This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Local well-posedness for the Schrödinger-KdV system in Hs1×Hs2H^{s_{1}}\times H^{s_{2}}, II

Yingzhe Ban The Graduate School of China Academy of Engineering Physics, Beijing, 100088, P.R. China Jie Chen School of Sciences, Jimei University, Xiamen 361021, P.R. China Ying Zhang Academy of Mathematics and Systems Science, CAS, Beijing 100190, P.R. China The Graduate School of China Academy of Engineering Physics, Beijing, 100088, P.R. China
Abstract

In this paper, we continue the study of the local well-posedness theory for the Schrödinger-KdV system in the Sobolev space Hs1×Hs2H^{s_{1}}\times H^{s_{2}}. We show the local well-posedness in H3/16×H3/4H^{-3/16}\times H^{-3/4} for β=0\beta=0. Combining our work [2], we also have the local well-posedness for max{3/4,s13}s2min{4s1,s1+2}\max\{-3/4,s_{1}-3\}\leq s_{2}\leq\min\{4s_{1},s_{1}+2\}. The result is sharp by using the contraction mapping argument.

1 Introduction

We study the Cauchy problem for Schrödinger-KdV system

{itu+xxu=αuv+β|u|2u,tv+xxxv=x(γ|u|2v2/2),(u,v)|t=0=(u0,v0)Hs1×Hs2.\left\{\begin{aligned} &i\partial_{t}u+\partial_{xx}u=\alpha uv+\beta|u|^{2}u,\\ &\partial_{t}v+\partial_{xxx}v=\partial_{x}(\gamma|u|^{2}-v^{2}/2),\\ &(u,v)|_{t=0}=(u_{0},v_{0})\in H^{s_{1}}\times H^{s_{2}}.\end{aligned}\right. (S-KdV)

In this paper we concern the local well-posedness theory for (S-KdV) with β=0\beta=0. The constants α,γ0\alpha,\gamma\neq 0 in the model is not essential. We would assume α=γ=1\alpha=\gamma=1 for brevity.

This model appears in the study of resonant interaction between solitary wave of Langmuir and solitary wave of ion-acoustic. See Appert-Vaclavik [1]. It also appears in plasma physics and a diatomic lattice system. See [6, 4] and reference therein.

We recall some early results for this model. Tsutsumi showed the well-posedness in Hs+1/2×HsH^{s+1/2}\times H^{s}, ss\in\mathbb{N} in [9]. In [5], Guo–Miao showed the well-posedness in Hs×HsH^{s}\times H^{s}, ss\in\mathbb{N}. Guo–Wang [6] obtained the well-posedness in Hs1×H3/4H^{s_{1}}\times H^{-3/4}, s1>1/16s_{1}>-1/16 and Wang–Cui showed the well-posedness in Hs1×H3/4H^{s_{1}}\times H^{-3/4}, s1>3/16s_{1}>-3/16 in [11] . See also [3, 4, 2] for other results.

In this paper, we obtain the following result.

Theorem 1.1.

(S-KdV) is local well-posed in H3/16×H3/4H^{-3/16}\times H^{-3/4}.

In fact combining the results in our work [2] we have

Corollary 1.2.

(S-KdV) is local well-posed in Hs1×Hs2H^{s_{1}}\times H^{s_{2}} for

max{3/4,s13}s2min{4s1,s1+2}.\max\{-3/4,s_{1}-3\}\leq s_{2}\leq\min\{4s_{1},s_{1}+2\}.

Recall the proof of Theorem 1.1 in [2] one has

Theorem 1.3.

The data-to-solution mapping of (S-KdV) can not be C2C^{2} except max{3/4,s13}s2min{4s1,s1+2}\max\{-3/4,s_{1}-3\}\leq s_{2}\leq\min\{4s_{1},s_{1}+2\}.

Thus it is reasonable to say than our local well-posedness result is sharp by using contraction mapping argument.

To show the local well-posedness in H3/16×H3/4H^{-3/16}\times H^{-3/4}, there are two difficulties which come from the terms x(|u|2)\partial_{x}(|u|^{2}) and x(v2)\partial_{x}(v^{2}). In some sense, H3/16×H3/4H^{-3/16}\times H^{-3/4} is the “double critical” space for this model. We need some techniques that are different from before.

The paper is organized as follows. In Section 2, we rewrite (S-KdV) into a new form and construct the workspace. Then we show linear estimates, bilinear estimates related the Schrödinger equation, and tirlinear estimate related the KdV equation. In Section 3, we estimate F[u0]F[u_{0}] (see the definition (2.1)). In Section 4, we give some refinement for the bilinear estimates related to the KdV equation and finally conclude the proof.

Notations. . For a,b+a,b\in\mathbb{R}^{+}, aba\lesssim b means that there exists C>0C>0 such that aCba\leq Cb and aba\sim b means abaa\lesssim b\lesssim a where CC is a constant. We use ξ\langle\xi\rangle to denote (1+ξ2)1/2(1+\xi^{2})^{1/2}. Let φ\varphi be an even, smooth function and φ|[1,1]=0\varphi|_{[-1,1]}=0, φ|[2,2]c=0\varphi|_{[-2,2]^{c}}=0. φN=φ(/N)\varphi_{N}=\varphi(\cdot/N), ψN=φNφN/2\psi_{N}=\varphi_{N}-\varphi_{N/2}. We use inhomogeneous Littlewood-Paley projection: PN:=1ψNP_{N}:=\mathscr{F}^{-1}\psi_{N}\mathscr{F}, N2N\geq 2; P1=1φP_{1}=\mathscr{F}^{-1}\varphi\mathscr{F}; P>N=M>NPMP_{>N}=\sum_{M>N}P_{M}, etc.etc.. We always use N,LN,L to denote a dyadic number larger than 11.

Let Sλ(t)=eiλtxx,K(t)=etxxxS_{\lambda}(t)=e^{i\lambda t\partial_{xx}},K(t)=e^{-t\partial_{xxx}},

𝒜λ(f):=iλ0tSλ(ts)f(s)𝑑s,(f):=0tK(ts)xf(s)ds.\mathscr{A}_{\lambda}(f):=i\lambda\int_{0}^{t}S_{\lambda}(t-s)f(s)~{}ds,\quad\mathscr{B}(f):=\int_{0}^{t}K(t-s)\partial_{x}f(s)~{}ds.

We always assume 0<λ10<\lambda\ll 1 in this paper. We define the modulation decomposition QLSλQ^{S_{\lambda}}_{L}, QLKQ_{L}^{K} by τ,ξ1ψL(τ+λξ2)t,x\mathscr{F}^{-1}_{\tau,\xi}\psi_{L}(\tau+\lambda\xi^{2})\mathscr{F}_{t,x}, τ,ξ1ψL(τξ3)t,x\mathscr{F}^{-1}_{\tau,\xi}\psi_{L}(\tau-\xi^{3})\mathscr{F}_{t,x} respectively. Similarly, we define Q>LSλQ_{>L}^{S_{\lambda}}, Q>LKQ_{>L}^{K}, Q1SλQ_{1}^{S_{\lambda}}, and Q1KQ_{1}^{K}.

2 Function spaces and multilinear estimates

To show the well-posedness of (S-KdV) with s2=3/4s_{2}=-3/4, we use the argument in [6]. By rescaling, we consider the equation

{itu+λxxu=λuv,tv+xxxv=x(|u|2v2),(u,v)|t=0=(u0,λ,v0,λ)H3/16×H3/4\left\{\begin{aligned} &i\partial_{t}u+\lambda\partial_{xx}u=\lambda uv,\\ &\partial_{t}v+\partial_{xxx}v=\partial_{x}(|u|^{2}-v^{2}),\\ &(u,v)|_{t=0}=(u_{0,\lambda},v_{0,\lambda})\in H^{-3/16}\times H^{-3/4}\end{aligned}\right.

where 0<λ10<\lambda\ll 1, u0,λH3/16λ21/16\|u_{0,\lambda}\|_{H^{-3/16}}\lesssim\lambda^{21/16}, v0,λH3/4λ3/4\|v_{0,\lambda}\|_{H^{3/4}}\lesssim\lambda^{3/4}. Recall the definition of UpVpU^{p}-V^{p} spaces in [7]. We define

uXλ=N3/16PNulN2USλ2,vY=P1vLx2Lt+N3/4PNvlN22UK2.\|u\|_{X_{\lambda}}=\|N^{-3/16}P_{N}u\|_{l^{2}_{N}U^{2}_{S_{\lambda}}},~{}~{}\|v\|_{Y}=\|P_{1}v\|_{L_{x}^{2}L_{t}^{\infty}}+\|N^{-3/4}P_{N}v\|_{l^{2}_{N\geq 2}U^{2}_{K}}.

For the brevity, we still denote (u0,λ,v0,λ)(u_{0,\lambda},v_{0,\lambda}) by (u0,v0)(u_{0},v_{0}). The corresponding integral equation is

{u(t)=Sλ(t)u0𝒜λ(uv)(t),v(t)=K(t)v0+(|u|2v2)(t).\left\{\begin{aligned} u(t)&=S_{\lambda}(t)u_{0}-\mathscr{A}_{\lambda}(uv)(t),\\ v(t)&=K(t)v_{0}+\mathscr{B}(|u|^{2}-v^{2})(t).\end{aligned}\right.

We replace the function uu in second equation with the first one and obtain

{u(t)=Sλ(t)u0i𝒜λ(uv)(t),v(t)=K(t)v0+(|Sλ(t)u0𝒜λ(uv)|2v2)(t).\left\{\begin{aligned} u(t)&=S_{\lambda}(t)u_{0}-i\mathscr{A}_{\lambda}(uv)(t),\\ v(t)&=K(t)v_{0}+\mathscr{B}(|S_{\lambda}(t)u_{0}-\mathscr{A}_{\lambda}(uv)|^{2}-v^{2})(t).\end{aligned}\right.

Let η,η~C0\eta,\tilde{\eta}\in C_{0}^{\infty} with η|[1,1]=1\eta|_{[-1,1]}=1, η~|supp(η)=1\tilde{\eta}|_{\mathrm{supp}(\eta)}=1. Define

F[u0](t):=η(t)(|Sλ(t)u0|2)(t).F[u_{0}](t):=\eta(t)\mathscr{B}(|S_{\lambda}(t)u_{0}|^{2})(t). (2.1)

In fact we can not show F[u0]YF[u_{0}]\in Y. Let w(t)=v(t)F[u0](t)w(t)=v(t)-F[u_{0}](t). We consider the equation

{u(t)=ηSλ(t)u0η𝒜λ(u(w+F[u0]))(t),w(t)=ηK(t)v0η((w+F[u0])2)(t)+η(Tλ(u,w,u0))(t)\left\{\begin{aligned} u(t)&=\eta S_{\lambda}(t)u_{0}-\eta\mathscr{A}_{\lambda}(u(w+F[u_{0}]))(t),\\ w(t)&=\eta K(t)v_{0}-\eta\mathscr{B}((w+F[u_{0}])^{2})(t)+\eta\mathscr{B}(T_{\lambda}(u,w,u_{0}))(t)\end{aligned}\right. (2.2)

where Tλ(u,w,u0)=2Im(𝒜λ(u(w+F[u0]))Sλ(t)u0¯)|𝒜λ(u(w+F[u0]))|2T_{\lambda}(u,w,u_{0})=2\mathrm{Im}(\mathscr{A}_{\lambda}(u(w+F[u_{0}]))\overline{S_{\lambda}(t)u_{0}})-|\mathscr{A}_{\lambda}(u(w+F[u_{0}]))|^{2}. Define

vZ:=P1vLx2Lt+N3/4PNvlN22VK2+N1/4PNvlN2LxLt2.\|v\|_{Z}:=\|P_{\lesssim 1}v\|_{L_{x}^{2}L_{t}^{\infty}}+\|N^{-3/4}P_{N}v\|_{l^{2}_{N\geq 2}V^{2}_{K}}+\|N^{1/4}P_{N}v\|_{l^{2}_{N}L_{x}^{\infty}L_{t}^{2}}. (2.3)

Note that for vv supported on [0,1]×[0,1]\times\mathbb{R}, vZvY\|v\|_{Z}\lesssim\|v\|_{Y} by Strichartz, maximal function, and local smoothing estimates. We would show F[u0]ZF[u_{0}]\in Z in Section 3.

Directly, one has the following estimates due to the maximal function estimate and the definition of U2U^{2}.

Lemma 2.1.

ηSλ(t)u0Xλu0H3/16\|\eta S_{\lambda}(t)u_{0}\|_{X_{\lambda}}\lesssim\|u_{0}\|_{H^{-3/16}}, ηK(t)v0Yv0H3/4\|\eta K(t)v_{0}\|_{Y}\lesssim\|v_{0}\|_{H^{-3/4}}.

Then, we show the bilinear estimate related to the Schrödinger equation.

Lemma 2.2.

η𝒜λ(uv)Xλλ1/2uXλvZ\|\eta\mathscr{A}_{\lambda}(uv)\|_{X_{\lambda}}\lesssim\lambda^{1/2}\|u\|_{X_{\lambda}}\|v\|_{Z}.

Proof..

Firstly, for low frequency part of vv we have

|2PN(uP1v)η~2w¯𝑑x𝑑t|\displaystyle\left|\int_{\mathbb{R}^{2}}P_{N}(uP_{1}v)\tilde{\eta}^{2}\bar{w}~{}dxdt\right| N1Nη~PN1uLxLt2P1vLx2Ltη~wLt,x2\displaystyle\lesssim\sum_{N_{1}\sim N}\|\tilde{\eta}P_{N_{1}}u\|_{L_{x}^{\infty}L_{t}^{2}}\|P_{1}v\|_{L_{x}^{2}L_{t}^{\infty}}\|\tilde{\eta}w\|_{L_{t,x}^{2}} (2.4)
(λN)1/2N1NPN1uUSλ2vZwVSλ2.\displaystyle\lesssim(\lambda N)^{-1/2}\sum_{N_{1}\sim N}\|P_{N_{1}}u\|_{U^{2}_{S_{\lambda}}}\|v\|_{Z}\|w\|_{V^{2}_{S_{\lambda}}}.

By duality one has

η𝒜λ(uP1v)Xλ\displaystyle\|\eta\mathscr{A}_{\lambda}(uP_{1}v)\|_{X_{\lambda}} λNN3/16(λN)1/2N1NPN1uUSλ2vZ\displaystyle\lesssim\lambda\sum_{N}N^{-3/16}(\lambda N)^{-1/2}\sum_{N_{1}\sim N}\|P_{N_{1}}u\|_{U^{2}_{S_{\lambda}}}\|v\|_{Z}
λ1/2uXλvZ.\displaystyle\lesssim\lambda^{1/2}\|u\|_{X_{\lambda}}\|v\|_{Z}.

Then by triangle inequality,

η𝒜λ(uP>1v)XλNN1N22N3/16ηPN𝒜λ(PN1uPN2v)USλ2.\displaystyle\|\eta\mathscr{A}_{\lambda}(uP_{>1}v)\|_{X_{\lambda}}\leq\sum_{N}\sum_{N_{1}}\sum_{N_{2}\geq 2}N^{-3/16}\|\eta P_{N}\mathscr{A}_{\lambda}(P_{N_{1}}uP_{N_{2}}v)\|_{U^{2}_{S_{\lambda}}}.

If N22λN1N_{2}^{2}\nsim\lambda N_{1}, for τ1+τ2=τ\tau_{1}+\tau_{2}=\tau, ξ1+ξ2=ξ\xi_{1}+\xi_{2}=\xi, |ξ1|N1|\xi_{1}|\sim N_{1}, |ξ2|N2|\xi_{2}|\sim N_{2}, |ξ|N|\xi|\sim N we have

|τ1+λξ12|+|τ2ξ23|+|τ+λξ2|N2max{N22,λN1}.\displaystyle|\tau_{1}+\lambda\xi_{1}^{2}|+|\tau_{2}-\xi^{3}_{2}|+|\tau+\lambda\xi^{2}|\gtrsim N_{2}\max\{N_{2}^{2},\lambda N_{1}\}.

Let L=cN2max{N22,λN1}L=cN_{2}\max\{N_{2}^{2},\lambda N_{1}\}. Typically we need to estimate

I\displaystyle I =2Q>LSλPN1uPN2vPNw¯𝑑x𝑑t,\displaystyle=\int_{\mathbb{R}^{2}}Q_{>L}^{S_{\lambda}}P_{N_{1}}uP_{N_{2}}vP_{N}\bar{w}~{}dxdt,
II\displaystyle II =2PN1uQ>LKPN2vPNw¯𝑑x𝑑t\displaystyle=\int_{\mathbb{R}^{2}}P_{N_{1}}uQ_{>L}^{K}P_{N_{2}}vP_{N}\bar{w}~{}dxdt

where u,v,wu,v,w are supported on [1,1]×[-1,1]\times\mathbb{R}. By the Strichartz estimate one has

uLt,x6λ1/6uUSλ2λ1/6uVSλ2,uLt,x2uLtLx2uVSλ2.\|u\|_{L_{t,x}^{6}}\lesssim\lambda^{-1/6}\|u\|_{U^{2}_{S_{\lambda}}}\lesssim\lambda^{-1/6}\|u\|_{V^{2}_{S_{\lambda}}},~{}\|u\|_{L_{t,x}^{2}}\lesssim\|u\|_{L_{t}^{\infty}L_{x}^{2}}\lesssim\|u\|_{V^{2}_{S_{\lambda}}}.

Thus uLt,x4uLt,x63/4uLt,x21/4λ1/8uVSλ2\|u\|_{L_{t,x}^{4}}\leq\|u\|_{L_{t,x}^{6}}^{3/4}\|u\|_{L_{t,x}^{2}}^{1/4}\lesssim\lambda^{-1/8}\|u\|_{V^{2}_{S_{\lambda}}}. Similarly,

PN2vLt,x4N21/8vVK2,PNwLt,x4λ1/8wVK2.\|P_{N_{2}}v\|_{L_{t,x}^{4}}\lesssim N_{2}^{-1/8}\|v\|_{V^{2}_{K}},\quad\|P_{N}w\|_{L_{t,x}^{4}}\lesssim\lambda^{-1/8}\|w\|_{V^{2}_{K}}.

By the Hölder inequality we have

|I|\displaystyle|I| Q>LSλPN1uLt,x2PN2vLt,x4PNwLt,x4\displaystyle\lesssim\|Q_{>L}^{S_{\lambda}}P_{N_{1}}u\|_{L_{t,x}^{2}}\|P_{N_{2}}v\|_{L_{t,x}^{4}}\|P_{N}w\|_{L_{t,x}^{4}}
L1/2λ1/8uVSλ2N21/8vVK2wVK2\displaystyle\lesssim L^{-1/2}\lambda^{-1/8}\|u\|_{V^{2}_{S_{\lambda}}}N_{2}^{-1/8}\|v\|_{V^{2}_{K}}\|w\|_{V^{2}_{K}}
λ1/8N25/8max{N22,λN1}1/2uUSλ2vVK2wVK2.\displaystyle\lesssim\lambda^{-1/8}N_{2}^{-5/8}\max\{N_{2}^{2},\lambda N_{1}\}^{-1/2}\|u\|_{U^{2}_{S_{\lambda}}}\|v\|_{V^{2}_{K}}\|w\|_{V^{2}_{K}}.

Also,

|II|λ1/4N21/2max{N22,λN1}1/2uUSλ2vVK2wVK2.\displaystyle|II|\lesssim\lambda^{-1/4}N_{2}^{-1/2}\max\{N_{2}^{2},\lambda N_{1}\}^{-1/2}\|u\|_{U^{2}_{S_{\lambda}}}\|v\|_{V^{2}_{K}}\|w\|_{V^{2}_{K}}.

Thus by the duality one has

ηPN𝒜λ(PN1uPN2v)USλ2\displaystyle\quad\|\eta P_{N}\mathscr{A}_{\lambda}(P_{N_{1}}uP_{N_{2}}v)\|_{U^{2}_{S_{\lambda}}} (2.5)
λλ1/4N21/2max{N22,λN1}1/2PN1uUSλ2PN2vVK2\displaystyle\lesssim\lambda\lambda^{-1/4}N_{2}^{-1/2}\max\{N_{2}^{2},\lambda N_{1}\}^{-1/2}\|P_{N_{1}}u\|_{U^{2}_{S_{\lambda}}}\|P_{N_{2}}v\|_{V^{2}_{K}}
λ3/4N13/16N21/4max{N22,λN1}1/2uXλvZ.\displaystyle\lesssim\lambda^{3/4}N_{1}^{3/16}N_{2}^{1/4}\max\{N_{2}^{2},\lambda N_{1}\}^{-1/2}\|u\|_{X_{\lambda}}\|v\|_{Z}.

Let Nmax,NmedN_{\max},N_{\mathrm{med}} be the maximum, medium of N1,N2,NN_{1},N_{2},N. Note that

NmaxNmedN3/16λ3/4N13/16N21/4max{N22,λN1}1/2λ3/4logλ1.\sum_{N_{\max}\sim N_{\mathrm{med}}}N^{-3/16}\lambda^{3/4}N_{1}^{3/16}N_{2}^{1/4}\max\{N_{2}^{2},\lambda N_{1}\}^{-1/2}\lesssim\lambda^{3/4}\log\lambda^{-1}.

Thus we obtain

N22,N22λN1,N1,NN3/16ηPN𝒜λ(PN1uPN2v)USλ2logλ1λ3/4uXλvZ.\sum_{N_{2}\geq 2,N_{2}^{2}\nsim\lambda N_{1},N_{1},N}N^{-3/16}\|\eta P_{N}\mathscr{A}_{\lambda}(P_{N_{1}}uP_{N_{2}}v)\|_{U^{2}_{S_{\lambda}}}\lesssim\frac{\log\lambda^{-1}}{\lambda^{-3/4}}\|u\|_{X_{\lambda}}\|v\|_{Z}.

If N22λN1λNN_{2}^{2}\sim\lambda N_{1}\sim\lambda N, by Lemma 4.12, (4.8) in [2], we have

|2PN1uPN2vPNw¯𝑑x𝑑t|N21uUSλ2vUK2wUSλ2.\displaystyle\left|\int_{\mathbb{R}^{2}}P_{N_{1}}uP_{N_{2}}vP_{N}\bar{w}~{}dxdt\right|\lesssim N_{2}^{-1}\|u\|_{U^{2}_{S_{\lambda}}}\|v\|_{U^{2}_{K}}\|w\|_{U^{2}_{S_{\lambda}}}.

On the other hand, by Hölder’s inequality and Strichartz estimates, one has

|2PN1uPN2vPNw¯𝑑x𝑑t|\displaystyle\left|\int_{\mathbb{R}^{2}}P_{N_{1}}uP_{N_{2}}vP_{N}\bar{w}~{}dxdt\right| uLt,x3PN2vLt,x3wLt,x3\displaystyle\lesssim\|u\|_{L_{t,x}^{3}}\|P_{N_{2}}v\|_{L_{t,x}^{3}}\|w\|_{L_{t,x}^{3}}
uLt12Lx3PN2vLt12Lx3wLt12Lx3\displaystyle\lesssim\|u\|_{L_{t}^{12}L_{x}^{3}}\|P_{N_{2}}v\|_{L_{t}^{12}L_{x}^{3}}\|w\|_{L_{t}^{12}L_{x}^{3}}
λ1/6N21/12uUSλ12vUK12wUSλ12.\displaystyle\lesssim\lambda^{-1/6}N_{2}^{-1/12}\|u\|_{U^{12}_{S_{\lambda}}}\|v\|_{U^{12}_{K}}\|w\|_{U^{12}_{S_{\lambda}}}.

Then by the interpolation (cf. Proposition 2.20 in [7]), we have

|2PN1uPN2vPNw¯𝑑x𝑑t|N21λ1/6(logN2)3uUSλ2vVK2wVSλ2.\displaystyle\left|\int_{\mathbb{R}^{2}}P_{N_{1}}uP_{N_{2}}vP_{N}\bar{w}~{}dxdt\right|\lesssim N_{2}^{-1}\lambda^{-1/6}(\log N_{2})^{3}\|u\|_{U^{2}_{S_{\lambda}}}\|v\|_{V^{2}_{K}}\|w\|_{V^{2}_{S_{\lambda}}}.

By the duality one has

ηPN𝒜λ(PN1uPN2v)USλ2\displaystyle\|\eta P_{N}\mathscr{A}_{\lambda}(P_{N_{1}}uP_{N_{2}}v)\|_{U^{2}_{S_{\lambda}}} λN21λ1/6(logN2)3PN1uUSλ2PN2vVK2\displaystyle\lesssim\lambda N_{2}^{-1}\lambda^{-1/6}(\log N_{2})^{3}\|P_{N_{1}}u\|_{U^{2}_{S_{\lambda}}}\|P_{N_{2}}v\|_{V^{2}_{K}} (2.6)
λ5/6N21/4N13/16(logN2)3uXλvZ.\displaystyle\lesssim\lambda^{5/6}N_{2}^{-1/4}N_{1}^{3/16}(\log N_{2})^{3}\|u\|_{X_{\lambda}}\|v\|_{Z}.

Note that

N22λN1λNN3/16N21/4N13/16λ5/6(logN2)3λ5/6.\sum_{N_{2}^{2}\sim\lambda N_{1}\sim\lambda N}N^{-3/16}N_{2}^{-1/4}N_{1}^{3/16}\lambda^{5/6}(\log N_{2})^{3}\lesssim\lambda^{5/6}.

Overall one has

NN1N22N3/16ηPN𝒜λ(PN1uPN2v)USλ2λ1/2uXλvZ.\displaystyle\quad\sum_{N}\sum_{N_{1}}\sum_{N_{2}\geq 2}N^{-3/16}\|\eta P_{N}\mathscr{A}_{\lambda}(P_{N_{1}}uP_{N_{2}}v)\|_{U^{2}_{S_{\lambda}}}\lesssim\lambda^{1/2}\|u\|_{X_{\lambda}}\|v\|_{Z}.

We finish the proof of this lemma. ∎

Next we show the trilinear estimate related to the KdV equation.

Lemma 2.3.

η(𝒜λ(uv)w¯)Yλ1/2uXλvZwXλ\|\eta\mathscr{B}(\mathscr{A}_{\lambda}(uv)\bar{w})\|_{Y}\lesssim\lambda^{-1/2}\|u\|_{X_{\lambda}}\|v\|_{Z}\|w\|_{X_{\lambda}}.

Proof.

Without loss of the generality we would assume that u,v,wu,v,w are supported on [1,1]×[-1,1]\times\mathbb{R}. For the low frequency we have

ηP1(𝒜λ(uv)w¯)Lx2Lt\displaystyle\|\eta P_{1}\mathscr{B}(\mathscr{A}_{\lambda}(uv)\bar{w})\|_{L_{x}^{2}L_{t}^{\infty}} P1(𝒜(uv)w¯)Lx2Lt1\displaystyle\lesssim\|P_{1}(\mathscr{A}(uv)\bar{w})\|_{L_{x}^{2}L_{t}^{1}}
N1N2P1(PN1𝒜λ(uv)PN2w¯)Lx2Lt1\displaystyle\lesssim\sum_{N_{1}\sim N_{2}}\|P_{1}(P_{N_{1}}\mathscr{A}_{\lambda}(uv)P_{N_{2}}\bar{w})\|_{L_{x}^{2}L_{t}^{1}}
N1N2η~PN1𝒜λ(uv)Lt,x2PN2wLxLt2\displaystyle\lesssim\sum_{N_{1}\sim N_{2}}\|\tilde{\eta}P_{N_{1}}\mathscr{A}_{\lambda}(uv)\|_{L_{t,x}^{2}}\|P_{N_{2}}w\|_{L_{x}^{\infty}L_{t}^{2}}
N1N2η~PN1𝒜λ(uv)USλ2(λN2)1/2PN2wUSλ2\displaystyle\lesssim\sum_{N_{1}\sim N_{2}}\|\tilde{\eta}P_{N_{1}}\mathscr{A}_{\lambda}(uv)\|_{U^{2}_{S_{\lambda}}}(\lambda N_{2})^{-1/2}\|P_{N_{2}}w\|_{U^{2}_{S_{\lambda}}}
λ1/2N1N2N13/16N25/16η~𝒜λ(uv)XλwXλ\displaystyle\lesssim\lambda^{-1/2}\sum_{N_{1}\sim N_{2}}N_{1}^{3/16}N_{2}^{-5/16}\|\tilde{\eta}\mathscr{A}_{\lambda}(uv)\|_{X_{\lambda}}\|w\|_{X_{\lambda}}
λ1/2η~𝒜λ(uv)XλwXλ.\displaystyle\lesssim\lambda^{-1/2}\|\tilde{\eta}\mathscr{A}_{\lambda}(uv)\|_{X_{\lambda}}\|w\|_{X_{\lambda}}.

By Lemma 2.2 we obtain

ηP1(𝒜λ(uv)w¯)Lx2LtuXλvZwXλ.\displaystyle\|\eta P_{1}\mathscr{B}(\mathscr{A}_{\lambda}(uv)\bar{w})\|_{L_{x}^{2}L_{t}^{\infty}}\lesssim\|u\|_{X_{\lambda}}\|v\|_{Z}\|w\|_{X_{\lambda}}. (2.7)

Since PNQLKvLxLt2N1L1/2PNQLKvLt,x2\|P_{N}Q_{L}^{K}v\|_{L_{x}^{\infty}L_{t}^{2}}\lesssim N^{-1}L^{1/2}\|P_{N}Q_{L}^{K}v\|_{L_{t,x}^{2}}, by the interpolation one has

PNQLKvLx2/(1θ)Lt2(N1L1/2)θPNQLKvLt,x2,0<θ<1.\|P_{N}Q_{L}^{K}v\|_{L_{x}^{2/(1-\theta)}L_{t}^{2}}\lesssim(N^{-1}L^{1/2})^{\theta}\|P_{N}Q_{L}^{K}v\|_{L^{2}_{t,x}},\quad\forall~{}0<\theta<1.

Thus (vv is supported on [1,1]×[-1,1]\times\mathbb{R})

PNvLx2/(1θ)Lt2\displaystyle\|P_{N}v\|_{L_{x}^{2/(1-\theta)}L_{t}^{2}} L(N1L1/2)θPNQLKvLt,x2\displaystyle\lesssim\sum_{L}(N^{-1}L^{1/2})^{\theta}\|P_{N}Q_{L}^{K}v\|_{L^{2}_{t,x}}
L(N1L1/2)θL1/2PNvVK2NθPNvVK2.\displaystyle\lesssim\sum_{L}(N^{-1}L^{1/2})^{\theta}L^{-1/2}\|P_{N}v\|_{V^{2}_{K}}\lesssim N^{-\theta}\|P_{N}v\|_{V^{2}_{K}}.

If N2NN_{2}\lesssim N (which implies N1NN_{1}\lesssim N), by the duality, Minkowski, and Bernstein inequalities one has

N1,N2NηPN(𝒜λ(PN1uP1v)PN2w¯)UK2\displaystyle\quad\sum_{N_{1},N_{2}\lesssim N}\|\eta P_{N}\mathscr{B}(\mathscr{A}_{\lambda}(P_{N_{1}}uP_{1}v)P_{N_{2}}\bar{w})\|_{U^{2}_{K}}
N1,N2NNNθPN1𝒜λ(uP1v)PN2wLx2/(1+θ)Lt2\displaystyle\lesssim\sum_{N_{1},N_{2}\lesssim N}NN^{-\theta}\|P_{N_{1}}\mathscr{A}_{\lambda}(uP_{1}v)P_{N_{2}}w\|_{L_{x}^{2/(1+\theta)}L_{t}^{2}}
N1,N2NN1θη~PN1𝒜λ(uP1v)Lx2/θLt2η~PN2wLx2Lt\displaystyle\lesssim\sum_{N_{1},N_{2}\lesssim N}N^{1-\theta}\|\tilde{\eta}P_{N_{1}}\mathscr{A}_{\lambda}(uP_{1}v)\|_{L_{x}^{2/\theta}L_{t}^{2}}\|\tilde{\eta}P_{N_{2}}w\|_{L_{x}^{2}L_{t}^{\infty}}
N3/2θN1,N2N(λN1)(θ1)/2η~PN1𝒜λ(uP1v)USλ2PN2wUSλ2.\displaystyle\lesssim N^{3/2-\theta}\sum_{N_{1},N_{2}\lesssim N}(\lambda N_{1})^{(\theta-1)/2}\|\tilde{\eta}P_{N_{1}}\mathscr{A}_{\lambda}(uP_{1}v)\|_{U^{2}_{S_{\lambda}}}\|P_{N_{2}}w\|_{U^{2}_{S_{\lambda}}}.

By (2.4) one has η~PN1𝒜λ(uP1v)USλ2λ(λN1)1/2N13/16uXλvZ\|\tilde{\eta}P_{N_{1}}\mathscr{A}_{\lambda}(uP_{1}v)\|_{U^{2}_{S_{\lambda}}}\lesssim\lambda(\lambda N_{1})^{-1/2}N_{1}^{3/16}\|u\|_{X_{\lambda}}\|v\|_{Z}. Thus we can control the former term by

N3/2θN1,N2N(λN1)(θ1)/2λ(λN1)1/2N13/16uXλvZN23/16wXλ,\displaystyle N^{3/2-\theta}\sum_{N_{1},N_{2}\lesssim N}(\lambda N_{1})^{(\theta-1)/2}\lambda(\lambda N_{1})^{-1/2}N_{1}^{3/16}\|u\|_{X_{\lambda}}\|v\|_{Z}N_{2}^{3/16}\|w\|_{X_{\lambda}},

By choosing 15/16<θ<115/16<\theta<1, then

λNN3/4N3/2θN1,N2N(λN1)(θ1)/2(λN1)1/2N13/16N23/16λθ/2.\lambda\sum_{N}N^{-3/4}N^{3/2-\theta}\sum_{N_{1},N_{2}\lesssim N}(\lambda N_{1})^{(\theta-1)/2}(\lambda N_{1})^{-1/2}N_{1}^{3/16}N_{2}^{3/16}\lesssim\lambda^{\theta/2}.

We obtain the desired estimate since we always assume 0<λ10<\lambda\ll 1.

If N2NN_{2}\gg N (which implies N1N2N_{1}\sim N_{2}) similar to the former argument, we have PNvLt,x30/7N2/15vVK2\|P_{N}v\|_{L_{t,x}^{30/7}}\lesssim N^{-2/15}\|v\|_{V^{2}_{K}}. Then by the duality one has

N1N2NηPN(𝒜λ(PN1uP1v)PN2w¯)UK2\displaystyle\quad\sum_{N_{1}\sim N_{2}\gg N}\|\eta P_{N}\mathscr{B}(\mathscr{A}_{\lambda}(P_{N_{1}}uP_{1}v)P_{N_{2}}\bar{w})\|_{U^{2}_{K}}
N1N2NNN2/15𝒜λ(PN1uP1v)PN2wLt,x30/23\displaystyle\lesssim\sum_{N_{1}\sim N_{2}\gg N}NN^{-2/15}\|\mathscr{A}_{\lambda}(P_{N_{1}}uP_{1}v)P_{N_{2}}w\|_{L_{t,x}^{30/23}}
N1N3NN13/15η~𝒜λ(PN1uP1v)Lt,x2PN2wLt,x23/10PN2wLt,x67/10\displaystyle\lesssim\sum_{N_{1}\sim N_{3}\gg N}N^{13/15}\|\tilde{\eta}\mathscr{A}_{\lambda}(P_{N_{1}}uP_{1}v)\|_{L_{t,x}^{2}}\|P_{N_{2}}w\|_{L_{t,x}^{2}}^{3/10}\|P_{N_{2}}w\|_{L_{t,x}^{6}}^{7/10}
λ53/60N1N2NN13/15PN1uLxLt2P1vLx2LtPN2wUSλ2\displaystyle\lesssim\lambda^{53/60}\sum_{N_{1}\sim N_{2}\gg N}N^{13/15}\|P_{N_{1}}u\|_{L^{\infty}_{x}L_{t}^{2}}\|P_{1}v\|_{L_{x}^{2}L_{t}^{\infty}}\|P_{N_{2}}w\|_{U^{2}_{S_{\lambda}}}
λ53/60N13/15N1N2NN23/16(λN1)1/2N13/16uXλvZwXλ\displaystyle\lesssim\lambda^{53/60}N^{13/15}\sum_{N_{1}\sim N_{2}\gg N}N_{2}^{3/16}(\lambda N_{1})^{-1/2}N_{1}^{3/16}\|u\|_{X_{\lambda}}\|v\|_{Z}\|w\|_{X_{\lambda}}
λ23/60N89/120uXλvZwXλ.\displaystyle\lesssim\lambda^{23/60}N^{89/120}\|u\|_{X_{\lambda}}\|v\|_{Z}\|w\|_{X_{\lambda}}.

Note that 89/120<3/489/120<3/4. Thus we have

N2N3/4N1N2NηPN(𝒜λ(PN1uP1v)PN2w¯)UK2\displaystyle\quad\sum_{N\geq 2}N^{-3/4}\sum_{N_{1}\sim N_{2}\gg N}\|\eta P_{N}\mathscr{B}(\mathscr{A}_{\lambda}(P_{N_{1}}uP_{1}v)P_{N_{2}}\bar{w})\|_{U^{2}_{K}} (2.8)
λ23/60uXλvZwXλ.\displaystyle\lesssim\lambda^{23/60}\|u\|_{X_{\lambda}}\|v\|_{Z}\|w\|_{X_{\lambda}}.

By (2.5), for M22λM1M_{2}^{2}\nsim\lambda M_{1} we have

ηPN1𝒜λ(PM1uPM2v)USλ2λ3/4M13/16M21/4max{M22,λM1}1/2uXλvZ.\displaystyle\|\eta P_{N_{1}}\mathscr{A}_{\lambda}(P_{M_{1}}uP_{M_{2}}v)\|_{U^{2}_{S_{\lambda}}}\lesssim\frac{\lambda^{3/4}M_{1}^{3/16}M_{2}^{1/4}}{\max\{M_{2}^{2},\lambda M_{1}\}^{1/2}}\|u\|_{X_{\lambda}}\|v\|_{Z}.

By (2.6), for M22λM1M_{2}^{2}\sim\lambda M_{1} we have

ηPN1𝒜λ(PM1uPM2v)USλ2λ5/6M21/4M13/16(log(M2/λ))3uXλvZ.\displaystyle\|\eta P_{N_{1}}\mathscr{A}_{\lambda}(P_{M_{1}}uP_{M_{2}}v)\|_{U^{2}_{S_{\lambda}}}\lesssim\lambda^{5/6}M_{2}^{-1/4}M_{1}^{3/16}(\log(M_{2}/\lambda))^{3}\|u\|_{X_{\lambda}}\|v\|_{Z}.

Thus,

ηPN1(𝒜λ(uP>1v))USλ2\displaystyle\quad\|\eta P_{N_{1}}(\mathscr{A}_{\lambda}(uP_{>1}v))\|_{U^{2}_{S_{\lambda}}} (2.9)
M22λM1λ3/4M13/16M21/4max{M22,λM1}1/2uXλvZ\displaystyle\lesssim\sum_{M_{2}^{2}\nsim\lambda M_{1}}\frac{\lambda^{3/4}M_{1}^{3/16}M_{2}^{1/4}}{\max\{M_{2}^{2},\lambda M_{1}\}^{1/2}}\|u\|_{X_{\lambda}}\|v\|_{Z}
+M22λM1λN1λ5/6M21/4M13/16(log(M2/λ))3uXλvZ\displaystyle\quad+\sum_{M_{2}^{2}\sim\lambda M_{1}\sim\lambda N_{1}}\lambda^{5/6}M_{2}^{-1/4}M_{1}^{3/16}(\log(M_{2}/\lambda))^{3}\|u\|_{X_{\lambda}}\|v\|_{Z}
(λ9/16+λ17/24N11/16(logN1)3)uXλvZ.\displaystyle\lesssim(\lambda^{9/16}+\lambda^{17/24}N_{1}^{1/16}(\log N_{1})^{3})\|u\|_{X_{\lambda}}\|v\|_{Z}.

Let u~=η𝒜λ(uP>1v)\tilde{u}=\eta\mathscr{A}_{\lambda}(uP_{>1}v). Now we estimate ηPN(PN1u~PN2w¯)UK2\|\eta P_{N}\mathscr{B}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})\|_{U^{2}_{K}}.

If N2λN1N^{2}\ll\lambda N_{1} by Lemma 4.12, (4.7) in [2] one has

|2x(PN1u~PN2w¯)PNv~¯dxdt|λ1N11/2u~USλ2wUSλ2vUK2.\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})P_{N}\bar{\tilde{v}}~{}dxdt\right|\lesssim\lambda^{-1}N_{1}^{-1/2}\|\tilde{u}\|_{U^{2}_{S_{\lambda}}}\|w\|_{U^{2}_{S_{\lambda}}}\|v\|_{U^{2}_{K}}.

On the other hand by the Hölder inequality we also have

|2x(PN1u~PN2w¯)PNv~¯dxdt|\displaystyle\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})P_{N}\bar{\tilde{v}}~{}dxdt\right| NPN(PN1u~PN2w¯)Lt,x2η~PNv~Lt,x2\displaystyle\lesssim N\|P_{N}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})\|_{L^{2}_{t,x}}\|\tilde{\eta}P_{N}\tilde{v}\|_{L^{2}_{t,x}}
λ1/2N1/2u~USλ2wUSλ2vUKp,p>2.\displaystyle\lesssim\lambda^{-1/2}N^{1/2}\|\tilde{u}\|_{U^{2}_{S_{\lambda}}}\|w\|_{U^{2}_{S_{\lambda}}}\|v\|_{U^{p}_{K}},\quad p>2.

Then by the interpolation theorem in [7] one has

|2x(PN1u~PN2w¯)PNv~¯dxdt|λ1N11/2log(N1/λ)u~USλ2wUSλ2vVK2.\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})P_{N}\bar{\tilde{v}}~{}dxdt\right|\lesssim\lambda^{-1}N_{1}^{-1/2}\log(N_{1}/\lambda)\|\tilde{u}\|_{U^{2}_{S_{\lambda}}}\|w\|_{U^{2}_{S_{\lambda}}}\|v\|_{V^{2}_{K}}.

Combining Lemma 2.2 we have

N2N3/4N1N2N2/ληPN(PN1u~PN2w¯)UK2\displaystyle\quad\sum_{N\geq 2}N^{-3/4}\sum_{N_{1}\sim N_{2}\gg N^{2}/\lambda}\|\eta P_{N}\mathscr{B}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})\|_{U^{2}_{K}} (2.10)
N2N3/4N1N2N2/λλ1N11/2log(N1/λ)PN1u~USλ2PN2wUSλ2\displaystyle\lesssim\sum_{N\geq 2}N^{-3/4}\sum_{N_{1}\sim N_{2}\gg N^{2}/\lambda}\lambda^{-1}N_{1}^{-1/2}\log(N_{1}/\lambda)\|P_{N_{1}}\tilde{u}\|_{U^{2}_{S_{\lambda}}}\|P_{N_{2}}w\|_{U^{2}_{S_{\lambda}}}
N1N21/λλ1N11/2log(N1/λ)PN1u~USλ2PN2wUSλ2\displaystyle\lesssim\sum_{N_{1}\sim N_{2}\gg 1/\lambda}\lambda^{-1}N_{1}^{-1/2}\log(N_{1}/\lambda)\|P_{N_{1}}\tilde{u}\|_{U^{2}_{S_{\lambda}}}\|P_{N_{2}}w\|_{U^{2}_{S_{\lambda}}}
λ7/8u~XλwXλλ3/8uXλvZwXλ.\displaystyle\lesssim\lambda^{-7/8}\|\tilde{u}\|_{X_{\lambda}}\|w\|_{X_{\lambda}}\lesssim\lambda^{-3/8}\|u\|_{X_{\lambda}}\|v\|_{Z}\|w\|_{X_{\lambda}}.

Similarly if N2λN1N^{2}\gg\lambda N_{1} by Lemma 4.12, (4.6) in [2] and the interpolation one has

ηPN(PN1u~PN2w¯)UK2λ1/2N1log(N/λ)u~USλ2wUSλ2.\|\eta P_{N}\mathscr{B}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})\|_{U^{2}_{K}}\lesssim\lambda^{-1/2}N^{-1}\log(N/\lambda)\|\tilde{u}\|_{U^{2}_{S_{\lambda}}}\|w\|_{U^{2}_{S_{\lambda}}}.

Combining Lemma 2.2 we have

N2N3/4N1,N2N2/ληPN(PN1u~PN2w¯)UK2\displaystyle\quad\sum_{N\geq 2}N^{-3/4}\sum_{N_{1},N_{2}\ll N^{2}/\lambda}\|\eta P_{N}\mathscr{B}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})\|_{U^{2}_{K}} (2.11)
N2N3/4N1,N2N2/λλ1/2N1log(N/λ)PN1u~USλ2PN2wUSλ2\displaystyle\lesssim\sum_{N\geq 2}N^{-3/4}\sum_{N_{1},N_{2}\ll N^{2}/\lambda}\lambda^{-1/2}N^{-1}\log(N/\lambda)\|P_{N_{1}}\tilde{u}\|_{U^{2}_{S_{\lambda}}}\|P_{N_{2}}w\|_{U^{2}_{S_{\lambda}}}
N2N3/4N1,N2N2/λλ1/2N1log(N/λ)(N1N2)3/16u~XλwXλ\displaystyle\lesssim\sum_{N\geq 2}N^{-3/4}\sum_{N_{1},N_{2}\ll N^{2}/\lambda}\lambda^{-1/2}N^{-1}\log(N/\lambda)(N_{1}N_{2})^{3/16}\|\tilde{u}\|_{X_{\lambda}}\|w\|_{X_{\lambda}}
λ7/8log(1/λ)u~XλwXλλ3/8log(1/λ)uXλvZwXλ.\displaystyle\lesssim\lambda^{-7/8}\log(1/\lambda)\|\tilde{u}\|_{X_{\lambda}}\|w\|_{X_{\lambda}}\lesssim\lambda^{-3/8}\log(1/\lambda)\|u\|_{X_{\lambda}}\|v\|_{Z}\|w\|_{X_{\lambda}}.

If N2λN1N^{2}\sim\lambda N_{1} similar to the former argument by Lemma 4.12, (4.8) one has

ηPN(PN1u~PN2w¯)UK2log(N/λ)u~USλ2wUSλ2.\|\eta P_{N}\mathscr{B}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})\|_{U^{2}_{K}}\lesssim\log(N/\lambda)\|\tilde{u}\|_{U^{2}_{S_{\lambda}}}\|w\|_{U^{2}_{S_{\lambda}}}.

Then by (2.9) we have

N2N3/4N1N2N2/ληPN(PN1u~PN2w¯)UK2\displaystyle\quad\sum_{N\geq 2}N^{-3/4}\sum_{N_{1}\sim N_{2}\sim N^{2}/\lambda}\|\eta P_{N}\mathscr{B}(P_{N_{1}}\tilde{u}P_{N_{2}}\bar{w})\|_{U^{2}_{K}} (2.12)
N2N3/4N1N2N2/λlog(N/λ)PN1u~USλ2PN2wUSλ2\displaystyle\lesssim\sum_{N\geq 2}N^{-3/4}\sum_{N_{1}\sim N_{2}\sim N^{2}/\lambda}\log(N/\lambda)\|P_{N_{1}}\tilde{u}\|_{U^{2}_{S_{\lambda}}}\|P_{N_{2}}w\|_{U^{2}_{S_{\lambda}}}
N2N3/4N1N2N2/λlog(N/λ)N23/16\displaystyle\lesssim\sum_{N\geq 2}N^{-3/4}\sum_{N_{1}\sim N_{2}\sim N^{2}/\lambda}\log(N/\lambda)N_{2}^{3/16}
(λ9/16+λ17/24N11/16(logN1)3)uXλvYwXλ\displaystyle\hskip 80.0pt\cdot(\lambda^{9/16}+\lambda^{17/24}N_{1}^{1/16}(\log N_{1})^{3})\|u\|_{X_{\lambda}}\|v\|_{Y}\|w\|_{X_{\lambda}}
λ3/8uXλvZwXλ.\displaystyle\lesssim\lambda^{3/8}\|u\|_{X_{\lambda}}\|v\|_{Z}\|w\|_{X_{\lambda}}.

Combining (2.10), (2.11), and (2.12) we conclude the proof. ∎

3 The estimates for F[u0]F[u_{0}]

In this section, we show some estimates for F[u0]F[u_{0}]. For the nonresonant case, we show that it belongs to U2U^{2} type space. See Lemma 3.1. Also we show F[u0]ZF[u_{0}]\in Z.

Lemma 3.1.

Recall the definition of F[u0]F[u_{0}] by (2.1). We have

N3/4PN(F[u0]F[PN2/λu0])lN2UK2λ1u0H3/162.\|N^{-3/4}P_{N}(F[u_{0}]-F[P_{\sim N^{2}/\lambda}u_{0}])\|_{l^{2}_{N}U^{2}_{K}}\lesssim\lambda^{-1}\|u_{0}\|_{H^{-3/16}}^{2}.
Proof.

If N1N\lesssim 1, we claim that

|2Sλ(t)PN1u0Sλ(t)PN2u0¯PNv¯𝑑x𝑑t|N13/8u0L22vVK2\left|\int_{\mathbb{R}^{2}}S_{\lambda}(t)P_{N_{1}}u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}}P_{N}\bar{v}~{}dxdt\right|\lesssim N_{1}^{-3/8}\|u_{0}\|_{L^{2}}^{2}\|v\|_{V^{2}_{K}} (3.1)

where vv is supported on [1/2,1/2]×[-1/2,1/2]\times\mathbb{R}. Let q>2q>2. By the Hölder inequality, local smoothing, maximal function, and Strichartz estimates one has

|2Sλ(t)PN1u0Sλ(t)PN2u0¯PNv¯𝑑x𝑑t|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}S_{\lambda}(t)P_{N_{1}}u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}}P_{N}\bar{v}~{}dxdt\right|
η~Sλ(t)PN1u0Lx2q/(q2)Lt2η~Sλ(t)PN2u0Lt,x2PNvLxqLt\displaystyle\lesssim\|\tilde{\eta}S_{\lambda}(t)P_{N_{1}}u_{0}\|_{L_{x}^{2q/(q-2)}L_{t}^{2}}\|\tilde{\eta}S_{\lambda}(t)P_{N_{2}}u_{0}\|_{L_{t,x}^{2}}\|P_{N}v\|_{L_{x}^{q}L_{t}^{\infty}}
η~Sλ(t)PN1u0LxLt22/qu0Lx21+(q2)/qvVK2\displaystyle\lesssim\|\tilde{\eta}S_{\lambda}(t)P_{N_{1}}u_{0}\|_{L_{x}^{\infty}L_{t}^{2}}^{2/q}\|u_{0}\|^{1+(q-2)/q}_{L_{x}^{2}}\|v\|_{V^{2}_{K}}
(λN1)1/qu0L22vVK2.\displaystyle\lesssim(\lambda N_{1})^{-1/q}\|u_{0}\|_{L^{2}}^{2}\|v\|_{V^{2}_{K}}.

By choosing q=8/3q=8/3 we obtain (3.1). Then by the duality one has

N1N1N2N3/4ηPN(Sλ(t)PN1u0Sλ(t)PN2u0¯)UK2\displaystyle\quad\sum_{N\lesssim 1}\sum_{N_{1}\sim N_{2}}N^{-3/4}\left\|\eta P_{N}\mathscr{B}(S_{\lambda}(t)P_{N_{1}}u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}})\right\|_{U^{2}_{K}}
N1N2(λN1)3/8PN1u0L2PN2u0L2λ3/8u0H3/162.\displaystyle\lesssim\sum_{N_{1}\sim N_{2}}(\lambda N_{1})^{-3/8}\|P_{N_{1}}u_{0}\|_{L^{2}}\|P_{N_{2}}u_{0}\|_{L^{2}}\lesssim\lambda^{-3/8}\|u_{0}\|_{H^{3/16}}^{2}.

If λN1N2\lambda N_{1}\ll N^{2}, by Lemma 4.12 in [2] one has

|2x(PN1Sλ(t)u0Sλ(t)PN2u0¯)PNv¯dxdt|λ1/2N1u0L22vUK2.\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}S_{\lambda}(t)u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}})P_{N}\bar{v}~{}dxdt\right|\lesssim\lambda^{-1/2}N^{-1}\|u_{0}\|_{L^{2}}^{2}\|v\|_{U^{2}_{K}}.

By the Hölder inequality and the Strichartz estimate one also has

|2x(PN1Sλ(t)u0Sλ(t)PN2u0¯)PNv¯dxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}S_{\lambda}(t)u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}})P_{N}\bar{v}~{}dxdt\right|
η~PN1Sλ(t)u0Lt,x3η~PN2Sλ(t)u0Lt,x2xPNvLt,x6\displaystyle\lesssim\|\tilde{\eta}P_{N_{1}}S_{\lambda}(t)u_{0}\|_{L^{3}_{t,x}}\|\tilde{\eta}P_{N_{2}}S_{\lambda}(t)u_{0}\|_{L^{2}_{t,x}}\|\partial_{x}P_{N}v\|_{L^{6}_{t,x}}
PN1Sλ(t)u0Lt,x61/2u0L23/2N5/6vUK6\displaystyle\lesssim\|P_{N_{1}}S_{\lambda}(t)u_{0}\|^{1/2}_{L^{6}_{t,x}}\|u_{0}\|^{3/2}_{L^{2}}N^{5/6}\|v\|_{U^{6}_{K}}
λ1/12N5/6u0L22vUK6\displaystyle\lesssim\lambda^{-1/12}N^{5/6}\|u_{0}\|_{L^{2}}^{2}\|v\|_{U^{6}_{K}}

where vv is supported on [1/2,1/2]×[-1/2,1/2]\times\mathbb{R}. Then by the interpolation in [7] we have

ηPN(PN1Sλ(t)u0Sλ(t)PN2u0¯)UK2λ1/2N1logNu0L22.\left\|\eta P_{N}\mathscr{B}(P_{N_{1}}S_{\lambda}(t)u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}})\right\|_{U^{2}_{K}}\lesssim\lambda^{-1/2}N^{-1}\log N\|u_{0}\|_{L^{2}}^{2}.

Since max{N1,N2,N}med{N1,N2,N}\max\{N_{1},N_{2},N\}\sim\mathrm{med}\{N_{1},N_{2},N\}, thus

N1λN1N2N3/4ηPN(PN1Sλ(t)u0Sλ(t)PN2u0¯)UK2\displaystyle\quad\sum_{N\gg 1}\sum_{\lambda N_{1}\ll N^{2}}N^{-3/4}\left\|\eta P_{N}\mathscr{B}(P_{N_{1}}S_{\lambda}(t)u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}})\right\|_{U^{2}_{K}}
N1λmax{N1,N2}N2N3/4λ1/2N1logNPN1u0L2PN2u0L2\displaystyle\lesssim\sum_{N\gg 1}\sum_{\lambda\max\{N_{1},N_{2}\}\ll N^{2}}N^{-3/4}\lambda^{-1/2}N^{-1}\log N\|P_{N_{1}}u_{0}\|_{L^{2}}\|P_{N_{2}}u_{0}\|_{L^{2}}
λ7/8u0H3/162.\displaystyle\lesssim\lambda^{-7/8}\|u_{0}\|_{H^{-3/16}}^{2}.

If λN1N2\lambda N_{1}\gg N^{2}, by Lemma 4.12 in [2] one has

|2x(PN1Sλ(t)u0Sλ(t)PN2u0¯)PNv¯dxdt|λ1N11/2u0L22vUK2.\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}S_{\lambda}(t)u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}})P_{N}\bar{v}~{}dxdt\right|\lesssim\lambda^{-1}N_{1}^{-1/2}\|u_{0}\|_{L^{2}}^{2}\|v\|_{U^{2}_{K}}.

By similar argument as λN1N2\lambda N_{1}\ll N^{2} and the interpolation in [7] we have

ηPN(PN1Sλ(t)u0Sλ(t)PN2u0¯)UK2λ1N11/2logN1u0L22.\left\|\eta P_{N}\mathscr{B}(P_{N_{1}}S_{\lambda}(t)u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}})\right\|_{U^{2}_{K}}\lesssim\lambda^{-1}N_{1}^{-1/2}\log N_{1}\|u_{0}\|_{L^{2}}^{2}.

Thus,

N1λN1N2N3/4ηPN(PN1Sλ(t)u0Sλ(t)PN2u0¯)UK2\displaystyle\quad\sum_{N\gg 1}\sum_{\lambda N_{1}\gg N^{2}}N^{-3/4}\left\|\eta P_{N}\mathscr{B}(P_{N_{1}}S_{\lambda}(t)u_{0}\overline{S_{\lambda}(t)P_{N_{2}}u_{0}})\right\|_{U^{2}_{K}}
N1N1N2N3/4λ1N11/2logN1PN1u0L2PN2u0L2\displaystyle\lesssim\sum_{N\gg 1}\sum_{N_{1}\sim N_{2}}N^{-3/4}\lambda^{-1}N_{1}^{-1/2}\log N_{1}\|P_{N_{1}}u_{0}\|_{L^{2}}\|P_{N_{2}}u_{0}\|_{L^{2}}
λ1u0H3/162.\displaystyle\lesssim\lambda^{-1}\|u_{0}\|_{H^{-3/16}}^{2}.

We conclude the proof. ∎

Although we can not show the desired estimate for F[PN2/λu0]F[P_{\sim N^{2}/\lambda}u_{0}] in UK2U^{2}_{K}, one has the following estimate.

Lemma 3.2.

N3/4PNF[PN2/λu0]lN2VK2λ3/8u0H3/162\|N^{-3/4}P_{N}F[P_{\sim N^{2}/\lambda}u_{0}]\|_{l^{2}_{N}V^{2}_{K}}\lesssim\lambda^{-3/8}\|u_{0}\|_{H^{-3/16}}^{2}.

Proof.

By Lemma 4.12 in [2] one has

|2x(|Sλ(t)PN2/λu0|2)PNv¯dxdt|u0L22vUK2\left|\int_{\mathbb{R}^{2}}\partial_{x}(|S_{\lambda}(t)P_{\sim N^{2}/\lambda}u_{0}|^{2})P_{N}\bar{v}~{}dxdt\right|\lesssim\|u_{0}\|_{L^{2}}^{2}\|v\|_{U^{2}_{K}}

where vv is supported on [1,1]×[-1,1]\times\mathbb{R}. Then by the duality one has

N3/4PNF[PN2/λu0]lN2VK2\displaystyle\|N^{-3/4}P_{N}F[P_{\sim N^{2}/\lambda}u_{0}]\|_{l^{2}_{N}V^{2}_{K}} N3/4PN2/λu0L22lN2\displaystyle\lesssim\|N^{-3/4}\|P_{\sim N^{2}/\lambda}u_{0}\|_{L^{2}}^{2}\|_{l^{2}_{N}}
(λM)3/16PMu0lM2L22\displaystyle\lesssim\|(\lambda M)^{-3/16}P_{M}u_{0}\|^{2}_{l^{2}_{M}L^{2}}
λ3/8u0H3/162.\displaystyle\lesssim\lambda^{-3/8}\|u_{0}\|_{H^{-3/16}}^{2}.

To show the second inequality in the former argument we use that the carnality of {N20:N2λM}\{N\in 2^{\mathbb{N}_{0}}:N^{2}\sim\lambda M\} is uniformly bounded for MM. ∎

We give some refinement for the case λN1λN2N2\lambda N_{1}\sim\lambda N_{2}\sim N^{2} in following two lemmas.

Lemma 3.3.

Let N1N\gg 1, 0<c1C0<c\ll 1\ll C and I1,I2I_{1},I_{2} be intervals included in [CN2,cN2][cN2,CN2][-CN^{2},-cN^{2}]\cup[cN^{2},CN^{2}] with length less than cNcN. We assume J:=I1I2[CN,cN][cN,CN]J:=I_{1}-I_{2}\subset[-CN,cN]\cup[cN,CN] and |ξ3+λξ12λξ22|N|\xi^{3}+\lambda\xi_{1}^{2}-\lambda\xi_{2}^{2}|\gtrsim N for any ξJ,ξjIj\xi\in J,\xi_{j}\in I_{j}, ξ1+ξ2=ξ\xi_{1}+\xi_{2}=\xi. Then we have

ηPJ(Sλ(t)PI1u0Sλ(t)PI2u0¯)UK2λ1/2u0L22.\displaystyle\left\|\eta P_{J}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}u_{0}})\right\|_{U^{2}_{K}}\lesssim\lambda^{-1/2}\|u_{0}\|_{L^{2}}^{2}.
Proof.

Let L=cNL=cN. Since |ξ3+λξ12λξ22|>L/2|\xi^{3}+\lambda\xi_{1}^{2}-\lambda\xi_{2}^{2}|>L/2 for ξjIj,ξJ,ξ1+ξ2=ξ\xi_{j}\in I_{j},\xi\in J,\xi_{1}+\xi_{2}=\xi, we have

2x(Sλ(t)PI1u0Sλ(t)PI2u0)QLKPJv¯dxdt=0.\int_{\mathbb{R}^{2}}\partial_{x}(S_{\lambda}(t)P_{I_{1}}u_{0}S_{\lambda}(t)P_{I_{2}}u_{0})Q^{K}_{\leq L}P_{J}\bar{v}~{}dxdt=0.

By the high modulation estimate and Lemma 4.2, (4.2) in [2] one has

|2x(Sλ(t)PI1u0Sλ(t)PI2u0¯)Q>LKPJv¯dxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}u_{0}})Q_{>L}^{K}P_{J}\bar{v}~{}dxdt\right|
PJ(Sλ(s)PI1u0Sλ(s)PI2u0¯)Lt,x2xQ>LKPJvLt,x2\displaystyle\lesssim\|P_{J}(S_{\lambda}(s)P_{I_{1}}u_{0}\overline{S_{\lambda}(s)P_{I_{2}}u_{0}})\|_{L^{2}_{t,x}}\|\partial_{x}Q^{K}_{>L}P_{J}v\|_{L^{2}_{t,x}}
(λN)1/2u0L22L1/2NvVK2λ1/2u0L22vVK2.\displaystyle\lesssim(\lambda N)^{-1/2}\|u_{0}\|_{L^{2}}^{2}L^{-1/2}N\|v\|_{V^{2}_{K}}\sim\lambda^{-1/2}\|u_{0}\|_{L^{2}}^{2}\|v\|_{V^{2}_{K}}.

By the duality we conclude the proof. ∎

Lemma 3.4.

Let N1N\gg 1, 0<c1C0<c\ll 1\ll C and I1,I2I_{1},I_{2} be intervals included in [CN2,cN2][cN2,CN2][-CN^{2},-cN^{2}]\cup[cN^{2},CN^{2}] with length 1/N1/N. We assume JJ included in [CN,cN][cN,CN][-CN,-cN]\cup[cN,CN] with length 1/N21/N^{2} and |ξ3+λξ12λξ22|1|\xi^{3}+\lambda\xi_{1}^{2}-\lambda\xi_{2}^{2}|\lesssim 1 for any ξJ,ξjIj\xi\in J,\xi_{j}\in I_{j}, ξ1+ξ2=ξ\xi_{1}+\xi_{2}=\xi. Then we have

ηPJ(Sλ(t)PI1u0Sλ(t)PI2u0¯)UK2u0L22.\displaystyle\left\|\eta P_{J}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}u_{0}})\right\|_{U^{2}_{K}}\lesssim\|u_{0}\|_{L^{2}}^{2}.
Proof.

Let PI1u0=u1,PI2u0=u2P_{I_{1}}u_{0}=u_{1},P_{I_{2}}u_{0}=u_{2}. By the definition of UK2U^{2}_{K} and the Taylor expansion one has

ηPJ(Sλ(t)PI1u0Sλ(t)PI2u0¯)UK2\displaystyle\quad\left\|\eta P_{J}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}u_{0}})\right\|_{U^{2}_{K}}
=ηPJx0tK(s)(Sλ(s)u1Sλ(s)u2)¯dsUt2(Lx2)\displaystyle=\left\|\eta P_{J}\partial_{x}\int_{0}^{t}K(-s)(S_{\lambda}(s)u_{1}\overline{S_{\lambda}(s)u_{2})}~{}ds\right\|_{U^{2}_{t}(L^{2}_{x})}
η(t)ξχξJ0teisξ3ξ1+ξ2=ξeiλsξ12+iλsξ22u1^(ξ1)u2^¯(ξ2)𝑑sUt2(Lξ2)\displaystyle\sim\left\|\eta(t)\xi\chi_{\xi\in J}\int_{0}^{t}e^{-is\xi^{3}}\int_{\xi_{1}+\xi_{2}=\xi}e^{-i\lambda s\xi_{1}^{2}+i\lambda s\xi_{2}^{2}}\widehat{u_{1}}(\xi_{1})\overline{\widehat{u_{2}}}(-\xi_{2})~{}ds\right\|_{U^{2}_{t}(L^{2}_{\xi})}
k=01k!η(t)ξχξJ0tξ1+ξ2=ξu1^(ξ1)u2^¯(ξ2)sk(ξ3+λξ12λξ22)k𝑑sUt2Lξ2\displaystyle\lesssim\sum_{k=0}^{\infty}\frac{1}{k!}\left\|\eta(t)\xi\chi_{\xi\in J}\int_{0}^{t}\int_{\xi_{1}+\xi_{2}=\xi}\widehat{u_{1}}(\xi_{1})\overline{\widehat{u_{2}}}(-\xi_{2})s^{k}(\xi^{3}+\lambda\xi_{1}^{2}-\lambda\xi_{2}^{2})^{k}~{}ds\right\|_{U^{2}_{t}L^{2}_{\xi}}
k=0CkNk!χξJξ1+ξ2=ξ|u1^(ξ1)u2^(ξ2)|dsLξ2η(t)tk+11k+1Ut2\displaystyle\lesssim\sum_{k=0}^{\infty}\frac{C^{k}N}{k!}\left\|\chi_{\xi\in J}\int_{\xi_{1}+\xi_{2}=\xi}|\widehat{u_{1}}(\xi_{1})\widehat{u_{2}}(-\xi_{2})|~{}ds\right\|_{L^{2}_{\xi}}\left\|\eta(t)\frac{t^{k+1}-1}{k+1}\right\|_{U^{2}_{t}}
Nu1L2u2L2|J|1/2u0L22.\displaystyle\lesssim N\|u_{1}\|_{L^{2}}\|u_{2}\|_{L^{2}}|J|^{1/2}\lesssim\|u_{0}\|_{L^{2}}^{2}.

Here we use η(t)tk+1Ut2η(t)tk+1H1k\|\eta(t)t^{k+1}\|_{U^{2}_{t}}\lesssim\|\eta(t)t^{k+1}\|_{H^{1}}\lesssim k. ∎

Lemma 3.5.

N1/4PNF[u0]lN2LxLt2λ1u0H3/162\|N^{1/4}P_{N}F[u_{0}]\|_{l^{2}_{N}L_{x}^{\infty}L_{t}^{2}}\lesssim\lambda^{-1}\|u_{0}\|_{H^{-3/16}}^{2}.

Proof.

Firstly by Lemma 3.1 and the local smoothing estimate one has

N1/4PN(F[u0]F[PN2/λu0])lN2LxLt2λ1u0H3/162\|N^{1/4}P_{N}(F[u_{0}]-F[P_{\sim N^{2}/\lambda}u_{0}])\|_{l^{2}_{N}L_{x}^{\infty}L_{t}^{2}}\lesssim\lambda^{-1}\|u_{0}\|_{H^{-3/16}}^{2}

Thus we only need to show

N1/4PNF[PN2/λu0]lN2LxLt2λ1u0H3/162.\displaystyle\|N^{1/4}P_{N}F[P_{\sim N^{2}/\lambda}u_{0}]\|_{l^{2}_{N}L^{\infty}_{x}L^{2}_{t}}\lesssim\lambda^{-1}\|u_{0}\|_{H^{-3/16}}^{2}.

If N1N\lesssim 1, by the Sobolev inequality, then

N1/4PNF[PN2/λu0]LxLt2PN2/λu0Lx42λ7/8u0H3/162.\displaystyle N^{1/4}\|P_{N}F[P_{\sim N^{2}/\lambda}u_{0}]\|_{L^{\infty}_{x}L^{2}_{t}}\lesssim\|P_{\sim N^{2}/\lambda}u_{0}\|_{L^{4}_{x}}^{2}\lesssim\lambda^{-7/8}\|u_{0}\|_{H^{-3/16}}^{2}.

If N1N\gg 1, we claim

PNF[PN2/λu0]LxLt2λ1/2N1u0L22.\left\|P_{N}F[P_{\sim N^{2}/\lambda}u_{0}]\right\|_{L_{x}^{\infty}L_{t}^{2}}\lesssim\lambda^{-1/2}N^{-1}\|u_{0}\|_{L^{2}}^{2}. (3.2)

Let IjI_{j}, j=1,2j=1,2 be intervals included in [CN2/λ,cN2/λ][cN2/λ,CN2/λ][-CN^{2}/\lambda,cN^{2}/\lambda]\cup[cN^{2}/\lambda,CN^{2}/\lambda] with length cNcN. Also we assume for any ξjIj\xi_{j}\in I_{j}, j=1,2j=1,2 one has |η1η2|N|\eta_{1}-\eta_{2}|\sim N. We only need to show

ηPN(Sλ(t)PI1u0Sλ(t)PI2v0¯)LxLt2λ1/2N1u0L2v0L2.\left\|\eta P_{N}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}v_{0}})\right\|_{L_{x}^{\infty}L_{t}^{2}}\lesssim\lambda^{-1/2}N^{-1}\|u_{0}\|_{L^{2}}\|v_{0}\|_{L^{2}}.

There exists a interval JJ included in [N,N/2][N/2,N][-N,-N/2]\cup[N/2,N] with length 11 such that |ξ3+λξ12λξ22|N2|\xi^{3}+\lambda\xi_{1}^{2}-\lambda\xi_{2}^{2}|\gtrsim N^{2} for any ξ[N,N/2][N/2,N]J:=J^\xi\in[-N,-N/2]\cup[N/2,N]\setminus J:=\hat{J}, ξjIj\xi_{j}\in I_{j}, ξ=ξ1+ξ2\xi=\xi_{1}+\xi_{2}. Then by Lemma 3.3, the local smoothing estimate, and the orthogonality we only need to show

ηPJ(Sλ(t)PI1u0Sλ(t)PI2v0¯)LxLt2λ1/2N1u0L2v0L2\left\|\eta P_{J}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}v_{0}})\right\|_{L_{x}^{\infty}L_{t}^{2}}\lesssim\lambda^{-1/2}N^{-1}\|u_{0}\|_{L^{2}}\|v_{0}\|_{L^{2}}

where I1,I2,JI_{1},I_{2},J are intervals with length 11, |ξj|N2|\xi_{j}|\sim N^{2} for any ξjIj\xi_{j}\in I_{j}, |ξ|N|\xi|\sim N for any ξJ\xi\in J.

There exists a interval J1J_{1} included in JJ with length 1/N1/N such that |ξ3+λξ12λξ22|N|\xi^{3}+\lambda\xi_{1}^{2}-\lambda\xi_{2}^{2}|\gtrsim N for any ξJJ1\xi\in J\setminus J_{1}, ξjIj\xi_{j}\in I_{j}, ξ=ξ1+ξ2\xi=\xi_{1}+\xi_{2}. Then again by Lemma 3.3, the local smoothing estimate, and the orthogonality we only need to show

ηPJ1(Sλ(t)PI1u0Sλ(t)PI2v0¯)LxLt2λ1/2N1u0L2v0L2\left\|\eta P_{J_{1}}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}v_{0}})\right\|_{L_{x}^{\infty}L_{t}^{2}}\lesssim\lambda^{-1/2}N^{-1}\|u_{0}\|_{L^{2}}\|v_{0}\|_{L^{2}}

where I1,I2,J1I_{1},I_{2},J_{1} are intervals with length 1/N1/N.

There exists a interval J2J_{2} included in J1J_{1} with length 1/N21/N^{2} such that one has |ξ3+λξ12λξ22|1|\xi^{3}+\lambda\xi_{1}^{2}-\lambda\xi_{2}^{2}|\lesssim 1 for any ξJ2\xi\in J_{2}, ξjIj\xi_{j}\in I_{j}, ξ=ξ1+ξ2\xi=\xi_{1}+\xi_{2}. Then by Lemma 3.4 and the local smoothing estimate one has

ηPJ2(Sλ(t)PIu0Sλ(t)PJv0¯)LxLt2\displaystyle\quad\left\|\eta P_{J_{2}}\mathscr{B}(S_{\lambda}(t)P_{I}u_{0}\overline{S_{\lambda}(t)P_{J}v_{0}})\right\|_{L_{x}^{\infty}L_{t}^{2}}
N1ηPJ2(Sλ(t)PIu0Sλ(t)PJv0¯)UK2\displaystyle\lesssim N^{-1}\left\|\eta P_{J_{2}}\mathscr{B}(S_{\lambda}(t)P_{I}u_{0}\overline{S_{\lambda}(t)P_{J}v_{0}})\right\|_{U^{2}_{K}}
N1u0L2v0L2.\displaystyle\lesssim N^{-1}\|u_{0}\|_{L^{2}}\|v_{0}\|_{L^{2}}.

Note that

x(η(t)PJ1J2(Sλ(t)PIu0Sλ(t)PJv0¯))\displaystyle\quad\mathscr{F}_{x}\left(\eta(t)P_{J_{1}\setminus J_{2}}\mathscr{B}(S_{\lambda}(t)P_{I}u_{0}\overline{S_{\lambda}(t)P_{J}v_{0}})\right)
η(t)ξ0tξ1+ξ2=ξχ|ξ|J1J2,ξjIjei(ts)ξ3eiλsξ12+iλsξ22u0^(ξ1)v0^¯(ξ2)\displaystyle\sim\eta(t)\xi\int_{0}^{t}\int_{\xi_{1}+\xi_{2}=\xi}\chi_{|\xi|\sim J_{1}\setminus J_{2},\xi_{j}\in I_{j}}e^{i(t-s)\xi^{3}}e^{-i\lambda s\xi_{1}^{2}+i\lambda s\xi_{2}^{2}}\widehat{u_{0}}(\xi_{1})\overline{\widehat{v_{0}}}(-\xi_{2})
η(t)ξ1+ξ2=ξχ|ξ|J1J2,ξjIjeitξ3eiλtξ(ξ2ξ1)ξ2+λξ1λξ2u0^(ξ1)v0^¯(ξ2)\displaystyle\sim\eta(t)\int_{\xi_{1}+\xi_{2}=\xi}\chi_{|\xi|\sim J_{1}\setminus J_{2},\xi_{j}\in I_{j}}\frac{e^{it\xi^{3}}-e^{i\lambda t\xi(\xi_{2}-\xi_{1})}}{\xi^{2}+\lambda\xi_{1}-\lambda\xi_{2}}\widehat{u_{0}}(\xi_{1})\overline{\widehat{v_{0}}}(-\xi_{2})
:=Λ1+Λ2.\displaystyle:=\Lambda_{1}+\Lambda_{2}.

By the local smoothing estimate we have

ξ1Λ1LxLt2\displaystyle\|\mathscr{F}_{\xi}^{-1}\Lambda_{1}\|_{L_{x}^{\infty}L_{t}^{2}} N1ξ1+ξ2=ξχ|ξ|J1J2,ξjIju0^(ξ1)v0^¯(ξ2)ξ2+λξ1λξ2Lξ2\displaystyle\lesssim N^{-1}\left\|\int_{\xi_{1}+\xi_{2}=\xi}\chi_{|\xi|\sim J_{1}\setminus J_{2},\xi_{j}\in I_{j}}\frac{\widehat{u_{0}}(\xi_{1})\overline{\widehat{v_{0}}}(-\xi_{2})}{\xi^{2}+\lambda\xi_{1}-\lambda\xi_{2}}\right\|_{L^{2}_{\xi}}
N1u0L2v0L2χ|ξ|J1J2,ξ1I1,ξξ1I2ξ2+2λξ1λξLξ1Lξ2\displaystyle\lesssim N^{-1}\|u_{0}\|_{L^{2}}\|v_{0}\|_{L^{2}}\left\|\frac{\chi_{|\xi|\sim J_{1}\setminus J_{2},\xi_{1}\in I_{1},\xi-\xi_{1}\in I_{2}}}{\xi^{2}+2\lambda\xi_{1}-\lambda\xi}\right\|_{L^{\infty}_{\xi_{1}}L^{2}_{\xi}}
N1u0L2v0L2.\displaystyle\lesssim N^{-1}\|u_{0}\|_{L^{2}}\|v_{0}\|_{L^{2}}.

Let ξj0\xi_{j}^{0} be the center of IjI_{j} respectively. By the Taylor expansion we have

ξ1Λ2LxLt2\displaystyle\quad\|\mathscr{F}^{-1}_{\xi}\Lambda_{2}\|_{L^{\infty}_{x}L^{2}_{t}}
k=01k!η(t)ξ1ξ1+ξ2=ξχ|ξ|J1J2,ξjIjeiλtξ(ξ20ξ10)ξ2+λξ1λξ2u0^(ξ1)v0^¯(ξ2)\displaystyle\lesssim\sum_{k=0}^{\infty}\frac{1}{k!}\Bigg{\|}\eta(t)\mathscr{F}_{\xi}^{-1}\int_{\xi_{1}+\xi_{2}=\xi}\chi_{|\xi|\sim J_{1}\setminus J_{2},\xi_{j}\in I_{j}}\frac{e^{i\lambda t\xi(\xi_{2}^{0}-\xi_{1}^{0})}}{\xi^{2}+\lambda\xi_{1}-\lambda\xi_{2}}\widehat{u_{0}}(\xi_{1})\overline{\widehat{v_{0}}}(-\xi_{2})
(iλtξ(ξ2ξ20ξ1+ξ10))kLxLt2\displaystyle\qquad\qquad\cdot(i\lambda t\xi(\xi_{2}-\xi_{2}^{0}-\xi_{1}+\xi_{1}^{0}))^{k}\Bigg{\|}_{L_{x}^{\infty}L_{t}^{2}}
k=01k!ξ1ξ1+ξ2=ξχ|ξ|J1J2,ξjIjeiλtξ(ξ20ξ10)ξ2+λξ1λξ2u0^(ξ1)v0^¯(ξ2)\displaystyle\lesssim\sum_{k=0}^{\infty}\frac{1}{k!}\Bigg{\|}\mathscr{F}^{-1}_{\xi}\int_{\xi_{1}+\xi_{2}=\xi}\chi_{|\xi|\sim J_{1}\setminus J_{2},\xi_{j}\in I_{j}}\frac{e^{i\lambda t\xi(\xi_{2}^{0}-\xi_{1}^{0})}}{\xi^{2}+\lambda\xi_{1}-\lambda\xi_{2}}\widehat{u_{0}}(\xi_{1})\overline{\widehat{v_{0}}}(-\xi_{2})
ξk(ξ2ξ20ξ1+ξ10)kLxLt2.\displaystyle\qquad\qquad\cdot\xi^{k}(\xi_{2}-\xi_{2}^{0}-\xi_{1}+\xi_{1}^{0})^{k}\Bigg{\|}_{L_{x}^{\infty}L_{t}^{2}}.

Note that |ξ20ξ10|N2|\xi_{2}^{0}-\xi_{1}^{0}|\sim N^{2}. By the local smoothing estimate one has

ξ1Λ2LxLt2\displaystyle\|\mathscr{F}^{-1}_{\xi}\Lambda_{2}\|_{L^{\infty}_{x}L^{2}_{t}} N1k=01k!ξ1+ξ2=ξχ|ξ|J1J2,ξjIju0^(ξ1)v0^¯(ξ2)ξ2+λξ1λξ2\displaystyle\lesssim N^{-1}\sum_{k=0}^{\infty}\frac{1}{k!}\Bigg{\|}\int_{\xi_{1}+\xi_{2}=\xi}\chi_{|\xi|\sim J_{1}\setminus J_{2},\xi_{j}\in I_{j}}\frac{\widehat{u_{0}}(\xi_{1})\overline{\widehat{v_{0}}}(-\xi_{2})}{\xi^{2}+\lambda\xi_{1}-\lambda\xi_{2}}
ξk(ξ2ξ20ξ1+ξ10)kLξ2\displaystyle\qquad\qquad\cdot\xi^{k}(\xi_{2}-\xi_{2}^{0}-\xi_{1}+\xi_{1}^{0})^{k}\Bigg{\|}_{L_{\xi}^{2}}
k=0Ckk!N1ξ1+ξ2=ξχ|ξ|J1J2,ξjIju0^(ξ1)v0^¯(ξ2)ξ2+λξ1λξ2Lξ2\displaystyle\lesssim\sum_{k=0}^{\infty}\frac{C^{k}}{k!}N^{-1}\Bigg{\|}\int_{\xi_{1}+\xi_{2}=\xi}\chi_{|\xi|\sim J_{1}\setminus J_{2},\xi_{j}\in I_{j}}\frac{\widehat{u_{0}}(\xi_{1})\overline{\widehat{v_{0}}}(-\xi_{2})}{\xi^{2}+\lambda\xi_{1}-\lambda\xi_{2}}\Bigg{\|}_{L_{\xi}^{2}}
N1u0L2v0L2.\displaystyle\lesssim N^{-1}\|u_{0}\|_{L^{2}}\|v_{0}\|_{L^{2}}.

We conclude the proof of (3.2). Then

N1/4PNF[PN2/λu0]lN12LxLt2\displaystyle\|N^{1/4}P_{N}F[P_{\sim N^{2}/\lambda}u_{0}]\|_{l^{2}_{N\gg 1}L_{x}^{\infty}L_{t}^{2}} λ1/2N1/4N1PN2/λu0L22lN2\displaystyle\lesssim\lambda^{-1/2}\|N^{1/4}N^{-1}\|P_{\sim N^{2}/\lambda}u_{0}\|_{L^{2}}^{2}\|_{l^{2}_{N}}
λ7/8u0H3/162.\displaystyle\lesssim\lambda^{-7/8}\|u_{0}\|_{H^{-3/16}}^{2}.

Combining the nonresonant and low frequency cases, we finish the proof. ∎

Recall the definition for the norm ZZ by (2.3). We have:

Corollary 3.6.

Combining Lemmas 3.1, 3.2, and 3.5 then

F[u0]Zλ1u0H3/162.\|F[u_{0}]\|_{Z}\lesssim\lambda^{-1}\|u_{0}\|_{H^{-3/16}}^{2}.

4 Bilinear estimates for KdV equation

We mainly use the argument in [10], §5.3.

Lemma 4.1.

Let N1,N22N_{1},N_{2}\geq 2, N1N2N_{1}\sim N_{2}. Then

ηP1(PN1uPN2v)Lx2LtN13/2uVK2vVK2.\displaystyle\|\eta P_{\lesssim 1}\mathscr{B}(P_{N_{1}}uP_{N_{2}}v)\|_{L_{x}^{2}L_{t}^{\infty}}\lesssim N_{1}^{-3/2}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}.
Proof.

If N11N_{1}\lesssim 1 we have

ηP1(PN1uPN2v)Lx2Lt\displaystyle\|\eta P_{\lesssim 1}\mathscr{B}(P_{N_{1}}uP_{N_{2}}v)\|_{L_{x}^{2}L_{t}^{\infty}} η~PN1uPN2vLt1Lx2\displaystyle\lesssim\|\tilde{\eta}P_{N_{1}}uP_{N_{2}}v\|_{L_{t}^{1}L_{x}^{2}}
PN1uLtLx4PN2uLtLx4\displaystyle\lesssim\|P_{N_{1}}u\|_{L_{t}^{\infty}L^{4}_{x}}\|P_{N_{2}}u\|_{L^{\infty}_{t}L^{4}_{x}}
N13/2uLtLx2vLtLx2.\displaystyle\lesssim N_{1}^{-3/2}\|u\|_{L^{\infty}_{t}L_{x}^{2}}\|v\|_{L^{\infty}_{t}L^{2}_{x}}.

Thus we consider the case N1N21N_{1}\sim N_{2}\gg 1. Let Lmin=min{L1,L2},Lmax=max{L1,L2}L_{\min}=\min\{L_{1},L_{2}\},L_{\max}=\max\{L_{1},L_{2}\}. We decompose P1P_{\lesssim 1} into K1PK\sum_{K\lesssim 1}P_{K}. By maximal function estimate, Lemma 5.7, (5.37) and (5.38) in [10] one has

KN12/3ηPK((PN1uPN2v))Lx2Lt\displaystyle\quad\sum_{K\lesssim N_{1}^{-2/3}}\|\eta P_{K}(\mathscr{B}(P_{N_{1}}uP_{N_{2}}v))\|_{L_{x}^{2}L_{t}^{\infty}}
KN12/3L1,L2,LKL1/2QL1KPN1uQL2KPN2vLt,x2\displaystyle\lesssim\sum_{K\lesssim N_{1}^{-2/3}}\sum_{L_{1},L_{2},L}KL^{-1/2}\|Q_{L_{1}}^{K}P_{N_{1}}uQ_{L_{2}}^{K}P_{N_{2}}v\|_{L^{2}_{t,x}}
KN12/3KL1,L2,LL1/2min{Lmin1/2K1/2,Lmin1/2L1/2N11}\displaystyle\lesssim\sum_{K\lesssim N_{1}^{-2/3}}K\sum_{L_{1},L_{2},L}L^{-1/2}\min\{L_{\min}^{1/2}K^{1/2},L_{\min}^{1/2}L^{1/2}N_{1}^{-1}\}
PN1QL1KuLt,x2PN2QL2KvLt,x2\displaystyle\hskip 80.0pt\cdot\|P_{N_{1}}Q_{L_{1}}^{K}u\|_{L^{2}_{t,x}}\|P_{N_{2}}Q_{L_{2}}^{K}v\|_{L_{t,x}^{2}}
KN12/3KL1,L2,L(LLmax)1/2min{K1/2,L1/2N11}uVK2vVK2\displaystyle\lesssim\sum_{K\lesssim N_{1}^{-2/3}}K\sum_{L_{1},L_{2},L}(LL_{\max})^{-1/2}\min\{K^{1/2},L^{1/2}N_{1}^{-1}\}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}
KN12/3KLL1/2min{K1/2,L1/2N11}uVK2vVK2\displaystyle\lesssim\sum_{K\lesssim N_{1}^{-2/3}}K\sum_{L}L^{-1/2}\min\{K^{1/2},L^{1/2}N_{1}^{-1}\}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}
N13/2uVK2vVK2.\displaystyle\lesssim N_{1}^{-3/2}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}.

If KN12/3K\geq N_{1}^{-2/3}, we firstly manipulate the case LmaxN15/4L_{\max}\geq N_{1}^{5/4}. Similar to the former argument one has

N12/3K1LmaxN15/4ηPK((PN1QL1KuPN2QL2Kv))Lx2Lt\displaystyle\quad\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}\geq N_{1}^{5/4}}\|\eta P_{K}(\mathscr{B}(P_{N_{1}}Q^{K}_{L_{1}}uP_{N_{2}}Q^{K}_{L_{2}}v))\|_{L_{x}^{2}L_{t}^{\infty}} (4.1)
N12/3K1LmaxN15/4,LK(LLmax)1/2min{K1/2,L1/2N11}uVK2vVK2\displaystyle\lesssim\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}\geq N_{1}^{5/4},L}K(LL_{\max})^{-1/2}\min\{K^{1/2},L^{1/2}N_{1}^{-1}\}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}
LmaxN15/4Lmax1/2N11log(N1)uVK2vVK2\displaystyle\lesssim\sum_{L_{\max}\geq N_{1}^{5/4}}L_{\max}^{-1/2}N_{1}^{-1}\log(N_{1})\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}
N13/2uVK2vVK2.\displaystyle\lesssim N_{1}^{-3/2}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}.

Thus we only need to estimate Lmax<N15/4L_{\max}<N_{1}^{5/4} for N12/3K1N_{1}^{-2/3}\leq K\lesssim 1. Let

fN1,L1(τ,ξ)\displaystyle f_{N_{1},L_{1}}(\tau,\xi) =t,x(PN1QL1Ku)(τ+ξ3,ξ),\displaystyle=\mathscr{F}_{t,x}(P_{N_{1}}Q^{K}_{L_{1}}u)(\tau+\xi^{3},\xi),
gN2,L2(τ,ξ)\displaystyle g_{N_{2},L_{2}}(\tau,\xi) =t,x(PN2QL2Ku)(τ+ξ3,ξ).\displaystyle=\mathscr{F}_{t,x}(P_{N_{2}}Q^{K}_{L_{2}}u)(\tau+\xi^{3},\xi).

Then

x(N12/3K1Lmax<N15/4PK(η(PN1QL1KuPN2QL2Kv)))\displaystyle\quad\mathscr{F}_{x}\left(\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}<N_{1}^{5/4}}P_{K}(\eta\mathscr{B}(P_{N_{1}}Q^{K}_{L_{1}}uP_{N_{2}}Q^{K}_{L_{2}}v))\right)
N12/3K1Lmax<N15/4η(t)0tψ(ξ/K)ξei(ts)ξ3\displaystyle\sim\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}<N_{1}^{5/4}}\eta(t)\int_{0}^{t}\psi(\xi/K)\xi e^{i(t-s)\xi^{3}}
τ1,τ22ξ=ξ1+ξ2fN1,L1(τ1,ξ1)gN2,L2(τ2,ξ2)eit(τ1+ξ13)+it(τ2+ξ23)\displaystyle\quad\cdot\int_{\mathbb{R}^{2}_{\tau_{1},\tau_{2}}}\int_{\xi=\xi_{1}+\xi_{2}}f_{N_{1},L_{1}}(\tau_{1},\xi_{1})g_{N_{2},L_{2}}(\tau_{2},\xi_{2})e^{it(\tau_{1}+\xi_{1}^{3})+it(\tau_{2}+\xi_{2}^{3})}
N12/3K1Lmax<N15/4η(t)ψ(ξ/K)ξτ1,τ22ξ=ξ1+ξ2\displaystyle\sim\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}<N_{1}^{5/4}}\eta(t)\psi(\xi/K)\xi\int_{\mathbb{R}^{2}_{\tau_{1},\tau_{2}}}\int_{\xi=\xi_{1}+\xi_{2}}
eit(τ1+τ2+ξ13+ξ23)eitξ3τ1+τ2+ξ13+ξ23ξ3fN1,L1(τ1,ξ1)gN2,L2(τ2,ξ2)\displaystyle\quad\cdot\frac{e^{it(\tau_{1}+\tau_{2}+\xi_{1}^{3}+\xi_{2}^{3})}-e^{it\xi^{3}}}{\tau_{1}+\tau_{2}+\xi_{1}^{3}+\xi_{2}^{3}-\xi^{3}}f_{N_{1},L_{1}}(\tau_{1},\xi_{1})g_{N_{2},L_{2}}(\tau_{2},\xi_{2})
:=xIxII.\displaystyle:=\mathscr{F}_{x}I-\mathscr{F}_{x}II.

Note that on the support set of fN1,L1(τ1,ξ1)gN2,L2(τ2,ξ2)f_{N_{1},L_{1}}(\tau_{1},\xi_{1})g_{N_{2},L_{2}}(\tau_{2},\xi_{2}) one has |τ1+τ2+ξ13+ξ23ξ3|N12|ξ||\tau_{1}+\tau_{2}+\xi_{1}^{3}+\xi_{2}^{3}-\xi^{3}|\sim N_{1}^{2}|\xi| since Lmax<N15/4L_{\max}<N_{1}^{5/4}, |ξ|KN12/3|\xi|\sim K\geq N_{1}^{-2/3}. By the maximal function estimate and the Plancherel identity one has

IILx2Lt\displaystyle\quad\|II\|_{L_{x}^{2}L_{t}^{\infty}}
ξ=ξ1+ξ2,τ1,τ2N12/3K1Lmax<N15/4ψ(ξ/K)ξfN1,L1(τ1,ξ1)gN2,L2(τ2,ξ2)τ1+τ2+ξ13+ξ23ξ3Lξ2\displaystyle\sim\left\|\int_{\begin{subarray}{c}\xi=\xi_{1}+\xi_{2},\\ \tau_{1},\tau_{2}\end{subarray}}\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}<N_{1}^{5/4}}\frac{\psi(\xi/K)\xi f_{N_{1},L_{1}}(\tau_{1},\xi_{1})g_{N_{2},L_{2}}(\tau_{2},\xi_{2})}{\tau_{1}+\tau_{2}+\xi_{1}^{3}+\xi_{2}^{3}-\xi^{3}}\right\|_{L^{2}_{\xi}}
N12τ1,τ22Lmax<N15/4fN1,L1(τ1,)L2gN2,L2(τ2,)L2\displaystyle\lesssim N_{1}^{-2}\int_{\mathbb{R}_{\tau_{1},\tau_{2}}^{2}}\sum_{L_{\max}<N_{1}^{5/4}}\|f_{N_{1},L_{1}}(\tau_{1},\cdot)\|_{L^{2}}\|g_{N_{2},L_{2}}(\tau_{2},\cdot)\|_{L^{2}}
N12Lmax<N15/4L11/2L21/2fN1,L1(τ,ξ)Lτ,ξ2fN2,L2Lτ,ξ2\displaystyle\lesssim N_{1}^{-2}\sum_{L_{\max}<N_{1}^{5/4}}L_{1}^{1/2}L_{2}^{1/2}\|f_{N_{1},L_{1}}(\tau,\xi)\|_{L^{2}_{\tau,\xi}}\|f_{N_{2},L_{2}}\|_{L^{2}_{\tau,\xi}}
N12Lmax<N15/4uVK2vVK2N13/2uVK2vVK2.\displaystyle\lesssim N_{1}^{-2}\sum_{L_{\max}<N_{1}^{5/4}}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}\lesssim N_{1}^{-3/2}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}.

Define

xI\displaystyle\mathscr{F}_{x}I^{\prime} :=N12/3K1Lmax<N15/4η(t)ψ(ξ/K)ξτ1,τ22ξ=ξ1+ξ2\displaystyle:=\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}<N_{1}^{5/4}}\eta(t)\psi(\xi/K)\xi\int_{\mathbb{R}^{2}_{\tau_{1},\tau_{2}}}\int_{\xi=\xi_{1}+\xi_{2}}
eit(τ1+τ2+ξ13+ξ23)ξ13+ξ23ξ3fN1,L1(τ1,ξ1)gN2,L2(τ2,ξ2)\displaystyle\hskip 80.0pt\frac{e^{it(\tau_{1}+\tau_{2}+\xi_{1}^{3}+\xi_{2}^{3})}}{\xi_{1}^{3}+\xi_{2}^{3}-\xi^{3}}f_{N_{1},L_{1}}(\tau_{1},\xi_{1})g_{N_{2},L_{2}}(\tau_{2},\xi_{2})
=N12/3K1Lmax<N15/4η(t)ψ(ξ/K)ξ=ξ1+ξ2\displaystyle=\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}<N_{1}^{5/4}}\eta(t)\psi(\xi/K)\int_{\xi=\xi_{1}+\xi_{2}}
13ξ1ξ2x(PN1QL1Ku)(t,ξ1)x(PN2QL2Kv)(t,ξ2).\displaystyle\hskip 80.0pt\frac{1}{-3\xi_{1}\xi_{2}}\mathscr{F}_{x}(P_{N_{1}}Q^{K}_{L_{1}}u)(t,\xi_{1})\mathscr{F}_{x}(P_{N_{2}}Q^{K}_{L_{2}}v)(t,\xi_{2}).

Let f:=L1<N15/4fN1,L2f:=\sum_{L_{1}<N_{1}^{5/4}}f_{N_{1},L_{2}}, g:=L2<N15/4gN2,L2g:=\sum_{L_{2}<N_{1}^{5/4}}g_{N_{2},L_{2}}. Then

xIxI\displaystyle\mathscr{F}_{x}I-\mathscr{F}_{x}I^{\prime} =N12/3K1Lmax<N15/4k=1η(t)ψ(ξ/K)ξτ1,τ22ξ=ξ1+ξ2\displaystyle=\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}<N_{1}^{5/4}}\sum_{k=1}^{\infty}\eta(t)\psi(\xi/K)\xi\int_{\mathbb{R}^{2}_{\tau_{1},\tau_{2}}}\int_{\xi=\xi_{1}+\xi_{2}}
(1)k(τ1+τ2)keit(τ1+τ2+ξ13+ξ23)(ξ13+ξ23ξ3)k+1fN1,L1(τ1,ξ1)gN2,L2(τ2,ξ2).\displaystyle\quad\frac{(-1)^{k}(\tau_{1}+\tau_{2})^{k}e^{it(\tau_{1}+\tau_{2}+\xi_{1}^{3}+\xi_{2}^{3})}}{(\xi_{1}^{3}+\xi_{2}^{3}-\xi^{3})^{k+1}}f_{N_{1},L_{1}}(\tau_{1},\xi_{1})g_{N_{2},L_{2}}(\tau_{2},\xi_{2}).

Thus by the Strichartz estimate [8] one has

IILx2Lt\displaystyle\quad\|I-I^{\prime}\|_{L_{x}^{2}L_{t}^{\infty}}
τ1,τ22k=1N12/3K1Lmax<N15/4|τ1+τ2|kKk\displaystyle\lesssim\int_{\mathbb{R}^{2}_{\tau_{1},\tau_{2}}}\sum_{k=1}^{\infty}\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}<N_{1}^{5/4}}|\tau_{1}+\tau_{2}|^{k}K^{-k}
η(t)ξ1ξ=ξ1+ξ2(eit(ξ13+ξ23)ξ1k+1ξ2k+1fN1,L1(τ1,ξ1)gN2,L2(τ2,ξ2))Lx2Lt\displaystyle\cdot\left\|\eta(t)\mathscr{F}^{-1}_{\xi}\int_{\xi=\xi_{1}+\xi_{2}}\left(\frac{e^{it(\xi_{1}^{3}+\xi_{2}^{3})}}{\xi_{1}^{k+1}\xi_{2}^{k+1}}f_{N_{1},L_{1}}(\tau_{1},\xi_{1})g_{N_{2},L_{2}}(\tau_{2},\xi_{2})\right)\right\|_{L^{2}_{x}L_{t}^{\infty}}
τ1,τ22k=1N12/3K1Lmax<N15/4N15k/4Kk\displaystyle\lesssim\int_{\mathbb{R}^{2}_{\tau_{1},\tau_{2}}}\sum_{k=1}^{\infty}\sum_{N_{1}^{-2/3}\leq K\lesssim 1}\sum_{L_{\max}<N_{1}^{5/4}}N_{1}^{5k/4}K^{-k}
ξ1(eitξ3fN1,L1(τ1,ξ)/ξk+1)Lx4Ltξ1(eitξ3fN2,L2(τ2,ξ)/ξk+1)Lx4Lt\displaystyle\cdot\|\mathscr{F}^{-1}_{\xi}(e^{it\xi^{3}}f_{N_{1},L_{1}}(\tau_{1},\xi)/\xi^{k+1})\|_{L_{x}^{4}L_{t}^{\infty}}\|\mathscr{F}^{-1}_{\xi}(e^{it\xi^{3}}f_{N_{2},L_{2}}(\tau_{2},\xi)/\xi^{k+1})\|_{L_{x}^{4}L_{t}^{\infty}}
τ1,τ22k=1Lmax<N15/4N123k/122(k+1)+1/2fN1,L1(τ1,)L2fN2,L2(τ2,)L2\displaystyle\lesssim\int_{\mathbb{R}^{2}_{\tau_{1},\tau_{2}}}\sum_{k=1}^{\infty}\sum_{L_{\max}<N_{1}^{5/4}}N_{1}^{23k/12-2(k+1)+1/2}\|f_{N_{1},L_{1}}(\tau_{1},\cdot)\|_{L^{2}}\|f_{N_{2},L_{2}}(\tau_{2},\cdot)\|_{L^{2}}
Lmax<N15/4N137/12(L1L2)1/2QL1KPN1uLt,x2QL2KPN2vLt,x2\displaystyle\lesssim\sum_{L_{\max}<N_{1}^{5/4}}N_{1}^{-37/12}(L_{1}L_{2})^{1/2}\|Q_{L_{1}}^{K}P_{N_{1}}u\|_{L^{2}_{t,x}}\|Q_{L_{2}}^{K}P_{N_{2}}v\|_{L^{2}_{t,x}}
Lmax<N15/4N137/12uVK2vVK2N3/2uVK2vVK2.\displaystyle\lesssim\sum_{L_{\max}<N_{1}^{5/4}}N_{1}^{-37/12}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}\lesssim N^{-3/2}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}.

Note that there exists constant c~\tilde{c} such that

I=c~η(t)PN2/31((x1PN1Q<N15/4Ku)(x1PN1Q<N15/4Kv)).I^{\prime}=\tilde{c}\eta(t)P_{N^{-2/3}\leq\cdot\lesssim 1}((\partial_{x}^{-1}P_{N_{1}}Q^{K}_{<N_{1}^{5/4}}u)(\partial_{x}^{-1}P_{N_{1}}Q^{K}_{<N_{1}^{5/4}}v)).

By the Hölder inequality we have

ILx2Lt\displaystyle\|I^{\prime}\|_{L_{x}^{2}L_{t}^{\infty}} x1PN1Q<N15/4KuLx4Ltx1PN1Q<N15/4KvLx4Lt\displaystyle\lesssim\|\partial_{x}^{-1}P_{N_{1}}Q^{K}_{<N_{1}^{5/4}}u\|_{L_{x}^{4}L_{t}^{\infty}}\|\partial_{x}^{-1}P_{N_{1}}Q^{K}_{<N_{1}^{5/4}}v\|_{L_{x}^{4}L_{t}^{\infty}}
N2PN1Q<N15/4KuLx4LtPN2Q<N15/4KvLx4Lt\displaystyle\lesssim N^{-2}\|P_{N_{1}}Q^{K}_{<N_{1}^{5/4}}u\|_{L_{x}^{4}L_{t}^{\infty}}\|P_{N_{2}}Q^{K}_{<N_{1}^{5/4}}v\|_{L_{x}^{4}L_{t}^{\infty}}
N3/2Q<N15/4KuUK4Q<N15/4KvUK4\displaystyle\lesssim N^{-3/2}\|Q^{K}_{<N_{1}^{5/4}}u\|_{U^{4}_{K}}\|Q^{K}_{<N_{1}^{5/4}}v\|_{U^{4}_{K}}
N3/2Q<N15/4KuVK2Q<N15/4KvVK2N3/2uVK2vVK2.\displaystyle\lesssim N^{-3/2}\|Q^{K}_{<N_{1}^{5/4}}u\|_{V^{2}_{K}}\|Q^{K}_{<N_{1}^{5/4}}v\|_{V^{2}_{K}}\lesssim N^{-3/2}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}.

We conclude the proof. ∎

Proposition 4.2.

η(uv)YuYvY\|\eta\mathscr{B}(uv)\|_{Y}\lesssim\|u\|_{Y}\|v\|_{Y}.

Proof.

By Lemma 4.1 we have

ηP1(uv)Lx2Lt\displaystyle\quad\|\eta P_{1}\mathscr{B}(uv)\|_{L_{x}^{2}L_{t}^{\infty}}
ηP1(P1uP1v)Lx2Lt+N1N21ηP1(PN1uPN2v)Lx2Lt\displaystyle\leq\|\eta P_{1}\mathscr{B}(P_{\lesssim 1}uP_{\lesssim 1}v)\|_{L_{x}^{2}L_{t}^{\infty}}+\sum_{N_{1}\sim N_{2}\gg 1}\|\eta P_{1}\mathscr{B}(P_{N_{1}}uP_{N_{2}}v)\|_{L_{x}^{2}L_{t}^{\infty}}
η~P1uP1vLt1Lx2+N1N21N13/2PN1uVK2PN2vVK2\displaystyle\lesssim\|\tilde{\eta}P_{\lesssim 1}uP_{\lesssim 1}v\|_{L_{t}^{1}L_{x}^{2}}+\sum_{N_{1}\sim N_{2}\gg 1}N_{1}^{-3/2}\|P_{N_{1}}u\|_{V^{2}_{K}}\|P_{N_{2}}v\|_{V^{2}_{K}}
P1uLtLx4P1vLtLx4+uZvZ\displaystyle\lesssim\|P_{\lesssim 1}u\|_{L_{t}^{\infty}L_{x}^{4}}\|P_{\lesssim 1}v\|_{L_{t}^{\infty}L_{x}^{4}}+\|u\|_{Z}\|v\|_{Z}
uZvZ.\displaystyle\lesssim\|u\|_{Z}\|v\|_{Z}.

Let N2N\geq 2. By the triangle inequality we have

ηPN(uv)UK2\displaystyle\quad\|\eta P_{N}\mathscr{B}(uv)\|_{U^{2}_{K}}
N1NηPN(PN1uP1v)UK2+N2NηPN(P1uPN2v)UK2\displaystyle\lesssim\sum_{N_{1}\sim N}\|\eta P_{N}\mathscr{B}(P_{N_{1}}uP_{\lesssim 1}v)\|_{U^{2}_{K}}+\sum_{N_{2}\sim N}\|\eta P_{N}\mathscr{B}(P_{\lesssim 1}uP_{N_{2}}v)\|_{U^{2}_{K}}
+N1,N21ηPN(PN1uPN2v)UK2:=IN+IN+IIN.\displaystyle\quad+\sum_{N_{1},N_{2}\gg 1}\|\eta P_{N}\mathscr{B}(P_{N_{1}}uP_{N_{2}}v)\|_{U^{2}_{K}}:=I_{N}+I^{\prime}_{N}+II_{N}.

For the term II we use Proposition 5.12 in [10].

INUK2\displaystyle\|I_{N}\|_{U^{2}_{K}} N1Nη~2x(PN1uP1v)Lt,x2\displaystyle\lesssim\sum_{N_{1}\sim N}\|\tilde{\eta}^{2}\partial_{x}(P_{N_{1}}uP_{\lesssim 1}v)\|_{L^{2}_{t,x}}
N1NNη~PN1uLxLt2η~P1vLx2Lt.\displaystyle\lesssim\sum_{N_{1}\sim N}N\|\tilde{\eta}P_{N_{1}}u\|_{L_{x}^{\infty}L_{t}^{2}}\|\tilde{\eta}P_{\lesssim 1}v\|_{L_{x}^{2}L_{t}^{\infty}}.

Then by the local smoothing estimate one has

N3/4INlN22UK2\displaystyle\|N^{-3/4}I_{N}\|_{l^{2}_{N\geq 2}U^{2}_{K}} η~N1/4PNulN2LxLt2η~P1vLx2Lt\displaystyle\lesssim\|\tilde{\eta}N^{1/4}P_{N}u\|_{l^{2}_{N}L_{x}^{\infty}L_{t}^{2}}\|\tilde{\eta}P_{\lesssim 1}v\|_{L_{x}^{2}L_{t}^{\infty}}
uZvZ\displaystyle\lesssim\|u\|_{Z}\|v\|_{Z}

By symmetry we control INI^{\prime}_{N} similarly.

For IINII_{N} we decompose the summation into four parts.

IIN\displaystyle II_{N} =N1N2N1+N1NN21+N2NN11+N1N2N\displaystyle=\sum_{N_{1}\sim N_{2}\sim N\gg 1}+\sum_{N_{1}\sim N\gg N_{2}\gg 1}+\sum_{N_{2}\sim N\gg N_{1}\gg 1}+\sum_{N_{1}\sim N_{2}\gg N}\cdots
:=IIN(1)+IIN(2)+IIN(3)+IIN(4).\displaystyle:=II_{N}^{(1)}+II_{N}^{(2)}+II_{N}^{(3)}+II_{N}^{(4)}.

For N1N2N1N_{1}\sim N_{2}\sim N\gg 1 we show

|2x(PN1uPN2v)PNw¯dxdt|N3/4uVK2vVK2wVK2\displaystyle\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}uP_{N_{2}}v)P_{N}\bar{w}~{}dxdt\right|\lesssim N^{-3/4}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}\|w\|_{V^{2}_{K}}

where u,v,wu,v,w are supported on [1,1]×[-1,1]\times\mathbb{R}. Let Lmin,Lmed,LmaxL_{\min},L_{\mathrm{med}},L_{\max} be the maximum, medium and minimum among L1,L2,LL_{1},L_{2},L. By Lemma 5.7 in [10] we have

|2x(PN1uPN2v)PNw¯dxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}uP_{N_{2}}v)P_{N}\bar{w}~{}dxdt\right|
LmaxcN3|2x(QL1KPN1uQL2KPN2v)PNQLKw¯dxdt|\displaystyle\leq\sum_{L_{\max}\gtrsim cN^{3}}\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q_{L_{1}}^{K}P_{N_{1}}uQ^{K}_{L_{2}}P_{N_{2}}v)\overline{P_{N}Q_{L}^{K}w}~{}dxdt\right|
LmaxcN3NLmin1/2Lmed1/4N1/4QL1KPN1uLt,x2QL2KPN2vLt,x2QLKPNwLt,x2\displaystyle\lesssim\sum_{L_{\max}\gtrsim cN^{3}}NL_{\min}^{1/2}L_{\mathrm{med}}^{1/4}N^{-1/4}\|Q_{L_{1}}^{K}P_{N_{1}}u\|_{L_{t,x}^{2}}\|Q_{L_{2}}^{K}P_{N_{2}}v\|_{L_{t,x}^{2}}\|Q_{L}^{K}P_{N}w\|_{L_{t,x}^{2}}
LmaxcN3Lmin1/2Lmed1/4N3/4(L1L2L)1/2uVK2vVK2wVK2\displaystyle\lesssim\sum_{L_{\max}\gtrsim cN^{3}}L_{\min}^{1/2}L_{\mathrm{med}}^{1/4}N^{3/4}(L_{1}L_{2}L)^{-1/2}\|u\|_{V_{K}^{2}}\|v\|_{V_{K}^{2}}\|w\|_{V_{K}^{2}}
N3/4uVK2vVK2wVK2\displaystyle\lesssim N^{-3/4}\|u\|_{V_{K}^{2}}\|v\|_{V_{K}^{2}}\|w\|_{V_{K}^{2}}

Then by the duality we have

N3/4IIN(1)lN22UK2\displaystyle\|N^{-3/4}II_{N}^{(1)}\|_{l^{2}_{N\geq 2}U^{2}_{K}} N3/2N1N2N1PN1uVK2PN2vVK2lN22\displaystyle\lesssim\left\|N^{-3/2}\sum_{N_{1}\sim N_{2}\sim N\gg 1}\|P_{N_{1}}u\|_{V^{2}_{K}}\|P_{N_{2}}v\|_{V^{2}_{K}}\right\|_{l^{2}_{N\geq 2}}
N3/4PNulN22VK2N3/4PNvlN22VK2\displaystyle\lesssim\|N^{-3/4}P_{N}u\|_{l^{2}_{N\geq 2}V^{2}_{K}}\|N^{-3/4}P_{N}v\|_{l^{2}_{N\geq 2}V^{2}_{K}}
uZvZ.\displaystyle\lesssim\|u\|_{Z}\|v\|_{Z}.

For N1NN21N_{1}\sim N\gg N_{2}\gg 1 we show

|2x(PN1uPN2v)PNw¯dxdt|N1/2N21/4uVK2vVK2wVK2.\displaystyle\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}uP_{N_{2}}v)P_{N}\bar{w}~{}dxdt\right|\lesssim N^{-1/2}N_{2}^{1/4}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}\|w\|_{V^{2}_{K}}.

In fact by Lemma 5.7 (5.38) in [10] we have

|2x(PN1uPN2v)PNw¯dxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}uP_{N_{2}}v)P_{N}\bar{w}~{}dxdt\right|
L1,L2,L|2x(QL1KPN1uQL2KPN2v)PNQLKw¯dxdt|\displaystyle\leq\sum_{L_{1},L_{2},L}\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q_{L_{1}}^{K}P_{N_{1}}uQ^{K}_{L_{2}}P_{N_{2}}v)\overline{P_{N}Q_{L}^{K}w}~{}dxdt\right|
L1,L2,LN(L1L2L)1/3N1/2(N2N2)1/2\displaystyle\lesssim\sum_{L_{1},L_{2},L}N(L_{1}L_{2}L)^{1/3}N^{-1/2}(N^{2}N_{2})^{-1/2}
QL1KPN1uLt,x2QL2KPN2vLt,x2QLKPNwLt,x2\displaystyle\quad\cdot\|Q_{L_{1}}^{K}P_{N_{1}}u\|_{L_{t,x}^{2}}\|Q_{L_{2}}^{K}P_{N_{2}}v\|_{L_{t,x}^{2}}\|Q_{L}^{K}P_{N}w\|_{L_{t,x}^{2}}
L1,L2,L(L1L2L)1/3N1/2N21/2(L1L2L)1/2uVK2vVK2wVK2\displaystyle\lesssim\sum_{L_{1},L_{2},L}(L_{1}L_{2}L)^{1/3}N^{-1/2}N_{2}^{-1/2}(L_{1}L_{2}L)^{-1/2}\|u\|_{V_{K}^{2}}\|v\|_{V_{K}^{2}}\|w\|_{V_{K}^{2}}
N1/2N21/2uVK2vVK2wVK2.\displaystyle\lesssim N^{-1/2}N_{2}^{-1/2}\|u\|_{V_{K}^{2}}\|v\|_{V_{K}^{2}}\|w\|_{V_{K}^{2}}.

Then by the duality we have

N3/4IIN(2)lN22UK2\displaystyle\|N^{-3/4}II_{N}^{(2)}\|_{l^{2}_{N\geq 2}U^{2}_{K}} N1NN21N5/4N21/2PN1uVK2PN2vVK2\displaystyle\lesssim\sum_{N_{1}\sim N\gg N_{2}\gg 1}N^{-5/4}N_{2}^{-1/2}\|P_{N_{1}}u\|_{V^{2}_{K}}\|P_{N_{2}}v\|_{V^{2}_{K}}
N3/4PNulN22VK2N3/4PNvlN22VK2\displaystyle\lesssim\|N^{-3/4}P_{N}u\|_{l^{2}_{N\geq 2}V^{2}_{K}}\|N^{-3/4}P_{N}v\|_{l^{2}_{N\geq 2}V^{2}_{K}}
uZvZ.\displaystyle\lesssim\|u\|_{Z}\|v\|_{Z}.

By the symmetry we can control IIN(3)II_{N}^{(3)} similarly.

Now, we estimate the term IIN(4)II_{N}^{(4)}. Let N1N2N2N_{1}\sim N_{2}\gg N\geq 2, L=cN12NL=cN_{1}^{2}N. Firstly we estimate

ηPN(QLK(PN1uPN2v))UK2.\displaystyle\|\eta P_{N}\mathscr{B}(Q_{\leq L}^{K}(P_{N_{1}}uP_{N_{2}}v))\|_{U^{2}_{K}}.

Typically we control

2x(Q>LKPN1uPN2v)QLKPNw¯dxdt.\displaystyle\int_{\mathbb{R}^{2}}\partial_{x}(Q_{>L}^{K}P_{N_{1}}uP_{N_{2}}v)\overline{Q_{\leq L}^{K}P_{N}w}~{}dxdt.

By high modulation and transversal estimates, we have

|2x(Q>LKPN1uPN2v)QLPNw¯dxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q_{>L}^{K}P_{N_{1}}uP_{N_{2}}v)\overline{Q_{\leq L}P_{N}w}~{}dxdt\right|
Q>LKPN1uLt,x2PN2vxQLKPNwLt,x2\displaystyle\lesssim\|Q_{>L}^{K}P_{N_{1}}u\|_{L_{t,x}^{2}}\|P_{N_{2}}v\partial_{x}Q^{K}_{\leq L}P_{N}w\|_{L_{t,x}^{2}}
L1/2uVK2N21NvUK2wUK2\displaystyle\lesssim L^{-1/2}\|u\|_{V^{2}_{K}}N_{2}^{-1}N\|v\|_{U^{2}_{K}}\|w\|_{U^{2}_{K}}
N12N1/2uVK2vUK2wUK2.\displaystyle\sim N_{1}^{-2}N^{1/2}\|u\|_{V^{2}_{K}}\|v\|_{U^{2}_{K}}\|w\|_{U^{2}_{K}}.

On the other hand by the Strichartz estimate we have

|2x(Q>LKPN1uPN2v)QLKPNw¯dxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q^{K}_{>L}P_{N_{1}}uP_{N_{2}}v)\overline{Q^{K}_{\leq L}P_{N}w}~{}dxdt\right|
Q>LKPN1uLt,x4PN2vLt,x4xQLKPNwLt,x2\displaystyle\lesssim\|Q^{K}_{>L}P_{N_{1}}u\|_{L_{t,x}^{4}}\|P_{N_{2}}v\|_{L_{t,x}^{4}}\|\partial_{x}Q^{K}_{\leq L}P_{N}w\|_{L_{t,x}^{2}}
Q>LKPN1uLt,x21/4Q>LKPN1uLt,x63/4PN2vLt,x21/4PN2vLt,x63/4NwUK6\displaystyle\lesssim\|Q_{>L}^{K}P_{N_{1}}u\|_{L_{t,x}^{2}}^{1/4}\|Q_{>L}^{K}P_{N_{1}}u\|_{L_{t,x}^{6}}^{3/4}\|P_{N_{2}}v\|_{L_{t,x}^{2}}^{1/4}\|P_{N_{2}}v\|_{L_{t,x}^{6}}^{3/4}N\|w\|_{U^{6}_{K}}
N11/4NuVK2vUK6wUK6.\displaystyle\sim N_{1}^{-1/4}N\|u\|_{V^{2}_{K}}\|v\|_{U^{6}_{K}}\|w\|_{U^{6}_{K}}.

Then, by the interpolation [7], one has

|2x(Q>LKPN1uPN2v)QLKPNw¯dxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q_{>L}^{K}P_{N_{1}}uP_{N_{2}}v)\overline{Q^{K}_{\leq L}P_{N}w}~{}dxdt\right|
N12N1/2(logN1)2uVK2vVK2wVK2.\displaystyle\lesssim N_{1}^{-2}N^{1/2}(\log N_{1})^{2}\|u\|_{V^{2}_{K}}\|v\|_{V^{2}_{K}}\|w\|_{V^{2}_{K}}.

Thus,

N1N2N2N3/4ηPN(QLK(PN1uPN2v))UK2\displaystyle\quad\sum_{N_{1}\sim N_{2}\gg N\geq 2}N^{-3/4}\|\eta P_{N}\mathscr{B}(Q^{K}_{\leq L}(P_{N_{1}}uP_{N_{2}}v))\|_{U^{2}_{K}}
N1N2N2N3/4N12N1/2(logN1)2PN1uVK2PN2vVK2\displaystyle\lesssim\sum_{N_{1}\sim N_{2}\gg N\geq 2}N^{-3/4}N_{1}^{-2}N^{1/2}(\log N_{1})^{2}\|P_{N_{1}}u\|_{V^{2}_{K}}\|P_{N_{2}}v\|_{V^{2}_{K}}
uZvZ.\displaystyle\lesssim\|u\|_{Z}\|v\|_{Z}.

Secondly we estimate ηPN(QLK(PN1uPN2v))UK2\|\eta P_{N}\mathscr{B}(Q^{K}_{\leq L}(P_{N_{1}}uP_{N_{2}}v))\|_{U^{2}_{K}}. By high modulation and transversal estimates, we have

|2x(PN1uPN2v)Q>LKPNw¯dxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}uP_{N_{2}}v)\overline{Q^{K}_{>L}P_{N}w}~{}dxdt\right|
PN(PN1uPN2v)Lt,x2xQ>LKPNwLt,x2\displaystyle\lesssim\|P_{N}(P_{N_{1}}uP_{N_{2}}v)\|_{L_{t,x}^{2}}\|\partial_{x}Q^{K}_{>L}P_{N}w\|_{L_{t,x}^{2}}
(NN1)1/2uUK2vUK2L1/2NwVK2\displaystyle\lesssim(NN_{1})^{-1/2}\|u\|_{U^{2}_{K}}\|v\|_{U^{2}_{K}}L^{-1/2}N\|w\|_{V^{2}_{K}}
N13/2uUK2vUK2wVK2.\displaystyle\sim N_{1}^{-3/2}\|u\|_{U^{2}_{K}}\|v\|_{U^{2}_{K}}\|w\|_{V^{2}_{K}}.

Then by the duality one has

N1N2N2N3/4ηPN(QLK(PN1uPN2v))UK2\displaystyle\quad\sum_{N_{1}\sim N_{2}\gg N\geq 2}\|N^{-3/4}\eta P_{N}\mathscr{B}(Q^{K}_{\leq L}(P_{N_{1}}uP_{N_{2}}v))\|_{U^{2}_{K}}
N1N2N2N3/4N13/2PN1uUK2PN2vUK2\displaystyle\lesssim\sum_{N_{1}\sim N_{2}\gg N\geq 2}N^{-3/4}N_{1}^{-3/2}\|P_{N_{1}}u\|_{U^{2}_{K}}\|P_{N_{2}}v\|_{U^{2}_{K}}
uYvY.\displaystyle\lesssim\|u\|_{Y}\|v\|_{Y}.

We finish the proof of this proposition. ∎

In the proof of Proposition 4.2, we control many parts by uZvZ\|u\|_{Z}\|v\|_{Z} except IIN(4)II_{N}^{(4)}. Fortunately, we have the following lemma which can help us to control this case when v=F[u0]v=F[u_{0}].

Lemma 4.3.

2NN1N22\leq N\ll N_{1}\sim N_{2}.

ηPN(PN1vPN2F[PN22/λu0])UK2(λN13/N)1/2vUK2u0L22,\displaystyle\|\eta P_{N}\mathscr{B}(P_{N_{1}}vP_{N_{2}}F[P_{\sim N_{2}^{2}/\lambda}u_{0}])\|_{U^{2}_{K}}\lesssim(\lambda N_{1}^{3}/N)^{-1/2}\|v\|_{U^{2}_{K}}\|u_{0}\|_{L^{2}}^{2},
ηPN(PN1(F[PN12/λu0])PN2(F[PN22/λu0]))UK2(λ2N13/N)1/2u0L24.\displaystyle\|\eta P_{N}\mathscr{B}(P_{N_{1}}(F[P_{\sim N_{1}^{2}/\lambda}u_{0}])P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}]))\|_{U^{2}_{K}}\lesssim(\lambda^{2}N_{1}^{3}/N)^{-1/2}\|u_{0}\|_{L^{2}}^{4}.
Proof.

By the duality, we only need to show

|2PN1vPN2(F[PN22/λu0])xPNwdxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}P_{N_{1}}vP_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])\partial_{x}P_{N}w~{}dxdt\right|
(λN13/N)1/2vUK2u0L22wVK2\displaystyle\lesssim(\lambda N_{1}^{3}/N)^{-1/2}\|v\|_{U^{2}_{K}}\|u_{0}\|_{L^{2}}^{2}\|w\|_{V^{2}_{K}}

and

|2PN1(F[PN12/λu0])PN2(F[PN22/λu0])xPNwdxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}P_{N_{1}}(F[P_{\sim N_{1}^{2}/\lambda}u_{0}])P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])\partial_{x}P_{N}w~{}dxdt\right|
(λ2N13/N)1/2u0L24wVK2\displaystyle\lesssim(\lambda^{2}N_{1}^{3}/N)^{-1/2}\|u_{0}\|_{L^{2}}^{4}\|w\|_{V^{2}_{K}}

where v,wv,w are supported on [1,1]×[-1,1]\times\mathbb{R}. Let L=cNN1N2L=cNN_{1}N_{2}. Firstly, we control

|2PN1vPN2(F[PN22/λu0])QLKxPNwdxdt|.\displaystyle\left|\int_{\mathbb{R}^{2}}P_{N_{1}}vP_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])Q_{\leq L}^{K}\partial_{x}P_{N}w~{}dxdt\right|.

Since for |ξ1|N1|\xi_{1}|\sim N_{1}, |ξ1|N2|\xi_{1}|\sim N_{2}, |ξ|N|\xi|\sim N, ξ1+ξ2=ξ\xi_{1}+\xi_{2}=\xi, one has |ξ13+ξ23(ξ1+ξ2)3|L|\xi_{1}^{3}+\xi_{2}^{3}-(\xi_{1}+\xi_{2})^{3}|\gtrsim L. Typically, we need to control

|2PN1vQ>LKPN2(F[PN22/λu0])QLKxPNwdxdt|.\left|\int_{\mathbb{R}^{2}}P_{N_{1}}vQ^{K}_{>L}P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])Q_{\leq L}^{K}\partial_{x}P_{N}w~{}dxdt\right|.

By transversal and high modulation estimates we can control this term by

PN1vQLKxPNwLt,x2Q>LKPN2(F[PN22/λu0])Lt,x2\displaystyle\quad\|P_{N_{1}}vQ_{\leq L}^{K}\partial_{x}P_{N}w\|_{L^{2}_{t,x}}\|Q^{K}_{>L}P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])\|_{L^{2}_{t,x}}
N11NvUK2wUK2L1/2PN2(F[PN22/λu0])VK2\displaystyle\lesssim N_{1}^{-1}N\|v\|_{U^{2}_{K}}\|w\|_{U^{2}_{K}}L^{-1/2}\|P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])\|_{V^{2}_{K}}
N12N1/2vUK2wUK2PN2(F[PN22/λu0])VK2.\displaystyle\sim N_{1}^{-2}N^{1/2}\|v\|_{U^{2}_{K}}\|w\|_{U^{2}_{K}}\|P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])\|_{V^{2}_{K}}.

Recall that vv is supported on [1,1]×[-1,1]\times\mathbb{R}. Thus for any p1p\geq 1, one has vLt,x2vLtLx2vUp\|v\|_{L_{t,x}^{2}}\lesssim\|v\|_{L_{t}^{\infty}L_{x}^{2}}\lesssim\|v\|_{U^{p}}. By the Hölder inequality and Strichartz estimates, we can also control this term by

PN1vLt,x3QLKxPNwLt,x6Q>LKPN2(F[PN22u0])Lt,x2\displaystyle\quad\|P_{N_{1}}v\|_{L_{t,x}^{3}}\|Q_{\leq L}^{K}\partial_{x}P_{N}w\|_{L_{t,x}^{6}}\|Q_{>L}^{K}P_{N_{2}}(F[P_{\sim N_{2}^{2}}u_{0}])\|_{L^{2}_{t,x}}
PN1vLt,x21/2PN1vLt,x61/2NPNwUK6L1/2PN2(F[PN22u0])VK2\displaystyle\lesssim\|P_{N_{1}}v\|_{L^{2}_{t,x}}^{1/2}\|P_{N_{1}}v\|_{L^{6}_{t,x}}^{1/2}N\|P_{N}w\|_{U^{6}_{K}}L^{-1/2}\|P_{N_{2}}(F[P_{\sim N_{2}^{2}}u_{0}])\|_{V^{2}_{K}}
N113/12N1/2vUK6wUK6PN2(F[PN22u0])VK2.\displaystyle\sim N_{1}^{-13/12}N^{1/2}\|v\|_{U^{6}_{K}}\|w\|_{U^{6}_{K}}\|P_{N_{2}}(F[P_{\sim N_{2}^{2}}u_{0}])\|_{V^{2}_{K}}.

Then, by the interpolation [7] and Lemma 3.2, one has

|2PN1vPN2(F[PN22/λu0])QLKxPNwdxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}P_{N_{1}}vP_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])Q_{\leq L}^{K}\partial_{x}P_{N}w~{}dxdt\right|
N12N1/2(logN1)2vVK2wVK2PN2(F[PN22u0])VK2\displaystyle\lesssim N_{1}^{-2}N^{1/2}(\log N_{1})^{2}\|v\|_{V^{2}_{K}}\|w\|_{V^{2}_{K}}\|P_{N_{2}}(F[P_{\sim N_{2}^{2}}u_{0}])\|_{V^{2}_{K}}
λ3/8N12N1/2(logN1)2vVK2wVK2PN2(F[PN22u0])VK2.\displaystyle\lesssim\lambda^{-3/8}N_{1}^{-2}N^{1/2}(\log N_{1})^{2}\|v\|_{V^{2}_{K}}\|w\|_{V^{2}_{K}}\|P_{N_{2}}(F[P_{\sim N_{2}^{2}}u_{0}])\|_{V^{2}_{K}}.

Similarly, one has

|2PN1(F[PN12/λu0])PN2(F[PN22/λu0])QLKxPNwdxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}P_{N_{1}}(F[P_{\sim N_{1}^{2}/\lambda}u_{0}])P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])Q_{\leq L}^{K}\partial_{x}P_{N}w~{}dxdt\right|
N12N1/2(logN1)2PN1(F[PN12/λu0])VK2PN2(F[PN12/λu0])VK2wVK2\displaystyle\lesssim N_{1}^{-2}N^{1/2}(\log N_{1})^{2}\|P_{N_{1}}(F[P_{\sim N_{1}^{2}/\lambda}u_{0}])\|_{V^{2}_{K}}\|P_{N_{2}}(F[P_{\sim N_{1}^{2}/\lambda}u_{0}])\|_{V^{2}_{K}}\|w\|_{V^{2}_{K}}
λ3/4N12N1/2(logN1)2u0L24wVK2.\displaystyle\lesssim\lambda^{-3/4}N_{1}^{-2}N^{1/2}(\log N_{1})^{2}\|u_{0}\|_{L^{2}}^{4}\|w\|_{V^{2}_{K}}.

For the other part, by the Hölder inequality,

|2PN1vPN2(F[PN22/λu0])Q>LKxPNwdxdt|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}P_{N_{1}}vP_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}])Q_{>L}^{K}\partial_{x}P_{N}w~{}dxdt\right|
PN(PN1vPN2(F[PN22/λu0]))Lt,x2Q>LKxPNwLt,x2\displaystyle\lesssim\|P_{N}(P_{N_{1}}vP_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}]))\|_{L^{2}_{t,x}}\|Q_{>L}^{K}\partial_{x}P_{N}w\|_{L^{2}_{t,x}}
NL1/2PN(PN1vPN2(F[PN22/λu0]))Lt,x2wVK2.\displaystyle\lesssim NL^{-1/2}\|P_{N}(P_{N_{1}}vP_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}]))\|_{L^{2}_{t,x}}\|w\|_{V^{2}_{K}}.

To conclude the proof of this lemma, we show

PN(PN1vPN2(F[PN22/λu0]))Lt,x2(λNN1)1/2vUK2u0L22,\displaystyle\|P_{N}(P_{N_{1}}vP_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}]))\|_{L^{2}_{t,x}}\lesssim(\lambda NN_{1})^{-1/2}\|v\|_{U^{2}_{K}}\|u_{0}\|_{L^{2}}^{2},
PN(PN1(F[PN12/λu0])PN2(F[PN22/λu0]))Lt,x2(NN1)1/2u0L24.\displaystyle\|P_{N}(P_{N_{1}}(F[P_{\sim N_{1}^{2}/\lambda}u_{0}])P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}]))\|_{L^{2}_{t,x}}\lesssim(NN_{1})^{-1/2}\|u_{0}\|_{L^{2}}^{4}.

To show the first one, we only need to show

PN(PN1K(t)v0PN2(F[PN22/λu0]))Lt,x2(λNN1)1/2v0L2u0L22.\|P_{N}(P_{N_{1}}K(t)v_{0}P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}]))\|_{L^{2}_{t,x}}\lesssim(\lambda NN_{1})^{-1/2}\|v_{0}\|_{L^{2}}\|u_{0}\|_{L^{2}}^{2}.

Let I1,I2I_{1},I_{2} be intervals included in [CN22/λ,cN22/λ][cN22/λ,CN22/λ][-CN_{2}^{2}/\lambda,-cN_{2}^{2}/\lambda]\cup[cN_{2}^{2}/\lambda,CN_{2}^{2}/\lambda] with length cN2cN_{2}. Also, we can assume that for any η1I1\eta_{1}\in I_{1}, η2I2\eta_{2}\in I_{2} one has |η1η2|N2|\eta_{1}-\eta_{2}|\sim N_{2}. It is equivalent to

PN(PN1K(t)v0η~PN2(Sλ(t)PI1u0Sλ(t)PI2u0¯))Lt,x2\displaystyle\quad\left\|P_{N}\left(P_{N_{1}}K(t)v_{0}\tilde{\eta}P_{N_{2}}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}u_{0}})\right)\right\|_{L^{2}_{t,x}}
(λNN1)1/2v0L2u0L22.\displaystyle\lesssim(\lambda NN_{1})^{-1/2}\|v_{0}\|_{L^{2}}\|u_{0}\|_{L^{2}}^{2}.

There exists a interval JJ included in [CN2,cN2][cN2,CN2][-CN_{2},-cN_{2}]\cup[cN_{2},CN_{2}] with length 11 such that one has |ξ23+λη12λη22|N22|\xi_{2}^{3}+\lambda\eta_{1}^{2}-\lambda\eta_{2}^{2}|\gtrsim N_{2}^{2} for any ξ2[CN2,cN2][cN2,CN2]J:=J^\xi_{2}\in[-CN_{2},-cN_{2}]\cup[cN_{2},CN_{2}]\setminus J:=\hat{J}, η1I1,η2I2,η1+η2=ξ2\eta_{1}\in I_{1},\eta_{2}\in I_{2},\eta_{1}+\eta_{2}=\xi_{2}. Then by Lemma 3.3 and

PN(PN1K(t)v0PN2K(t)v1)Lt,x2(NN1)1/2v0L2v1L2,\|P_{N}(P_{N_{1}}K(t)v_{0}P_{N_{2}}K(t)v_{1})\|_{L^{2}_{t,x}}\lesssim(NN_{1})^{-1/2}\|v_{0}\|_{L^{2}}\|v_{1}\|_{L^{2}}, (4.2)

we can control this part. Thus we only need to show

PN(PN1K(t)v0η~PJ(Sλ(t)PI1u0Sλ(t)PI2u0¯))Lt,x2\displaystyle\quad\left\|P_{N}\left(P_{N_{1}}K(t)v_{0}\tilde{\eta}P_{J}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}u_{0}})\right)\right\|_{L^{2}_{t,x}}
(λNN1)1/2v0L2u0L22.\displaystyle\lesssim(\lambda NN_{1})^{-1/2}\|v_{0}\|_{L^{2}}\|u_{0}\|_{L^{2}}^{2}.

By the orthogonality, we can assume that I1,I2I_{1},I_{2} are intervals with length 11.

There exists a interval J1J_{1} included in JJ with length at most 1/N21/N_{2} such that one has |ξ23+λη12λη22|N2|\xi_{2}^{3}+\lambda\eta_{1}^{2}-\lambda\eta_{2}^{2}|\gtrsim N_{2} for any ηJJ1\eta\in J\setminus J_{1}, η1I1,η2I2,η1+η2=η\eta_{1}\in I_{1},\eta_{2}\in I_{2},\eta_{1}+\eta_{2}=\eta. By Lemma 3.3 and the former argument we only need to show

PN(PN1K(t)v0η~PJ1(Sλ(t)PI1u0Sλ(t)PI2u0¯))Lt,x2\displaystyle\quad\left\|P_{N}\left(P_{N_{1}}K(t)v_{0}\tilde{\eta}P_{J_{1}}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}u_{0}})\right)\right\|_{L^{2}_{t,x}}
(λNN1)1/2v0L2u0L22\displaystyle\lesssim(\lambda NN_{1})^{-1/2}\|v_{0}\|_{L^{2}}\|u_{0}\|_{L^{2}}^{2}

where I1,I2I_{1},I_{2} are intervals with length 1/N21/N_{2}.

There exists a interval J2J_{2} included in J1J_{1} with length 1/N221/N_{2}^{2} such that one has |ξ23+λη12λη22|1|\xi_{2}^{3}+\lambda\eta_{1}^{2}-\lambda\eta_{2}^{2}|\lesssim 1 for any ξ2J2\xi_{2}\in J_{2}, η1I1,η2I2,η1+η2=ξ2\eta_{1}\in I_{1},\eta_{2}\in I_{2},\eta_{1}+\eta_{2}=\xi_{2}. By Lemma 3.4 and following the former argument we only need to show

PN(PN1K(t)v0η~PJ1J2(Sλ(t)PI1u0Sλ(t)PI2u0¯))Lt,x2\displaystyle\quad\left\|P_{N}\left(P_{N_{1}}K(t)v_{0}\tilde{\eta}P_{J_{1}\setminus J_{2}}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}u_{0}})\right)\right\|_{L^{2}_{t,x}}
(λNN1)1/2v0L2u0L22\displaystyle\lesssim(\lambda NN_{1})^{-1/2}\|v_{0}\|_{L^{2}}\|u_{0}\|_{L^{2}}^{2}

where I1,I2I_{1},I_{2} are intervals with length 1/N21/N_{2}. Note that

x(PN(PN1K(t)v0η~PJ1J2(Sλ(t)PI1u0Sλ(t)PI2u0¯)))\displaystyle\quad\mathscr{F}_{x}\left(P_{N}\left(P_{N_{1}}K(t)v_{0}\tilde{\eta}P_{J_{1}\setminus J_{2}}\mathscr{B}(S_{\lambda}(t)P_{I_{1}}u_{0}\overline{S_{\lambda}(t)P_{I_{2}}u_{0}})\right)\right)
ξ1+ξ2=ξ,η1+η2=ξ2M(ξ,ξ1,η1)v0^(ξ1)u0^(η1)u0^¯(η2)η~(eit(ξ13+ξ23)eit(ξ13+λξ2(η2η1)))\displaystyle\sim\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \eta_{1}+\eta_{2}=\xi_{2}\end{subarray}}M(\xi,\xi_{1},\eta_{1})\widehat{v_{0}}(\xi_{1})\widehat{u_{0}}(\eta_{1})\overline{\widehat{u_{0}}}(-\eta_{2})\tilde{\eta}(e^{it(\xi_{1}^{3}+\xi_{2}^{3})}-e^{it(\xi_{1}^{3}+\lambda\xi_{2}(\eta_{2}-\eta_{1}))})
:=Λ1+Λ2.\displaystyle:=\Lambda_{1}+\Lambda_{2}.

where M(ξ,ξ1,η1)=χ|ξ|N,|ξ1|N1,ξ2J1J2,η1I1,η2I2/(ξ22+λη1λη2)M(\xi,\xi_{1},\eta_{1})=\chi_{|\xi|\sim N,|\xi_{1}|\sim N_{1},\xi_{2}\in J_{1}\setminus J_{2},\eta_{1}\in I_{1},\eta_{2}\in I_{2}}/(\xi_{2}^{2}+\lambda\eta_{1}-\lambda\eta_{2}). Note that M(ξ,ξ2,η1)N2M(\xi,\xi_{2},\eta_{1})\lesssim N_{2}. For Λ1\Lambda_{1}, by (4.2) and the Plancherel identity we have

Λ1Lt2Lξ2\displaystyle\|\Lambda_{1}\|_{L_{t}^{2}L_{\xi}^{2}} (NN1)1/2v0L2\displaystyle\lesssim(NN_{1})^{-1/2}\|v_{0}\|_{L^{2}}
η1+η2=ξ2u0^(η1)u0^¯(η2)ξ22+λη1λη2χξ2J1J2,η1I1,η2I2Lξ22\displaystyle\quad\cdot\left\|\int_{\eta_{1}+\eta_{2}=\xi_{2}}\frac{\widehat{u_{0}}(\eta_{1})\overline{\widehat{u_{0}}}(-\eta_{2})}{\xi_{2}^{2}+\lambda\eta_{1}-\lambda\eta_{2}}\chi_{\xi_{2}\in J_{1}\setminus J_{2},\eta_{1}\in I_{1},\eta_{2}\in I_{2}}\right\|_{L^{2}_{\xi_{2}}}
(NN1)1/2v0L2u0L22χξ2J1J2,η1I1,η2I2ξ22+2λη1λξ2Lη1Lξ22\displaystyle\lesssim(NN_{1})^{-1/2}\|v_{0}\|_{L^{2}}\|u_{0}\|_{L^{2}}^{2}\left\|\frac{\chi_{\xi_{2}\in J_{1}\setminus J_{2},\eta_{1}\in I_{1},\eta_{2}\in I_{2}}}{\xi_{2}^{2}+2\lambda\eta_{1}-\lambda\xi_{2}}\right\|_{L^{\infty}_{\eta_{1}}L^{2}_{\xi_{2}}}
(NN1)1/2v0L2u0L22.\displaystyle\lesssim(NN_{1})^{-1/2}\|v_{0}\|_{L^{2}}\|u_{0}\|_{L^{2}}^{2}.

Let ηj0\eta_{j}^{0} be the center of IjI_{j}, j=1,2j=1,2. Note that

ξ1(ξ13+λ(ξξ1)(η20η10))\displaystyle\partial_{\xi_{1}}(\xi_{1}^{3}+\lambda(\xi-\xi_{1})(\eta_{2}^{0}-\eta_{1}^{0})) =3ξ12λ(η20η10)\displaystyle=3\xi_{1}^{2}-\lambda(\eta_{2}^{0}-\eta_{1}^{0})
=3ξ12ξ22+ξ22λ(η20η10)\displaystyle=3\xi_{1}^{2}-\xi_{2}^{2}+\xi_{2}^{2}-\lambda(\eta_{2}^{0}-\eta_{1}^{0})
=2ξ12+ξ(ξ1ξ2)+ξ22λ(η20η10)N12.\displaystyle=2\xi_{1}^{2}+\xi(\xi_{1}-\xi_{2})+\xi_{2}^{2}-\lambda(\eta_{2}^{0}-\eta_{1}^{0})\sim N_{1}^{2}.

Thus by the Taylor expansion and the transversal estimate one has

Λ2Lt2Lξ2\displaystyle\quad\|\Lambda_{2}\|_{L_{t}^{2}L_{\xi}^{2}}
k=0ξ1+ξ2=ξ,η1+η2=ξ2M(ξ,ξ1,η1)v0^(ξ1)u0^(η1)u0^¯(η2)eit(ξ13+λξ2(η20η10))\displaystyle\lesssim\sum_{k=0}^{\infty}\Bigg{\|}\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \eta_{1}+\eta_{2}=\xi_{2}\end{subarray}}M(\xi,\xi_{1},\eta_{1})\widehat{v_{0}}(\xi_{1})\widehat{u_{0}}(\eta_{1})\overline{\widehat{u_{0}}}(-\eta_{2})e^{it(\xi_{1}^{3}+\lambda\xi_{2}(\eta_{2}^{0}-\eta_{1}^{0}))}
η~(iλtξ2(η2η20η1+η10))kk!Lt2Lξ2\displaystyle\qquad\qquad\cdot\tilde{\eta}\frac{(i\lambda t\xi_{2}(\eta_{2}-\eta_{2}^{0}-\eta_{1}+\eta_{1}^{0}))^{k}}{k!}\Bigg{\|}_{L_{t}^{2}L_{\xi}^{2}}
k=01k!ξ1+ξ2=ξ,η1+η2=ξ2M(ξ,ξ1,η1)v0^(ξ1)u0^(η1)u0^¯(η2)eit(ξ13+λξ2(η20η10))\displaystyle\lesssim\sum_{k=0}^{\infty}\frac{1}{k!}\Bigg{\|}\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \eta_{1}+\eta_{2}=\xi_{2}\end{subarray}}M(\xi,\xi_{1},\eta_{1})\widehat{v_{0}}(\xi_{1})\widehat{u_{0}}(\eta_{1})\overline{\widehat{u_{0}}}(-\eta_{2})e^{it(\xi_{1}^{3}+\lambda\xi_{2}(\eta_{2}^{0}-\eta_{1}^{0}))}
(ξ2(η2η20η1+η10))kLt2Lξ2\displaystyle\qquad\qquad\cdot(\xi_{2}(\eta_{2}-\eta_{2}^{0}-\eta_{1}+\eta_{1}^{0}))^{k}\Bigg{\|}_{L_{t}^{2}L_{\xi}^{2}}
k=01k!N11v0L2η1+η2=ξ2u0^(η1)u0^¯(η2)ξ22+λη1λη2\displaystyle\lesssim\sum_{k=0}^{\infty}\frac{1}{k!}N_{1}^{-1}\|v_{0}\|_{L^{2}}\Bigg{\|}\int_{\eta_{1}+\eta_{2}=\xi_{2}}\frac{\widehat{u_{0}}(\eta_{1})\overline{\widehat{u_{0}}}(-\eta_{2})}{\xi_{2}^{2}+\lambda\eta_{1}-\lambda\eta_{2}}
χξ2J1J2,η1I1,η2I2(ξ2(η2η20η1+η10))kLξ22\displaystyle\qquad\qquad\cdot\chi_{\xi_{2}\in J_{1}\setminus J_{2},\eta_{1}\in I_{1},\eta_{2}\in I_{2}}(\xi_{2}(\eta_{2}-\eta_{2}^{0}-\eta_{1}+\eta_{1}^{0}))^{k}\Bigg{\|}_{L_{\xi_{2}}^{2}}
k=0Ckk!N11v0L2η1+η2=ξ2|u0^(η1)u0^(η2)|ξ22+λη1λη2χξ2J1J2,η1I1,η2I2Lξ22\displaystyle\lesssim\sum_{k=0}^{\infty}\frac{C^{k}}{k!}N_{1}^{-1}\|v_{0}\|_{L^{2}}\Bigg{\|}\int_{\eta_{1}+\eta_{2}=\xi_{2}}\frac{|\widehat{u_{0}}(\eta_{1})\widehat{u_{0}}(-\eta_{2})|}{\xi_{2}^{2}+\lambda\eta_{1}-\lambda\eta_{2}}\chi_{\xi_{2}\in J_{1}\setminus J_{2},\eta_{1}\in I_{1},\eta_{2}\in I_{2}}\Bigg{\|}_{L_{\xi_{2}}^{2}}
N11v0L2u0L22.\displaystyle\lesssim N_{1}^{-1}\|v_{0}\|_{L^{2}}\|u_{0}\|_{L^{2}}^{2}.

Thus we conclude the proof of the first inequality.

For the second one, similar to the former argument, we reduce it to

ζ1+ζ2+η1+η2=ξη~χ|ξ|NM1(ζ1,ζ2)M2(η1,η2)u0^(ζ1)u0^(ζ2)u0^(η1)u0^(η2)((ζ1+ζ2)2+λζ1λζ2)((η1+η2)2+λη1λη2)\displaystyle\Bigg{\|}\int_{\zeta_{1}+\zeta_{2}+\eta_{1}+\eta_{2}=\xi}\frac{\tilde{\eta}\chi_{|\xi|\sim N}M_{1}(\zeta_{1},\zeta_{2})M_{2}(\eta_{1},\eta_{2})\widehat{u_{0}}(\zeta_{1})\widehat{u_{0}}(\zeta_{2})\widehat{u_{0}}(\eta_{1})\widehat{u_{0}}(\eta_{2})}{((\zeta_{1}+\zeta_{2})^{2}+\lambda\zeta_{1}-\lambda\zeta_{2})((\eta_{1}+\eta_{2})^{2}+\lambda\eta_{1}-\lambda\eta_{2})}
(eit(ζ1+ζ2)2eiλt(ζ1+ζ2)(ζ2ζ1))(eit(η1+η2)2eiλt(η1+η2)(η2η1))Lt2Lξ2\displaystyle\qquad\cdot(e^{it(\zeta_{1}+\zeta_{2})^{2}}-e^{i\lambda t(\zeta_{1}+\zeta_{2})(\zeta_{2}-\zeta_{1})})(e^{it(\eta_{1}+\eta_{2})^{2}}-e^{i\lambda t(\eta_{1}+\eta_{2})(\eta_{2}-\eta_{1})})\Bigg{\|}_{L_{t}^{2}L_{\xi}^{2}}
(NN1)1/2u0L24\displaystyle\lesssim(NN_{1})^{-1/2}\|u_{0}\|_{L^{2}}^{4}

where M1(ζ1,ζ2)=χζ1+ζ2J,ζ1I1,ζ2I2,M2(η1,η2)=χη1+η2J~,η1I~1,η2I~2M_{1}(\zeta_{1},\zeta_{2})=\chi_{\zeta_{1}+\zeta_{2}\in J,\zeta_{1}\in I_{1},\zeta_{2}\in I_{2}},M_{2}(\eta_{1},\eta_{2})=\chi_{\eta_{1}+\eta_{2}\in\tilde{J},\eta_{1}\in\tilde{I}_{1},\eta_{2}\in\tilde{I}_{2}}, I1,I2,I~1,I~2I_{1},I_{2},\tilde{I}_{1},\tilde{I}_{2} are intervals included in [CN12,cN12][cN12,CN12][-CN_{1}^{2},-cN_{1}^{2}]\cup[cN_{1}^{2},CN_{1}^{2}], J,J~J,\tilde{J} are intervals included in [CN1,cN1][cN1,CN1][-CN_{1},cN_{1}]\cup[cN_{1},CN_{1}] and

N11|(ζ1+ζ2)2+λζ1λζ2|,|(η1+η2)2+λη1λη2|N1.N_{1}^{-1}\leq|(\zeta_{1}+\zeta_{2})^{2}+\lambda\zeta_{1}-\lambda\zeta_{2}|,|(\eta_{1}+\eta_{2})^{2}+\lambda\eta_{1}-\lambda\eta_{2}|\ll N_{1}. (4.3)

Recall the former argument. Let ζ1+ζ2=ζ,η1+η2=η\zeta_{1}+\zeta_{2}=\zeta,\eta_{1}+\eta_{2}=\eta, we only need to show

ζ+η=ξη~χ|ξ|NM1(ζ1,ζ2)M2(η1,η2)u0^(ζ1)u0^(ζ2)u0^(η1)u0^(η2)(ζ2+λζ1λζ2)(η2+λη1λη2)\displaystyle\Bigg{\|}\int_{\zeta+\eta=\xi}\frac{\tilde{\eta}\chi_{|\xi|\sim N}M_{1}(\zeta_{1},\zeta_{2})M_{2}(\eta_{1},\eta_{2})\widehat{u_{0}}(\zeta_{1})\widehat{u_{0}}(\zeta_{2})\widehat{u_{0}}(\eta_{1})\widehat{u_{0}}(\eta_{2})}{(\zeta^{2}+\lambda\zeta_{1}-\lambda\zeta_{2})(\eta^{2}+\lambda\eta_{1}-\lambda\eta_{2})}
eiλt(ζ(ζ2ζ1)+η(η2η1))Lt2Lξ2\displaystyle\qquad\cdot e^{i\lambda t(\zeta(\zeta_{2}-\zeta_{1})+\eta(\eta_{2}-\eta_{1}))}\Bigg{\|}_{L_{t}^{2}L_{\xi}^{2}}
(NN1)1/2u0L24\displaystyle\lesssim(NN_{1})^{-1/2}\|u_{0}\|_{L^{2}}^{4}

Let ζj0,ηj0\zeta_{j}^{0},\eta_{j}^{0} be the center of Ij,I~jI_{j},\tilde{I}_{j} respectively. Note that

ζ(λζ(ζ20ζ10)+λ(ξζ)(η20η10))\displaystyle\quad\partial_{\zeta}(\lambda\zeta(\zeta_{2}^{0}-\zeta_{1}^{0})+\lambda(\xi-\zeta)(\eta_{2}^{0}-\eta_{1}^{0}))
=λζ20λζ10λ(η20η10)\displaystyle=\lambda\zeta_{2}^{0}-\lambda\zeta_{1}^{0}-\lambda(\eta_{2}^{0}-\eta_{1}^{0})
=ζ2η2+λζ20λζ10ζ2+η2λ(η20η10)\displaystyle=\zeta^{2}-\eta^{2}+\lambda\zeta_{2}^{0}-\lambda\zeta_{1}^{0}-\zeta^{2}+\eta^{2}-\lambda(\eta_{2}^{0}-\eta_{1}^{0})
=ξ(ζη)(ζ2+λζ10λζ20)+(η2λη20+η10).\displaystyle=\xi(\zeta-\eta)-(\zeta^{2}+\lambda\zeta_{1}^{0}-\lambda\zeta_{2}^{0})+(\eta^{2}-\lambda\eta_{2}^{0}+\eta_{1}^{0}).

By (4.3), |ξ|N,|ζη|N1|\xi|\sim N,|\zeta-\eta|\sim N_{1}, we obtain

|ζ(λζ(ζ20ζ10)+λ(ξζ)(η20η10))|NN1.|\partial_{\zeta}(\lambda\zeta(\zeta_{2}^{0}-\zeta_{1}^{0})+\lambda(\xi-\zeta)(\eta_{2}^{0}-\eta_{1}^{0}))|\sim NN_{1}.

Following the same argument for the first inequality, by the Taylor expansion and the transversal estimate, we conclude the proof. ∎

Proposition 4.4.

η(uF[u0])Yλ1uYu0H3/162\|\eta\mathscr{B}(uF[u_{0}])\|_{Y}\lesssim\lambda^{-1}\|u\|_{Y}\|u_{0}\|_{H^{-3/16}}^{2}.

Proof.

By the proof of Proposition 4.2 and Lemma 3.6, we only need to control the following term

N1N2N2ηPN(PN1uPN2F[PN22/λu0])UK2.\sum_{N_{1}\sim N_{2}\gg N\geq 2}\|\eta P_{N}\mathscr{B}(P_{N_{1}}uP_{N_{2}}F[P_{\sim N_{2}^{2}/\lambda}u_{0}])\|_{U^{2}_{K}}.

By Lemma 4.3, we can control it by

N1N2N2N3/4N13/2N1/2λ1/2PN1uUK2PN22/λu0L22\displaystyle\quad\sum_{N_{1}\sim N_{2}\gg N\geq 2}N^{-3/4}N_{1}^{-3/2}N^{1/2}\lambda^{-1/2}\|P_{N_{1}}u\|_{U^{2}_{K}}\|P_{\sim N_{2}^{2}/\lambda}u_{0}\|_{L^{2}}^{2}
λ7/8uYu0H3/162.\displaystyle\lesssim\lambda^{-7/8}\|u\|_{Y}\|u_{0}\|_{H^{-3/16}}^{2}.

Combining Corollary 3.6 and Proposition 4.2, we conclude the proof. ∎

Proposition 4.5.

η(F[u0]2)Yλ2u0H3/164\|\eta\mathscr{B}(F[u_{0}]^{2})\|_{Y}\lesssim\lambda^{-2}\|u_{0}\|_{H^{-3/16}}^{4}.

Proof.

Similar to the argument for Proposition 4.4, we only need to control the term

N1N2N2N3/4ηPN(PN1(F[PN12/λu0])PN2(F[PN22/λu0]))UK2.\sum_{N_{1}\sim N_{2}\gg N\geq 2}N^{-3/4}\|\eta P_{N}\mathscr{B}(P_{N_{1}}(F[P_{\sim N_{1}^{2}/\lambda}u_{0}])P_{N_{2}}(F[P_{\sim N_{2}^{2}/\lambda}u_{0}]))\|_{U^{2}_{K}}.

By Lemma 4.3 we can control it by

N1N2N2N3/4N13/2N1/2λ1PN22/λu0L24λ7/4u0H3/164.\displaystyle\sum_{N_{1}\sim N_{2}\gg N\geq 2}N^{-3/4}N_{1}^{-3/2}N^{1/2}\lambda^{-1}\|P_{\sim N_{2}^{2}/\lambda}u_{0}\|_{L^{2}}^{4}\lesssim\lambda^{-7/4}\|u_{0}\|_{H^{-3/16}}^{4}.

By Corollary 3.6 and Proposition 4.2, we conclude the proof. ∎

Combining Lemmas 2.12.3, Corollary 3.6, Propositions 4.2, 4.4, and 4.5, one can construct the solution (u,w)(u,w) of (2.2). Let v=w+F[u0]v=w+F[u_{0}]. By rescaling we obtain the local solution (u,v)C([0,T];H3/16×H3/4)(u,v)\in C([0,T];H^{-3/16}\times H^{-3/4}) of initial system (S-KdV) with (s1,s2)=(3/16,3/4)(s_{1},s_{2})=(-3/16,-3/4). For general (s1,s2)(s_{1},s_{2}), see the argument in [2]. One can use the method in this paper to manipulate the case s1,s2<0s_{1},s_{2}<0 with some modification. However there exists easier argument. For example if s2>3/4s_{2}>-3/4, we do not need rescaling. One can use the norms

uXλs1:=Ns1PNulN2USλ2,vYs2:=P1vLx2Lt+Ns2PNvlN22VK2.\|u\|_{X_{\lambda}^{s_{1}}}:=\|N^{s_{1}}P_{N}u\|_{l^{2}_{N}U^{2}_{S_{\lambda}}},\quad\|v\|_{Y^{s_{2}}}:=\|P_{1}v\|_{L_{x}^{2}L_{t}^{\infty}}+\|N^{s_{2}}P_{N}v\|_{l^{2}_{N\geq 2}V^{2}_{K}}.

Then we can show the contraction for the iteration of the initial integral equation. If s2=3/4s_{2}=-3/4, s1>3/16s_{1}>-3/16, we can show η(x|u|2)YuXλs1\|\eta\mathscr{B}(\partial_{x}|u|^{2})\|_{Y}\lesssim\|u\|_{X_{\lambda}^{s_{1}}}. The argument is also much easier than the case (s1,s2)=(3/16,3/4)(s_{1},s_{2})=(-3/16,-3/4). See also [11]. We omit the details.

Acknowledgments: The first author is supported in part by the NSFC, grant 12301116. The authors would like to thank Professors Boling Guo and Baoxiang Wang for their invaluable support and encouragement.

References

  • [1] K. Appert and J. Vaclavik, Dynamics of coupled solitons, Phys. Fluids 20 (1977), no. 11, 1845–1849.
  • [2] Y. Ban, J. Chen, and Y. Zhang, Local well-posedness for Schrödinger-KdV system in Hs1×Hs2H^{s_{1}}\times H^{s_{2}}, submitted (2024).
  • [3] D. Bekiranov, T. Ogawa, and G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg-de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2907–2919.
  • [4] A. Corcho and F. Linares,  Well-posedness for the Schrödinger-Korteweg-de Vries system, Tran. Amer. Math. Soc. 359 (2007), no. 9, 4089–4106.
  • [5] B. Guo and C. Miao, Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations, Acta Math. Sin. 15 (1999), 215–224.
  • [6] Z. Guo and Y. Wang, On  the  well-posedness of the Schrödinger-Korteweg-de Vries system, J. Differ. Equ. 249 (2010), no. 10, 2500–2520.
  • [7] M. Hadac, S. Herr, and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré C Anal. Non Linéaire 26 (2009), no. 3, 917–941.
  • [8] C. E. Kenig, G. Ponce, and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1, 33–69.
  • [9] M. Tsutsumi, Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation, Math. Sci. Appl 2 (1993), 513–528.
  • [10] B. Wang, Z. Huo, C. Hao, and Z. Guo, Harmonic Analysis Method for Nonlinear Evolution Equations, I, World Scientific, 2011.
  • [11] H. Wang and S. Cui, The Cauchy problem for the Schrödinger–KdV system, J. Differ. Equ. 250 (2011), no. 9, 3559–3583.
  1. Yingzhe Ban: The Graduate School of China Academy of Engineering Physics, Beijing, 100088, P.R. China

    E-mail address: [email protected]

  2. Jie Chen: School of Sciences, Jimei University, Xiamen 361021, P.R. China

    E-mail address: [email protected]

  3. Ying Zhang: The Graduate School of China Academy of Engineering Physics, Beijing, 100088, P.R. China

    E-mail address: [email protected]