This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Log Calabi–Yau pairs of complexity zero and arbitrary index

Joshua Enwright UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA [email protected]  and  Fernando Figueroa Department of Mathematics, Northwestern University, Evanston, Il 60208, USA [email protected]
Abstract.

In this article, we give a characterization of log Calabi–Yau pairs of complexity zero and arbitrary index. As an application, we show that a log Calabi–Yau pair of birational complexity zero admits a crepant birational model which is a generalized Bott tower.

2020 Mathematics Subject Classification:
Primary 14E05, 14J32; Secondary 14E30, 14M25.

1. Introduction

Throughout this article, we work over an algebraically closed field 𝕂\mathbb{K} of characteristic zero.

The complexity of a log pair (X,B)(X,B) is defined as

c(X,B)=dimX+rankWDivalg(X)|B|,c(X,B)=\dim X+\operatorname{rank}{\rm WDiv}_{\rm alg}(X)-|B|,

where WDivalg(X){\rm WDiv}_{\rm alg}(X) is the group of Weil divisors on XX modulo algebraic equivalence and |B||B| is the sum of the coefficients of BB. While not particularly well-behaved for arbitrary log pairs, the complexity enjoys remarkable properties when restricted to certain sub-classes of pairs. In  [3, Theorem 1.2, Corollary 1.3], Brown, McKernan, Svaldi and Zong show the following:

Theorem 1 ([3, Theorem 1.2, Corollary 1.3]).

Let (X,B)(X,B) be a log canonical pair with (KX+B)-(K_{X}+B) nef. Then c(X,B)0.c(X,B)\geq 0. If c(X,B)<1,c(X,B)<1, then there is a toric log Calabi–Yau pair (X,Δ)(X,\Delta) with BΔ\lfloor B\rfloor\leq\Delta and all but possibly 2c(X,B)\lfloor 2c(X,B)\rfloor components of Δ\Delta in the support of B.B.

Our aim in this article is to completely characterize when the equality c(X,B)=0c(X,B)=0 holds in this lower bound on complexity. A log canonical pair (X,B)(X,B) with (KX+B)-(K_{X}+B) nef and c(X,B)=0c(X,B)=0 is necessarily a log Calabi–Yau pair (see Definition  2.9 and Remark  2.40). Therefore, in this article, we restrict to the class of log Calabi–Yau pairs. For log Calabi–Yau pairs of complexity zero, Theorem  1 takes on the following simpler form.

Corollary 1.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. Then there exists a toric log Calabi–Yau pair (X,Δ)(X,\Delta) satisfying

BΔB.\lfloor B\rfloor\leq\Delta\leq\lceil B\rceil.

There are two natural sources of examples of log Calabi–Yau pairs of complexity zero. The first of these comes from toric log Calabi–Yau pairs (see Definition  2.29). Indeed, given a toric log Calabi–Yau pair (X,Δ),(X,\Delta), both dimX+rankWDivalg(X)\dim X+\operatorname{rank}{\rm WDiv}_{\rm alg}(X) and |Δ||\Delta| can be identified with the number of rays in the fan of XX. The second comes from the observation that if (X,B1),,(X,Br)(X,B_{1}),\ldots,(X,B_{r}) is a collection of log Calabi–Yau pairs of complexity zero supported on a fixed variety XX and if b1,,br[0,1]b_{1},\ldots,b_{r}\in[0,1] are rational numbers with sum i=1rbi=1,\sum_{i=1}^{r}b_{i}=1, then (X,i=1rbiBi)\left(X,\sum_{i=1}^{r}b_{i}B_{i}\right) will be another log Calabi–Yau pair of complexity zero. Indeed, log canonicity, numerical triviality of the log canonical divisor, and the property that the coefficients in the boundary sum to dimX+rankWDivalg(X)\dim X+\operatorname{rank}{\rm WDiv}_{\rm alg}(X) are all preserved under the formation of such convex combinations of boundary divisors. Our first main theorem states that these simple sources of examples of log Calabi–Yau pairs of complexity zero, in fact, produce all examples.

Theorem 2.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. Then there are toric log Calabi–Yau pairs (X,Δ1),,(X,Δr)(X,\Delta_{1}),\ldots,(X,\Delta_{r}) and rational numbers b1,,br[0,1]b_{1},\ldots,b_{r}\in[0,1] with sum i=1rbi=1\sum_{i=1}^{r}b_{i}=1 satisfying

B=i=1rbiΔi.B=\sum_{i=1}^{r}b_{i}\Delta_{i}.

It follows easily from Corollary  1 that log Calabi–Yau pairs of index one111The index of a log Calabi–Yau pair (X,B)(X,B) is the smallest positive integer mm for which m(KX+B)0m(K_{X}+B)\sim 0. and complexity zero are toric log Calabi–Yau pairs (cf. Lemma  3.5). Theorem  2 can be seen as the analogue of this statement in the absence of restrictions on the index; log Calabi–Yau pairs of complexity zero are toric boundary arrangements (see Definition  3.9). See Lemma  2.37 for an explanation of the relationship between different toric log Calabi–Yau pairs supported on a fixed variety.

A variant of the complexity which is natural from the perspective of birational geometry is the birational complexity, which is defined for a log pair (X,B)(X,B) as

cbir(X,B)=inf{c(Y,BY)(X,B)bir(Y,BY)}.c_{\rm bir}(X,B)=\inf\left\{c(Y,B_{Y})\mid(X,B)\simeq_{\rm bir}(Y,B_{Y})\right\}.

Here, the symbol bir\simeq_{\rm bir} denotes crepant birational equivalence between log pairs (see Definition  2.11). The notion of birational complexity was introduced by Mauri and Moraga in  [16], where they showed that every log Calabi–Yau nn-fold of index one and birational complexity zero is crepant to (n,H0++Hn)(\mathbb{P}^{n},H_{0}+\ldots+H_{n}) (see [16, Theorem 1.6]). Here, the HiH_{i}’s denote the coordinate hyperplanes in n\mathbb{P}^{n}. Our second main theorem offers an analogue to this result in the absence of restrictions on the index. In order to state it, we must first make the following definition.

Definition 1.

We say that a projective variety XX is a generalized Bott tower if there exists a tower of morphisms

X=X0f0X1XkfkXk+1=Spec𝕂,X=X_{0}\xrightarrow{f_{0}}X_{1}\rightarrow\ldots\rightarrow X_{k}\xrightarrow{f_{k}}X_{k+1}=\operatorname{Spec}\mathbb{K},

where each fi:XiXi+1f_{i}\colon X_{i}\rightarrow X_{i+1} is the projective space bundle associated to a direct sum of line bundles on Xi+1X_{i+1}.

Theorem 3.

Let (X,B)(X,B) be a log Calabi–Yau pair of birational complexity zero. Then there is a crepant birational model (Y,BY)(Y,B_{Y}) of (X,B)(X,B) satisfying:

  1. (1)

    (Y,BY)(Y,B_{Y}) is a log Calabi–Yau pair of complexity zero,

  2. (2)

    YY is a generalized Bott tower.

In particular, YY is a smooth projective toric variety.

In contrast to Mauri and Moraga’s result in the index one case, one is generally forced to consider infinitely many different generalized Bott towers YY in each dimension when restrictions on the index are weakened (see Example  7.4).

1.1. Geometry of log canonical centers

One of the main challenges in proving Theorem  3 lies in understanding and controlling the collection of exceptional divisors with log discrepancy in the interval [0,1],[0,1], as these are precisely those divisors that can be extracted while maintaining an effective boundary. The complexity of a pair will remain unchanged after extracting only divisors with log discrepancy zero and will increase after extracting divisors with positive log discrepancy (see Lemma  2.41). One of the helpful features in the index one case is that any divisor with log discrepancy in [0,1)[0,1) automatically has log discrepancy zero. This offers a level of flexibility in performing complexity-preserving birational modifications which is simply not present in the absence of such strong restrictions on the index. To proceed, we will need new ways to find exceptional divisors with log discrepancy zero.

In order to state our first result in this direction, we begin by making the following definition.

Definition 2.

We say that a Weil divisor Δ\Delta on XX is associated to the log pair (X,B)(X,B) if the following conditions hold:

  1. (1)

    (X,Δ)(X,\Delta) is a toric log Calabi–Yau pair,

  2. (2)

    BΔB.\lfloor B\rfloor\leq\Delta\leq\lceil B\rceil.

We write

𝒜(X,B)={ΔWDiv(X)Δ is associated to (X,B)}.\mathcal{A}(X,B)=\left\{\Delta\in\text{WDiv}(X)\mid\Delta\text{ is associated to }(X,B)\right\}.

The set 𝒜(X,B)\mathcal{A}(X,B) is finite for any log pair (X,B),(X,B), and we can rephrase Corollary  1 by saying that 𝒜(X,B)\mathcal{A}(X,B) is nonempty whenever (X,B)(X,B) is a log Calabi–Yau pair of complexity zero. With Theorem  2 in hand, we will be able to prove the following:

Theorem 4.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. Then the following statements hold:

  1. (1)

    If a divisor EE over XX is toric with respect to every Δ𝒜(X,B),\Delta\in\mathcal{A}(X,B), then EE is a log canonical place of (X,B).(X,B).

  2. (2)

    If a divisor EE over XX is a log canonical place of (X,B),(X,B), then EE is toric with respect to some Δ𝒜(X,B).\Delta\in\mathcal{A}(X,B).

  3. (3)

    If a subvariety ZXZ\subset X is a toric stratum of every Δ𝒜(X,B),\Delta\in\mathcal{A}(X,B), then ZZ is a log canonical center of (X,B).(X,B).

  4. (4)

    If a subvariety ZXZ\subset X is a log canonical center of (X,B),(X,B), then ZZ is a toric stratum of some Δ𝒜(X,B).\Delta\in\mathcal{A}(X,B).

Given a toric log Calabi–Yau pair (X,Δ),(X,\Delta), its toric strata can be characterized either as the log canonical centers of the pair or as the closures of the orbits of the corresponding torus action on X.X. Consequently, one obtains the well-known fact that a toric log Calabi–Yau pair (X,Δ)(X,\Delta) is log smooth if and only if it is divisorially log terminal.222Roughly, a log pair (X,B)(X,B) is divisorially log terminal if it is a log canonical pair which is log smooth generically along each of its log canonical centers. See Definition  2.5 for a precise definition. Using the information about log canonical places and centers provided by Theorem  4, we will be able to generalize this well-known fact to all log Calabi–Yau pairs of complexity zero via the following:

Theorem 5.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero and let (Y,BY)(X,B)(Y,B_{Y})\rightarrow(X,B) be a dlt modification. Then the pair (Y,BY)(Y,\lfloor B_{Y}\rfloor) is log smooth.

Theorem  5 will provide us with the complexity-preserving birational modifications that we need in order to prove Theorem  3.

1.2. Behavior with respect to contractions

The property of being a toric variety imposes strong restrictions on the morphisms and rational maps that a variety can admit. Two cases which illustrate this quite clearly are the cases of contraction morphisms and birational contraction maps (see Section  2.2).

If (X,Δ)(X,\Delta) is a toric log Calabi–Yau pair and f:XYf\colon X\dashrightarrow Y is a birational contraction map, then (Y,ΔY=fΔ)(Y,\Delta_{Y}=f_{*}\Delta) is a toric log Calabi–Yau pair and the map ff is automatically toric (see Lemma  2.33). Moreover, the exceptional locus of such a map ff will be a union of toric strata. The following theorem generalizes these facts to all log Calabi–Yau pairs of complexity zero.

Theorem 6.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero and let f:XYf\colon X\dashrightarrow Y be a birational contraction. Then (Y,BY=fB)(Y,B_{Y}=f_{*}B) is a log Calabi–Yau pair of complexity zero, and the exceptional locus of ff is a union of log canonical centers of the pair (X,B).(X,B).

If XX is a toric variety and f:XYf\colon X\rightarrow Y is a contraction, then YY automatically admits the structure of a toric variety in such a way that ff becomes equivariant (see Lemma  2.34). Moreover, if Δ\Delta is the toric boundary of XX and (Y,BY,𝐌)(Y,B_{Y},\mathbf{M}) is the generalized pair induced on YY by the canonical bundle formula, then it follows that BY=ΔYB_{Y}=\Delta_{Y} is the toric boundary on YY and 𝐌0\mathbf{M}\sim 0 (see Lemma  2.51). The following theorem generalizes these facts to the case of log Calabi–Yau pairs of complexity zero.

Theorem 7.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero, and let B=i=1rbiΔiB=\sum_{i=1}^{r}b_{i}\Delta_{i} be a decomposition as in Theorem  2. Let XYX\rightarrow Y be a fibration, and let (Y,BY,𝐌)(Y,B_{Y},\mathbf{M}) be the generalized pair induced by the canonical bundle formula. For each 1ir,1\leq i\leq r, denote by (Y,Γi)(Y,\Gamma_{i}) the toric log Calabi–Yau pair induced by (X,Δi).(X,\Delta_{i}). Then BY=i=1rbiΓi.B_{Y}=\sum_{i=1}^{r}b_{i}\Gamma_{i}. In particular, (Y,BY)(Y,B_{Y}) is a log Calabi–Yau pair of complexity zero and 𝐌0\mathbf{M}\sim_{\mathbb{Q}}0 where it descends.

Acknowledgements

The authors would like to thank Stefano Filipazzi, Lena Ji, Joaquín Moraga and Burt Totaro for very useful comments. The first author was partially supported by NSF grant DMS-2054553.

2. Preliminaries

In this section we collect some preliminaries about log pairs, the relative MMP, toric geometry and the complexity of pairs.

2.1. Log pairs

In this subsection we recall some basic definitions regarding log pairs and log discrepancies.

Definition 2.1.

A log sub-pair (X,B)(X,B) consists of a normal quasi-projective variety XX and a \mathbb{Q}-divisor BB with the property that KX+BK_{X}+B is \mathbb{Q}-Cartier. We say that a log sub-pair (X,B)(X,B) is a log pair if BB is effective.

Definition 2.2.

Let (X,B)(X,B) be a log sub-pair, and let f:YXf\colon Y\rightarrow X be a proper birational morphism from a normal variety YY. We will refer to the unique log sub-pair (Y,BY)(Y,B_{Y}) satisfying

  • KY+BYf(KX+B),K_{Y}+B_{Y}\sim_{\mathbb{Q}}f^{*}(K_{X}+B), and

  • fBY=Bf_{*}B_{Y}=B

as the log pullback of (X,B)(X,B) via f.f.

Definition 2.3.

Let (X,B)(X,B) be a log sub-pair and let f:YXf\colon Y\rightarrow X be a projective birational morphism from a normal variety Y.Y. Given a prime divisor EY,E\subset Y, its log discrepancy with respect to (X,B)(X,B) is the quantity

aE(X,B)=1coeffE(BY),a_{E}(X,B)=1-{\rm coeff}_{E}(B_{Y}),

where (Y,BY)(Y,B_{Y}) is the log pullback of (X,B)(X,B) via f.f.

We say that a log pair (X,B)(X,B) is log canonical (respectively Kawamata log terminal) if aE(X,B)0a_{E}(X,B)\geq 0 (respectively aE(X,B)>0a_{E}(X,B)>0) for all prime divisors EE over X.X.

Definition 2.4.

Let (X,B)(X,B) be a log canonical pair. A log canonical place of (X,B)(X,B) is a divisor EE over XX for which aE(X,B)=0a_{E}(X,B)=0. A log canonical center of (X,B)(X,B) is a subvariety ZXZ\subset X which is the image on XX of a log canonical place of (X,B)(X,B).

Definition 2.5.

Let (X,B)(X,B) be a log pair. We say that (X,B)(X,B) is divisorially log terminal if it is log canonical and there exists an open subset UXU\subset X, such that:

  1. (1)

    the pair (U,BU)(U,B_{U}) is log smooth, and

  2. (2)

    every log canonical center of (X,B)(X,B) intersects U.U.

Notation 2.6.

We will often abbreviate log canonical, Kawamata log terminal and divisorially log terminal as lc, klt and dlt respectively.

Definition 2.7.

Let (X,B)(X,B) be a log canonical pair. A dlt modification of (X,B)(X,B) is a projective birational morphism f:YXf\colon Y\rightarrow X, satisfying the following:

  1. (1)

    YY is \mathbb{Q}-factorial,

  2. (2)

    every ff-exceptional divisor is a log canonical place of (X,B)(X,B),

  3. (3)

    the log pullback (Y,BY)(Y,B_{Y}) of (X,B)(X,B) via ff is dlt, and

  4. (4)

    KY+BYK_{Y}+B_{Y} is ff-nef.

We recall the existence of dlt modifications.

Lemma 2.8.

Let (X,B)(X,B) be a log canonical pair. Then there exists a dlt modification f:YXf\colon Y\rightarrow X of (X,B)(X,B).

Proof.

This follows from  [13, Corollary 1.36]. ∎

Definition 2.9.

Let (X,B)(X,B) be a log pair. We say that (X,B)(X,B) is a log Calabi–Yau pair if XX is projective, (X,B)(X,B) is log canonical and KX+B0K_{X}+B\equiv 0.

Remark 2.10.

It follows from  [7, Theorem 1.5] that (X,B)(X,B) is a log Calabi–Yau pair in the sense of Definition  2.9 if and only if it is a log canonical pair satisfying KX+B0K_{X}+B\sim_{\mathbb{Q}}0.

Definition 2.11.

Let (X,B)(X,B) and (Y,BY)(Y,B_{Y}) be two log sub-pairs. We will say that a birational map f:XYf\colon X\dashrightarrow Y is crepant with respect to these sub-pairs if it admits a resolution

Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}q\scriptstyle{q}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}Y\textstyle{Y}

with proper birational morphisms pp and qq such that the log pullback of (X,B)(X,B) via pp is equal to the log pullback of (Y,BY)(Y,B_{Y}) via q.q.

Remark 2.12.

Let f:(X,B)(Y,BY)f\colon(X,B)\dashrightarrow(Y,B_{Y}) be a crepant birational map between two log pairs. It follows from  [14, Lemma 2.30] that aE(X,B)=aE(Y,BY)a_{E}(X,B)=a_{E}(Y,B_{Y}) for every divisor EE over XX and Y.Y.

2.2. Contractions

In this subsection we recall the definition of contractions and fibrations.

Definition 2.13.

Let f:XYf\colon X\rightarrow Y be a proper morphism of varieties. We denote by

N1(X/Y)=(Pic(X))/YN^{1}(X/Y)=\left({\rm Pic}(X)\otimes_{\mathbb{Z}}\mathbb{R}\right)/\equiv_{Y}

and

N1(X/Y)=(Z1(X/Y))/YN_{1}(X/Y)=\left(Z_{1}(X/Y)\otimes_{\mathbb{Z}}\mathbb{R}\right)/\equiv_{Y}

the real vector spaces of Cartier divisors and relative 11-cycles modulo numerical equivalence over Y,Y, respectively (see  [12, Section IV.4]). These vector spaces are dual under the intersection pairing, and are finite-dimensional by  [12, Proposition IV.4.3]. Their common dimension is denoted by ρ(X/Y)\rho(X/Y) and is referred to as the relative Picard rank of the morphism f.f.

Remark 2.14.

When Y=Spec𝕂Y=\operatorname{Spec}\mathbb{K} is a point, we will simply write N1(X),N1(X)N^{1}(X),N_{1}(X) and ρ(X)\rho(X) and will omit the word “relative”.

Definition 2.15.

We say that a morphism f:XYf\colon X\rightarrow Y between normal quasi-projective varieties is a contraction if it is projective and satisfies f𝒪X=𝒪Yf_{*}\mathcal{O}_{X}=\mathcal{O}_{Y}. We say that the contraction ff is a fibration if dimY<dimX.\dim Y<\dim X. We say that the contraction ff is extremal if ρ(X/Y)=1.\rho(X/Y)=1.

Remark 2.16.

A contraction f:XYf\colon X\rightarrow Y is birational if and only if dimY=dimX,\dim Y=\dim X, and a projective birational morphism between normal varieties is automatically a contraction.

Definition 2.17.

We say that a birational map f:XYf\colon X\dashrightarrow Y between normal quasi-projective varieties is a birational contraction map if it is surjective in codimension one.

2.3. Mori Dream Spaces

In this subsection we recall the definition and basic properties of Mori dream spaces, as introduced by Hu and Keel in [11].

Definition 2.18.

Let XX be a normal projective variety. We say that a birational map f:XYf\colon X\dashrightarrow Y is a small \mathbb{Q}-factorial modification of XX if ff is an isomorphism in codimension one and YY is a normal, \mathbb{Q}-factorial projective variety.

Definition 2.19.

We say that a normal projective variety XX is a Mori dream space if

  1. (1)

    XX is \mathbb{Q}-factorial and Pic(X)=N1(X),{\rm Pic}(X)_{\mathbb{R}}=N^{1}(X),

  2. (2)

    Nef(X){\rm Nef}(X) is the affine hull of finitely many semi-ample line bundles,

  3. (3)

    there is a finite collection of small \mathbb{Q}-factorial modifications fi:XXif_{i}\colon X\dashrightarrow X_{i} such that each XiX_{i} satisfies (1) and (2) and such that Mov(X){\rm Mov}(X) is the union of the fi(Nef(Xi)).f_{i}^{*}\left({\rm Nef}(X_{i})\right).

The following propositions summarize the properties of Mori dream spaces that will be most important for us. They follow from  [11, Proposition 1.11].

Proposition 2.20.

Let XX be a Mori dream space and let f:XYf\colon X\rightarrow Y be a projective morphism. Then the DD-MMP over YY can be run for any divisor DD on XX, in the sense that all necessary contractions and flips exist. Any such MMP terminates.

Proposition 2.21.

Let XX be a Mori dream space and let DD be a nef divisor on X.X. Then DD is semi-ample.

2.4. The relative MMP

In this subsection we prove a few lemmas about the relative MMP.

Lemma 2.22.

Let f:XYf\colon X\rightarrow Y be a projective morphism between normal varieties with XX \mathbb{Q}-factorial, and let UYU\subset Y be an open subset. Then the assignment [C][C][C]\mapsto[C] defines an injective linear map N1(f1(U)/U)N1(X/Y)N_{1}\left(f^{-1}(U)/U\right)\hookrightarrow N_{1}(X/Y) mapping NE¯(f1(U)/U)\overline{NE}(f^{-1}(U)/U) into NE¯(X/Y).\overline{NE}(X/Y).

Proof.

Well-definedness follows from the fact that L(i=1nai[Ci])=L|f1(U)(i=1nai[Ci])L\cdot\left(\sum_{i=1}^{n}a_{i}[C_{i}]\right)=L|_{f^{-1}(U)}\cdot\left(\sum_{i=1}^{n}a_{i}[C_{i}]\right) for all LPic(X)L\in{\rm Pic}(X) and all relative curves C1,,CnC_{1},\ldots,C_{n} over U.U. For injectivity, we use the \mathbb{Q} factoriality of XX to conclude that the restriction homomorphism Pic(X)Pic(f1(U)){\rm Pic}(X)_{\mathbb{Q}}\rightarrow{\rm Pic}\left(f^{-1}(U)\right)_{\mathbb{Q}} is surjective. ∎

Lemma 2.23.

Let f:XYf\colon X\rightarrow Y be a projective morphism between normal varieties with XX \mathbb{Q}-factorial, and let UYU\subset Y be an open subset. Let EE be a \mathbb{Q}-divisor on X.X. Let

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}ϕ\scriptstyle{\phi}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}Y\textstyle{Y}

be a single step of an EE-MMP over Y.Y. Then, either ϕ|f1(U)\phi|_{f^{-1}(U)} induces an isomorphism f1(U)g1(U)f^{-1}(U)\xrightarrow{\cong}g^{-1}(U) or

f1(U)\textstyle{f^{-1}(U)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f|f1(U)\scriptstyle{f|_{f^{-1}(U)}}ϕ|f1(U)\scriptstyle{\phi|_{f^{-1}(U)}}g1(U)\textstyle{g^{-1}(U)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g|g1(U)\scriptstyle{g|_{g^{-1}(U)}}U\textstyle{U}

is a single step of an E|f1(U)E|_{f^{-1}(U)}-MMP over U.U.

Proof.

First, we consider the case in which ϕ\phi is a morphism. Thus, ϕ\phi is an EE-negative extremal contraction over Y.Y. It follows from flat base change  [9, Proposition 9.3] that ϕ|f1(U):f1(U)g1(U)\phi|_{f^{-1}(U)}\colon f^{-1}(U)\rightarrow g^{-1}(U) is a contraction. If all curves contracted by ϕ\phi are contained in Xf1(U),X\setminus f^{-1}(U), then ϕ|f1(U)\phi|_{f^{-1}(U)} is an isomorphism. Otherwise, it is an E|f1(U)E|_{f^{-1}(U)}-negative extremal contraction over U.U.

From now on, assume that ϕ\phi is not a morphism. Thus, ϕ\phi is an isomorphism in codimension one and there is a commutative diagram

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}f\scriptstyle{f}ϕ\scriptstyle{\phi}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ+\scriptstyle{\psi^{+}}g\scriptstyle{g}Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}Y\textstyle{Y}

in which

  1. (1)

    ψ\psi is a small EE-negative extremal contraction,

  2. (2)

    ψ+\psi^{+} is a small ϕE\phi_{*}E-positive extremal contraction.

It follows from flat base change  [9, Proposition 9.3] that ψ|f1(U)\psi|_{f^{-1}(U)} is a contraction. If all curves contracted by ψ\psi are contained in Xf1(U),X\setminus f^{-1}(U), then ψ|f1(U)\psi|_{f^{-1}(U)} induces an isomorphism f1(U)h1(U)f^{-1}(U)\xrightarrow{\cong}h^{-1}(U) and ϕ|f1(U)\phi|_{f^{-1}(U)} induces an isomorphism f1(U)g1(U).f^{-1}(U)\xrightarrow{\cong}g^{-1}(U). Otherwise, ψ|f1(U)\psi|_{f^{-1}(U)} is a small E|f1(U)E|_{f^{-1}(U)}-negative extremal contraction and ψ+|g1(U)\psi^{+}|_{g^{-1}(U)} is a small extremal contraction which is positive with respect to (ϕE)|g1(U)=(ϕ|f1(U))(E|f1(U)).(\phi_{*}E)|_{g^{-1}(U)}=(\phi|_{f^{-1}(U)})_{*}(E|_{f^{-1}(U)}). It follows, in this case, that ψ+|g1(U)\psi^{+}|_{g^{-1}(U)} is the flip of ψ|f1(U).\psi|_{f^{-1}(U)}.

Lemma 2.24.

Let f:XYf\colon X\rightarrow Y be a projective morphism between normal varieties with XX \mathbb{Q}-factorial, and let UYU\subset Y be an open subset. Let EE be a \mathbb{Q}-divisor on X.X. Let

X=X0\textstyle{X=X_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g0\scriptstyle{g_{0}}X1\textstyle{X_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g1\scriptstyle{g_{1}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}gm1\scriptstyle{g_{m-1}}Xm\textstyle{X_{m}}

be a sequence of steps of an EE-MMP over Y.Y. For each 0im1,0\leq i\leq m-1, denote by ViXiV_{i}\subset X_{i} the preimage of UU in XiX_{i} and by hi:ViVi+1h_{i}\colon V_{i}\dashrightarrow V_{i+1} the restriction of gi.g_{i}. Then there are indices 0i0<<ir1m10\leq i_{0}<\ldots<i_{r-1}\leq m-1 such that hih_{i} is an isomorphism for i{i0,,ir1}i\notin\{i_{0},\ldots,i_{r-1}\} and

V0=Vi0\textstyle{V_{0}=V_{i_{0}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hi0\scriptstyle{h_{i_{0}}}Vi1\textstyle{V_{i_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hi1\scriptstyle{h_{i_{1}}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hir1\scriptstyle{h_{i_{r-1}}}Vir\textstyle{V_{i_{r}}}

is a sequence of steps of an E|V0E|_{V_{0}}-MMP over U.U.

Proof.

This follows from repeated application of Lemma  2.23. ∎

Lemma 2.25.

Let XX and YY be normal varieties with XX projective and \mathbb{Q}-factorial. The assignment [C][C×{y}][C]\mapsto[C\times\{y\}] is independent of the choice of yYy\in Y and defines isomorphisms N1(X)N1(X×Y/Y)N_{1}\left(X\right)\xrightarrow{\cong}N_{1}(X\times Y/Y) and NE¯(X)NE¯(X×Y/Y).\overline{\rm NE}\left(X\right)\xrightarrow{\cong}\overline{\rm NE}\left(X\times Y/Y\right).

Proof.

Well-definedness follows from the fact that L(i=1nai[Ci×{y}])=Ly(i=1nai[Ci])L\cdot\left(\sum_{i=1}^{n}a_{i}[C_{i}\times\{y\}]\right)=L_{y}\cdot\left(\sum_{i=1}^{n}a_{i}[C_{i}]\right) for all LPic(X×Y)L\in{\rm Pic}(X\times Y) and all curves C1,,CnX.C_{1},\ldots,C_{n}\subset X. For injectivity, we use the fact that L(pr1L)yL\cong(pr_{1}^{*}L)_{y} for all LPic(X).L\in{\rm Pic}(X). To see that the homomorphism is independent of choice of yY,y\in Y, consider a curve CX.C\subset X. The family C×YC\times Y is flat over Y,Y, from which it follows that Ly1C=Ly2CL_{y_{1}}\cdot C=L_{y_{2}}\cdot C for all LPic(X×Y)L\in{\rm Pic}(X\times Y) and y1,y2Y.y_{1},y_{2}\in Y. Surjectivity follows from independence from choice of yY,y\in Y, since every class in N1(X×Y/Y)N^{1}(X\times Y/Y) is represented by some curve of the form C×{y}C\times\{y^{\prime}\} for CXC\subset X and yY.y^{\prime}\in Y.

Lemma 2.26.

Let XX and YY be normal varieties with XX a Mori dream space. Let EXE_{X} be a \mathbb{Q}-divisor on XX and write E=pr1EX,E=pr_{1}^{*}E_{X}, where pr1:X×YXpr_{1}\colon X\times Y\rightarrow X is the projection onto X.X. Let

X×Y\textstyle{X\times Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ~\scriptstyle{\widetilde{\phi}}W~\textstyle{\widetilde{W}}

be a single step of an EE-MMP over Y.Y. Then there is a single step

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}W\textstyle{W}

of an EXE_{X}-MMP satisfying

  1. (1)

    W~W×Y\widetilde{W}\cong W\times Y, and

  2. (2)

    the identification in (1) identifies ϕ~\widetilde{\phi} with ϕ×Y\phi\times Y.

Proof.

First, we consider the case that ϕ~\widetilde{\phi} is a morphism. Thus, ϕ~\widetilde{\phi} is an EE-negative extremal contraction over Y.Y. Choose a closed point yYy\in Y and let

XϕWW~X\xrightarrow{\phi}W\rightarrow\widetilde{W}

be the Stein factorization of

XiyX×Yϕ~W~.X\xhookrightarrow{i_{y}}X\times Y\xrightarrow{\widetilde{\phi}}\widetilde{W}.

Then ϕ\phi is an EXE_{X}-negative extremal contraction, and it follows from flat base change  [9, Proposition 9.3] that ϕ×Y:X×YW×Y\phi\times Y\colon X\times Y\rightarrow W\times Y is a contraction as well. The contractions ϕ×Y\phi\times Y and ϕ~\widetilde{\phi} contract exactly the same curves by Lemma  2.25, so it follows from the rigidity lemma  [6, Lemma 1.15] that there is an isomorphism ψ:W×YW~\psi\colon W\times Y\rightarrow\widetilde{W} making the diagram

X×Y\textstyle{X\times Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ×Y\scriptstyle{\phi\times Y}ϕ~\scriptstyle{\widetilde{\phi}}W×Y\textstyle{W\times Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}W~\textstyle{\widetilde{W}}

commutative. The desired result now follows in this case.

From now on, assume that ϕ~\widetilde{\phi} is not a morphism. Thus, ϕ~\widetilde{\phi} is an isomorphism in codimension one and there is a commutative diagram

X×Y\textstyle{X\times Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ~\scriptstyle{\widetilde{\psi}}ϕ~\scriptstyle{\widetilde{\phi}}W~\textstyle{\widetilde{W}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ~+\scriptstyle{\widetilde{\psi}^{+}}Z~\textstyle{\widetilde{Z}}

in which

  1. (1)

    ψ~\widetilde{\psi} is a small EE-negative extremal contraction,

  2. (2)

    ψ~+\widetilde{\psi}^{+} is a small ϕ~E\widetilde{\phi}_{*}E-positive extremal contraction.

By the arguments of the previous paragraph, we may identify the morphism ψ~\widetilde{\psi} with a morphism of the form

ψ×Y:X×YZ×Y\psi\times Y\colon X\times Y\rightarrow Z\times Y

for some EXE_{X}-negative extremal contraction ψ:XZ.\psi\colon X\rightarrow Z. Note that ψ\psi must be a small birational contraction since ψ~\widetilde{\psi} is. Let ψ+:WZ\psi^{+}\colon W\rightarrow Z be the flip of ψ.\psi. Denote by ϕ:XW\phi\colon X\dashrightarrow W the induced birational map, which is an isomorphism in codimension one, and by EW=ϕEXE_{W}=\phi_{*}E_{X} the strict transform of EXE_{X} on W.W. We obtain a commutative diagram

X×Y\textstyle{X\times Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ×Y\scriptstyle{\psi\times Y}ϕ×Y\scriptstyle{\phi\times Y}W×Y\textstyle{W\times Y\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ+×Y\scriptstyle{\psi^{+}\times Y}Z×Y\textstyle{Z\times Y}

in which

  1. (1)

    ψ×Y\psi\times Y is a small EE-negative extremal contraction,

  2. (2)

    ψ+×Y\psi^{+}\times Y is a small pr1EWpr_{1}^{*}E_{W}-positive extremal contraction.

Using the fact that (ϕ×Y)E=pr1EW(\phi\times Y)_{*}E=pr_{1}^{*}E_{W}, it follows from  [14, Lemma 6.2] that we may identify ψ~+\widetilde{\psi}^{+} with ψ+×Y,\psi^{+}\times Y, hence also ϕ~\widetilde{\phi} with ϕ×Y.\phi\times Y.

Lemma 2.27.

Let XX and YY be normal varieties with XX a Mori dream space. Let EXE_{X} be a \mathbb{Q}-divisor on XX and write E=pr1EX,E=pr_{1}^{*}E_{X}, where pr1:X×YXpr_{1}\colon X\times Y\rightarrow X is the projection onto X.X. Let

X×Y=X~0\textstyle{X\times Y=\widetilde{X}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f~0\scriptstyle{\widetilde{f}_{0}}X~1\textstyle{\widetilde{X}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f~1\scriptstyle{\widetilde{f}_{1}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f~m1\scriptstyle{\widetilde{f}_{m-1}}X~m\textstyle{\widetilde{X}_{m}}

be a sequence of steps of an EE-MMP over Y.Y. Then there is a sequence

X=X0\textstyle{X=X_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f0\scriptstyle{f_{0}}X1\textstyle{X_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f1\scriptstyle{f_{1}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fm1\scriptstyle{f_{m-1}}Xm\textstyle{X_{m}}

of steps of an EXE_{X}-MMP satisfying

  1. (1)

    X~iXi×Y\widetilde{X}_{i}\cong X_{i}\times Y for each 0im,0\leq i\leq m,

  2. (2)

    the identifications in (1) identify f~i\widetilde{f}_{i} with fi×Yf_{i}\times Y for each 0im1.0\leq i\leq m-1.

Proof.

This follows from repeated application of Lemma  2.26. ∎

Lemma 2.28.

Let f:XYf\colon X\rightarrow Y be a projective morphism between normal varieties with XX \mathbb{Q}-factorial. Let DD be an effective divisor on XX such that f(Supp(D))=Y.f({\rm Supp}(D))=Y. Then there exists a curve CXC\subset X contracted to a point by ff which satisfies DC>0.D\cdot C>0.

Proof.

It suffices to show the result for some positive multiple of D.D. Thus, we may assume that DD is an effective Cartier divisor. Our assumptions imply that there is an irreducible component FF of some fiber of ff satisfying FSupp(D).F\nsubset{\rm Supp}(D). The effective Cartier divisor DD restricts to an effective Cartier divisor DFD_{F} on F.F. It follows from the projectivity of ff that FF is a projective variety, and so we may choose a curve CFC\subset F which is the complete intersection of very ample divisors on FF. Such a curve CC is contracted by ff and satisfies

DC=DFC>0.D\cdot C=D_{F}\cdot C>0.

2.5. Toric geometry

We refer the reader to  [5] for background on toric geometry. The following definition will be convenient for us.

Definition 2.29.

We say that an nn-dimensional log pair (X,Δ)(X,\Delta) is a toric log Calabi–Yau pair if it is log Calabi–Yau pair with Δ\Delta reduced and Aut0(X,Δ){\rm Aut}^{0}(X,\Delta) is an nn-dimensional algebraic torus.

Remark 2.30.

The notion of toric log Calabi–Yau pair defined above is a property of a log pair, and does not require the specification of any additional structure such as a group action. Given a toric log Calabi–Yau pair (X,Δ),(X,\Delta), however, the following lemma explains a canonical way to equip XX with the structure of a toric variety in the usual sense.

Lemma 2.31.

Let (X,Δ)(X,\Delta) be an nn-dimensional log Calabi–Yau pair with reduced boundary Δ.\Delta. Then (X,Δ)(X,\Delta) is a toric log Calabi–Yau pair if and only if XX admits an algebraic action by an nn-dimensional algebraic torus 𝕋\mathbb{T} for which XΔX\setminus\Delta is an orbit with trivial isotropy group. In this latter case, the action of 𝕋\mathbb{T} on XX induces an isomorphism Aut0(X,Δ)𝕋.{\rm Aut}^{0}(X,\Delta)\cong\mathbb{T}.

Proof.

Suppose first that XX admits an action of an nn-dimensional algebraic torus 𝕋\mathbb{T} for which XΔX\setminus\Delta is an orbit with trivial isotropy group. It follows that 𝕋\mathbb{T} is isomorphic to an algebraic subgroup of Aut0(X,Δ).{\rm Aut}^{0}(X,\Delta). To see that Aut0(X,B)𝕋{\rm Aut}^{0}(X,B)\cong\mathbb{T}, it suffices to note that dimAut0(X,Δ)n{\rm dim}{\rm Aut}^{0}(X,\Delta)\leq n by [10, Lemmas 2.1, 2.2].

Conversely, suppose that (X,Δ)(X,\Delta) is toric log Calabi–Yau. In particular, Aut0(X,Δ){\rm Aut}^{0}(X,\Delta) is an nn-dimensional algebraic torus acting faithfully on X.X. By [10, Lemma 2.2], there is a Zariski dense open orbit UXU\subset X with trivial isotropy group. Thus, XX is a toric variety in the sense of [5, Definition 3.1.1]. Since Δ\Delta is a proper closed subset of XX which is invariant under the action of Aut0(X,Δ),{\rm Aut}^{0}(X,\Delta), we must have UXΔ.U\subset X\setminus\Delta. We claim that U=XΔ.U=X\setminus\Delta. It follows from [5, Theorem 3.2.6] that XUX\setminus U has pure codimension 11 in X;X; denote by Γ\Gamma the divisor which is the reduced sum of the components of this closed subset. To show that U=XΔ,U=X\setminus\Delta, it suffices to show that Γ=Δ\Gamma=\Delta. We certainly have ΔΓ.\Delta\leq\Gamma. We have ΔKX\Delta\sim_{\mathbb{Q}}-K_{X} since (X,Δ)(X,\Delta) is log Calabi–Yau, and we have ΓKX\Gamma\sim-K_{X} by [5, Theorem 8.2.3]. Thus, ΓΔ\Gamma-\Delta is an effective divisor which is \mathbb{Q}-linearly trivial. Since XX is projective, it follows that ΓΔ=0.\Gamma-\Delta=0.

An important and well-known property of toric varieties is that they are Mori dreams spaces.

Proposition 2.32.

Let XX be a normal, \mathbb{Q}-factorial projective variety admitting the structure of a toric variety. Then XX is a Mori dream space.

Proof.

This follows from  [4, Theorem 2.1] and  [11, Corollary 2.4]. ∎

Next, we detail some special properties enjoyed by maps out of toric varieties.

Lemma 2.33.

Let (X,Δ)(X,\Delta) be a toric log Calabi–Yau pair and let f:XYf\colon X\dashrightarrow Y be a birational contraction map to a projective variety Y.Y. Then (Y,ΔY=fΔ)(Y,\Delta_{Y}=f_{*}\Delta) is a toric log Calabi–Yau pair, ff is toric and the exceptional locus of ff is a union of toric strata of (X,Δ).(X,\Delta).

Proof.

That (Y,ΔY)(Y,\Delta_{Y}) and ff are toric follows from  [3, Lemma 2.3.2]. To show that the exceptional locus of ff is a union of toric strata, it suffices to show that its complement is an open torus-invariant subset. The complement of the exceptional locus is the subset of the domain of ff at which ff is an isomorphism, and torus-invariance follows from the fact that ff is toric. ∎

Lemma 2.34.

Let XX be a toric variety and let f:XYf\colon X\rightarrow Y be a contraction. Then YY admits the structure of a toric variety in such a way that ff becomes equivariant.

Proof.

This is proven in  [20, Proposition 2.7]. ∎

The following is well-known, but we provide a proof here for convenience.

Lemma 2.35.

Let f:XYf\colon X\rightarrow Y be an extremal fibration between \mathbb{Q}-factorial projective toric varieties. Then the fan ΣX\Sigma_{X} of XX can be expressed as a sum

ΣX=ΣX,F+ΣX,Y\Sigma_{X}=\Sigma_{X,F}+\Sigma_{X,Y}

of subfans ΣX,F,ΣX,YΣX\Sigma_{X,F},\Sigma_{X,Y}\subset\Sigma_{X}, where

  1. (1)

    ΣX,F\Sigma_{X,F} has support equal to Ker(f),{\rm Ker}(f_{*}),

  2. (2)

    ff_{*} restricts to a bijection τf(τ)\tau\xrightarrow{\cong}f_{*}(\tau) for each τΣX,Y,\tau\in\Sigma_{X,Y},

  3. (3)

    the assignment τf(τ)\tau\mapsto f_{*}(\tau) determines a bijection ΣX,YΣY.\Sigma_{X,Y}\xrightarrow{\cong}\Sigma_{Y}.

Proof.

As the morphism ff is proper, it follows that f1(σ)f_{*}^{-1}(\sigma) is a union of cones in ΣX\Sigma_{X} for each σΣY.\sigma\in\Sigma_{Y}. In particular, Ker(f)=f1({0}){\rm Ker}(f_{*})=f_{*}^{-1}(\{0\}) is a union of cones in ΣX.\Sigma_{X}. Denoting by ΣX,F\Sigma_{X,F} the collection of all cones in ΣX\Sigma_{X} which are contained in Ker(f),{\rm Ker}(f_{*}), we obtain a subfan of ΣX\Sigma_{X} satisfying (1).

We turn to define the fan ΣX,Y.\Sigma_{X,Y}. We begin by noting that, for each σΣY(1),\sigma\in\Sigma_{Y}^{(1)}, there is a unique σ~ΣX(1)\widetilde{\sigma}\in\Sigma_{X}^{(1)} satisfying f(σ~)=σ.f_{*}(\widetilde{\sigma})=\sigma. To see this, recall that, for each σΣY(1),\sigma\in\Sigma_{Y}^{(1)}, f1(σ)f_{*}^{-1}(\sigma) is a union of cones in ΣX.\Sigma_{X}. It follows that, for each σΣY(1),\sigma\in\Sigma_{Y}^{(1)}, there is at least one σ~ΣX(1)\widetilde{\sigma}\in\Sigma_{X}^{(1)} with f(σ~)=σ.f_{*}(\widetilde{\sigma})=\sigma. Such a σ~\widetilde{\sigma} must necessarily be contained in ΣX(1)ΣX,F(1)\Sigma_{X}^{(1)}\setminus\Sigma_{X,F}^{(1)}. But, writing r=dimXdimY=dimKer(f)r=\dim X-\dim Y=\dim{\rm Ker}(f_{*}), we have

|ΣX(1)ΣX,F(1)|\displaystyle\lvert\Sigma_{X}^{(1)}\setminus\Sigma_{X,F}^{(1)}\rvert (dimX+ρ(X))(r+1)\displaystyle\leq(\dim X+\rho(X))-(r+1)
=dimY+ρ(Y)\displaystyle=\dim Y+\rho(Y)
=|ΣY(1)|.\displaystyle=\lvert\Sigma_{Y}^{(1)}\rvert.

The desired uniqueness follows.

Using this notation, we define a fan

ΣX,Y={Cone(σ1~,,σr~)|σ1,,σrΣY(1),Cone(σ1,,σr)ΣY}.\Sigma_{X,Y}=\{{\rm Cone}(\widetilde{\sigma_{1}},\ldots,\widetilde{\sigma_{r}})|\sigma_{1},\ldots,\sigma_{r}\in\Sigma_{Y}^{(1)},{\rm Cone}(\sigma_{1},\ldots,\sigma_{r})\in\Sigma_{Y}\}.

To see that this is a subfan of ΣX,\Sigma_{X}, suppose σ~ΣX,Y.\widetilde{\sigma}\in\Sigma_{X,Y}. It follows from the definition of ΣX,Y\Sigma_{X,Y} that σ=f(σ~)ΣY.\sigma=f_{*}(\widetilde{\sigma})\in\Sigma_{Y}. Write σ1,,σkΣY(1)\sigma_{1},\ldots,\sigma_{k}\in\Sigma_{Y}^{(1)} for the rays spanning σ.\sigma. Since f1(σ)f_{*}^{-1}(\sigma) is a union of cones in ΣX,\Sigma_{X}, there is some τΣX\tau\in\Sigma_{X} with f(τ)=σ.f_{*}(\tau)=\sigma. This cone τ\tau must contain the rays σ~1,,σ~k.\widetilde{\sigma}_{1},\ldots,\widetilde{\sigma}_{k}. It follows that τ\tau must contain σ~=Cone(σ~1,,σ~k)\widetilde{\sigma}={\rm Cone}(\widetilde{\sigma}_{1},\ldots,\widetilde{\sigma}_{k}) as a face, hence that σ~\widetilde{\sigma} is a cone in ΣX.\Sigma_{X}. It is clear from the definitions that the fan ΣX,Y\Sigma_{X,Y} satisfies (3). That it satisfies (2) follows from the fact that the fans ΣX\Sigma_{X} and ΣY\Sigma_{Y} are simplicial together with the fact that, for each σΣY,\sigma\in\Sigma_{Y}, σ\sigma and σ~\widetilde{\sigma} are generated by the same number of rays.

Finally, we verify that ΣX=ΣX,F+ΣX,Y.\Sigma_{X}=\Sigma_{X,F}+\Sigma_{X,Y}. That every cone in ΣX\Sigma_{X} can be expressed as the sum of a cone in ΣX,F\Sigma_{X,F} and a cone in ΣX,Y\Sigma_{X,Y} follows from the fact that every ray in ΣX(1)\Sigma_{X}^{(1)} is contained in either ΣX,F(1)\Sigma_{X,F}^{(1)} or ΣX,Y(1).\Sigma_{X,Y}^{(1)}. It remains to show that τ+σ~ΣX\tau+\widetilde{\sigma}\in\Sigma_{X} whenever τΣX,F\tau\in\Sigma_{X,F} and σ~ΣX,Y.\widetilde{\sigma}\in\Sigma_{X,Y}. Choose vRelint(τ)v\in{\rm Relint}(\tau) and wRelint(σ~).w\in{\rm Relint}(\widetilde{\sigma}). Writing σ=f(σ~),\sigma=f_{*}(\widetilde{\sigma}), we have v+wf1(σ).v+w\in f_{*}^{-1}(\sigma). Thus, there is a cone γΣX\gamma\in\Sigma_{X} with v+wγf1(σ).v+w\in\gamma\subset f_{*}^{-1}(\sigma). Since f(w)f(γ)Relint(σ),f_{*}(w)\in f_{*}(\gamma)\cap{\rm Relint}(\sigma), we must have γ=τ+σ~\gamma=\tau^{\prime}+\widetilde{\sigma} for some τΣX,F.\tau^{\prime}\in\Sigma_{X,F}. To show that τ=τ,\tau^{\prime}=\tau, it suffices to show that vτ.v\in\tau^{\prime}. Since v+wτ+σ~,v+w\in\tau^{\prime}+\widetilde{\sigma}, we can write v+w=v+wv+w=v^{\prime}+w^{\prime} for some vτv^{\prime}\in\tau^{\prime} and wσ~.w^{\prime}\in\widetilde{\sigma}. But

f(w)=f(v+w)=f(v+w)=f(w)f_{*}(w)=f_{*}(v+w)=f_{*}(v^{\prime}+w^{\prime})=f_{*}(w^{\prime})

implies that w=w,w=w^{\prime}, hence that v=vτ.v=v^{\prime}\in\tau^{\prime}.

Lemma 2.36.

Let f:XYf\colon X\rightarrow Y be a toric morphism between \mathbb{Q}-factorial projective toric varieties. Assume that ff is a locally trivial fiber bundle with fiber isomorphic to n\mathbb{P}^{n} for some n0.n\geq 0. Then there are locally free sheaves 0,,n\mathcal{L}_{0},\ldots,\mathcal{L}_{n} on YY such that XX is isomorphic over YY to the projection (i=0ni)Y.\mathbb{P}\left(\bigoplus_{i=0}^{n}\mathcal{L}_{i}\right)\rightarrow Y.

Proof.

By Lemma  2.35 and  [5, Theorem 3.3.19], the fan ΣX\Sigma_{X} of XX can be expressed as a sum

ΣX=ΣX,F+ΣX,Y\Sigma_{X}=\Sigma_{X,F}+\Sigma_{X,Y}

of subfans ΣX,F,ΣX,YΣX\Sigma_{X,F},\Sigma_{X,Y}\subset\Sigma_{X}, where

  1. (1)

    ΣX,F\Sigma_{X,F} has support equal to Ker(f),{\rm Ker}(f_{*}),

  2. (2)

    ff_{*} restricts to a bijection τf(τ)\tau\xrightarrow{\cong}f_{*}(\tau) for each τΣX,Y,\tau\in\Sigma_{X,Y},

  3. (3)

    f(τNX)=f(τ)NYf_{*}(\tau\cap N_{X})=f_{*}(\tau)\cap N_{Y} for each τΣX,Y.\tau\in\Sigma_{X,Y}.

  4. (4)

    the assignment τf(τ)\tau\mapsto f_{*}(\tau) determines a bijection ΣX,YΣY.\Sigma_{X,Y}\xrightarrow{\cong}\Sigma_{Y}.

The homomorphism f:NXNYf_{*}\colon N_{X}\rightarrow N_{Y} induced by ff on cocharacter lattices is surjective by (3), so we may choose a section s:NYNXs\colon N_{Y}\rightarrow N_{X} of f.f_{*}. Since Fn,F\cong\mathbb{P}^{n}, we may choose rays σ1,,σnΣX,F(1)\sigma_{1},\ldots,\sigma_{n}\in\Sigma_{X,F}^{(1)} whose respective primitive generators v1,,vnv_{1},\ldots,v_{n} form a \mathbb{Z}-basis for Ker(f)NX.{\rm Ker}(f_{*})\cap N_{X}. It follows that the primitive generator wτw_{\tau} of a ray τΣX,Y(1)\tau\in\Sigma_{X,Y}^{(1)} can be expressed as

wτ=s(f(wτ))+i=1naτ,iviw_{\tau}=s\left(f_{*}(w_{\tau})\right)+\sum_{i=1}^{n}a_{\tau,i}v_{i}

for some integers aτ,1,,aτ,n.a_{\tau,1},\ldots,a_{\tau,n}\in\mathbb{Z}. Write 0=𝒪Y,\mathcal{L}_{0}=\mathcal{O}_{Y}, and write

i=𝒪Y(τΣX,Y(1)aτ,iDf(τ))\mathcal{L}_{i}=\mathcal{O}_{Y}\left(\sum_{\tau\in\Sigma_{X,Y}^{(1)}}-a_{\tau,i}D_{{f_{*}(\tau)}}\right)

for each 1in,1\leq i\leq n, where Df(τ)D_{f_{*}(\tau)} is the torus-invariant divisor on YY corresponding to the ray f(τ)ΣY(1).f_{*}(\tau)\in\Sigma_{Y}^{(1)}. It follows from  [5, Proposition 7.3.3] that the desired result holds with the locally free sheaves 0,,n\mathcal{L}_{0},\ldots,\mathcal{L}_{n}. ∎

A given variety may admit multiple different toric log Calabi–Yau pairs. The following lemma explains how these different pairs are related.

Lemma 2.37.

Let XX be a projective variety and let (X,Δ1)(X,\Delta_{1}) and (X,Δ2)(X,\Delta_{2}) be toric log Calabi–Yau pairs supported on X.X. Then there is gAut0(X)g\in{\rm Aut}^{0}(X) such that Δ2=gΔ1.\Delta_{2}=g_{*}\Delta_{1}. If, in addition, XX is \mathbb{Q}-factorial, then we may write Δi=j=1kΔij,\Delta_{i}=\sum_{j=1}^{k}\Delta_{ij}, for 1i2,1\leq i\leq 2, so that Δ1jΔ2j\Delta_{1j}\sim_{\mathbb{Q}}\Delta_{2j} for each 1jk.1\leq j\leq k.

Proof.

XX is a projective variety with a rational polyhedral nef cone, so it follows from  [2, Corollary 2.12] that Aut0(X){\rm Aut}^{0}(X) is an algebraic group. Writing n=dim(X)n=\dim(X), it follows from  [10, Lemma 2.2] that subtori of Aut0(X){\rm Aut}^{0}(X) have dimension at most n.n. By assumption, the subgroups Aut0(X,Δ1){\rm Aut}^{0}(X,\Delta_{1}) and Aut0(X,Δ2){\rm Aut}^{0}(X,\Delta_{2}) of Aut0(X){\rm Aut}^{0}(X) are both nn-dimensional tori. By  [17, Theorem 17.10], there is some gAut0(X)g\in{\rm Aut}^{0}(X) such that Aut0(X,Δ2)=gAut0(X,Δ1)g1.{\rm Aut}^{0}(X,\Delta_{2})=g{\operatorname{Aut}}^{0}(X,\Delta_{1})g^{-1}. To obtain the first statement, we recall that, for 1i2,1\leq i\leq 2, the components of Δi\Delta_{i} are closures of Aut0(X,Δi){\rm Aut}^{0}(X,\Delta_{i})-orbits. It follows that, for 1i2,1\leq i\leq 2, we may write Δi=j=1kΔij\Delta_{i}=\sum_{j=1}^{k}\Delta_{ij} such that gΔ1j=Δ2jg_{*}\Delta_{1j}=\Delta_{2j} for each 1jk.1\leq j\leq k. For the second statement, we note that g=(g1)g_{*}=(g^{-1})^{*} in this case. Since Aut0(X){\rm Aut}^{0}(X) is connected, it follows, for all \mathbb{Q}-divisors D,D, that DD and (g1)D(g^{-1})^{*}D are numerically equivalent. But numerical equivalence and \mathbb{Q}-linear equivalence coincide on X.X.

2.6. Complexity

In this subsection we recall the notion of complexity and describe its behavior under birational contraction maps.

Definition 2.38.

Let XX be a normal projective variety and let (X,B)(X,B) be a log sub-pair. The complexity of (X,B)(X,B) is

c(X,B)=dimX+rankWDivalg(X)|B|,c(X,B)=\dim X+\operatorname{rank}{\rm WDiv}_{\rm alg}(X)-|B|,

where WDivalg(X){\rm WDiv}_{\rm alg}(X) is the group of Weil divisors on XX modulo algebraic equivalence and |B||B| is the sum of the coefficients of BB.

The following definition describes a variant of the complexity which is natural from the perspective of birational geometry.

Definition 2.39.

Let XX be a normal projective variety and let (X,B)(X,B) be a log sub-pair. The birational complexity of (X,B)(X,B) is

cbir(X,B)=inf{c(Y,BY)(X,B)bir(Y,BY)},c_{\rm bir}(X,B)=\inf\left\{c(Y,B_{Y})\mid(X,B)\simeq_{\rm bir}(Y,B_{Y})\right\},

where the infimum is taken over all log pairs (Y,BY)(Y,B_{Y}) crepant to (X,B).(X,B).

Remark 2.40.

Let XX be a projective variety and let (X,B)(X,B) be a log canonical pair with (KX+B)-(K_{X}+B) nef and c(X,B)=0.c(X,B)=0. Then (X,B)(X,B) must be a log Calabi–Yau pair.

Indeed, it follows from Theorem  1 that XX is a toric variety, and hence that the nef \mathbb{Q}-divisor (KX+B)-(K_{X}+B) is semi-ample. Thus, there is some 0D(KX+B)0\leq D\sim_{\mathbb{Q}}-(K_{X}+B) such that (X,B+D)(X,B+D) is log Calabi–Yau. On the one hand, c(X,B+D)=|D|c(X,B+D)=-|D| is nonnegative by Theorem  1. On the other hand, |D||D| is nonnegative since DD is effective. It follows that |D|=0,|D|=0, hence that D=0,D=0, and hence that KX+B0K_{X}+B\sim_{\mathbb{Q}}0 as claimed.

Lemma 2.41.

Let f:XYf\colon X\dashrightarrow Y be a birational contraction map between normal projective varieties. Let (X,B)(X,B) be a log sub-pair. Denote by E1,,ErE_{1},\ldots,E_{r} the prime ff-exceptional divisors and write BY=fB.B_{Y}=f_{*}B. Then

c(X,B)=c(Y,BY)+i=1raEi(X,B).c(X,B)=c(Y,B_{Y})+\sum_{i=1}^{r}a_{E_{i}}(X,B).
Proof.

Choose a resolution

Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}q\scriptstyle{q}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}Y\textstyle{Y}

of the indeterminacy of f,f, with ZZ a smooth projective variety and with pp and qq birational. Denote by F1,,FsF_{1},\ldots,F_{s} the prime pp-exceptional divisors and by E~1,,E~r\widetilde{E}_{1},\ldots,\widetilde{E}_{r} the strict transforms of E1,,Er,E_{1},\ldots,E_{r}, respectively. Then E~1,,E~r,F1,,Fs\widetilde{E}_{1},\ldots,\widetilde{E}_{r},F_{1},\ldots,F_{s} are the prime qq-exceptional divisors. Denote by (Z,BZ)(Z,B_{Z}) the log pullback of (X,B)(X,B) via p,p, and note that aE~i(Z,BZ)=aEi(X,B)a_{\widetilde{E}_{i}}(Z,B_{Z})=a_{E_{i}}(X,B) for each 1ir1\leq i\leq r (see Remark  2.12). It follows that the desired equality will hold if we can establish both

c(Z,BZ)=c(X,B)+i=1raE~i(Z,BZ)c(Z,B_{Z})=c(X,B)+\sum_{i=1}^{r}a_{\widetilde{E}_{i}}(Z,B_{Z})

and

c(Z,BZ)=c(Y,BY)+i=1raE~i(Z,BZ)+j=1saFj(Z,BZ).c(Z,B_{Z})=c(Y,B_{Y})+\sum_{i=1}^{r}a_{\widetilde{E}_{i}}(Z,B_{Z})+\sum_{j=1}^{s}a_{F_{j}}(Z,B_{Z}).

Thus, we may assume that ff is a morphism and that XX is smooth.

Since dimX=dimY,\dim X=\dim Y, the desired equality holds if and only if

rankWDivalg(X)|B|=rankWDivalg(Y)|BY|+i=1raEi(X,B).\operatorname{rank}{\rm WDiv}_{\rm alg}(X)-|B|=\operatorname{rank}{\rm WDiv}_{\rm alg}(Y)-|B_{Y}|+\sum_{i=1}^{r}a_{E_{i}}(X,B).

Since

|B|=|BY|+i=1rcoeffEi(B)|B|=|B_{Y}|+\sum_{i=1}^{r}{\rm coeff}_{E_{i}}(B)

and

i=1raEi(X,B)=ri=1rcoeffEi(B),\sum_{i=1}^{r}a_{E_{i}}(X,B)=r-\sum_{i=1}^{r}{\rm coeff}_{E_{i}}(B),

this reduces to showing that

rankWDivalg(X)=rankWDivalg(Y)+r.\operatorname{rank}{\rm WDiv}_{\rm alg}(X)=\operatorname{rank}{\rm WDiv}_{\rm alg}(Y)+r.

Since

f:WDivalg(X)WDivalg(Y)f_{*}\colon{\rm WDiv}_{\rm alg}(X)\rightarrow{\rm WDiv}_{\rm alg}(Y)

is surjective, it suffices to show that the classes of E1,,ErE_{1},\ldots,E_{r} form a basis for the kernel of f.f_{*}.

All Weil divisors on the smooth variety XX are Cartier, and algebraic equivalence as Weil divisors implies numerical equivalence as Cartier divisors in this case. Since the divisors E1,,ErE_{1},\ldots,E_{r} are ff-exceptional, it then follows from  [14, Lemma 3.39] that a nonzero divisor of the form i=1raiEi\sum_{i=1}^{r}a_{i}E_{i} must be nonzero modulo algebraic equivalence. Thus, the classes of E1,,ErE_{1},\ldots,E_{r} in WDivalg(X){\rm WDiv}_{\rm alg}(X) are linearly independent. These classes are certainly contained in the kernel of f,f_{*}, and the fact that they generate the kernel of ff_{*} follows from the fact that we may identify this kernel with the kernel of the restriction homomorphism WDivalg(X)WDivalg(XEx(f)).{\rm WDiv}_{\rm alg}(X)\rightarrow{\rm WDiv}_{\rm alg}\left(X\setminus{\rm Ex}(f)\right).

As a corollary, we see that the complexity of a log canonical pair is unaffected by extracting log canonical places.

Corollary 2.42.

Let (X,B)(X,B) be a log canonical pair and let f:(Y,BY)(X,B)f\colon(Y,B_{Y})\rightarrow(X,B) be a birational morphism extracting only log canonical places of (X,B)(X,B). Then

c(X,B)=c(Y,BY).c(X,B)=c(Y,B_{Y}).
Proof.

Denote by E1,,ErE_{1},\ldots,E_{r} the prime ff-exceptional divisors. By assumption, aEi(Y,BY)=0a_{E_{i}}(Y,B_{Y})=0 for all 1ir.1\leq i\leq r. The desired result follows from Lemma  2.41. ∎

As another corollary, we obtain the following special case of Theorem  6.

Corollary 2.43.

Let f:XYf\colon X\dashrightarrow Y be a birational contraction map between normal projective varieties and let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. Then (Y,fB)(Y,f_{*}B) is a log Calabi–Yau pair of complexity zero, and every ff-exceptional divisor is a component of B.\lfloor B\rfloor.

Proof.

Denote by E1,,ErE_{1},\ldots,E_{r} the prime ff-exceptional divisors, and write BY=fB.B_{Y}=f_{*}B. Since ff_{*} is a birational contraction and (X,B)(X,B) is a log Calabi–Yau pair, it follows that (Y,BY)(Y,B_{Y}) is a log Calabi–Yau pair. Thus, on the one hand, Theorem  1 implies that c(Y,BY)0.c(Y,B_{Y})\geq 0. On the other hand, it follows from Lemma  2.41 and the assumption c(X,B)=0c(X,B)=0 that

c(Y,BY)=i=1raEi(X,B).c(Y,B_{Y})=-\sum_{i=1}^{r}a_{E_{i}}(X,B).

The log discrepancies aEi(X,B)a_{E_{i}}(X,B) are nonnegative since (X,B)(X,B) is log canonical, so this is possible only if aEi(X,B)=0a_{E_{i}}(X,B)=0 for each 1ir.1\leq i\leq r. It follows that coeffEi(B)=1{\rm coeff}_{E_{i}}(B)=1 for each 1ir1\leq i\leq r and that c(Y,BY)=0.c(Y,B_{Y})=0.

2.7. Degenerate divisors

We recall the following definitions from  [15]:

Definition 2.44.

Let f:XYf\colon X\rightarrow Y be a proper surjective morphism of normal varieties and let DWDiv(X)D\in{\rm WDiv}_{\mathbb{Q}}(X) be effective. We say that DD is:

  • ff-exceptional if codim(Supp(f(D)))2,{\rm codim}({\rm Supp}(f(D)))\geq 2,

  • of insufficient fiber type if codim(Supp(f(D))=1{\rm codim}({\rm Supp}(f(D))=1 and there exists a prime divisor ΓSupp(D)\Gamma\nsubset{\rm Supp}(D) such that f(Γ)Supp(f(D))f(\Gamma)\subset{\rm Supp}(f(D)) has codimension one in Y.Y.

In either of the above cases, we say that DD is degenerate. In particular, degenerate divisors are always assumed to be effective.

The following appears as  [15, Lemma 2.10].

Lemma 2.45.

Let f:XYf\colon X\rightarrow Y be a fibration between normal projective varieties with XX \mathbb{Q}-factorial. Let DD be a degenerate divisor on X.X. Then there is a component D~Supp(D)\widetilde{D}\subset{\rm Supp}(D) which is covered by curves contracted by ff and intersecting D~\widetilde{D} negatively.

Applying this to the case of degenerate prime divisors, we obtain the following.

Corollary 2.46.

Let f:XYf\colon X\rightarrow Y be a fibration between normal projective varieties with XX \mathbb{Q}-factorial. Let DXD\subset X be a degenerate prime divisor, and assume that there is a DD-MMP over YY that terminates. Then there is a birational contraction map XXX\dashrightarrow X^{\prime} over YY whose only exceptional divisor is D.D.

Lemma 2.47.

Let f:XYf\colon X\rightarrow Y be a fibration between \mathbb{Q}-factorial projective varieties, and let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. Then every degenerate divisor on XX is contained in B.\lfloor B\rfloor.

Proof.

Suppose DXD\subset X is a degenerate prime divisor. It follows from Theorem  1 that XX is a Mori dream space, and so it follows from Corollary  2.46 that there exists a birational contraction map XXX\dashrightarrow X^{\prime} over YY whose only exceptional divisor is D.D. Finally, it follows from Corollary  2.43 that DD is a component of B.\lfloor B\rfloor.

2.8. Canonical bundle formula

In this subsection we recall the canonical bundle formula, emphasizing the simple form it takes in the special case of toric log Calabi–Yau pairs.

Definition 2.48.

Let f:XYf\colon X\rightarrow Y be a contraction with dimY>0\dim Y>0 and let (X,B)(X,B) be a log canonical pair with KX+B,f0.K_{X}+B\sim_{\mathbb{Q},f}0. This data determines a discriminant b-divisor 𝐁\mathbf{B} and a moduli b-divisor 𝐌\mathbf{M} on YY (see  [8, Section 3.4]). We will refer to (Y,BY,𝐌)(Y,B_{Y},\mathbf{M}) as the generalized pair determined by the canonical bundle formula.

We refer the reader to  [16] for details about generalized pairs and their singularities.

Remark 2.49.

Notation as in Definition  2.48. The trace BYB_{Y} of 𝐁\mathbf{B} on YY can be described as follows. For each prime divisor DY,D\subset Y, write

lctD(X,B;fD)=max{t|(X,B+tfD) is lc over the generic point of D}.{\rm lct}_{D}(X,B;f^{*}D)=\max\{t\in\mathbb{Q}|(X,B+tf^{*}D)\text{ is lc over the generic point of }D\}.

Then BYB_{Y} satisfies

coeffD(BY)=1lctD(X,B;fD){\rm coeff}_{D}(B_{Y})=1-{\rm lct}_{D}(X,B;f^{*}D)

for each prime divisor DY.D\subset Y. The trace MYM_{Y} of 𝐌\mathbf{M} on YY is characterized up to \mathbb{Q}-linear equivalence by the property

KX+Bf(KY+BY+MY),K_{X}+B\sim_{\mathbb{Q}}f^{*}(K_{Y}+B_{Y}+M_{Y}),

known as the canonical bundle formula.

Lemma 2.50.

Let f:XYf\colon X\rightarrow Y be a fibration between \mathbb{Q}-factorial varieties of Fano type. Let (X,B)(X,B) be a log Calabi–Yau pair. Let (Y,BY,𝐌)(Y,B_{Y},\mathbf{M}) be the generalized pair determined by the canonical bundle formula. Let ϕY:YY\phi_{Y}\colon Y^{\prime}\dashrightarrow Y be a birational map between \mathbb{Q}-factorial varieties extracting only glc places of (Y,BY,𝐌)(Y,B_{Y},\mathbf{M}). Then, there exists a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(X,B)\textstyle{(X^{\prime},B^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}f\scriptstyle{f^{\prime}}(Y,BY,𝐌)\textstyle{(Y,B_{Y},\mathbf{M})}(Y,BY,𝐌)\textstyle{(Y^{\prime},B_{Y^{\prime}},\mathbf{M})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕY\scriptstyle{\phi_{Y}}

satisfying the following conditions:

  1. (1)

    XX^{\prime} is \mathbb{Q}-factorial,

  2. (2)

    ϕ\phi is a crepant birational map extracting only log canonical places of (X,B)(X,B),

  3. (3)

    ff^{\prime} is a fibration, and

  4. (4)

    ff^{\prime} is extremal if ff is.

Proof.

All but (3) follow from the statement of  [16, Lemma 2.12], and (3) follows from the proofs provided for  [16, Lemmas 2.10-2.12]. ∎

We will use Lemma  2.50 together with the following result.

Lemma 2.51.

Let XX be a toric variety and let f:XYf\colon X\rightarrow Y be a contraction. Write Δ\Delta and ΔY\Delta_{Y} for the toric boundaries of XX and Y,Y, respectively. Let (Y,BY,𝐌)(Y,B_{Y},\mathbf{M}) be the generalized pair determined by (X,Δ)(X,\Delta) and ff via the canonical bundle formula. Then BY=ΔYB_{Y}=\Delta_{Y} and 𝐌0\mathbf{M}\sim 0 where it descends.

Proof.

This follows from  [1, Lemma 2.4]. ∎

3. Toric boundary arrangements

In this section we prove Theorem 2. To do this, we study toric log Calabi–Yau pairs associated to log Calabi–Yau pairs of complexity zero.

3.1. Associated toric divisors

In this subsection we define two invariants and prove some lemmas regarding these invariants and the set of associated toric divisors to a log Calabi–Yau pair of complexity zero.

We begin this subsection by restating the following definition.

Definition 3.1.

Let (X,B)(X,B) be a log pair. We say that a Weil divisor Δ\Delta on XX is associated to (X,B)(X,B) if the following conditions hold:

  1. (1)

    (X,Δ)(X,\Delta) is a toric log Calabi–Yau pair,

  2. (2)

    BΔB.\lfloor B\rfloor\leq\Delta\leq\lceil B\rceil.

We write

𝒜(X,B)={ΔWDiv(X)Δ is associated to (X,B)}.\mathcal{A}(X,B)=\left\{\Delta\in\text{WDiv}(X)\mid\Delta\text{ is associated to }(X,B)\right\}.

Note that this is a finite set. Given a set 𝒱\mathcal{V} of log canonical places of (X,B),(X,B), we write

𝒜𝒱(X,B)={Δ𝒜(X,B)E is a log canonical place of (X,Δ) for all E𝒱}.\mathcal{A}_{\mathcal{V}}(X,B)=\left\{\Delta\in\mathcal{A}(X,B)\mid E\text{ is a log canonical place of }(X,\Delta)\text{ for all }E\in\mathcal{V}\right\}.
Definition 3.2.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero, and let Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B). We define the following invariant:

λ1(X,B;Δ):=max{λ[0,1]λΔB}.\lambda_{1}(X,B;\Delta):=\max\left\{\lambda\in[0,1]\mid\lambda\Delta\leq B\right\}.

Whenever λ1(X,B;Δ)<1,\lambda_{1}(X,B;\Delta)<1, we will also define:

λ2(X,B;Δ):=max{λ[0,λ1(X,B;Δ)]|(X,11λ(BλΔ)) is log canonical}.\lambda_{2}(X,B;\Delta):=\max\left\{\lambda\in\left[0,\lambda_{1}(X,B;\Delta)\right]\,\middle|\,\left(X,\frac{1}{1-\lambda}(B-\lambda\Delta)\right)\text{ is log canonical}\right\}.

When λ1(X,B;Δ)=1,\lambda_{1}(X,B;\Delta)=1, we will set λ2(X,B;Δ)=1.\lambda_{2}(X,B;\Delta)=1. When (X,B)(X,B) and Δ\Delta are clear from context, we will simply write λ1\lambda_{1} and λ2.\lambda_{2}.

Remark 3.3.

The invariants defined above are always rational numbers. Indeed, λ1(X,B;Δ)\lambda_{1}(X,B;\Delta) is the smallest coefficient in BB of a component of the support of Δ\Delta, and the rationality of λ2(X,B;Δ)\lambda_{2}(X,B;\Delta) can be seen by computing it on a log resolution of (X,B).(X,\lceil B\rceil).

The following lemma indicates the significance of these invariants.

Lemma 3.4.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero, and let Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B) be an associated divisor. Then the following hold:

  1. (1)

    If λ2=0,\lambda_{2}=0, then there is a log canonical place of (X,B)(X,B) which is not a log canonical place of (X,Δ).(X,\Delta).

  2. (2)

    If λ2<λ1<1,\lambda_{2}<\lambda_{1}<1, then there is a log canonical place of (X,11λ2(Bλ2Δ))\left(X,\frac{1}{1-\lambda_{2}}(B-\lambda_{2}\Delta)\right) which is not a log canonical place of (X,Δ).(X,\Delta).

Proof.

To show (1), we suppose on the contrary that every log canonical place of (X,B)(X,B) is a log canonical place of (X,Δ)(X,\Delta). We will show that the pair (X,11λ(BλΔ))(X,\frac{1}{1-\lambda}(B-\lambda\Delta)) is log canonical for all sufficiently small λ>0\lambda>0, hence that λ2>0.\lambda_{2}>0. Fix a log resolution YXY\rightarrow X of (X,B),(X,B), hence also of (X,Δ),(X,\Delta), and denote by (Y,BY)(Y,B_{Y}) and (Y,ΔY)(Y,\Delta_{Y}) the log pullbacks of (X,B)(X,B) and (X,Δ),(X,\Delta), respectively. Note that coeffE(BY)1{\rm coeff}_{E}(B_{Y})\leq 1 for all prime divisors EYE\subset Y since (X,B)(X,B) is log canonical.

Given a divisor EE on Y,Y, we have

coeffE(11λ(BYλΔY))=11λ(coeffE(BY)λcoeffE(ΔY)){\rm coeff}_{E}\left(\frac{1}{1-\lambda}(B_{Y}-\lambda\Delta_{Y})\right)=\frac{1}{1-\lambda}\left({\rm coeff}_{E}(B_{Y})-\lambda{\rm coeff}_{E}(\Delta_{Y})\right)

for all λ<1.\lambda<1. These coefficients are continuous functions in λ,\lambda, and we recover the coefficients of BYB_{Y} when λ=0.\lambda=0. When coeffE(BY)=1{\rm coeff}_{E}(B_{Y})=1, we have coeffE(ΔY)=1{\rm coeff}_{E}(\Delta_{Y})=1 since every log canonical place of (X,B)(X,B) is a log canonical place of (X,Δ).(X,\Delta). In this case, it follows that coeffE(11λ(BYλΔY))=1{\rm coeff}_{E}(\frac{1}{1-\lambda}(B_{Y}-\lambda\Delta_{Y}))=1 for all λ<1.\lambda<1. When coeffE(BY)<1{\rm coeff}_{E}(B_{Y})<1, we have coeffE(11λ(BYλΔY))<1{\rm coeff}_{E}\left(\frac{1}{1-\lambda}(B_{Y}-\lambda\Delta_{Y})\right)<1 for all sufficiently small λ>0\lambda>0 by continuity. Since there are only finitely many EE that have nonzero coefficient in at least one of BYB_{Y} or ΔY\Delta_{Y}, it follows that (X,11λ(BλΔ))(X,\frac{1}{1-\lambda}(B-\lambda\Delta)) is log canonical for all sufficiently small λ>0.\lambda>0.

We now turn to show (2). Write B=11λ2(Bλ2Δ),B^{\prime}=\frac{1}{1-\lambda_{2}}(B-\lambda_{2}\Delta), and note that the condition λ2<λ1<1\lambda_{2}<\lambda_{1}<1 implies that Δ𝒜(X,B).\Delta\in\mathcal{A}(X,B^{\prime}). Thus, it suffices by (1) to show that λ2(X,B;Δ)=0.\lambda_{2}\left(X,B^{\prime};\Delta\right)=0. For all λ[0,1),\lambda\in[0,1), we have

BλΔ1λ=B(λ2+λ(1λ2))Δ1(λ2+λ(1λ2)).\frac{B^{\prime}-\lambda\Delta}{1-\lambda}=\frac{B-(\lambda_{2}+\lambda(1-\lambda_{2}))\Delta}{1-(\lambda_{2}+\lambda(1-\lambda_{2}))}.

But λ2+λ(1λ2)>λ2\lambda_{2}+\lambda(1-\lambda_{2})>\lambda_{2} whenever λ>0,\lambda>0, so it follows from the definition of λ2\lambda_{2} that (X,11λ(BλΔ))\left(X,\frac{1}{1-\lambda}(B^{\prime}-\lambda\Delta)\right) is not log canonical for any λ(0,1).\lambda\in(0,1).

These notions provide several ways to characterize toric log Calabi–Yau pairs:

Lemma 3.5.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. The following are equivalent:

  1. (1)

    (X,B)(X,B) is a toric log Calabi–Yau pair,

  2. (2)

    (X,B)(X,B) has index one,

  3. (3)

    there exists Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B) with λ1(X,B;Δ)=1.\lambda_{1}(X,B;\Delta)=1.

Proof.

All toric log Calabi–Yau pairs have index one, as shown in  [19, Section 4.1]. Now assume that (X,B)(X,B) has index one. It follows that BB must have integer coefficients. By Corollary  1, there exists Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B). We have ΔB=B,\Delta\leq\lceil B\rceil=B, from which it follows that λ1(X,B;Δ)=1.\lambda_{1}(X,B;\Delta)=1. Finally, assume that there exists some Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B), with λ1(X,B;Δ)=1\lambda_{1}(X,B;\Delta)=1. By definition of λ1,\lambda_{1}, we have ΔB.\Delta\leq B. Thus, BΔB-\Delta is an effective divisor. Since KX+BKX+ΔK_{X}+B\sim_{\mathbb{Q}}K_{X}+\Delta, it follows that BΔ0B-\Delta\sim_{\mathbb{Q}}0 and hence that B=ΔB=\Delta. Thus, (X,B)(X,B) is a toric log Calabi–Yau pair.

Outside of this case, we have the following:

Lemma 3.6.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero, and let Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B) have λ1<1.\lambda_{1}<1. Then for all λ[0,λ2],\lambda\in[0,\lambda_{2}],

𝒜(X,11λ(BλΔ))𝒜(X,B).\mathcal{A}\left(X,\frac{1}{1-\lambda}(B-\lambda\Delta)\right)\subseteq\mathcal{A}(X,B).

Furthermore, if λ2=λ1<1,\lambda_{2}=\lambda_{1}<1, then this containment is strict.

Proof.

Given λ[0,λ2],\lambda\in[0,\lambda_{2}], write Bλ=11λ(BλΔ).B_{\lambda}=\frac{1}{1-\lambda}(B-\lambda\Delta). The condition BΔ\lfloor B\rfloor\leq\Delta implies that any divisor appearing in BB with coefficient 11 must also appear in BλB_{\lambda} with coefficient 11. In other words, we must have BBλ.\lfloor B\rfloor\leq\lfloor B_{\lambda}\rfloor. The condition ΔB\Delta\leq\lceil B\rceil implies that any divisor appearing in BB with coefficient 0 must also appear in BλB_{\lambda} with coefficient 0.0. In other words, we must have BλB.\lceil B_{\lambda}\rceil\leq\lceil B\rceil. So given any Γ𝒜(X,Bλ),\Gamma\in\mathcal{A}(X,B_{\lambda}), it follows from

BBλΓBλB\lfloor B\rfloor\leq\lfloor B_{\lambda}\rfloor\leq\Gamma\leq\lceil B_{\lambda}\rceil\leq\lceil B\rceil

that Γ𝒜(X,B).\Gamma\in\mathcal{A}(X,B).

From now on, assume that λ2=λ1<1\lambda_{2}=\lambda_{1}<1. By the definition of λ1\lambda_{1}, we have that there exists a prime divisor EE in the support of BB and Δ\Delta, such that, coeffE(B)=λ1=λ2{\rm coeff}_{E}(B)=\lambda_{1}=\lambda_{2}. Thus, we have

coeffE(11λ2(Bλ2Δ))=0.{\rm coeff}_{E}\left(\frac{1}{1-\lambda_{2}}(B-\lambda_{2}\Delta)\right)=0.

Therefore Δ𝒜(X,11λ2(Bλ2Δ))\Delta\notin\mathcal{A}\left(X,\frac{1}{1-\lambda_{2}}(B-\lambda_{2}\Delta)\right), showing that the containment is strict. ∎

Lemma 3.7.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero, and let f:YXf\colon Y\rightarrow X be a projective birational morphism extracting only log canonical places of (X,B).(X,B). Write (Y,BY)(Y,B_{Y}) for the log pullback of (X,B)(X,B) via f,f, and write 𝒱\mathcal{V} for the set of ff-exceptional divisors. Then pushforward along ff induces a bijection

𝒜(Y,BY)𝒜𝒱(X,B).\mathcal{A}(Y,B_{Y})\xrightarrow{\cong}\mathcal{A}_{\mathcal{V}}(X,B).
Proof.

Given any toric log Calabi–Yau pair (Y,Γ),(Y,\Gamma), it follows from Lemma  2.33 that the pair (X,fΓ)(X,f_{*}\Gamma) is also toric log Calabi–Yau and that f:(Y,Γ)(X,fΓ)f\colon(Y,\Gamma)\rightarrow(X,f_{*}\Gamma) is a crepant birational morphism between these pairs. It is clear, therefore, that f𝒜(Y,BY)𝒜𝒱(X,B).f_{*}\mathcal{A}(Y,B_{Y})\subset\mathcal{A}_{\mathcal{V}}(X,B). For surjectivity, consider some Δ𝒜𝒱(X,B).\Delta\in\mathcal{A}_{\mathcal{V}}(X,B). Denote by (Y,ΔY)(Y,\Delta_{Y}) the log pullback of (X,Δ)(X,\Delta) to YY. Then (Y,ΔY)(Y,\Delta_{Y}) is a log Calabi–Yau pair of index one since (X,B)(X,B) is, and

c(Y,ΔY)=c(X,Δ)=0c(Y,\Delta_{Y})=c(X,\Delta)=0

since every ff-exceptional divisor is a log canonical place for (X,Δ).(X,\Delta). It follows from Lemma  3.5 that (Y,ΔY)(Y,\Delta_{Y}) is a toric log Calabi–Yau pair, and it follows from the fact that every ff-exceptional divisor appears in BYB_{Y} with coefficient 11 that

BYΔYBY.\lfloor B_{Y}\rfloor\leq\Delta_{Y}\leq\lceil B_{Y}\rceil.

We see that ΔY\Delta_{Y} is an element of 𝒜(Y,BY)\mathcal{A}(Y,B_{Y}) satisfying fΔY=Δ.f_{*}\Delta_{Y}=\Delta. For injectivity, we note that two divisors Γ1,Γ2WDiv(Y)\Gamma_{1},\Gamma_{2}\in{\rm WDiv}(Y) satisfying fΓ1=fΓ2f_{*}\Gamma_{1}=f_{*}\Gamma_{2} can differ only at ff-exceptional divisors. But since every ff-exceptional divisor appears in BYB_{Y} with coefficient 1,1, they must all appear in every element of 𝒜(Y,BY)\mathcal{A}(Y,B_{Y}) with coefficient 11 as well.

Proposition 3.8.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. Then (X,B)(X,B) is a toric log Calabi–Yau pair if and only if |𝒜(X,B)|=1|\mathcal{A}(X,B)|=1.

Proof.

First, suppose that (X,B)(X,B) is a toric log Calabi–Yau pair. In particular, BB has integer coefficients, hence B=B=B\lfloor B\rfloor=B=\lceil B\rceil. It follows that any divisor Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B) must satisfy B=BΔB=BB=\lfloor B\rfloor\leq\Delta\leq\lceil B\rceil=B, hence 𝒜(X,B)={B}\mathcal{A}(X,B)=\{B\}.

Conversely, suppose that |𝒜(X,B)|=1.|\mathcal{A}(X,B)|=1. Denote by Δ\Delta be the unique divisor associated to (X,B)(X,B). If λ1=1\lambda_{1}=1, then we are done by Lemma 3.5. So assume, for a contradiction, that λ1<1.\lambda_{1}<1. Thus, 11λ(BλΔ)\frac{1}{1-\lambda}(B-\lambda\Delta) is a nonzero effective divisor for all λ[0,λ1]\lambda\in[0,\lambda_{1}]. If λ2=λ1<1\lambda_{2}=\lambda_{1}<1, then it would follow from Lemma 3.6 that 𝒜(X,11λ2(Bλ2Δ))\mathcal{A}\left(X,\frac{1}{1-\lambda_{2}}(B-\lambda_{2}\Delta)\right) is empty, contradicting Corollary  1.

From now on we assume that λ2<λ1<1\lambda_{2}<\lambda_{1}<1. Denote by B:=11λ2(Bλ2Δ)B^{\prime}:=\frac{1}{1-\lambda_{2}}(B-\lambda_{2}\Delta), and note that we must have 𝒜(X,B)={Δ}\mathcal{A}(X,B^{\prime})=\{\Delta\} by Lemma 3.6. It follows from part (2) of Lemma  3.4 that there is a log canonical place EE of (X,B)(X,B^{\prime}) that is not a log canonical place of (X,Δ).(X,\Delta). By [18, Theorem 1], there is a projective birational morphism f:YXf\colon Y\rightarrow X with divisorial exceptional locus which extracts only the divisor E.E. Denote by (Y,BY)(Y,B^{\prime}_{Y}) the log pullback of (X,B)(X,B^{\prime}) via f.f. It follows from Lemma  3.7 that f𝒜(Y,BY)=𝒜{E}(X,B),f_{*}\mathcal{A}(Y,B_{Y}^{\prime})=\mathcal{A}_{\{E\}}(X,B^{\prime}), but this set is empty since EE is not a log canonical place of (X,Δ).(X,\Delta). It would then have to follow that 𝒜(Y,BY)=,\mathcal{A}(Y,B_{Y}^{\prime})=\emptyset, contradicting Corollary  1.

3.2. Toric boundary arrangements

We start this section with the following definition.

Definition 3.9.

We say that a log pair (X,B)(X,B) is a toric boundary arrangement if we can write B=i=1rbiΔi,B=\sum_{i=1}^{r}b_{i}\Delta_{i}, where:

  1. (1)

    Δ1,,Δr𝒜(X,B),\Delta_{1},\ldots,\Delta_{r}\in\mathcal{A}(X,B),

  2. (2)

    b1,,brb_{1},\ldots,b_{r} are nonnegative and satisfy i=1rbi=1.\sum_{i=1}^{r}b_{i}=1.

It follows from the definition that a toric boundary arrangement is, in particular, a log Calabi–Yau pair of complexity zero.

Lemma 3.10.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero, and let Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B) be such that λ1<1.\lambda_{1}<1. If (X,11λ2(Bλ2Δ))\left(X,\frac{1}{1-\lambda_{2}}(B-\lambda_{2}\Delta)\right) is a toric boundary arrangement, then so is (X,B).(X,B).

Proof.

Write Bλ2=11λ2(Bλ2Δ).B_{\lambda_{2}}=\frac{1}{1-\lambda_{2}}(B-\lambda_{2}\Delta). If (X,Bλ2)(X,B_{\lambda_{2}}) is a toric boundary arrangement, then there are Γ1,,Γr𝒜(X,Bλ2)\Gamma_{1},\ldots,\Gamma_{r}\in\mathcal{A}(X,B_{\lambda_{2}}) and nonnegative b1,,brb_{1},\ldots,b_{r} satisfying i=1rbi=1\sum_{i=1}^{r}b_{i}=1 such that i=1rbiΓi=Bλ2.\sum_{i=1}^{r}b_{i}\Gamma_{i}=B_{\lambda_{2}}. But then we have

B=λ2Δ+i=1rbi(1λ2)Γi.B=\lambda_{2}\Delta+\sum_{i=1}^{r}b_{i}(1-\lambda_{2})\Gamma_{i}.

Since 𝒜(X,Bλ2)𝒜(X,B)\mathcal{A}(X,B_{\lambda_{2}})\subseteq\mathcal{A}(X,B) by Lemma  3.6 and since λ2,b1(1λ2),,br(1λ2)\lambda_{2},b_{1}(1-\lambda_{2}),\ldots,b_{r}(1-\lambda_{2}) are nonnegative and satisfy λ2+i=1rbi(1λ2)=1\lambda_{2}+\sum_{i=1}^{r}b_{i}(1-\lambda_{2})=1, it follows that (X,B)(X,B) is a toric boundary arrangement. ∎

Lemma 3.11.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero, and let f:YXf\colon Y\rightarrow X be a projective birational morphism extracting only log canonical places of (X,B).(X,B). Write (Y,BY)(Y,B_{Y}) for the log pullback of (X,B)(X,B) via f.f. If (Y,BY)(Y,B_{Y}) is a toric boundary arrangement, then so is (X,B).(X,B).

Proof.

If (Y,BY)(Y,B_{Y}) is a toric boundary arrangement, then there are Γ1,,Γr𝒜(Y,BY)\Gamma_{1},\ldots,\Gamma_{r}\in\mathcal{A}(Y,B_{Y}) and nonnegative b1,,brb_{1},\ldots,b_{r} satisfying i=1rbi=1\sum_{i=1}^{r}b_{i}=1 such that i=1rbiΓi=BY.\sum_{i=1}^{r}b_{i}\Gamma_{i}=B_{Y}. It follows from Lemma  3.7 that fΓ1,,fΓr𝒜(X,B).f_{*}\Gamma_{1},\ldots,f_{*}\Gamma_{r}\in\mathcal{A}(X,B). Since B=fBY,B=f_{*}B_{Y}, we have

B=i=1rbifΓi,B=\sum_{i=1}^{r}b_{i}f_{*}\Gamma_{i},

hence that (X,B)(X,B) is a toric boundary arrangement. ∎

Proof of Theorem 2.

We induct on the cardinality of the set 𝒜(X,B).\mathcal{A}(X,B). As previously noted, it follows from Corollary  1 that this set is nonempty and finite.

By Proposition 3.8, if |𝒜(X,B)|=1|\mathcal{A}(X,B)|=1, then (X,B)(X,B) is a toric log Calabi–Yau pair and the desired result holds trivially. From now on we assume that |𝒜(X,B)|>1.|\mathcal{A}(X,B)|>1.

Choose any Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B). It follows from Lemma  3.5 and Proposition  3.8 that λ1<1\lambda_{1}<1 and hence that λ2<1\lambda_{2}<1. Set B:=11λ2(Bλ2Δ)B^{\prime}:=\frac{1}{1-\lambda_{2}}(B-\lambda_{2}\Delta). By definition of λ2,\lambda_{2}, we have that (X,B)(X,B^{\prime}) is a log Calabi–Yau pair of complexity zero. If λ2=λ1\lambda_{2}=\lambda_{1}, then it follows from Lemma 3.6 that |𝒜(X,B)|<|𝒜(X,B)|.|\mathcal{A}(X,B^{\prime})|<|\mathcal{A}(X,B)|. Thus, (X,B)(X,B^{\prime}) is a toric boundary arrangement by the inductive hypothesis, and it then follows from Lemma  3.10 that (X,B)(X,B) is a toric boundary arrangement.

From now on, we assume that λ2<λ1<1\lambda_{2}<\lambda_{1}<1. It follows from part (2) of Lemma  3.4 that there is a log canonical place EE of (X,B)(X,B^{\prime}) that is not a log canonical place of (X,Δ).(X,\Delta). By [18, Theorem 1], there is a normal, \mathbb{Q}-factorial projective variety YY and a projective birational morphism f:YXf\colon Y\rightarrow X with divisorial exceptional locus which extracts only the divisor E.E. Denote by (Y,BY)(Y,B^{\prime}_{Y}) the log pullback of (X,B)(X,B^{\prime}) via f.f. It follows from Lemma  3.7 and the fact that EE is not a log canonical place for (X,Δ)(X,\Delta) that |𝒜(Y,BY)|<|𝒜(X,B)|.|\mathcal{A}(Y,B_{Y}^{\prime})|<|\mathcal{A}(X,B^{\prime})|. But |𝒜(X,B)||𝒜(X,B)||\mathcal{A}(X,B^{\prime})|\leq|\mathcal{A}(X,B)| by Lemma  3.6, and so it follows by the inductive hypothesis that (Y,BY)(Y,B_{Y}^{\prime}) is a toric boundary arrangement. Lemma  3.11 implies that (X,B)(X,B^{\prime}) is a toric boundary arrangement, and Lemma  3.10 then implies that (X,B)(X,B) is a toric boundary arrangement. ∎

4. Geometry of log canonical centers

Proof of Theorem 4.

We begin by using Theorem  2 to express (X,B)(X,B) as a toric boundary arrangement with B=i=1rbiΔi.B=\sum_{i=1}^{r}b_{i}\Delta_{i}.

In the case of (1), it follows that EE is a log canonical place for each of the pairs (X,Δi).(X,\Delta_{i}). By the linearity of discrepancy with respect to the boundary, it follows that EE is a log canonical place for (X,B).(X,B). In the case of (2), use [18, Theorem 1] to obtain a projective birational morphism f:YXf\colon Y\rightarrow X which extracts only the divisor E.E. Write (Y,BY)(Y,B_{Y}) for the log pullback of (X,B)(X,B) via f.f. By Lemma  3.7, the set 𝒜{E}(X,B)\mathcal{A}_{\{E\}}(X,B) is in bijection with 𝒜(Y,BY)\mathcal{A}(Y,B_{Y}). This latter set is nonempty by Theorem  1, since (Y,BY)(Y,B_{Y}) is a log Calabi–Yau pair of complexity zero.

In the case of (3), let f:YXf\colon Y\rightarrow X be the normalization of the blow up of XX along Z.Z. For each 1ir,1\leq i\leq r, choose a maximal torus 𝕋iAut(X,Δi)\mathbb{T}_{i}\leq{\rm Aut(X,\Delta_{i})}. For each 1ir,1\leq i\leq r, ZZ is 𝕋i\mathbb{T}_{i}-invariant and the action of 𝕋i\mathbb{T}_{i} lifts to an action on YY such that ff is 𝕋i\mathbb{T}_{i}-equivariant. Moreover, ff is an isomorphism over the big torus 𝕋i=XΔi\mathbb{T}_{i}=X\setminus\Delta_{i} for each 1ir.1\leq i\leq r. It follows that each of the actions of 𝕋1,,𝕋r\mathbb{T}_{1},\ldots,\mathbb{T}_{r} on YY endows YY with the structure of a toric variety; denote by Γi\Gamma_{i} the toric boundary corresponding to the action of 𝕋i.\mathbb{T}_{i}. Then f:(Y,Γi)(X,Δi)f\colon(Y,\Gamma_{i})\rightarrow(X,\Delta_{i}) is a crepant projective birational morphism for each 1ir.1\leq i\leq r. Note that, for each 1ir,1\leq i\leq r, each ff-exceptional divisor must be a component of Γi=Y𝕋i,\Gamma_{i}=Y\setminus\mathbb{T}_{i}, hence a log canonical place of (X,Δi).(X,\Delta_{i}). It follows that each ff-exceptional divisor is a log-canonical place of (X,B),(X,B), hence that ZZ is a log-canonical center of (X,B).(X,B).

In the case of (4), choose some log-canonical place EE of (X,B)(X,B) whose center on XX is Z.Z. By Part (2) of this theorem, there is some Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B) with respect to which EE is toric. It follows that the center ZZ of EE on XX is a stratum of this Δ.\Delta.

Corollary 4.1.

Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero and let ZSing(X)Z\subset{\rm Sing}(X) be an irreducible component of the singular locus of X.X. Let f:YXf\colon Y\rightarrow X be the normalized blow-up of XX along ZZ and let (Y,BY)(Y,B_{Y}) be the log pullback of (X,B)(X,B) via ff. Then every ff-exceptional divisor is a log canonical place of (X,B).(X,B).

Proof.

Let Δ𝒜(X,B)\Delta\in\mathcal{A}(X,B) and write 𝕋=Aut0(X,B)\mathbb{T}={\rm Aut}^{0}(X,B). As an irreducible component of Sing(X),{\rm Sing}(X), ZZ must be a toric stratum of (X,Δ).(X,\Delta). Since f:YXf\colon Y\rightarrow X is the normalization of the blowing up of a 𝕋\mathbb{T}-invariant subvariety, it follows that the 𝕋\mathbb{T}-action on XX lifts to a 𝕋\mathbb{T}-action on Y.Y. Since ZΔ,Z\subset\Delta, it follows that ff is an isomorphism over the open orbit XΔX\setminus\Delta and hence that the 𝕋\mathbb{T}-action on YY has an open orbit with trivial isotropy group. Writing Γ\Gamma for the reduced sum of the divisorial components of the complement of this orbit, we obtain a toric log Calabi–Yau pair (Y,Γ)(Y,\Gamma) with the property that fΓ=Δ.f_{*}\Gamma=\Delta. In particular, (Y,Γ)(Y,\Gamma) is the log pullback of (X,Δ)(X,\Delta) via f.f. It follows from Corollary  2.43 that each ff-exceptional divisor is a component of Γ.\Gamma. Thus, each ff-exceptional divisor is toric with respect to (X,Δ).(X,\Delta). The desired result now follows from Part (1) of Theorem  4. ∎

Proof of Theorem 5.

Since (Y,BY)(Y,B_{Y}) is a log Calabi–Yau pair of complexity zero and BYΓ\lfloor B_{Y}\rfloor\leq\Gamma for all Γ𝒜(Y,BY),\Gamma\in\mathcal{A}(Y,B_{Y}), it suffices to show that YY is smooth. For this, we note that it follows from Corollary  4.1 that any irreducible component of Sing(Y){\rm Sing}(Y) would be a log canonical center of (Y,BY).(Y,B_{Y}). But each log canonical center of the dlt pair (Y,BY)(Y,B_{Y}) must intersect the smooth locus of Y,Y, so we must have Sing(Y)=.{\rm Sing}(Y)=\emptyset.

5. Behavior with respect to contractions

Proof of Theorem 6.

It follows from Corollary  2.43 that (Y,BY=fB)(Y,B_{Y}=f_{*}B) is a log Calabi–Yau pair of complexity zero. To show that the exceptional locus of ff is a union of log canonical centers of (X,B),(X,B), it suffices by part (3) of Theorem  4 to show that each irreducible component of the exceptional locus is a toric stratum of every Δ𝒜(X,B).\Delta\in\mathcal{A}(X,B). But this follows from Lemma  2.33. ∎

Proof of Theorem 7.

Let DYD\subset Y be a prime divisor. First, we consider the case that DD is not a component of Γi\Gamma_{i} for each 1ir.1\leq i\leq r. Using Lemma  2.51 to identify Γi\Gamma_{i} with the discriminant divisor induced by ff and Δi,\Delta_{i}, it follows that lctD(X,Δi;fD)=1{\rm lct}_{D}(X,\Delta_{i};f^{*}D)=1 for each 1ir.1\leq i\leq r. Since

B+tfD=i=1rbi(Δi+tfD)B+tf^{*}D=\sum_{i=1}^{r}b_{i}(\Delta_{i}+tf^{*}D)

for all t,t\in\mathbb{Q}, it follows that lctD(X,B;fD)=1{\rm lct}_{D}(X,B;f^{*}D)=1 and hence that coeffD(BY)=0.{\rm coeff}_{D}(B_{Y})=0.

Next, we consider the case that DD is a component of Γi\Gamma_{i} for at least one 1ir1\leq i\leq r and that f1(D)f^{-1}(D) contains more than one prime divisor. In this case, each prime divisor contained in f1(D)f^{-1}(D) is degenerate over Y.Y. By Lemma  2.47, each of these divisors is a component of B.\lfloor B\rfloor. On the one hand, this implies that lctD(X,B;fD)=0,{\rm lct}_{D}(X,B;f^{*}D)=0, hence that coeffD(BY)=1.{\rm coeff}_{D}(B_{Y})=1. On the other hand, this implies that each prime divisor contained in f1(D)f^{-1}(D) is a component of Δi\Delta_{i} for each 1ir,1\leq i\leq r, hence that DD is a component of Γi\Gamma_{i} for each 1ir.1\leq i\leq r. Thus, we have coeffD(BY)=coeffD(i=1rbiΓi){\rm coeff}_{D}(B_{Y})={\rm coeff}_{D}(\sum_{i=1}^{r}b_{i}\Gamma_{i}) in this case.

Finally, we consider the case that DD is a component of Γi\Gamma_{i} for at least one 1ir1\leq i\leq r and that f1(D)f^{-1}(D) contains exactly one prime divisor EE. In this case, it follows that

1coeffD(BY)\displaystyle 1-{\rm coeff}_{D}(B_{Y}) =lctD(X,B;fD)\displaystyle={\rm lct}_{D}(X,B;f^{*}D)
=1coeffE(B)\displaystyle=1-{\rm coeff}_{E}(B)
=1i=1rbicoeffE(Δi)\displaystyle=1-\sum_{i=1}^{r}b_{i}{\rm coeff}_{E}(\Delta_{i})
=1i=1rbicoeffD(Γi),\displaystyle=1-\sum_{i=1}^{r}b_{i}{\rm coeff}_{D}(\Gamma_{i}),

hence that coeffD(BY)=coeffD(i=1rbiΓi).{\rm coeff}_{D}(B_{Y})={\rm coeff}_{D}(\sum_{i=1}^{r}b_{i}\Gamma_{i}).

We conclude that BY=i=1rbiΓi.B_{Y}=\sum_{i=1}^{r}b_{i}\Gamma_{i}. All other assertions in the statement of the theorem are now clear. ∎

6. Generalized Bott towers

6.1. Decreasing relative dimension

Lemma 6.1.

Let f:XYf\colon X\rightarrow Y be a fibration of \mathbb{Q}-factorial projective varieties, and let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. Denote by mm the number of components of B\lfloor B\rfloor which are horizontal over Y.Y. Then the general fiber FF of ff admits a log Calabi–Yau pair (F,BF)(F,B_{F}) of complexity zero satisfying |BF|m.\left\lvert\lfloor B_{F}\rfloor\right\rvert\leq m.

Proof.

Let g:(X~,B~)(X,B)g\colon(\widetilde{X},\widetilde{B})\rightarrow(X,B) be a dlt modification. Choose a toric structure (X~,ΔX~)(\widetilde{X},\Delta_{\widetilde{X}}) associated to (X~,B~),(\widetilde{X},\widetilde{B}), and denote by (X,ΔX)(X,\Delta_{X}) and (Y,ΔY)(Y,\Delta_{Y}) the toric structures induced by (X~,ΔX~)(\widetilde{X},\Delta_{\widetilde{X}}). Denote by U=YΔYU=Y\setminus\Delta_{Y} the open orbit in YY and by F~\widetilde{F} the general fiber of fg.f\circ g. We have a commutative diagram

F~×U\textstyle{\widetilde{F}\times U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p×U\scriptstyle{p\times U}X~\textstyle{\widetilde{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}F×U\textstyle{F\times U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr2\scriptstyle{pr_{2}}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Y\textstyle{Y}

in which:

  1. (1)

    all squares are Cartesian,

  2. (2)

    all morphisms are toric,

  3. (3)

    p:F~Fp\colon\widetilde{F}\rightarrow F is a projective birational toric morphism.

Write (F~,ΔF~)(\widetilde{F},\Delta_{\widetilde{F}}) and (F,ΔF)(F,\Delta_{F}) for the corresponding toric structures.

For each component DD of ΔF,\Delta_{F}, denote by DXD_{X} the closure in XX of D×U.D\times U. To obtain the desired result, it suffices by  [14, Corollary 2.33] to show that the linear system |D|\lvert D\rvert on FF is positive-dimensional whenever DXD_{X} appears in BB with coefficient less than one. So suppose DXD_{X} appears in BB with coefficient less than one. Denote by D~\widetilde{D} the strict transform on F~\widetilde{F} of D,D, and by D~X~\widetilde{D}_{\widetilde{X}} the closure in X~\widetilde{X} of D~×U.\widetilde{D}\times U. Noting that D~X~\widetilde{D}_{\widetilde{X}} is the strict transform on X~\widetilde{X} of DX,D_{X}, it follows that D~X~\widetilde{D}_{\widetilde{X}} appears in B~\widetilde{B} with coefficient less than one. By Lemma  2.37, there is another component D~X~\widetilde{D}^{\prime}_{\widetilde{X}} of B~\widetilde{B} such that D~X~D~X~.\widetilde{D}_{\widetilde{X}}\sim_{\mathbb{Q}}\widetilde{D}^{\prime}_{\widetilde{X}}. Since X~\widetilde{X} is smooth, it follows that the prime divisors D~X~\widetilde{D}_{\widetilde{X}} and D~X~\widetilde{D}^{\prime}_{\widetilde{X}} are Cartier. Since X~\widetilde{X} is a projective toric variety, it follows from  [5, Proposition 4.2.5] that its Picard group is torsion-free. Together, these imply the linear equivalence D~X~D~X~.\widetilde{D}_{\widetilde{X}}\sim\widetilde{D}^{\prime}_{\widetilde{X}}. For general yU,y\in U, the Cartier divisor D~X~|F~×{y}\widetilde{D}^{\prime}_{\widetilde{X}}|_{\widetilde{F}\times\{y\}} is an element of |D~|\lvert\widetilde{D}\rvert different from D~.\widetilde{D}. Pushing forward to F,F, we see that |D|\lvert D\rvert contains divisors different from D.D.

Lemma 6.2.

Let XX be a \mathbb{Q}-factorial projective variety of Picard rank one. Suppose there exists an irreducible component ZZ of Sing(X){\rm Sing}(X) and a log Calabi–Yau pair (X,B)(X,B) of complexity zero such that ZSupp(B).Z\nsubset{\rm Supp}(\lfloor B\rfloor). Let EE be any exceptional divisor extracted by the normalized blow-up of Z,Z, and let g:X~Xg\colon\widetilde{X}\rightarrow X be the extraction of E.E. Then every (E)(-E)-MMP terminates with a fibration to a positive-dimensional base.

Proof.

Denote by B1,,BkB_{1},\ldots,B_{k} the irreducible components of B.\lfloor B\rfloor. Choose any prime divisor DXD\subset X containing Z.Z. Since ZD,Z\subset D, there is a positive rational number bb such that gD=D~+bE,g^{*}D=\widetilde{D}+bE, where D~\widetilde{D} dentoes the strict transform on X~\widetilde{X} of D.D. In contrast, gBig^{*}B_{i} has irreducible support for each 1ik1\leq i\leq k since ZBi.Z\nsubset B_{i}. As XX is \mathbb{Q}-factorial and of Picard rank one, there are positive rational numbers a1,,aka_{1},\ldots,a_{k} such that BiaiDB_{i}\sim_{\mathbb{Q}}a_{i}D for each 1ik.1\leq i\leq k. We then have that

gBiai(D~+bE)g^{*}B_{i}\sim_{\mathbb{Q}}a_{i}(\widetilde{D}+bE)

for each 1ik.1\leq i\leq k.

Since ZZ is an irreducible component of Sing(X){\rm Sing}(X) and (X,B)(X,B) is a log Calabi–Yau pair of complexity zero, it follows from Corollary  4.1 that EE is a log canonical place of (X,B).(X,B). Thus, the pair (X~,B~)(\widetilde{X},\widetilde{B}) induced by log pullback is a log Calabi–Yau pair of complexity zero. Since X~\widetilde{X} is a Mori dream space and E-E is not pseudo-effective, it follows that every (E)(-E)-MMP terminates with a fibration. Let

X~=X~0\textstyle{\widetilde{X}=\widetilde{X}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f1\scriptstyle{f_{1}}X~1\textstyle{\widetilde{X}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fm\scriptstyle{f_{m}}X~m\textstyle{\widetilde{X}_{m}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}Y\textstyle{Y}

be such an MMP. Here, f1,,fmf_{1},\ldots,f_{m} are birational contractions with f1,,fm1f_{1},\ldots,f_{m-1} small, and hh is an extremal fibration. Since hh is an extremal fibration, to show that YY is positive-dimensional it suffices to show that the Picard rank of X~m\widetilde{X}_{m} is at least two. Since X~0\widetilde{X}_{0} is of Picard rank two and f1,,fm1f_{1},\ldots,f_{m-1} are small, it follows that X~m1\widetilde{X}_{m-1} is of Picard rank two. Thus, it suffices to show that fmf_{m} is not a divisorial contraction.

Assume, for a contradiction, that fmf_{m} is a divisorial contraction. For each 0im,0\leq i\leq m, denote by B~i,1,,B~i,k,B~i,D~i\widetilde{B}_{i,1},\ldots,\widetilde{B}_{i,k},\widetilde{B}_{i},\widetilde{D}_{i} and EiE_{i} the pushforwards to X~i\widetilde{X}_{i} of gB1,,gBk,B~,D~g^{*}B_{1},\ldots,g^{*}B_{k},\widetilde{B},\widetilde{D} and EE, respectively. Then (X~i,B~i)(\widetilde{X}_{i},\widetilde{B}_{i}) is a log Calabi–Yau pair of complexity zero. It follows from Lemma 2.47 that fmf_{m} cannot contract any divisor unequal to one of B~m1,1,,B~m1,k\widetilde{B}_{m-1,1},\ldots,\widetilde{B}_{m-1,k} or E~m1\widetilde{E}_{m-1}. In particular, fmf_{m} does not contract D~m1.\widetilde{D}_{m-1}. We also note that fmf_{m} cannot contract E~m1,\widetilde{E}_{m-1}, since fmf_{m} must be E~m1\widetilde{E}_{m-1}-positive as a step of a (E)(-E)-MMP. Thus, fmf_{m} must contract B~m1,i\widetilde{B}_{m-1,i} for some 1ik.1\leq i\leq k. But B~m1,iai(D~m1+bEm1)\widetilde{B}_{m-1,i}\sim_{\mathbb{Q}}a_{i}(\widetilde{D}_{m-1}+bE_{m-1}) on X~m1,\widetilde{X}_{m-1}, from which it follows that D~mbEm\widetilde{D}_{m}\sim_{\mathbb{Q}}-bE_{m} on X~m.\widetilde{X}_{m}. But this is nonsense, as X~m\widetilde{X}_{m} is projective, D~m\widetilde{D}_{m} and EmE_{m} are nonzero effective divisors, and b>0.b>0. We conclude that fmf_{m} cannot be a divisorial contraction, as desired. ∎

Lemma 6.3.

Let f:XYf\colon X\rightarrow Y be an extremal fibration of \mathbb{Q}-factorial projective toric varieties. Denote by UYU\subset Y the open orbit and by FF the general fiber of f,f, and fix a toric isomorphism f1(U)F×Uf^{-1}(U)\cong F\times U over U.U. Assume there is an irreducible component ZZ of Sing(F){\rm Sing}(F) satisfying the hypotheses of Lemma  6.2. Let EFE_{F} be any divisor extracted from FF by the normalized blow-up of Z,Z, and let g:X~Xg\colon\widetilde{X}\rightarrow X be the extraction of a divisor EE corresponding to the valuation induced by EF×Uf1(U).E_{F}\times U\subset f^{-1}(U). Then we may run a (E)(-E)-MMP over YY which terminates with a fibration to a base of positive relative dimension over Y.Y.

Proof.

Denote by gF:F~Fg_{F}\colon\widetilde{F}\rightarrow F the extraction of EF.E_{F}. Thus, we may identify the restriction of gg over UU with gF×U:F~×UF×U.g_{F}\times U\colon\widetilde{F}\times U\rightarrow F\times U. By Lemma  2.27, given any (EF×U)(-E_{F}\times U)-MMP over UU

F~×U=F^0\textstyle{\widetilde{F}\times U=\widehat{F}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f^0\scriptstyle{\widehat{f}_{0}}F^1\textstyle{\widehat{F}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f^m1\scriptstyle{\widehat{f}_{m-1}}F^m\textstyle{\widehat{F}_{m}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h^\scriptstyle{\widehat{h}}W^,\textstyle{\widehat{W},}

there is a (EF)(-E_{F})-MMP

F~=F~0\textstyle{\widetilde{F}=\widetilde{F}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f~0\scriptstyle{\widetilde{f}_{0}}F~1\textstyle{\widetilde{F}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f~m1\scriptstyle{\widetilde{f}_{m-1}}F~m\textstyle{\widetilde{F}_{m}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h~\scriptstyle{\widetilde{h}}W~\textstyle{\widetilde{W}}

satisfying

  1. (1)

    F^iF~i×U\widehat{F}_{i}\cong\widetilde{F}_{i}\times U for each 0im,0\leq i\leq m,

  2. (2)

    W^W~×U,\widehat{W}\cong\widetilde{W}\times U,

  3. (3)

    the identifications above identify f^i\widehat{f}_{i} with f~i×U\widetilde{f}_{i}\times U for each 1im11\leq i\leq m-1 and identify h^\widehat{h} with h~×U.\widetilde{h}\times U.

By Lemma  6.2, the codomain W~\widetilde{W} of the fibration h~\widetilde{h} is positive-dimensional. It follows that W^\widehat{W} has positive relative dimension over U.U.

Run a (E)(-E)-MMP over Y.Y. Since X~\widetilde{X} is a Mori dream space and since E-E is not pseudo-effective over YY by Lemma  2.28, it follows that this MMP must terminate with a fibration over Y.Y. Denote by

X=X0\textstyle{X=X_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g0\scriptstyle{g_{0}}X1\textstyle{X_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g1\scriptstyle{g_{1}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}gm1\scriptstyle{g_{m-1}}Xm\textstyle{X_{m}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}gm\scriptstyle{g_{m}}Z\textstyle{Z}

the steps of this MMP, with gig_{i} birational for 0im10\leq i\leq m-1 and gmg_{m} a fibration. Denote by ViXiV_{i}\subset X_{i} the preimage of UU in XiX_{i} for each 0im,0\leq i\leq m, by WW the preimage of UU in Z,Z, and by hih_{i} the restriction to ViV_{i} of gig_{i} for each 0im.0\leq i\leq m. The fibration gmg_{m} cannot restrict to an isomorphism between VmV_{m} and W,W, so Lemma  2.24 gives us indices 0i0<<ir=m0\leq i_{0}<\ldots<i_{r}=m such that hih_{i} is an isomorphism for i{i0,,ir}i\notin\{i_{0},\ldots,i_{r}\} and

V0=Vi0\textstyle{V_{0}=V_{i_{0}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hi0\scriptstyle{h_{i_{0}}}Vi1\textstyle{V_{i_{1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hi1\scriptstyle{h_{i_{1}}}\textstyle{\ldots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hir1\scriptstyle{h_{i_{r-1}}}Vir\textstyle{V_{i_{r}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hir\scriptstyle{h_{i_{r}}}W\textstyle{W}

are the steps of an (E)|V0=(EF×U)(-E)|_{V_{0}}=(-E_{F}\times U)-MMP over U.U. It follows from the arguments above that WW must be of positive relative dimension over U.U. Thus, ZZ must be of positive relative dimesnion over Y.Y.

Lemma 6.4.

Let f:XYf\colon X\rightarrow Y be an extremal fibration between \mathbb{Q}-factorial projective varieties. Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero such that B\lfloor B\rfloor contains exactly one component horizontal over YY. Assume that the general fiber FF of ff is singular but admits no log Calabi–Yau pair of complexity zero satisfying the hypotheses of Lemma  6.2. Then F(1,c1,,cn)F\cong\mathbb{P}(1,c_{1},\ldots,c_{n}) with ci2c_{i}\geq 2 for each 1in.1\leq i\leq n. Moreover, there is a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(X,B)\textstyle{(X^{\prime},B^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{\prime}}ϕ\scriptstyle{\phi}Y\textstyle{Y}

where ϕ\phi is birational and extracts only log canonical places of (X,B)(X,B) such that one of the following holds:

  1. (1)

    XX^{\prime} admits a fibration over YY to a base of positive relative dimension over Y,Y,

  2. (2)

    ff^{\prime} is an extremal fibration whose general fiber FF^{\prime} satisfies F(1,1,c2,,cn)F^{\prime}\cong\mathbb{P}(1,1,c^{\prime}_{2},\ldots,c^{\prime}_{n}).

Proof.

Since B\lfloor B\rfloor has only one component which is horizontal over Y,Y, we can use Lemma  6.1 to obtain a log Calabi–Yau pair (F,BF)(F,B_{F}) of complexity zero such that BF\lfloor B_{F}\rfloor has at most one component. Since FF is singular and admits no log Calabi–Yau pair of complexity zero satisfying the hypotheses of Lemma  6.2, it follows that BF\lfloor B_{F}\rfloor must contain exactly one component and that Sing(F)Supp(BF){\rm Sing}(F)\subset{\rm Supp}\left(\lfloor B_{F}\rfloor\right).

Perform a dlt modification g:(X~,B~)(X,B).g\colon(\widetilde{X},\widetilde{B})\rightarrow(X,B). Choose a toric structure (X~,ΔX~)(\widetilde{X},\Delta_{\widetilde{X}}) associated to (X~,B~),(\widetilde{X},\widetilde{B}), and denote by (X,ΔX)(X,\Delta_{X}) and (Y,ΔY)(Y,\Delta_{Y}) the toric structures induced by (X~,ΔX~)(\widetilde{X},\Delta_{\widetilde{X}}). Denote by U=YΔYU=Y\setminus\Delta_{Y} the open orbit in YY and by F~\widetilde{F} the general fiber of fg.f\circ g. We have a commutative diagram

F~×U\textstyle{\widetilde{F}\times U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p×U\scriptstyle{p\times U}X~\textstyle{\widetilde{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}F×U\textstyle{F\times U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}pr2\scriptstyle{pr_{2}}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Y\textstyle{Y}

in which:

  1. (1)

    all squares are Cartesian,

  2. (2)

    all morphisms are toric,

  3. (3)

    p:F~Fp\colon\widetilde{F}\rightarrow F is a projective birational toric morphism.

Write (F~,ΔF~)(\widetilde{F},\Delta_{\widetilde{F}}) and (F,ΔF)(F,\Delta_{F}) for the corresponding toric structures. Denote by D0,DnD_{0},\ldots D_{n} the components of ΔF,\Delta_{F}, with D0=BF,D_{0}=\lfloor B_{F}\rfloor, and denote by u0,,unNFu_{0},\ldots,u_{n}\in N_{F} the primitive generators of the respective rays in the fan ΣF\Sigma_{F} of F.F. Write D¯\overline{D} for the closure in XX of D0×U.D_{0}\times U.

Since the torus-invariant point corresponding to Cone(u1,,un){\rm Cone}(u_{1},\ldots,u_{n}) lies in the complement of Supp(D0),{\rm Supp}(D_{0}), it follows that this cone must be smooth. In other words, u1,,unu_{1},\ldots,u_{n} form a \mathbb{Z}-basis for NF.N_{F}. Thus, we may write u0=i=1nbiuiu_{0}=\sum_{i=1}^{n}b_{i}u_{i} for some negative integers b1,,bn.b_{1},\ldots,b_{n}. Writing c0=1c_{0}=1 and ci=bic_{i}=-b_{i} for 1in,1\leq i\leq n, we have gcd(c0,,cn)=1{\rm gcd}(c_{0},\ldots,c_{n})=1 and i=0nciui=0.\sum_{i=0}^{n}c_{i}u_{i}=0. It follows that F(c0,,cn)=(1,c1,,cn).F\cong\mathbb{P}(c_{0},\ldots,c_{n})=\mathbb{P}(1,c_{1},\ldots,c_{n}). Assume, for a contradiction, that ci=1c_{i}=1 for some 1in.1\leq i\leq n. By  [5, Proposition 4.3.3], the vector space Γ(F,𝒪F(D0))\Gamma\left(F,\mathcal{O}_{F}(D_{0})\right) can be identified with the vector space spanned by those characters mMFm\in M_{F} satisfying the inequalities

m,u01\langle m,u_{0}\rangle\geq-1

and

m,ui0\langle m,u_{i}\rangle\geq 0

for 1in.1\leq i\leq n. The character 0 clearly satisfies these inequalities, as does the character eie_{i} defined by ei,uj=δi,j\langle e_{i},u_{j}\rangle=\delta_{i,j} since

ei,u0=bi=1.\langle e_{i},u_{0}\rangle=b_{i}=-1.

It follows that Γ(F,𝒪F(D0))\Gamma\left(F,\mathcal{O}_{F}(D_{0})\right) has dimension at least two, hence that the linear system |D0||D_{0}| is positive-dimensional. Choosing a general element D0|D|D_{0}^{\prime}\in|D| and setting BF=BF+12(D0D0),B^{\prime}_{F}=B_{F}+\frac{1}{2}(D_{0}^{\prime}-D_{0}), it follows from  [14, Corollary 2.33] that we obtain a log Calabi–Yau pair (F,BF)(F,B^{\prime}_{F}) of complexity zero with BF=0.\lfloor B^{\prime}_{F}\rfloor=0. This contradicts our assumptions on F,F, so we conclude that ci2c_{i}\geq 2 for all 1in.1\leq i\leq n.

Since X~\widetilde{X} is smooth, it follows that F~\widetilde{F} must be smooth. It follows that Cone(u0,u2,,un),{\rm Cone}(u_{0},u_{2},\ldots,u_{n}), viewed as a cone in (NF~),(N_{\widetilde{F}})_{\mathbb{R}}, is a union of smooth cones in ΣF~.\Sigma_{\widetilde{F}}. Choose some cone σΣF~(n)\sigma\in\Sigma_{\widetilde{F}}^{(n)} contained in Cone(u0,u2,,un){\rm Cone}(u_{0},u_{2},\ldots,u_{n}) which is of the form Cone(u~0,u~2,,u~n){\rm Cone}(\widetilde{u}_{0},\widetilde{u}_{2},\ldots,\widetilde{u}_{n}) for u~2,,u~nCone(u2,,un).\widetilde{u}_{2},\ldots,\widetilde{u}_{n}\in{\rm Cone}(u_{2},\ldots,u_{n}). Since σ\sigma is a smooth cone, it follows that u~0,u~2,,u~n\widetilde{u}_{0},\widetilde{u}_{2},\ldots,\widetilde{u}_{n} form a \mathbb{Z}-basis for NF~.N_{\widetilde{F}}. Since u~2,,u~nCone(u2,,un),\widetilde{u}_{2},\ldots,\widetilde{u}_{n}\in{\rm Cone}(u_{2},\ldots,u_{n}), this implies that u~0=u1+i=2nbiui\widetilde{u}_{0}=-u_{1}+\sum_{i=2}^{n}b^{\prime}_{i}u_{i} for negative integers b2,,bn.b^{\prime}_{2},\ldots,b^{\prime}_{n}. Let D~0F~\widetilde{D}_{0}\subset\widetilde{F} be the divisor corresponding to u~0,\widetilde{u}_{0}, and let D^X~\widehat{D}\subset\widetilde{X} be the closure of D~0×U\widetilde{D}_{0}\times U in X~.\widetilde{X}. Note that D^\widehat{D} is a gg-exceptional divisor and hence is a log canonical place of (X,B).(X,B). Let EE be the reduced sum of all gg-exceptional divisors except D^,\widehat{D}, and run an EE-MMP over X.X. This MMP terminates with a projective birational morphism g^:X^X\widehat{g}\colon\widehat{X}\rightarrow X whose only exceptional divisor is D^.\widehat{D}. Write (X^,B^)(\widehat{X},\widehat{B}) for the pair induced from (X,B)(X,B) by log pullback and write F^\widehat{F} for the general fiber of fg^f\circ\widehat{g}. The pair (X^,B^)(\widehat{X},\widehat{B}) is a log Calabi–Yau pair of complexity zero, and the restriction of g^\widehat{g} over UU can be identified with p^×U:F^×UF×U\widehat{p}\times U\colon\widehat{F}\times U\rightarrow F\times U for a projective birational toric morphism p^:F^F\widehat{p}\colon\widehat{F}\rightarrow F whose only exceptional divisor is D~0.\widetilde{D}_{0}.

Run a (D^)(-\widehat{D})-MMP over Y.Y. Since D^\widehat{D} is horizontal over YY, it follows from Lemma  2.28 that this MMP must terminate with an extremal fibration f:XWf^{\prime}\colon X^{\prime}\rightarrow W over Y.Y. We are done if WW is of positive relative dimension over Y,Y, so assume that that WW is not of positive relative dimension over Y.Y. Since X^\widehat{X} does not contain any divisors which are degenerate over Y,Y, it follows that W=YW=Y in this case. Thus, the birational contraction X^X\widehat{X}\dashrightarrow X^{\prime} must contract a divisor. Since (X^,B^)(\widehat{X},\widehat{B}) is a log Calabi–Yau pair of complexity zero, it follows from Corollary  2.43 that the divisor contracted by this map must be a component of B^.\lfloor\widehat{B}\rfloor. Since X^\widehat{X} does not contain any divisors which are degenerate over Y,Y, the divisor contracted by this map must be horizontal over Y.Y. The only components of B^\lfloor\widehat{B}\rfloor which are horizontal over YY are D^\widehat{D} and the strict transform on X^\widehat{X} of D¯.\overline{D}. Since D^\widehat{D} cannot be contracted by a birational contraction in a (D^)(-\widehat{D})-MMP, it follows that D¯\overline{D} is contracted. By considering the restriction over UU of this relative MMP, we see that the general fiber FF^{\prime} of ff^{\prime} is the target of a birational contraction F^F\widehat{F}\dashrightarrow F^{\prime} which contracts D0.D_{0}. It follows that F(1,1,c2,,cn,)F^{\prime}\cong\mathbb{P}(1,1,c_{2}^{\prime},\ldots,c_{n}^{\prime},) where ci=bic^{\prime}_{i}=-b^{\prime}_{i} for 2in.2\leq i\leq n.

Lemma 6.5.

Let f:XYf\colon X\rightarrow Y be an extremal fibration between \mathbb{Q}-factorial projective varieties. Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. Suppose that B\lfloor B\rfloor contains at least two components which are horizontal over Y.Y. Then there exists a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(X,B)\textstyle{(X^{\prime},B^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}g\scriptstyle{g}Y\textstyle{Y}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}

satisfying

  1. (1)

    ϕ\phi is a crepant projective birational morphism extracting only log canonical places of (X,B),(X,B),

  2. (2)

    both gg and hh are fibrations.

Proof.

Write Bh\lfloor B\rfloor_{h} for the sum of the components of B\lfloor B\rfloor which are horizontal over YY. Since the morphism ff is of relative Picard rank one, it follows from our assumptions that the components of Bh\lfloor B\rfloor_{h} are linearly dependent modulo \mathbb{Q}-linear equivalence over Y.Y. Thus, we may write D1D2+fH,D_{1}\sim D_{2}+f^{*}H, where D1,D2D_{1},D_{2} are effective Cartier divisors supported on Bh\lfloor B\rfloor_{h}, not both zero and sharing no common component, and where HH is a Cartier divisor on Y.Y. We note that, by Lemma  2.28, no effective Cartier divisor supported on Bh\lfloor B\rfloor_{h} can be linearly trivial over Y.Y. It follows that both of the divisors D1,D2D_{1},D_{2} must be nonzero.

Perform a dlt modification g:(X~,B~)(X,B).g\colon(\widetilde{X},\widetilde{B})\rightarrow(X,B). It follows from Theorem  5 that (X~,B~)(\widetilde{X},\lfloor\widetilde{B}\rfloor) is log smooth. We may write gDi=D~i+D~g^{*}D_{i}=\widetilde{D}_{i}+\widetilde{D} for i=1,2,i=1,2, where D~1,D~2\widetilde{D}_{1},\widetilde{D}_{2} are effective Cartier divisors sharing no common component. These divisors D~1,D~2\widetilde{D}_{1},\widetilde{D}_{2} are supported on B~\lfloor\widetilde{B}\rfloor, and they satisfy gD~i=Dig_{*}\widetilde{D}_{i}=D_{i} for i=1,2i=1,2 and D~1D~2+(fg)H.\widetilde{D}_{1}\sim\widetilde{D}_{2}+(fg)^{*}H. For each i=1,2,i=1,2, write D~i=j=1kimijD~ij,\widetilde{D}_{i}=\sum_{j=1}^{k_{i}}m_{ij}\widetilde{D}_{ij}, where D~i1,,D~iki\widetilde{D}_{i1},\ldots,\widetilde{D}_{ik_{i}} are distinct prime divisors and mi1,,mikim_{i1},\ldots,m_{ik_{i}} are positive integers. Write

N=|{(j1,j2){1,,k1}×{1,,k2}|D~1j1D~2j2}|.N=\left\lvert\{(j_{1},j_{2})\in\{1,\ldots,k_{1}\}\times\{1,\ldots,k_{2}\}|\widetilde{D}_{1j_{1}}\cap\widetilde{D}_{2j_{2}}\neq\emptyset\}\right\rvert.

Denote by MM the largest integer such that there is a nonempty intersection D~1j1D~2j2\widetilde{D}_{1j_{1}}\cap\widetilde{D}_{2j_{2}} with M{m1j1,m2j2},M\in\{m_{1j_{1}},m_{2j_{2}}\}, setting M=0M=0 in the event that N=0.N=0. Denote by RR the number of times that MM appears as the coefficient of a divisor D~iji\widetilde{D}_{ij_{i}} participating in some nonempty intersection D~1j1D~2j2,\widetilde{D}_{1j_{1}}\cap\widetilde{D}_{2j_{2}}, setting R=0R=0 in the event that N=0.N=0. If N=0,N=0, then the divisors D~1,D~2\widetilde{D}_{1},\widetilde{D}_{2} have disjoint support. If N>0,N>0, choose some nonempty intersection D~1j1D~2j2\widetilde{D}_{1j_{1}}\cap\widetilde{D}_{2j_{2}} such that M{m1j1,m2j2}M\in\{m_{1j_{1}},m_{2j_{2}}\} and write m=min{m1j1,m2j2}.m=\min\{m_{1j_{1}},m_{2j_{2}}\}. If possible, make this choice so that m=M.m=M. Let h:X^X~h\colon\widehat{X}\rightarrow\widetilde{X} be the blow up of X~\widetilde{X} along D~1j1D~2j2,\widetilde{D}_{1j_{1}}\cap\widetilde{D}_{2j_{2}}, and denote by (X^,B^)(\widehat{X},\widehat{B}) the log pullback of (X~,B~).(\widetilde{X},\widetilde{B}). There is a unique hh-exceptional divisor E,E, which is a log canonical place of (X~,B~),(\widetilde{X},\widetilde{B}), and the pair (X^,B^)(\widehat{X},\widehat{B}) is a dlt log Calabi–Yau pair of complexity zero. Write D^i=hD~imE.\widehat{D}_{i}=h^{*}\widetilde{D}_{i}-mE. Then D^1,D^2\widehat{D}_{1},\widehat{D}_{2} are effective Cartier divisors supported on B^\lfloor\widehat{B}\rfloor, sharing no common component, which satisfy (gh)D^i=Di(gh)_{*}\widehat{D}_{i}=D_{i} for i=1,2i=1,2 and D^1D^2+(fgh)H.\widehat{D}_{1}\sim\widehat{D}_{2}+(fgh)^{*}H. Defining N^,M^,R^\widehat{N},\widehat{M},\widehat{R} for D^1,D^2\widehat{D}_{1},\widehat{D}_{2} in the same way we defined N,M,R,N,M,R, respectively, for D~1,D~2\widetilde{D}_{1},\widetilde{D}_{2} above, we note that we have (M^,R^,N^)<(M,R,N)(\widehat{M},\widehat{R},\widehat{N})<(M,R,N) when lexicographically ordered. Replacing (X~,B~),D~1,D~2(\widetilde{X},\widetilde{B}),\widetilde{D}_{1},\widetilde{D}_{2} with (X^,B^),D^1,D^2(\widehat{X},\widehat{B}),\widehat{D}_{1},\widehat{D}_{2} and continuing in this manner, we see that we may assume that D~1\widetilde{D}_{1} and D~2\widetilde{D}_{2} have disjoint support.

Using the fact that D~1\widetilde{D}_{1} and D~2\widetilde{D}_{2} have disjoint support and satisfy D~1D~2+(fg)H,\widetilde{D}_{1}\sim\widetilde{D}_{2}+(fg)^{*}H, we obtain a morphism X~(𝒪Y𝒪Y(H))\widetilde{X}\rightarrow\mathbb{P}(\mathcal{O}_{Y}\oplus\mathcal{O}_{Y}(H)) over Y.Y. The divisors D~1,D~2\widetilde{D}_{1},\widetilde{D}_{2} map to disjoint sections of (𝒪Y𝒪Y(H))Y.\mathbb{P}(\mathcal{O}_{Y}\oplus\mathcal{O}_{Y}(H))\rightarrow Y. Since both D~1\widetilde{D}_{1} and D~2\widetilde{D}_{2} dominate Y,Y, it follows that the morphism X~(𝒪Y𝒪Y(H))\widetilde{X}\rightarrow\mathbb{P}(\mathcal{O}_{Y}\oplus\mathcal{O}_{Y}(H)) must be surjective. Stein factorization then gives us the desired fibrations gg and h.h.

Lemma 6.6.

Let f:XYf\colon X\rightarrow Y be an extremal fibration between \mathbb{Q}-factorial projective varieties. Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero. Suppose that the fibers of ff are singular. Then there exists a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(X,B)\textstyle{(X^{\prime},B^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}g\scriptstyle{g}Y\textstyle{Y}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}

satisfying

  1. (1)

    ϕ\phi is a crepant birational map extracting only log canonical places of (X,B),(X,B),

  2. (2)

    both gg and hh are fibrations.

Proof.

The desired result follows immediately from Lemma  6.5 in the case that B\lfloor B\rfloor has at least two components which are horizontal over Y.Y. In what follows, we will assume that B\lfloor B\rfloor contains at most one component which is horizontal over Y.Y.

By Lemma  6.1, the general fiber FF of ff admits a log Calabi–Yau pair (F,BF)(F,B_{F}) of complexity zero with BF1.\lfloor B_{F}\rfloor\leq 1. We begin by considering the case in which this pair (F,BF)(F,B_{F}) satisfies the hypotheses of Lemma  6.2. It follows from Lemma  6.3 that there exists a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(X~,B~)\textstyle{(\widetilde{X},\widetilde{B})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}ψ\scriptstyle{\psi^{\prime}}(X,B)\textstyle{(X^{\prime},B^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}Y\textstyle{Y}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}

satisfying

  1. (1.1)

    ψ\psi is a crepant birational morphism extracting a single divisor EE, which is a log canonical place of (X,B)(X,B),

  2. (1.2)

    ψ\psi^{\prime} is a birational contraction obtained from running a (E)(-E)-MMP over Y,Y,

  3. (1.3)

    both gg and hh are fibrations.

Setting ϕ=ψ(ψ)1,\phi=\psi\circ(\psi^{\prime})^{-1}, we obtain the desired result in this case.

From now on, we assume that (F,BF)(F,B_{F}) does not satisfy the hypotheses of Lemma  6.2. We may apply Lemma  6.4 in this case to obtain a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(X,B)\textstyle{(X^{\prime},B^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{\prime}}ψ\scriptstyle{\psi}Y\textstyle{Y}

where ϕ\phi is birational and extracts only log canonical places of (X,B)(X,B) and one of the following holds:

  1. (2.1)

    XX^{\prime} admits a fibration over YY to a base of positive relative dimension over Y,Y,

  2. (2.2)

    ff^{\prime} is an extremal fibration whose fiber FF^{\prime} satisfies F(1,1,c2,,cn)F^{\prime}\cong\mathbb{P}(1,1,c^{\prime}_{2},\ldots,c^{\prime}_{n}) with 1c2cn.1\leq c^{\prime}_{2}\leq\ldots\leq c^{\prime}_{n}.

We are done in the event that (1) holds, so assume that (2) holds. In this case, it follows from Lemma  6.4 that B\lfloor B^{\prime}\rfloor has at least two components which are horizontal over YY or that FF^{\prime} admits a log Calabi–Yau pair of complexity zero satisfying the hypotheses of Lemma  6.2. By the arguments of the previous paragraphs, we obtain a commutative diagram

(X,B)\textstyle{(X^{\prime},B^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{\prime}}(X′′,B′′)\textstyle{(X^{\prime\prime},B^{\prime\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi^{\prime}}f′′\scriptstyle{f^{\prime\prime}}Y\textstyle{Y}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}

satisfying

  1. (3.1)

    ϕ\phi is a crepant birational map extracting only log canonical places of (X,B),(X^{\prime},B^{\prime}),

  2. (3.2)

    both gg and hh are fibrations.

Setting ϕ=ψψ,\phi=\psi\circ\psi^{\prime}, we obtain the desired result in this case. ∎

6.2. Projective space bundles

Lemma 6.7.

Let f:XYf\colon X\rightarrow Y be an extremal fibration between \mathbb{Q}-factorial projective varieties. Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero, and suppose that YY is smooth. Then there exists a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(X,B)\textstyle{(X^{\prime},B^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{\prime}}ϕ\scriptstyle{\phi}Y\textstyle{Y}

satisfying

  1. (1)

    ϕ\phi is a crepant birational map extracting only log canonical places of (X,B),(X,B),

  2. (2)

    ff^{\prime} is an extremal contraction which is a locally trivial fiber bundle.

Proof.

Perform a dlt modification g:(X~,B~)(X,B).g\colon(\widetilde{X},\widetilde{B})\rightarrow(X,B). Choose a toric structure (X~,ΔX~)(\widetilde{X},\Delta_{\widetilde{X}}) associated to (X~,B~),(\widetilde{X},\widetilde{B}), and let (X,Δ)(X,\Delta) and (Y,ΔY)(Y,\Delta_{Y}) be the toric structures induced on XX and Y,Y, respectively. Write NX~,NXN_{\widetilde{X}},N_{X} and NYN_{Y} for the cocharacter lattices and ΣX~,ΣX\Sigma_{\widetilde{X}},\Sigma_{X} and ΣY\Sigma_{Y} for the fans corresponding the toric structures (X~,ΔX~),(X,Δ)(\widetilde{X},\Delta_{\widetilde{X}}),(X,\Delta) and (Y,ΔY),(Y,\Delta_{Y}), respectively. It follows from Lemma  2.35 that the fan ΣX\Sigma_{X} can be expressed as a sum

ΣX=ΣX,F+ΣX,Y\Sigma_{X}=\Sigma_{X,F}+\Sigma_{X,Y}

of subfans ΣX,F,ΣX,YΣX\Sigma_{X,F},\Sigma_{X,Y}\subset\Sigma_{X}, where

  1. (1.1)

    ΣX,F\Sigma_{X,F} has support equal to Ker(f),{\rm Ker}(f_{*}),

  2. (1.2)

    ff_{*} restricts to a bijection τf(τ)\tau\xrightarrow{\cong}f_{*}(\tau) for each τΣX,Y,\tau\in\Sigma_{X,Y},

  3. (1.3)

    the assignment τf(τ)\tau\mapsto f_{*}(\tau) determines a bijection ΣX,YΣY.\Sigma_{X,Y}\xrightarrow{\cong}\Sigma_{Y}.

We begin by assuming that, for each σ~ΣX,Y(1),\widetilde{\sigma}\in\Sigma_{X,Y}^{(1)}, the primitive generator of σ~\widetilde{\sigma} is mapped by ff_{*} to the primitive generator of f(σ~).f_{*}(\widetilde{\sigma}). We will show that, in this special case, ff is already a locally trivial fiber bundle. To show this, it suffices by  [5, Theorem 3.3.19] to show that f(σ~NX)=f(σ~)NYf_{*}(\widetilde{\sigma}\cap N_{X})=f_{*}(\widetilde{\sigma})\cap N_{Y} for each σ~ΣX,Y.\widetilde{\sigma}\in\Sigma_{X,Y}. Write v~1,,v~kNX\widetilde{v}_{1},\ldots,\widetilde{v}_{k}\in N_{X} for the primitive generators of 11-dimensional faces of σ~,\widetilde{\sigma}, and write vi=f(v~i)v_{i}=f_{*}(\widetilde{v}_{i}) for each 1ik.1\leq i\leq k. It follows from our assumption that v1,,vkv_{1},\ldots,v_{k} are the primitive generators of the 11-dimensional faces of σ=f(σ~).\sigma=f_{*}(\widetilde{\sigma}). Given wσNY,w\in\sigma\cap N_{Y}, it follows from the smoothness of YY that w=i=1kaiviw=\sum_{i=1}^{k}a_{i}v_{i} for some nonnegative integers a1,,ak.a_{1},\ldots,a_{k}. We obtain a lattice vector w~=i=1kaiv~iNX\widetilde{w}=\sum_{i=1}^{k}a_{i}\widetilde{v}_{i}\in N_{X} satisfying f(w~)=w.f_{*}(\widetilde{w})=w. It follows that ff is a locally trivial fiber bundle, as claimed.

We now turn to treat the general case. Choose a cone τΣX,F\tau\in\Sigma_{X,F} of dimension r=dimKer(f)r=\dim{\rm Ker}(f_{*}). Given a ray σ~ΣX,Y(1),\widetilde{\sigma}\in\Sigma_{X,Y}^{(1)}, consider the cone τ+σ~\tau+\widetilde{\sigma} viewed as a cone in (NX~).(N_{\widetilde{X}})_{\mathbb{R}}. Since gg is a projective birational morphism, this cone is a union of cones in ΣX~.\Sigma_{\widetilde{X}}. Since (X~,B~)(\widetilde{X},\widetilde{B}) is dlt, it follows from Theorem  5 that X~\widetilde{X} is smooth. Thus, τ+σ~\tau+\widetilde{\sigma} is a union of smooth cones in ΣX~.\Sigma_{\widetilde{X}}. Choose a cone γΣX~(r+1)\gamma\in\Sigma_{\widetilde{X}}^{(r+1)} such that γτ+σ~\gamma\subset\tau+\widetilde{\sigma} and such that one of the rr-dimensional faces of γ\gamma is contained in Ker(fg).{\rm Ker}(f_{*}\circ g_{*}). Write τ^1,,τ^r\widehat{\tau}_{1},\ldots,\widehat{\tau}_{r} for the 11-dimensional faces of γ\gamma contained in Ker(fg){\rm Ker}(f_{*}\circ g_{*}) and σ^\widehat{\sigma} for the remaining 11-dimensional face of γ.\gamma. We claim that the primitive generator of σ^\widehat{\sigma} is mapped by fgf_{*}\circ g_{*} to the primitive generator of σ=f(σ~)=(fg)(σ^).\sigma=f_{*}(\widetilde{\sigma})=(f_{*}\circ g_{*})(\widehat{\sigma}). To see this, write u^1,,u^r,v^\widehat{u}_{1},\ldots,\widehat{u}_{r},\widehat{v} for the primitive generators of τ^1,,τ^r,σ^,\widehat{\tau}_{1},\ldots,\widehat{\tau}_{r},\widehat{\sigma}, respectively. Since the cone γ\gamma generated by the rays τ^1,,τ^r,σ^\widehat{\tau}_{1},\ldots,\widehat{\tau}_{r},\widehat{\sigma} is smooth, it follows that we may extend u^1,,u^r,v^\widehat{u}_{1},\ldots,\widehat{u}_{r},\widehat{v} to a \mathbb{Z}-basis for NX~,N_{\widetilde{X}}, say u^1,,u^r,v^,w^1,,w^m1.\widehat{u}_{1},\ldots,\widehat{u}_{r},\widehat{v},\widehat{w}_{1},\ldots,\widehat{w}_{m-1}. Since fg:NX~NYf_{*}\circ g_{*}\colon N_{\widetilde{X}}\rightarrow N_{Y} is surjective, u^1,,u^rKer(fg)\widehat{u}_{1},\ldots,\widehat{u}_{r}\in{\rm Ker}(f_{*}\circ g_{*}) and m=dimY,m=\dim Y, it follows that (fg)(v^),(fg)(w^1),,(fg)(w^m1)(f_{*}\circ g_{*})(\widehat{v}),(f_{*}\circ g_{*})(\widehat{w}_{1}),\ldots,(f_{*}\circ g_{*})(\widehat{w}_{m-1}) is a \mathbb{Z}-basis for NY.N_{Y}. This implies that (fg)(v^),(f_{*}\circ g_{*})(\widehat{v}), which is a positive integer multiple of the primitive generator of σ,\sigma, must be equal to the primitive generator of σ.\sigma.

Denote by EE the reduced sum of all gg-exceptional divisors on X~.\widetilde{X}. Denote by σ~1,,σ~kΣX,Y(1)\widetilde{\sigma}_{1},\ldots,\widetilde{\sigma}_{k}\in\Sigma^{(1)}_{X,Y} those rays whose primitive generator is not mapped by ff_{*} to the primitive generator of f(σ~).f_{*}(\widetilde{\sigma}). For each 1ik,1\leq i\leq k, use the arguments of the previous paragraph to choose a gg-exceptional divisor EiE_{i} whose primitive generator is mapped by fgf_{*}\circ g_{*} to the primitive generator of f(σ~i).f_{*}(\widetilde{\sigma}_{i}). Run a (Ei=1kEi)(E-\sum_{i=1}^{k}E_{i})-MMP over X.X. This MMP terminates with a projective birational morphism h:X¯Xh\colon\overline{X}\rightarrow X. The map X~X¯\widetilde{X}\dashrightarrow\overline{X} contracts each component of Ei=1kEiE-\sum_{i=1}^{k}E_{i} but contracts none of the divisors E1,,Ek.E_{1},\dots,E_{k}. For each 1ik,1\leq i\leq k, write E~i\widetilde{E}_{i} for the divisor on X¯\overline{X} corresponding to the ray σ~i.\widetilde{\sigma}_{i}. Note, for each 1ik,1\leq i\leq k, that (fh)(Ei)=(fh)(E~i)(f\circ h)(E_{i})=(f\circ h)(\widetilde{E}_{i}) and hence that the divisor E~i\widetilde{E}_{i} is degenerate over YY. Run a (i=1kE~i)(\sum_{i=1}^{k}\widetilde{E}_{i})-MMP over Y.Y. By Lemma  2.45 and the fact that X¯\overline{X} is a Mori dream space, it follows that this MMP terminates after contracting the divisors E~1,,E~k\widetilde{E}_{1},\ldots,\widetilde{E}_{k} and no others. We obtain a birational map X¯X\overline{X}\dashrightarrow X^{\prime} and an extremal fibration f:XYf^{\prime}\colon X^{\prime}\rightarrow Y.

Denote by ϕ:XX\phi\colon X^{\prime}\dashrightarrow X the inverse of the composite

X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g1\scriptstyle{g^{-1}}X~\textstyle{\widetilde{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X¯\textstyle{\overline{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X,\textstyle{X^{\prime},}

and denote by BB^{\prime} the pushforward to XX^{\prime} of B~.\widetilde{B}. Then (X,B)(X^{\prime},B^{\prime}) is a log Calabi–Yau pair of complexity zero, and ϕ:(X,B)(X,B)\phi\colon(X^{\prime},B^{\prime})\dashrightarrow(X,B) is a crepant birational map extracting only log canonical places of (X,B)(X,B). We claim that the morphism ff^{\prime} is a locally trivial fiber bundle. Let (X,ΔX)(X^{\prime},\Delta_{X^{\prime}}) be the toric structure induced from (X~,ΔX~)(\widetilde{X},\Delta_{\widetilde{X}}) by the contraction X~X.\widetilde{X}\dashrightarrow X^{\prime}. It follows from Lemma  2.35 that the corresponding fan ΣX\Sigma_{X^{\prime}} can be expressed as a sum

ΣX=ΣX,F+ΣX,Y\Sigma_{X^{\prime}}=\Sigma_{X^{\prime},F^{\prime}}+\Sigma_{X^{\prime},Y}

of subfans ΣX,F,ΣX,YΣX\Sigma_{X^{\prime},F^{\prime}},\Sigma_{X^{\prime},Y}\subset\Sigma_{X^{\prime}}, where

  1. (2.1)

    ΣX,F\Sigma_{X,F} has support equal to Ker(f),{\rm Ker}(f^{\prime}_{*}),

  2. (2.2)

    ff^{\prime}_{*} restricts to a bijection τf(τ)\tau\xrightarrow{\cong}f^{\prime}_{*}(\tau) for each τΣX,Y,\tau\in\Sigma_{X^{\prime},Y},

  3. (2.3)

    the assignment τf(τ)\tau\mapsto f^{\prime}_{*}(\tau) determines a bijection ΣX,YΣY.\Sigma_{X^{\prime},Y}\xrightarrow{\cong}\Sigma_{Y}.

It follows from the construction of XX^{\prime} that, for each ray σ~ΣX,Y(1),\widetilde{\sigma}\in\Sigma_{X^{\prime},Y}^{(1)}, the primitive generator of σ~\widetilde{\sigma} is mapped by ff^{\prime}_{*} to the primitive generator of f(σ~).f^{\prime}_{*}(\widetilde{\sigma}). It follows from the special case treated above that ff^{\prime} is a locally trivial fiber bundle, as claimed. ∎

Definition 6.8.

We say that a morphism f:XYf\colon X\rightarrow Y is a relative generalized Bott tower if it can be factored as

X=X0f0X1XmfmXm+1=Y,X=X_{0}\xrightarrow{f_{0}}X_{1}\rightarrow\ldots\rightarrow X_{m}\xrightarrow{f_{m}}X_{m+1}=Y,

where each fi:XiXi+1f_{i}\colon X_{i}\rightarrow X_{i+1} is the projective space bundle associated to a direct sum of line bundles on Xi+1.X_{i+1}.

Theorem 6.9.

Let f:XYf\colon X\rightarrow Y be a fibration between \mathbb{Q}-factorial projective varieties. Let (X,B)(X,B) be a log Calabi–Yau pair of complexity zero, and suppose that YY is smooth. Then there exists a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(X,B)\textstyle{(X^{\prime},B^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{\prime}}ϕ\scriptstyle{\phi}Y\textstyle{Y}

satisfying

  1. (1)

    ϕ\phi is a crepant birational map extracting only log canonical places of (X,B),(X,B),

  2. (2)

    ff^{\prime} is a relative generalized Bott tower.

Proof.

We begin by establishing the result in the special case that there exists no commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(Z,BZ)\textstyle{(Z,B_{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}p\scriptstyle{p}Y\textstyle{Y}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}

satisfying

  1. (1.1)

    pp is a crepant birational map extracting only log canonical places of (X,B),(X,B),

  2. (1.2)

    gg and hh are both fibrations.

We run a KXK_{X}-MMP over Y,Y, obtaining a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}p\scriptstyle{p}(Z,BZ)\textstyle{(Z,B_{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}Y\textstyle{Y}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}

where

  1. (2.1)

    pp is a crepant birational contraction map,

  2. (2.2)

    gg is a fibration.

Since

p1:(Z,BZ)(X,B)p^{-1}\colon(Z,B_{Z})\dashrightarrow(X,B)

is a crepant birational map extracting only log canonical places of (X,B),(X,B), it follows from our assumption in this special case that the morphism hh must be birational. Denote by (W,BW)(W,B_{W}) the log Calabi–Yau pair induced by (Z,BZ)(Z,B_{Z}) via the canonical bundle formula, and write BY=hBW.B_{Y}=h_{*}B_{W}. By Lemma  2.50, there is a commutative diagram

(Z,BZ)\textstyle{(Z,B_{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}(Z,BZ)\textstyle{(Z^{\prime},B_{Z^{\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi^{\prime}}g\scriptstyle{g^{\prime}}(W,BW)\textstyle{(W,B_{W})}(Y,BY)\textstyle{(Y,B_{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h1\scriptstyle{h^{-1}}

where

  1. (3.1)

    ϕ\phi^{\prime} is a crepant birational map extracting only log canonical places of (Z,BZ),(Z,B_{Z}),

  2. (3.2)

    gg^{\prime} is an extremal fibration.

By Lemma  6.7, there exists a commutative diagram

(Z,BZ)\textstyle{(Z^{\prime},B_{Z^{\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g^{\prime}}(Z′′,BZ′′)\textstyle{(Z^{\prime\prime},B_{Z^{\prime\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g′′\scriptstyle{g^{\prime\prime}}ϕ′′\scriptstyle{\phi^{\prime\prime}}Y\textstyle{Y}

satisfying

  1. (4.1)

    ϕ′′\phi^{\prime\prime} is a crepant birational map extracting only log canonical places of (Z,BZ),(Z^{\prime},B_{Z^{\prime}}),

  2. (4.2)

    g′′g^{\prime\prime} is an extremal contraction which is a locally trivial fiber bundle.

It follows from our assumption in this special case that g′′g^{\prime\prime} must have smooth fibers. Since g′′g^{\prime\prime} has relative Picard rank one, this implies that the fibers of g′′g^{\prime\prime} are isomorphic to n\mathbb{P}^{n} for n=dimZ′′dimY.n=\dim Z^{\prime\prime}-\dim Y. It now follows from Lemma  2.36 that g′′g^{\prime\prime} is a relative generalized Bott tower.

For the general case, we induct on the relative dimension of f.f. The base case dimX=dimY+1\dim X=\dim Y+1 follows immediately from the special case established above. For the inductive step, we may assume that there exists a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(Z,BZ)\textstyle{(Z,B_{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}g\scriptstyle{g}Y\textstyle{Y}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}

where

  1. (5.1)

    pp is a crepant birational map extracting only log canonical places of (X,B),(X,B),

  2. (5.2)

    gg and hh are both fibrations.

Let (W,BW)(W,B_{W}) be the pair induced by (Z,BZ)(Z,B_{Z}) via the canonical bundle formula. Then (W,BW)(W,B_{W}) is a log Calabi–Yau pair of complexity zero by Theorem  7, and it follows from the inductive hypothesis that there is a commutative diagram

(W,BW)\textstyle{(W,B_{W})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}(W,BW)\textstyle{(W^{\prime},B_{W^{\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h^{\prime}}ψ\scriptstyle{\psi}Y\textstyle{Y}

satisfying

  1. (6.1)

    ψ\psi is a crepant birational map extracting only log canonical places of (W,BW),(W,B_{W}),

  2. (6.2)

    hh^{\prime} is a relative generalized Bott tower.

In particular, WW^{\prime} is smooth. By Lemma  2.50, there is a commutative diagram

(Z,BZ)\textstyle{(Z,B_{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}(Z,BZ)\textstyle{(Z^{\prime},B_{Z^{\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi^{\prime}}g\scriptstyle{g^{\prime}}(W,BW)\textstyle{(W,B_{W})}(W,BW)\textstyle{(W^{\prime},B_{W^{\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ψ\scriptstyle{\psi}

where

  1. (7.1)

    ϕ\phi^{\prime} is a crepant birational map extracting only log canonical places of (Z,BZ),(Z,B_{Z}),

  2. (7.2)

    gg^{\prime} is a fibration.

By the inductive hypothesis, there is a commutative diagram

(Z,BZ)\textstyle{(Z^{\prime},B_{Z^{\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g^{\prime}}(Z′′,BZ′′)\textstyle{(Z^{\prime\prime},B_{Z^{\prime\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g′′\scriptstyle{g^{\prime\prime}}ϕ′′\scriptstyle{\phi^{\prime\prime}}W\textstyle{W^{\prime}}

satisfying

  1. (8.1)

    ϕ′′\phi^{\prime\prime} is a crepant birational map extracting only log canonical places of (Z,BZ),(Z^{\prime},B_{Z^{\prime}}),

  2. (8.2)

    g′′g^{\prime\prime} is a relative generalized Bott tower.

We obtain a commutative diagram

(X,B)\textstyle{(X,B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}(Z′′,BZ′′)\textstyle{(Z^{\prime\prime},B_{Z^{\prime\prime}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}hg′′\scriptstyle{h^{\prime}\circ g^{\prime\prime}}pϕϕ′′\scriptstyle{p\circ\phi^{\prime}\circ\phi^{\prime\prime}}Y.\textstyle{Y.}

By construction, the composite pϕϕ′′p\circ\phi^{\prime}\circ\phi^{\prime\prime} is a crepant birational map extracting only log canonical places of (X,B)(X,B) and hg′′h^{\prime}\circ g^{\prime\prime} is a relative generalized Bott tower. ∎

Proof of Theorem  3.

Applying  [16, Lemma 2.31] if necessary, we may assume that (X,B)(X,B) is a log Calabi–Yau pair of complexity zero and that XX is \mathbb{Q}-factorial. Now apply Theorem  6.9 to the case Y=Spec𝕂.Y=\operatorname{Spec}\mathbb{K}.

7. Examples and questions

Let L1,L2,L3,L42L_{1},L_{2},L_{3},L_{4}\subset\mathbb{P}^{2} be distinct lines passing through a common point p2,p\in\mathbb{P}^{2}, and let L5,L62L_{5},L_{6}\subset\mathbb{P}^{2} be two general lines. Write B=12i=16Li.B=\frac{1}{2}\sum_{i=1}^{6}L_{i}. Then (2,B)(\mathbb{P}^{2},B) is a log Calabi–Yau pair of complexity zero. We will make use of this pair in Examples  7.17.3.

Example 7.1.

In this example, we show that λ1\lambda_{1} and λ2\lambda_{2} need not be equal. Consider the log Calabi–Yau pair (2,B)(\mathbb{P}^{2},B) as above, and consider Δ=L4+L5+L6.\Delta=L_{4}+L_{5}+L_{6}. Then Δ𝒜(2,B).\Delta\in\mathcal{A}(\mathbb{P}^{2},B). It is clear that λ1(2,B;Δ)=12.\lambda_{1}(\mathbb{P}^{2},B;\Delta)=\frac{1}{2}. We claim, however, that λ2(2,B;Δ)=0.\lambda_{2}(\mathbb{P}^{2},B;\Delta)=0. Indeed, given λ[0,12]\lambda\in\left[0,\frac{1}{2}\right] we have that the multiplicity of BλΔ1λ\frac{B-\lambda\Delta}{1-\lambda} at the point pp is 1+11λ.1+\frac{1}{1-\lambda}. This multiplicity cannot exceed 22 if (2,BλΔ1λ)\left(\mathbb{P}^{2},\frac{B-\lambda\Delta}{1-\lambda}\right) is to be log canonical, so it follows that we must have λ=0.\lambda=0.

Example 7.2.

In this example, we show that not all associated pairs can participate in toric boundary arrangements. Consider the log Calabi–Yau pair (2,B)(\mathbb{P}^{2},B) as above, and consider Δ=L4+L5+L6.\Delta=L_{4}+L_{5}+L_{6}. Then Δ𝒜(2,B).\Delta\in\mathcal{A}(\mathbb{P}^{2},B). Suppose that B=i=1rbiΔi,B=\sum_{i=1}^{r}b_{i}\Delta_{i}, where b1,,br[0,1]b_{1},\ldots,b_{r}\in[0,1] are rational numbers with sum i=1rbi=1,\sum_{i=1}^{r}b_{i}=1, Δ1,,Δr𝒜(2,B)\Delta_{1},\ldots,\Delta_{r}\in\mathcal{A}(\mathbb{P}^{2},B) are distinct, and Δ1=Δ.\Delta_{1}=\Delta. Note that we must have b112.b_{1}\leq\frac{1}{2}. It follows that

B=Bb1Δ1b1=i=2rbi1b1ΔiB^{\prime}=\frac{B-b_{1}\Delta}{1-b_{1}}=\sum_{i=2}^{r}\frac{b_{i}}{1-b_{1}}\Delta_{i}

is such that (2,B)(\mathbb{P}^{2},B^{\prime}) is log canonical. The computations of Example  7.1 show that we must have b1=0.b_{1}=0.

Example 7.3.

In this example, we show that a log canonical center of a log Calabi–Yau pair of complexity zero need not be a toric stratum of each associated divisor. Consider the log Calabi–Yau pair (2,B)(\mathbb{P}^{2},B) as above, and consider Δ=L4+L5+L6.\Delta=L_{4}+L_{5}+L_{6}. Then Δ𝒜(2,B).\Delta\in\mathcal{A}(\mathbb{P}^{2},B). On the one hand, the point pp is a log canonical center of (2,B)(\mathbb{P}^{2},B) since the divisor BB has multiplicity 22 at p.p. On the other hand, the point pp is not a log canonical center of (2,Δ)(\mathbb{P}^{2},\Delta) since Δ\Delta only has multiplicity 11 at p.p. In particular, pp cannot be a toric stratum of (2,Δ).(\mathbb{P}^{2},\Delta).

Fix a dimension n2n\geq 2 and an index m3.m\geq 3. Mauri and Moraga show in  [16, Theorem 1.6] that every nn-dimensional log Calabi–Yau pair of index one and birational complexity zero is crepant to a log Calabi–Yau of complexity zero supported on n.\mathbb{P}^{n}. In the following example, we show that there is no finite set X1,,XrX_{1},\ldots,X_{r} of nn-folds with the property that if (X,B)(X,B) is a log Calabi–Yau nn-fold of index mm and birational complexity zero then there is an index 1ir1\leq i\leq r and a log Calabi–Yau pair (Xi,BXi)(X_{i},B_{X_{i}}) of complexity zero crepant to (X,B).(X,B).

Example 7.4.

Fix integers d1,n2d\geq 1,n\geq 2 and m3.m\geq 3. Denote by X=(𝒪n1𝒪n1(d))X=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{n-1}}\oplus\mathcal{O}_{\mathbb{P}^{n-1}}(d)\right) and by π:Xn1\pi\colon X\rightarrow\mathbb{P}^{n-1} the projection. Denote by SS the section corresponding to the surjection 𝒪n1𝒪n1(d)𝒪n1\mathcal{O}_{\mathbb{P}^{n-1}}\oplus\mathcal{O}_{\mathbb{P}^{n-1}}(d)\rightarrow\mathcal{O}_{\mathbb{P}^{n-1}} and by TT the section corresponding to 𝒪n1𝒪n1(d)𝒪n1(d)\mathcal{O}_{\mathbb{P}^{n-1}}\oplus\mathcal{O}_{\mathbb{P}^{n-1}}(d)\rightarrow\mathcal{O}_{\mathbb{P}^{n-1}}(d). Then SS has normal bundle 𝒪n1(d)\mathcal{O}_{\mathbb{P}^{n-1}}(-d) and TT has normal bundle 𝒪n1(d).\mathcal{O}_{\mathbb{P}^{n-1}}(d). Since TT is a nef divisor on the smooth toric variety XX, it follows that the linear system |T||T| is basepoint-free.

Let HH be the reduced sum of mnmn general hyperplanes in n1,\mathbb{P}^{n-1}, and let T1,,Tm|T|T_{1},\ldots,T_{m}\in|T| be mm general sections. Define B=S+1m(i=1mTi+πH).B=S+\frac{1}{m}(\sum_{i=1}^{m}T_{i}+\pi^{*}H). Then BB is a divisor whose support has simple normal crossings, and (X,B)(X,B) is a log Calabi–Yau pair of index mm and complexity zero. It follows from  [14, Corollary 2.31] that the pair (X,B)(X,B) is terminal away from S.S.

Suppose ϕ:(X,B)(Y,BY)\phi\colon(X,B)\dashrightarrow(Y,B_{Y}) is a crepant birational map, with (Y,BY)(Y,B_{Y}) another log Calabi–Yau pair of complexity zero. There exists a commutative diagram

X~\textstyle{\widetilde{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}ψ\scriptstyle{\psi}Y~\textstyle{\widetilde{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ\scriptstyle{\phi}Y\textstyle{Y}

satisfying:

  1. (1)

    X~\widetilde{X} and Y~\widetilde{Y} are \mathbb{Q}-factorial,

  2. (2)

    ψ\psi is an isomorphism in codimension one,

  3. (3)

    ff is a projective birational morphism extracting only ϕ1\phi^{-1}-exceptional divisors,

  4. (4)

    gg is a projective birational morphism extracting only ϕ\phi-exceptional divisors.

It follows from the crepancy of ϕ\phi and the effectivity of BYB_{Y} that every divisor extracted by ff has nonpositive discrepancy with respect to (X,B).(X,B). Every such divisor must have its center on XX contained in S.S. The exceptional locus of ff is purely divisorial since XX is smooth, so it follows that ff is an isomorphism above XS.X\setminus S.

Since ψ\psi is an isomorphism in codimension one, there are closed subsets ZX~Z\subset\widetilde{X} and WY~W\subset\widetilde{Y} of codimension at least two such that ψ\psi restricts to an isomorphism X~ZY~W.\widetilde{X}\setminus Z\xrightarrow{\cong}\widetilde{Y}\setminus W. Choose a divisor T|T|T^{\prime}\in|T| whose preimage on X~\widetilde{X} contains no irreducible component of ZZ. Denote by TX~,TY~T^{\prime}_{\widetilde{X}},T^{\prime}_{\widetilde{Y}} and TYT^{\prime}_{Y} the strict transforms of TT^{\prime} on X~,Y~\widetilde{X},\widetilde{Y} and Y,Y, respectively. Define B=B+T1mi=1mTiB^{\prime}=B+T^{\prime}-\frac{1}{m}\sum_{i=1}^{m}T_{i} and BY=BY+TY1mi=1mϕTi,B_{Y}^{\prime}=B_{Y}+T^{\prime}_{Y}-\frac{1}{m}\sum_{i=1}^{m}\phi_{*}T_{i}, and note that (X,B)(X,B^{\prime}) and (Y,BY)(Y,B_{Y}^{\prime}) are log Calabi–Yau pairs of complexity zero which are crepant via ϕ.\phi.

The variety Tn1T^{\prime}\cong\mathbb{P}^{n-1} is a smooth variety of Picard rank one, and the pair (T.BT)(T^{\prime}.B_{T^{\prime}}) induced on TT^{\prime} by (X,B)(X,B^{\prime}) via adjunction is a terminal log Calabi–Yau pair. It follows that every crepant birational equivalence (T,BT)bir(V,BV)(T^{\prime},B_{T^{\prime}})\simeq_{\rm bir}(V,B_{V}) with BVB_{V} effective is induced by an isomorphism TVT^{\prime}\cong V of underlying varieties. In particular, the birational maps in the commutative diagram above induce isomorphisms between T,TX~,TY~T^{\prime},T^{\prime}_{\widetilde{X}},T^{\prime}_{\widetilde{Y}} and TY.T^{\prime}_{Y}. Note that it follows from this that TY~WT^{\prime}_{\widetilde{Y}}\cap W has codimension at least two in TY~.T^{\prime}_{\widetilde{Y}}.

Since ff restricts to an isomorphism between neighborhoods of TT^{\prime} and TX~T^{\prime}_{\widetilde{X}}, it follows that the normal bundle to TX~T^{\prime}_{\widetilde{X}} in X~\widetilde{X} is isomorphic to 𝒪n1(d).\mathcal{O}_{\mathbb{P}^{n-1}}(d). Since Z,TX~Z,WZ,T^{\prime}_{\widetilde{X}}\cap Z,W and TY~WT^{\prime}_{\widetilde{Y}}\cap W have codimension at least two in X~,TX~,Y~\widetilde{X},T^{\prime}_{\widetilde{X}},\widetilde{Y} and TY~T^{\prime}_{\widetilde{Y}}, respectively, it follows that the normal bundle to TX~T^{\prime}_{\widetilde{X}} in X~\widetilde{X} is isomorphic to 𝒪n1(d)\mathcal{O}_{\mathbb{P}^{n-1}}(d) as well. Since TYT^{\prime}_{Y} is the image of TY~T^{\prime}_{\widetilde{Y}} under a morphism, it now follows that the normal bundle to TYT^{\prime}_{Y} in YY is isomorphic to 𝒪n1(d+e)\mathcal{O}_{\mathbb{P}^{n-1}}(d+e) for some e0.e\geq 0.

We have just shown, for any choice of integers d1,n2d\geq 1,n\geq 2 and m3,m\geq 3, that if the pair (X,B)(X,B) is crepant to a log Calabi–Yau pair (Y,BY)(Y,B_{Y}) of complexity zero then any toric log Calabi–Yau pair (Y,Δ)(Y,\Delta) has a torus-invariant divisor DΔD\subset\Delta satisfying Dn1D\cong\mathbb{P}^{n-1} and DCdD\cdot C\geq d for all curves CD.C\subset D. So suppose that X1,,XrX_{1},\ldots,X_{r} is some finite set of nn-folds which support log Calabi–Yau pairs of index mm and complexity zero. Given a toric log Calabi–Yau pair (Xi,Δ)(X_{i},\Delta) supported on one of these XiX_{i} and an irreducible component DΔi,D\subset\Delta_{i}, write

dD=inf{DCCD a curve}.d_{D}=\inf\{D\cdot C\mid C\subset D\text{ a curve}\}.

Then write

dmax=maxD{dD}.d_{\rm max}=\max_{D}\{d_{D}\}.

Since we are considering only finitely many varieties X1,,Xr,X_{1},\ldots,X_{r}, it follows from Lemma  2.37 that this maximum exists and is finite. Choosing d>dmax,d>d_{\rm max}, we see that (X,B)(X,B) cannot be crepant to any log Calabi–Yau pair of complexity zero supported on a variety among X1,,Xr.X_{1},\ldots,X_{r}.

Example  7.4 shows that one needs to consider infinitely many distinct generalized Bott towers in each dimension in order to account for all crepant birational equivalence classes of log Calabi–Yau pairs of complexity zero. However, it remains unclear precisely which generalized Bott towers are needed.

Question 7.5.

Fix a positive integer n2.n\geq 2. Can one provide a description of a set 𝒮n\mathcal{S}_{n} of generalized Bott towers with the property that for each log Calabi–Yau nn-fold (X,B)(X,B) of birational complexity zero, there is exactly one Y𝒮nY\in\mathcal{S}_{n} supporting a log Calabi–Yau pair (Y,BY)(Y,B_{Y}) of complexity zero crepant to XX?

References

  • [1] C. Birkar and Y. Chen. Singularities on toric fibrations. Mat. Sb., 212(3):20–38, 2021. doi:10.4213/sm9446.
  • [2] M. Brion. Notes on automorphism groups of projective varieties. In Lecture Notes. Summer school and Workshop on Varieties and Group Actions, Warsaw, 2018.
  • [3] M. V. Brown, J. McKernan, R. Svaldi, and H. R. Zong. A geometric characterization of toric varieties. Duke Math. J., 167(5):923–968, 2018. doi:10.1215/00127094-2017-0047.
  • [4] D. A. Cox. Erratum to ”the homogeneous coordinate ring of a toric variety”, along with the original paper, 2014, alg-geom/9210008.
  • [5] D. A. Cox, J. B. Little, and H. K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011. doi:10.1090/gsm/124.
  • [6] O. Debarre. Higher-dimensional algebraic geometry. Universitext. Springer-Verlag, New York, 2001. doi:10.1007/978-1-4757-5406-3.
  • [7] O. Fujino and Y. Gongyo. Log pluricanonical representations and the abundance conjecture. Compos. Math., 150(4):593–620, 2014. doi:10.1112/S0010437X13007495.
  • [8] O. Fujino and Y. Gongyo. On the moduli b-divisors of lc-trivial fibrations. Ann. Inst. Fourier (Grenoble), 64(4):1721–1735, 2014. doi:10.5802/aif.2894.
  • [9] R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.
  • [10] F. Hu. The dimension of automorphism groups of algebraic varieties with pseudo-effective log canonical divisors. Proc. Amer. Math. Soc., 146(5):1879–1893, 2018. doi:10.1090/proc/13893.
  • [11] Y. Hu and S. Keel. Mori dream spaces and GIT. Michigan Math. J., 48:331–348, 2000. doi:10.1307/mmj/1030132722.
  • [12] S. L. Kleiman. Toward a numerical theory of ampleness. Ann. of Math. (2), 84:293–344, 1966. doi:10.2307/1970447.
  • [13] J. Kollár. Singularities of the minimal model program, volume 200 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2013. doi:10.1017/CBO9781139547895. With a collaboration of Sándor Kovács.
  • [14] J. Kollár and S. Mori. Birational Geometry of Algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. doi:10.1017/CBO9780511662560. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
  • [15] C.-J. Lai. Varieties fibered by good minimal models. Math. Ann., 350(3):533–547, 2011. doi:10.1007/s00208-010-0574-7.
  • [16] M. Mauri and J. Moraga. Birational complexity and dual complexes, 2024, arXiv:2402.10136.
  • [17] J. S. Milne. Algebraic groups, volume 170 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017. doi:10.1017/9781316711736.
  • [18] J. Moraga. Extracting non-canonical places. Adv. Math., 375:107415, 12, 2020. doi:10.1016/j.aim.2020.107415.
  • [19] M. Reid. Decomposition of toric morphisms. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pages 395–418. Birkhäuser Boston, Boston, MA, 1983.
  • [20] H. Tanaka. Kawamata-Viehweg vanishing for toric varieties, 2023, 2208.09680. URL https://arxiv.org/abs/2208.09680.