterogeneous environment, the criteria governing persistence and extinction of the species becomes more difficult to be obtained (see [21, 23] for details). We slao remark that if the term abua-bu in (1.1) (resp. (5.1)) is replaced by a continuous and strictly decreasing function f(u)f(u) on [0,+)[0,+\infty) satisfying f(K)0f(K)\leq 0 for some K>0K>0, then the conclusions showed in Theorems 1.1-1.2 (resp. Theorems (5.1)) still hold with a=f(0)a=f(0).

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 11871475) and the Fundamental Research Funds for the Central Universities of Central South University (No. 2020zzts040).

References

  • [1] F. Andreu-Vaillo, J.M. Mazón, J.D. Rossi, J. Toledo-Melero, Nonlocal Diffusion Problems, Math. Surveys Monogr., AMS, Providence, Rhode Island, 2010.
  • [2] P. Bates, On some nonlocal evolution equations arising in materials science, in: H. Brunner, X.Q. Zhao, X. Zou (Eds.), Nonlinear Dynamics and Evolution Equations, in: Fields Inst. Commun., vol. 48, Amer. Math. Soc., Providence, RI, 2006, pp. 13-52.
  • [3] H. Berestycki, J. Coville, H. Vo, On the definition and the properties of the principal eigenvalue of some nonlocal operators, J. Funct. Anal. 271 (2016) 2701–2751.
  • [4] J. Cao, Y. Du, F. Li, and W.-T. Li, The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries, J. Functional Anal. 277 (2019) 2772–2814.
  • [5] J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators, J. Differential Equations 249 (2010) 2921–2953.
  • [6] J. Coville, J. Dávila, S. Martínez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013) 179–223.
  • [7] D.L. DeAngelis, J.C. Trexler, D.D. Donalson, Competition dynamics in a seasonally varying wetland. In: Cantrell S, Cosener C, Ruan S (eds) Spatial ecology, chap. 1, CRC Press/Chapman and Hall, London, 2009, pp 1-13.
  • [8] P.J. DuBowy, Waterfowl communities and seasonal environments: temporal variabolity in interspecific competition, Ecology 69 (1988) 1439–1453.
  • [9] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in: M. Kirkilionis, S. Krömker, R. Rannacher, F. Tomi (Eds.), Trends in Nonlinear Analysis, Springer, Berlin, 2003, pp. 153-191.
  • [10] J. García-Melián, J.D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations 246 (2009) 21-38
  • [11] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser., vol. 247, Longman Sci. Tech., Harlow, 1991.
  • [12] S.S. Hu, A.J. Tessier, Seasonal succession and the strength of intra-and interspecific competition in a Daphnia assemblage, Ecology 76 (1995) 2278–2294.
  • [13] V. Hutson, S. Martinez, K. Mischaikow, G.T. Vickers, The evolution of dispersal, J. Math. Biol. 47 (2003) 483-517.
  • [14] S.-B. Hsu, X.-Q. Zhao, A Lotka-Volterra competition model with seasonal succession, J. Math. Biol. 64 (2012) 109–130.
  • [15] C.Y. Kao, Y. Lou, W. Shen, Random dispersal vs non-local dispersal, Discrete Contin. Dyn. Syst. 26 (2010) 551-596.
  • [16] E. Litchman, C.A. Klausmeier, Competition of phytoplankton under fluctuating light, Am. Nat. 157 (2001) 170–187.
  • [17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.
  • [18] R. Peng, X.-Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst. 33 (5) (2013) 2007–2031.
  • [19] N. Rawal, W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations 24 (4) (2012) 927–954.
  • [20] C.E. Steiner, A.S. Schwaderer, V. Huber, C.A. Klausmeier, E. Litchman, Periodically forced food chain dynamics: model predictions and experimental validation, Ecology 90 (2009) 3099–3107.
  • [21] Z. Shen, H.-H. Vo, Nonlocal dispersal equations in time-periodic media: Principal spectral theory, limiting properties and long-time dynamics, J. Differential Equations 267 (2019) 1423–1466.
  • [22] W. Shen, A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations 249 (2010) 747–795.
  • [23] Y.-H. Su, W.-T. Li, Y. Lou, F.-Y. Yang, The generalised principal eigenvalue of time-periodic nonlocal dispersal operators and applications, J. Differential Equations 269 (2020) 4960–4997.
  • [24] J.-W. Sun, W.-T. Li, Z.-C. Wang, The periodic principal eigenvalues with applications to the nonlocal dispersal logistic equation, J. Differential Equations 263 (2017) 934–971.
  • [25] J.-W. Sun, F.-Y. Yang, W.-T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics, J. Differential Equations 257 (2014) 1372–1402.
  • [26] R.W. Van Kirk and M.A. Lewis, Integrodifference models for persistence in fragmented habitats, Bull. Math. Biol. 59 (1997) 107–138.
  • [27] X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.