This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

affiliationtext: Mathematical Science Unit, Graduate School of Engineering Science,
Yokohama National University,
Hodogaya, Yokohama, 240-8501, Japan

Localization in quantum walks with periodically arranged coin matrices

Chusei Kiumi
Abstract

There is a property called localization, which is essential for applications of quantum walks. From a mathematical point of view, the occurrence of localization is known to be equivalent to the existence of eigenvalues of the time evolution operators, which are defined by coin matrices. A previous study proposed an approach to the eigenvalue problem for space-inhomogeneous models using transfer matrices. However, the approach was restricted to models whose coin matrices are the same in positions sufficiently far to the left and right, respectively. This study shows that the method can be applied to extended models with periodically arranged coin matrices. Moreover, we investigate localization by performing the eigenvalue analysis and deriving their time-averaged limit distribution.

1 Introduction

The study of quantum walks, which began in the early 2000s [1, 2], has spread and attracted much attention, especially for its applications in quantum information [3, 4, 5, 6, 7, 8]. One of the most characteristic properties of the quantum walk is localization, an essential property for manipulating particles. Numerical and theoretical analyses have been actively conducted, and we are particularly interested in the mathematical analysis of localization [9, 10, 11, 8, 12, 13]. It has been known that localization occurs in various quantum walk models. This study focuses on one-dimensional two-state quantum walks, which are considered the fundamental discrete-time quantum walks.

From a mathematical point of view, the investigation of localization can be regarded as an eigenvalue problem. This is because the occurrence of localization is equivalent to the existence of eigenvalues of the time evolution operator, and the corresponding eigenvectors are related to how likely the walker localizes [12, 14]. In a previous study [15], an eigenvalue analysis method using the transfer matrix was proposed. The eigenvalue analysis was performed for two-phase quantum walks with one defect, including a one-defect model where the time evolution differs at the origin and a two-phase model where the time evolution differs in the negative and positive parts, respectively. The localization phenomenon in the one-defect model has been used in quantum search algorithms [16, 3, 17], and the relationship between topological insulators and localization in the two-phase quantum walk has attracted much attention [18, 19]. Several other studies also used transfer matrices for deriving stationary measures [20, 21]. Furthermore, a previous study [14, 22] showed that the method could be applied to a more general model with a finite number of defects, which satisfies the following conditions:

Cx={C+,x[x+,),C,x(,x],C_{x}=\begin{cases}C_{+\infty},\quad&x\in[x_{+},\infty),\\ C_{-\infty},\quad&x\in(-\infty,x_{-}],\end{cases}

where xx and x+>0,x<0x_{+}>0,x_{-}<0 are integers, and CxC_{x} denotes the coin matrix determining the time evolution in the position xx. Models with periodic coin matrices have also been actively studied [23, 24, 25]. In particular, the model with self-duality studied in [25] is inspired by the well-studied Aubry-André model [26], and the Fourier transform method was applied. However, our approach can extend the discussion to models that cannot be handled by the Fourier transform method and simplify the eigenvalue problem since we only need to deal with 2 ×\times 2 (transfer) matrices instead of the large matrix. In this study, we consider a two-phase periodic model with a finite number of defects that includes all of the above important models; the model has nn_{-} and n+n_{+} different coin matrices arranged periodically in positions x<xx<x_{-} and xx+x\geq x_{+}, respectively.

This paper is organized as follows. In Section 2, we define our model with periodically arranged coin matrices and its transfer matrix. This section also shows that the eigenvalue analysis via transfer matrix is applicable for the model. The necessary and sufficient condition for the eigenvalue problem is given in Theorem 2.3. Also, further discussion about the time-averaged limit distribution using eigenvalues and eigenvectors is provided. With the main theorem, Section 3 focuses on analyzing concrete eigenvalues for more specific models, which can be seen as natural generalizations of homogeneous, one-defect, and two-phase models to periodic models.

2 Definitions and method

Firstly, we introduce two-state quantum walks on the integer lattice \mathbb{Z}. The Hilbert space is given as \mathcal{H} defined by

=2(;2)={Ψ:2|xΨ(x)22<},\mathcal{H}=\ell^{2}(\mathbb{Z};\mathbb{C}^{2})=\left\{\Psi:\mathbb{Z}\to\mathbb{C}^{2}\ \middle|\ \sum_{x\in\mathbb{Z}}\|\Psi(x)\|_{\mathbb{C}^{2}}^{2}<\infty\right\},

where \mathbb{C} denotes the set of complex numbers. For Ψ\Psi\in\mathcal{H}, we write Ψ(x)=[ΨL(x)ΨR(x)]T2\Psi(x)=\begin{bmatrix}\Psi_{L}(x)&\Psi_{R}(x)\end{bmatrix}^{T}\in\mathbb{C}^{2}, where TT is the transpose operator. The time evolution operator UU is defined by the product of a coin operator CC on \mathcal{H} and a shift operator SS on \mathcal{H}. Here, CC and SS are defined by

(CΨ)(x)=CxΨ(x),(SΨ)(x)=[ΨL(x+1)ΨR(x1)],\displaystyle(C\Psi)(x)=C_{x}\Psi(x),\qquad(S\Psi)(x)=\begin{bmatrix}\Psi_{L}(x+1)\\ \Psi_{R}(x-1)\end{bmatrix},

where {Cx}x\{C_{x}\}_{x\in\mathbb{Z}} is a sequence of 2×22\times 2 unitary matrices called coin matrices. We define x+,xx_{+},x_{-}\in\mathbb{Z} where x+0,x0x_{+}\geq 0,\ x_{-}\leq 0, then the periodicities of the model are defined by n+>0n_{+}\in\mathbb{Z}_{>0} for positions xx+x\geq x_{+} and n>0n_{-}\in\mathbb{Z}_{>0} for positions x<xx<x_{-}, where >0\mathbb{Z}_{>0} is the set of positive integers. For xx\in\mathbb{Z}, we define rx±{0,,n±1}r_{x}^{\pm}\in\{0,\dots,n_{\pm}-1\} by remainder of xx±x-x_{\pm} divided by n±>0n_{\pm}\in\mathbb{Z}_{>0}, that is,

rx±=xx±(modn±).r_{x}^{\pm}=x-x_{\pm}\ (\bmod\ n_{\pm}).

We treat the model whose coin matrices satisfy the following:

Cx={Crx++,x[x+,),Cxx[x,x+),Crx,x(,x).C_{x}=\begin{cases}C_{r_{x}^{+}}^{+},&x\in[x_{+},\infty),\\ C_{x}&x\in[x_{-},x_{+}),\\ C_{r_{x}^{-}}^{-},&x\in(-\infty,x_{-}).\end{cases}

The model has a finite number of defects in x[x,x+)x\in[x_{-},x_{+}) and periodic coin matrices for each of xx+x\geq x_{+} and x<xx<x_{-}. Here, we write Cx,Ck±C_{x},C^{\pm}_{k} as follows:

Cx=eiΔx[αxβxβx¯αx¯],Ck±=eiΔk±[αk±βk±βk±¯αk±¯],\displaystyle C_{x}=e^{i\Delta_{x}}\left[\begin{array}[]{ c c }\alpha_{x}&\beta_{x}\\ -\overline{\beta_{x}}&\overline{\alpha_{x}}\end{array}\right],\ \ C_{k}^{\pm}=e^{i\Delta_{k}^{\pm}}\left[\begin{array}[]{ c c }\alpha_{k}^{\pm}&\beta_{k}^{\pm}\\ -\overline{\beta_{k}^{\pm}}&\overline{\alpha_{k}^{\pm}}\end{array}\right],

with αx,βx,αk±,βk±,Δx,Δk±[0,2π),|αx|2+|βx|2=|αk±|2+|βk±|2=1,\alpha_{x},\beta_{x},\alpha_{k}^{\pm},\beta_{k}^{\pm}\in\mathbb{C},\ \Delta_{x},\Delta_{k}^{\pm}\in[0,2\pi),\ |\alpha_{x}|^{2}+|\beta_{x}|^{2}=\left|\alpha_{k}^{\pm}\right|^{2}+\left|\beta_{k}^{\pm}\right|^{2}=1, and αx,αk±0\alpha_{x},\alpha_{k}^{\pm}\neq 0 for x,k{0,,n±1}x\in\mathbb{Z},\ k\in\{0,\dotsc,n_{\pm}-1\}.

We let Ψ0(Ψ02=1)\Psi_{0}\in\mathcal{H}\ (\|\Psi_{0}\|_{\mathcal{H}}^{2}=1) denote the initial state of the model. Then, the probability distribution at time t0t\in\mathbb{Z}_{\geq 0} is defined by

μt(Ψ0)(x)=(UtΨ0)(x)22,\mu_{t}^{(\Psi_{0})}(x)=\|(U^{t}\Psi_{0})(x)\|_{\mathbb{C}^{2}}^{2},

where 0\mathbb{Z}_{\geq 0} is the set of non-negative integers. Here, we say that the quantum walk model exhibits localization if there exists an initial state Ψ0\Psi_{0}\in\mathcal{H} and a position x0x_{0}\in\mathbb{Z} satisfying

lim suptμt(Ψ0)(x0)>0.\limsup_{t\to\infty}\mu^{(\Psi_{0})}_{t}(x_{0})>0.

As a well-known fact that the quantum walk model exhibits localization if and only if the time evolution operator UU has an eigenvalue [12], which means that there exists λ[0,2π)\lambda\in[0,2\pi) and Ψ{𝟎}\Psi\in\mathcal{H}\setminus\{\mathbf{0}\} such that

UΨ=eiλΨ.\displaystyle U\Psi=e^{i\lambda}\Psi.

Let σ(U)\sigma(U) denotes the set of eigenvalues of UU henceforward. Subsequently, let JJ be a unitary operator on \mathcal{H} defined by

(JΨ)(x)=[ΨL(x1)ΨR(x)]\displaystyle(J\Psi)(x)=\begin{bmatrix}\Psi_{L}(x-1)\\ \Psi_{R}(x)\end{bmatrix}

for xx\in\mathbb{Z}. Here the inverse of JJ is given as

(J1Ψ)(x)=[ΨL(x+1)ΨR(x)].\displaystyle(J^{-1}\Psi)(x)=\begin{bmatrix}\Psi_{L}(x+1)\\ \Psi_{R}(x)\end{bmatrix}.

Furthermore, for λ[0,2π)\lambda\in[0,2\pi), xx\in\mathbb{Z} and k{0,,n±1}k\in\{0,\dotsc,n_{\pm}-1\}, we introduce the transfer matrix Tx(λ),Tk±(λ)T_{x}(\lambda),\ T^{\pm}_{k}(\lambda) as followings:

Tx(λ)=1αx[ei(λΔx)βxβx¯ei(λΔx)],Tk±(λ)=1αk±[ei(λΔk±)βk±βk±¯ei(λΔk±)].T_{x}(\lambda)=\frac{1}{\alpha_{x}}\left[\begin{array}[]{ c c }e^{i(\lambda-\Delta_{x})}&-\beta_{x}\\ -\overline{\beta_{x}}&e^{-i(\lambda-\Delta_{x})}\end{array}\right],\ \ T_{k}^{\pm}(\lambda)=\frac{1}{\alpha_{k}^{\pm}}\left[\begin{array}[]{ c c }e^{i\left(\lambda-\Delta_{k}^{\pm}\right)}&-\beta_{k}^{\pm}\\ -\overline{\beta_{k}^{\pm}}&e^{-i\left(\lambda-\Delta_{k}^{\pm}\right)}\end{array}\right].

We abbreviate the transfer matrix Tx(λ)T_{x}(\lambda) as TxT_{x} and Tk±(λ)T^{\pm}_{k}(\lambda) as Tk±T^{\pm}_{k} henceforward. Here, Ψ\Psi\in\mathcal{H} satisfies (Ueiλ)Ψ=0(U-e^{i\lambda})\Psi=0 if and only if Ψ\Psi satisfies the following equation for all xx\in\mathbb{Z} :

(JΨ)(x+1)=Tx(JΨ)(x).\displaystyle(J\Psi)(x+1)=T_{x}(J\Psi)(x). (1)

For more details, see [15]. In this paper, we define \prod notation for the products of matrices by the following:

i=knAi={AnAk+1Ak,nk,1,n<k.\prod_{i=k}^{n}A_{i}=\begin{cases}A_{n}\cdots A_{k+1}A_{k},&n\geq k,\\ 1,&n<k.\end{cases}

For λ[0,2π)\lambda\in[0,2\pi) and φ2\varphi\in\mathbb{C}^{2}, we define Ψ~:2\tilde{\Psi}:\mathbb{Z}\to\mathbb{C}^{2} as follows:

Ψ~(x)\displaystyle\tilde{\Psi}(x) ={Tx1Tx2T1T0φ,x>0,φ,x=0,Tx1Tx+11T21T11φ,x<0.\displaystyle=\left\{\begin{array}[]{ l l }T_{x-1}T_{x-2}\cdots T_{1}T_{0}\varphi,&x>0,\\ \varphi,&x=0,\\ T_{x}^{-1}T_{x+1}^{-1}\cdots T_{-2}^{-1}T_{-1}^{-1}\varphi,&x<0.\end{array}\right.
={i=0rx+1Ti+(i=0n+1Ti+)mx+T+φ,x>x+,i=0x1Tiφ,0<xx+,φ,x=0,i=1|x|Ti1φ,xx<0,(i=rxn1Ti)1(i=0n1Ti)mxTφ,x<x,\displaystyle=\begin{cases}\displaystyle\prod_{i=0}^{r_{x}^{+}-1}T_{i}^{+}\left(\prod_{i=0}^{n_{+}-1}T_{i}^{+}\right)^{m_{x}^{+}}T_{+}\varphi,&x>x_{+},\\ \displaystyle\prod_{i=0}^{x-1}T_{i}\varphi,&0<x\leq x_{+},\\ \varphi,&x=0,\\ \displaystyle\prod_{i=1}^{|x|}T_{-i}^{-1}\varphi,&x_{-}\leq x<0,\\ \displaystyle\left(\prod_{i=r_{x}^{-}}^{n_{-}-1}T_{i}^{-}\right)^{-1}\ \left(\prod_{i=0}^{n_{-}-1}T_{i}^{-}\right)^{-m_{x}^{-}}T_{-}\varphi,&x<x_{-},\end{cases}

where T+=i=0x+1Ti,T=i=1|x|Ti1T_{+}=\prod_{i=0}^{x_{+}-1}T_{i},\ T_{-}=\prod_{i=1}^{|x_{-}|}T_{-i}^{-1} and mx+=xx+rx+n+0,mx=|xxrx+n|n0.m_{x}^{+}=\frac{x-x_{+}-r_{x}^{+}}{n_{+}}\in\mathbb{Z}_{\geq 0},\ \ m_{x}^{-}=\frac{\left|x-x_{-}-r_{x}^{-}+n_{-}\right|}{n_{-}}\in\mathbb{Z}_{\geq 0}. This can be rewritten as

Ψ~(x)={(T~rx++)mx+i=0rx+1Ti+T+φ,x>x+,i=0x1Tiφ,0<xx+,φ,x=0,i=1|x|Ti1φ,xx<0,(T~rx)mx(i=rxn1Ti)1Tφ,x<x,\displaystyle\tilde{\Psi}(x)=\begin{cases}\displaystyle\left(\tilde{T}_{r_{x}^{+}}^{+}\right)^{m_{x}^{+}}\prod_{i=0}^{r_{x}^{+}-1}T_{i}^{+}T_{+}\varphi,&x>x_{+},\\ \displaystyle\prod_{i=0}^{x-1}T_{i}\varphi,&0<x\leq x_{+},\\ \varphi,&x=0,\\ \displaystyle\prod_{i=1}^{|x|}T_{-i}^{-1}\varphi,&x_{-}\leq x<0,\\ \displaystyle\left(\tilde{T}_{r_{x}^{-}}^{-}\right)^{-m_{x}^{-}}\ \left(\prod_{i=r_{x}^{-}}^{n_{-}-1}T_{i}^{-}\right)^{-1}T_{-}\varphi,&x<x_{-},\end{cases} (2)

with

T~k±=i=0k1Ti±i=kn±1Ti±,\tilde{T}_{k}^{\pm}=\prod_{i=0}^{k-1}T_{i}^{\pm}\prod_{i=k}^{n_{\pm}-1}T_{i}^{\pm},

for k{0,,n±1}.k\in\{0,\dotsc,n_{\pm}-1\}. Here, Ψ~:2\tilde{\Psi}:\mathbb{Z}\rightarrow\mathbb{C}^{2} is a map constructed by transfer matrices, where Ψ=J1Ψ~\Psi=J^{-1}\tilde{\Psi} satisfies equation (1) (but not necessarily satisfies xΨ(x)22<\sum_{x\in\mathbb{Z}}\|\Psi(x)\|_{\mathbb{C}^{2}}^{2}<\infty). For λ[0,2π)\lambda\in[0,2\pi), Ψ~\tilde{\Psi} has φ2\varphi\in\mathbb{C}^{2} as a parameter. We let WλW_{\lambda} be a set of all possible Ψ~\tilde{\Psi} obtained by varying φ\varphi:

Wλ={Ψ~:2|Ψ~(x) is given by (2),φ2}.W_{\lambda}=\left\{\tilde{\Psi}:\mathbb{Z}\rightarrow\mathbb{C}^{2}\ \middle|\ \tilde{\Psi}(x)\text{ is given by }(\ref{eq:tilde_psi}),\ \varphi\in\mathbb{C}^{2}\right\}.
Corollary 2.1.

Let λ[0,2π)\lambda\in[0,2\pi), eiλσ(U)e^{i\lambda}\in\sigma(U) if and only if there exists Ψ~Wλ{𝟎}\tilde{\Psi}\in W_{\lambda}\setminus\{\mathbf{0}\} such that Ψ~\tilde{\Psi}\in\mathcal{H}, and associated eigenvector of eiλe^{i\lambda} becomes J1Ψ~J^{-1}\tilde{\Psi}.

Note that Ψ=J1Ψ~\Psi=J^{-1}\tilde{\Psi} where Ψ~Wλ{𝟎}\tilde{\Psi}\in W_{\lambda}\setminus\{\mathbf{0}\} but not necessarily Ψ~\tilde{\Psi}\in\mathcal{H} is the stationary measure of the quantum walk studied in [27, 28, 21, 20, 29]. We define sign function for real numbers uu as follows:

sgn(u)={1,u>0,0,u=0,1,u<0.\operatorname{sgn}(u)=\begin{cases}1,&u>0,\\ 0,&u=0,\\ -1,&u<0.\end{cases}

Then, two eigenvalues of T~k±(k{0,,n±1})\tilde{T}_{k}^{\pm}\ (k\in\{0,\dotsc,n_{\pm}-1\}) can be written as ζ±>,ζ±<\zeta_{\pm}^{>},\zeta_{\pm}^{<} expressed as below:

ζ±>=A±+sgn(A±)(A±)2|α0±|2|α1±|2|αn±1±|2α0±α1±αn±1±,\displaystyle\zeta_{\pm}^{>}=\frac{A^{\pm}+\operatorname{sgn}\left(A^{\pm}\right)\sqrt{\left(A^{\pm}\right)^{2}-\left|\alpha_{0}^{\pm}\right|^{2}\left|\alpha_{1}^{\pm}\right|^{2}\cdots\left|\alpha_{n_{\pm}-1}^{\pm}\right|^{2}}}{\alpha_{0}^{\pm}\alpha_{1}^{\pm}\cdots\alpha_{n_{\pm}-1}^{\pm}},
ζ±<=A±sgn(A±)(A±)2|α0±|2|α1±|2|αn±1±|2α0±α1±αn±1±,\displaystyle\zeta_{\pm}^{<}=\frac{A^{\pm}-\operatorname{sgn}\left(A^{\pm}\right)\sqrt{\left(A^{\pm}\right)^{2}-\left|\alpha_{0}^{\pm}\right|^{2}\left|\alpha_{1}^{\pm}\right|^{2}\cdots\left|\alpha_{n_{\pm}-1}^{\pm}\right|^{2}}}{\alpha_{0}^{\pm}\alpha_{1}^{\pm}\cdots\alpha_{n_{\pm}-1}^{\pm}},

where A±=12α0±α1±αn±1±tr(i=0n±1Ti±)\displaystyle A^{\pm}=\frac{1}{2}\alpha_{0}^{\pm}\alpha_{1}^{\pm}\cdots\alpha_{n_{\pm}-1}^{\pm}\mathrm{tr}\left(\prod_{i=0}^{n_{\pm}-1}T_{i}^{\pm}\right). Note that the eigenvalues are independent of kk.

Corollary 2.2.

A±A^{\pm} is a real number.

Proof.

Let

M={[abb¯a¯]|a,b}.M=\left\{\left[\begin{array}[]{ c c }a&b\\ \overline{b}&\overline{a}\end{array}\right]\middle|\ a,b\in\mathbb{C}\right\}.

Here, m1m2Mm_{1}m_{2}\in M holds for all m1,m2Mm_{1},m_{2}\in M, which implies that m1m2mnM(n>1)m_{1}m_{2}\cdots m_{n}\in M\ (n>1) holds for all m1,m2,,mnMm_{1},m_{2},\dots,m_{n}\in M. Also, αk±Tk±M(k{0,,n±1})\alpha^{\pm}_{k}T_{k}^{\pm}\in M\ (k\in\{0,\dotsc,n_{\pm}-1\}) holds, thus we have α0±α1±αn±1±i=0n±1Ti±M\alpha_{0}^{\pm}\alpha_{1}^{\pm}\cdots\alpha_{n_{\pm}-1}^{\pm}\prod_{i=0}^{n_{\pm}-1}T_{i}^{\pm}\in M and A±A^{\pm} becomes a real number.

Subsequently, since |detTk±|=|αk±¯αk±|=1\displaystyle\left|\det T_{k}^{\pm}\right|=\left|\frac{\overline{\alpha_{k}^{\pm}}}{\alpha_{k}^{\pm}}\right|=1 for k{0,,n±1},k\in\{0,\dotsc,n_{\pm}-1\},

|detT~k±|=|α0±¯α2±¯αn±1±¯α0±α2±αn±1±|=1\left|\det\tilde{T}_{k}^{\pm}\right|=\left|\frac{\overline{\alpha_{0}^{\pm}}\overline{\alpha_{2}^{\pm}}\cdots\overline{\alpha_{n_{\pm}-1}^{\pm}}}{\alpha_{0}^{\pm}\alpha_{2}^{\pm}\cdots\alpha_{n_{\pm}-1}^{\pm}}\right|=1

holds, which also means |ζ±>||ζ±<|=1|\zeta_{\pm}^{>}||\zeta_{\pm}^{<}|=1. From Corollary 2.2, we know that |ζ±>|1|\zeta_{\pm}^{>}|\geq 1 and |ζ±<|1|\zeta_{\pm}^{<}|\leq 1 hold, and we have the main theorem.

Theorem 2.3.

For λ[0,2π)\lambda\in[0,2\pi), eiλσ(U)e^{i\lambda}\in\sigma(U) if and only if the following two statements hold:

1.(A±)2|α0±|2|α1±|2|αn±1±|2>0,\displaystyle 1.\ \left(A^{\pm}\right)^{2}-\left|\alpha_{0}^{\pm}\right|^{2}\left|\alpha_{1}^{\pm}\right|^{2}\cdots\left|\alpha_{n_{\pm}-1}^{\pm}\right|^{2}>0,
2.ker((i=0n+1Ti+ζ+<)T+)ker((i=0n1Tiζ>)T){𝟎}.\displaystyle 2.\ \ker\left(\left(\prod_{i=0}^{n_{+}-1}T_{i}^{+}-\zeta_{+}^{<}\right)T_{+}\right)\cap\ker\left(\left(\prod_{i=0}^{n_{-}-1}T_{i}^{-}-\zeta_{-}^{>}\right)T_{-}\right)\neq\{\mathbf{0}\}.
Proof.

From Corollary 2.1, eiλσ(U)e^{i\lambda}\in\sigma(U) if and only if there exists φ2\varphi\in\mathbb{C}^{2} such that Ψ~Wλ{𝟎}\tilde{\Psi}\in W_{\lambda}\setminus\{\mathbf{0}\} given by φ\varphi satisfies xΨ~(x)22<\sum_{x\in\mathbb{Z}}\|\tilde{\Psi}(x)\|_{\mathbb{C}^{2}}^{2}<\infty. If (A±)2|α0±|2|α1±|2|αn±1±|20\left(A^{\pm}\right)^{2}-\left|\alpha_{0}^{\pm}\right|^{2}\left|\alpha_{1}^{\pm}\right|^{2}\cdots\left|\alpha_{n_{\pm}-1}^{\pm}\right|^{2}\leq 0, both |ζ±<||\zeta^{<}_{\pm}| and |ζ±>||\zeta^{>}_{\pm}| become 1. Since Ψ~\tilde{\Psi} is given as (2), we have xΨ~(x)22=\sum_{x\in\mathbb{Z}}\|\tilde{\Psi}(x)\|_{\mathbb{C}^{2}}^{2}=\infty for all Ψ~Wλ{𝟎}\tilde{\Psi}\in W_{\lambda}\setminus\{\mathbf{0}\}. Therefore, the first condition is necessary for eiλσ(U)e^{i\lambda}\in\sigma(U). Next, we assume that (A±)2|α0±|2|α1±|2|αn±1±|2>0\left(A^{\pm}\right)^{2}-\left|\alpha_{0}^{\pm}\right|^{2}\left|\alpha_{1}^{\pm}\right|^{2}\cdots\left|\alpha_{n_{\pm}-1}^{\pm}\right|^{2}>0, then |ζ±>|>1|\zeta^{>}_{\pm}|>1 and |ζ±<|<1|\zeta^{<}_{\pm}|<1 hold. Thus, from (2), Ψ~Wλ{𝟎}\tilde{\Psi}\in W_{\lambda}\setminus\{\mathbf{0}\} satisfies xΨ~(x)22<\sum_{x\in\mathbb{Z}}\|\tilde{\Psi}(x)\|_{\mathbb{C}^{2}}^{2}<\infty if and only if there exists φ2{𝟎}\varphi\in\mathbb{C}^{2}\setminus\{\mathbf{0}\} such that

i=0k1Ti+T+φ\displaystyle\prod_{i=0}^{k-1}T_{i}^{+}T_{+}\varphi ker(T~k+ζ+<)\displaystyle\in\ker\left(\tilde{T}_{k}^{+}-\zeta_{+}^{<}\right)
φ\displaystyle\Longleftrightarrow\varphi ker((T~k+ζ+<)i=0k1Ti+T+),\displaystyle\in\ker\left(\left(\tilde{T}_{k}^{+}-\zeta_{+}^{<}\right)\prod_{i=0}^{k-1}T_{i}^{+}T_{+}\right),

for all k{0,,n+1}k\in\{0,\dotsc,n_{+}-1\} and

(i=kn1Ti)1Tφ\displaystyle\left(\prod_{i=k}^{n_{-}-1}T_{i}^{-}\right)^{-1}T_{-}\varphi ker(T~kζ>)\displaystyle\in\ker\left(\tilde{T}_{k}^{-}-\zeta_{-}^{>}\right)
φ\displaystyle\Longleftrightarrow\varphi ker((T~kζ>)(i=kn1Ti)1T)\displaystyle\in\ker\left(\left(\tilde{T}_{k}^{-}-\zeta_{-}^{>}\right)\left(\prod_{i=k}^{n_{-}-1}T_{i}^{-}\right)^{-1}T_{-}\right)

for all k{0,,n1}k\in\{0,\dotsc,n_{-}-1\}. Here \iff denotes “if and only if”. However,

ker((i=0n+1Ti+ζ+<)T+)=ker((T~k+ζ+<)i=0k1Ti+T+),\ker\left(\left(\prod_{i=0}^{n_{+}-1}T_{i}^{+}-\zeta_{+}^{<}\right)T_{+}\right)=\ker\left(\left(\tilde{T}_{k}^{+}-\zeta_{+}^{<}\right)\prod_{i=0}^{k-1}T_{i}^{+}T_{+}\right),

holds for all k{0,,n+1}k\in\{0,\dotsc,n_{+}-1\} and

ker((i=0n1Tiζ>)T)=ker((T~kζ>)(i=kn1Ti)1T),\ker\left(\left(\prod_{i=0}^{n_{-}-1}T_{i}^{-}-\zeta_{-}^{>}\right)T_{-}\right)=\ker\left(\left(\tilde{T}_{k}^{-}-\zeta_{-}^{>}\right)\ \left(\prod_{i=k}^{n_{-}-1}T_{i}^{-}\right)^{-1}T_{-}\right),

holds for all k{0,,n1}k\in\{0,\dotsc,n_{-}-1\}. Thus, the conditions can be summarized in the second condition of the theorem. Therefore, the statement is proved. ∎

This theorem implies that the eigenvalue problem is to find the solution λ[0,2π)\lambda\in[0,2\pi) of a single equation obtained from the second condition of the theorem in the range of (A±)2|α0±|2|α1±|2|αn±1±|2>0\left(A^{\pm}\right)^{2}-\left|\alpha_{0}^{\pm}\right|^{2}\left|\alpha_{1}^{\pm}\right|^{2}\cdots\left|\alpha_{n_{\pm}-1}^{\pm}\right|^{2}>0. We can also see that if eiλσ(U)e^{i\lambda}\in\sigma(U), the associated eigenvector Ψker(Ueiλ){𝟎}\Psi\in\ker(U-e^{i\lambda})\setminus\{\mathbf{0}\} is given as Ψ=J1Ψ~\Psi=J^{-1}\tilde{\Psi} where

Ψ~(x)={(ζ+<)mx+i=0rx+1Ti+T+φ,x>x+,i=0x1Tiφ,0<xx+,φ,x=0,i=1|x|Ti1φ,xx<0,(ζ>)mx(i=rxn1Ti)1Tφ,x<x,\displaystyle\tilde{\Psi}(x)=\begin{cases}\displaystyle(\zeta_{+}^{<})^{m_{x}^{+}}\prod_{i=0}^{r_{x}^{+}-1}T_{i}^{+}T_{+}\varphi,&x>x_{+},\\ \displaystyle\prod_{i=0}^{x-1}T_{i}\varphi,&0<x\leq x_{+},\\ \varphi,&x=0,\\ \displaystyle\prod_{i=1}^{|x|}T_{-i}^{-1}\varphi,&x_{-}\leq x<0,\\ \displaystyle(\zeta_{-}^{>})^{-m_{x}^{-}}\ \left(\prod_{i=r_{x}^{-}}^{n_{-}-1}T_{i}^{-}\right)^{-1}T_{-}\varphi,&x<x_{-},\end{cases}

with φker((i=0n+1Ti+ζ+<)T+)ker((i=0n1Tiζ>)T).\displaystyle\varphi\in\ker\left(\left(\prod_{i=0}^{n_{+}-1}T_{i}^{+}-\zeta_{+}^{<}\right)T_{+}\right)\cap\ker\left(\left(\prod_{i=0}^{n_{-}-1}T_{i}^{-}-\zeta_{-}^{>}\right)T_{-}\right).

Furthermore, we can quantitatively evaluate localization by deriving time-averaged limit distribution defined by

ν¯(x)=limT1Tt=0T1(UtΨ0)(x)22.\overline{\nu}_{\infty}(x)=\lim_{T\rightarrow\infty}\frac{1}{T}\sum_{t=0}^{T-1}\left\|\left(U^{t}\Psi_{0}\right)(x)\right\|_{\mathbb{C}^{2}}^{2}.

The time-averaged limit distribution can be calculated by the eigenvectors of UU [12]. For multiplicity mλ=dimker(Ueiλ)m_{\lambda}=\dim\ker(U-e^{i\lambda}) and complete orthonormal basis Ψjλker(Ueiλ),j=1,2,,mλ\Psi_{j}^{\lambda}\in\ker(U-e^{i\lambda}),\ j=1,2,\dotsc,m_{\lambda}, the following holds:

ν¯(x)=eiλσ(U)j,k=1mλΨkλ,Ψ0¯Ψjλ,Ψ0Ψkλ(x),Ψjλ(x).\overline{\nu}_{\infty}(x)=\sum_{e^{i\lambda}\in\sigma(U)}\sum_{j,k=1}^{m_{\lambda}}\overline{\left<\Psi_{k}^{\lambda},\Psi_{0}\right>}\left<\Psi_{j}^{\lambda},\Psi_{0}\right>\left<\Psi_{k}^{\lambda}(x),\Psi_{j}^{\lambda}(x)\right>.

Here, we show some important facts for calculating ν¯\overline{\nu}_{\infty}.

Lemma 2.4.

UU has at most a finite number of eigenvalues with the multiplicity of 1, that is,

dimker(Ueiλ)=1\dim\ker\left(U-e^{i\lambda}\right)=1\

and

eiλσ(U)dimker(Ueiλ)<.\sum_{e^{i\lambda}\in\sigma(U)}\dim\ker\left(U-e^{i\lambda}\right)<\infty.
Proof.

By definition and Theorem 2.3, If dimker((i=0n+1Ti+ζ+<)T+)=2\dim\ker\left(\left(\prod\limits_{i=0}^{n_{+}-1}T_{i}^{+}-\zeta_{+}^{<}\right)T_{+}\right)=2, then
(i=0n+1Ti+ζ+<)T+\left(\prod\limits_{i=0}^{n_{+}-1}T_{i}^{+}-\zeta_{+}^{<}\right)T_{+} becomes zero matrix and  i=0n+1Ti+=ζ+<\prod\limits_{i=0}^{n_{+}-1}T_{i}^{+}=\zeta_{+}^{<}. This is clearly a contradiction. By similar discussion for (i=0n1Tiζ>)T,\left(\prod\limits_{i=0}^{n_{-}-1}T_{i}^{-}-\zeta_{-}^{>}\right)T_{-}, we have

dimker((i=0n+1Ti+ζ+<)T+)=dimker((i=0n1Tiζ>)T)=1.\dim\ker\left(\left(\prod_{i=0}^{n_{+}-1}T_{i}^{+}-\zeta_{+}^{<}\right)T_{+}\right)=\dim\ker\left(\left(\prod_{i=0}^{n_{-}-1}T_{i}^{-}-\zeta_{-}^{>}\right)T_{-}\right)=1.

Also,

ker((i=0n+1Ti+ζ+<)T+)=ker((i=0n1Tiζ>)T)\ker\left(\left(\prod_{i=0}^{n_{+}-1}T_{i}^{+}-\zeta_{+}^{<}\right)T_{+}\right)=\ker\left(\left(\prod_{i=0}^{n_{-}-1}T_{i}^{-}-\zeta_{-}^{>}\right)T_{-}\right)

is immediately shown. Subsequently, we can see that

dimker(Ueiλ)\displaystyle\dim\ker\left(U-e^{i\lambda}\right)
=dim(ker((i=0n+1Ti+ζ+<)T+)ker((i=0n1Tiζ>)T))=1.\displaystyle\ \ =\dim\left(\ker\left(\left(\prod_{i=0}^{n_{+}-1}T_{i}^{+}-\zeta_{+}^{<}\right)T_{+}\right)\cap\ker\left(\left(\prod_{i=0}^{n_{-}-1}T_{i}^{-}-\zeta_{-}^{>}\right)T_{-}\right)\right)=1.\

Furthermore, eiλσ(U)e^{i\lambda}\in\sigma(U) has to be a root of the equation

det((i=0n+1Ti+ζ+<)T+)=0.\operatorname{det}\left(\left(\prod_{i=0}^{n_{+}-1}T_{i}^{+}-\zeta_{+}^{<}\right)T_{+}\right)=0.

Hence, the number of eiλe^{i\lambda} satisfying the above equation is finite, and we complete the proof. ∎

Therefore, ν¯(x)\overline{\nu}_{\infty}(x) can be written as

ν¯(x)=eiλσ(U)|Ψλ,Ψ0|2Ψλ(x)22.\displaystyle\overline{\nu}_{\infty}(x)=\sum_{e^{i\lambda}\in\sigma(U)}\left|\left<\Psi^{\lambda},\Psi_{0}\right>\right|^{2}\left\|\Psi^{\lambda}(x)\right\|_{\mathbb{C}^{2}}^{2}. (3)

3 Results

3.1 Homogeneously periodic model

Proposition 3.1.

Let n+=n=n,x+=x=0,Ck+=Ck=Ck,n_{+}=n_{-}=n,\ x_{+}=x_{-}=0,\ C^{+}_{k}=C^{-}_{k}=C_{k}, and Tk+=Tk=TkT^{+}_{k}=T^{-}_{k}=T_{k}. The coin matrices become

Cx=Crx,C_{x}=C_{r_{x}},

where rx=x(modn){0,,n1}r_{x}=x\ (\bmod\ n)\in\{0,\dotsc,n-1\}. Then, the model does not exhibit localization, that is, σ(U)=\sigma(U)=\emptyset.

Proof.

Let ζ<=ζ+<=ζ<\zeta^{<}=\zeta_{+}^{<}=\zeta_{-}^{<} and ζ>=ζ+>=ζ>\zeta^{>}=\zeta_{+}^{>}=\zeta_{-}^{>}. Then for all λ\lambda,

ker(i=0n1Tiζ<)ker(i=0n1Tiζ>)={𝟎}\ker\left(\prod_{i=0}^{n-1}T_{i}-\zeta^{<}\right)\cap\ker\left(\prod_{i=0}^{n-1}T_{i}-\zeta^{>}\right)=\{\mathbf{0}\}

holds. Thus from Theorem 2.3, it is proved that σ(U)=\sigma(U)=\emptyset. ∎

From (3), we can also see that the time-averaged limit distribution ν¯(x)\overline{\nu}_{\infty}(x) is always 0 for all positions xx\in\mathbb{Z}. As a remark, when αx=0\alpha_{x}=0 for some xx (excluded case), the model exhibits localization in the finite interval since the quantum walker is reflected at position xx where αx=0\alpha_{x}=0. This fact is described in detail by [25] as a lemma for the specific case

Cx=[cos(2πax)sin(2πax)sin(2πax)cos(2πax)],C_{x}=\left[\begin{array}[]{cc}\cos(2\pi ax)&-\sin(2\pi ax)\\ \sin(2\pi ax)&\cos(2\pi ax)\end{array}\right],

where aa is a rational number. With our Proposition 3.1, we can say that their lemma claims the only case in which the model exhibits localization. Our result contributes to solving one of the open problems mentioned in [25] for the general coin matrices. Moreover, note that when n=2n=2, and if initial state Ψ0\Psi_{0} satisfies Ψ0(x)=𝟎\Psi_{0}(x)=\mathbf{0} for all odd positions xx or all even positions xx, this model can be regarded as a time-dependent two-period quantum walks studied in [30].

3.2 Periodic model with one-defect

Next, we consider a one-defect model with a different coin matrix C0C_{0} acts only on the origin in the homogeneously periodic model defined above. This is an extension of the usual one-defect model treated in previous study [15] by replacing coin matrices in positive and negative parts with periodic coins. The model is given by setting n+=n=n,x+=1,x=0,Ck+=Ck=Ck+1n_{+}=n_{-}=n,\ x_{+}=1,\ x_{-}=0,\ C_{k}^{+}=C_{k}^{-}=C_{k+1}, and the transfer matrix can also be written as Tk+=Tk=Tk+1T_{k}^{+}=T_{k}^{-}=T_{k+1}. Then, coin matrices become

Cx={Crx++1,x>0,C0,x=0,Crx+1,x<0.C_{x}=\begin{cases}C_{r^{+}_{x}+1},&x>0,\\ C_{0},&x=0,\\ C_{r^{-}_{x}+1},&x<0.\end{cases}

We get the analytical result for this model with n=2n=2. From Theorem 2.3, eiλσ(U)e^{i\lambda}\in\sigma(U) if and only if followings hold:

(1)(cos(2λΔ1Δ2)+(β1β2¯))2|α1|2|α2|2>0,\displaystyle(1)\ \left(\cos(2\lambda-\Delta_{1}-\Delta_{2})+\Re\left(\beta_{1}\overline{\beta_{2}}\right)\right)^{2}-|\alpha_{1}|^{2}|\alpha_{2}|^{2}>0,
(2)ker((T2T1ζ<)T0)ker(T2T1ζ>){𝟎},\displaystyle(2)\ \ker\left(\left(T_{2}T_{1}-\zeta^{<}\right)T_{0}\right)\cap\ker\left(T_{2}T_{1}-\zeta^{>}\right)\neq\{\mathbf{0}\},

where \Re denotes the real part of a complex number.

Proposition 3.2.

Let β0=0,|β1|=|β2|=|β|0,Δ0=Δ1+Δ2+argβ1argβ2+π2\beta_{0}=0,\ |\beta_{1}|=|\beta_{2}|=|\beta|\neq 0,\ \Delta_{0}=\frac{\Delta_{1}+\Delta_{2}+\arg\beta_{1}-\arg\beta_{2}+\pi}{2}. Then,

σ(U)={{±eiλ+,±ieiλ},(β1β2¯)>0,{±eiλ,±ieiλ+},(β1β2¯)<0,{±eiΔ1+Δ22},argβ1=argβ2,{±ieiΔ1+Δ22},argβ1=argβ2+π,\sigma(U)=\begin{cases}\left\{\pm e^{i\lambda_{+}},\pm ie^{i\lambda_{-}}\right\},&\Im\left(\beta_{1}\overline{\beta_{2}}\right)\ >0,\\ \left\{\pm e^{i\lambda_{-}},\pm ie^{i\lambda_{+}}\right\},&\Im\left(\beta_{1}\overline{\beta_{2}}\right)\ <0,\\ \left\{\pm e^{i\frac{\Delta_{1}+\Delta_{2}}{2}}\right\},&\arg\beta_{1}=\arg\beta_{2},\\ \left\{\pm ie^{i\frac{\Delta_{1}+\Delta_{2}}{2}}\right\},&\arg\beta_{1}=\arg\beta_{2}+\pi,\end{cases}

where

eiλ±=eiΔ1+Δ22(±B++iB),B±=|β|±|β|22(β1β2¯)2|β|.e^{i\lambda_{\pm}}=e^{i\frac{\Delta_{1}+\Delta_{2}}{2}}\left(\pm\sqrt{B_{+}}+i\sqrt{B_{-}}\right),\ B_{\pm}=\frac{|\beta|\pm\sqrt{|\beta|^{2}-\Im^{2}\left(\beta_{1}\overline{\beta_{2}}\right)}}{2|\beta|}.

The example of Proposition 3.2 is shown in Figure 1.

Refer to caption
(a) Eigenvalues of UU
Refer to caption
(b) Probability distribution
Figure 1: The example of Proposition 3.2 with parameters Δ1=π2,Δ2=π2,α0=1,α1=α2=β2=12,β1=i2\Delta_{1}=\frac{\pi}{2},\ \Delta_{2}=-\frac{\pi}{2},\ \alpha_{0}=1,\ \alpha_{1}=\alpha_{2}=\beta_{2}=\frac{1}{\sqrt{2}},\ \beta_{1}=\frac{i}{\sqrt{2}}. (a) illustrates the eigenvalues of the time evolution operator. (b) shows the probability distribution at time t=70t=70 (gray line) and the time-averaged limit distribution calculated from (3) (bold black line). Here, the initial state is given as Ψ0(0)=[12,12]T\Psi_{0}(0)=[\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^{T} and Ψ0(x)=𝟎\Psi_{0}(x)=\mathbf{0} for x0x\neq 0, where TT denotes the transpose operator

3.3 Two-phase periodic model

Next, we consider a two-phase model where two different groups of periodic coin matrices act on each of non-negative and negative parts, respectively. This is an extension of the usual two-phase model treated in previous study [15] by replacing coin matrices in each of non-negative and negative parts with periodic coins. The model is given by setting n+=n=n,x+=0,x=0n_{+}=n_{-}=n,\ x_{+}=0,\ x_{-}=0. We write

(Ck,αk,βk,Δk,Tk)=(Cm,k,αm,k,βm,k,Δm,k,Tm,k),\displaystyle\left(C_{k}^{-},\alpha_{k}^{-},\beta_{k}^{-},\Delta_{k}^{-},T_{k}^{-}\right)=(C_{m,k},\alpha_{m,k},\beta_{m,k},\Delta_{m,k},T_{m,k}),
(Ck+,αk+,βk+,Δk+,Tk+)=(Cp,k,αp,k,βp,k,Δp,k,Tp,k)\displaystyle\left(C_{k}^{+},\alpha_{k}^{+},\beta_{k}^{+},\Delta_{k}^{+},T_{k}^{+}\right)=(C_{p,k},\alpha_{p,k},\beta_{p,k},\Delta_{p,k},T_{p,k})

for k=0,1n1k=0,1\dots n-1. Then, the coin matrices become

Cx={Cp,rx,x0,Cm,rx,x<0,C_{x}=\begin{cases}C_{p,r_{x}},&x\geq 0,\\ C_{m,r_{x}},&x<0,\end{cases}

where rx=x(modn){0,,n1}r_{x}=x\ (\bmod\ n)\in\{0,\dotsc,n-1\}. We get analytical results for this model with n=2n=2. From Theorem 2.3, eiλσ(U)e^{i\lambda}\in\sigma(U) if and only if followings hold:

(1)(cos(2λΔm,0Δm,1)+(βm,0βm,1¯))2|αm,0|2|αm,1|2>0,\displaystyle(1)\ \left(\cos(2\lambda-\Delta_{m,0}-\Delta_{m,1})+\Re\left(\beta_{m,0}\overline{\beta_{m,1}}\right)\right)^{2}-|\alpha_{m,0}|^{2}|\alpha_{m,1}|^{2}>0,
(cos(2λΔp,0Δp,1)+(βp,0βp,1¯))2|αp,0|2|αp,1|2>0,\displaystyle\ \ \ \ \ \left(\cos(2\lambda-\Delta_{p,0}-\Delta_{p,1})+\Re\left(\beta_{p,0}\overline{\beta_{p,1}}\right)\right)^{2}-|\alpha_{p,0}|^{2}|\alpha_{p,1}|^{2}>0,
(2)ker(Tp,1Tp,0ζp<)ker(Tm,1Tm,0ζm>){𝟎}.\displaystyle(2)\ \ker\left(T_{p,1}T_{p,0}-\zeta_{p}^{<}\right)\cap\ker\left(T_{m,1}T_{m,0}-\zeta_{m}^{>}\right)\neq\{\mathbf{0}\}.
Proposition 3.3.

Let βm,1=βp,1=0,βm,0=βm,βp,0=βp,Δp,1=Δm,1=Δ1,Δp,0=Δm,0=Δ0\displaystyle\beta_{m,1}=\beta_{p,1}=0,\ \beta_{m,0}=\beta_{m},\ \beta_{p,0}=\beta_{p},\ \Delta_{p,1}=\Delta_{m,1}=\Delta_{1},\ \Delta_{p,0}=\Delta_{m,0}=\Delta_{0}, Then, σ(U)\sigma(U)\neq\emptyset if and only if (βmβp¯)<|βm|2\Re\left(\beta_{m}\overline{\beta_{p}}\right)<|\beta_{m}|^{2} and (βmβp¯)<|βp|2\Re\left(\beta_{m}\overline{\beta_{p}}\right)<|\beta_{p}|^{2} and σ(U)\sigma(U) becomes

σ(U)={{±eiλ,±ieiλ},(βmβp¯)<0,{±eiλ+,±ieiλ+},(βmβp¯)>0,\sigma(U)=\begin{cases}\left\{\pm e^{i\lambda_{-}},\pm ie^{i\lambda_{-}}\right\},&\mathfrak{I}\left(\beta_{m}\overline{\beta_{p}}\right)<0,\\ \left\{\pm e^{i\lambda_{+}},\pm ie^{i\lambda_{+}}\right\},&\mathfrak{I}\left(\beta_{m}\overline{\beta_{p}}\right)>0,\end{cases}

where

eiλ±=eiΔ0+Δ12(B+±iB),B±=|βmβp|±|βpβm|22(βmβp¯)2|βmβp|.e^{i\lambda_{\pm}}=e^{i\frac{\Delta_{0}+\Delta_{1}}{2}}\left(\sqrt{B_{+}}\pm i\sqrt{B_{-}}\right),\ B_{\pm}=\frac{|\beta_{m}-\beta_{p}|\pm\sqrt{|\beta_{p}-\beta_{m}|^{2}-\Im^{2}\left(\beta_{m}\overline{\beta_{p}}\right)}}{2|\beta_{m}-\beta_{p}|}.

The example of Proposition 3.3 is shown in Figure 2.

Refer to caption
(a) Eigenvalues of UU
Refer to caption
(b) Probability distribution
Figure 2: The example of Proposition 3.3 with parameters Δ0=π2,Δ1=π2,βm=12eπ4i,αp,0=αm,0=βp=12,αp,1=αm,1=1\Delta_{0}=\frac{\pi}{2},\ \Delta_{1}=-\frac{\pi}{2},\ \beta_{m}=\frac{1}{\sqrt{2}}e^{\frac{\pi}{4}i},\ \alpha_{p,0}=\alpha_{m,0}=\beta_{p}=\frac{1}{\sqrt{2}},\ \alpha_{p,1}=\alpha_{m,1}=1. (a) illustrates the eigenvalues of the time evolution operator. (b) shows the probability distribution at time t=70t=70 (gray line) and the time-averaged limit distribution calculated from (3) (bold black line). Here, the initial state is given as Ψ0(0)=[12,12]T\Psi_{0}(0)=[\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^{T} and Ψ0(x)=𝟎\Psi_{0}(x)=\mathbf{0} for x0x\neq 0
Proposition 3.4.

Let Δp,0=Δm,0=Δ0,Δp,1=Δm,1=Δ1,βm,0=βm,1=βm,βp,0=βp,1=βp\displaystyle\Delta_{p,0}=\Delta_{m,0}=\Delta_{0},\ \Delta_{p,1}=\Delta_{m,1}=\Delta_{1},\ \beta_{m,0}=\beta_{m,1}=\beta_{m},\ \beta_{p,0}=\beta_{p,1}=\beta_{p}, Then, σ(U)\sigma(U)\neq\emptyset if and only if (βmβp¯)<|βm|2\Re\left(\beta_{m}\overline{\beta_{p}}\right)<|\beta_{m}|^{2} and (βmβp¯)<|βp|2\Re\left(\beta_{m}\overline{\beta_{p}}\right)<|\beta_{p}|^{2}. In this case,

σ(U)={±eiλ},\sigma(U)=\left\{\pm e^{i\lambda}\right\},

where

eiλ=eiΔ0+Δ12|βpβm|22(βmβp¯)+i(βmβp¯)|βmβp|.e^{i\lambda}=e^{i\frac{\Delta_{0}+\Delta_{1}}{2}}\frac{\sqrt{|\beta_{p}-\beta_{m}|^{2}-\Im^{2}\left(\beta_{m}\overline{\beta_{p}}\right)}+i\mathfrak{I}\left(\beta_{m}\overline{\beta_{p}}\right)}{|\beta_{m}-\beta_{p}|}.

The example of Proposition 3.4, is shown in Figure 3.

Refer to caption
(a) Eigenvalues of UU
Refer to caption
(b) Probability distribution
Figure 3: The example of Proposition 3.4 with parameters Δ0=π2,Δ1=π2,βm=12eπ4i,βp=12\Delta_{0}=\frac{\pi}{2},\ \Delta_{1}=-\frac{\pi}{2},\ \beta_{m}=\frac{1}{\sqrt{2}}e^{\frac{\pi}{4}i},\beta_{p}=\frac{1}{\sqrt{2}}. (a) illustrates the eigenvalues of the time evolution operator. (b) shows the probability distribution at time t=70t=70 (gray line) and the time-averaged limit distribution calculated from (3) (bold black line). Here, the initial state is given as Ψ0(0)=[12,12]T\Psi_{0}(0)=[\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}]^{T} and Ψ0(x)=𝟎\Psi_{0}(x)=\mathbf{0} for x0x\neq 0.

4 Summary

In previous studies [15, 14], the eigenvalue analysis using a transfer matrix was performed for a model with homogeneous coin matrices in positions sufficiently far to the left and right, respectively, which include one-defect and two-phase models. This study focuses on the eigenvalue problem for a more generalized model in which the coin matrices are arranged periodically in positions sufficiently far to the left and right, respectively. Theorem 2.3 is the main theorem, and it successfully provides the necessary and sufficient conditions for the eigenvalue problem. Furthermore, we showed in Lemma 2.4 that the model has at most a finite number of eigenvalues with the multiplicity of 1, and we further discussed about the analytical formulation of the time-averaged limit distribution. Based on the main theorem, we considered the more specific models, which can be seen as generalizations of homogeneous, one-defect, and two-phase models. Proposition 3.1 showed that if periodic coin matrices are arranged homogeneously, the model does not exhibit localization. Finally, Propositions 3.2, 3.3 and 3.4 derived the concrete eigenvalues for specific models with periodicity 2.

For future research, further analysis using the transfer matrix for more general or different types of models, such as higher-dimensional and split-step [18] quantum walks, would be interesting.

Acknowledgements

The author expresses sincere thanks and gratitude to Kei Saito for helpful comments and discussion.

References

  • [1] Andris Ambainis et al. “One-dimensional quantum walks” In Proceedings of the thirty-third annual ACM symposium on Theory of computing Hersonissos, Greece: Association for Computing Machinery, 2001, pp. 37–49
  • [2] Norio Konno “Quantum Random Walks in One Dimension” In Quantum Inf. Process. 1.5, 2002, pp. 345–354
  • [3] Andrew M Childs and Jeffrey Goldstone “Spatial search by quantum walk” In Phys. Rev. A 70.2 American Physical Society, 2004, pp. 022314
  • [4] Andrew M Childs “Universal computation by quantum walk” In Phys. Rev. Lett. 102.18, 2009, pp. 180501
  • [5] Neil B Lovett et al. “Universal quantum computation using the discrete-time quantum walk” In Phys. Rev. A 81.4, 2010, pp. 042330
  • [6] Andrew M Childs, David Gosset and Zak Webb “Universal computation by multiparticle quantum walk” In Science 339.6121, 2013, pp. 791–794
  • [7] P R N Falcão et al. “Universal dynamical scaling laws in three-state quantum walks” quant-ph/2108.10275
  • [8] Takuya Machida “Limit theorems of a 3-state quantum walk and its application for discrete uniform measures” In Quantum Inf. Comput. 15.5&6, 2015, pp. 406–418
  • [9] M J Cantero, F A Grünbaum, L Moral and L Velázquez “The CGMV method for quantum walks” In Quantum Inf. Process. 11.5 Springer ScienceBusiness Media LLC, 2012, pp. 1149–1192
  • [10] Shimpei Endo, Takako Endo, Takashi Komatsu and Norio Konno “Eigenvalues of Two-State Quantum Walks Induced by the Hadamard Walk” In Entropy 22.1, 2020, pp. 127
  • [11] Norio Inui and Norio Konno “Localization of multi-state quantum walk in one dimension” In Phys. A: Stat. Mech. Appl. 353, 2005, pp. 133–144
  • [12] Etsuo Segawa and Akito Suzuki “Generator of an abstract quantum walk” In Quantum Stud.: Math. Found. 3.1, 2016, pp. 11–30
  • [13] Antoni Wójcik et al. “Trapping a particle of a quantum walk on the line” In Phys. Rev. A 85.1 American Physical Society, 2012, pp. 012329
  • [14] Chusei Kiumi and Kei Saito “Strongly trapped space-inhomogeneous quantum walks in one dimension” math-ph/2105.10962
  • [15] Chusei Kiumi and Kei Saito “Eigenvalues of two-phase quantum walks with one defect in one dimension” In Quantum Inf. Process. 20.5 Springer ScienceBusiness Media LLC, 2021, pp. 171
  • [16] Neil Shenvi, Julia Kempe and K Birgitta Whaley “Quantum random-walk search algorithm” In Phys. Rev. A 67.5 American Physical Society, 2003, pp. 052307
  • [17] Andris Ambainis, Julia Kempe and Alexander Rivosh “Coins make quantum walks faster” In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms Vancouver, British Columbia: Society for IndustrialApplied Mathematics, 2005, pp. 1099–1108
  • [18] Takuya Kitagawa, Mark S Rudner, Erez Berg and Eugene Demler “Exploring topological phases with quantum walks” In Phys. Rev. A 82.3 American Physical Society, 2010, pp. 033429
  • [19] Takako Endo, Norio Konno and Hideaki Obuse “Relation between two-phase quantum walks and the topological invariant” In Yokohama Math. J. 64, 2020
  • [20] Hikari Kawai, Takashi Komatsu and Norio Konno “Stationary measure for two-state space-inhomogeneous quantum walk in one dimension” In Yokohama Math. J. 64, 2018, pp. 111–130
  • [21] Hikar Kawai, Takashi Komatsu and Noriko Konno “Stationary measures of three-state quantum walks on the one-dimensional lattice” In Yokohama Math. J. 63, 2017, pp. 59–74
  • [22] Chusei Kiumi “Eigenvalues of two-phase three-state quantum walks with one defect” math-ph/2111.14300
  • [23] Noah Linden and James Sharam “Inhomogeneous quantum walks” In Phys. Rev. A 80.5 APS, 2009, pp. 052327
  • [24] Rashid Ahmad, Uzma Sajjad and Muhammad Sajid “One-dimensional quantum walks with a position-dependent coin” In Commun. Math. Phys. 72.6 IOP Publishing, 2020, pp. 065101
  • [25] Yutaka Shikano and Hosho Katsura “Localization and fractality in inhomogeneous quantum walks with self-duality” In Phys. Rev. E 82 American Physical Society, 2010, pp. 031122
  • [26] S Aubry and G André “Analyticity breaking and Anderson localization in incommensurate lattices” In Ann. Israel Phys. Soc. 3, 1980, pp. 18
  • [27] Takako Endo and Norio Konno “The stationary measure of a space-inhomogeneous quantum walk on the line” In Yokohama Math. J. 60, 2014, pp. 33–47
  • [28] Caishi Wang, Xiangying Lu and Wenling Wang “The stationary measure of a space-inhomogeneous three-state quantum walk on the line” In Quantum Inf. Process. 14.3 Springer ScienceBusiness Media LLC, 2015, pp. 867–880
  • [29] Takako Endo, Takashi Komatsu, Norio Konno and Tomoyuki Terada “Stationary measure for three-state quantum walk” In Quantum Inf. Comput. 19.11&12 Rinton Press, 2019, pp. 901–912
  • [30] Takuya Machida and Norio Konno “Limit Theorem for a Time-Dependent Coined Quantum Walk on the Line” In Natural Computing Springer Japan, 2010, pp. 226–235