This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Localization of the Kobayashi metric and applications

Jinsong Liu 1,2&\& Hongyu Wang 1,2 1.1. HLM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China 2.2. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China [email protected],   [email protected]
Abstract.

In this paper we introduce a new class of domains — log-type convex domains, which have no boundary regularity assumptions. Then we will localize the Kobayashi metric in log-type convex subdomains. As an application, we prove a local version of continuous extension of rough isometric maps between two bounded domains with log-type convex Dini-smooth boundary points. Moreover we prove that the Teichmüller space 𝒯g,n\mathcal{T}_{g,n} is not biholomorphic to any bounded pseudoconvex domain in 3g3+n\mathbb{C}^{3g-3+n} which is locally log-type convex near some boundary point.

The first author is supported by NSF of China No.11925107, No.11671057 and No.11688101.

1. Introduction

In the complex plane \mathbb{C}, if domains Ω1\Omega_{1} and Ω2\Omega_{2} are bounded by closed Jordan curves, then every biholomorphic map f:Ω1Ω2f:\Omega_{1}\rightarrow\Omega_{2} extends to a homeomorphism of D¯1\overline{D}_{1} onto D¯2\overline{D}_{2}. In n(n2)\mathbb{C}^{n}(n\geq 2) the problem is more interesting and difficult. If Ω1,Ω2\Omega_{1},\>\Omega_{2} are bounded pseudoconvex domains with

1CδΩ11ν1(z)δΩ2(f(z))CδΩ1ν1(z),zΩ1,\frac{1}{C}\delta_{\Omega_{1}}^{\frac{1}{\nu_{1}}}(z)\leq\delta_{\Omega_{2}}(f(z))\leq C\delta_{\Omega_{1}}^{\nu_{1}}(z),\>\>\>\forall z\in\Omega_{1},

and the Kobayashi metric satisfies

kΩ2(ω,v)C|v|δΩ2(ω)ν2,ωΩ2,vn,k_{\Omega_{2}}(\omega,v)\geq\frac{C|v|}{{\delta_{\Omega_{2}}(\omega)}^{\nu_{2}}},\>\>\>\>\forall\omega\in\Omega_{2},\>\>v\in\mathbb{C}^{n},

for some ν1,ν2,C>0\nu_{1},\>\nu_{2},\>C>0, where δΩi(z):=inf{|wz|,wΩi},i=1,2\delta_{\Omega_{i}}(z):=\inf\{|w-z|,w\in\partial\Omega_{i}\},\>i=1,2, then the proper holomorphic map f:Ω1Ω2f:\Omega_{1}\rightarrow\Omega_{2} extends to a Hölder continuous map of Ω¯1\overline{\Omega}_{1}. This result holds in particular if Ωi\Omega_{i} are strictly pseudoconvex domains and more generally pseudoconvex domains with finite type. There are many other generalizations, and we refer the reader to the survey [7] by F. Forstneric̆.

In [8], F. Forstneric̆ and J. P. Rosay firstly proved a local version of the continuous extension. If f:Ω1Ω2f:\Omega_{1}\rightarrow\Omega_{2} is a proper holomorphic map, ξΩ1\xi\in\partial\Omega_{1} and w0Ω2w_{0}\in\partial\Omega_{2} are C2C^{2} strictly pseudoconvex points and w0C(f,ξ)w_{0}\in C(f,\xi) (i.e. the cluster set of all limit points of ff as points in Ω1\Omega_{1} approach to ξΩ1\xi\in\partial\Omega_{1}), then ff extends to ξ\xi continuously. After that, A. B. Sukhov generalized the local result to the case of finite type in [20].

One of the goals of this article is to provide a local version of the latter extension results along the lines of the work described in the previous paragraph. For this, we need a localization theorem for the Kobayashi metric in the style of Forstneric̆-Rosay [8] (also see [23, 24] by Zimmer). It turns out that there is a natural class of bounded domains, which admits (in contrast to the domains in the latter results) domains with non-smooth boundary, as well as domains with boundary points of infinite type, for which such a localization theorem can be given. It is for these considerations that we focus on domains that are locally log-type convex.


At first we give the definition of log-type convex domains.

Definition 1.1.

A bounded convex domain Ωn,n2\Omega\subset\mathbb{C}^{n},\>n\geq 2, is called log-type convex if

(1) δΩ(z;v)C|logδΩ(z)|1+ν,zΩ,vn\displaystyle\delta_{\Omega}(z;v)\leq\frac{C}{|\log\delta_{\Omega}(z)|^{1+\nu}},\>\>\>z\in\Omega,\>v\in\mathbb{C}^{n}

for some ν,C>0\nu,\>C>0. See Section 2 for the definitions of δΩ(z)\delta_{\Omega}(z) and δΩ(z;v)\delta_{\Omega}(z;v).

Remark 1.2.

In [14], P. R. Mercer firstly introduced ’mm-convex’ domains. A bounded convex domain is called mm-convex if there exists C>0C>0 such that δΩ(z;v)CδΩ1m(z)\delta_{\Omega}(z;v)\leq C\delta_{\Omega}^{\frac{1}{m}}(z) for any zΩ,vnz\in\Omega,v\in\mathbb{C}^{n}.

Example 1.3.

Ω={(z1,z2)2:Rez1>e1|z2|2}\Omega=\{(z_{1},z_{2})\in\mathbb{C}^{2}:Rez_{1}>e^{-\frac{1}{|z_{2}|^{2}}}\}, then ΩB1(0)\Omega\cap B_{1}(0) is log-type convex.

Note that in this definition there is no boundary regularity assumptions. In [3] G. Bharali proved the (global) continuous extension problem of the log-type convex domain with C1C^{1} smooth boundary. Then in [5], G. Bharali and A. Zimmer introduced a class of pseudoconvex domains named ’Goldilocks’ domains, and proved a lot of properties of such domains. In particular, each global log-type convex domain is a ’Goldilocks’ domain.

However, in this paper we are interested in results that follow from the local properties of the boundary of the domain considered. Now, a localized version of the ’Goldilocks’ property is hard to formulate in a way that is useful. But we noticed that the property that Bharali-Zimmer have used often in the proofs in [5], viz. a form of visibility, does admit a localized form (in this regard, see [4] by Bharali-Maitra whose proofs rely purely on the latter visibility property). It turns out that domains that are locally log-type convex exhibit the localized property of visibility - which will be very useful. Thus, we introduce the locally log-type convex domains. If Ωn\Omega\subset\mathbb{C}^{n} is a bounded domain, Ω\Omega is locally log-type convex if Ω\Omega is log-type convex around some boundary point: i.e. there exists a connected open set UU with ΩU\Omega\cap\partial U\neq\emptyset such that ΩU\Omega\cap U is log-type convex.

We will follow the method of F. Forstneric̆-J. P. Rosay [8] and A. Zimmer [23] to generalize the local version of continous extensions. Firstly we prove a localization result near those log-type convex points.

Theorem 1.4.

Let Ω\Omega be a bounded domain in n\mathbb{C}^{n}. Suppose that there exists a connected open set UU with ΩU\Omega\cap\partial U\neq\emptyset and ΩU\Omega\cap U is log-type convex. For any open set VUV\subset U with V¯U\overline{V}\subset U, there exists K>0K>0 such that the Kobayashi distances satisfies

KΩ(p,q)KΩU(p,q)KΩ(p,q)+K,K_{\Omega}(p,q)\leq K_{\Omega\cap U}(p,q)\leq K_{\Omega}(p,q)+K,

for any p,qVΩp,\>q\in V\cap\Omega.

We can define, in analogy with Definition 1.1, log-type \mathbb{C}-convex domains. We refer the reader to Section 3 for a formal definition, and present the following corollary to Theorem 1.4.

Corollary 1.5.

Suppose that Ω1,Ω2\Omega_{1},\>\Omega_{2} are bounded domains in n\mathbb{C}^{n} and ff is a roughly isometric embedding from Ω1\Omega_{1} to Ω2\Omega_{2}. Furthermore, suppose that Ω1U1\Omega_{1}\cap U_{1} is a log-type convex domain with Dini-smooth boundary, and Ω2U2\Omega_{2}\cap U_{2} is a log-type \mathbb{C}-convex domain with Dini-smooth boundary, where Uin,UiΩi,i=1,2U_{i}\subset\mathbb{C}^{n},\>\>U_{i}\cap\partial\Omega_{i}\neq\emptyset,\>\>i=1,2.

If ξΩ1U1\xi\in\partial\Omega_{1}\cap U_{1}, ζΩ2U2\zeta\in\partial\Omega_{2}\cap U_{2} and ζ𝒞(f,ξ)\zeta\in\mathcal{C}(f,\xi), then ff extends continuously to ξ\xi.


Another application is on the local boundary property of domains biholomorphic to the Teichmüller space.

Let SS be a surface of finite type (g,n)(g,n), i.e., an oriented finite genus surface with nn punctures. The Teichmüller space 𝒯g,n\mathcal{T}_{g,n} is the set of marked complex structures on SS. L. Ahlfors, D. Spencer, K. Kodaira. L. Bers proved that there is a natural complex structure on 𝒯g,n\mathcal{T}_{g,n}. Furthermore, Bers proved that 𝒯g,n\mathcal{T}_{g,n} is biholomorphic to a bounded pseudoconvex domain in 3g3+n\mathbb{C}^{3g-3+n}. However, it is not explicit and not known how smooth the boundary of 𝒯g,n\mathcal{T}_{g,n} is.

Recently, V. Markovic proved in [13] that the Kobayashi metric and the Caratheodory metric is not identical on 𝒯g,n\mathcal{T}_{g,n}. Combining with a result of L. Lempert [12], he proved that the Teichmüller space 𝒯g,n\mathcal{T}_{g,n} is not biholomorphic to a bounded convex domain in 3g3+n\mathbb{C}^{3g-3+n}. Moreover, by using the deep result of the ergodicity of the Teichmüller geodesic flow, S. Gupta and H. Seshadri proved in [19] that 𝒯g,n\mathcal{T}_{g,n} cannot be biholomorphic to a bounded domain Ω3g3+n\Omega\subset\mathbb{C}^{3g-3+n} which is locally strictly convex at some boundary point.

We prove another result about Teichmüller space without using the ergodicity of the Teichmüller geodesic flow. The technique of the proof mainly comes from A. Zimmer [25].

Theorem 1.6.

The Teichmüller space 𝒯g,n\mathcal{T}_{g,n} cannot be biholomorphic to a bounded pseudo-convex domain Ω3g3+n\Omega\subset\mathbb{C}^{3g-3+n} which is locally log-type convex at some boundary point.

2. Preliminaries

2.1. Notations

(1)  For znz\in\mathbb{C}^{n} let |z||z| be the standard Euclidean norm and deuc(z1,z2)=|z1z2|d_{euc}(z_{1},z_{2})=|z_{1}-z_{2}| be the standard Euclidean distance.

(2)  Given an open set Ωn,xΩ\Omega\subset\mathbb{C}^{n},\>x\in\Omega and vn\{0}v\in\mathbb{C}^{n}\backslash\{0\}, let

δΩ(x)=inf{deuc(x,ξ):ξΩ}\delta_{\Omega}(x)=\inf\{d_{euc}(x,\xi):\xi\in\partial\Omega\}

as before, and let

δΩ(x,v)=inf{deuc(x,ξ):ξΩ(x+v)}.\delta_{\Omega}(x,v)=\inf\{d_{euc}(x,\xi):\xi\in\partial\Omega\cap(x+\mathbb{C}v)\}.

(3)  For any curve σ\sigma we denote by L(σ)L(\sigma) the length of σ\sigma.

(4)  For any z0nz_{0}\in\mathbb{C}^{n} and ϵ>0\epsilon>0, we denote by Bϵ(z0)B_{\epsilon}(z_{0}) the open ball Bϵ(z0)={zn||zz0|<ϵ}B_{\epsilon}(z_{0})=\{z\in\mathbb{C}^{n}|\>|z-z_{0}|<\epsilon\}.

2.2. The Kobayashi metric

Given a domain Ωn\Omega\subset\mathbb{C}^{n}, the (infinitesimal) Kobayashi metric is the pseudo-Finsler metric defined by

kΩ(x;v)=inf{|ξ|:fHol(𝔻,Ω),f(0)=x,d(f)0(ξ)=v}.k_{\Omega}(x;v)=\inf\left\{|\xi|:f\in\operatorname{Hol}(\mathbb{D},\Omega),\>f(0)=x,d(f)_{0}(\xi)=v\right\}.

Define the length of any curve σ:[a,b]Ω\sigma:[a,b]\rightarrow\Omega to be

L(σ)=abkΩ(σ(t);σ(t))𝑑t.L(\sigma)=\int_{a}^{b}k_{\Omega}\left(\sigma(t);\sigma^{\prime}(t)\right)dt.

S. Venturini [21] proved that the Kobayashi pseudo-distance can be given by

KΩ(x,y)\displaystyle K_{\Omega}(x,y) =infσ{L(σ)|σ:[a,b]Ω is any absolutely continuous curve\displaystyle=\inf_{\sigma}\big{\{}L(\sigma)|\>\sigma:[a,b]\rightarrow\Omega\text{ is any absolutely continuous curve }
with σ(a)=x and σ(b)=y}.\displaystyle\text{ with }\sigma(a)=x\text{ and }\sigma(b)=y\big{\}}.

Its proof is based on an observation due to H. L. Royden [18].

There are well known estimates on the Kobayashi metrics on convex domains.

Proposition 2.1.

Suppose that Ωn\Omega\subset\mathbb{C}^{n} is an bounded convex domain. Then, for any x,yΩ,vnx,\>y\in\Omega,\>v\in\mathbb{C}^{n},

(2) |v|2δΩ(x;v)kΩ(x;v)|v|δΩ(x;v),\displaystyle\frac{|v|}{2\delta_{\Omega}(x;v)}\leq k_{\Omega}(x;v)\leq\frac{|v|}{\delta_{\Omega}(x;v)},
(3) KΩ(x,y)12log(|xξ||yξ|),\displaystyle K_{\Omega}(x,y)\geq\frac{1}{2}\log\left(\frac{|x-\xi|}{|y-\xi|}\right),

where ξΩ{x+(xy)}\xi\in\partial\Omega\cap\{x+(x-y)\cdot\mathbb{C}\}.

Proposition 2.2 (Proposition 2.3, [14]).

Suppose that Ωn\Omega\subset\mathbb{C}^{n} is a bounded convex domain and fix z0Ωz_{0}\in\Omega. Then there exists α,β>0\alpha,\beta>0 such that: zΩ\forall z\in\Omega,

(4) KΩ(z,z0)α+βlog1δΩ(z).\displaystyle K_{\Omega}(z,z_{0})\leq\alpha+\beta\log\frac{1}{\delta_{\Omega}(z)}.

2.3. Almost geodesics

Definition 2.3.

Suppose Ω\Omega is a bounded domain. If II\subset\mathbb{R} is an interval, a map σ:IΩ\sigma:I\rightarrow\Omega is called a geodesic if, for all s,tIs,t\in I,

KΩ(σ(s),σ(t))=|ts|.K_{\Omega}(\sigma(s),\sigma(t))=|t-s|.

And σ\sigma is called a rough geodesic if there exists C>0C>0 such that

|ts|CKΩ(σ(s),σ(t))|ts|+C.|t-s|-C\leq K_{\Omega}(\sigma(s),\sigma(t))\leq|t-s|+C.

For λ1\lambda\geq 1 and κ0\kappa\geq 0, a curve σ:IΩ\sigma:I\rightarrow\Omega is called an (λ,κ)(\lambda,\kappa) -almost-geodesic if:

(1) for all s,tIs,t\in I

1λ|ts|κKΩ(σ(s),σ(t))λ|ts|+κ;\frac{1}{\lambda}|t-s|-\kappa\leq K_{\Omega}(\sigma(s),\sigma(t))\leq\lambda|t-s|+\kappa;

(2) σ\sigma is absolutely continuous (whence σ(t)\sigma^{\prime}(t) exists for almost every tI),t\in I), and for almost every tIt\in I,

kΩ(σ(t);σ(t))λ.k_{\Omega}\left(\sigma(t);\sigma^{\prime}(t)\right)\leq\lambda.

In order to give a local estimate of the Kobayashi distance, we need the properties of geodesics. However, for a general bounded domain (Ω,KΩ)(\Omega,K_{\Omega}), it may not be Cauchy complete. Furthermore, it’s not clear whether there is a geodesic between any two points. Fortunately, G. Bharali and A. Zimmer [5] proved that there is a (1,κ)(1,\kappa)-almost geodesic between any two points in a bounded domain.

Lemma 2.4.

Suppose that Ωn\Omega\subset\mathbb{C}^{n} is a bounded domain. For any κ>0\kappa>0 and x,yΩx,y\in\Omega, there exists a (1,κ)(1,\kappa)-almost geodesic σ:[a,b]Ω\sigma:[a,b]\rightarrow\Omega with σ(a)=x\sigma(a)=x and σ(b)=y\sigma(b)=y.

2.4. Gromov Product

Definition 2.5.

Let (X,d)(X,d) be a metric space. Given three points x,y,ox,y,o\in X,X, the Gromov product is given by

(x|y)o=12(d(x,o)+d(o,y)d(x,y)).(x|y)_{o}=\frac{1}{2}\Big{(}d(x,o)+d(o,y)-d(x,y)\Big{)}.

A proper geodesic metric space (X,d)(X,d) is Gromov hyperbolic if and only if there exists δ0\delta\geq 0 such that, for all o,x,y,zXo,x,y,z\in X,

(x|y)omin{(x|z)o,(z|y)o}δ.(x|y)_{o}\geq\min\left\{(x|z)_{o},(z|y)_{o}\right\}-\delta.
Remark 2.6.

In [2], Z. Balogh and M. Bonk proved those strongly pseudoconvex domains with the Kobayashi metric are Gromov hyperbolic. Later A. Zimmer [23] proved that smooth convex domains with the Kobayashi metrics are Gromov hyperbolic if and only if they are of finite type. Furthermore, he got some other results about Gromov product in [24].

Theorem 2.7 (Thereom 4.1 in [24]).

Let Ωn\Omega\subset\mathbb{C}^{n} be a bounded convex domain with C1,ϵC^{1,\epsilon} boundary and oΩo\in\Omega. Suppose {zk},{wm}\{z_{k}\},\{w_{m}\} are sequences in Ω\Omega such that zkxΩz_{k}\rightarrow x\in\partial\Omega and wmyΩ.w_{m}\rightarrow y\in\partial\Omega. Then:

(1) If x=y,x=y, then the Gromov product

limk,m(zk|wm)o=;\lim_{k,m\rightarrow\infty}\left(z_{k}|w_{m}\right)_{o}=\infty;

(2) If

lim supk,m(zk|wm)o=,\limsup_{k,m\rightarrow\infty}\left(z_{k}|w_{m}\right)_{o}=\infty,

then TxΩ=TyΩT_{x}^{\mathbb{C}}\partial\Omega=T_{y}^{\mathbb{C}}\partial\Omega, where TxΩT_{x}^{\mathbb{C}}\partial\Omega is the complex affine hyperplane tangent to Ω\partial\Omega at xx.

2.5. Squeezing Function

Given a domain Ωn\Omega\subset\mathbb{C}^{n}, let sΩ:Ω(0,1]s_{\Omega}:\Omega\rightarrow(0,1] be the squeezing function on Ω,\Omega, defined by

sΩ(z)=\displaystyle s_{\Omega}(z)= sup {r| there exists a 1-1 holomorphic map\displaystyle\text{ sup }\{r|\text{ there exists a 1-1 holomorphic map }
f:Ω𝔹d(0;1) with f(z)=0 and 𝔹d(0;r)f(Ω)}.\displaystyle f:\Omega\rightarrow\mathbb{B}_{d}(0;1)\text{ with }f(z)=0\text{ and }\mathbb{B}_{d}(0;r)\subset f(\Omega)\}.

See [6, 22] for the details.

Remark 2.8.

From Bers Embedding Theorem, it follows that the squeezing function of the Teichmüller space has a uniform positive bound from below.

Lemma 2.9 (Yeung[22]).

Let Ωn\Omega\subset\mathbb{C}^{n} be a bounded domain. If the squeezing function sΩ(ξ)>s,s_{\Omega}(\xi)>s, then the Kobayashi metric, Bergman metric and Ka¨hlerK\ddot{a}hler-Einstein metric are bilipschitz on {zΩ:KΩ(z,z0)ϵ}\{z\in\Omega:K_{\Omega}\left(z,z_{0}\right)\leq\epsilon\}, and there exists c>0,ϵ>0c>0,\>\epsilon>0 such that

Vol({zΩ:KΩ(z,z0)ϵ})ϵ2nc,Vol\left(\left\{z\in\Omega:K_{\Omega}\left(z,z_{0}\right)\leq\epsilon\right\}\right)\geq\frac{\epsilon^{2n}}{c},

where VolVol denotes the volume with respect to either the Bergman metric, the Ka¨hlerK\ddot{a}hler-Einstein metric or the Kobayashi-Eisenman metric.

3. Localization of the Kobayashi distance

F. Forstnericˇ\check{c} and J. P. Rosay [8] gave a local estimate of the Kobayashi metric near a local peak point under some growth condition for the peak function. Then Zimmer generalized the result to convex domain of finite type in [23]. By adopting an analogous method as in [8, 23], we will give a local estimation of the Kobayashi metric in log-type convex domains.

Lemma 3.1.

Suppose that Ωn\Omega\subset\mathbb{C}^{n} is a bounded domain and ΩU\Omega\cap U is log-type convex. Then for any η>0\eta>0, there exists α>0,τ>0\alpha>0,\>\tau>0 such that: if ξΩU\xi\in\partial\Omega\cap U, Bτ(ξ)UB_{\tau}(\xi)\subset U and φ:𝔻Bτ(ξ)Ω\varphi:\mathbb{D}\rightarrow B_{\tau}(\xi)\cap\Omega, and

|ζ|1α|logδΩ(φ(0))|1+ν,|\zeta|\leq 1-\frac{\alpha}{|\log\delta_{\Omega}(\varphi(0))|^{1+\nu}},

then we have

|φ(ζ)φ(0)|η.|\varphi(\zeta)-\varphi(0)|\leq\eta.
Proof.

Let α=3η\displaystyle{\alpha=\frac{3}{\eta}}. From

1α|logδΩ(φ(0))|1+ν>0,1-\frac{\alpha}{|\log\delta_{\Omega}(\varphi(0))|^{1+\nu}}>0,

it follows that

|logδΩ(φ(0))|>α11+ν.|\log\delta_{\Omega}(\varphi(0))|>{\alpha}^{\frac{1}{1+\nu}}.

Select vnv\in\mathbb{C}^{n} such that φ(ζ)φ(0)+v\varphi(\zeta)\in\varphi(0)+\mathbb{C}v.

Firstly, supposing that

|φ(ζ)φ(0)|2δΩU(φ(0);v),|\varphi(\zeta)-\varphi(0)|\geq 2\delta_{\Omega\cap U}(\varphi(0);v),

we obtain

(5) KΩU(φ(0),φ(ζ))12log||φ(ζ)φ(0)|δΩU(φ(0);v)|δΩU(φ(0);v).K_{\Omega\cap U}(\varphi(0),\varphi(\zeta))\geq\frac{1}{2}\log\frac{\left||\varphi(\zeta)-\varphi(0)|-\delta_{\Omega\cap U}(\varphi(0);v)\right|}{\delta_{\Omega\cap U}(\varphi(0);v)}.

Moreover, by the decreasing property of the Kobayashi metric, it follows that

(6) KΩU(φ(ζ),φ(0))d𝔻(0,ζ)=12log1+|ζ|1|ζ|12log21|ζ|.K_{\Omega\cap U}(\varphi(\zeta),\varphi(0))\leq d_{\mathbb{D}}(0,\zeta)=\frac{1}{2}\log\frac{1+|\zeta|}{1-|\zeta|}\leq\frac{1}{2}\log\frac{2}{1-|\zeta|}.

Application of the previous two inequalities (5) and (6) now gives

|φ(ζ)φ(0)|\displaystyle|\varphi(\zeta)-\varphi(0)| (21|ζ|+1)δΩU(φ(0);v)(21|ζ|+1)1|logδΩU(φ(0))|1+ν\displaystyle\leq\left(\frac{2}{1-|\zeta|}+1\right)\delta_{\Omega\cap U}(\varphi(0);v)\leq\left(\frac{2}{1-|\zeta|}+1\right)\frac{1}{|\log\delta_{\Omega\cap U}(\varphi(0))|^{1+\nu}}
(21|ζ|+1)1|logδΩ(φ(0))|1+ν2α+1|logδΩ(φ(0))|1+ν\displaystyle\leq\left(\frac{2}{1-|\zeta|}+1\right)\frac{1}{|\log\delta_{\Omega}(\varphi(0))|^{1+\nu}}\leq\frac{2}{\alpha}+\frac{1}{|\log\delta_{\Omega}(\varphi(0))|^{1+\nu}}
3α=η.\displaystyle\leq\frac{3}{\alpha}=\eta.

Now, if

|φ(ζ)φ(0)|<2δΩU(φ(0);v).|\varphi(\zeta)-\varphi(0)|<2\delta_{\Omega\cap U}(\varphi(0);v).

then by Definition 1.1, there exists C,ν>0C,\nu>0 and

δΩU(φ(0);v)<C|logδΩU(φ(0))|1+ν.\delta_{\Omega\cap U}(\varphi(0);v)<\frac{C}{|\log\delta_{\Omega\cap U}(\varphi(0))|^{1+\nu}}.

We can choose τ\tau small enough such that zBτ(ξ)Ω\forall z\in B_{\tau}(\xi)\cap\Omega,

C|logδΩU(z)|1+ν<12η.\frac{C}{|\log\delta_{\Omega\cap U}(z)|^{1+\nu}}<\frac{1}{2}\eta.

Thus

|φ(ζ)φ(0)|<η,|\varphi(\zeta)-\varphi(0)|<\eta,

which completes the proof. ∎

Theorem 3.2.

Suppose that Ωn\Omega\subset\mathbb{C}^{n} is a bounded domain. If ΩU\Omega\cap U is log-type convex. then there exist c>0c>0 and ϵ>0\epsilon>0 such that

kΩ(p;v)kΩU(p;v)ec|logδΩ(φ(0))|(1+ν)kΩ(p;v)k_{\Omega}(p;v)\leq k_{\Omega\cap U}(p;v)\leq e^{c|\log\delta_{\Omega}(\varphi(0))|^{-(1+\nu)}}k_{\Omega}(p;v)

for ξΩU\xi\in\partial\Omega\cap U and pBϵ(ξ)Ωp\in B_{\epsilon}(\xi)\cap\Omega.

Proof.

Assume there exists η>0\eta>0 such that for any pBτ(ξ)p\in B_{\tau}(\xi), Bη(p)UB_{\eta}(p)\subset U. Define

ρ(ϵ)=max{r:φHol(𝔻,Ω),φ(0)Bϵ(ξ),|φ(0)φ(ζ)|η for any |ζ|r}.\rho(\epsilon)=max\{r:\varphi\in\text{Hol}(\mathbb{D},\Omega),\varphi(0)\in B_{\epsilon}(\xi),|\varphi(0)-\varphi(\zeta)|\leq\eta\text{ for any }|\zeta|\leq r\}.

Then we only need to check that ρec|logϵ|(1+ν)\rho\geq e^{-c|\log{\epsilon}|^{-(1+\nu)}}.

Scaling domain as necessary, we assume that diameuc(Ω)1diam_{euc}(\Omega)\leq 1. Then Schwarz Lemma implies that ρη\rho\geq\eta. Now by Lemma 3.1, it follows that there exists α>0\alpha>0 such that: if

|ζ|ρα|logϵ|(1+ν),|\zeta|\leq\rho-\alpha|\log\epsilon|^{-(1+\nu)},

then |φ(0)φ(ζ)|η2|\varphi(0)-\varphi(\zeta)|\leq\frac{\eta}{2}. If ρ<1\rho<1, then there exists a holomorphic map φ:𝔻Ω\varphi:\mathbb{D}\rightarrow\Omega such that φ(0)Bϵ(ξ)\varphi(0)\in B_{\epsilon}(\xi) and

η=sup|ζ|=ρ|φ(ζ)φ(0)|.\eta=\sup\limits_{|\zeta|=\rho}|\varphi(\zeta)-\varphi(0)|.

Hadamard’s three circle lemma now gives that

M(r)=logsup|ζ|=r|φ(ζ)φ(0)|M(r)=\log\sup\limits_{|\zeta|=r}|\varphi(\zeta)-\varphi(0)|

is a convex function of log(r)\log(r). Noting ρα(logϵ)(1+ν)<1\rho-\alpha(\log\epsilon)^{-(1+\nu)}<1, we then obtain

log(ρα|logϵ|(1+ν))logη2log(ρα|logϵ|(1+ν))M(ρα|logϵ|(1+ν))ρM(ρ)=ρlogη.\frac{\log(\rho-\alpha|\log\epsilon|^{-(1+\nu)})}{\log\frac{\eta}{2}}\geq\frac{\log(\rho-\alpha|\log\epsilon|^{-(1+\nu)})}{M(\rho-\alpha|\log\epsilon|^{-(1+\nu)})}\geq\frac{\rho}{M(\rho)}=\frac{\rho}{\log\eta}.

Therefore

(7) log(ρα|logϵ|(1+ν))logη2logηlogρ.\log(\rho-\alpha|\log\epsilon|^{-(1+\nu)})\leq\frac{\log\frac{\eta}{2}}{\log\eta}\log\rho.

Assuming ϵexp((2αη)11+ν)\epsilon\leq\exp\left(-(\frac{2\alpha}{\eta})^{\frac{1}{1+\nu}}\right), we have ρα|logϵ|(1+ν)η2\rho-\alpha|\log\epsilon|^{-(1+\nu)}\geq\frac{\eta}{2}, which implies that

(8) log(ρα|logϵ|(1+ν))logρ2ηα|logϵ|(1+ν).\log\left(\rho-\alpha|\log\epsilon|^{-(1+\nu)}\right)\geq\log\rho-\frac{2}{\eta}\frac{\alpha}{|\log\epsilon|^{(1+\nu)}}.

Combination of (7) and (8) now gives the desired result

ρexp(c|logϵ|(1+ν)),\rho\geq\exp\left({-c|\log{\epsilon}|^{-(1+\nu)}}\right),

where c=2αlog1ηηlog2c=\frac{2\alpha\log\frac{1}{\eta}}{\eta\log 2}. ∎

Lemma 3.3.

Suppose that Ωn\Omega\subset\mathbb{C}^{n} is a bounded domain and ΩU\Omega\cap U is log-type convex. Then there exists K>0K>0 with the following property:

If ξΩU\xi\in\partial\Omega\cap U and σ:[a,b]Ω\sigma:[a,b]\rightarrow\Omega is a (1,κ)(1,\kappa)-almost geodesic with σ([a,b])Bϵ(ξ)\sigma([a,b])\subset B_{\epsilon}(\xi) then, for all s,t[a,b]s,t\in[a,b],

|ts|KΩU(σ(s),σ(t))|ts|+K.|t-s|\leq K_{\Omega\cap U}(\sigma(s),\sigma(t))\leq|t-s|+K.
Proof.

The left side is obvious. To prove the right side, let T[a,b]T\in[a,b] satisfy

δΩ(σ(T))=max{δΩ(σ(t)):t[a,b]}.\delta_{\Omega}(\sigma(T))=\max\{\delta_{\Omega}(\sigma(t)):t\in[a,b]\}.

Fix z0Ωz_{0}\in\Omega. By Proposition 2.2, there exists α,β>0\alpha,\beta>0 and if σ|[a,b]\sigma|_{[a,b]} is near the boundary, we have

|Tt|\displaystyle|T-t| =KΩ(σ(T),σ(t))+κKΩ(σ(T),z0)+KΩ(z0,σ(t))+κ\displaystyle=K_{\Omega}(\sigma(T),\sigma(t))+\kappa\leq K_{\Omega}(\sigma(T),z_{0})+K_{\Omega}(z_{0},\sigma(t))+\kappa
(9) 2α+κ+2βlog1(δΩ(σ(t))δΩ(σ(T)))1/2\displaystyle\leq 2\alpha+\kappa+2\beta\log\frac{1}{(\delta_{\Omega}(\sigma(t))\delta_{\Omega}(\sigma(T)))^{1/2}}
(2β+1)log1(δΩ(σ(t))δΩ(σ(T)))1/21,\displaystyle\leq(2\beta+1)\log\frac{1}{(\delta_{\Omega}(\sigma(t))\delta_{\Omega}(\sigma(T)))^{1/2}}-1,

which implies that

δΩ(σ(t))(δΩ(σ(t))δΩ(σ(T)))1/2e12β+1(|Tt|+1).\delta_{\Omega}(\sigma(t))\leq(\delta_{\Omega}(\sigma(t))\delta_{\Omega}(\sigma(T)))^{1/2}\leq e^{\frac{-1}{2\beta+1}(|T-t|+1)}.

It follows immediately from Theorem 3.2 that

KΩU(σ(s),σ(t))\displaystyle K_{\Omega\cap U}(\sigma(s),\sigma(t)) stkΩU(σ(r);σ(r))𝑑rstec|logδΩ(σ(r))|(1+ν)kΩ(σ(r);σ(r))𝑑r\displaystyle\leq\int_{s}^{t}k_{\Omega\cap U}(\sigma(r);\sigma^{\prime}(r))dr\leq\int_{s}^{t}e^{c|\log\delta_{\Omega}(\sigma(r))|^{-(1+\nu)}}k_{\Omega}(\sigma(r);\sigma^{\prime}(r))dr
stec|logδΩ(σ(r))|(1+ν)𝑑rstec(2β+1)(1+ν)(|Tt|+1)(1+ν)𝑑r\displaystyle\leq\int_{s}^{t}e^{c|\log\delta_{\Omega}(\sigma(r))|^{-(1+\nu)}}dr\leq\int_{s}^{t}e^{\frac{c(2\beta+1)^{(1+\nu)}}{(|T-t|+1)^{(1+\nu)}}}dr
[s,t][T1,T+1]ec(2β+1)(1+ν)(|Tt|+1)(1+ν)𝑑r+[s,t][T1,T+1]cec(2β+1)(1+ν)(|Tt|+1)(1+ν)𝑑r\displaystyle\leq\int_{[s,t]\cap[T-1,T+1]}e^{\frac{c(2\beta+1)^{(1+\nu)}}{(|T-t|+1)^{(1+\nu)}}}dr+\int_{[s,t]\cap[T-1,T+1]^{c}}e^{\frac{c(2\beta+1)^{(1+\nu)}}{(|T-t|+1)^{(1+\nu)}}}dr
2ec(2β+1)(1+ν)+[s,t][T1,T+1]cec(2β+1)(1+ν)(|Tt|+1)(1+ν)𝑑r.\displaystyle\leq 2e^{c(2\beta+1)^{(1+\nu)}}+\int_{[s,t]\cap[T-1,T+1]^{c}}e^{\frac{c(2\beta+1)^{(1+\nu)}}{(|T-t|+1)^{(1+\nu)}}}dr.

Notice that, for λ[0,1]\lambda\in[0,1],

eCλ=1+0λCeCs𝑑s1+0λCeC𝑑s1+CeCλ.e^{C\lambda}=1+\int_{0}^{\lambda}Ce^{Cs}ds\leq 1+\int_{0}^{\lambda}Ce^{C}ds\leq 1+Ce^{C}\lambda.

Thus, by setting C=c(2β+1)2C=c(2\beta+1)^{2}, we obtain

exp(c(2β+1)(1+ν)(|Tt|+1)(1+ν))1+CeC(|Tt|+1)(1+ν),\exp\left({\frac{c(2\beta+1)^{(1+\nu)}}{(|T-t|+1)^{(1+\nu)}}}\right)\leq 1+\frac{Ce^{C}}{(|T-t|+1)^{(1+\nu)}},

which implies that

[s,t][T1,T+1]cexp(c(2β+1)(1+ν)(|Tt|+1)(1+ν))𝑑r\displaystyle\int_{[s,t]\cap[T-1,T+1]^{c}}\exp\left({\frac{c(2\beta+1)^{(1+\nu)}}{(|T-t|+1)^{(1+\nu)}}}\right)dr
\displaystyle\leq [s,t][T1,T+1]c1+CeC(|Tt|+1)(1+ν)ds\displaystyle\int_{[s,t]\cap[T-1,T+1]^{c}}1+\frac{Ce^{C}}{(|T-t|+1)^{(1+\nu)}}ds
\displaystyle\leq |ts|+1CeC(r+1)(1+ν)𝑑r.\displaystyle|t-s|+\int_{1}^{\infty}\frac{Ce^{C}}{(r+1)^{(1+\nu)}}dr.

Therefore, we have the desired result

KΩU(σ(s),σ(t))|ts|+K,K_{\Omega\cap U}(\sigma(s),\sigma(t))\leq|t-s|+K,

where

K=2exp(c(2β+1)(1+ν))+12c(2β+1)(1+ν)(r+1)(1+ν)ec(2β+1)(1+ν)𝑑r.K=2\exp\left({c(2\beta+1)^{(1+\nu)}}\right)+\int_{1}^{\infty}\frac{2c(2\beta+1)^{(1+\nu)}}{(r+1)^{(1+\nu)}}e^{c(2\beta+1)^{(1+\nu)}}dr.

The proof is complete. ∎

Recall that Ω\Omega is a bounded domain and ΩU\Omega\cap U is log-type convex. Then (Ω,KΩ)(\Omega,K_{\Omega}) has the following local visible property. Note that Bharali and Zimmer [5] proved the property for all Goldilocks domains. For the sake of completeness, we present their proof here.

Lemma 3.4.

For any ξξΩU\xi\neq\xi^{\prime}\in\partial\Omega\cap U, there exists ϵ>0\epsilon>0 and a compact set AΩUA\subset\Omega\cap U with the following property:

For any zΩBϵ(ξ)z\in\Omega\cap B_{\epsilon}(\xi), ωΩBϵ(ξ)\omega\in\Omega\cap B_{\epsilon}(\xi^{\prime}) and a (1,κ)(1,\kappa)-almost geodesic σ:[0,T]Ω\sigma:[0,T]\rightarrow\Omega joining zz and ω\omega, then σA\sigma\cap A\neq\emptyset.

Proof.

Fix z0Ωz_{0}\in\Omega, and choose ϵ\epsilon small enough such that Bϵ(ξ)Bϵ(ξ)=B_{\epsilon}(\xi)\cap B_{\epsilon}(\xi^{\prime})=\emptyset and zΩBϵ(ξ)\forall z\in\Omega\cap B_{\epsilon}(\xi),

δΩ(z)=δΩU(z).\delta_{\Omega}(z)=\delta_{\Omega\cap U}(z).

Taking zΩBϵ(ξ)z\in\Omega\cap B_{\epsilon}(\xi) and ωΩBϵ(ξ)\omega\in\Omega\cap B_{\epsilon}(\xi^{\prime}), let σ:[0,T]Ω\sigma:[0,T]\rightarrow\Omega be a (1,κ)(1,\kappa)-almost geodesic joining zz and ω\omega. By denoting

T0=max{t[0,T]:σ([0,t])Bϵ(ξ)¯},T_{0}=\max\left\{t\in[0,T]:\sigma([0,t])\subset\overline{B_{\epsilon}(\xi)}\right\},

we choose τ[0,T0]\tau\in[0,T_{0}] which satisfies

δΩ(σ(τ))=max{δΩ(σ(t)):t[0,T0]}.\delta_{\Omega}(\sigma(\tau))=\max\{\delta_{\Omega}(\sigma(t)):t\in[0,T_{0}]\}.

Now for t[0,T0]t\in[0,T_{0}], in view of Proposition 2.2 we have

|tτ|\displaystyle|t-\tau| =KΩ(σ(t),σ(τ))+κKΩ(σ(t),z0)+KΩ(z0,σ(τ))+κ\displaystyle=K_{\Omega}(\sigma(t),\sigma(\tau))+\kappa\leq K_{\Omega}(\sigma(t),z_{0})+K_{\Omega}(z_{0},\sigma(\tau))+\kappa
(10) 2α+κ+βlog1δΩ(σ(t))δΩ(σ(τ)),\displaystyle\leq 2\alpha+\kappa+\beta\log\frac{1}{\delta_{\Omega}(\sigma(t))\delta_{\Omega}(\sigma(\tau))},

for some α,β>0.\alpha,\beta>0. Therefore

δΩ(σ(t))δΩ(σ(t))δΩ(σ(τ))exp(|tτ|+2α+κ2β).\delta_{\Omega}(\sigma(t))\leq\sqrt{\delta_{\Omega}(\sigma(t))\delta_{\Omega}(\sigma(\tau))}\leq\exp\left(\frac{-|t-\tau|+2\alpha+\kappa}{2\beta}\right).

Noting that ΩU\Omega\cap U is convex, if zz is near ξ\xi, then we have

(11) kΩU(z,v)|v|2δΩU(z,v)=|v|2δΩ(z,v).\displaystyle k_{\Omega\cap U}(z,v)\geq\frac{|v|}{2\delta_{\Omega\cap U}(z,v)}=\frac{|v|}{2\delta_{\Omega}(z,v)}.

By Theorem 3.2, it follows that there exists c1>0c_{1}>0 such that, for any zz near ξ\xi,

kΩU(z,v)c1kΩ(z,v).\displaystyle k_{\Omega\cap U}(z,v)\leq c_{1}k_{\Omega}(z,v).

Suppose that

δΩU(z,v)c2|logδΩU(z)|(1+ν).\delta_{\Omega\cap U}(z,v)\leq c_{2}|\log\delta_{\Omega\cap U}(z)|^{-(1+\nu)}.

Now fix an M>0M>0 which satisfies

M(2βr(2α+κ))1+ν<ϵ8c1c2.\int_{M}^{\infty}\left(\frac{2\beta}{r-(2\alpha+\kappa)}\right)^{1+\nu}<\frac{\epsilon}{8c_{1}c_{2}}.

Then, since σ\sigma is a geodesic, we deduce that

1kΩ(σ(t);σ(t))\displaystyle 1\geq k_{\Omega}(\sigma(t);\sigma^{\prime}(t)) 1c1kΩU(σ(t);σ(t))12c1|σ(t)|δΩU(σ(t);σ(t))\displaystyle\geq\frac{1}{c_{1}}k_{\Omega\cap U}(\sigma(t);\sigma^{\prime}(t))\geq\frac{1}{2c_{1}}\frac{|\sigma^{\prime}(t)|}{\delta_{\Omega\cap U}(\sigma(t);\sigma^{\prime}(t))}
12c1c2|σ(t)||logδΩU(σ(t)|1+ν\displaystyle\geq\frac{1}{2c_{1}c_{2}}|\sigma^{\prime}(t)||\log\delta_{\Omega\cap U}(\sigma(t)|^{1+\nu}
=12c1c2|σ(t)||logδΩ(σ(t)|1+ν.\displaystyle=\frac{1}{2c_{1}c_{2}}|\sigma^{\prime}(t)||\log\delta_{\Omega}(\sigma(t)|^{1+\nu}.

So, we obtain that

ϵ=σ(0)σ(T0)0T0σ(t)𝑑t2c1c20T01|logδΩ(σ(t))|1+ν𝑑t.\epsilon=\left\|\sigma(0)-\sigma\left(T_{0}\right)\right\|\leq\int_{0}^{T_{0}}\left\|\sigma^{\prime}(t)\right\|dt\leq 2c_{1}c_{2}\int_{0}^{T_{0}}\frac{1}{|\log\delta_{\Omega}(\sigma(t))|^{1+\nu}}dt.

Then

ϵ\displaystyle\epsilon 2c1c2[0,T0](τM,τ+M)1|logδΩ(σ(t))|1+ν𝑑t\displaystyle\leq 2c_{1}c_{2}\int_{\left[0,T_{0}\right]\cap(\tau-M,\tau+M)}\frac{1}{|\log\delta_{\Omega}(\sigma(t))|^{1+\nu}}dt
+2c1c2[0,T0](τM,τ+M)c1|logδΩ(σ(t))|1+ν𝑑t\displaystyle+2c_{1}c_{2}\int_{\left[0,T_{0}\right]\cap(\tau-M,\tau+M)^{c}}\frac{1}{|\log\delta_{\Omega}(\sigma(t))|^{1+\nu}}dt
4c1c2M1(logδΩ(σ(τ)))1+ν+4c1c2M(2βr(2α+κ))1+ν𝑑r\displaystyle\leq 4c_{1}c_{2}M\frac{1}{(\log\delta_{\Omega}(\sigma(\tau)))^{1+\nu}}+4c_{1}c_{2}\int_{M}^{\infty}\left(\frac{2\beta}{r-(2\alpha+\kappa)}\right)^{1+\nu}dr
4c1c2M1(logδΩ(σ(τ)))2+ϵ2.\displaystyle\leq 4c_{1}c_{2}M\frac{1}{(\log\delta_{\Omega}(\sigma(\tau)))^{2}}+\frac{\epsilon}{2}.

Therefore

δΩ(σ(τ))exp((ϵ8c1c2M)11+ν).\delta_{\Omega}(\sigma(\tau))\geq\exp\left(\left(\frac{\epsilon}{8c_{1}c_{2}M}\right)^{\frac{1}{1+\nu}}\right).

Although τ[0,T0]\tau\in[0,T_{0}] depends on the specific (1,κ)(1,\kappa)-almost-geodesic σ\sigma, the lower bound for δΩ(z)\delta_{\Omega}(z) is independent of z,z, and the (1,κ)(1,\kappa)-almost-geodesic σ\sigma joining these two points. This completes the proof. ∎

This allows us to make a uniform choice of A ΩU\subseteq\Omega\cap U as desired.

Lemma 3.5.

Suppose that Ω\Omega is a bounded domain with ΩU\Omega\cap U log-type convex. For any ξΩU\xi\in\partial\Omega\cap U, there exists ϵ>0\epsilon>0 and K>0K^{\prime}>0 such that

KΩ(p,q)KΩU(p,q)KΩ(p,q)+K,K_{\Omega}(p,q)\leq K_{\Omega\cap U}(p,q)\leq K_{\Omega}(p,q)+K^{\prime},

for any p,qΩBϵ(ξ)ΩUp,q\in\Omega\cap B_{\epsilon}(\xi)\subset\Omega\cap U.

To prove Lemma 3.5, the following lemma is needed. Note that ΩU\Omega\cap U is log-type convex and ξΩU\xi\in\partial\Omega\cap U.

Lemma 3.6.

For any ϵ>0\epsilon>0 with Bϵ(ξ)UB_{\epsilon}(\xi)\subset U, there exists δ>0\delta>0 with the property: For any p,qBδ(ξ)p,q\in B_{\delta}(\xi) and a (1,κ)(1,\kappa)-almost geodesic σ\sigma which satisfies σ(a)=p\sigma(a)=p and σ(b)=q\sigma(b)=q, there exists a rough geodesic σ~\widetilde{\sigma} joining pp and qq such that σ~([a,b])Bϵ(ξ)\widetilde{\sigma}([a,b])\subset B_{\epsilon}(\xi).

Proof.

Taking δ=ϵ4\displaystyle{\delta=\frac{\epsilon}{4}}, we claim that either
(1) σ|[a,b]Bϵ(ξ)\sigma|_{[a,b]}\subset B_{\epsilon}(\xi), or
(2) there exists α>0\alpha>0 such that δΩ(σ(a))>α\delta_{\Omega}(\sigma(a^{\prime}))>\alpha and δΩ(σ(b))>α\delta_{\Omega}(\sigma(b^{\prime}))>\alpha, where

a=inf{t[a,b]:σ(t)Ω\Bϵ/2(ξ)},a^{\prime}=\inf\{t\in[a,b]:\sigma(t)\in\Omega\backslash B_{\epsilon/2}(\xi)\},

and

b=sup{t[a,b]:σ(t)Ω\Bϵ/2(ξ)}.b^{\prime}=\sup\{t\in[a,b]:\sigma(t)\in\Omega\backslash B_{\epsilon/2}(\xi)\}.

If (1) does not hold, we prove (2) holds.

We assume, by contradiction, that there exist sequences {am}\{a_{m}\} and {bm}\{b_{m}\} and (1,κ)(1,\kappa)-almost geodesic σm\sigma_{m} joining ama_{m} and bmb_{m}. By passing to a subsequence we may assume that σ(am)Bϵ4(ξ)\sigma(a_{m})\in B_{\frac{\epsilon}{4}}(\xi) , σ(bm)Bϵ4(ξ)\sigma(b_{m})\in B_{\frac{\epsilon}{4}}(\xi) and

σm(am)ξ1ΩBϵ2(ξ)andσm(bm)ξ2ΩBϵ2(ξ).\sigma_{m}(a_{m}^{\prime})\rightarrow\xi_{1}\in\partial\Omega\cap\partial B_{\frac{\epsilon}{2}}(\xi)\>\>\mbox{and}\>\>\sigma_{m}(b_{m}^{\prime})\rightarrow\xi_{2}\in\partial\Omega\cap\partial B_{\frac{\epsilon}{2}}(\xi).

By using Lemma 3.4, there exists a compact set AΩA\subset\Omega such that σm|[am,am]A\sigma_{m}|_{[a_{m},a_{m}^{\prime}]}\cap A\neq\emptyset and σm|[bm,bm]A\sigma_{m}|_{[b_{m}^{\prime},b_{m}]}\cap A\neq\emptyset. Suppose σm(tm1)σm|[am,am]\sigma_{m}(t_{m}^{1})\in\sigma_{m}|_{[a_{m},a_{m}^{\prime}]} and σm(tm2)σm|[bm,bm]\sigma_{m}(t_{m}^{2})\in\sigma_{m}|_{[b_{m}^{\prime},b_{m}]} which satisfy σm(tm1)A\sigma_{m}(t_{m}^{1})\in A and σm(tm2)A\sigma_{m}(t_{m}^{2})\in A.

On one hand, we have

KΩ\displaystyle K_{\Omega} (σm(am),σm(bm))\displaystyle(\sigma_{m}(a_{m}),\sigma_{m}(b_{m}))
=KΩ(σm(am),σm(tm1))+KΩ(σm(tm1),σm(am))+KΩ(σm(bm),σm(tm2))\displaystyle=K_{\Omega}(\sigma_{m}(a_{m}),\sigma_{m}(t_{m}^{1}))+K_{\Omega}(\sigma_{m}(t_{m}^{1}),\sigma_{m}(a_{m}^{\prime}))+K_{\Omega}(\sigma_{m}(b_{m}^{\prime}),\sigma_{m}(t_{m}^{2}))
+KΩ(σm(tm2),σm(bm))\displaystyle+K_{\Omega}(\sigma_{m}(t_{m}^{2}),\sigma_{m}(b_{m}))
KΩ(σm(am),σm(tm1))+KΩ(σm(tm2),σm(bm))+12log1δΩ(σm(am))\displaystyle\geq K_{\Omega}(\sigma_{m}(a_{m}),\sigma_{m}(t_{m}^{1}))+K_{\Omega}(\sigma_{m}(t_{m}^{2}),\sigma_{m}(b_{m}))+\frac{1}{2}\log\frac{1}{\delta_{\Omega}(\sigma_{m}(a_{m}^{\prime}))}
+12log1δΩ(σm(bm))C.\displaystyle+\frac{1}{2}\log\frac{1}{\delta_{\Omega}(\sigma_{m}(b_{m}^{\prime}))}-C.

On the other hand, joining σm(tm1)\sigma_{m}(t_{m}^{1}) and σn(tm2)\sigma_{n}(t_{m}^{2}) by a line segment ll, we define

σm~(t)={σ(t)t\(tm1,tm2)l(t)t[tm1,tm2].\widetilde{\sigma_{m}}(t)=\begin{cases}\sigma(t)\ \ \ \ \ t\in\mathbb{R}\backslash(t_{m}^{1},t_{m}^{2})\\ l(t)\ \ \ \ \ t\in[t_{m}^{1},t_{m}^{2}].\end{cases}

Then we deduce that

L(σm|[am,bm])\displaystyle L(\sigma_{m}|_{[a_{m},b_{m}]}) L(σm~|[am,bm])\displaystyle-L(\widetilde{\sigma_{m}}|_{[a_{m},b_{m}]})
12log1δΩ(σm(am))+12log1δΩ(σm(bm))+C,\displaystyle\geq\frac{1}{2}\log\frac{1}{\delta_{\Omega}(\sigma_{m}(a_{m}^{\prime}))}+\frac{1}{2}\log\frac{1}{\delta_{\Omega}(\sigma_{m}(b_{m}^{\prime}))}+C^{\prime}\rightarrow\infty,

which contradicts the fact the σm\sigma_{m} is a (1,κ)(1,\kappa)-almost geodesic. Thus, it implies that there exists α>0\alpha>0 such that δΩ(σ(a))α\delta_{\Omega}(\sigma(a^{\prime}))\geq\alpha and δΩ(σ(b))α\delta_{\Omega}(\sigma(b^{\prime}))\geq\alpha, which means σ(a)\sigma(a^{\prime}) and σ(b)\sigma(b^{\prime}) are contained in a compact set in ΩU\Omega\cap U.

Therefore, by joining σm(am)\sigma_{m}(a_{m}^{\prime}) and σm(bm)\sigma_{m}(b_{m}^{\prime}) by a line segment and re-parameterizing the new path, we get a C′′C^{\prime\prime}-rough geodesic, which proves the lemma. ∎

Proof of Lemma 3.5.

For any p,qBϵ(ξ)p,q\in B_{\epsilon}(\xi) and an almost geodesic σ\sigma with σ(a)=p,σ(b)=q\sigma(a)=p,\>\sigma(b)=q, we then obtain

KΩU\displaystyle K_{\Omega\cap U} (p,q)\displaystyle(p,q)
KΩU(σ(a),σ(a))+KΩU(σ(a),σ(b))+KΩU(σ(b),σ(b))\displaystyle\leq K_{\Omega\cap U}(\sigma(a),\sigma(a^{\prime}))+K_{\Omega\cap U}(\sigma(a^{\prime}),\sigma(b^{\prime}))+K_{\Omega\cap U}(\sigma(b^{\prime}),\sigma(b))
KΩ(σ(a),σ(a))+KΩ(σ(b),σ(b))+2K+C′′\displaystyle\leq K_{\Omega}(\sigma(a),\sigma(a^{\prime}))+K_{\Omega}(\sigma(b^{\prime}),\sigma(b))+2K+C^{\prime\prime}
KΩ(p,q)+K,\displaystyle\leq K_{\Omega}(p,q)+K^{\prime},

where K=2K+C′′K^{\prime}=2K+C^{\prime\prime} and KK is the constant defined in Lemma 3.3.

The proof is complete. \square


Proof of Theorem 1.4.

If V¯Ω\overline{V}\subset\Omega, there is nothing to do.

Otherwise, for any ξUΩ\xi\in U\cap\partial\Omega there is a δ>0\delta>0 such that Theorem 3.5 holds in Bδ(ξ)B_{\delta}(\xi). Moreover for any ξBδ2(ξ)Ω\xi^{\prime}\in B_{\frac{\delta}{2}}(\xi)\cap\partial\Omega, Theorem 3.5 also holds in Bδ2(ξ)Bδ(ξ)B_{\frac{\delta}{2}}(\xi^{\prime})\subset B_{\delta}(\xi). Noting that ΩV¯\partial\Omega\cap\overline{V} is compact, we complete the proof. \square


Next we will give a similar localization of a log-type \mathbb{C}-convex domain with Dini-smooth boundary. Recall that a domain Ω\Omega is called \mathbb{C}-convex if the non-empty intersection with a complex line is simply connected. A log-type \mathbb{C}-convex domain is a \mathbb{C}-convex domain which also satisfies (1).

At first we need some estimates of the Kobayashi metrics in \mathbb{C}-convex domains studied in [15, 17, 16].

Lemma 3.7 ([16],[17]).

If Ω\Omega is an \mathbb{C}-convex bounded domain, and p,qΩp,q\in\Omega are distinct and vnv\in\mathbb{C}^{n}, then

(12) kΩ(p;v)14|v|δΩ(p;v),\displaystyle k_{\Omega}(p;v)\geq\frac{1}{4}\frac{|v|}{\delta_{\Omega}(p;v)},
KΩ(p,q)14|log(1+|pq|min{δΩ(p;pq),δΩ(q;pq)})|.K_{\Omega}(p,q)\geq\frac{1}{4}\left|\log\left(1+\frac{|p-q|}{\min\{\delta_{\Omega}(p;p-q),\delta_{\Omega}(q;p-q)\}}\right)\right|.
Lemma 3.8 ([15], Theorem 7).

If ξ\xi be a Dini-smooth boundary point of a domain Ω\Omega in n\mathbb{C}^{n}, then there exists c>0c>0 and a neighbourhood UU of ξ\xi such that

KΩ(p,q)log(1+2|pq|δΩ(p)δΩ(q)),p,qΩU.K_{\Omega}(p,q)\leq\log\left(1+\frac{2|p-q|}{\sqrt{\delta_{\Omega}(p)\delta_{\Omega}(q)}}\right),\>\>\>\forall p,\>q\in\Omega\cap U.

Therefore, if ΩU\Omega\cap U is a \mathbb{C}-convex domain with Dini-smooth boundary, by fixing some z0ΩUz_{0}\in\Omega\cap U and letting LL be the complex line containing z0z_{0} and zz and ξL(ΩU)\xi\in L\cap\partial(\Omega\cap U), then there exists a C>0C>0 such that

(13) 14|log(|z0ξ||zξ|)|KΩ(z,z0)12log1δΩ(z)+C.\displaystyle\frac{1}{4}\left|\log\left(\frac{|z_{0}-\xi|}{|z-\xi|}\right)\right|\leq K_{\Omega}(z,z_{0})\leq\frac{1}{2}\log\frac{1}{\delta_{\Omega}(z)}+C.

Moreover, if ΩU\Omega\cap U is a log-type \mathbb{C}-convex domain with Dini-smooth boundary, then Ω\Omega also has the locally visibility property.

Similarly we can repeat the proof of Theorem 1.4 and obtain the following result.

Theorem 3.9.

If Ω\Omega is a bounded domain and ΩU\Omega\cap U is log-type \mathbb{C}-convex with Dini-smooth boundary, then for any VUV\subset U with V¯U\overline{V}\subset U, there exists K>0K>0 such that, for every p,qVΩp,q\in V\cap\Omega,

KΩ(p,q)KΩU(p,q)KΩ(p,q)+K.K_{\Omega}(p,q)\leq K_{\Omega\cap U}(p,q)\leq K_{\Omega}(p,q)+K.

Since the proof of Theorem 3.9 does not add any further insights beyond those seen in the proof of Lemma 3.5, we shall omit its proof. Noting that (2, 3, 4) can be replaced by (12, 13), the inequalities in (5) and (9)-(11) still hold. Therefore, the arguments can go through without any difficultes.

4. Application

In this section, we prove the local version of continuous extension and some results about the Teichmüller space. At first we need a lemma of Gromov product.

Lemma 4.1.

Suppose that Ω\Omega is a convex domain with Dini-smooth boundary. Fixing z0Ωz_{0}\in\Omega, if xnξx_{n}\rightarrow\xi and ynξy_{n}\rightarrow\xi, then we have

(xn|yn)z0.(x_{n}|y_{n})_{z_{0}}\rightarrow\infty.
Proof.

In [24, Theorem 4.1], the domain Ω\Omega is assumed to be a C1,ϵC^{1,\epsilon} convex domain. By using Lemma 3.8, one can repeat the proof with the weaker assumption. ∎

Next we give a result on the local version of continuous extensions of roughly isometric embedding, which is a re-statement of Corollary 1.5.

Corollary 4.2.

Let Ω1,Ω2n\Omega_{1},\>\Omega_{2}\subset\mathbb{C}^{n} be bounded domains and f:Ω1Ω2f:\Omega_{1}\rightarrow\Omega_{2} be a rough isometry with respect to the Kobayashi distance. Suppose Ω1U1\Omega_{1}\cap U_{1} is a log-type convex domain with Dini-smooth boundary and Ω2U2\Omega_{2}\cap U_{2} is a log-type \mathbb{C}-convex domain with Dini-smooth boundary.

If ξΩ1U1\xi\in\partial\Omega_{1}\cap U_{1}, then ζΩ2U2\zeta\in\partial\Omega_{2}\cap U_{2} and ζ𝒞(f,ξ)\zeta\in\mathcal{C}(f,\xi), then ff extends continuously to ξ\xi.

Proof.

Note that, by definition, there exists C>0C>0 such that for any x,yΩ1x,y\in\Omega_{1}

KΩ1(x,y)CKΩ2(f(x),f(y))KΩ1(x,y)+C.K_{\Omega_{1}}(x,y)-C\leq K_{\Omega_{2}}(f(x),f(y))\leq K_{\Omega_{1}}(x,y)+C.

Therefore, by fixing z0Ω1U1z_{0}\in\Omega_{1}\cap U_{1},

|(f(x)|f(y))f(z0)Ω2(x|y)z0Ω1|32C.\left|(f(x)|f(y))_{f(z_{0})}^{\Omega_{2}}-(x|y)_{z_{0}}^{\Omega_{1}}\right|\leq\frac{3}{2}C.

If xnξx_{n}\rightarrow\xi, ynξy_{n}\rightarrow\xi and f(xn)ζf(x_{n})\rightarrow\zeta, then we will show that f(yn)ζf(y_{n})\rightarrow\zeta.

Conversely, suppose that f(yn)ζΩ2f(y_{n})\rightarrow\zeta^{\prime}\in\partial\Omega_{2} and ζζ\zeta\neq\zeta^{\prime}. From Lemma 3.4, it follows that there is a compact set AΩ2U2A\subset\Omega_{2}\cap U_{2} such that the (1,κ)(1,\kappa)-almost geodesic σn(t)\sigma_{n}(t) joining f(xn)f(x_{n}) and f(yn)f(y_{n}) intersects AA. Fix tnt_{n}\indom(σn)(\sigma_{n}) such that σn(tn)A\sigma_{n}(t_{n})\in A. Letting R=maxzAKΩ2(z,f(z0))R=\max\limits_{z\in A}K_{\Omega_{2}}(z,f(z_{0})), then we have

(\displaystyle\Big{(} f(xn)|f(yn))f(z0)Ω2\displaystyle f(x_{n})|f(y_{n})\Big{)}_{f(z_{0})}^{\Omega_{2}}
=12(KΩ2(f(xn),f(z0))+KΩ2(f(yn),f(z0))KΩ2(f(xn),f(yn)))\displaystyle=\frac{1}{2}\left(K_{\Omega_{2}}(f(x_{n}),f(z_{0}))+K_{\Omega_{2}}(f(y_{n}),f(z_{0}))-K_{\Omega_{2}}(f(x_{n}),f(y_{n}))\right)
12(KΩ2(f(xn),f(z0))+KΩ2(f(yn),f(z0))KΩ2(f(xn),f(σn(tn)))\displaystyle\leq\frac{1}{2}\big{(}K_{\Omega_{2}}(f(x_{n}),f(z_{0}))+K_{\Omega_{2}}(f(y_{n}),f(z_{0}))-K_{\Omega_{2}}(f(x_{n}),f(\sigma_{n}(t_{n})))
KΩ2(f(σn(tn)),f(yn)))+κ\displaystyle-K_{\Omega_{2}}(f(\sigma_{n}(t_{n})),f(y_{n}))\big{)}+\kappa
KΩ2(f(z0),f(σn(tn)))+κ+R\displaystyle\leq K_{\Omega_{2}}(f(z_{0}),f(\sigma_{n}(t_{n})))+\kappa+R
<.\displaystyle<\infty.

On the other hand, in view of Theorem 1.4,

(xn|yn)z0Ω1U1K(xn|yn)z0Ω1(xn|yn)z0Ω1U1+K,(x_{n}|y_{n})_{z_{0}}^{\Omega_{1}\cap U_{1}}-K\leq(x_{n}|y_{n})_{z_{0}}^{\Omega_{1}}\leq(x_{n}|y_{n})_{z_{0}}^{\Omega_{1}\cap U_{1}}+K,

Then by Lemma 4.1, we have

(xn|yn)z0Ω1U1,(x_{n}|y_{n})_{z_{0}}^{\Omega_{1}\cap U_{1}}\rightarrow\infty,

Thus

(xn|yn)z0Ω1,(x_{n}|y_{n})_{z_{0}}^{\Omega_{1}}\rightarrow\infty,

which is a contradiction.

Therefore we have limzξf(z)=ζ\lim\limits_{z\rightarrow\xi}f(z)=\zeta, which completes the proof. ∎

Remark 4.3.

Note that in the above proof we only need Ω2U2\Omega_{2}\cap U_{2} to be ’visible’. By using Lemma 3.4, the condition ’Dini-smooth’ of Ω2\Omega_{2} can be removed if ω2U2\omega_{2}\cap U_{2} is log-type convex instead of log-type \mathbb{C}-convex.

Next we prove a result on domains biholomorphic to the Teichmu¨llerTeichm\ddot{u}ller space Tg,nT_{g,n}. At first we need some lemmas.

Definition 4.4.

For any domain Ωn\Omega\subset\mathbb{C}^{n}, a boundary point ξΩ\xi\in\partial\Omega is Alexandroff smooth if

(i) Ω\Omega is locally convex at ξ\xi;

(ii) there exists r>0r>0 such that ΩB(ξ,r)\Omega\cap B(\xi,r) is convex and ΩB(ξ,r)\partial\Omega\cap B(\xi,r) is the graph of a convex function ψ:UV+\psi:U\cap V\rightarrow\mathbb{R}_{+} which has a second order Taylor expansion at ξ\xi. That is, if we assume without loss of generality that ξ=0\xi=0 and V={xn=0}V=\left\{x_{n}=0\right\} is a supporting hyperplane for ΩB(ξ,r)\Omega\cap B(\xi,r), then we have

ψ(x1,x2,xn)=12i,jHi,jxixj+o(x2)\psi\left(x_{1},x_{2},\ldots x_{n}\right)=\frac{1}{2}\sum_{i,j}H_{i,j}x_{i}x_{j}+o\left(\|x\|^{2}\right)

for some n×nn\times n symmetric matrix HH (which, for a genuine C2C^{2} -function, is the Hessian).

Theorem 4.5 (Alexandroff[1]).

If Ω\Omega is a convex domain, then almost every boundary point is Alexandroff smooth in the above sense.

By using Theorem 4.5, one can prove the following lemma directly.

Lemma 4.6.

Let Ωn\Omega\subset\mathbb{R}^{n} be a domain and let ξΩ\xi\in\partial\Omega be an Alexandroff smooth point. Then ξ\xi has an interior sphere contact. Namely there is a round sphere SS contained in Ω¯\overline{\Omega} such that SΩ¯={ξ}.S\cap\overline{\Omega}=\{\xi\}.

Note that the Teichmüller modular group Modg,nMod_{g,n} isometrically acts on Tg,nT_{g,n} and this action is properly discontinuous. Furthermore, we have

Property 4.7 ([11]).

The Teichmu¨llerTeichm\ddot{u}ller space admits a finite volume quotient in the Kobayashi metric, i.e. the quotient space Tg,n/Modg,nT_{g,n}/Mod_{g,n} has finite Kobayashi volume.

Lemma 4.8 (Theorem 2,[10]).

Every finite subgroup of Modg,nMod_{g,n} acting on Tg,nT_{g,n} has a fixed point.

Then we can follow the methods of Zimmer [25] and Gupta-Seshadri [19] to prove the following result, which is a re-statement of Theorem 1.6.

Theorem 4.9.

Teichmu¨llerTeichm\ddot{u}ller space Tg,nT_{g,n} can not be biholomorphic to a bounded domain in 3g3+n\mathbb{C}^{3g-3+n} which is locally log-type convex at some boundary point.

Proof.

Assume, by contradiction, that the Teichmu¨llerTeichm\ddot{u}ller space Tg,nT_{g,n} is biholomorphic to Ω3g3+n\Omega\subset\mathbb{C}^{3g-3+n} such that ΩU\Omega\cap U is log-type convex at some boundary point neighborhood UU. It is well know that Modg,nMod_{g,n} has a finite index subgroup NN that acts freely on Tg,nT_{g,n}. Let ΓAut(Ω)\Gamma\subset Aut(\Omega) be the subgroup corresponding to NModg,nN\subset Mod_{g,n}. Then the quotient space Ω/Γ\Omega/\Gamma is a manifold with finite Ka¨hlerEinsteinK\ddot{a}hler-Einstein volume.

From Lemma 4.6, it follows that we can choose a boundary point in UΩU\cap\partial\Omega, denoted by ξ\xi, which admits an interior sphere contact. Then we will prove the following

(Claim) There exist {γn}Γ\left\{\gamma_{n}\right\}\subseteq\Gamma such that γn(z0)ξ\gamma_{n}\left(z_{0}\right)\rightarrow\xi for some fixed point z0Ωz_{0}\in\Omega.


Therefore, by using the scaling method of Kim-Krantz-Pinchuk (refer to section 9.2.5 of [9]), and in a similar way as used by Gupta-Seshadri in Section 3.4 of [19], we obtain that Modg,nMod_{g,n} has a one parameter subgroup which contradicts to the discreteness of Modg,nMod_{g,n}.

It completes the proof of Theorem 4.9. ∎


Proof of the Claim.

For any Ω{yn}ξ\Omega\supset\{y_{n}\}\rightarrow\xi, define

δn=minγΓ\{id}KΩ(yn,γyn).\delta_{n}=\min_{\gamma\in\Gamma\backslash\{id\}}K_{\Omega}\left(y_{n},\gamma y_{n}\right).

Then the quotient map π:ΩΩ/Γ\pi:\Omega\rightarrow\Omega/\Gamma restricts to an embedding on the ball Bn={zΩ:KΩ(z,yn)<δn2}.B_{n}=\left\{z\in\Omega:K_{\Omega}\left(z,y_{n}\right)<\frac{\delta_{n}}{2}\right\}. The Teichmu¨llerTeichm\ddot{u}ller space admits the uniform squeezing property, so does Ω\Omega. From Lemma 2.9, it follows that there exists CC and ϵ\epsilon such that

vol(π(Bn))Cmin{ϵ2n,δn2n}.\operatorname{vol}\left(\pi\left(B_{n}\right)\right)\geq C\min\left\{\epsilon^{2n},\delta_{n}^{2n}\right\}.

After passing to a subsequence we can assume that

limnδn=δ0.\lim_{n\rightarrow\infty}\delta_{n}=\delta\geq 0.

Now we have the following three cases (a),(b),(c)(a),(b),(c):


(a) If δ>0\delta>0, then the set {π(yn):n}\left\{\pi\left(y_{n}\right):n\in\mathbb{N}\right\} must be relatively compact in Ω/Γ\Omega/\Gamma. Otherwise, nBn\bigcup\limits_{n\in\mathbb{N}}B_{n} would admit infinite volume. Therefore, for each nn, we can get γnΓ\gamma_{n}\in\Gamma such that γnynz0Ω\gamma_{n}y_{n}\rightarrow z_{0}\in\Omega, which implies that γn1z0ξ\gamma_{n}^{-1}z_{0}\rightarrow\xi, as desired.


(b) If δ=0\delta=0 and the set {γn}n1\{\gamma_{n}\}_{n\geq 1} is infinite, noting that Γ\Gamma is discrete, we can assume that γnz0ξΩ\gamma_{n}z_{0}\rightarrow\xi^{\prime}\in\partial\Omega up to a subsequence for some fixed z0z_{0}. We claim that ξ=ξ\xi^{\prime}=\xi. Suppose that ξξΩ\xi\neq\xi^{\prime}\in\partial\Omega. By lemma 3.4, it follows that there exists compact set AA such that σnA\sigma_{n}\cap A\neq\emptyset, where σn\sigma_{n} joining yny_{n} and γnz0\gamma_{n}z_{0} with σn(tn)A\sigma_{n}(t_{n})\in A. Noting that KΩ(z0,γnz0)K_{\Omega}\left(z_{0},\gamma_{n}z_{0}\right)\rightarrow\infty, we thus have

KΩ\displaystyle K_{\Omega} (γnz0,z0)+KΩ(z0,yn)KΩ(γnz0,yn)\displaystyle\left(\gamma_{n}z_{0},z_{0}\right)+K_{\Omega}\left(z_{0},y_{n}\right)-K_{\Omega}\left(\gamma_{n}z_{0},y_{n}\right)
KΩ(γnz0,z0)+KΩ(z0,yn)KΩ(γnz0,σn(tn))KΩ(σn(tn),yn)\displaystyle\leq K_{\Omega}\left(\gamma_{n}z_{0},z_{0}\right)+K_{\Omega}\left(z_{0},y_{n}\right)-K_{\Omega}\left(\gamma_{n}z_{0},\sigma_{n}(t_{n})\right)-K_{\Omega}\left(\sigma_{n}(t_{n}),y_{n}\right)
2KΩ(σn(tn),z0)R,\displaystyle\leq 2K_{\Omega}\left(\sigma_{n}(t_{n}),z_{0}\right)\leq R,

where R=2max{KΩ(z0,z):zA}R=2\max\{K_{\Omega}(z_{0},z):z\in A\}. However,

KΩ(γnz0,z0)\displaystyle K_{\Omega}\left(\gamma_{n}z_{0},z_{0}\right) +KΩ(z0,yn)KΩ(γnz0,yn)\displaystyle+K_{\Omega}\left(z_{0},y_{n}\right)-K_{\Omega}\left(\gamma_{n}z_{0},y_{n}\right)
=KΩ(γnz0,z0)+KΩ(z0,yn)KΩ(z0,γn1yn)\displaystyle=K_{\Omega}\left(\gamma_{n}z_{0},z_{0}\right)+K_{\Omega}\left(z_{0},y_{n}\right)-K_{\Omega}\left(z_{0},\gamma_{n}^{-1}y_{n}\right)
KΩ(γnz0,z0)KΩ(yn,γn1yn),\displaystyle\geq K_{\Omega}\left(\gamma_{n}z_{0},z_{0}\right)-K_{\Omega}\left(y_{n},\gamma_{n}^{-1}y_{n}\right)\rightarrow\infty,

from which we deduce that ξ=ξ\xi^{\prime}=\xi.


(c) If the set {γn}n1\{\gamma_{n}\}_{n\geq 1} is finite, without loss of generality we assume γn=γ\gamma_{n}=\gamma for all nn\in\mathbb{N}. If γn\gamma^{n} is relatively compact, noting that Γ\Gamma is discrete, then γ\gamma is of finite order. Lemma 4.8 immediately implies that γ\gamma has a fixed point in Ω\Omega, which is impossible.

Therefore, γnz0ξΩ\gamma^{n}z_{0}\rightarrow\xi^{\prime}\in\partial\Omega. We assume that ξξΩ\xi^{\prime}\neq\xi\in\partial\Omega. Using the fixed point z0z_{0}, we consider the function

bn(z)=KΩ(z,yn)KΩ(yn,z0).b_{n}(z)=K_{\Omega}\left(z,y_{n}\right)-K_{\Omega}\left(y_{n},z_{0}\right).

Since bn(z0)=0b_{n}\left(z_{0}\right)=0 and each bn(z)b_{n}(z) is 11-Lipschitz, we can pass to a subsequence such that bnbb_{n}\rightarrow b locally uniformly. Therefore

b(γz)=limnKΩ(γz,yn)KΩ(yn,z0)=limnKΩ(z,γ1yn)KΩ(yn,z0)=b(z),b(\gamma z)=\lim_{n\rightarrow\infty}K_{\Omega}\left(\gamma z,y_{n}\right)-K_{\Omega}\left(y_{n},z_{0}\right)=\lim_{n\rightarrow\infty}K_{\Omega}\left(z,\gamma^{-1}y_{n}\right)-K_{\Omega}\left(y_{n},z_{0}\right)=b(z),

which implies that b(γnz0)=b(z0)=0b\left(\gamma^{n}z_{0}\right)=b\left(z_{0}\right)=0 for all nn\in\mathbb{N}.

On the other hand, there exists a R>0,R>0,

KΩ(γnz0,z0)+KΩ(z0,yn)KΩ(γnz0,yn)R.K_{\Omega}\left(\gamma^{n}z_{0},z_{0}\right)+K_{\Omega}\left(z_{0},y_{n}\right)-K_{\Omega}\left(\gamma^{n}z_{0},y_{n}\right)\leq R.

Then

b(γnz0)=KΩ(γnz0,yn)KΩ(z0,yn)KΩ(γnz0,z0)R,b\left(\gamma^{n}z_{0}\right)=K_{\Omega}\left(\gamma^{n}z_{0},y_{n}\right)-K_{\Omega}\left(z_{0},y_{n}\right)\geq K_{\Omega}\left(\gamma^{n}z_{0},z_{0}\right)-R\rightarrow\infty,

which is a contradiction. It completes the proof that γnz0ξ\gamma^{n}z_{0}\rightarrow\xi and hence proves (c).

Therefore, the proof of the claim is complete. \square

Acknowledgement. The authors would like to thank Yunhui Wu and Liyou Zhang for their precious advices and for many stimulating discussions. We would also like to thank the referee for a careful reading and valuable comments.

References

  • [1] A. Alexandroff. Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it. Leningrad State Univ. Annals [Uchenye Zapiski] Math. Ser, 6:3–35, 1939.
  • [2] Z.M. Balogh and M. Bonk. Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains. Commentarii Mathematici Helvetici, 75(3):504–533, 2000.
  • [3] G. Bharali. Complex geodesics, their boundary regularity, and a Hardy–Littlewood-type lemma. Ann. Acad. Sci. Fenn. Math, 41(1):253–263, 2016.
  • [4] G. Bharali and A. Maitra. A weak notion of visibility, a family of examples, and wolff–denjoy theorems. Arxiv preprint arXiv:1810.08193, 2018.
  • [5] G. Bharali and A. Zimmer. Goldilocks domains, a weak notion of visibility, and applications. Advances in Mathematics, 310:377–425, 2017.
  • [6] F. S. Deng, Q. A. Guan, and L. Y. Zhang. On some properties of squeezing functions of bounded domains. Pacific Journal of Mathematics, 257(2), 2011.
  • [7] F. Forstneric. Proper holomorphic mappings: a survey. Several complex variables (Stockholm, 1987/1988), 38:297–363, 1993.
  • [8] F. Forstneric and J.P. Rosay. Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings. Mathematische Annalen, 279(2):239–252, 1987.
  • [9] R.E. Greene, K.T. Kim, and S.G. Krantz. The geometry of complex domains, volume 291. Springer Science & Business Media, 2011.
  • [10] S. P. Kerckhoff. The Nielsen realization problem. Annals of Mathematics, 117(2):235–265, 1983.
  • [11] F. Knudsen and D. Mumford. The projectivity of the moduli space of stable curves I: Preliminaries on” det” and” div”. Mathematica Scandinavica, 39(1):19–55, 1977.
  • [12] L. Lempert. La métrique de Kobayashi et la représentation des domaines sur la boule.
  • [13] V. Markovic. Carathéodory’s metrics on Teichmüller spaces and ll-shaped pillowcases. Duke Mathematical Journal, 167(3):497–535, 2018.
  • [14] P.R. Mercer. Complex geodesics and iterates of holomorphic maps on convex domains in n\mathbb{C}^{n}. Transactions of the American Mathematical Society, 338(1):201–211.
  • [15] N. Nikolov and L. Andreev. Estimates of the Kobayashi and quasi-hyperbolic distances. Annali di Matematica Pura ed Applicata, 196(1):1–8, 2015.
  • [16] N. Nikolov, P. Pflug, and W. Zwonek. Estimates for invariant metrics on \mathbb{C}-convex domains. Transactions of the American Mathematical Society, 363(12):6245–6256, 2008.
  • [17] N. Nikolov and M. Trybuła. The Kobayashi balls of (\mathbb{C}-)convex domains. Monatshefte Für Mathematik, 177(4):627–635, 2015.
  • [18] H.L. Royden. Remarks on the Kobayashi metric. In Several Complex Variables II Maryland 1970, pages 125–137. Springer, 1971.
  • [19] S.Gupta and H. Seshadri. On domains biholomorphic to Teichmüller spaces. appeared online in IMRN, 2018, doi: 10.1093/imrn/rny204/5087976.
  • [20] A. B. Sukhov. On boundary regularity of holomorphic mappings. Russian Academy of Sciences. Sbornik Mathematics, 83(2):541, 1995.
  • [21] S. Venturini. Pseudodistances and pseudometrics on real and complex manifolds. Annali Di Matematica Pura Ed Applicata, 154(1):385–402.
  • [22] S. K. Yeung. Geometry of domains with the uniform squeezing property. Advances in Mathematics, 221(2):547–569, 2009.
  • [23] A. Zimmer. Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type. Mathematische Annalen, 365(3):1–74, 2016.
  • [24] A. Zimmer. The automorphism group and limit set of a bounded domain ii: the convex case. arXiv.1712.10251, 2017.
  • [25] A. Zimmer. Smoothly bounded domains covering finite volume manifolds. arXiv:1802.01178, 2018.