This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Long Range Ordered Phase in a Quantum Heisenberg Chain with Interactions beyond Nearest Neighbor

Zehan Li Equal contribution Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA    Sayan Choudhury Equal contribution; [email protected] Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA    W. Vincent Liu [email protected] Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA Wilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China Shanghai Research Center for Quantum Sciences, Shanghai 201315, China Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Abstract

Spin ensembles coupled to optical cavities provide a powerful platform for engineering synthetic quantum matter. Recently, we demonstrated that cavity mediated infinite range interactions can induce fast scrambling in a Heisenberg XXZXXZ spin chain (Phys. Rev. Research 2, 043399 (2020)). In this work, we analyze the kaleidoscope of quantum phases that emerge in this system from the interplay of these interactions. Employing both analytical spin-wave theory as well as numerical DMRG calculations, we find that there is a large parameter regime where the continuous U(1)U(1) symmetry of this model is spontaneously broken and the ground state of the system exhibits XYXY order. This kind of symmetry breaking and the consequent long range order is forbidden for short range interacting systems by the Mermin-Wagner theorem. Intriguingly, we find that the XYXY order can be induced by even an infinitesimally weak infinite range interaction. Furthermore, we demonstrate that in the U(1)U(1) symmetry broken phase, the half chain entanglement entropy violates the area law logarithmically. Finally, we discuss a proposal to verify our predictions in state-of-the-art quantum emulators.

I Introduction

In recent years, the rapid advancements in cavity QED technologies have propelled extensive investigations of emergent phenomena in quantum many-body systems with cavity induced long range interactions Kockum et al. (2019); Sheikhan et al. (2016a); Landig et al. (2016); Blaß et al. (2018); Sheikhan and Kollath (2019); Halati et al. (2019, 2017); Niederle et al. (2016); Mivehvar et al. (2017, 2019). These systems provide a promising platform for realizing quantum spin liquids Chiocchetta et al. (2020), supersolids Dogra et al. (2016); Sundar and Mueller (2016); Chen et al. (2016), exotic superconductors Schlawin and Jaksch (2019); Schlawin et al. (2019); Chakraborty and Piazza (2020), charge density waves Chen et al. (2020), quantum many-body scars Chen and Cai (2020), time crystals Tucker et al. (2018); Keßler et al. (2019); Yang and Cai (2021), chaotic dynamical phases Lerose et al. (2018, 2019), and even topological states of matter Sheikhan et al. (2016b); Wang et al. (2019). Moreover, cavity mediated interactions can be harnessed to explore many-body chaos Bentsen et al. (2019a, b); Marino and Rey (2019); Alavirad and Lavasani (2019); Lewis-Swan et al. (2019) and dynamical quantum phase transitions Klinder et al. (2015); Muniz et al. (2020).

In a recent paper, we have demonstrated that a one dimensional Ising spin chain coupled to a single mode cavity can exhibit fast scrambling; this highly chaotic dynamics originates from the interplay of short and long range interactions Li et al. (2020). Concurrently, other groups have also shown that competing short and long range interactions can induce fast scrambling Belyansky et al. (2020); Yin and Lucas (2020). In this context, it is worth noting that even though scrambling is an inherently non-equilibrium phenomenon, several fast scrambling many-body models host a rich array of quantum phases at equilibrium Sachdev and Ye (1993); Lunkin et al. (2018); Song et al. (2017); Lantagne-Hurtubise et al. (2018); Haldar et al. (2018); Zhang and Zhai (2018). This observation naturally leads to the following question: what are the ground state phases of this new class of cavity induced fast scramblers?

In this paper, we address this question by investigating the quantum phases of an one-dimensional spin chain composed of two ingredients — a nearest neighbor XXZXXZ interaction and an infinite range XXXX interaction. A schematic representation of our model is shown in Fig. 1. As shown in section V, this model describes a Heisenberg XXZXXZ spin chain coupled to a single mode cavity in the “bad cavity” limit. By employing an analytical spin-wave analysis as well as numerical density matrix renormalization group (DMRG) computations, we demonstrate that this system exhibits three different phases: (a) a long-range ordered Ising ferromagnetic phase, (b) a quasi-long range ordered critical phase, and (c) a long-range ordered U(1)U(1) symmetry breaking XYXY phase. While the first two phases can be realized in the short range interacting Heisenberg model, the cavity induced interaction leads to the realization of the third phase. We demonstrate that these phases can be distinguished by their entanglement entropy; in particular, phases (b) and (c) violate the area law logarithmically and can be associated with an effective central charge. The effective central charge distinguishes phase (b) from phase (c).

Refer to caption
Figure 1: Schematic representation of the model: The model in Eq. (1) is characterized by a nearest neighbor XXZXXZ coupling and an infinite range XXXX coupling. This model describes a XXZXXZ spin chain coupled to a single mode cavity.

This paper is organized as follows. In section II, we introduce our model and describe its ground states in two well known limits. In section III, we employ spin wave analysis to derive the phase diagram of this system. In section IV, we supplement the spin wave analysis with DMRG calculations on finite size chains. We discuss a potential experimental realization of our model in section V and conclude this paper in section VI with a summary of our findings.

II Model

We study a one dimensional spin chain with NN sites described by the Hamiltonian:

H\displaystyle H =\displaystyle= 14i=1N1(σizσi+1z+α(σixσi+1x+σiyσi+1y))\displaystyle-\frac{1}{4}\sum_{i=1}^{N-1}\left(\sigma_{i}^{z}\sigma^{z}_{i+1}+\alpha(\sigma_{i}^{x}\sigma^{x}_{i+1}+\sigma_{i}^{y}\sigma^{y}_{i+1})\right) (1)
+\displaystyle+ J4Ni=1N1j>i(σixσjx+σiyσjy)\displaystyle\frac{J}{4N}\sum_{i=1}^{N-1}\sum_{j>i}\left(\sigma_{i}^{x}\sigma^{x}_{j}+\sigma_{i}^{y}\sigma^{y}_{j}\right)

where σiγ\sigma_{i}^{\gamma} is the standard Pauli matrix at lattice site ii. We have rescaled the infinite range interaction by 1/N1/N to ensure extensivity of the total energy.

We note that this model is characterized by a U(1)×2U(1)\times\mathbb{Z}_{2} symmetry. The U(1)U(1) symmetry transformation operator is MU=exp(iθjσjz)M_{U}=\exp(-i\theta\sum_{j}\sigma_{j}^{z}), and it originates from the conservation of the total z-Magnetization. The breaking of this continuous symmetry implies that Sj+0\langle S_{j}^{+}\rangle\neq 0 (where Sj+=(σx+iσy)/2S_{j}^{+}=(\sigma^{x}+i\sigma^{y})/2) and the system is in the XYXY phase Maghrebi et al. (2017); Peter et al. (2012). On the other hand, the 2\mathbb{Z}_{2} symmetry transformation operator is jiσjx\prod_{j}i\sigma_{j}^{x} (or jiσjy\prod_{j}i\sigma_{j}^{y}), and it denotes a global rotation by π\pi about the xx (or yy) axis. The chain is in the Ising ferromagnetic phase when the 2\mathbb{Z}_{2} symmetry is broken and σjz0\langle\sigma_{j}^{z}\rangle\neq 0.

When J0J\rightarrow 0, the model reduces to the Heisenberg XXZXXZ model and it is the exactly solvable by the Bethe ansatz Gaudin (1971); Destri and deVega (1992). In this case there are two possible phases: the Ising ferromagnetic phase (when α<1\alpha<1) and a quasi-long range ordered critical phase, known as the Tomonaga-Luttinger Liquid (TLL) (when α1\alpha\geq 1) Barmettler et al. (2010). We note that the Mermin-Wagner theorem forbids the existence of a truly long range ordered phase with only short range interactions Mermin and Wagner (1966); Giamarchi (2004).

The ground state of this system can also be exactly determined in the JJ\rightarrow\infty limit, when the model reduces to mean-field solvable Lipkin-Meshkov-Glick (LMG) model Botet et al. (1982); Lipkin et al. (1965); Ribeiro et al. (2007). In this case, the ground state of the system is in the XYXY phase Žunkovič et al. (2016). In the next section, we explore the phase diagram of this model when JJ is finite. This is precisely the regime, where the model is non-integrable and its out-of-equilibrium dynamics is chaotic.

III Spin Wave Analysis

In this section, we employ spin-wave analysis to explore the phase diagram of the model. It is well known that the ground state spontaneously breaks the 2\mathbb{Z}_{2} symmetry, when α0\alpha\rightarrow 0 and J0J\rightarrow 0. In order to determine the phase boundary of this Ising ferromagnetic (FM) state, we define the vacuum state to be:

|ψFM=|,|\psi\rangle_{\rm FM}=|\uparrow\uparrow\uparrow\uparrow\ldots\uparrow\uparrow\uparrow\uparrow\rangle, (2)

and apply the Holstein-Primakoff transformation to map the spin excitations to bosons: Sj=12(σjxiσjy)=(1ajaj)aj;Sj+=12(σjx+iσjy)=aj(1ajaj);Sjz=(12ajaj)S^{-}_{j}=\frac{1}{2}(\sigma_{j}^{x}-i\sigma_{j}^{y})=\left(\sqrt{1-a_{j}^{\dagger}a_{j}}\right)a_{j};S^{+}_{j}=\frac{1}{2}(\sigma_{j}^{x}+i\sigma_{j}^{y})=a_{j}^{\dagger}\left(\sqrt{1-a_{j}^{\dagger}a_{j}}\right);S^{z}_{j}=(\frac{1}{2}-a_{j}^{\dagger}a_{j}) Holstein and Primakoff (1940). In the weak excitation regime, aa1\langle a^{\dagger}a\rangle\ll 1, and the Hamiltonian describing these spin waves is given by:

HFM\displaystyle H_{FM} =\displaystyle= i((aiai+ai+1ai+1)α(aiai+1+ai+1ai))\displaystyle\sum_{i}\left((a_{i}^{\dagger}a_{i}+a_{i+1}^{\dagger}a_{i+1})-\alpha(a_{i}^{\dagger}a_{i+1}+a_{i+1}^{\dagger}a_{i})\right) (3)
+\displaystyle+ JNij>i(aiaj+ajai))\displaystyle\frac{J}{N}\sum_{i}\sum_{j>i}\left(a_{i}^{\dagger}a_{j}+a_{j}^{\dagger}a_{i})\right)

Assuming periodic boundary conditions, we can express the spin-wave Hamiltonian can be in the following form:

HFM=kωkakak,H_{FM}=\sum_{k}\omega_{k}a_{k}^{\dagger}a_{k}, (4)

where

ωk=1αcos(k)+JNr=1N/2cos(2πkNr),\omega_{k}=1-\alpha\cos(k)+\frac{J}{N}\sum_{r=1}^{N/2}\cos(\frac{2\pi k}{N}r), (5)

where we have set the lattice constant to be 11.

If min[ωk]>0{\rm min}[\omega_{k}]>0, then the ground state of HFMH_{FM} is the vacuum state |0|0\rangle, such that

ak|0=0k.a_{k}|0\rangle=0\,\,\forall\,\,k. (6)

In this case the ground state of our model is the zz-polarized state described in Eq. 2. On the other hand, when min[ωk]<0{\rm min}[\omega_{k}]<0, then the system is no longer in the weak excitation regime and the spin-wave approximation outlined above breaks down. Thus, the zz-polarized state is not the correct choice for the quantum ground state in this regime, and the system exhibits instability towards XYXY ordering. From these considerations, it is clear that the ground state is ferromagnetic when α=1\alpha=1 (for J0J\geq 0), and α=1+J/2\alpha=1+J/2 (for J0J\leq 0).

The Holstein-Primakoff transformation can also be employed to study the stability of the U(1)U(1)-symmetry breaking phase. In this case, we define the vacuum state to be spin polarized along the +x+x direction:

|ψXY=|,|\psi\rangle_{\rm XY}=|\rightarrow\rightarrow\rightarrow\rightarrow\ldots\rightarrow\rightarrow\rightarrow\rightarrow\rangle, (7)

The Holstein-Primakoff mapping in this case is Six=(12aiai)S_{i}^{x}=(\frac{1}{2}-a_{i}^{\dagger}a_{i}); Siyai+aiS_{i}^{y}\approx a_{i}^{\dagger}+a_{i}; Siz(aiai)/iS_{i}^{z}\approx(a_{i}^{\dagger}-a_{i})/i. The Hamiltonian describing the spin-wave excitations in this case is:

Hsw=k=N/2N/2ωk(akak+akak)+μk(akak+akak);H_{\rm sw}=\sum_{k=-N/2}^{N/2}\omega_{k}(a_{k}^{\dagger}a_{k}+a_{-k}a_{-k}^{\dagger})+\mu_{k}(a_{k}^{\dagger}a_{-k}^{\dagger}+a_{k}a_{-k}); (8)

where,

ωk\displaystyle\omega_{k} =\displaystyle= (αJ2)1+α2cos(2πkN)+J2Nr=1N/2cos(2πkNr)\displaystyle(\alpha-\frac{J}{2})-\frac{1+\alpha}{2}\cos(\frac{2\pi k}{N})+\frac{J}{2N}\sum_{r=1}^{N/2}\cos(\frac{2\pi k}{N}r)
μk\displaystyle\mu_{k} =\displaystyle= 1α2cos(2πkN)J2Nr=1N/2cos(2πkNr)\displaystyle\frac{1-\alpha}{2}\cos(\frac{2\pi k}{N})-\frac{J}{2N}\sum_{r=1}^{N/2}\cos(\frac{2\pi k}{N}r)\ (10)

where ak=1Njexp(i2πjk/N)aja_{k}=\frac{1}{\sqrt{N}}\sum_{j}\exp(i2\pi jk/N)a_{j}. HswH_{\rm sw} can be diagonalized by a Bogoliubov transformation Takahashi (1989). In this case, the Bogoliubov quasiparticles are composed of both particles and holes and the ground state of the spin chain has spin excitations. The density of these excitations is given by:

aiai\displaystyle\langle a_{i}^{\dagger}a_{i}\rangle =\displaystyle= limN12Nk0([1μk2/ωk2]1/21)\displaystyle\lim_{N\rightarrow\infty}\frac{1}{2N}\sum_{k\neq 0}([1-\mu_{k}^{2}/\omega_{k}^{2}]^{-1/2}-1) (11)
=\displaystyle= 14πππ𝑑q([1μ(q)2/ω(q)2]1/21)\displaystyle\frac{1}{4\pi}\int_{-\pi}^{\pi}dq\left([1-\mu(q)^{2}/\omega(q)^{2}]^{-1/2}-1\right)
=\displaystyle= 14πππ𝑑q(q)\displaystyle\frac{1}{4\pi}\int_{-\pi}^{\pi}dq\,\,{\mathcal{I}}(q)

By expanding the integrand around q=0q=0, we find that (q)1/(Jαq2)(1α+(q2J)/2){\mathcal{I}}(q)\propto 1/\sqrt{(J-\alpha q^{2})(1-\alpha+(q^{2}-J)/2)}, and (q)1/|q|{\mathcal{I}}(q)\propto 1/|q|, when J=0J=0. This implies that in the absence of the infinite range interactions, aiailn(N)\langle a_{i}^{\dagger}a_{i}\rangle\sim\ln(N) and the long range order is destroyed in the thermodynamic limit; in this case, the system is in the quasi-long range ordered Tomonaga Luttinger Liquid (TLL) phase. On the other hand, aiai\langle a_{i}^{\dagger}a_{i}\rangle does not diverge and U(1)U(1) symmetry breaking occurs (Sj+eiθ0)(S_{j}^{+}\propto e^{i\theta_{0}}), when J0J\neq 0. This symmetry breaking and the suppression of the TLL phase originates from the mean-field nature of this model in the presence of infinite range interactions. Our results are summarized in Fig. 2(b) (right panel). We note that while a mean-field analysis can correctly determine the phase boundary for the FM state, it would incorrectly identify the TLL phase as the U(1)U(1)-symmetry breaking phase in the J=0J=0 regime. In the next section, we compliment our spin wave analysis results with numerical density matrix renormalization group calculation of the ground state phase diagram.

Refer to caption
Figure 2: (a) Ground State Entanglement Entropy: The entanglement entropy, SS is 0, when the spins are polarized along the z-direction and the correlations are ferromagnetic in nature. The entanglement entropy violates the area law logarithmically, when the correlations are XYXY-like. The left panel shows the density plot for the half chain entanglement entropy, defined in Eq. 12 for a 100 site chain. The right panel shows the dependence of the entanglement entropy on the system size, when the correlations are XYXY-like. (b) Phase Diagram : The left panel shows the phase diagram obtained from the effective central charge, cc (defined in Eq. 13). The density plot for cc reveals three phases: (1) A ferromagnetic phase characterized by c=0c=0 (2) the critical TLL characterized by c=1c=1 and (3) A true U(1)U(1) spontaneous symmetry breaking (SSB) long range ordered phase characterized by c>1c>1. The right panel shows the phase diagram obtained from spin wave analysis. The phase diagram obtained from both approaches match qualitatively. As mentioned in the main text, a purely mean-field analysis would misidentify the TLL phase as the U(1)U(1) SSB phase.

IV Density Matrix renormalization Group Simulations

The DMRG is a powerful tool to diagnose the equilibrium phases and out-of-equilibrium dynamics of one-dimensional and quasi-one-dimensional quantum systems White (1992, 1993); White and Feiguin (2004). We now proceed to to determine the phase diagram of our model using the DMRG algorithm. In this method, we employ a matrix product state ansatz to represent the ground state Schollwöck (2005, 2011), and ensure that the algorithm converges globally with a truncation error less than 10610^{-6}. The short range part of the Hamiltonian (the XXZXXZ Heisenberg Model) has already been extensively studied with this method White (1993). For the long range part, we represent HLMGH_{LMG} as a sum of matrix product operators; this choice avoids systematic errors introduced by other schemes Ren et al. (2020). Our codes are mainly based on 𝑡𝑒𝑛𝑠𝑜𝑟𝑠.𝑛𝑒𝑡{\it tensors.net} library Evenbly (2019).

The ground state entanglement entropy, provides a powerful tool to numerically diagnose the phases of long range interacting systems Koffel et al. (2012); Vodola et al. (2015); Eisert et al. (2010); Cho (2018); Kuwahara and Saito (2020); Jiang et al. (2012); Isakov et al. (2011); Zhang et al. (2012); Vitagliano et al. (2010). In particular, the 2\mathbb{Z}_{2}-symmetry broken ferromagnetic phase is characterized by an area law entanglement entropy, while ground states with XYXY-like order exhibit violation of the area law. We compute the entanglement entropy, SS, defined as:

S=TrρBlog(ρB),S={\rm Tr}\rho_{B}\log(\rho_{B}), (12)

where ρB\rho_{B} is the reduced density matrix of the right (left) half of the chain, and it is obtained by tracing over the degrees of freedom of the left (right) half of the chain. As shown in Fig. 2(a) (left panel), S=0S=0, when the spins are z-polarized and the spin chain is in the ferromagnetic phase. On the other hand, the entropy is finite, when the ground state is XYXY-like.

It is evident from Fig. 2(a) (right panel) that in the XYXY-like phase, the entanglement entropy violates the area law logarithmically. Employing an analogy with critical systems Holzhey et al. (1994); Calabrese and Cardy (2004), we can define an effective central charge, cc using the following relation:

S=c6log(L)S=\frac{c}{6}\log(L)\\ (13)

The central charge, cc is 0 for the Ising ferromagnetic phase and it is 11 for the TLL phase. Furthermore, in the long range ordered U(1)U(1) symmetry breaking XYXY phase, c>1c>1 Gong et al. (2016); Maghrebi et al. (2017); Ren et al. (2020). We note that the transition from the TLL phase to the XYXY phase is a continuous Berezinskii-Kosterlitz-Thouless transition Maghrebi et al. (2017). Thus, cc changes continuously when JJ changes, and the area law is violated logarithmically in both phases. As shown in Fig. 2(b) (left panel), we find that the cavity mediated long range interactions can lead to the spontaneous breaking of a continuous U(1)U(1) symmetry for a large parameter regime. Furthermore, our results demonstrate that even an infinitesimally weak coupling between the short range interacting spin chain and the optical cavity is sufficient to induce long range XYXY order in the spin chain, thereby providing a route to circumvent the Mermin-Wagner theorem.

V Proposed Experimental Realization

As mentioned in the introduction, coupling a Heisenberg XXZXXZ spin chain to a single mode cavity provides a natural route to realize our model. The Heisenberg Hamiltonian can be engineered using Rydberg atoms Whitlock et al. (2017); Nguyen et al. (2018); Signoles et al. (2021), ultracold atomic gases Duan et al. (2003); Jepsen et al. (2020); Zhao et al. (2019); Pai and Pandit (2005), and trapped ions Davoudi et al. (2020). In this section, we explicitly derive the effective spin Hamiltonian that arises when this scenario is realized.

The evolution of the density matrix of the system, ρ^\hat{\rho} in the rotating frame of the atomic transition frequency can be described by the master equation:

dρ^dt=i[H^SL,ρ^]+c[ρ^],\frac{d\hat{\rho}}{dt}=-i[\hat{H}_{SL},\hat{\rho}]+\mathcal{L}_{c}[\hat{\rho}], (14)

where

H^SL=Δca^+a^+HXXZ+gi=1N(a^+σ^i+a^σ^i+).\hat{H}_{SL}=\Delta_{c}\hat{a}^{+}\hat{a}+H_{XXZ}+g\sum_{i=1}^{N}(\hat{a}^{+}\hat{\sigma}_{i}^{-}+\hat{a}\hat{\sigma}_{i}^{+}). (15)

Here Δc\Delta_{c} is the detuning of the cavity mode frequency from the atomic transition frequency in the rotating frame, gg is the coupling between the atomic spins and the cavity field, HXXZH_{XXZ} is the Heisenberg Hamiltonian described by:

H^XXZ=14i=1N1(Jzσizσi+1z+Jxx(σixσi+1x+σiyσi+1y)),\hat{H}_{XXZ}=-\frac{1}{4}\sum_{i=1}^{N-1}\left(J_{z}\sigma_{i}^{z}\sigma^{z}_{i+1}+J_{\rm xx}(\sigma_{i}^{x}\sigma^{x}_{i+1}+\sigma_{i}^{y}\sigma^{y}_{i+1})\right), (16)

and the photon loss from the cavity at a rate κ\kappa is given by the Lindblad term:

c[ρ^]=κ2(2a^ρ^a^+a^+a^ρ^ρ^a^+a^).\mathcal{L}_{c}[\hat{\rho}]=\frac{\kappa}{2}(2\hat{a}\hat{\rho}\hat{a}^{+}-\hat{a}^{+}\hat{a}\hat{\rho}-\hat{\rho}\hat{a}^{+}\hat{a}). (17)

By adiabatically eliminating the cavity mode in the bad cavity limit (κg\kappa\gg g), we obtain a master equation for the reduced density matrix ρ^s\hat{\rho}_{s} of the spin chain,

dρs^dt=i[H^eff,ρ^s]+Γ[ρ^s],\frac{d\hat{\rho_{s}}}{dt}=-i[\hat{H}_{{\rm eff}},\hat{\rho}_{s}]+\mathcal{L}_{\Gamma}[\hat{\rho}_{s}], (18)

where the effective Hamiltonian is given by:

H^eff=4g2Δc4Δc2+κ2i,jσ^i+σ^j+HXXZ,\hat{H}_{{\rm eff}}=\frac{4g^{2}\Delta_{c}}{4\Delta_{c}^{2}+\kappa^{2}}\sum_{i,j}\hat{\sigma}_{i}^{+}\hat{\sigma}_{j}^{-}+H_{XXZ}, (19)

and

Γ[ρ^s]=2g2κ4Δc2+κ2i,j(2σ^iρ^sσ^j+σ^i+σ^jρ^sρ^sσ^i+σ^j).\mathcal{L}_{\Gamma}[\hat{\rho}_{s}]=\frac{2g^{2}\kappa}{4\Delta_{c}^{2}+\kappa^{2}}\sum_{i,j}(2\hat{\sigma}_{i}^{-}\hat{\rho}_{s}\hat{\sigma}_{j}^{+}-\hat{\sigma}_{i}^{+}\hat{\sigma}_{j}^{-}\hat{\rho}_{s}-\hat{\rho}_{s}\hat{\sigma}_{i}^{+}\hat{\sigma}_{j}^{-}). (20)

We conclude that the evolution of the spin chain is almost unitary when Δcκ/2\Delta_{c}\gg\kappa/2; in this limit, the effective many-body model describing the system is given by Eq. 1, with JN4g2ΔcJz\frac{J}{N}\approx\frac{4g^{2}}{\Delta_{c}J_{\rm z}} and α=JxxJz\alpha=\frac{J_{\rm xx}}{J_{z}}.

Interestingly, a highly tunable nearest-neighbor Heisenberg spin model has recently been realized with ultracold bosonic 7Li atoms loaded in an optical lattice Jepsen et al. (2020). In particular, near the Mott regime, the dynamics of this system is effectively described by HXXZH_{XXZ} defined in Eq. 16, where Jxx50J_{\rm xx}\sim 50 Hz and Jz/JxxJ_{z}/J_{\rm xx} can be tuned between 1.8\sim-1.8 and 1.6\sim 1.6. Furthermore, the infinite range interacting part of the Hamiltonian has also been emulated with cold atomic ensembles, where g10g\sim 10 kHz and Δc50\Delta_{c}\sim 50 MHz Muniz et al. (2020). These results clearly demonstrate that the parameter regime of JN0.16\frac{J}{N}\sim 0.16 appears well within the reach of on-going realistic experiments, thereby enabling the possibility of verifying our predictions in the near future.

VI Summary and Outlook

In this paper, we have examined the ground state phases of a Heisenberg spin chain with competing short and long range interactions. We have clearly demonstrated that cavity mediated infinite range interactions can lead to the spontaneous breaking of the continuous U(1)U(1) symmetry and a consequent logarithmic violation of the area law. We have argued that the U(1)U(1) symmetry breaking XYXY phase can be identified by examining the effective central charge of the ground state. Finally, we have outlined a proposal to realize our model in coupled cavity-quantum gas systems.

There are several future directions of this work. Firstly, it would be interesting to extend our study to spin-1 particles, and examine whether topological Haldane-like phases can arise in these systems. Furthermore, we can explore dynamical quantum phase transitions in these systems. Another promising direction would be to investigate the quantum phases and out-of-equilibrium dynamics of this model in various two dimensional geometries. Finally, we can also analyze the properties of this spin chain, when it is subjected to periodic driving.

Acknowledgments

This work is supported by the AFOSR Grant No. FA9550-16-1-0006, the MURI-ARO Grant No. W911NF17-1-0323 through UC Santa Barbara, the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the University of Pittsburgh Center for Research Computing through the resources provided.

References

  • Kockum et al. (2019) A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta,  and F. Nori, Nature Reviews Physics 1, 19 (2019).
  • Sheikhan et al. (2016a) A. Sheikhan, F. Brennecke,  and C. Kollath, Physical Review A 93, 043609 (2016a).
  • Landig et al. (2016) R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner,  and T. Esslinger, Nature 532, 476 (2016).
  • Blaß et al. (2018) B. Blaß, H. Rieger, G. Roósz,  and F. Iglói, Physical Review Letters 121, 095301 (2018).
  • Sheikhan and Kollath (2019) A. Sheikhan and C. Kollath, Physical Review A 99, 053611 (2019).
  • Halati et al. (2019) C.-M. Halati, A. Sheikhan,  and C. Kollath, Physical Review A 99, 033604 (2019).
  • Halati et al. (2017) C.-M. Halati, A. Sheikhan,  and C. Kollath, Physical Review A 96, 063621 (2017).
  • Niederle et al. (2016) A. E. Niederle, G. Morigi,  and H. Rieger, Physical Review A 94, 033607 (2016).
  • Mivehvar et al. (2017) F. Mivehvar, F. Piazza,  and H. Ritsch, Physical Review Letters 119, 063602 (2017).
  • Mivehvar et al. (2019) F. Mivehvar, H. Ritsch,  and F. Piazza, Physical Review Letters 122, 113603 (2019).
  • Chiocchetta et al. (2020) A. Chiocchetta, D. Kiese, F. Piazza,  and S. Diehl, arXiv preprint arXiv:2009.11856  (2020).
  • Dogra et al. (2016) N. Dogra, F. Brennecke, S. D. Huber,  and T. Donner, Physical Review A 94, 023632 (2016).
  • Sundar and Mueller (2016) B. Sundar and E. J. Mueller, Physical Review A 94, 033631 (2016).
  • Chen et al. (2016) Y. Chen, Z. Yu,  and H. Zhai, Physical Review A 93, 041601(R) (2016).
  • Schlawin and Jaksch (2019) F. Schlawin and D. Jaksch, Physical Review Letters 123, 133601 (2019).
  • Schlawin et al. (2019) F. Schlawin, A. Cavalleri,  and D. Jaksch, Physical Review Letters 122, 133602 (2019).
  • Chakraborty and Piazza (2020) A. Chakraborty and F. Piazza, arXiv preprint arXiv:2008.06513  (2020).
  • Chen et al. (2020) H.-J. Chen, Y.-Q. Yu, D.-C. Zheng,  and R. Liao, Scientific Reports 10, 1 (2020).
  • Chen and Cai (2020) Y. Chen and Z. Cai, Physical Review A 101, 023611 (2020).
  • Tucker et al. (2018) K. Tucker, B. Zhu, R. J. Lewis-Swan, J. Marino, F. Jimenez, J. G. Restrepo,  and A. M. Rey, New Journal of Physics 20, 123003 (2018).
  • Keßler et al. (2019) H. Keßler, J. G. Cosme, M. Hemmerling, L. Mathey,  and A. Hemmerich, Physical Review A 99, 053605 (2019).
  • Yang and Cai (2021) X. Yang and Z. Cai, Physical Review Letters 126, 020602 (2021).
  • Lerose et al. (2018) A. Lerose, J. Marino, B. Žunkovič, A. Gambassi,  and A. Silva, Physical Review Letters 120, 130603 (2018).
  • Lerose et al. (2019) A. Lerose, B. Žunkovič, J. Marino, A. Gambassi,  and A. Silva, Physical Review B 99, 045128 (2019).
  • Sheikhan et al. (2016b) A. Sheikhan, F. Brennecke,  and C. Kollath, Physical Review A 94, 061603(R) (2016b).
  • Wang et al. (2019) X. Wang, E. Ronca,  and M. A. Sentef, Physical Review B 99, 235156 (2019).
  • Bentsen et al. (2019a) G. Bentsen, I.-D. Potirniche, V. B. Bulchandani, T. Scaffidi, X. Cao, X.-L. Qi, M. Schleier-Smith,  and E. Altman, Physical Review X 9, 041011 (2019a).
  • Bentsen et al. (2019b) G. Bentsen, T. Hashizume, A. S. Buyskikh, E. J. Davis, A. J. Daley, S. S. Gubser,  and M. Schleier-Smith, Physical Review Letters 123, 130601 (2019b).
  • Marino and Rey (2019) J. Marino and A. M. Rey, Physical Review A 99, 051803(R) (2019).
  • Alavirad and Lavasani (2019) Y. Alavirad and A. Lavasani, Physical Review A 99, 043602 (2019).
  • Lewis-Swan et al. (2019) R. J. Lewis-Swan, A. Safavi-Naini, J. J. Bollinger,  and A. M. Rey, Nature Communications 10, 1581 (2019).
  • Klinder et al. (2015) J. Klinder, H. Keßler, M. Wolke, L. Mathey,  and A. Hemmerich, Proceedings of the National Academy of Sciences 112, 3290 (2015).
  • Muniz et al. (2020) J. A. Muniz, D. Barberena, R. J. Lewis-Swan, D. J. Young, J. R. Cline, A. M. Rey,  and J. K. Thompson, Nature 580, 602 (2020).
  • Li et al. (2020) Z. Li, S. Choudhury,  and W. V. Liu, Physical Review Research 2, 043399 (2020).
  • Belyansky et al. (2020) R. Belyansky, P. Bienias, Y. A. Kharkov, A. V. Gorshkov,  and B. Swingle, Physical Review Letters 125, 130601 (2020).
  • Yin and Lucas (2020) C. Yin and A. Lucas, Physical Review A 102, 022402 (2020).
  • Sachdev and Ye (1993) S. Sachdev and J. Ye, Physical Review Letters 70, 3339 (1993).
  • Lunkin et al. (2018) A. V. Lunkin, K. S. Tikhonov,  and M. V. Feigel’man, Physical Review Letters 121, 236601 (2018).
  • Song et al. (2017) X.-Y. Song, C.-M. Jian,  and L. Balents, Physical Review Letters 119, 216601 (2017).
  • Lantagne-Hurtubise et al. (2018) É. Lantagne-Hurtubise, C. Li,  and M. Franz, Physical Review B 97, 235124 (2018).
  • Haldar et al. (2018) A. Haldar, S. Banerjee,  and V. B. Shenoy, Physical Review B 97, 241106(R) (2018).
  • Zhang and Zhai (2018) P. Zhang and H. Zhai, Physical Review B 97, 201112(R) (2018).
  • Maghrebi et al. (2017) M. F. Maghrebi, Z.-X. Gong,  and A. V. Gorshkov, Physical Review Letters 119, 023001 (2017).
  • Peter et al. (2012) D. Peter, S. Müller, S. Wessel,  and H. P. Büchler, Physical Review Letters 109, 025303 (2012).
  • Gaudin (1971) M. Gaudin, Physical Review Letters 26, 1301 (1971).
  • Destri and deVega (1992) C. Destri and H. J. deVega, Physical Review Letters 69, 2313 (1992).
  • Barmettler et al. (2010) P. Barmettler, M. Punk, V. Gritsev, E. Demler,  and E. Altman, New Journal of Physics 12, 055017 (2010).
  • Mermin and Wagner (1966) N. D. Mermin and H. Wagner, Physical Review Letters 17, 1133 (1966).
  • Giamarchi (2004) T. Giamarchi, Quantum physics in one dimension, Vol. 121 (Oxford University Press, Oxford, UK, 2004).
  • Botet et al. (1982) R. Botet, R. Jullien,  and P. Pfeuty, Physical Review Letters 49, 478 (1982).
  • Lipkin et al. (1965) H. J. Lipkin, N. Meshkov,  and A. Glick, Nuclear Physics 62, 188 (1965).
  • Ribeiro et al. (2007) P. Ribeiro, J. Vidal,  and R. Mosseri, Physical Review Letters 99, 050402 (2007).
  • Žunkovič et al. (2016) B. Žunkovič, A. Silva,  and M. Fabrizio, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, 20150160 (2016).
  • Holstein and Primakoff (1940) T. Holstein and H. Primakoff, Physical Review 58, 1098 (1940).
  • Takahashi (1989) M. Takahashi, Physical Review B 40, 2494 (1989).
  • White (1992) S. R. White, Physical review letters 69, 2863 (1992).
  • White (1993) S. R. White, Physical Review B 48, 10345 (1993).
  • White and Feiguin (2004) S. R. White and A. E. Feiguin, Physical Review Letters 93, 076401 (2004).
  • Schollwöck (2005) U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
  • Schollwöck (2011) U. Schollwöck, Annals of Physics 326, 96 (2011).
  • Ren et al. (2020) J. Ren, W.-L. You,  and X. Wang, Physical Review B 101, 094410 (2020).
  • Evenbly (2019) G. Evenbly, Tensors.net (https://www.tensors.net/) (2019).
  • Koffel et al. (2012) T. Koffel, M. Lewenstein,  and L. Tagliacozzo, Physical Review Letters 109, 267203 (2012).
  • Vodola et al. (2015) D. Vodola, L. Lepori, E. Ercolessi,  and G. Pupillo, New Journal of Physics 18, 015001 (2015).
  • Eisert et al. (2010) J. Eisert, M. Cramer,  and M. B. Plenio, Reviews of Modern Physics 82, 277 (2010).
  • Cho (2018) J. Cho, Physical Review X 8, 031009 (2018).
  • Kuwahara and Saito (2020) T. Kuwahara and K. Saito, Nature Communications 11, 4478 (2020).
  • Jiang et al. (2012) H.-C. Jiang, Z. Wang,  and L. Balents, Nature Physics 8, 902 (2012).
  • Isakov et al. (2011) S. V. Isakov, M. B. Hastings,  and R. G. Melko, Nature Physics 7, 772 (2011).
  • Zhang et al. (2012) Y. Zhang, T. Grover, A. Turner, M. Oshikawa,  and A. Vishwanath, Physical Review B 85, 235151 (2012).
  • Vitagliano et al. (2010) G. Vitagliano, A. Riera,  and J. I. Latorre, New Journal of Physics 12, 113049 (2010).
  • Holzhey et al. (1994) C. Holzhey, F. Larsen,  and F. Wilczek, Nuclear Physics B 424, 443 (1994).
  • Calabrese and Cardy (2004) P. Calabrese and J. Cardy, Journal of Statistical Mechanics: Theory and Experiment 2004, P06002 (2004).
  • Gong et al. (2016) Z.-X. Gong, M. F. Maghrebi, A. Hu, M. Foss-Feig, P. Richerme, C. Monroe,  and A. V. Gorshkov, Physical Review B 93, 205115 (2016).
  • Whitlock et al. (2017) S. Whitlock, A. W. Glaetzle,  and P. Hannaford, Journal of Physics B: Atomic, Molecular and Optical Physics 50, 074001 (2017).
  • Nguyen et al. (2018) T. L. Nguyen, J.-M. Raimond, C. Sayrin, R. Cortinas, T. Cantat-Moltrecht, F. Assemat, I. Dotsenko, S. Gleyzes, S. Haroche, G. Roux, T. Jolicoeur,  and M. Brune, Physical Review X 8, 011032 (2018).
  • Signoles et al. (2021) A. Signoles, T. Franz, R. Ferracini Alves, M. Gärttner, S. Whitlock, G. Zürn,  and M. Weidemüller, Physical Review X 11, 011011 (2021).
  • Duan et al. (2003) L. M. Duan, E. A. Demler,  and M. D. Lukin, Physical Review Letters 91, 090402 (2003).
  • Jepsen et al. (2020) P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E. Demler,  and W. Ketterle, Nature 588, 403 (2020).
  • Zhao et al. (2019) H. Zhao, J. Knolle,  and F. Mintert, Physical Review A 100, 053610 (2019).
  • Pai and Pandit (2005) R. V. Pai and R. Pandit, Physical Review B 71, 104508 (2005).
  • Davoudi et al. (2020) Z. Davoudi, M. Hafezi, C. Monroe, G. Pagano, A. Seif,  and A. Shaw, Physical Review Research 2, 023015 (2020).