This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Local well-posedness for the Schrödinger-KdV system in Hs1×Hs2H^{s_{1}}\times H^{s_{2}}

Yingzhe Ban The Graduate School of China Academy of Engineering Physics, Beijing, 100088, P.R. China Jie Chen School of Sciences, Jimei University, Xiamen 361021, P.R. China Ying Zhang Academy of Mathematics and Systems Science, CAS, Beijing 100190, P.R. China The Graduate School of China Academy of Engineering Physics, Beijing, 100088, P.R. China
Abstract

In this paper, we study local well-posedness theory of the Cauchy problem for Schrödinger-KdV system in Sobolev spaces Hs1×Hs2H^{s_{1}}\times H^{s_{2}}. We obtain the local well-posedness when s10s_{1}\geq 0, max{3/4,s13}s2min{4s1,s1+2}\max\{-3/4,s_{1}-3\}\leq s_{2}\leq\min\{4s_{1},s_{1}+2\}. The result is sharp in some sense and improves previous one by Corcho-Linares [3]. The endpoint case (s1,s2)=(0,3/4)(s_{1},s_{2})=(0,-3/4) has been solved in [5, 16]. We show the necessary and sufficient conditions for related estimates in Bourgain spaces. To solve the borderline cases, we use the UpVpU^{p}-V^{p} spaces introduced by Koch-Tataru [12] and function spaces constructed by Guo-Wang [5]. We also use normal form argument to control the nonresonant interaction.

1 Introduction

We study the Cauchy problem for the Schrödinger-KdV system

{itu+xxu=αuv+β|u|2u,t,xtv+xxxv+vxv=γx(|u|2),(u,v)|t=0=(u0,v0)Hs1×Hs2\left\{\begin{aligned} &i\partial_{t}u+\partial_{xx}u=\alpha uv+\beta|u|^{2}u,\ \ t,x\in\mathbb{R}\\ &\partial_{t}v+\partial_{xxx}v+v\partial_{x}v=\gamma\partial_{x}(|u|^{2}),\\ &(u,v)|_{t=0}=(u_{0},v_{0})\in H^{s_{1}}\times H^{s_{2}}\end{aligned}\right. (S-KdV)

where α,β,γ\alpha,\beta,\gamma are real-valued constants, uu is complex-valued and vv is real-valued. In fact, for local wellposedness theory, the argument also works for complex-valued vv and α,β,γ\alpha,\beta,\gamma. This system arises in fluid mechanics as well as plasma physics. See [3] and reference therein.

We recall some early results on this system. Tsutsumi [15] obtained global well-posedness for initial data (u0,v0)Hs+1/2×Hs(u_{0},v_{0})\in H^{s+1/2}\times H^{s} with ss\in\mathbb{N}. For the case of β=0\beta=0, Guo-Miao [4] obtained global well-posedness in Hs×HsH^{s}\times H^{s}, ss\in\mathbb{N}. Bekiranov-Ogawa-Ponce [1] obtained local well-posedness in Hs×Hs1/2H^{s}\times H^{s-1/2}, s0s\geq 0. Corcho-Linares [3] obtained local well-posedness in Hs1×Hs2H^{s_{1}}\times H^{s_{2}},

s2>3/4,s11s22s11/2,s1[0,1/2]or\displaystyle s_{2}>-3/4,~{}s_{1}-1\leq s_{2}\leq 2s_{1}-1/2,~{}s_{1}\in[0,1/2]~{}~{}\mathrm{or}
s1>1/2,s11s2s1+1/2.\displaystyle s_{1}>1/2,~{}s_{1}-1\leq s_{2}\leq s_{1}+1/2.

Guo-Wang [5] obtained local well-posedness in L2×H3/4L^{2}\times H^{-3/4}. The same result was also showed in [16]. There are stronger well-posedness results for KdV and 1d1d cubic Schrödinger equation. See [11, 7]. These results rely heavily on the complete integrability of equations. However, Schrödigner–KdV system is not completely integrable. See for example [1]. To approach lower regularity well-posedness than L2×H3/4L^{2}\times H^{-3/4} for (S-KdV) seems to be difficult.

The main results in this paper are as follows:

Theorem 1.1.

Let α,β,γ0\alpha,\beta,\gamma\neq 0. The solution mapping of (S-KdV) from 𝒮×𝒮\mathcal{S}\times\mathcal{S} to C([0,T];Hs1×Hs2)C([0,T];H^{s_{1}}\times H^{s_{2}}) can not be C3C^{3} with Hs1×Hs2H^{s_{1}}\times H^{s_{2}} topology except

s10,max{3/4,s13}s2min{4s1,s1+2}.s_{1}\geq 0,~{}\max\{-3/4,s_{1}-3\}\leq s_{2}\leq\min\{4s_{1},s_{1}+2\}.

If β=0\beta=0, αγ0\alpha\gamma\neq 0, The solution mapping of (S-KdV) from 𝒮×𝒮\mathcal{S}\times\mathcal{S} to C([0,T];Hs1×Hs2)C([0,T];H^{s_{1}}\times H^{s_{2}}) can not be C2C^{2} with Hs1×Hs2H^{s_{1}}\times H^{s_{2}} topology except

s13/16,max{3/4,s13}s2min{4s1,s1+2}.s_{1}\geq-3/16,~{}\max\{-3/4,s_{1}-3\}\leq s_{2}\leq\min\{4s_{1},s_{1}+2\}.
Theorem 1.2.

(S-KdV) is local well-posed in Hs1×Hs2H^{s_{1}}\times H^{s_{2}} for

s10,max{3/4,s13}s2min{4s1,s1+2}.s_{1}\geq 0,~{}\max\{-3/4,s_{1}-3\}\leq s_{2}\leq\min\{4s_{1},s_{1}+2\}.
Remark 1.3.

We show Theorem 1.1 by disproving some multi-linear estimates. One may obtain stronger ill-posedness result. For example, the solution mapping may be not uniformly continuous. Here, we only concern the region of (s1,s2)(s_{1},s_{2}) that one can not construct solution by contraction mapping argument. Thus it is reasonable to say that Theorem 1.2 is sharp.

Remark 1.4.

If β=0\beta=0, (S-KdV) is also local well-posed in Hs1×Hs2H^{s_{1}}\times H^{s_{2}} for

s13/16,max{3/4,s13}s2min{4s1,s1+2}.s_{1}\geq-3/16,~{}\max\{-3/4,s_{1}-3\}\leq s_{2}\leq\min\{4s_{1},s_{1}+2\}.

Since the case (s1,s2)=(3/16,3/4)(s_{1},s_{2})=(-3/16,-3/4) needs some extra efforts, we would study this problem in a forthcoming paper.

The paper is organized as follows. In Section 2, we show the necessary and sufficient conditions for the boundedness of second Picard iteration in Sobolev spaces Hs1×Hs2H^{s_{1}}\times H^{s_{2}}. Combining the ill-posedness result for single equation, we obtain Theorem 1.1. In Section 3, we establish some multi-linear estimates in Bourgain spaces which implies local well-posedness of (S-KdV) in s10s_{1}\geq 0, max{3/4,s1/211/8,s15/2}<s2<min{4s1,s1+1}\max\{-3/4,s_{1}/2-11/8,s_{1}-5/2\}<s_{2}<\min\{4s_{1},s_{1}+1\} (the region BB in Figure 1.4). In Section 4, we first recall the definition and some basic properties of UpVpU^{p}-V^{p} introduced by Koch-Tataru [12]. In Subsection 4.2, we consider the case s2=min{4s1,s1+1}s_{2}=\min\{4s_{1},s_{1}+1\}. In Subsection 4.3, we consider the case s2=3/4s_{2}=-3/4, 0s1<5/40\leq s_{1}<5/4 by using the function spaces constructed by Guo-Wang [5]. We use normal form argument to improve the estimates for nonresonant interaction in Section 5. In Subsection 5.1, we consider the case 4/3<s1+1<s2max{4s1,s1+2}4/3<s_{1}+1<s_{2}\leq\max\{4s_{1},s_{1}+2\} (the region AA in Figure 1.4). In Subsection 5.2, we consider the case s23/4s_{2}\geq-3/4, s2+2<s1s2+3s_{2}+2<s_{1}\leq s_{2}+3 ( containing the region CC in Figure 1.4). Combining all these cases, we obtain Theorem 1.2.

s1s_{1}s2s_{2}OO11113/4-3/44/34/38/38/34s14s_{1}s15/2s_{1}-5/2s1+1s_{1}+1s1+2s_{1}+2s13s_{1}-311(9/4,1/4)(9/4,-1/4)(9/4,3/4)(9/4,-3/4)(5/4,3/4)(5/4,-3/4)BBAACC

Figure 1

Notations. For a,b+a,b\in\mathbb{R}^{+}, aba\lesssim b means that there exists C>0C>0 such that aCba\leq Cb and aba\sim b means abaa\lesssim b\lesssim a. CC may depends on s1,s2s_{1},s_{2} or some fixed parameters. We use ξ\langle\xi\rangle to denote (1+ξ2)1/2(1+\xi^{2})^{1/2}. For r[1,]r\in[1,\infty], we denote the conjugate number of rr by rr^{\prime}. We use χΩ\chi_{\Omega} to denote the indicator of set Ω\Omega.

Let φ\varphi be a even, smooth function and φ|[1,1]=1\varphi|_{[-1,1]}=1, φ|[5/4,5/4]c=0\varphi|_{[-5/4,5/4]^{c}}=0. Define φN=φ(/N)\varphi_{N}=\varphi(\cdot/N), ψN=φNφN/2\psi_{N}=\varphi_{N}-\varphi_{N/2}. We always use N,LN,L to denote a dyadic number larger that 11. In this article, we use inhomogeneous decomposition. Thus we define Littlewood-Paley projections PNP_{N} by

P1f=1φf,PNf=1ψNf,N2\displaystyle P_{1}f=\mathscr{F}^{-1}\varphi\mathscr{F}f,\quad P_{N}f=\mathscr{F}^{-1}\psi_{N}\mathscr{F}f,~{}\forall~{}N\in 2^{\mathbb{N}}

where we use \mathscr{F} to denote the Fourier transform

f(ξ)=f^(ξ)=1(2π)1/2f(x)eixξ𝑑ξ.\mathscr{F}f(\xi)=\hat{f}(\xi)=\frac{1}{(2\pi)^{1/2}}\int_{\mathbb{R}}f(x)e^{-ix\xi}~{}d\xi.

We use JJ to denote the Fourier multiplier operator 1ξ\mathscr{F}^{-1}\langle\xi\rangle\mathscr{F}. uHs\|u\|_{H^{s}} norm is defined by JsuL2\|J^{s}u\|_{L^{2}}.

We use P>NP_{>N} to denote M>NPM\sum_{M>N}P_{M} and PN=IP>NP_{\leq N}=I-P_{>N}. Sometimes we use PN,PN,PNP_{\ll N},P_{\sim N},P_{\gg N} to denote PN/CP_{\leq N/C}, PCNPN/CP_{CN}-P_{N/C}, P>CNP_{>CN} where CC is a sufficiently large but fixed dyadic number.

In many situations, we will do the Fourier transform for time variable. Thus we use x\mathscr{F}_{x}, t\mathscr{F}_{t}, t,x\mathscr{F}_{t,x} and ξ1\mathscr{F}^{-1}_{\xi}, τ1\mathscr{F}^{-1}_{\tau}, τ,ξ1\mathscr{F}^{-1}_{\tau,\xi} to distinguish which variable that we perform Fourier transform on. With a little abuse of notation, we use f^\hat{f} to denote t,xf\mathscr{F}_{t,x}f if ff is a function on t,x\mathbb{R}_{t,x}, and also use f^\hat{f} to denote xf\mathscr{F}_{x}f if ff is just a function on x\mathbb{R}_{x}.

We define LtqLxrL_{t}^{q}L_{x}^{r}, LxrLtqL_{x}^{r}L_{t}^{q} by uLtqLxr:=uLxrLtq\|u\|_{L_{t}^{q}L_{x}^{r}}:=\|\|u\|_{L_{x}^{r}}\|_{L^{q}_{t}}, uLxrLtq:=uLtqLxr\|u\|_{L_{x}^{r}L_{t}^{q}}:=\|\|u\|_{L^{q}_{t}}\|_{L_{x}^{r}} respectively. Also we define LTqLxrL_{T}^{q}L_{x}^{r} by uLTqLxr=uLxrLq((0,T))\|u\|_{L_{T}^{q}L_{x}^{r}}=\|\|u\|_{L_{x}^{r}}\|_{L^{q}((0,T))} and similarly for LxrLTqL_{x}^{r}L_{T}^{q}. For a general function space on 2\mathbb{R}^{2}, we usually use XTX_{T} to denote the space XX restricted on [0,T]×x[0,T]\times\mathbb{R}_{x}.

Let S(t):=eitxxS(t):=e^{it\partial_{xx}}, K(t):=etxxxK(t):=e^{-t\partial_{xxx}} and

𝒜(f)(t)=0tS(tt)f(t)𝑑t,(g)(t)=0txK(tt)g(t)dt.\displaystyle\mathscr{A}(f)(t)=\int_{0}^{t}S(t-t^{\prime})f(t^{\prime})~{}dt^{\prime},\quad\mathscr{B}(g)(t)=\int_{0}^{t}\partial_{x}K(t-t^{\prime})g(t^{\prime})~{}dt^{\prime}.

We use the same notation as Corcho-Linares [3] to define Bourgain spaces.

uXs,b:=ξsτ+ξ2bu^Lτ,ξ2,vYs,b:=ξsτξ3bv^Lτ,ξ2.\|u\|_{X^{s,b}}:=\|\langle\xi\rangle^{s}\langle\tau+\xi^{2}\rangle^{b}\hat{u}\|_{L^{2}_{\tau,\xi}},~{}~{}\|v\|_{Y^{s,b}}:=\|\langle\xi\rangle^{s}\langle\tau-\xi^{3}\rangle^{b}\hat{v}\|_{L^{2}_{\tau,\xi}}.

For the definition of UpVpU^{p}-V^{p} and other notations, see Subsection 4.1.

In this paper we focus on local well-posedness. Without loss of generality, we assume that α=β=γ=1\alpha=\beta=\gamma=1.

2 Multi-linear estimates

In this section, we consider the boundedness of second Picard iteration. We evaluate the multi-linear terms on time t=1t=1.

Lemma 2.1.

The inequalities

𝒜(|S(t)u0|2S(t)u0)(1)Hs1\displaystyle\left\|\mathscr{A}(|S(t)u_{0}|^{2}S(t)u_{0})(1)\right\|_{H^{s_{1}}} u0Hs13;\displaystyle\lesssim\|u_{0}\|_{H^{s_{1}}}^{3}; (2.1)
𝒜(S(t)u0K(t)v0)(1)Hs1\displaystyle\left\|\mathscr{A}(S(t)u_{0}K(t)v_{0})(1)\right\|_{H^{s_{1}}} u0Hs1v0Hs2;\displaystyle\lesssim\|u_{0}\|_{H^{s_{1}}}\|v_{0}\|_{H^{s_{2}}}; (2.2)
((K(t)v0)2)(1)Hs2\displaystyle\left\|\mathscr{B}((K(t)v_{0})^{2})(1)\right\|_{H^{s_{2}}} v0Hs22;\displaystyle\lesssim\|v_{0}\|_{H^{s_{2}}}^{2}; (2.3)
(|S(t)u0|2)(1)Hs2\displaystyle\left\|\mathscr{B}(|S(t)u_{0}|^{2})(1)\right\|_{H^{s_{2}}} u0Hs12\displaystyle\lesssim\|u_{0}\|_{H^{s_{1}}}^{2} (2.4)

hold if and only if s10s_{1}\geq 0; s21s_{2}\geq-1; s2max{1,3+|s1|}s_{2}\geq\max\{-1,-3+|s_{1}|\}; s11/2,s2min{4s1,s1+2}s_{1}\geq-1/2,s_{2}\leq\min\{4s_{1},s_{1}+2\} respectively.

Proof.

By the local well-posedness theory of (S-KdV) in L2×H3/4L^{2}\times H^{-3/4}, inequalities (2.1)– (2.4) hold if s10s_{1}\geq 0, s23/4s_{2}\geq-3/4.

Necessary part of (2.1). For s<0s<0 one has

𝒜(|S(t)u0|2S(t)u0)(1)Hs\displaystyle\quad\left\|\mathscr{A}(|S(t)u_{0}|^{2}S(t)u_{0})(1)\right\|_{H^{s}}
ξs201e2it(ξ1ξ2)(ξξ1)u0^(ξ1)u0^¯(ξ2)u0^(ξξ1+ξ2)𝑑ξ1𝑑ξ2𝑑tL2.\displaystyle\sim\left\|\langle\xi\rangle^{s}\int_{\mathbb{R}^{2}}\int_{0}^{1}e^{2it^{\prime}(\xi_{1}-\xi_{2})(\xi-\xi_{1})}\widehat{u_{0}}(\xi_{1})\overline{\widehat{u_{0}}}(\xi_{2})\widehat{u_{0}}(\xi-\xi_{1}+\xi_{2})~{}d\xi_{1}d\xi_{2}dt^{\prime}\right\|_{L^{2}}.

Let N1N\gg 1, 0<c10<c\ll 1, u0^(ξ)=χ[N,N+c](ξ)\widehat{u_{0}}(\xi)=\chi_{[N,N+c]}(\xi). \forall ξ[N,N+c/2]\xi\in[N,N+c/2], one has

|ξs201e2it(ξ1ξ2)(ξξ1)u0^(ξ1)u0^¯(ξ2)u0^(ξξ1+ξ2)𝑑ξ1𝑑ξ2𝑑t|Ns.\displaystyle\left|\langle\xi\rangle^{s}\int_{\mathbb{R}^{2}}\int_{0}^{1}e^{2it^{\prime}(\xi_{1}-\xi_{2})(\xi-\xi_{1})}\widehat{u_{0}}(\xi_{1})\overline{\widehat{u_{0}}}(\xi_{2})\widehat{u_{0}}(\xi-\xi_{1}+\xi_{2})~{}d\xi_{1}d\xi_{2}dt^{\prime}\right|\sim N^{s}.

Thus one has 𝒜(|S(t)u0|2S(t)u0)(1)HsNs\left\|\mathscr{A}(|S(t)u_{0}|^{2}S(t)u_{0})(1)\right\|_{H^{s}}\gtrsim N^{s}. Note that u0Hs3N3s\|u_{0}\|_{H^{s}}^{3}\sim N^{3s}. Then (2.1) can not hold for s<0s<0.

Let f(ξ)=u0^(ξ)ξs1f(\xi)=\widehat{u_{0}}(\xi)\langle\xi\rangle^{s_{1}}, g(ξ)=v0^(ξ)ξs2g(\xi)=\widehat{v_{0}}(\xi)\langle\xi\rangle^{s_{2}}. (2.2) is equivalent to

ξs11ei(ξ2ξ12+(ξξ1)3)ξ2ξ12+(ξξ1)3f(ξ1)g(ξξ1)ξ1s1ξξ1s2𝑑ξ1L2fL2gL2\displaystyle\left\|\langle\xi\rangle^{s_{1}}\int_{\mathbb{R}}\frac{1-e^{i(\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3})}}{\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{2}}}~{}d\xi_{1}\right\|_{L^{2}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}

Necessary part of (2.2). Let N1N\gg 1, f=χ[1,2]f=\chi_{[1,2]}, g=χ[N,N+4]g=\chi_{[N,N+4]}. ξ[N+2,N+3]\forall~{}\xi\in[N+2,N+3] one has

|ξs11ei(ξ2ξ12+(ξξ1)3)ξ2ξ12+(ξξ1)3f(ξ1)g(ξξ1)ξ1s1ξξ1s2𝑑ξ1|Ns1s23.\displaystyle\left|\langle\xi\rangle^{s_{1}}\int_{\mathbb{R}}\frac{1-e^{i(\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3})}}{\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{2}}}~{}d\xi_{1}\right|\sim N^{s_{1}-s_{2}-3}.

Note that fL2gL21\|f\|_{L^{2}}\|g\|_{L^{2}}\sim 1. Thus, s1s230s_{1}-s_{2}-3\leq 0 which means s23+s1s_{2}\geq-3+s_{1}.

Let f=χ[N,N+1]f=\chi_{[N,N+1]}, g=χ[N4,N+4]g=\chi_{[-N-4,-N+4]}. \forall ξ[1,2]\xi\in[1,2], one has

|ξs11ei(ξ2ξ12+(ξξ1)3)ξ2ξ12+(ξξ1)3f(ξ1)g(ξξ1)ξ1s1ξξ1s2𝑑ξ1|N3s1s2\displaystyle\left|\langle\xi\rangle^{s_{1}}\int_{\mathbb{R}}\frac{1-e^{i(\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3})}}{\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{2}}}~{}d\xi_{1}\right|\sim N^{-3-s_{1}-s_{2}}

Thus, 3s1s20-3-s_{1}-s_{2}\leq 0 which means s23s1s_{2}\geq-3-s_{1}.

For 0<c10<c\ll 1, let f=χ[NcN1,N]f=\chi_{[-N-cN^{-1},-N]},

g=χ[aN1,a+N1],a=12+32N14.g=\chi_{[a-N^{-1},a+N^{-1}]},\quad a=-\frac{1}{2}+\sqrt{\frac{3}{2}N-\frac{1}{4}}.

Then, \forall ξ[aN,aN+cN1]\xi\in[a-N,a-N+cN^{-1}], one has |ξ2ξ12+(ξξ1)3|1|\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}|\ll 1 and then

|ξs11ei(ξ2ξ12+(ξξ1)3)ξ2ξ12+(ξξ1)3f(ξ1)g(ξξ1)ξ1s1ξξ1s2𝑑ξ1|N1s22.\displaystyle\left|\langle\xi\rangle^{s_{1}}\int_{\mathbb{R}}\frac{1-e^{i(\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3})}}{\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{2}}}~{}d\xi_{1}\right|\sim N^{-1-\frac{s_{2}}{2}}.

Thus,

ξs11ei(ξ2ξ12+(ξξ1)3)ξ2ξ12+(ξξ1)3f(ξ1)g(ξξ1)ξ1s1ξξ1s2𝑑ξ1L2N1s2212\displaystyle\left\|\langle\xi\rangle^{s_{1}}\int_{\mathbb{R}}\frac{1-e^{i(\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3})}}{\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{2}}}~{}d\xi_{1}\right\|_{L^{2}}\gtrsim N^{-1-\frac{s_{2}}{2}-\frac{1}{2}}

Note that fL2gL2N1\|f\|_{L^{2}}\|g\|_{L^{2}}\sim N^{-1}. Thus, one has s21s_{2}\geq-1.

Sufficient part of (2.2). We decompose the integration into two parts.

Case 1. Ω1\Omega_{1}: ξ2ξ12+(ξξ1)3ξξ13\langle\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}\rangle\gtrsim\langle\xi-\xi_{1}\rangle^{3}.

Case 2. Ω2\Omega_{2}: ξ2ξ12+(ξξ1)3ξξ13\langle\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}\rangle\ll\langle\xi-\xi_{1}\rangle^{3}.

Case 1. By the definition of Ω1\Omega_{1}, s2+3max{|s1|,2}s_{2}+3\geq\max\{|s_{1}|,2\} and Cauchy-Schwarz inequality, one has

ξs1χΩ11ei(ξ2ξ12+(ξξ1)3)ξ2ξ12+(ξξ1)3f(ξ1)g(ξξ1)ξ1s1ξξ1s2𝑑ξ1L2\displaystyle\quad\left\|\langle\xi\rangle^{s_{1}}\int_{\mathbb{R}}\chi_{\Omega_{1}}\frac{1-e^{i(\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3})}}{\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{2}}}~{}d\xi_{1}\right\|_{L^{2}}
ξs1ξξ13+s2ξ1s1|f(ξ1)||g(ξξ1)|𝑑ξ1L2\displaystyle\lesssim\left\|\int_{\mathbb{R}}\frac{\langle\xi\rangle^{s_{1}}}{\langle\xi-\xi_{1}\rangle^{3+s_{2}}\langle\xi_{1}\rangle^{s_{1}}}|f(\xi_{1})||g(\xi-\xi_{1})|~{}d\xi_{1}\right\|_{L^{2}}
(ξ2+ξ12)|f(ξ1)||g(ξξ1)|𝑑ξ1L2\displaystyle\lesssim\left\|\int_{\mathbb{R}}(\langle\xi\rangle^{-2}+\langle\xi_{1}\rangle^{-2})|f(\xi_{1})||g(\xi-\xi_{1})|~{}d\xi_{1}\right\|_{L^{2}}
fL2gL2ξ2Lξ2+ξ12Lξ12f(ξ1)g(ξξ1)Lξ,ξ12\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|\langle\xi\rangle^{-2}\|_{L^{2}_{\xi}}+\|\langle\xi_{1}\rangle^{-2}\|_{L^{2}_{\xi_{1}}}\|f(\xi_{1})g(\xi-\xi_{1})\|_{L^{2}_{\xi,\xi_{1}}}
fL2gL2.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}.

Case 2. By the definition of Ω2\Omega_{2}, we have 1|ξξ1||ξ||ξ1|1\ll|\xi-\xi_{1}|\ll|\xi|\sim|\xi_{1}|. By Cauchy-Schwarz inequality, we only need to control

ξs1χΩ21ei(ξ2ξ12+(ξξ1)3)ξ2ξ12+(ξξ1)31ξ1s1ξξ1s2LξLξ12\displaystyle\left\|\langle\xi\rangle^{s_{1}}\chi_{\Omega_{2}}\frac{1-e^{i(\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3})}}{\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}}\frac{1}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{2}}}\right\|_{L^{\infty}_{\xi}L^{2}_{\xi_{1}}}

Due to s21s_{2}\geq-1 and the support set property of Ω2\Omega_{2}, one has

ξs1χΩ21ei(ξ2ξ12+(ξξ1)3)ξ2ξ12+(ξξ1)31ξ1s1ξξ1s2LξLξ12\displaystyle\quad\left\|\langle\xi\rangle^{s_{1}}\chi_{\Omega_{2}}\frac{1-e^{i(\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3})}}{\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3}}\frac{1}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{2}}}\right\|_{L^{\infty}_{\xi}L^{2}_{\xi_{1}}}
χΩ21ei(ξ2ξ12+(ξξ1)3)ξ+ξ1+(ξξ1)2LξLξ12χ1|ξ2||ξ|1eiξ2(2ξξ2+ξ22)2ξξ2+ξ22LξLξ22\displaystyle\lesssim\left\|\chi_{\Omega_{2}}\frac{1-e^{i(\xi^{2}-\xi_{1}^{2}+(\xi-\xi_{1})^{3})}}{\xi+\xi_{1}+(\xi-\xi_{1})^{2}}\right\|_{L^{\infty}_{\xi}L^{2}_{\xi_{1}}}\lesssim\left\|\chi_{1\ll|\xi_{2}|\ll|\xi|}\frac{1-e^{i\xi_{2}(2\xi-\xi_{2}+\xi_{2}^{2})}}{2\xi-\xi_{2}+\xi_{2}^{2}}\right\|_{L^{\infty}_{\xi}L^{2}_{\xi_{2}}}

Let y(ξ2)=2ξξ2+ξ22y(\xi_{2})=2\xi-\xi_{2}+\xi_{2}^{2}. Since 1|ξ2|1\ll|\xi_{2}|, one has |dy||ξ2dξ2||dy|\sim|\xi_{2}d\xi_{2}|. It is easy to control the integral for |y(ξ2)|1|y(\xi_{2})|\gtrsim 1. For |y(ξ2)|1|y(\xi_{2})|\ll 1, one has |dy||ξ|1/2|dξ2||dy|\sim|\xi|^{1/2}|d\xi_{2}|, |1eiξ2(2ξξ2+ξ22)|min{1,|ξ|1/2|y(ξ2)|}|1-e^{i\xi_{2}(2\xi-\xi_{2}+\xi_{2}^{2})}|\lesssim\min\{1,|\xi|^{1/2}|y(\xi_{2})|\}. Thus, for |ξ|1|\xi|\gg 1, one has

χ|y(ξ2)|11eiξ2(2ξξ2+ξ22)2ξξ2+ξ22L|ξ2|122|y|1min{1,|ξ|y2}y2dy|ξ|1/21.\displaystyle\left\|\chi_{|y(\xi_{2})|\ll 1}\frac{1-e^{i\xi_{2}(2\xi-\xi_{2}+\xi_{2}^{2})}}{2\xi-\xi_{2}+\xi_{2}^{2}}\right\|_{L^{2}_{|\xi_{2}|\gg 1}}^{2}\lesssim\int_{|y|\ll 1}\frac{\min\{1,|\xi|y^{2}\}}{y^{2}}~{}\frac{dy}{|\xi|^{1/2}}\lesssim 1.

We finish the proof for (2.2).

By polarization (2.3) is equivalent to

((K(t)u0)K(t)v0)(1)Hsu0Hsv0Hs.\displaystyle\left\|\mathscr{B}((K(t)u_{0})K(t)v_{0})(1)\right\|_{H^{s}}\lesssim\|u_{0}\|_{H^{s}}\|v_{0}\|_{H^{s}}. (2.5)

By the definition of HsH^{s}-norm, one has

((K(t)u0)K(t)v0)(1)Hs\displaystyle\quad\left\|\mathscr{B}((K(t)u_{0})K(t)v_{0})(1)\right\|_{H^{s}}
ξsξ01e3itξξ1(ξξ1)u0^(ξ1)v0^(ξξ1)𝑑t𝑑ξ1L2\displaystyle\sim\left\|\langle\xi\rangle^{s}\xi\int_{\mathbb{R}}\int_{0}^{1}e^{-3it^{\prime}\xi\xi_{1}(\xi-\xi_{1})}\widehat{u_{0}}(\xi_{1})\widehat{v_{0}}(\xi-\xi_{1})~{}dt^{\prime}d\xi_{1}\right\|_{L^{2}}

Necessary part of (2.3). Let N1,u0=χ[N,N+1],v0=χ[N2,N+2]N\gg 1,~{}~{}u_{0}=\chi_{[N,N+1]},~{}~{}v_{0}=\chi_{[-N-2,-N+2]}. \forall ξ[1,2]\xi\in[1,2], one has

|ξsξ01e3itξξ1(ξξ1)u0^(ξ1)v0^(ξξ1)𝑑t𝑑ξ1|1N2.\displaystyle\left|\langle\xi\rangle^{s}\xi\int_{\mathbb{R}}\int_{0}^{1}e^{-3it^{\prime}\xi\xi_{1}(\xi-\xi_{1})}\widehat{u_{0}}(\xi_{1})\widehat{v_{0}}(\xi-\xi_{1})~{}dt^{\prime}d\xi_{1}\right|\sim\frac{1}{N^{2}}.

Thus,

01etxxxx(etxxxu0etxxxv0)dtHsN2.\displaystyle\left\|\int_{0}^{1}e^{t^{\prime}\partial_{xxx}}\partial_{x}(e^{-t^{\prime}\partial_{xxx}}u_{0}e^{-t^{\prime}\partial_{xxx}}v_{0})~{}dt^{\prime}\right\|_{H^{s}}\gtrsim N^{-2}.

Since u0Hsv0HsN2s\|u_{0}\|_{H^{s}}\|v_{0}\|_{H^{s}}\sim N^{2s}, we obtain s1s\geq-1.

Sufficient part of (2.3). For s1s\geq-1, one has

((K(t)u0)K(t)v0)(1)H1\displaystyle\quad\left\|\mathscr{B}((K(t)u_{0})K(t)v_{0})(1)\right\|_{H^{-1}}
ξs(1e3iξξ1(ξξ1))ξ1sξξ1sξ1(ξξ1)u0^(ξ1)v0^(ξξ1)ξ1sξξ1s𝑑ξ1L2\displaystyle\sim\left\|\langle\xi\rangle^{s}\int_{\mathbb{R}}\frac{(1-e^{-3i\xi\xi_{1}(\xi-\xi_{1})})\langle\xi_{1}\rangle^{s}\langle\xi-\xi_{1}\rangle^{s}}{\xi_{1}(\xi-\xi_{1})}\frac{\widehat{u_{0}}(\xi_{1})\widehat{v_{0}}(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s}\langle\xi-\xi_{1}\rangle^{s}}~{}d\xi_{1}\right\|_{L^{2}}
min{1,|ξξ1(ξξ1)|}ξ1sξξ1sξ|ξ1(ξξ1)||u0^(ξ1)v0^(ξξ1)|ξ11ξξ11𝑑ξ1L2\displaystyle\lesssim\left\|\int_{\mathbb{R}}\frac{\min\{1,|\xi\xi_{1}(\xi-\xi_{1})|\}\langle\xi_{1}\rangle^{s}\langle\xi-\xi_{1}\rangle^{s}}{\langle\xi\rangle|\xi_{1}(\xi-\xi_{1})|}\frac{|\widehat{u_{0}}(\xi_{1})\widehat{v_{0}}(\xi-\xi_{1})|}{\langle\xi_{1}\rangle^{-1}\langle\xi-\xi_{1}\rangle^{-1}}~{}d\xi_{1}\right\|_{L^{2}}

Let f(ξ)=ξsu0^(ξ)f(\xi)=\langle\xi\rangle^{s}\widehat{u_{0}}(\xi), g(ξ)=ξsv0^(ξ)g(\xi)=\langle\xi\rangle^{s}\widehat{v_{0}}(\xi). We only need to prove

min{1,|ξξ1(ξξ1)|}ξ1ξξ1ξ|ξ1(ξξ1)|f(ξ1)g(ξξ1)𝑑ξ1L2\displaystyle\quad\left\|\int_{\mathbb{R}}\frac{\min\{1,|\xi\xi_{1}(\xi-\xi_{1})|\}\langle\xi_{1}\rangle\langle\xi-\xi_{1}\rangle}{\langle\xi\rangle|\xi_{1}(\xi-\xi_{1})|}f(\xi_{1})g(\xi-\xi_{1})~{}d\xi_{1}\right\|_{L^{2}}
fL2gL2\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}

We decompose the integration into two parts.

Case 1. Ω1\Omega_{1}: |ξ1|1|\xi_{1}|\gtrsim 1, |ξξ1|1|\xi-\xi_{1}|\gtrsim 1 or |ξ1|1|\xi_{1}|\ll 1, |ξξ1|1|\xi-\xi_{1}|\lesssim 1.

Case 2. Ω2\Omega_{2}: |ξ1|1|ξξ1||\xi_{1}|\ll 1\ll|\xi-\xi_{1}| or |ξ1|1|ξξ1||\xi_{1}|\gg 1\gg|\xi-\xi_{1}|.

For Case 1, by Cauchy-Schwarz inequality, one has

min{1,|ξξ1(ξξ1)|}ξ1ξξ1ξ|ξ1(ξξ1)|χΩ1f(ξ1)g(ξξ1)𝑑ξ1L2\displaystyle\quad\left\|\int_{\mathbb{R}}\frac{\min\{1,|\xi\xi_{1}(\xi-\xi_{1})|\}\langle\xi_{1}\rangle\langle\xi-\xi_{1}\rangle}{\langle\xi\rangle|\xi_{1}(\xi-\xi_{1})|}\chi_{\Omega_{1}}f(\xi_{1})g(\xi-\xi_{1})~{}d\xi_{1}\right\|_{L^{2}}
|f(ξ1)g(ξξ1)|ξ𝑑ξ1L2fL2gL2ξ1L2\displaystyle\lesssim\left\|\int_{\mathbb{R}}\frac{|f(\xi_{1})g(\xi-\xi_{1})|}{\langle\xi\rangle}~{}d\xi_{1}\right\|_{L^{2}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|\langle\xi\rangle^{-1}\|_{L^{2}}
fL2gL2.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}.

For Case 2, by symmetry, we only consider |ξ1|1|ξξ1||\xi_{1}|\ll 1\ll|\xi-\xi_{1}|. By Cauchy-Schwarz inequality, we have

min{1,|ξξ1(ξξ1)|}ξ1ξξ1ξ|ξ1(ξξ1)|χ|ξ1|1|ξξ1|f(ξ1)g(ξξ1)𝑑ξ1L2\displaystyle\quad\left\|\int_{\mathbb{R}}\frac{\min\{1,|\xi\xi_{1}(\xi-\xi_{1})|\}\langle\xi_{1}\rangle\langle\xi-\xi_{1}\rangle}{\langle\xi\rangle|\xi_{1}(\xi-\xi_{1})|}\chi_{|\xi_{1}|\ll 1\ll|\xi-\xi_{1}|}f(\xi_{1})g(\xi-\xi_{1})~{}d\xi_{1}\right\|_{L^{2}}
min{1,ξ2ξ1}ξξ1L|ξ|1Lξ12f(ξ1)g(ξξ1)Lξ,ξ12fL2gL2\displaystyle\lesssim\left\|\frac{\min\{1,\xi^{2}\xi_{1}\}}{\xi\xi_{1}}\right\|_{L^{\infty}_{|\xi|\gg 1}L^{2}_{\xi_{1}}}\|f(\xi_{1})g(\xi-\xi_{1})\|_{L^{2}_{\xi,\xi_{1}}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}

Thus, (2.5) holds for s=1s=-1. By interpolation, (2.5) holds for s1s\geq-1. We finish the proof of (2.3).

Similar to the argument for (2.2)-(2.3), (2.4) is equivalent to

ξs21eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ1s1ξξ1s1𝑑ξ1L2fL2gL2.\displaystyle\left\|\langle\xi\rangle^{s_{2}}\int_{\mathbb{R}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{1}}}~{}d\xi_{1}\right\|_{L^{2}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}. (2.6)

Necessary part of (2.4). Let 1MN1\ll M\ll N, f=χ[N,N+2M]f=\chi_{[N,N+2M]}, g=χ[N2M,N+2M]g=\chi_{[-N-2M,-N+2M]}. \forall ξ[M,2M]\xi\in[M,2M], one has

|ξs21eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ1s1ξξ1s1𝑑ξ1|Ms2+1N2s1+1.\displaystyle\left|\langle\xi\rangle^{s_{2}}\int_{\mathbb{R}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{1}}}~{}d\xi_{1}\right|\sim M^{s_{2}+1}N^{-2s_{1}+1}.

Since fL2gL2M\|f\|_{L^{2}}\|g\|_{L^{2}}\sim M, we obtain s11/2s_{1}\geq-1/2.

Let f=χ[N,N+1]f=\chi_{[N,N+1]}, g=χ[1,1]g=\chi_{[-1,1]}. For ξ[N,N+1]\xi\in[N,N+1], one has

|ξs21eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ1s1ξξ1s1𝑑ξ1|Ns2s12.\displaystyle\left|\langle\xi\rangle^{s_{2}}\int_{\mathbb{R}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{1}}}~{}d\xi_{1}\right|\sim N^{s_{2}-s_{1}-2}.

Since fL2gL21\|f\|_{L^{2}}\|g\|_{L^{2}}\sim 1, we obtain s2s1+2s_{2}\leq s_{1}+2.

Let f=χ[N,N+N1]f=\chi_{[-N,-N+N^{-1}]}, a=1/2+2N+1/4a=1/2+\sqrt{2N+1/4}, 0<c10<c\ll 1. Then, \forall ξ[acN1,a+cN1]\xi\in[a-cN^{-1},a+cN^{-1}], one has |ξ||ξ2ξ1ξ2|1|\xi||\xi-2\xi_{1}-\xi^{2}|\ll 1, ξ1supp(f)\forall~{}\xi_{1}\in\mathrm{supp}(f). Let g=χ[a+NN1,a+N+N1]g=\chi_{[a+N-N^{-1},a+N+N^{-1}]}. Then, |ξa|cN1\forall~{}|\xi-a|\leq cN^{-1}, one has

|ξs21eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ1s1ξξ1s1𝑑ξ1|N12+s222s11.\left|\langle\xi\rangle^{s_{2}}\int_{\mathbb{R}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{1}}}~{}d\xi_{1}\right|\sim N^{\frac{1}{2}+\frac{s_{2}}{2}-2s_{1}-1}.

Since fL2gL2N1\|f\|_{L^{2}}\|g\|_{L^{2}}\sim N^{-1}, we obtain 1/2+s2/22s111/211/2+s_{2}/2-2s_{1}-1-1/2\leq-1. Thus, s24s1s_{2}\leq 4s_{1}.

Sufficient part of (2.4). By interpolation, we only need to show (2.6) for (s1,s2)=(1/2,2)(s_{1},s_{2})=(-1/2,-2) and (s,s+2)(s,s+2), s2/3\forall~{}s\geq 2/3. If |ξ|1|\xi|\lesssim 1, by Cauchy-Schwarz inequality one has

|ξs21eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ1s1ξξ1s1𝑑ξ1|\displaystyle\quad\left|\langle\xi\rangle^{s_{2}}\int_{\mathbb{R}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{1}}}~{}d\xi_{1}\right|
|min{1,|ξ2ξ1ξ2|}|ξ2ξ1ξ2|ξ11/2ξξ11/2|f(ξ1)||g(ξξ1)|𝑑ξ1|\displaystyle\lesssim\left|\int_{\mathbb{R}}\frac{\min\{1,|\xi-2\xi_{1}-\xi^{2}|\}}{|\xi-2\xi_{1}-\xi^{2}|\langle\xi_{1}\rangle^{-1/2}\langle\xi-\xi_{1}\rangle^{-1/2}}|f(\xi_{1})||g(\xi-\xi_{1})|~{}d\xi_{1}\right|
|f(ξ1)||g(ξξ1)|𝑑ξ1fL2gL2.\displaystyle\lesssim\int_{\mathbb{R}}|f(\xi_{1})||g(\xi-\xi_{1})|~{}d\xi_{1}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}.

Thus,

ξs21eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ1s1ξξ1s1𝑑ξ1L|ξ|12fL2gL2.\displaystyle\left\|\langle\xi\rangle^{s_{2}}\int_{\mathbb{R}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi-\xi_{1}\rangle^{s_{1}}}~{}d\xi_{1}\right\|_{L^{2}_{|\xi|\lesssim 1}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}.

Now, we consider |ξ|1|\xi|\gg 1. For point (s1,s2)=(1/2,2)(s_{1},s_{2})=(-1/2,-2), we decompose the integration into two parts.

Case 1.1. Ω1\Omega_{1}: |ξ2ξ1ξ2|ξ11/2ξξ11/2|\xi-2\xi_{1}-\xi^{2}|\gtrsim\langle\xi_{1}\rangle^{1/2}\langle\xi-\xi_{1}\rangle^{1/2}.

Case 1.2. Ω2\Omega_{2}: |ξ2ξ1ξ2|ξ11/2ξξ11/2|\xi-2\xi_{1}-\xi^{2}|\ll\langle\xi_{1}\rangle^{1/2}\langle\xi-\xi_{1}\rangle^{1/2}.

For Case 1.1, by Cauchy-Schwarz inequality, one has

χΩ1ξ21eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ11/2ξξ11/2𝑑ξ1L|ξ|12\displaystyle\quad\left\|\int_{\mathbb{R}}\frac{\chi_{\Omega_{1}}}{\langle\xi\rangle^{2}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{-1/2}\langle\xi-\xi_{1}\rangle^{-1/2}}~{}d\xi_{1}\right\|_{L^{2}_{|\xi|\gg 1}}
ξ2Lξ2fL2gL2fL2gL2.\displaystyle\lesssim\|\langle\xi\rangle^{-2}\|_{L^{2}_{\xi}}\|f\|_{L^{2}}\|g\|_{L^{2}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}.

For Case 1.2, one has |ξξ1||ξ1||ξ|2|\xi-\xi_{1}|\sim|\xi_{1}|\sim|\xi|^{2}. By Cauchy-Schwarz inequality one has

|χ|ξ|1χΩ2ξ21eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ11/2ξξ11/2𝑑ξ1h(ξ)𝑑ξ|\displaystyle\quad\left|\int_{\mathbb{R}}\chi_{|\xi|\gg 1}\int_{\mathbb{R}}\frac{\chi_{\Omega_{2}}}{\langle\xi\rangle^{2}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{-1/2}\langle\xi-\xi_{1}\rangle^{-1/2}}~{}d\xi_{1}h(\xi)~{}d\xi\right|
|f(ξ1)|g(ξξ1)h(ξ)Lξ2χ1|ξ|2|ξ1|min{1,|ξ(ξ2ξ1ξ2)|}|ξ2ξ1ξ2|Lξ2\displaystyle\lesssim\int_{\mathbb{R}}|f(\xi_{1})|\|g(\xi-\xi_{1})h(\xi)\|_{L^{2}_{\xi}}\left\|\frac{\chi_{1\ll|\xi|^{2}\sim|\xi_{1}|}\min\{1,|\xi(\xi-2\xi_{1}-\xi^{2})|\}}{|\xi-2\xi_{1}-\xi^{2}|}\right\|_{L^{2}_{\xi}}
fL2gL2hL2χ1|ξ|2|ξ1|min{1,||ξ1|12(ξ2ξ1ξ2)|}|ξ2ξ1ξ2|Lξ1Lξ2\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}\left\|\frac{\chi_{1\ll|\xi|^{2}\sim|\xi_{1}|}\min\{1,||\xi_{1}|^{\frac{1}{2}}(\xi-2\xi_{1}-\xi^{2})|\}}{|\xi-2\xi_{1}-\xi^{2}|}\right\|_{L^{\infty}_{\xi_{1}}L^{2}_{\xi}}

Let y(ξ)=ξ2ξ1ξ2y(\xi)=\xi-2\xi_{1}-\xi^{2}. For 1|ξ|2|ξ1|1\ll|\xi|^{2}\sim|\xi_{1}|, one has |dy(ξ)||(12ξ)dξ||ξ1|1/2|dξ||dy(\xi)|\sim|(1-2\xi)d\xi|\sim|\xi_{1}|^{1/2}|d\xi|. Thus,

χ1|ξ|2|ξ1|min{1,||ξ1|12(ξ2ξ1ξ2)|}|ξ2ξ1ξ2|Lξ22\displaystyle\left\|\frac{\chi_{1\ll|\xi|^{2}\sim|\xi_{1}|}\min\{1,||\xi_{1}|^{\frac{1}{2}}(\xi-2\xi_{1}-\xi^{2})|\}}{|\xi-2\xi_{1}-\xi^{2}|}\right\|_{L^{2}_{\xi}}^{2} min{1,|ξ1|y2}y2dy|ξ1|1/2\displaystyle\lesssim\int_{\mathbb{R}}\frac{\min\{1,|\xi_{1}|y^{2}\}}{y^{2}}~{}\frac{dy}{|\xi_{1}|^{1/2}}
1.\displaystyle\lesssim 1.

By duality one has

χΩ2ξ21eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ11/2ξξ11/2𝑑ξ1L|ξ|12fL2gL2.\displaystyle\left\|\int_{\mathbb{R}}\frac{\chi_{\Omega_{2}}}{\langle\xi\rangle^{2}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{-1/2}\langle\xi-\xi_{1}\rangle^{-1/2}}~{}d\xi_{1}\right\|_{L^{2}_{|\xi|\gg 1}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}.

For points (s,s+2),s2/3(s,s+2),s\geq 2/3, we decompose the integration into two parts.

Case 2.1. Ω1\Omega_{1}: |ξ2ξ1ξ2||ξ|2|\xi-2\xi_{1}-\xi^{2}|\gtrsim|\xi|^{2}.

Case 2.2. Ω2\Omega_{2}: |ξ2ξ1ξ2||ξ|2|\xi-2\xi_{1}-\xi^{2}|\ll|\xi|^{2}.

For Case 2.1, by Cauchy-Schwarz inequality, for s2/3s\geq 2/3, one has

ξs+2χΩ11eiξ(ξ2ξ1ξ2)ξ2ξ1ξ2f(ξ1)g(ξξ1)ξ1sξξ1s𝑑ξ1L|ξ|12\displaystyle\quad\left\|\langle\xi\rangle^{s+2}\int_{\mathbb{R}}\chi_{\Omega_{1}}\frac{1-e^{i\xi(\xi-2\xi_{1}-\xi^{2})}}{\xi-2\xi_{1}-\xi^{2}}\frac{f(\xi_{1})g(\xi-\xi_{1})}{\langle\xi_{1}\rangle^{s}\langle\xi-\xi_{1}\rangle^{s}}~{}d\xi_{1}\right\|_{L^{2}_{|\xi|\gg 1}}
ξs|f(ξ1)||g(ξξ1)|ξ1sξξ1s𝑑ξ1L2\displaystyle\lesssim\left\|\langle\xi\rangle^{s}\int_{\mathbb{R}}\frac{|f(\xi_{1})||g(\xi-\xi_{1})|}{\langle\xi_{1}\rangle^{s}\langle\xi-\xi_{1}\rangle^{s}}~{}d\xi_{1}\right\|_{L^{2}}
(ξ1s+ξξ1s)|f(ξ1)||g(ξξ1)|𝑑ξ1L2\displaystyle\lesssim\left\|\int_{\mathbb{R}}(\langle\xi_{1}\rangle^{-s}+\langle\xi-\xi_{1}\rangle^{-s})|f(\xi_{1})||g(\xi-\xi_{1})|~{}d\xi_{1}\right\|_{L^{2}}
ξsLξ2fL2gL2fL2gL2.\displaystyle\lesssim\|\langle\xi\rangle^{-s}\|_{L^{2}_{\xi}}\|f\|_{L^{2}}\|g\|_{L^{2}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}.

For Case 2.2, recall that we always assume |ξ|1|\xi|\gg 1. Thus, |ξξ1||ξ1||ξ|2|\xi-\xi_{1}|\sim|\xi_{1}|\sim|\xi|^{2}. Then,

ξs+2ξ1sξξ1sξ23s1,s23.\frac{\langle\xi\rangle^{s+2}}{\langle\xi_{1}\rangle^{s}\langle\xi-\xi_{1}\rangle^{s}}\sim\langle\xi\rangle^{2-3s}\lesssim 1,\quad\forall~{}s\geq\frac{2}{3}.

By the same argument for Case 1.2, we obtain the control for this case. Combining all these cases, we finish the proof of this lemma. ∎

By (2.2)–(2.4) and Theorems 1.1, 1.4 in [10], one has Theorem 1.1.

3 Multi-linear estimates in Bourgain space

In this section, our main result is:

Proposition 3.1.

If there exists 1/2<b1<b~11/2<b_{1}<\tilde{b}_{1}, 1/2<b2<b~21/2<b_{2}<\tilde{b}_{2} such that

uv¯wXs1,b~11\displaystyle\|u\bar{v}w\|_{X^{s_{1},\tilde{b}_{1}-1}} uXs1,b1vXs1,b1wXs1,b1,\displaystyle\lesssim\|u\|_{X^{s_{1},b_{1}}}\|v\|_{X^{s_{1},b_{1}}}\|w\|_{X^{s_{1},b_{1}}}, (3.1)
uvXs1,b~11\displaystyle\|uv\|_{X^{s_{1},\tilde{b}_{1}-1}} uXs1,b1vYs2,b2,\displaystyle\lesssim\|u\|_{X^{s_{1},b_{1}}}\|v\|_{Y^{s_{2},b_{2}}}, (3.2)
x(uv¯)Ys2,b~21\displaystyle\|\partial_{x}(u\bar{v})\|_{Y^{s_{2},\tilde{b}_{2}-1}} uXs1,b1vXs1,b1,\displaystyle\lesssim\|u\|_{X^{s_{1},b_{1}}}\|v\|_{X^{s_{1},b_{1}}}, (3.3)
x(uv)Ys2,b~21\displaystyle\|\partial_{x}(uv)\|_{Y^{s_{2},\tilde{b}_{2}-1}} uYs2,b2vYs2,b2\displaystyle\lesssim\|u\|_{Y^{s_{2},b_{2}}}\|v\|_{Y^{s_{2},b_{2}}} (3.4)

then s10s_{1}\geq 0, max{3/4,s1/211/8,s15/2}<s2<min{4s1,s1+1}\max\{-3/4,s_{1}/2-11/8,s_{1}-5/2\}<s_{2}<\min\{4s_{1},s_{1}+1\}. Conversely, if s10s_{1}\geq 0, max{3/4,s1/211/8,s15/2}<s2<min{4s1,s1+1}\max\{-3/4,s_{1}/2-11/8,s_{1}-5/2\}<s_{2}<\min\{4s_{1},s_{1}+1\}, there exists 1/2<b1<b~11/2<b_{1}<\tilde{b}_{1}, 1/2<b2<b~21/2<b_{2}<\tilde{b}_{2} such that (3.1)–(3.4) hold.

We will show (3.2)–(3.4) in Lemmas 3.23.4 respectively.

Lemma 3.2.

If there exists b1>1/2b_{1}>1/2, b2b_{2}\in\mathbb{R} such that

uvXs1,b11uXs1,b1vYs2,b2,\displaystyle\|uv\|_{X^{s_{1},b_{1}-1}}\lesssim\|u\|_{X^{s_{1},b_{1}}}\|v\|_{Y^{s_{2},b_{2}}}, (3.5)

then s2>s15/2s_{2}>s_{1}-5/2.

Let s10s_{1}\geq 0, s21s_{2}\geq-1. If there exists ϵ0(s1,s2)>0\epsilon_{0}(s_{1},s_{2})>0 such that 0<ε<ϵ0\forall~{}0<\varepsilon<\epsilon_{0},

uvXs1,1/2+εuXs1,1/2+εvYs2,1/2+ε,\displaystyle\|uv\|_{X^{s_{1},-1/2+\varepsilon}}\lesssim\|u\|_{X^{s_{1},1/2+\varepsilon}}\|v\|_{Y^{s_{2},1/2+\varepsilon}}, (3.6)

then s2s12s_{2}\geq s_{1}-2. Conversely, if s2s12s_{2}\geq s_{1}-2, then there exists ε0(s1,s2)>0\varepsilon_{0}(s_{1},s_{2})>0 such that 0<ε<ε0\forall~{}0<\varepsilon<\varepsilon_{0}, one has

uvXs1,1/2+2εuXs1,1/2+εvYs2,1/2+ε.\displaystyle\|uv\|_{X^{s_{1},-1/2+2\varepsilon}}\lesssim\|u\|_{X^{s_{1},1/2+\varepsilon}}\|v\|_{Y^{s_{2},1/2+\varepsilon}}. (3.7)
Proof.

By the definition of Xs,b,Ys,bX^{s,b},Y^{s,b} and duality, (3.5) is equivalent to

ξ1+ξ2=ξ,τ1+τ2=τξs1f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1s1ξ2s2τ1+ξ12b1τ2ξ23b2τ+ξ21b1\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\langle\xi\rangle^{s_{1}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi_{2}\rangle^{s_{2}}\langle\tau_{1}+\xi_{1}^{2}\rangle^{b_{1}}\langle\tau_{2}-\xi_{2}^{3}\rangle^{b_{2}}\langle\tau+\xi^{2}\rangle^{1-b_{1}}} (3.8)
fL2gL2hL2,f,g,h0.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}},\quad\forall~{}f,g,h\geq 0.

Let f(τ,ξ)=χ[2,2]2(τ,ξ)f(\tau,\xi)=\chi_{[-2,2]^{2}}(\tau,\xi), g(τ,ξ)=χ[N,N+1](ξ)χ[0,1](τξ3)g(\tau,\xi)=\chi_{[N,N+1]}(\xi)\chi_{[0,1]}(\tau-\xi^{3}), and h(τ,ξ)=χ[N310N2,N3+10N2](τ)χ[N10,N+10](ξ)h(\tau,\xi)=\chi_{[N^{3}-10N^{2},N^{3}+10N^{2}]}(\tau)\chi_{[N-10,N+10]}(\xi). Then, fL2gL2hL2N\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}\sim N.

ξ1+ξ2=ξ,τ1+τ2=τξs1f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1s1ξ2s2τ1+ξ12b1τ2ξ23b2τ+ξ21b1\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\langle\xi\rangle^{s_{1}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi_{2}\rangle^{s_{2}}\langle\tau_{1}+\xi_{1}^{2}\rangle^{b_{1}}\langle\tau_{2}-\xi_{2}^{3}\rangle^{b_{2}}\langle\tau+\xi^{2}\rangle^{1-b_{1}}}
1Ns2s1+3(1b)4f(τ1,ξ1)g(τ2,ξ2)𝑑τ1𝑑τ2𝑑ξ1𝑑ξ2Ns2+s13+3b.\displaystyle\gtrsim\frac{1}{N^{s_{2}-s_{1}+3(1-b)}}\int_{\mathbb{R}^{4}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})~{}d\tau_{1}d\tau_{2}d\xi_{1}d\xi_{2}\sim N^{-s_{2}+s_{1}-3+3b}.

Thus, s2+s13+3b11-s_{2}+s_{1}-3+3b_{1}\leq 1 which means s2>s15/2s_{2}>s_{1}-5/2.

For (3.6), it is equivalent to

ξ1+ξ2=ξ,τ1+τ2=τξs1f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1s1ξ2s2τ1+ξ121/2+ετ2ξ231/2+ετ+ξ21/2ε\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\langle\xi\rangle^{s_{1}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi_{2}\rangle^{s_{2}}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{3}\rangle^{1/2+\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2-\varepsilon}} (3.9)
fL2gL2hL2,f,g,h0.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}},\quad\forall~{}f,g,h\geq 0.

Let f(τ,ξ)=χ[10,10]2(τ,ξ)f(\tau,\xi)=\chi_{[-10,10]^{2}}(\tau,\xi), h(τ,ξ)=χ[N10,N+10](ξ)χ[100,100](τ+ξ2)h(\tau,\xi)=\chi_{[N-10,N+10]}(\xi)\chi_{[-100,100]}(\tau+\xi^{2}),

g(τ,ξ)=2f(τ1,ξ1)h(τ1+τ,ξ1+ξ)𝑑τ1𝑑ξ1.\displaystyle g(\tau,\xi)=\int_{\mathbb{R}^{2}}f(\tau_{1},\xi_{1})h(\tau_{1}+\tau,\xi_{1}+\xi)~{}d\tau_{1}d\xi_{1}.

ξ[N1,N+1]\forall~{}\xi\in[N-1,N+1], |τ+ξ2|N|\tau+\xi^{2}|\leq N, one has g(τ,ξ)N1g(\tau,\xi)\gtrsim N^{-1}. Thus, gL2N1/2\|g\|_{L^{2}}\gtrsim N^{-1/2}.

ξ1+ξ2=ξ,τ1+τ2=τξs1f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1s1ξ2s2τ1+ξ121/2+ετ2ξ231/2+ετ+ξ21/2ε\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\langle\xi\rangle^{s_{1}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi_{2}\rangle^{s_{2}}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{3}\rangle^{1/2+\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2-\varepsilon}} (3.10)
Ns1s23/23ε4f(τ1,ξ2)h(τ1+τ2,ξ1+ξ2)g(τ2,ξ2)𝑑τ1𝑑τ2𝑑ξ1𝑑ξ2\displaystyle\gtrsim N^{s_{1}-s_{2}-3/2-3\varepsilon}\int_{\mathbb{R}^{4}}f(\tau_{1},\xi_{2})h(\tau_{1}+\tau_{2},\xi_{1}+\xi_{2})g(\tau_{2},\xi_{2})~{}d\tau_{1}d\tau_{2}d\xi_{1}d\xi_{2}
Ns1s23/23εgL22\displaystyle\sim N^{s_{1}-s_{2}-3/2-3\varepsilon}\|g\|_{L^{2}}^{2}
Ns1s223εgL2Ns1s223εfL2gL2hL2.\displaystyle\gtrsim N^{s_{1}-s_{2}-2-3\varepsilon}\|g\|_{L^{2}}\sim N^{s_{1}-s_{2}-2-3\varepsilon}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

Thus, s2s12s_{2}\geq s_{1}-2.

(3.7) is equivalent to

ξ1+ξ2=ξ,τ1+τ2=τξs1f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1s1ξ2s2τ1+ξ121/2+ετ2ξ231/2+ετ+ξ21/22ε\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\langle\xi\rangle^{s_{1}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi_{2}\rangle^{s_{2}}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{3}\rangle^{1/2+\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2-2\varepsilon}} (3.11)
fL2gL2hL2,f,g,h0.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}},\quad\forall~{}f,g,h\geq 0.

By Lemma 3.1 in [3], (3.11) holds for (s1,s2)=(0,1)(s_{1},s_{2})=(0,-1). If (3.11)\eqref{dualsktos} holds for (s1,s2)(s_{1},s_{2}), then it also holds for (s1,s~2)(s_{1},\tilde{s}_{2}), s~2s2\forall~{}\tilde{s}_{2}\geq s_{2} and (s1+a,s2+a)(s_{1}+a,s_{2}+a), a>0\forall~{}a>0. By multi-interpolation, we only need to show the inequality for (s1,s2)=(1,1)(s_{1},s_{2})=(1,-1).

We decompose the integration into two parts.

Case 1. Ω1\Omega_{1}: ξξ1\langle\xi\rangle\lesssim\langle\xi_{1}\rangle.

Case 2. Ω2\Omega_{2}: ξξ1\langle\xi\rangle\gg\langle\xi_{1}\rangle.

For Case 1, the inequality reduces to (s1,s2)=(0,1)(s_{1},s_{2})=(0,-1) which has been shown in [3]. For Case 2, one has |ξ2||ξ|max{1,|ξ1|}|\xi_{2}|\sim|\xi|\gg\max\{1,|\xi_{1}|\}. Then,

τ1+ξ12+τ2ξ23+τ+ξ2|ξ12ξ23ξ2||ξ|3.\displaystyle\langle\tau_{1}+\xi_{1}^{2}\rangle+\langle\tau_{2}-\xi_{2}^{3}\rangle+\langle\tau+\xi^{2}\rangle\gtrsim|\xi_{1}^{2}-\xi_{2}^{3}-\xi^{2}|\sim|\xi|^{3}.

If τ+ξ2|ξ|3\langle\tau+\xi^{2}\rangle\gtrsim|\xi|^{3}, one has

ξ1+ξ2=ξ,τ1+τ2=τχξξ1,τ+ξ2|ξ|3ξf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1ξ21τ1+ξ121/2+ετ2ξ231/2+ετ+ξ21/22ε\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\chi_{\langle\xi\rangle\gg\langle\xi_{1}\rangle,\langle\tau+\xi^{2}\rangle\gtrsim|\xi|^{3}}\langle\xi\rangle f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle\langle\xi_{2}\rangle^{-1}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{3}\rangle^{1/2+\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2-2\varepsilon}}
ξ1+ξ2=ξ,τ1+τ2=τχ|ξ|ξ1|ξ|1/2+6εf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1τ1+ξ121/2+ετ2ξ231/2+ε\displaystyle\lesssim\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\chi_{|\xi|\gg\langle\xi_{1}\rangle}|\xi|^{1/2+6\varepsilon}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{3}\rangle^{1/2+\varepsilon}}
χ|ξ|ξ1|ξ|1/2+6εξ1τ1+ξ121/2+εττ1(ξξ1)31/2+εLτ,ξLτ1,ξ12fL2gL2hL2\displaystyle\lesssim\left\|\frac{\chi_{|\xi|\gg\langle\xi_{1}\rangle}|\xi|^{1/2+6\varepsilon}}{\langle\xi_{1}\rangle\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\tau_{1}-(\xi-\xi_{1})^{3}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau,\xi}L^{2}_{\tau_{1},\xi_{1}}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
χ|ξ|ξ1|ξ|1/2+6ετ+ξ12(ξξ1)31/2+εLτ,ξLξ12fL2gL2hL2\displaystyle\lesssim\left\|\frac{\chi_{|\xi|\gg\langle\xi_{1}\rangle}|\xi|^{1/2+6\varepsilon}}{\langle\tau+\xi_{1}^{2}-(\xi-\xi_{1})^{3}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau,\xi}L^{2}_{\xi_{1}}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
χ|ξ|ξ1|ξ|1/2+6εy1/2+ε|ξ|LξLy2fL2gL2hL2fL2gL2hL2.\displaystyle\lesssim\left\|\frac{\chi_{|\xi|\gg\langle\xi_{1}\rangle}|\xi|^{1/2+6\varepsilon}}{\langle y\rangle^{1/2+\varepsilon}|\xi|}\right\|_{L^{\infty}_{\xi}L^{2}_{y}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

If τ1+ξ12max{τ+ξ2,|ξ|3}\langle\tau_{1}+\xi_{1}^{2}\rangle\gtrsim\max\{\langle\tau+\xi^{2}\rangle,|\xi|^{3}\}, then

τ1+ξ121/2+ετ+ξ21/22ετ1+ξ121/22ετ+ξ21/2+ε.\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2-2\varepsilon}\gtrsim\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2-2\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2+\varepsilon}.

By the symmetry between ξ1\xi_{1} and ξ\xi, one has the result.

If τ2ξ23|ξ|3\langle\tau_{2}-\xi_{2}^{3}\rangle\gtrsim|\xi|^{3}, τ+ξ2|ξ|\langle\tau+\xi^{2}\rangle\gtrsim|\xi|, one has

ξ1+ξ2=ξ,τ1+τ2=τχξξ1,τ+ξ2|ξ|,τ2ξ23|ξ|3ξf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1ξ21τ1+ξ121/2+ετ2ξ231/2+ετ+ξ21/22ε\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\chi_{\langle\xi\rangle\gg\langle\xi_{1}\rangle,\langle\tau+\xi^{2}\rangle\gtrsim|\xi|,\langle\tau_{2}-\xi_{2}^{3}\rangle\gtrsim|\xi|^{3}}\langle\xi\rangle f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle\langle\xi_{2}\rangle^{-1}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{3}\rangle^{1/2+\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2-2\varepsilon}}
ξ1+ξ2=ξ,τ1+τ2=τξεf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1τ1+ξ121/2+ε\displaystyle\lesssim\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\langle\xi\rangle^{-\varepsilon}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}}
2f(τ1,ξ1)ξ1τ1+ξ121/2+ε𝑑τ1𝑑ξ1gL2hL2\displaystyle\lesssim\int_{\mathbb{R}^{2}}\frac{f(\tau_{1},\xi_{1})}{\langle\xi_{1}\rangle\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}}~{}d\tau_{1}d\xi_{1}\|g\|_{L^{2}}\|h\|_{L^{2}}
fL2gL2hL2.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

If τ2ξ23|ξ|3\langle\tau_{2}-\xi_{2}^{3}\rangle\gtrsim|\xi|^{3}, τ+ξ2|ξ|\langle\tau+\xi^{2}\rangle\ll|\xi|, one has

ξ1+ξ2=ξ,τ1+τ2=τχξξ1,τ+ξ2|ξ|,τ2ξ23|ξ|3ξf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1ξ21τ1+ξ121/2+ετ2ξ231/2+ετ+ξ21/22ε\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\chi_{\langle\xi\rangle\gg\langle\xi_{1}\rangle,\langle\tau+\xi^{2}\rangle\ll|\xi|,\langle\tau_{2}-\xi_{2}^{3}\rangle\gtrsim|\xi|^{3}}\langle\xi\rangle f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle\langle\xi_{2}\rangle^{-1}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{3}\rangle^{1/2+\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2-2\varepsilon}}
ξ1+ξ2=ξ,τ1+τ2=τχ|ξ|ξ1|ξ|1/2f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1τ1+ξ121/2+ετ+ξ21/2+ε\displaystyle\lesssim\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\chi_{|\xi|\gg\langle\xi_{1}\rangle}|\xi|^{1/2}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2+\varepsilon}}
χ|ξ||ξ2|1|ξ2|1/2ττ2+(ξξ2)21/2+ετ+ξ21/2+εLτ2,ξ2Lξ,τ2fL2gL2hL2\displaystyle\lesssim\left\|\frac{\chi_{|\xi|\sim|\xi_{2}|\gg 1}|\xi_{2}|^{1/2}}{\langle\tau-\tau_{2}+(\xi-\xi_{2})^{2}\rangle^{1/2+\varepsilon}\langle\tau+\xi^{2}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau_{2},\xi_{2}}L^{2}_{\xi,\tau}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
χ|ξ||ξ2|1|ξ2|1/2ξ2τ2+(ξξ2)21/2+εLτ2,ξ2Lξ2fL2gL2hL2\displaystyle\lesssim\left\|\frac{\chi_{|\xi|\sim|\xi_{2}|\gg 1}|\xi_{2}|^{1/2}}{\langle-\xi^{2}-\tau_{2}+(\xi-\xi_{2})^{2}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau_{2},\xi_{2}}L^{2}_{\xi}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
χ|ξ2|1|ξ2|1/2|ξ2|1/2y1/2+εLξ2Ly2fL2gL2hL2fL2gL2hL2.\displaystyle\lesssim\left\|\frac{\chi_{|\xi_{2}|\gg 1}|\xi_{2}|^{1/2}}{|\xi_{2}|^{1/2}\langle y\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\xi_{2}}L^{2}_{y}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

We finish the proof of this lemma. ∎

Lemma 3.3.

Let s10s_{1}\geq 0. If there exists b2>1/2b_{2}>1/2, b1b_{1}\in\mathbb{R} such that

x(uv¯)Ys2,b21uXs1,b1vXs1,b1\displaystyle\|\partial_{x}(u\bar{v})\|_{Y^{s_{2},b_{2}-1}}\lesssim\|u\|_{X^{s_{1},b_{1}}}\|v\|_{X^{s_{1},b_{1}}} (3.12)

then s2<min{4s1,s1+1}s_{2}<\min\{4s_{1},s_{1}+1\}. Conversely, if s2<min{4s1,s1+1}s_{2}<\min\{4s_{1},s_{1}+1\}, there exists ε0(s1,s2)>0\varepsilon_{0}(s_{1},s_{2})>0 such that 0<ε<ε0\forall~{}0<\varepsilon<\varepsilon_{0}, one has

x(uv¯)Ys2,1/2+2εuXs1,1/2+εvXs1,1/2+ε.\displaystyle\|\partial_{x}(u\bar{v})\|_{Y^{s_{2},-1/2+2\varepsilon}}\lesssim\|u\|_{X^{s_{1},1/2+\varepsilon}}\|v\|_{X^{s_{1},1/2+\varepsilon}}. (3.13)
Proof.

By the definition of Xs,b,Ys,bX^{s,b},Y^{s,b} and duality, (3.12) is equivalent to

ξ1+ξ2=ξ,τ1+τ2=τ|ξ|ξs2f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1s1ξ2s1τ1+ξ12b1τ2ξ22b1τξ31b2\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{|\xi|\langle\xi\rangle^{s_{2}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi_{2}\rangle^{s_{1}}\langle\tau_{1}+\xi_{1}^{2}\rangle^{b_{1}}\langle\tau_{2}-\xi_{2}^{2}\rangle^{b_{1}}\langle\tau-\xi^{3}\rangle^{1-b_{2}}}
fL2gL2hL2,f,g,h0.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}},\quad\forall~{}f,g,h\geq 0.

Let f(τ,ξ)=χ[10,10]2(τ,ξ)f(\tau,\xi)=\chi_{[-10,10]^{2}}(\tau,\xi), g(τ,ξ)=χ[N10,N+10](ξ)χ[100,100](τξ2)g(\tau,\xi)=\chi_{[N-10,N+10]}(\xi)\chi_{[-100,100]}(\tau-\xi^{2}), h=fgh=f*g. Then,

ξ1+ξ2=ξ,τ1+τ2=τ|ξ|ξs2f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1s1ξ2s1τ1+ξ12b1τ2ξ22b1τξ31b2\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{|\xi|\langle\xi\rangle^{s_{2}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi_{2}\rangle^{s_{1}}\langle\tau_{1}+\xi_{1}^{2}\rangle^{b_{1}}\langle\tau_{2}-\xi_{2}^{2}\rangle^{b_{1}}\langle\tau-\xi^{3}\rangle^{1-b_{2}}}
N1+s2s13(1b2)ξ1+ξ2=ξ,τ1+τ2=τf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)\displaystyle\sim N^{1+s_{2}-s_{1}-3(1-b_{2})}\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)
Ns2s12+3b2hL22.\displaystyle\sim N^{s_{2}-s_{1}-2+3b_{2}}\|h\|_{L^{2}}^{2}.

Since hL2N1/2\|h\|_{L^{2}}\gtrsim N^{-1/2} and fL2gL21\|f\|_{L^{2}}\sim\|g\|_{L^{2}}\sim 1, we obtain

Ns2s12+3b2hL22Ns2s1+3b25/2fL2gL2hL2.N^{s_{2}-s_{1}-2+3b_{2}}\|h\|_{L^{2}}^{2}\gtrsim N^{s_{2}-s_{1}+3b_{2}-5/2}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

Thus, s2<s1+1s_{2}<s_{1}+1.

Let f(τ,ξ)=χ[(N2+N)/210N1,(N2+N)/2+10N1](ξ)χ[10,10](τ+ξ2)f(\tau,\xi)=\chi_{[(-N^{2}+N)/2-10N^{-1},(-N^{2}+N)/2+10N^{-1}]}(\xi)\chi_{[-10,10]}(\tau+\xi^{2}), g(τ,ξ)=χ[100,100](τξ2)χ[(N2+N)/210N1,(N2+N)/2+10N1](ξ)g(\tau,\xi)=\chi_{[-100,100]}(\tau-\xi^{2})\chi_{[(N^{2}+N)/2-10N^{-1},(N^{2}+N)/2+10N^{-1}]}(\xi), h=fgh=f*g. For |ξN|N1|\xi-N|\leq N^{-1}, |τξ2N2ξ|1|\tau-\xi^{2}-N^{2}\xi|\leq 1, one has

h(τ,ξ)N1.\displaystyle h(\tau,\xi)\gtrsim N^{-1}.

Thus, hL2N3/2\|h\|_{L^{2}}\gtrsim N^{-3/2}. On the support of h(τ,ξ)h(\tau,\xi), one hasτξ3N\langle\tau-\xi^{3}\rangle\lesssim N.

ξ1+ξ2=ξ,τ1+τ2=τ|ξ|ξs2f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1s1ξ2s1τ1+ξ12b1τ2ξ22b1τξ31b2\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{|\xi|\langle\xi\rangle^{s_{2}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s_{1}}\langle\xi_{2}\rangle^{s_{1}}\langle\tau_{1}+\xi_{1}^{2}\rangle^{b_{1}}\langle\tau_{2}-\xi_{2}^{2}\rangle^{b_{1}}\langle\tau-\xi^{3}\rangle^{1-b_{2}}}
N1+s24s1(1b2)ξ1+ξ2=ξ,τ1+τ2=τf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)\displaystyle\gtrsim N^{1+s_{2}-4s_{1}-(1-b_{2})}\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)
Ns24s1+b2hL22\displaystyle\sim N^{s_{2}-4s_{1}+b_{2}}\|h\|_{L^{2}}^{2}
Ns24s13/2+b2hL2Ns24s11/2+b2fL2gL2hL2.\displaystyle\gtrsim N^{s_{2}-4s_{1}-3/2+b_{2}}\|h\|_{L^{2}}\sim N^{s_{2}-4s_{1}-1/2+b_{2}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

Thus, s2<4s1s_{2}<4s_{1} since b2>1/2b_{2}>1/2.

If (3.13)\eqref{sstokdvbou} holds for (s1,s2)(s_{1},s_{2}), then it also holds for (s1,s~2)(s_{1},\tilde{s}_{2}), s~2s2\forall~{}\tilde{s}_{2}\leq s_{2} and (s1+a,s2+a)(s_{1}+a,s_{2}+a), a>0\forall~{}a>0. By multi-interpolation, we only need to show the inequality for (s1,s2)=(0,δ)(s_{1},s_{2})=(0,-\delta) and (1/3,4/3δ)(1/3,4/3-\delta) where 0<δ10<\delta\ll 1.

For (s1,s2)=(0,δ)(s_{1},s_{2})=(0,-\delta), (3.13) is equivalent to

ξ1+ξ2=ξ,τ1+τ2=τ|ξ|f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξδτ1+ξ121/2+ετ2ξ221/2+ετξ31/22ε\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{|\xi|f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi\rangle^{\delta}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2-2\varepsilon}}
fL2gL2hL2,f,g,h0.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}},\quad\forall~{}f,g,h\geq 0.

For |ξ|1|\xi|\lesssim 1, one has

ξ1+ξ2=ξ,τ1+τ2=τχ|ξ|1|ξ|f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξδτ1+ξ121/2+ετ2ξ221/2+ετξ31/22ε\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\chi_{|\xi|\lesssim 1}|\xi|f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi\rangle^{\delta}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2-2\varepsilon}}
ξ1+ξ2=ξ,τ1+τ2=τf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)τ1+ξ121/2+ετ2ξ221/2+ε\displaystyle\lesssim\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}}
1(f(τ,ξ)/τ+ξ21/2+ε)Lt,x41(g(τ,ξ)/τξ21/2+ε)Lt,x4hL2\displaystyle\lesssim\|\mathscr{F}^{-1}(f(\tau,\xi)/\langle\tau+\xi^{2}\rangle^{1/2+\varepsilon})\|_{L^{4}_{t,x}}\|\mathscr{F}^{-1}(g(\tau,\xi)/\langle\tau-\xi^{2}\rangle^{1/2+\varepsilon})\|_{L^{4}_{t,x}}\|h\|_{L^{2}}
fL2gL2hL2.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

If |ξ|1|\xi|\gg 1 and max{τ1+ξ12,τ2ξ22,τξ3}|ξ|2\max\{\langle\tau_{1}+\xi_{1}^{2}\rangle,\langle\tau_{2}-\xi_{2}^{2}\rangle,\langle\tau-\xi^{3}\rangle\}\gtrsim|\xi|^{2}, then for εδ/4\varepsilon\leq\delta/4, we have

|ξ|ξδτ1+ξ121/2+ετ2ξ221/2+ετξ31/22ε\displaystyle\frac{|\xi|}{\langle\xi\rangle^{\delta}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2-2\varepsilon}}
χ|ξ|1(τ1+ξ121/2+ε+τ2ξ2212+ε+τξ31/2+ε)τ1+ξ121/2+ετ2ξ221/2+ετξ31/2+ε\displaystyle\lesssim\frac{\chi_{|\xi|\gg 1}(\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}+\langle\tau_{2}-\xi_{2}^{2}\rangle^{\frac{1}{2}+\varepsilon}+\langle\tau-\xi^{3}\rangle^{1/2+\varepsilon})}{\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2+\varepsilon}}

By Strichartz estimate, we obtain the result.

If |ξ|1|\xi|\gg 1 and max{τ1+ξ12,τ2ξ22,τξ3}|ξ|2\max\{\langle\tau_{1}+\xi_{1}^{2}\rangle,\langle\tau_{2}-\xi_{2}^{2}\rangle,\langle\tau-\xi^{3}\rangle\}\ll|\xi|^{2}, one has

|ξ||ξ1ξ2+ξ2|=|ξ12ξ22+ξ3|max{τ1+ξ12,τ2ξ22,τξ3}|ξ|2.|\xi||\xi_{1}-\xi_{2}+\xi^{2}|=|\xi_{1}^{2}-\xi_{2}^{2}+\xi^{3}|\lesssim\max\{\langle\tau_{1}+\xi_{1}^{2}\rangle,\langle\tau_{2}-\xi_{2}^{2}\rangle,\langle\tau-\xi^{3}\rangle\}\ll|\xi|^{2}.

Thus, |ξ1ξ2+ξ2||ξ||\xi_{1}-\xi_{2}+\xi^{2}|\ll|\xi| which means |ξ1||ξ2||ξ|2|\xi_{1}|\sim|\xi_{2}|\sim|\xi|^{2}. For εδ/6\varepsilon\leq\delta/6, one has

ξ1+ξ2=ξ,τ1+τ2=τχ|ξ|1,max{τ1+ξ12,τ2ξ22,τξ3}|ξ|2|ξ|f(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξδτ1+ξ121/2+ετ2ξ221/2+ετξ31/22ε\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\chi_{|\xi|\gg 1,\max\{\langle\tau_{1}+\xi_{1}^{2}\rangle,\langle\tau_{2}-\xi_{2}^{2}\rangle,\langle\tau-\xi^{3}\rangle\}\ll|\xi|^{2}}|\xi|f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi\rangle^{\delta}\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2-2\varepsilon}}
ξ1+ξ2=ξ,τ1+τ2=τχmax{1,|ξ1ξ2+ξ2|}|ξ||ξ|1δ+6εf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)τ1+ξ121/2+ετ2ξ221/2+ετξ31/2+ε\displaystyle\lesssim\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{\chi_{\max\{1,|\xi_{1}-\xi_{2}+\xi^{2}|\}\ll|\xi|}|\xi|^{1-\delta+6\varepsilon}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2+\varepsilon}}
2f(τ1,ξ1)g(ττ1,ξξ1)h(τ,ξ)Lτ,ξ2𝑑τ1𝑑ξ1\displaystyle\lesssim\int_{\mathbb{R}^{2}}f(\tau_{1},\xi_{1})\|g(\tau-\tau_{1},\xi-\xi_{1})h(\tau,\xi)\|_{L^{2}_{\tau,\xi}}~{}d\tau_{1}d\xi_{1}
|ξ1|(1δ+6ε)/2χmax{1,|2ξ1ξ+ξ2|}|ξ|ττ1(ξξ1)21/2+ετξ31/2+εLτ1,ξ1Lτ,ξ2\displaystyle\quad\cdot\left\|\frac{|\xi_{1}|^{(1-\delta+6\varepsilon)/2}\chi_{\max\{1,|2\xi_{1}-\xi+\xi^{2}|\}\ll|\xi|}}{\langle\tau-\tau_{1}-(\xi-\xi_{1})^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau_{1},\xi_{1}}L^{2}_{\tau,\xi}}
|ξ1|(1δ+6ε)/2χmax{1,|2ξ1ξ+ξ2|}|ξ|ξ3τ1(ξξ1)21/2+εLτ1,ξ1Lξ2fL2gL2hL2\displaystyle\lesssim\left\|\frac{|\xi_{1}|^{(1-\delta+6\varepsilon)/2}\chi_{\max\{1,|2\xi_{1}-\xi+\xi^{2}|\}\ll|\xi|}}{\langle\xi^{3}-\tau_{1}-(\xi-\xi_{1})^{2}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau_{1},\xi_{1}}L^{2}_{\xi}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
|ξ1|(1δ+6ε)/2χ|ξ1|1y1/2+ε|ξ1|1/2Lξ1Ly2fL2gL2hL2fL2gL2hL2.\displaystyle\lesssim\left\|\frac{|\xi_{1}|^{(1-\delta+6\varepsilon)/2}\chi_{|\xi_{1}|\gg 1}}{\langle y\rangle^{1/2+\varepsilon}|\xi_{1}|^{1/2}}\right\|_{L^{\infty}_{\xi_{1}}L^{2}_{y}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

For (s1,s2)=(1/3,4/3δ)(s_{1},s_{2})=(1/3,4/3-\delta), if ξ4ξ1ξ2\langle\xi\rangle^{4}\lesssim\langle\xi_{1}\rangle\langle\xi_{2}\rangle, one can reduce this case to (s1,s2)=(0,δ)(s_{1},s_{2})=(0,-\delta). Thus, we only consider the case ξ4ξ1ξ2\langle\xi\rangle^{4}\gg\langle\xi_{1}\rangle\langle\xi_{2}\rangle. Thus, |ξ|max{1,|ξ1|1/2}|\xi|\gg\max\{1,|\xi_{1}|^{1/2}\}.

max{τ1+ξ12,τ2ξ22,τξ3}|ξ||2ξ1ξ+ξ2||ξ|3.\max\{\langle\tau_{1}+\xi_{1}^{2}\rangle,\langle\tau_{2}-\xi_{2}^{2}\rangle,\langle\tau-\xi^{3}\rangle\}\gtrsim|\xi||2\xi_{1}-\xi+\xi^{2}|\sim|\xi|^{3}.

If τξ3=max{τ1+ξ12,τ2ξ22,τξ3}\langle\tau-\xi^{3}\rangle=\max\{\langle\tau_{1}+\xi_{1}^{2}\rangle,\langle\tau_{2}-\xi_{2}^{2}\rangle,\langle\tau-\xi^{3}\rangle\}, one has

χξ4ξ1ξ2|ξ|ξ4/3δξ11/3ξ21/31τ1+ξ121/2+ετ2ξ221/2+ετξ31/22ε\displaystyle\quad\chi_{\langle\xi\rangle^{4}\gg\langle\xi_{1}\rangle\langle\xi_{2}\rangle}\frac{|\xi|\langle\xi\rangle^{4/3-\delta}}{\langle\xi_{1}\rangle^{1/3}\langle\xi_{2}\rangle^{1/3}}\frac{1}{\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2-2\varepsilon}}
χ|ξ|max{1,|ξ1|1/2}|ξ|1/2δ+6ετ1+ξ121/2+ετ2ξ221/2+ε.\displaystyle\lesssim\chi_{|\xi|\gg\max\{1,|\xi_{1}|^{1/2}\}}\frac{|\xi|^{1/2-\delta+6\varepsilon}}{\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}}.

For εδ/6\varepsilon\leq\delta/6, by Cauchy-Schwarz inequality, one can control this part by

χ|ξ|max{1,|ξ1|1/2}|ξ|1/2δ+6ετ1+ξ121/2+εττ1(ξξ1)21/2+εLτ,ξLξ1,τ12fL2gL2hL2\displaystyle\quad\left\|\frac{\chi_{|\xi|\gg\max\{1,|\xi_{1}|^{1/2}\}}|\xi|^{1/2-\delta+6\varepsilon}}{\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\tau_{1}-(\xi-\xi_{1})^{2}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau,\xi}L^{2}_{\xi_{1},\tau_{1}}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
χ|ξ|max{1,|ξ1|1/2}|ξ|1/2δ+6ετ+ξ12(ξξ1)21/2+εLτ,ξLξ12fL2gL2hL2\displaystyle\lesssim\left\|\frac{\chi_{|\xi|\gg\max\{1,|\xi_{1}|^{1/2}\}}|\xi|^{1/2-\delta+6\varepsilon}}{\langle\tau+\xi_{1}^{2}-(\xi-\xi_{1})^{2}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau,\xi}L^{2}_{\xi_{1}}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
χ|ξ|1|ξ|1/2δ+6εy1/2+ε|ξ|1/2LξLy2fL2gL2hL2\displaystyle\lesssim\left\|\frac{\chi_{|\xi|\gg 1}|\xi|^{1/2-\delta+6\varepsilon}}{\langle y\rangle^{1/2+\varepsilon}|\xi|^{1/2}}\right\|_{L^{\infty}_{\xi}L^{2}_{y}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
fL2gL2hL2.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

If τ1+ξ12=max{τ1+ξ12,τ2ξ22,τξ3}\langle\tau_{1}+\xi_{1}^{2}\rangle=\max\{\langle\tau_{1}+\xi_{1}^{2}\rangle,\langle\tau_{2}-\xi_{2}^{2}\rangle,\langle\tau-\xi^{3}\rangle\}, one has

χξ4ξ1ξ2|ξ|ξ4/3δξ11/3ξ21/31τ1+ξ121/2+ετ2ξ221/2+ετξ31/22ε\displaystyle\quad\chi_{\langle\xi\rangle^{4}\gg\langle\xi_{1}\rangle\langle\xi_{2}\rangle}\frac{|\xi|\langle\xi\rangle^{4/3-\delta}}{\langle\xi_{1}\rangle^{1/3}\langle\xi_{2}\rangle^{1/3}}\frac{1}{\langle\tau_{1}+\xi_{1}^{2}\rangle^{1/2+\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2-2\varepsilon}}
χξ4ξ1ξ2|ξ|ξ4/3δξ11/3ξ21/31τ1+ξ12122ετ2ξ221/2+ετξ31/2+ε\displaystyle\lesssim\chi_{\langle\xi\rangle^{4}\gg\langle\xi_{1}\rangle\langle\xi_{2}\rangle}\frac{|\xi|\langle\xi\rangle^{4/3-\delta}}{\langle\xi_{1}\rangle^{1/3}\langle\xi_{2}\rangle^{1/3}}\frac{1}{\langle\tau_{1}+\xi_{1}^{2}\rangle^{\frac{1}{2}-2\varepsilon}\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2+\varepsilon}}
χ|ξ|max{1,|ξ1|1/2}|ξ|1/2δ+6ετ2ξ221/2+ετξ31/2+ε.\displaystyle\lesssim\chi_{|\xi|\gg\max\{1,|\xi_{1}|^{1/2}\}}\frac{|\xi|^{1/2-\delta+6\varepsilon}}{\langle\tau_{2}-\xi_{2}^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2+\varepsilon}}.

Let y(ξ)=ξ3τ1(ξξ1)2y(\xi)=\xi^{3}-\tau_{1}-(\xi-\xi_{1})^{2}. Then, |dy|=|(3ξ22(ξξ1))dξ||ξ|2|dξ||dy|=|(3\xi^{2}-2(\xi-\xi_{1}))d\xi|\sim|\xi|^{2}|d\xi| since |ξ|max{1,|ξ1|1/2}|\xi|\gg\max\{1,|\xi_{1}|^{1/2}\}. Let ξ(y)\xi(y) be the inverse function of y(ξ)y(\xi). By Cauchy-Schwarz inequality, one can control this part by

χ|ξ|max{1,|ξ1|1/2}|ξ|1/2δ+6εττ1(ξξ1)21/2+ετξ31/2+εLτ1,ξ1Lξ,τ2fL2gL2hL2\displaystyle\quad\left\|\frac{\chi_{|\xi|\gg\max\{1,|\xi_{1}|^{1/2}\}}|\xi|^{1/2-\delta+6\varepsilon}}{\langle\tau-\tau_{1}-(\xi-\xi_{1})^{2}\rangle^{1/2+\varepsilon}\langle\tau-\xi^{3}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau_{1},\xi_{1}}L^{2}_{\xi,\tau}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
χ|ξ|max{1,|ξ1|1/2}|ξ|1/2δ+6εξ3τ1(ξξ1)21/2+εLτ1,ξ1Lξ2fL2gL2hL2\displaystyle\lesssim\left\|\frac{\chi_{|\xi|\gg\max\{1,|\xi_{1}|^{1/2}\}}|\xi|^{1/2-\delta+6\varepsilon}}{\langle\xi^{3}-\tau_{1}-(\xi-\xi_{1})^{2}\rangle^{1/2+\varepsilon}}\right\|_{L^{\infty}_{\tau_{1},\xi_{1}}L^{2}_{\xi}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
χ|ξ(y)|1|ξ(y)|1/2δ+6εy1/2+ε|ξ(y)|LξLy2fL2gL2hL2\displaystyle\lesssim\left\|\frac{\chi_{|\xi(y)|\gg 1}|\xi(y)|^{1/2-\delta+6\varepsilon}}{\langle y\rangle^{1/2+\varepsilon}|\xi(y)|}\right\|_{L^{\infty}_{\xi}L^{2}_{y}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}
fL2gL2hL2.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

Due to the symmtry between ξ1\xi_{1} and ξ2\xi_{2}, the same argument works when τ2ξ22=max{τ1+ξ12,τ2ξ22,τξ3}\langle\tau_{2}-\xi_{2}^{2}\rangle=\max\{\langle\tau_{1}+\xi_{1}^{2}\rangle,\langle\tau_{2}-\xi_{2}^{2}\rangle,\langle\tau-\xi^{3}\rangle\}. We finish the proof. ∎

Lemma 3.4.

If there exists 1/2<b<b~1/2<b<\tilde{b} such that

x(uv)Ys,b~1uYs,bvYs,b\displaystyle\|\partial_{x}(uv)\|_{Y^{s,\tilde{b}-1}}\lesssim\|u\|_{Y^{s,b}}\|v\|_{Y^{s,b}} (3.14)

then s>3/4s>-3/4, b<3/4+s/3b<3/4+s/3. Conversely, if s>3/4s>-3/4, 1/2<b<min{3/4+s/3,3/4}1/2<b<\min\{3/4+s/3,3/4\}, then there exists b~>b\tilde{b}>b such that (3.14) holds.

Proof.

(3.14) is equivalent to

ξ1+ξ2=ξ,τ1+τ2=τ|ξ|ξsf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1sξ2sτ1ξ13bτ2ξ23bτξ31b~\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{|\xi|\langle\xi\rangle^{s}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s}\langle\xi_{2}\rangle^{s}\langle\tau_{1}-\xi_{1}^{3}\rangle^{b}\langle\tau_{2}-\xi_{2}^{3}\rangle^{b}\langle\tau-\xi^{3}\rangle^{1-\tilde{b}}}
fL2gL2hL2,f,g,h0.\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}},\quad\forall~{}f,g,h\geq 0.

Let f(τ,ξ)=χ[N2N1/2,N+2N1/2](ξ)χ[2,2](τξ3)f(\tau,\xi)=\chi_{[N-2N^{-1/2},N+2N^{-1/2}]}(\xi)\chi_{[-2,2]}(\tau-\xi^{3}), g(τ,ξ)=χ[100,100](τξ3)χ[N10N1/2,N+10N1/2](ξ)g(\tau,\xi)=\chi_{[-100,100]}(\tau-\xi^{3})\chi_{[N-10N^{-1/2},N+10N^{-1/2}]}(\xi), h=fgh=f*g. For ξ[2NN1/2,2N+N1/2]\xi\in[2N-N^{-1/2},2N+N^{-1/2}], |τξ3/4|1|\tau-\xi^{3}/4|\leq 1, one has h(τ,ξ)N1/2h(\tau,\xi)\gtrsim N^{-1/2}. Thus, hL2N3/4\|h\|_{L^{2}}\gtrsim N^{-3/4}. Since

ξ1+ξ2=ξ,τ1+τ2=τ|ξ|ξsf(τ1,ξ1)g(τ2,ξ2)h(τ,ξ)ξ1sξ2sτ1ξ13bτ2ξ23bτξ31b~\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}=\xi,\\ \tau_{1}+\tau_{2}=\tau\end{subarray}}\frac{|\xi|\langle\xi\rangle^{s}f(\tau_{1},\xi_{1})g(\tau_{2},\xi_{2})h(\tau,\xi)}{\langle\xi_{1}\rangle^{s}\langle\xi_{2}\rangle^{s}\langle\tau_{1}-\xi_{1}^{3}\rangle^{b}\langle\tau_{2}-\xi_{2}^{3}\rangle^{b}\langle\tau-\xi^{3}\rangle^{1-\tilde{b}}}
N1s3(1b~)hL22N9/4s+3b~fL2gL2hL2,\displaystyle\gtrsim N^{1-s-3(1-\tilde{b})}\|h\|_{L^{2}}^{2}\sim N^{-9/4-s+3\tilde{b}}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}},

we obtain b<b~3/4+s/3b<\tilde{b}\leq 3/4+s/3.

By multi-linear interpolation, we only need to consider the case s=0s=0, 1/2<b<3/41/2<b<3/4 and 0<s+3/410<s+3/4\ll 1, 1/2<b<3/4+s/31/2<b<3/4+s/3. By Theorem 2.2 in [9], (3.14) holds in such region. ∎

Proof of Proposition 3.1.

For (3.1), one needs s10s_{1}\geq 0. For (3.2), by the proof of Lemma 3.2, one needs s2>s15/2s_{2}>s_{1}-5/2, s1s23b21/20s_{1}-s_{2}-3b_{2}-1/2\leq 0. For (3.3), by Lemmas 3.3, 3.4, one needs s2<max{4s1,s1+1}s_{2}<\max\{4s_{1},s_{1}+1\}. For (3.4), one needs s2>3/4s_{2}>-3/4, b2<3/4+s2/3b_{2}<3/4+s_{2}/3. Thus, s2s13b21/2>s13(3/4+s2/3)1/2s_{2}\geq s_{1}-3b_{2}-1/2>s_{1}-3(3/4+s_{2}/3)-1/2 which means s2>s1/211/8s_{2}>s_{1}/2-11/8.

Combining Lemmas 3.23.3, we have (3.1)–(3.4) for some 1/2<b1<b~11/2<b_{1}<\tilde{b}_{1}, 1/2<b2<b2~1/2<b_{2}<\tilde{b_{2}} when s10s_{1}\geq 0, max{3/4,s12}<s2<min{4s1,s1+1}\max\{-3/4,s_{1}-2\}<s_{2}<\min\{4s_{1},s_{1}+1\}. For s1>0s_{1}>0, max{3/4,s1/211/8,s15/2}<s2s12\max\{-3/4,s_{1}/2-11/8,s_{1}-5/2\}<s_{2}\leq s_{1}-2, one has (3.3) with b~21\tilde{b}_{2}\leq 1, b1>1/2b_{1}>1/2. By choosing b2=min{3/4+s/3,3/4}δb_{2}=\min\{3/4+s/3,3/4\}-\delta for some 0<δ10<\delta\ll 1, we have (3.4) by Lemma 3.4 and (3.2) by slightly modifying the proof of Lemma 3.2. We finish the proof of this lemma. ∎

By Proposition 3.1, we have

Proposition 3.5.

(S-KdV) is local well-posed in Hs1×Hs2H^{s_{1}}\times H^{s_{2}} where

s10,max{3/4,s1/211/8,s15/2}<s2<min{4s1,s1+1}.s_{1}\geq 0,\quad\max\{-3/4,s_{1}/2-11/8,s_{1}-5/2\}<s_{2}<\min\{4s_{1},s_{1}+1\}.

4 Borderline cases by using UpVpU^{p}-V^{p} spaces

To manipulate the borderline cases, we need the Up,VpU^{p},V^{p} spaces which were introduced in [12]. Most of the materials can be found in [6]. For reader’s convenience, we include the definitions and basic properties here.

4.1 UpVpU^{p}-V^{p} spaces

Definition 4.1 (Definition 2.1, 2.3 in [6]).

Let 𝒵\mathcal{Z} be the set of finite partitions =t0<t1<<tK=-\infty=t_{0}<t_{1}<\cdots<t_{K}=\infty. 1p<1\leq p<\infty. For {tk}k=0K𝒵\{t_{k}\}_{k=0}^{K}\subset\mathcal{Z} and {ϕk}k=0K1L2\{\phi_{k}\}_{k=0}^{K-1}\subset L^{2} with k=0K1ϕkL2p=1\sum_{k=0}^{K-1}\|\phi_{k}\|_{L^{2}}^{p}=1 and ϕ0=0\phi_{0}=0, we call the function a:L2a:\mathbb{R}\rightarrow L^{2} given by a=k=1Kχ[tk1,tk)ϕk1a=\sum_{k=1}^{K}\chi_{[t_{k-1},t_{k})}\phi_{k-1} a UpU^{p}-atom. Define the atomic space

Up:={u=j=1λjaj:ajUp-atom,λjsuch thatj=1|λj|<}U^{p}:=\left\{u=\sum_{j=1}^{\infty}\lambda_{j}a_{j}:a_{j}~{}U^{p}\mbox{-atom},\lambda_{j}\in\mathbb{C}~{}\mbox{such that}~{}\sum_{j=1}^{\infty}|\lambda_{j}|<\infty\right\}

with norm

uUp:=inf{j=1|λj|:u=j=1λjaj,λj,ajisUp-atom}.\|u\|_{U^{p}}:=\inf\left\{\sum_{j=1}^{\infty}|\lambda_{j}|:u=\sum_{j=1}^{\infty}\lambda_{j}a_{j},\lambda_{j}\in\mathbb{C},a_{j}~{}\mbox{is}~{}U^{p}\mbox{-atom}\right\}. (4.1)

Let 1p<1\leq p<\infty, the space VpV^{p} is defined as the normed space of all functions v:L2v:\mathbb{R}\rightarrow L^{2} such that v():=limtv(t)v(-\infty):=\lim_{t\rightarrow-\infty}v(t) exists and for which the norm

vVp:=sup{tk}k=0K𝒵(k=1Kv(tk)v(tk1)L2p)1/p\|v\|_{V^{p}}:=\sup_{\{t_{k}\}_{k=0}^{K}\in\mathcal{Z}}\left(\sum_{k=1}^{K}\|v(t_{k})-v(t_{k-1})\|_{L^{2}}^{p}\right)^{1/p}

is finite, where we use the convention v()=0v(\infty)=0. Let V,rcpV^{p}_{-,rc} denote all vVpv\in V^{p} which are right-continuous and v()=0v(-\infty)=0.

Proposition 4.2 (Basic properties, Proposition 2.2–2.5 and Corollary 2.6 in [6]).

Let 1p<q<1\leq p<q<\infty.

  • (i)\mathrm{(i)}

    Up,VpU^{p},V^{p} are Banach spaces. V,rcpV^{p}_{-,rc} is a closed subspace of VpV^{p}.

  • (ii)\mathrm{(ii)}

    The embedding UpV,rcpL(,L2)U^{p}\subset V_{-,rc}^{p}\subset L^{\infty}(\mathbb{R},L^{2}) is continuous.

  • (iii)\mathrm{(iii)}

    The embedding V,rcpUqV_{-,rc}^{p}\subset U^{q} is continuous.

Proposition 4.3 (Proposition 2.7 in [6]).

Let 1<p<1<p<\infty. For uUpu\in U^{p} and vVpv\in V^{p^{\prime}} and a partition 𝔱:={tk}k=0K𝒵\mathfrak{t}:=\{t_{k}\}_{k=0}^{K}\in\mathcal{Z}, we define

B𝔱(u,v):=k=1K(u(tk1),v(tk)v(tk1)).B_{\mathfrak{t}}(u,v):=\sum_{k=1}^{K}(u(t_{k-1}),v(t_{k})-v(t_{k-1})).

(,)(\cdot,\cdot) denotes the L2L^{2} inner product. There is a unique number B(u,v)B(u,v) with the property that for all ε>0\varepsilon>0 there exists 𝔱𝒵\mathfrak{t}\in\mathcal{Z} such that for every 𝔱𝔱\mathfrak{t}^{\prime}\supset\mathfrak{t} it holds that

|B𝔱(u,v)B(u,v)|<ε,\displaystyle|B_{\mathfrak{t}^{\prime}}(u,v)-B(u,v)|<\varepsilon,

and the associated bilinear form

B:Up×Vp:(u,v)B(u,v)B:U^{p}\times V^{p^{\prime}}:(u,v)\mapsto B(u,v)

satisfies the estimate

|B(u,v)|uUpvVp.|B(u,v)|\leq\|u\|_{U^{p}}\|v\|_{V^{p^{\prime}}}.
Theorem 4.4 (Theorem 2.8 in [6]).

Let 1<p<1<p<\infty. We have

(Up)=Vp(U^{p})^{*}=V^{p^{\prime}}

in the sense that

T:Vp(Up),T(v)(u)=B(u,v)T:V^{p^{\prime}}\rightarrow(U^{p})^{*},\quad T(v)(u)=B(u,v)

is an isometric isomorphism.

For a real-valued function h:h:\mathbb{R}\rightarrow\mathbb{R}, we define

uUhp:=eith(ix)u(t)Up,uVhp:=eith(ix)u(t)Vp.\|u\|_{U^{p}_{h}}:=\|e^{-ith(-i\partial_{x})}u(t)\|_{U^{p}},\quad\|u\|_{V^{p}_{h}}:=\|e^{-ith(-i\partial_{x})}u(t)\|_{V^{p}}.

Let Qh,L:=τ,ξ1φ((τh(ξ))/L)t,xQ_{h,\leq L}:=\mathscr{F}_{\tau,\xi}^{-1}\varphi((\tau-h(\xi))/L)\mathscr{F}_{t,x}, Qh,>L:=IQh,LQ_{h,>L}:=I-Q_{h,\leq L}.

Lemma 4.5 (Corollary 2.15 in [6]).

We have

Qh,>LuLt,x2L1/2uVh2,Qh,LuVhpuVhp,Qh,>LuVhpuVhp,Qh,LuVhpuUhp,Qh,>LuVhpuUhp.\begin{array}[]{c}\|Q_{h,>L}u\|_{L^{2}_{t,x}}\lesssim L^{-1/2}\|u\|_{V^{2}_{h}},\\ \|Q_{h,\leq L}u\|_{V^{p}_{h}}\lesssim\|u\|_{V^{p}_{h}},~{}~{}\|Q_{h,>L}u\|_{V^{p}_{h}}\lesssim\|u\|_{V^{p}_{h}},\\ \|Q_{h,\leq L}u\|_{V^{p}_{h}}\lesssim\|u\|_{U^{p}_{h}},~{}~{}\|Q_{h,>L}u\|_{V^{p}_{h}}\lesssim\|u\|_{U^{p}_{h}}.\end{array}

In this paper, we define

fUSp:=S(t)f(t)Up,fUKp:=K(t)f(t)Up\|f\|_{U^{p}_{S}}:=\|S(-t)f(t)\|_{U^{p}},\quad\|f\|_{U^{p}_{K}}:=\|K(-t)f(t)\|_{U^{p}}

and similarly for VSp,VKpV^{p}_{S},V^{p}_{K}. Also, let QLS:=τ,ξ1φL((τ+ξ2))t,xQ^{S}_{\leq L}:=\mathscr{F}_{\tau,\xi}^{-1}\varphi_{L}((\tau+\xi^{2}))\mathscr{F}_{t,x}, Q>LS:=IQLSQ^{S}_{>L}:=I-Q^{S}_{\leq L}, QLK:=τ,ξ1φL((τξ3))t,xQ^{K}_{\leq L}:=\mathscr{F}_{\tau,\xi}^{-1}\varphi_{L}((\tau-\xi^{3}))\mathscr{F}_{t,x}, Q>LK:=IQLKQ_{>L}^{K}:=I-Q_{\leq L}^{K}. In Subsection 4.3, we also use QLS,λQ_{\leq L}^{S,\lambda} and Q>LS,λQ_{>L}^{S,\lambda} to denote τ,ξ1φL((τ+λξ2))t,x\mathscr{F}_{\tau,\xi}^{-1}\varphi_{L}((\tau+\lambda\xi^{2}))\mathscr{F}_{t,x} and IQLS,λI-Q_{\leq L}^{S,\lambda} respectively. Replacing φL\varphi_{L} with ψL\psi_{L}, we define QLSQ^{S}_{L}, QLKQ^{K}_{L}, QLS,λQ^{S,\lambda}_{L} similarly.

We have the following transversal estimates.

Lemma 4.6.

For N1N\gg 1, we have

PN(u1u¯2)Lt,x2N1/2u1US2u2US2.\|P_{N}(u_{1}\bar{u}_{2})\|_{L^{2}_{t,x}}\lesssim N^{-{1/2}}\|u_{1}\|_{U^{2}_{S}}\|u_{2}\|_{U^{2}_{S}}. (4.2)

For N1N22N_{1}\gg N_{2}^{2}, we have

PN1uPN2vLt,x2N11/2uUS2vUK2.\displaystyle\|P_{N_{1}}uP_{N_{2}}v\|_{L^{2}_{t,x}}\lesssim N_{1}^{-1/2}\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{K}}. (4.3)

For N1N22N_{1}\ll N_{2}^{2}, we have

PN1uPN2vLt,x2N21uUS2vUK2.\displaystyle\|P_{N_{1}}uP_{N_{2}}v\|_{L^{2}_{t,x}}\lesssim N_{2}^{-1}\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{K}}. (4.4)

4.2 The case s10,s2=min{4s1,s1+1}s_{1}\geq 0,s_{2}=\min\{4s_{1},s_{1}+1\}

Let T>0T>0, ε>0\varepsilon>0. We denote the indicator of set [0,T]t[0,T]\subset\mathbb{R}_{t} by χT\chi_{T}. Then We define uXs:=JsuUS2\|u\|_{X^{s}}:=\|J^{s}u\|_{U^{2}_{S}}.

uXε,Ts:=TεuXs,vYTs:=JsvVK2+P1vLx2LT.\displaystyle\|u\|_{X_{\varepsilon,T}^{s}}:=T^{-\varepsilon}\|u\|_{X^{s}},\quad\|v\|_{Y_{T}^{s}}:=\|J^{s}v\|_{V^{2}_{K}}+\|P_{1}v\|_{L_{x}^{2}L_{T}^{\infty}}.

Also, we define us=JsuVS2,v𝒩s=JsvUK2\|u\|_{\mathscr{M}^{s}}=\|J^{s}u\|_{V^{2}_{S}},\quad\|v\|_{\mathscr{N}^{s}}=\|J^{s}v\|_{U^{2}_{K}}. We consider the linear and multi-linear estimates in XTsX^{s}_{T}, YTsY^{s}_{T}.

Lemma 4.7.

Let ss\in\mathbb{R}, ε>0\varepsilon>0. Then T>0\forall~{}T>0, one has

χ[0,)(t)S(t)u0Xε,Ts=Tεu0Hs,χ[0,)(t)K(t)v0YTsT1/2v0Hs.\displaystyle\|\chi_{[0,\infty)}(t)S(t)u_{0}\|_{X_{\varepsilon,T}^{s}}=T^{-\varepsilon}\|u_{0}\|_{H^{s}},~{}\|\chi_{[0,\infty)}(t)K(t)v_{0}\|_{Y^{s}_{T}}\lesssim\langle T\rangle^{1/2}\|v_{0}\|_{H^{s}}.
Proof.

By maximal function estimate, one has

P1χ[0,)(t)K(t)v0Lx2LTT1/2P1v0L2T1/2v0Hs.\|P_{1}\chi_{[0,\infty)}(t)K(t)v_{0}\|_{L_{x}^{2}L_{T}^{\infty}}\lesssim\langle T\rangle^{1/2}\|P_{1}v_{0}\|_{L^{2}}\lesssim\langle T\rangle^{1/2}\|v_{0}\|_{H^{s}}.

It is easy to conclude the proof of this lemma by the definition of U2U^{2}, V2V^{2}. ∎

Lemma 4.8.

Let s2s10s_{2}\geq s_{1}\geq 0, ε>0\varepsilon>0. T>0\forall~{}T>0 one has

𝒜(χTuv¯w)Xε,Ts1T1/2+2εuXε,Ts1vXε,Ts1wXε,Ts1,\displaystyle\left\|\mathscr{A}(\chi_{T}u\bar{v}w)\right\|_{X_{\varepsilon,T}^{s_{1}}}\lesssim T^{1/2+2\varepsilon}\|u\|_{X_{\varepsilon,T}^{s_{1}}}\|v\|_{X_{\varepsilon,T}^{s_{1}}}\|w\|_{X_{\varepsilon,T}^{s_{1}}},

and

𝒜(χTuv)Xε,Ts1T13/16uXε,Ts1vYTs2.\displaystyle\left\|\mathscr{A}(\chi_{T}uv)\right\|_{X_{\varepsilon,T}^{s_{1}}}\lesssim T^{{13}/{16}}\|u\|_{X_{\varepsilon,T}^{s_{1}}}\|v\|_{Y^{s_{2}}_{T}}.
Proof.

By duality, we only need to show

|0Tuv¯wf¯𝑑t𝑑x|\displaystyle\left|\int_{\mathbb{R}}\int_{0}^{T}u\bar{v}w\bar{f}~{}dtdx\right| T1/2+3εuXε,Ts1vXε,Ts1wXε,Ts1fs1,\displaystyle\lesssim T^{1/2+3\varepsilon}\|u\|_{X_{\varepsilon,T}^{s_{1}}}\|v\|_{X_{\varepsilon,T}^{s_{1}}}\|w\|_{X_{\varepsilon,T}^{s_{1}}}\|f\|_{\mathscr{M}^{-s_{1}}},
|0Tuvw¯𝑑t𝑑x|\displaystyle\left|\int_{\mathbb{R}}\int_{0}^{T}uv\bar{w}~{}dtdx\right| T13/16+εuXε,Ts1vYTs2ws1.\displaystyle\lesssim T^{{13}/{16}+\varepsilon}\|u\|_{X_{\varepsilon,T}^{s_{1}}}\|v\|_{Y_{T}^{s_{2}}}\|w\|_{\mathscr{M}^{-s_{1}}}.

By Hölder inequality, fractional Leibniz rule, one has

|uv¯wf¯𝑑x|\displaystyle\left|\int_{\mathbb{R}}u\bar{v}w\bar{f}~{}dx\right| Js1(uv¯w)Lx4/3Js1f¯Lx4\displaystyle\leq\|J^{s_{1}}(u\bar{v}w)\|_{L^{4/3}_{x}}\|J^{-s_{1}}\bar{f}\|_{L^{4}_{x}}
Js1uLx4Js1vLx4Js1wLx4Js1fLx4.\displaystyle\lesssim\|J^{s_{1}}u\|_{L^{4}_{x}}\|J^{s_{1}}v\|_{L^{4}_{x}}\|J^{s_{1}}w\|_{L^{4}_{x}}\|J^{-s_{1}}f\|_{L^{4}_{x}}.

By Hölder inequality, US2VS2US8Lt8Lx4U^{2}_{S}\hookrightarrow V^{2}_{S}\hookrightarrow U^{8}_{S}\hookrightarrow L_{t}^{8}L_{x}^{4}, we have

|0Tuv¯wf¯𝑑t𝑑x|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}u\bar{v}w\bar{f}~{}dtdx\right|
T1/2Js1uLT8Lx4Js1vLT8Lx4Js1wLT8Lx4Js1fLT8Lx4\displaystyle\lesssim T^{1/2}\|J^{s_{1}}u\|_{L_{T}^{8}L^{4}_{x}}\|J^{s_{1}}v\|_{L_{T}^{8}L^{4}_{x}}\|J^{s_{1}}w\|_{L_{T}^{8}L^{4}_{x}}\|J^{-s_{1}}f\|_{L_{T}^{8}L_{x}^{4}}
T1/2Js1uUS2Js1vUS2Js1wUS2Js1fVS2\displaystyle\lesssim T^{1/2}\|J^{s_{1}}u\|_{U^{2}_{S}}\|J^{s_{1}}v\|_{U^{2}_{S}}\|J^{s_{1}}w\|_{U^{2}_{S}}\|J^{-s_{1}}f\|_{V^{2}_{S}}
=T1/2+3εuXε,Ts1vXε,Ts1wXε,Ts1fs1.\displaystyle=T^{1/2+3\varepsilon}\|u\|_{X_{\varepsilon,T}^{s_{1}}}\|v\|_{X_{\varepsilon,T}^{s_{1}}}\|w\|_{X_{\varepsilon,T}^{s_{1}}}\|f\|_{\mathscr{M}^{-s_{1}}}.

Similar to the former argument,

|u1vu¯2𝑑x|\displaystyle\left|\int_{\mathbb{R}}u_{1}v\bar{u}_{2}~{}dx\right| Js1(u1v)Lx16/9Js1u2Lx16/7\displaystyle\leq\|J^{s_{1}}(u_{1}v)\|_{L_{x}^{16/9}}\|J^{-s_{1}}u_{2}\|_{L^{16/7}_{x}}
Js1u1Lx16/7Js2vLx8Js1u2Lx16/7.\displaystyle\lesssim\|J^{s_{1}}u_{1}\|_{L_{x}^{16/7}}\|J^{s_{2}}v\|_{L^{8}_{x}}\|J^{-s_{1}}u_{2}\|_{L^{16/7}_{x}}.

By Hölder inequality and VK2UK8Lt,x8V^{2}_{K}\hookrightarrow U^{8}_{K}\hookrightarrow L_{t,x}^{8}, US2VS2US32Lt32Lx16/7U^{2}_{S}\hookrightarrow V^{2}_{S}\hookrightarrow U^{32}_{S}\hookrightarrow L_{t}^{32}L_{x}^{16/7}, one has

|0Tuvw¯𝑑t𝑑x|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}uv\bar{w}~{}dtdx\right|
Js1uLx,T16/7Js2vLx,T8Js1wLx,T16/7\displaystyle\lesssim\|J^{s_{1}}u\|_{L_{x,T}^{16/7}}\|J^{s_{2}}v\|_{L_{x,T}^{8}}\|J^{-s_{1}}w\|_{L_{x,T}^{16/7}}
T13/16Js1uLT32Lx16/7Js2vLx,T8Js1wLT32Lx16/7\displaystyle\lesssim T^{{13}/{16}}\|J^{s_{1}}u\|_{L_{T}^{32}L^{16/7}_{x}}\|J^{s_{2}}v\|_{L_{x,T}^{8}}\|J^{-s_{1}}w\|_{L_{T}^{32}L^{16/7}_{x}}
T13/16Js1uUS2Js2vVK2Js1wVS2\displaystyle\lesssim T^{{13}/{16}}\|J^{s_{1}}u\|_{U^{2}_{S}}\|J^{s_{2}}v\|_{V^{2}_{K}}\|J^{-s_{1}}w\|_{V^{2}_{S}}
T13/16+εuXε,Ts1vYTs2ws1.\displaystyle\lesssim T^{{13}/{16}+\varepsilon}\|u\|_{X_{\varepsilon,T}^{s_{1}}}\|v\|_{Y^{s_{2}}_{T}}\|w\|_{\mathscr{M}^{-s_{1}}}.

We finish the proof of this lemma. ∎

Lemma 4.9.

Let 0<T<10<T<1, s11/4s_{1}\geq-1/4, s20s_{2}\geq 0.

(χTP1(uv¯))Lx2LT\displaystyle\left\|\mathscr{B}(\chi_{T}P_{1}(u\bar{v}))\right\|_{L^{2}_{x}L_{T}^{\infty}} T1/2+2εuXε,Ts1vXε,Ts1,\displaystyle\lesssim T^{1/2+2\varepsilon}\|u\|_{X^{s_{1}}_{\varepsilon,T}}\|v\|_{X^{s_{1}}_{\varepsilon,T}},
(χTP1(uv))Lx2LT\displaystyle\left\|\mathscr{B}(\chi_{T}P_{1}(uv))\right\|_{L^{2}_{x}L_{T}^{\infty}} T5/6uYTs2vYTs2.\displaystyle\lesssim T^{5/6}\|u\|_{Y^{s_{2}}_{T}}\|v\|_{Y^{s_{2}}_{T}}.
Proof.

By maximal function estimate and transversal estimates (lem 4.6) , one has

(χTP1(uv¯))Lx2LT\displaystyle\quad\left\|\mathscr{B}(\chi_{T}P_{1}(u\bar{v}))\right\|_{L^{2}_{x}L_{T}^{\infty}}
P1uP1v¯Lx2LT1+N1PNuPNv¯Lx2LT1\displaystyle\lesssim\|P_{\lesssim 1}uP_{\lesssim 1}\bar{v}\|_{L_{x}^{2}L_{T}^{1}}+\sum_{N\gg 1}\|P_{N}uP_{\sim N}\bar{v}\|_{L_{x}^{2}L_{T}^{1}}
T1/2P1uUS2P1v¯US2+N1T1/2N1/2PNuUS2PNv¯US2\displaystyle\lesssim T^{{1}/{2}}\|P_{\lesssim 1}u\|_{U^{2}_{S}}\|P_{\lesssim 1}\bar{v}\|_{U^{2}_{S}}+\sum_{N\gg 1}T^{{1}/{2}}N^{-{1}/{2}}\|P_{N}u\|_{U^{2}_{S}}\|P_{\sim N}\bar{v}\|_{U^{2}_{S}}
T1/2+2εJs1P1uXϵ,Ts1Js1P1v¯Xϵ,Ts1\displaystyle\lesssim T^{1/2+2\varepsilon}\|J^{-s_{1}}P_{\lesssim 1}u\|_{X^{s_{1}}_{\epsilon,T}}\|J^{-s_{1}}P_{\lesssim 1}\bar{v}\|_{X^{s_{1}}_{\epsilon,T}}
+N1T1/2+2εN12Js1PNuXϵ,Ts1Js1PNv¯Xϵ,Ts1\displaystyle\qquad+\sum_{N\gg 1}T^{1/2+2\varepsilon}N^{-\frac{1}{2}}\|J^{-s_{1}}P_{N}u\|_{X^{s_{1}}_{\epsilon,T}}\|J^{-s_{1}}P_{\sim N}\bar{v}\|_{X^{s_{1}}_{\epsilon,T}}
T1/2+2εuXϵ,Ts1vXϵ,Ts1+T1/2+2εN1N1/22s1PNuXϵ,Ts1PNv¯Xϵ,Ts1\displaystyle\lesssim T^{1/2+2\varepsilon}\|u\|_{X^{s_{1}}_{\epsilon,T}}\|v\|_{X^{s_{1}}_{\epsilon,T}}+T^{1/2+2\varepsilon}\sum_{N\gg 1}N^{-1/2-2s_{1}}\|P_{N}u\|_{X^{s_{1}}_{\epsilon,T}}\|P_{\sim N}\bar{v}\|_{X^{s_{1}}_{\epsilon,T}}
T1/2+2εuXε,Ts1vXε,Ts1.\displaystyle\lesssim T^{1/2+2\varepsilon}\|u\|_{X^{s_{1}}_{\varepsilon,T}}\|v\|_{X^{s_{1}}_{\varepsilon,T}}.

Similarly, one has

(χTP1(uv))Lx2LTuLT2Lx4vLT2Lx4\displaystyle\quad\left\|\mathscr{B}(\chi_{T}P_{1}(uv))\right\|_{L^{2}_{x}L_{T}^{\infty}}\lesssim\|u\|_{L_{T}^{2}L_{x}^{4}}\|v\|_{L_{T}^{2}L_{x}^{4}}
T5/6uLt,x82/3uLTLx21/3vLt,x82/3vLTLx21/3\displaystyle\lesssim T^{5/6}\|u\|_{L_{t,x}^{8}}^{2/3}\|u\|_{L_{T}^{\infty}L_{x}^{2}}^{1/3}\|v\|_{L_{t,x}^{8}}^{2/3}\|v\|_{L_{T}^{\infty}L_{x}^{2}}^{1/3}
T5/6uYTs2vYTs2.\displaystyle\lesssim T^{5/6}\|u\|_{Y^{s_{2}}_{T}}\|v\|_{Y^{s_{2}}_{T}}.

We finish the proof of this lemma. ∎

Lemma 4.10.

Let 0<T<10<T<1, N1,N2,N32N_{1},N_{2},N_{3}\geq 2, Nmax:=max{N1,N2,N3}N_{\max}:=\max\{N_{1},N_{2},N_{3}\}. Then for s0s\geq 0, we have

|0Tx(PN1uPN2v)PN3w¯dtdx|T1/4Nmax1/16uYTsvYTsw𝒩s.\displaystyle\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}uP_{N_{2}}v)P_{N_{3}}\bar{w}~{}dtdx\right|\lesssim T^{1/4}N_{\max}^{-1/{16}}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}.
Proof.

By replacing u,v,wu,v,w to χ[0,T)(t)u\chi_{[0,T)}(t)u, χ[0,T)(t)v\chi_{[0,T)}(t)v, χ[0,T)(t)w\chi_{[0,T)}(t)w, we can assume that uu, vv, ww are supported on [0,T]×[0,T]\times\mathbb{R}. Firstly, by Hölder, Bernstein inequalities, we have

|0Tx(PN1uPN2v)PN3w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}uP_{N_{2}}v)P_{N_{3}}\bar{w}~{}dtdx\right| (4.5)
TPN1uLtLx3PN2vLtLx3PN3wLtLx3\displaystyle\lesssim T\|P_{N_{1}}u\|_{L_{t}^{\infty}L_{x}^{3}}\|P_{N_{2}}v\|_{L_{t}^{\infty}L_{x}^{3}}\|P_{N_{3}}w\|_{L_{t}^{\infty}L_{x}^{3}}
TNmax1/2JsuLtLx2JsvLtLx2JswLtLx2\displaystyle\lesssim TN_{\max}^{1/2}\|J^{s}u\|_{L_{t}^{\infty}L_{x}^{2}}\|J^{s}v\|_{L_{t}^{\infty}L_{x}^{2}}\|J^{-s}w\|_{L_{t}^{\infty}L_{x}^{2}}
TNmax1/2uYTsvYTsw𝒩s.\displaystyle\lesssim TN_{\max}^{1/2}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}.

By Lemma 4.5, we have Q>LKfLt,x2L1/2fVK2\|Q^{K}_{>L}f\|_{L_{t,x}^{2}}\lesssim L^{-1/2}\|f\|_{V^{2}_{K}}. Since

|ξ13+ξ23ξ3|=|3ξ1ξ2ξ|3N1N2N3/8,\displaystyle|\xi_{1}^{3}+\xi_{2}^{3}-\xi^{3}|=|-3\xi_{1}\xi_{2}\xi|\geq 3N_{1}N_{2}N_{3}/8,

by choosing L=N1N2N3/8L=N_{1}N_{2}N_{3}/8, we have

|2x(QLKPN1uQLKPN2v)PN3QLKw¯dtdx|=0.\displaystyle\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q^{K}_{\leq L}P_{N_{1}}uQ^{K}_{\leq L}P_{N_{2}}v)P_{N_{3}}\overline{Q^{K}_{\leq L}w}~{}dtdx\right|=0.

By Lemma 4.5 and Hölder inequality, we have

|2x(Q>LKPN1uPN2v)PN3w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q_{>L}^{K}P_{N_{1}}uP_{N_{2}}v)P_{N_{3}}\bar{w}~{}dtdx\right|
Q>LKPN1uLt,x2PN2vLt4Lx2xPN3wLt4Lx\displaystyle\leq\|Q_{>L}^{K}P_{N_{1}}u\|_{L_{t,x}^{2}}\|P_{N_{2}}v\|_{L_{t}^{4}L_{x}^{2}}\|\partial_{x}P_{N_{3}}w\|_{L_{t}^{4}L_{x}^{\infty}}
(N1N2N3)1/2PN1uVK2T1/4PN2vVK2N33/4PN3wUK4\displaystyle\lesssim(N_{1}N_{2}N_{3})^{-1/2}\|P_{N_{1}}u\|_{V^{2}_{K}}T^{1/4}\|P_{N_{2}}v\|_{V^{2}_{K}}N_{3}^{3/4}\|P_{N_{3}}w\|_{U^{4}_{K}}
T1/4Nmax1/4uYTsvYTsw𝒩s\displaystyle\lesssim T^{1/4}N_{\max}^{-1/4}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}

Similarly, we have

|2|PN1uQ>LKPN2vxPN3w¯|+|PN1uPN2vxPN3Q>LKw¯|dtdx|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}|P_{N_{1}}uQ^{K}_{>L}P_{N_{2}}v\partial_{x}P_{N_{3}}\bar{w}|+|P_{N_{1}}uP_{N_{2}}v\partial_{x}P_{N_{3}}\overline{Q_{>L}^{K}w}|~{}dtdx\right|
T1/4Nmax1/4uYTsvYTsw𝒩s.\displaystyle\lesssim T^{1/4}N_{\max}^{-1/4}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}.

By Hölder inequality, we have

|2x(Q>LKPN1uQ>LKPN2v)PN3w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q_{>L}^{K}P_{N_{1}}uQ_{>L}^{K}P_{N_{2}}v)P_{N_{3}}\bar{w}~{}dtdx\right|
Q>LKPN1uLt,x2Q>LKPN2vLt,x2xPN3wLt,x\displaystyle\leq\|Q_{>L}^{K}P_{N_{1}}u\|_{L_{t,x}^{2}}\|Q_{>L}^{K}P_{N_{2}}v\|_{L_{t,x}^{2}}\|\partial_{x}P_{N_{3}}w\|_{L_{t,x}^{\infty}}
(N1N2N3)1PN1uVK2PN2vVK2N33/2PN3wUK2\displaystyle\lesssim(N_{1}N_{2}N_{3})^{-1}\|P_{N_{1}}u\|_{V^{2}_{K}}\|P_{N_{2}}v\|_{V^{2}_{K}}N_{3}^{3/2}\|P_{N_{3}}w\|_{U^{2}_{K}}
Nmax1/2uYTsvYTsw𝒩s.\displaystyle\lesssim N_{\max}^{-1/2}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}.

We can control other terms similarly. Thus,

|0Tx(PN1uPN2v)PN3w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}uP_{N_{2}}v)P_{N_{3}}\bar{w}~{}dtdx\right|
(T1/4Nmax1/4+Nmax1/2)uYTsvYTsw𝒩s.\displaystyle\lesssim(T^{1/4}N_{\max}^{-1/4}+N_{\max}^{-1/2})\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}.

By interpolation with (4.5), we have

|0Tx(PN1uPN2v)PN3w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}uP_{N_{2}}v)P_{N_{3}}\bar{w}~{}dtdx\right|
(T1/4Nmax1/4+Nmax1/2)1δ(TNmax1/2)δuYTsvYTsw𝒩s\displaystyle\lesssim(T^{1/4}N_{\max}^{-1/4}+N_{\max}^{-1/2})^{1-\delta}(TN_{\max}^{1/2})^{\delta}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}
TδNmax1/4+3δ/4uYTsvYTsw𝒩s.\displaystyle\lesssim T^{\delta}N_{\max}^{-1/4+3\delta/4}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}.

By choosing δ=1/4\delta=1/4, we conclude the proof of the lemma. ∎

Lemma 4.11.

Let 0<T<10<T<1, s0s\geq 0. Then,

(χTuv)YTs\displaystyle\left\|\mathscr{B}(\chi_{T}uv)\right\|_{Y_{T}^{s}} T1/4uYTsvYTs.\displaystyle\lesssim T^{1/4}\|u\|_{Y_{T}^{s}}\|v\|_{Y_{T}^{s}}.
Proof.

By Lemma 4.9 and duality, we only need to prove

|0Tx(uv)w¯dtdx|T1/4uYTsvYTsw𝒩s\displaystyle\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(uv)\bar{w}~{}dtdx\right|\lesssim T^{1/4}\|u\|_{Y_{T}^{s}}\|v\|_{Y_{T}^{s}}\|w\|_{\mathscr{N}^{-s}}

By triangle inequality, one has

|0Tx(uv)w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(uv)\bar{w}~{}dtdx\right|
N1,N22,N31|0TPN1uPN2vxPN3w¯dtdx|\displaystyle\lesssim\sum_{N_{1},N_{2}\geq 2,N_{3}\geq 1}\left|\int_{\mathbb{R}}\int_{0}^{T}P_{N_{1}}uP_{N_{2}}v\partial_{x}P_{N_{3}}\bar{w}~{}dtdx\right|
+|0Tx(P1uv)w¯dtdx|+|0Tx((IP1)v1P1v2)v¯3dtdx|.\displaystyle\quad+\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{1}uv)\bar{w}~{}dtdx\right|+\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}((I-P_{1})v_{1}P_{1}v_{2})\bar{v}_{3}~{}dtdx\right|.

It is easy to control when N3=1N_{3}=1. If N1=1N_{1}=1, we have

|0Tx(P1uv)w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{1}uv)\bar{w}~{}dtdx\right|
P1uLx2LTJsvLT2Lx2JsxwLxLt2\displaystyle\leq\|P_{1}u\|_{L_{x}^{2}L_{T}^{\infty}}\|J^{s}v\|_{L_{T}^{2}L_{x}^{2}}\|J^{-s}\partial_{x}w\|_{L_{x}^{\infty}L_{t}^{2}}
T1/2uYTsJsvVK2JswUK2\displaystyle\lesssim T^{1/2}\|u\|_{Y^{s}_{T}}\|J^{s}v\|_{V^{2}_{K}}\|J^{-s}w\|_{U^{2}_{K}}
T1/2uYTsvYTsw𝒩s.\displaystyle\lesssim T^{1/2}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}.

It is similar when N2=1N_{2}=1. Thus, we assume N1,N2,N32N_{1},N_{2},N_{3}\geq 2. By Lemma 4.10, we have

N1,N2,N32|0TPN1uPN2vxPN3w¯dtdx|\displaystyle\quad\sum_{N_{1},N_{2},N_{3}\geq 2}\left|\int_{\mathbb{R}}\int_{0}^{T}P_{N_{1}}uP_{N_{2}}v\partial_{x}P_{N_{3}}\bar{w}~{}dtdx\right|
N1,N2,N32T1/4Nmax1/16uYTsvYTsw𝒩s\displaystyle\lesssim\sum_{N_{1},N_{2},N_{3}\geq 2}T^{1/4}N_{\max}^{-1/16}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}
T1/4uYTsvYTsw𝒩s.\displaystyle\lesssim T^{1/4}\|u\|_{Y^{s}_{T}}\|v\|_{Y^{s}_{T}}\|w\|_{\mathscr{N}^{-s}}.

Since we assume T<1T<1, the proof is completed. ∎

Lemma 4.12.

Let 0<T<10<T<1, N1,N2,N31N_{1},N_{2},N_{3}\geq 1. If N31N_{3}\lesssim 1 or N3N11/2N_{3}\gg N_{1}^{1/2}, one has

|0Tx(PN1uPN2v¯)PN3w¯dtdx|N31uUS2vUS2wUK2.\displaystyle\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}uP_{N_{2}}\bar{v})P_{N_{3}}\bar{w}~{}dtdx\right|\lesssim N_{3}^{-1}\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{S}}\|w\|_{U^{2}_{K}}. (4.6)

If N3N11/2N_{3}\ll N_{1}^{1/2}, one has

|0Tx(PN1uPN2v¯)PN3w¯dtdx|N11/2uUS2vUS2wUK2.\displaystyle\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}uP_{N_{2}}\bar{v})P_{N_{3}}\bar{w}~{}dtdx\right|\lesssim N_{1}^{-1/2}\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{S}}\|w\|_{U^{2}_{K}}. (4.7)

If N3N11/21N_{3}\sim N_{1}^{1/2}\gg 1, one has

|0Tx(PN1uPN2v¯)PN3N11/2w¯dtdx|T1/2uUS2vUS2wUK2.\displaystyle\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}uP_{N_{2}}\bar{v})P_{N_{3}\sim N_{1}^{1/2}}\bar{w}~{}dtdx\right|\lesssim T^{1/2}\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{S}}\|w\|_{U^{2}_{K}}. (4.8)
Proof.

By replacing u1u_{1}, u2u_{2}, vv to χ[0,T)(t)u1\chi_{[0,T)}(t)u_{1}, χ[0,T)(t)u2\chi_{[0,T)}(t)u_{2}, χ[0,T)(t)v\chi_{[0,T)}(t)v, we can assume that u1u_{1}, u2u_{2}, vv are supported on [0,T]×[0,T]\times\mathbb{R}. It is easy to obtain the estimate when N31N_{3}\lesssim 1. Thus, we assume N31N_{3}\gg 1. By Lemma 4.5, we have Q>LKfLt,x2L1/2fVK2\|Q^{K}_{>L}f\|_{L_{t,x}^{2}}\lesssim L^{-1/2}\|f\|_{V^{2}_{K}}, Q>LSfLt,x2L1/2fVS2\|Q^{S}_{>L}f\|_{L_{t,x}^{2}}\lesssim L^{-1/2}\|f\|_{V^{2}_{S}}.

If N3N11/2N_{3}\gg N_{1}^{1/2}, by choosing L=cN33L=cN_{3}^{3} for some sufficiently small c>0c>0, we have

2x(PN1QLSuPN2QLSv¯)PN3QLKw¯dtdx=0.\displaystyle\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}Q^{S}_{\leq L}uP_{N_{2}}\overline{Q^{S}_{\leq L}v})P_{N_{3}}\overline{Q^{K}_{\leq L}w}~{}dtdx=0.

By Hölder inequality, (4.4), and Lemma 4.5, we have

|2x(Q>LSPN1uPN2v¯)PN3w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q^{S}_{>L}P_{N_{1}}uP_{N_{2}}\bar{v})P_{N_{3}}\bar{w}~{}dtdx\right|
Q>LSPN1uLt,x2PN2v¯xPN3w¯Lt,x2\displaystyle\leq\|Q^{S}_{>L}P_{N_{1}}u\|_{L_{t,x}^{2}}\|P_{N_{2}}\bar{v}\partial_{x}P_{N_{3}}\bar{w}\|_{L_{t,x}^{2}}
N33/2PN1uVS2N31PN2vUS2xPN3wUK2N33/2uUS2vUS2wUK2.\displaystyle\lesssim N_{3}^{-3/2}\|P_{N_{1}}u\|_{V^{2}_{S}}N_{3}^{-1}\|P_{N_{2}}v\|_{U^{2}_{S}}\|\partial_{x}P_{N_{3}}w\|_{U^{2}_{K}}\lesssim N_{3}^{-3/2}\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{S}}\|w\|_{U^{2}_{K}}.

By Hölder inequality and (4.2), we have

|2x(PN1uPN2v¯)PN3QK,>Lw¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}uP_{N_{2}}\bar{v})P_{N_{3}}\overline{Q_{K,>L}w}~{}dtdx\right|
PN3(PN1uPN2v¯)Lt,x2xPN3Q>LKwLt,x2N31uUS2vUS2wUK2.\displaystyle\leq\|P_{N_{3}}(P_{N_{1}}uP_{N_{2}}\bar{v})\|_{L_{t,x}^{2}}\|\partial_{x}P_{N_{3}}Q^{K}_{>L}w\|_{L_{t,x}^{2}}\lesssim N_{3}^{-1}\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{S}}\|w\|_{U^{2}_{K}}.

If N3N11/2N_{3}\ll N_{1}^{1/2}, then we have N2N1N_{2}\sim N_{1}. By choosing L=cN3N1L=cN_{3}N_{1} for some sufficiently small c>0c>0, we have

2x(PN1QLSuPN2QLSv¯)PN3QLKw¯dtdx=0.\displaystyle\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}Q^{S}_{\leq L}uP_{N_{2}}\overline{Q^{S}_{\leq L}v})P_{N_{3}}\overline{Q^{K}_{\leq L}w}~{}dtdx=0.

By Lemma 4.5, (4.3) and Hölder inequality, we have

|2x(Q>LSPN1uPN2v¯)PN3w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(Q^{S}_{>L}P_{N_{1}}uP_{N_{2}}\bar{v})P_{N_{3}}\bar{w}~{}dtdx\right|
Q>LSPN1uLt,x2PN2v¯xPN3w¯Lt,x2\displaystyle\leq\|Q^{S}_{>L}P_{N_{1}}u\|_{L_{t,x}^{2}}\|P_{N_{2}}\bar{v}\partial_{x}P_{N_{3}}\bar{w}\|_{L_{t,x}^{2}}
N11N31/2PN1uUS2PN2vUS2PN3wUK2.\displaystyle\lesssim N_{1}^{-1}N_{3}^{1/2}\|P_{N_{1}}u\|_{U^{2}_{S}}\|P_{N_{2}}v\|_{U^{2}_{S}}\|P_{N_{3}}w\|_{U^{2}_{K}}.

By Hölder inequality and Lemma 4.5, we have

|2x(PN1uPN2v¯)PN3Q>LKw¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}\partial_{x}(P_{N_{1}}uP_{N_{2}}\bar{v})P_{N_{3}}\overline{Q^{K}_{>L}w}~{}dtdx\right|
PN3(PN1uPN2v¯)Lt,x2xPN3Q>LKwLt,x2N11/2uUS2vUS2wUK2.\displaystyle\leq\|P_{N_{3}}(P_{N_{1}}uP_{N_{2}}\bar{v})\|_{L_{t,x}^{2}}\|\partial_{x}P_{N_{3}}Q^{K}_{>L}w\|_{L_{t,x}^{2}}\lesssim N_{1}^{-1/2}\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{S}}\|w\|_{U^{2}_{K}}.

For N1N2N32N_{1}\sim N_{2}\sim N_{3}^{2}, we claim that for any t>0t>0

|0tx(PN1S(t)fPN2S(t)g¯)PN3N11/2K(t)h¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{t}\partial_{x}(P_{N_{1}}S(t^{\prime})fP_{N_{2}}\overline{S(t^{\prime})g})P_{N_{3}\sim N_{1}^{1/2}}\overline{K(t^{\prime})h}~{}dt^{\prime}dx\right| (4.9)
t1/2fLx2gLx2hLx2.\displaystyle\lesssim t^{1/2}\|f\|_{L_{x}^{2}}\|g\|_{L_{x}^{2}}\|h\|_{L_{x}^{2}}.

In fact, following the argument for proving (2.4), proving (4.9) reduces to proving

|1eitξ(ξ2ξ1ξ2)|χ|ξ|2|ξ1|N11|ξ2ξ1ξ2||f(ξ1)g(ξξ1)h(ξ)|𝑑ξ1𝑑ξ\displaystyle\quad\int_{\mathbb{R}}\frac{|1-e^{it\xi(\xi-2\xi_{1}-\xi^{2})}|\chi_{|\xi|^{2}\sim|\xi_{1}|\sim N_{1}\gg 1}}{|\xi-2\xi_{1}-\xi^{2}|}|f(\xi_{1})g(\xi-\xi_{1})h(\xi)|~{}d\xi_{1}d\xi
t1/2fL2gL2hL2.\displaystyle\lesssim t^{1/2}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

By Cauchy-Schwarz inequality, one has

2|1eitξ(ξ2ξ1ξ2)|χ|ξ|2|ξ1|N11|ξ2ξ1ξ2||f(ξ1)g(ξξ1)h(ξ)|𝑑ξ1𝑑ξ\displaystyle\quad\int_{\mathbb{R}^{2}}\frac{|1-e^{it\xi(\xi-2\xi_{1}-\xi^{2})}|\chi_{|\xi|^{2}\sim|\xi_{1}|\sim N_{1}\gg 1}}{|\xi-2\xi_{1}-\xi^{2}|}|f(\xi_{1})g(\xi-\xi_{1})h(\xi)|~{}d\xi_{1}d\xi
ξ1|f(ξ1)|g(ξξ1)h(ξ)Lξ2χ1|ξ|2|ξ1|min{1,t|ξ(ξ2ξ1ξ2)|}|ξ2ξ1ξ2|Lξ2\displaystyle\lesssim\int_{\mathbb{R}_{\xi_{1}}}|f(\xi_{1})|\|g(\xi-\xi_{1})h(\xi)\|_{L^{2}_{\xi}}\left\|\frac{\chi_{1\ll|\xi|^{2}\sim|\xi_{1}|}\min\{1,t|\xi(\xi-2\xi_{1}-\xi^{2})|\}}{|\xi-2\xi_{1}-\xi^{2}|}\right\|_{L^{2}_{\xi}}
fL2gL2hL2χ1|ξ|2|ξ1|min{1,t|ξ1|1/2|ξ2ξ1ξ2|}|ξ2ξ1ξ2|Lξ1Lξ2\displaystyle\lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}\left\|\frac{\chi_{1\ll|\xi|^{2}\sim|\xi_{1}|}\min\{1,t|\xi_{1}|^{1/2}|\xi-2\xi_{1}-\xi^{2}|\}}{|\xi-2\xi_{1}-\xi^{2}|}\right\|_{L^{\infty}_{\xi_{1}}L^{2}_{\xi}}
t1/2fL2gL2hL2.\displaystyle\lesssim t^{1/2}\|f\|_{L^{2}}\|g\|_{L^{2}}\|h\|_{L^{2}}.

Then for u=jχIj(t)S(t)fju=\sum_{j}\chi_{I_{j}}(t)S(t)f_{j}, v=jχI~j(t)S(t)gjv=\sum_{j}\chi_{\tilde{I}_{j}}(t)S(t)g_{j}, w=jχI~~j(t)K(t)hjw=\sum_{j}\chi_{\tilde{\tilde{I}}_{j}}(t)K(t)h_{j}, by (4.9) we have

|0Tx(PN1uPN2v¯)PN3N11/2w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}uP_{N_{2}}\bar{v})P_{N_{3}\sim N_{1}^{1/2}}\bar{w}~{}dtdx\right|
j,k,l|IjI~kI~~lx(PN1S(t)fjPN2S(t)gk¯)PN3N11/2K(t)hl¯dtdx|\displaystyle\leq\sum_{j,k,l}\left|\int_{\mathbb{R}}\int_{I_{j}\cap\tilde{I}_{k}\cap\tilde{\tilde{I}}_{l}}\partial_{x}(P_{N_{1}}S(t^{\prime})f_{j}P_{N_{2}}\overline{S(t^{\prime})g_{k}})P_{N_{3}\sim N_{1}^{1/2}}\overline{K(t^{\prime})h_{l}}~{}dt^{\prime}dx\right|
j,k,l|IjI~kI~~l|1/2fjL2gkL2hlL2T1/2fjlj2L2gjlj2L2hjlj2L2.\displaystyle\lesssim\sum_{j,k,l}|I_{j}\cap\tilde{I}_{k}\cap\tilde{\tilde{I}}_{l}|^{1/2}\|f_{j}\|_{L^{2}}\|g_{k}\|_{L^{2}}\|h_{l}\|_{L^{2}}\lesssim T^{1/2}\|f_{j}\|_{l^{2}_{j}L^{2}}\|g_{j}\|_{l^{2}_{j}L^{2}}\|h_{j}\|_{l^{2}_{j}L^{2}}.

By the definition of UK2U^{2}_{K}, US2U^{2}_{S}, we obtain (4.8). ∎

Lemma 4.13.

Let 0<T<10<T<1, s10s_{1}\geq 0, s2=min{4s1,s1+1}s_{2}=\min\{4s_{1},s_{1}+1\}.

(χTuv¯)YTs2\displaystyle\left\|\mathscr{B}(\chi_{T}u\bar{v})\right\|_{Y^{s_{2}}_{T}} T2εuXε,Ts1vXε,Ts1.\displaystyle\lesssim T^{2\varepsilon}\|u\|_{X_{\varepsilon,T}^{s_{1}}}\|v\|_{X_{\varepsilon,T}^{s_{1}}}.
Proof.

By Lemma 4.9 and duality, we only need to prove

|0Tx(Js1uJs1v¯)Js2w¯dtdx|uUS2vUS2wUK2.\displaystyle\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(J^{-s_{1}}uJ^{-s_{1}}\bar{v})J^{s_{2}}\bar{w}~{}dtdx\right|\lesssim\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{S}}\|w\|_{U^{2}_{K}}.

Let NmaxN_{\max}, NmedN_{\mathrm{med}} be the maximal, medium among N1,N2,N3N_{1},N_{2},N_{3}. By triangle inequality, one has

|0Tx(Js1uJs1v¯)Js2w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(J^{-s_{1}}uJ^{-s_{1}}\bar{v})J^{s_{2}}\bar{w}~{}dtdx\right|
N1,N2N3orN31|0Tx(PN1Js1uPN2Js1v¯)PN3Js2w¯dtdx|\displaystyle\leq\sum_{N_{1},N_{2}\nsim N_{3}~{}\mathrm{or}~{}N_{3}\lesssim 1}\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}J^{-s_{1}}uP_{N_{2}}J^{-s_{1}}\bar{v})P_{N_{3}}J^{s_{2}}\bar{w}~{}dtdx\right|
+N1N21|0Tx(PN1Js1uPN2Js1v¯)PN3N11/2Js2w¯dtdx|.\displaystyle\quad+\sum_{N_{1}\sim N_{2}\gg 1}\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(P_{N_{1}}J^{-s_{1}}uP_{N_{2}}J^{-s_{1}}\bar{v})P_{N_{3}\sim N_{1}^{1/2}}J^{s_{2}}\bar{w}~{}dtdx\right|.

By Lemma 4.12 and s2=min{4s1,s1+1}s_{2}=\min\{4s_{1},s_{1}+1\}, we have

|0Tx(Js1uJs1v¯)Js2w¯dtdx|\displaystyle\quad\left|\int_{\mathbb{R}}\int_{0}^{T}\partial_{x}(J^{-s_{1}}uJ^{-s_{1}}\bar{v})J^{s_{2}}\bar{w}~{}dtdx\right|
N1,N2N32orN31,NmaxNmedN31PN1Js1uUS2PN2Js1vUS2PN3Js2wUK2\displaystyle\lesssim\sum_{\begin{subarray}{c}N_{1},N_{2}\nsim N_{3}^{2}~{}\mathrm{or}~{}N_{3}\lesssim 1,\\ N_{\max}\sim N_{\mathrm{med}}\end{subarray}}N_{3}^{-1}\|P_{N_{1}}J^{-s_{1}}u\|_{U^{2}_{S}}\|P_{N_{2}}J^{-s_{1}}v\|_{U^{2}_{S}}\|P_{N_{3}}J^{s_{2}}w\|_{U^{2}_{K}}
+N1N21T1/2PN1Js1uUS2PN2Js1vUS2Js2wUK2\displaystyle\quad+\sum_{N_{1}\sim N_{2}\gg 1}T^{1/2}\|P_{N_{1}}J^{-s_{1}}u\|_{U^{2}_{S}}\|P_{N_{2}}J^{-s_{1}}v\|_{U^{2}_{S}}\|J^{s_{2}}w\|_{U^{2}_{K}}
N1,N2N32orN31,NmaxNmedN31+s2N1s1N2s1PN1uUS2PN2vUS2PN3wUK2\displaystyle\lesssim\sum_{\begin{subarray}{c}N_{1},N_{2}\nsim N_{3}^{2}~{}\mathrm{or}~{}N_{3}\lesssim 1,\\ N_{\max}\sim N_{\mathrm{med}}\end{subarray}}N_{3}^{-1+s_{2}}N_{1}^{-s_{1}}N_{2}^{-s_{1}}\|P_{N_{1}}u\|_{U^{2}_{S}}\|P_{N_{2}}v\|_{U^{2}_{S}}\|P_{N_{3}}w\|_{U^{2}_{K}}
+N1N21N1s1N2s1N1s2/2PN1uUS2PN2vUS2wUK2\displaystyle\quad+\sum_{N_{1}\sim N_{2}\gg 1}N_{1}^{-s_{1}}N_{2}^{-s_{1}}N_{1}^{s_{2}/2}\|P_{N_{1}}u\|_{U^{2}_{S}}\|P_{N_{2}}v\|_{U^{2}_{S}}\|w\|_{U^{2}_{K}}
PNulN2US2PNvlN2US2wUK2\displaystyle\lesssim\|P_{N}u\|_{l^{2}_{N}U^{2}_{S}}\|P_{N}v\|_{l^{2}_{N}U^{2}_{S}}\|w\|_{U^{2}_{K}}
uUS2vUS2wUK2.\displaystyle\lesssim\|u\|_{U^{2}_{S}}\|v\|_{U^{2}_{S}}\|w\|_{U^{2}_{K}}.

We finish the proof of this lemma. ∎

Combining Lemmas 4.7, 4.8, 4.11, 4.13, we have

Proposition 4.14.

(S-KdV) is local well-posed in Hs1×Hs2H^{s_{1}}\times H^{s_{2}} for s10,s2=min{4s1,s1+1}s_{1}\geq 0,s_{2}=\min\{4s_{1},s_{1}+1\}.

Proof.

For T>0T>0, consider the mapping

𝒯:(uv)(χ[0,)(t)S(t)u0i𝒜(χT(uv+|u|2u))χ[0,)(t)K(t)v0+(χT(|u|2v2/2))).\displaystyle\mathcal{T}:\begin{pmatrix}u\\ v\end{pmatrix}\mapsto\begin{pmatrix}\chi_{[0,\infty)}(t)S(t)u_{0}-i\mathscr{A}(\chi_{T}(uv+|u|^{2}u))\\ \chi_{[0,\infty)}(t)K(t)v_{0}+\mathscr{B}(\chi_{T}(|u|^{2}-v^{2}/2))\end{pmatrix}.

For some sufficiently large C2,C1>0C_{2},C_{1}>0 (independent to TT), we define

D:={(u,v)Xε,Ts1×YTs2:uXε,Ts1C1Tε,vYTs2C2}.\displaystyle D:=\{(u,v)\in X^{s_{1}}_{\varepsilon,T}\times Y^{s_{2}}_{T}:\|u\|_{X^{s_{1}}_{\varepsilon,T}}\leq C_{1}T^{-\varepsilon},\|v\|_{Y^{s_{2}}_{T}}\leq C_{2}\}.

By Lemmas 4.7, 4.8, 4.11, 4.13, we obtain that 𝒯\mathcal{T} is a contraction mapping from DD to DD for sufficiently small T>0T>0. By standard argument, we conclude the proof. ∎

4.3 The case s2=3/4,0s1<5/4s_{2}=-3/4,~{}0\leq s_{1}<5/4

We need scaling. Following the argument in [5], we consider the system

{itu+λxxu=λuv+λ1|u|2u,tv+xxxv+vxv=x(|u|2),(u,v)|t=0=(u0,v0)Hs1×Hs2.\left\{\begin{aligned} &i\partial_{t}u+\lambda\partial_{xx}u=\lambda uv+\lambda^{-1}|u|^{2}u,\\ &\partial_{t}v+\partial_{xxx}v+v\partial_{x}v=\partial_{x}(|u|^{2}),\\ &(u,v)|_{t=0}=(u_{0},v_{0})\in H^{s_{1}}\times H^{s_{2}}.\end{aligned}\right. (4.10)

We assume that v0Hs21\|v_{0}\|_{H^{s_{2}}}\ll 1, 0<λ10<\lambda\ll 1. Let

Sλ(t)=eiλtxx,𝒜λ(f)(t)=0tSλ(tt)f(t)𝑑t.S_{\lambda}(t)=e^{i\lambda t\partial_{xx}},\quad\mathscr{A}_{\lambda}(f)(t)=\int_{0}^{t}S_{\lambda}(t-t^{\prime})f(t^{\prime})~{}dt^{\prime}.

Define

uX~λs,b=ξsτ+λξ2bu^(τ,ξ)Lτ,ξ2,vYs,b,q=NsLbQLKPNvLt,x2lN2lLq\|u\|_{\tilde{X}^{s,b}_{\lambda}}=\|\langle\xi\rangle^{s}\langle\tau+\lambda\xi^{2}\rangle^{b}\hat{u}(\tau,\xi)\|_{L^{2}_{\tau,\xi}},~{}~{}\|v\|_{Y^{s,b,q}}=\|N^{s}L^{b}\|Q_{L}^{K}P_{N}v\|_{L_{t,x}^{2}}\|_{l^{2}_{N}l^{q}_{L}}

and

vF:=P1vLx2Lt+P>1vY3/4,1/2,1.\|v\|_{F}:=\|P_{1}v\|_{L_{x}^{2}L_{t}^{\infty}}+\|P_{>1}v\|_{Y^{-3/4,1/2,1}}.

Let FTF_{T} be the space FF restricted on [0,T][0,T].

Lemma 4.15.

Let 0s<5/40\leq s<5/4. b>1/2b>1/2, 0<λ<10<\lambda<1, 0<T<10<T<1.

uP>1vX~λs,b1λ1/2uX~λs,bvY3/4,1/2,1.\displaystyle\|uP_{>1}v\|_{\tilde{X}^{s,b-1}_{\lambda}}\lesssim\lambda{{}^{-1/2}}\|u\|_{\tilde{X}^{s,b}_{\lambda}}\|v\|_{Y^{-3/4,1/2,1}}.
Proof.

By duality, we only need to show

|2uP>1vw¯𝑑t𝑑x|uX~λs,bvY3/4,1/2,1wX~λs,1b.\displaystyle\left|\int_{\mathbb{R}^{2}}uP_{>1}v\bar{w}~{}dtdx\right|\lesssim\|u\|_{\tilde{X}^{s,b}_{\lambda}}\|v\|_{Y^{-3/4,1/2,1}}\|w\|_{\tilde{X}^{-s,1-b}_{\lambda}}.

By the argument for Lemma 3.4 (a) in [5], we only need to prove

N1N2N|2PN1uPN2vPNw¯𝑑t𝑑x|uX~λs,bvY3/4,1/2,1wX~λs,1b.\displaystyle\sum_{N_{1}\ll N_{2}\sim N}\left|\int_{\mathbb{R}^{2}}P_{N_{1}}uP_{N_{2}}v\overline{P_{N}w}~{}dtdx\right|\lesssim\|u\|_{\tilde{X}^{s,b}_{\lambda}}\|v\|_{Y^{-3/4,1/2,1}}\|w\|_{\tilde{X}^{-s,1-b}_{\lambda}}.

By modulation decomposition, one has

N1N2N|2PN1uPN2vPNw¯𝑑t𝑑x|\displaystyle\quad\sum_{N_{1}\ll N_{2}\sim N}\left|\int_{\mathbb{R}^{2}}P_{N_{1}}uP_{N_{2}}v\overline{P_{N}w}~{}dtdx\right|
N1N2NL1,L2,L|2QL1S,λPN1uQL2KPN2vQLS,λPNw¯𝑑t𝑑x|.\displaystyle\lesssim\sum_{\begin{subarray}{c}N_{1}\ll N_{2}\sim N\\ L_{1},L_{2},L\end{subarray}}\left|\int_{\mathbb{R}^{2}}Q_{L_{1}}^{S,\lambda}P_{N_{1}}uQ_{L_{2}}^{K}P_{N_{2}}v\overline{Q_{L}^{S,\lambda}P_{N}w}~{}dtdx\right|.

Let Lmax=max{L1,L2,L}L_{\max}=\max\{L_{1},L_{2},L\}. Note that LmaxN3L_{\max}\gtrsim N^{3}. Let 0<ε10<\varepsilon\ll 1. If L1=LmaxL_{1}=L_{\max}, we have

|2QL1S,λPN1uQL2KPN2vQLS,λPNw¯𝑑t𝑑x|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}Q_{L_{1}}^{S,\lambda}P_{N_{1}}uQ_{L_{2}}^{K}P_{N_{2}}v\overline{Q_{L}^{S,\lambda}P_{N}w}~{}dtdx\right|
QL1S,λPN1uLt,x2QL2KPN2vQLS,λPNw¯Lt,x2\displaystyle\lesssim\|Q_{L_{1}}^{S,\lambda}P_{N_{1}}u\|_{L_{t,x}^{2}}\|Q_{L_{2}}^{K}P_{N_{2}}v\overline{Q_{L}^{S,\lambda}P_{N}w}\|_{L^{2}_{t,x}}
N21(L2L)1/2QL1S,λPN1uLt,x2QL2KPN2vLt,x2QLS,λPNwLt,x2.\displaystyle\lesssim N_{2}^{-1}(L_{2}L)^{1/2}\|Q_{L_{1}}^{S,\lambda}P_{N_{1}}u\|_{L_{t,x}^{2}}\|Q_{L_{2}}^{K}P_{N_{2}}v\|_{L_{t,x}^{2}}\|Q_{L}^{S,\lambda}P_{N}w\|_{L^{2}_{t,x}}.

Then for 5/2+ε+s+3/4<0-5/2+\varepsilon+s+3/4<0 (s<7/4s<7/4) one has

N1N2NL1=Lmax,L2,L3|2QL1S,λPN1uQL2KPN2vQLS,λPNw¯𝑑t𝑑x|\displaystyle\quad\sum_{\begin{subarray}{c}N_{1}\ll N_{2}\sim N\\ L_{1}=L_{\max},L_{2},L_{3}\end{subarray}}\left|\int_{\mathbb{R}^{2}}Q_{L_{1}}^{S,\lambda}P_{N_{1}}uQ_{L_{2}}^{K}P_{N_{2}}v\overline{Q_{L}^{S,\lambda}P_{N}w}~{}dtdx\right|
N22,L2N21+ϵ3/2+suX~λs,bL21/2QL2KPN2vLt,x2wX~λs,1b\displaystyle\lesssim\sum_{N_{2}\geq 2,L_{2}}N_{2}^{-1+\epsilon-3/2+s}\|u\|_{\tilde{X}^{s,b}_{\lambda}}L_{2}^{1/2}\|Q_{L_{2}}^{K}P_{N_{2}}v\|_{L_{t,x}^{2}}\|w\|_{\tilde{X}^{-s,1-b}_{\lambda}}
uX~λs,bvY3/4,1/2,1wX~λs,1b.\displaystyle\lesssim\|u\|_{\tilde{X}^{s,b}_{\lambda}}\|v\|_{Y^{-3/4,1/2,1}}\|w\|_{\tilde{X}^{-s,1-b}_{\lambda}}.

If L=LmaxL=L_{\max}, we have

|2QL1S,λPN1uQL2KPN2vQLS,λPNw¯𝑑t𝑑x|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}Q_{L_{1}}^{S,\lambda}P_{N_{1}}uQ_{L_{2}}^{K}P_{N_{2}}v\overline{Q_{L}^{S,\lambda}P_{N}w}~{}dtdx\right|
QL1S,λPN1uQL2KPN2vLt,x2QLS,λPNwLt,x2\displaystyle\lesssim\|Q_{L_{1}}^{S,\lambda}P_{N_{1}}uQ_{L_{2}}^{K}P_{N_{2}}v\|_{L_{t,x}^{2}}\|Q_{L}^{S,\lambda}P_{N}w\|_{L^{2}_{t,x}}
N21(L1L2)1/2QL1S,λPN1uLt,x2QL2KPN2vLt,x2QLS,λPNwLt,x2.\displaystyle\lesssim N_{2}^{-1}(L_{1}L_{2})^{1/2}\|Q_{L_{1}}^{S,\lambda}P_{N_{1}}u\|_{L_{t,x}^{2}}\|Q_{L_{2}}^{K}P_{N_{2}}v\|_{L_{t,x}^{2}}\|Q_{L}^{S,\lambda}P_{N}w\|_{L^{2}_{t,x}}.

Thus for (1/4+ε)+3(b+ε1)+s<0(-1/4+\varepsilon)+3(b+\varepsilon-1)+s<0 (s<7/4s<7/4) we have

N1N2NL=Lmax,L1,L2|2QL1S,λPN1uQL2KPN2vQLS,λPNw¯𝑑t𝑑x|\displaystyle\quad\sum_{\begin{subarray}{c}N_{1}\ll N_{2}\sim N\\ L=L_{\max},L_{1},L_{2}\end{subarray}}\left|\int_{\mathbb{R}^{2}}Q_{L_{1}}^{S,\lambda}P_{N_{1}}uQ_{L_{2}}^{K}P_{N_{2}}v\overline{Q_{L}^{S,\lambda}P_{N}w}~{}dtdx\right|
LN3N1+ε+3/4uX~λs,bvY3/4,1/2,1QLS,λPNwLt,x2\displaystyle\lesssim\sum_{L\gtrsim N^{3}}N^{-1+\varepsilon+3/4}\|u\|_{\tilde{X}^{s,b}_{\lambda}}\|v\|_{Y^{-3/4,1/2,1}}\|Q_{L}^{S,\lambda}P_{N}w\|_{L^{2}_{t,x}}
uX~λs,bvY3/4,1/2,1wX~λs,1b.\displaystyle\lesssim\|u\|_{\tilde{X}^{s,b}_{\lambda}}\|v\|_{Y^{-3/4,1/2,1}}\|w\|_{\tilde{X}^{-s,1-b}_{\lambda}}.

If L2=LmaxL_{2}=L_{\max}, we have

|2QL1S,λPN1uQL2KPN2vQLS,λPNw¯𝑑t𝑑x|\displaystyle\quad\left|\int_{\mathbb{R}^{2}}Q_{L_{1}}^{S,\lambda}P_{N_{1}}uQ_{L_{2}}^{K}P_{N_{2}}v\overline{Q_{L}^{S,\lambda}P_{N}w}~{}dtdx\right|
QL1S,λPN1uQLS,λPNw¯Lt,x2QL2KPN2vLt,x2\displaystyle\lesssim\|Q_{L_{1}}^{S,\lambda}P_{N_{1}}u\overline{Q_{L}^{S,\lambda}P_{N}w}\|_{L_{t,x}^{2}}\|Q_{L_{2}}^{K}P_{N_{2}}v\|_{L^{2}_{t,x}}
(λN)1/2(L1L)1/2QL1S,λPN1uLt,x2QL2KPN2vLt,x2QLS,λPNwLt,x2.\displaystyle\lesssim(\lambda N)^{-1/2}(L_{1}L)^{1/2}\|Q_{L_{1}}^{S,\lambda}P_{N_{1}}u\|_{L_{t,x}^{2}}\|Q_{L_{2}}^{K}P_{N_{2}}v\|_{L_{t,x}^{2}}\|Q_{L}^{S,\lambda}P_{N}w\|_{L^{2}_{t,x}}.

Thus for 1/2+ε+s+3(b1)<3/4-1/2+\varepsilon+s+3(b-1)<-3/4 one has

N1N2NL2=Lmax,L1,L|2QL1S,λPN1uQL2KPN2vQLS,λPNw¯𝑑t𝑑x|\displaystyle\quad\sum_{\begin{subarray}{c}N_{1}\ll N_{2}\sim N\\ L_{2}=L_{\max},L_{1},L\end{subarray}}\left|\int_{\mathbb{R}^{2}}Q_{L_{1}}^{S,\lambda}P_{N_{1}}uQ_{L_{2}}^{K}P_{N_{2}}v\overline{Q_{L}^{S,\lambda}P_{N}w}~{}dtdx\right|
L2N23(λN2)1/2N2ε+sL2b1/2uX~λs,bQL2KPN2vLt,x2wX~λs,1b\displaystyle\lesssim\sum_{L_{2}\gtrsim N_{2}^{3}}(\lambda N_{2})^{-1/2}N_{2}^{\varepsilon+s}L_{2}^{b-1/2}\|u\|_{\tilde{X}^{s,b}_{\lambda}}\|Q_{L_{2}}^{K}P_{N_{2}}v\|_{L^{2}_{t,x}}\|w\|_{\tilde{X}^{-s,1-b}_{\lambda}}
λ1/2uX~λs,bvY3/4,1/2,1wX~λs,1b.\displaystyle\lesssim\lambda^{-1/2}\|u\|_{\tilde{X}^{s,b}_{\lambda}}\|v\|_{Y^{-3/4,1/2,1}}\|w\|_{\tilde{X}^{-s,1-b}_{\lambda}}.

Since one can choose ε\varepsilon sufficiently small, thus we can obtain the desired inequality when s<5/4s<5/4. ∎

For other terms, the estimates in [5] are also effective here. Thus we obtain

Proposition 4.16.

Let s2=3/4s_{2}=-3/4, 0s1<5/40\leq s_{1}<5/4. Given (u0,v0)Hs1×Hs2(u_{0},v_{0})\in H^{s_{1}}\times H^{s_{2}} with v0Hs21\|v_{0}\|_{H^{s_{2}}}\ll 1, then the equation (4.10) has a unique solution (u,v)X~λ,Ts1,b×FT(u,v)\in\tilde{X}^{s_{1},b}_{\lambda,T}\times F_{T}.

By rescaling we obtain the local well-posedness of (S-KdV) with 0s1<5/40\leq s_{1}<5/4, s2=3/4s_{2}=-3/4.

5 Other regions by using normal form argument

For other regions, the main problem comes from high modulation. Thus we use normal form argument which is a powerful tool to control the high modulation cases.

5.1 Upper region

In this subsection, we show the local well-posedness of (S-KdV) in Hs1×Hs2H^{s_{1}}\times H^{s_{2}}, 4/3<s1+1<s2max{4s1,s1+2}4/3<s_{1}+1<s_{2}\leq\max\{4s_{1},s_{1}+2\}.

The main problem comes from the term x(|u|2)\partial_{x}(|u|^{2}). Thus we use normal form argument to separate the high modulation part from this term. The integral equation of vv is

v(t)=K(t)v0+(|u|2)(t)(v2)(t)/2.v(t)=K(t)v_{0}+\mathscr{B}(|u|^{2})(t)-\mathscr{B}(v^{2})(t)/2.

Then,

(|u|2)(t)\displaystyle\mathscr{B}(|u|^{2})(t) =N1,N2,N(PN(PN1uPN2u¯))\displaystyle=\sum_{N_{1},N_{2},N}\mathscr{B}(P_{N}(P_{N_{1}}uP_{N_{2}}\bar{u}))
=N1N2N2(PN(PN1uPN2u¯))+N1N2(PN(PN1uPN2u¯))\displaystyle=\sum_{N_{1}\sim N_{2}\sim N^{2}}\mathscr{B}(P_{N}(P_{N_{1}}uP_{N_{2}}\bar{u}))+\sum_{N_{1}\nsim N^{2}}\mathscr{B}(P_{N}(P_{N_{1}}uP_{N_{2}}\bar{u}))
:=R(u)(t)+N(u)(t).\displaystyle:=R(u)(t)+N(u)(t).

Define bilinear operator TMT_{M} and \mathscr{B} by

TM(f,g)(x)=ξ1(ξ1+ξ2=ξM(ξ,ξ1)f^(ξ1)g¯^(ξ2)dξ1)T_{M}(f,g)(x)=\mathscr{F}_{\xi}^{-1}\left(\int_{\xi_{1}+\xi_{2}=\xi}M(\xi,\xi_{1})\hat{f}(\xi_{1})\hat{\bar{g}}(\xi_{2})\mathrm{d}{\xi_{1}}\right)
M(u,v)(x)=xξ1(ξ1+ξ2=ξ0tM(ξ,ξ1)u^(t,ξ1)v¯^(t,ξ2)dtdξ1)\mathscr{B}_{M}(u,v)(x)=\partial_{x}\mathscr{F}_{\xi}^{-1}\left(\int_{\xi_{1}+\xi_{2}=\xi}\int_{0}^{t}M(\xi,\xi_{1})\hat{u}(t^{\prime},\xi_{1})\hat{\bar{v}}(t^{\prime},\xi_{2})\mathrm{d}{t^{\prime}}\mathrm{d}{\xi_{1}}\right)

where ξ2=ξξ1\xi_{2}=\xi-\xi_{1} and (ψ1=φ\psi_{1}=\varphi)

M(ξ,ξ1):=1(2π)1/2N1N2ψN1(ξ1)ψN(ξ)ξ3ξ12+ξ22.M(\xi,\xi_{1}):=\frac{1}{(2\pi)^{1/2}}\sum_{N_{1}\nsim N^{2}}\frac{\psi_{N_{1}}(\xi_{1})\psi_{N}(\xi)}{\xi^{3}-\xi_{1}^{2}+\xi_{2}^{2}}.

Integrating by parts and using the system (S-KdV), we have

N(u)\displaystyle\quad N(u)
=N1N21(2π)1/2ξ10teitξ3ξψN(ξ)ψN1(ξ1)\displaystyle=\sum_{N_{1}\nsim N^{2}}\frac{1}{(2\pi)^{1/2}}\mathscr{F}^{-1}_{\xi}\int_{\mathbb{R}}\int_{0}^{t}e^{-it\xi^{3}}\xi\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})
eitξ12u^(t,ξ1)eit(ξ1ξ)2u^¯(t,ξ1ξ)deit(ξ3ξ12+(ξ1ξ)2)i(ξ3ξ12+(ξ1ξ)2)dξ1\displaystyle\quad\cdot e^{it^{\prime}\xi_{1}^{2}}\hat{u}(t^{\prime},\xi_{1})e^{-it^{\prime}(\xi_{1}-\xi)^{2}}\bar{\hat{u}}(t^{\prime},\xi_{1}-\xi)~{}\frac{de^{it^{\prime}(\xi^{3}-\xi_{1}^{2}+(\xi_{1}-\xi)^{2})}}{i(\xi^{3}-\xi_{1}^{2}+(\xi_{1}-\xi)^{2})}~{}d\xi_{1}
=xTM(u,u)+xTM(u0,u0)i(uv+|u|2u,u¯)+i(u,uv+|u|2u¯).\displaystyle=-\partial_{x}T_{M}(u,u)+\partial_{x}T_{M}(u_{0},u_{0})-i\mathscr{B}(uv+|u|^{2}u,\bar{u})+i\mathscr{B}(u,\overline{uv+|u|^{2}u}).

Let

B(u0):=xTM(u0,u0),C(u,v)(t):=i(u,uv¯)i(uv,u¯),\displaystyle B(u_{0}):=-\partial_{x}T_{M}(u_{0},u_{0}),~{}~{}C(u,v)(t):=i\mathscr{B}(u,\overline{uv})-i\mathscr{B}(uv,\bar{u}),
D(u)(t):=i(u,|u|2u¯)i(|u|2u,u¯)\displaystyle D(u)(t):=i\mathscr{B}(u,|u|^{2}\bar{u})-i\mathscr{B}(|u|^{2}u,\bar{u})

and w(t,x)=v(t,x)B(u(t))+B(u0)w(t,x)=v(t,x)-B(u(t))+B(u_{0}). Now system for (u,w)(u,w) is

{u(t)=S(t)u0i𝒜(uv+|u|2u)(t),w(t)=K(t)v0+D(u)(t)+R(u)(t)+C(u,v)(t)(v2/2)(t).\left\{\begin{aligned} u(t)&=S(t)u_{0}-i\mathscr{A}(uv+|u|^{2}u)(t),\\ w(t)&=K(t)v_{0}+D(u)(t)+R(u)(t)+C(u,v)(t)-\mathscr{B}(v^{2}/2)(t).\end{aligned}\right. (5.1)

We use the following work spaces to solve (u,w)(u,w).

uXTs1:=Js1uUS,T2,wYTs2:=wC([0,T];Hs2)+wLx2LT\displaystyle\|u\|_{X^{s_{1}}_{T}}:=\|J^{s_{1}}u\|_{U^{2}_{S,T}},\quad\|w\|_{Y^{s_{2}}_{T}}:=\|w\|_{C([0,T];H^{s_{2}})}+\|w\|_{L_{x}^{2}L_{T}^{\infty}}

where US,T2U^{2}_{S,T} is the space US2U^{2}_{S} restricted on [0,T][0,T]. To establish the local well-posedness, we need the following classical estimates.

Lemma 5.1 ([8]).

S(t)u0L2=u0L2\|S(t)u_{0}\|_{L^{2}}=\|u_{0}\|_{L^{2}}. For s>1/2s>1/2, we have

S(t)u0Lx2LT\displaystyle\|S(t)u_{0}\|_{L_{x}^{2}L_{T}^{\infty}} T1/2u0Hs.\displaystyle\lesssim\langle T\rangle^{1/2}\|u_{0}\|_{H^{s}}.

Also, K(t)v0L2=v0L2\|K(t)v_{0}\|_{L^{2}}=\|v_{0}\|_{L^{2}}, xK(t)v0LxLt2v0L2\|\partial_{x}K(t)v_{0}\|_{L_{x}^{\infty}L_{t}^{2}}\lesssim\|v_{0}\|_{L^{2}}. For s>3/4s>3/4, we have

K(t)v0Lx2LT\displaystyle\|K(t)v_{0}\|_{L_{x}^{2}L_{T}^{\infty}} T1/2v0Hs.\displaystyle\lesssim\langle T\rangle^{1/2}\|v_{0}\|_{H^{s}}.

By duality and Christ-Kiselev lemma, one has the following lemma.

Lemma 5.2 ([13]).

For s>3/4s>3/4, T>0T>0, we have

(f)C([0,T];Hs)JsfLx1LT2,(f)Lx2LTT1/2JsfLx1LT2.\displaystyle\left\|\mathscr{B}(f)\right\|_{C([0,T];H^{s})}\lesssim\|J^{s}f\|_{L_{x}^{1}L_{T}^{2}},\quad\left\|\mathscr{B}(f)\right\|_{L_{x}^{2}L_{T}^{\infty}}\lesssim\langle T\rangle^{1/2}\|J^{s}f\|_{L_{x}^{1}L_{T}^{2}}.

We also need the following Leibniz-type estimate.

Lemma 5.3 (Theorem 4 in [2]).

Let Ds:=1|ξ|sD^{s}:=\mathscr{F}^{-1}|\xi|^{s}\mathscr{F}, Js:=1ξsJ^{s}:=\mathscr{F}^{-1}\langle\xi\rangle^{s}\mathscr{F}. For s0s\geq 0, 1<q1,r1,q2,r21<q_{1},r_{1},q_{2},r_{2}\leq\infty, 1/q1+1/q2=1/q1/q_{1}+1/q_{2}=1/q, 1/r1+1/r2=1/r1/r_{1}+1/r_{2}=1/r, 1q,r<1\leq q,r<\infty, we have

Ds(uv)LxrLtq\displaystyle\|D^{s}(uv)\|_{L_{x}^{r}L_{t}^{q}} DsuLxr1Ltq1vLxr2Ltq2+DsvLxr1Ltq1uLxr2Ltq2,\displaystyle\lesssim\|D^{s}u\|_{L_{x}^{r_{1}}L_{t}^{q_{1}}}\|v\|_{L_{x}^{r_{2}}L_{t}^{q_{2}}}+\|D^{s}v\|_{L_{x}^{r_{1}}L_{t}^{q_{1}}}\|u\|_{L_{x}^{r_{2}}L_{t}^{q_{2}}},
Js(uv)LxrLtq\displaystyle\|J^{s}(uv)\|_{L_{x}^{r}L_{t}^{q}} JsuLxr1Ltq1vLxr2Ltq2+JsvLxr1Ltq1uLxr2Ltq2.\displaystyle\lesssim\|J^{s}u\|_{L_{x}^{r_{1}}L_{t}^{q_{1}}}\|v\|_{L_{x}^{r_{2}}L_{t}^{q_{2}}}+\|J^{s}v\|_{L_{x}^{r_{1}}L_{t}^{q_{1}}}\|u\|_{L_{x}^{r_{2}}L_{t}^{q_{2}}}.

5.1.1 Multi-linear estimates

Firstly, we show the control of boundary term.

Lemma 5.4.

Let s10s_{1}\geq 0, s2s1+2s_{2}\leq s_{1}+2, s2<2s1+3/2s_{2}<2s_{1}+3/2. Then B(u0)Hs2u0Hs12\|B(u_{0})\|_{H^{s_{2}}}\lesssim\|u_{0}\|_{H^{s_{1}}}^{2}.

Proof.

By the definition of B(u0)B(u_{0}), we have

B(u0)Hs2ξs2N1N2ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1u^0(ξ1)u^¯0(ξ1ξ)𝑑ξ1Lξ2.\displaystyle\|B(u_{0})\|_{H^{s_{2}}}\sim\left\|\langle\xi\rangle^{s_{2}}\sum_{N_{1}\nsim N^{2}}\int_{\mathbb{R}}\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}\hat{u}_{0}(\xi_{1})\bar{\hat{u}}_{0}(\xi_{1}-\xi)~{}d\xi_{1}\right\|_{L^{2}_{\xi}}.

Since N1N2N_{1}\nsim N^{2}, we have |ξ2+ξ2ξ|max{N1,N2}|\xi^{2}+\xi-2\xi|\sim\max\{N_{1},N^{2}\} for |ξ|,|ξ1||\xi|,|\xi_{1}| in the support of ψN,ψN1\psi_{N},\psi_{N_{1}}. Thus, we have

B(u0)Hs2\displaystyle\|B(u_{0})\|_{H^{s_{2}}} N1N2Ns2ψN(ξ)ψN1(ξ1)max{N2,N1}|u^0(ξ1)||u^0(ξ1ξ)|𝑑ξ1Lξ2\displaystyle\lesssim\left\|\sum_{N_{1}\nsim N^{2}}\int_{\mathbb{R}}\frac{N^{s_{2}}\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\max\{N^{2},N_{1}\}}|\hat{u}_{0}(\xi_{1})||{\hat{u}}_{0}(\xi_{1}-\xi)|~{}d\xi_{1}\right\|_{L^{2}_{\xi}}
ξs22|u^0(ξ1)||u^0(ξ1ξ)|𝑑ξ1Lξ2\displaystyle\lesssim\left\|\int_{\mathbb{R}}\langle\xi\rangle^{s_{2}-2}|\hat{u}_{0}(\xi_{1})||{\hat{u}}_{0}(\xi_{1}-\xi)|~{}d\xi_{1}\right\|_{L^{2}_{\xi}}
|1(|u^0|)|2Hs22.\displaystyle\sim\||\mathscr{F}^{-1}(|\hat{u}_{0}|)|^{2}\|_{H^{s_{2}-2}}.

Then, by the Sobolev multiply estimate ([14], page 855), for s10s_{1}\geq 0, s22s1s_{2}-2\leq s_{1}, s22<2s11/2s_{2}-2<2s_{1}-1/2, we have B(u0)Hs2u0Hs12\|B(u_{0})\|_{H^{s_{2}}}\lesssim\|u_{0}\|_{H^{s_{1}}}^{2}. ∎

Lemma 5.5.

Let s>3/4s>3/4, 0<T10<T\leq 1. Then,

(v1v2)YTsT1/2v1YTsv2YTs.\displaystyle\|\mathscr{B}(v_{1}v_{2})\|_{Y^{s}_{T}}\lesssim T^{1/2}\|v_{1}\|_{Y^{s}_{T}}\|v_{2}\|_{Y^{s}_{T}}.
Lemma 5.6.

B(u(t))Lx2LtuLx4Lt2\|B(u(t))\|_{L_{x}^{2}L_{t}^{\infty}}\lesssim\|u\|_{L_{x}^{4}L_{t}^{\infty}}^{2}.

Proof.

By the definition of B(u(t))B(u(t)), we have

|B(u(t))(x)|\displaystyle|B(u(t))(x)| |y,z2u(t,y)u¯(t,z)\displaystyle\sim\Bigg{|}\int_{\mathbb{R}^{2}_{y,z}}u(t,y)\bar{u}(t,z)
ξ1,ξ2N1N2ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1ei(zy)ξ1+i(xz)ξdξ1dξdydz|.\displaystyle\qquad\cdot\int_{\mathbb{R}^{2}_{\xi_{1},\xi}}\sum_{N_{1}\nsim N^{2}}\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}e^{i(z-y)\xi_{1}+i(x-z)\xi}~{}d\xi_{1}d\xi dydz\Bigg{|}.

Denote

ξ1,ξ2N1N2ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1ei(zy)ξ1+i(xz)ξdξ1dξ\int_{\mathbb{R}^{2}_{\xi_{1},\xi}}\sum_{N_{1}\nsim N^{2}}\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}e^{i(z-y)\xi_{1}+i(x-z)\xi}~{}d\xi_{1}d\xi

by Φ(zy,xz)\varPhi(z-y,x-z). We will show that there exists h1,h2L1h_{1},h_{2}\in L^{1} such that |Φ(x,y)|h1(x)h2(y)|\varPhi(x,y)|\lesssim h_{1}(x)h_{2}(y). Assume this. Then one has

B(u(t))Lx2Lt\displaystyle\|B(u(t))\|_{L_{x}^{2}L_{t}^{\infty}} y,z2u(t,y)Ltu(t,z)Lth1(zy)h2(xz)dydzLx2\displaystyle\lesssim\left\|\int_{\mathbb{R}^{2}_{y,z}}\|u(t,y)\|_{L_{t}^{\infty}}\|u(t,z)\|_{L_{t}^{\infty}}h_{1}(z-y)h_{2}(x-z)~{}dydz\right\|_{L_{x}^{2}}
u(t,z)Ltyu(t,y)Lth1(zy)𝑑yLz2h2L1\displaystyle\lesssim\left\|\|u(t,z)\|_{L_{t}^{\infty}}\int_{\mathbb{R}_{y}}\|u(t,y)\|_{L_{t}^{\infty}}h_{1}(z-y)~{}dy\right\|_{L_{z}^{2}}\|h_{2}\|_{L^{1}}
uLx4Ltyu(t,y)Lth1(zy)dyLz4h2L1\displaystyle\lesssim\|u\|_{L_{x}^{4}L_{t}^{\infty}}\left\|\int_{\mathbb{R}_{y}}\|u(t,y)\|_{L_{t}^{\infty}}h_{1}(z-y)~{}dy\right\|_{L_{z}^{4}}\|h_{2}\|_{L^{1}}
h1L1h2L1uLx4Lt2.\displaystyle\lesssim\|h_{1}\|_{L^{1}}\|h_{2}\|_{L^{1}}\|u\|_{L_{x}^{4}L_{t}^{\infty}}^{2}.

Now, we estimate Φ(x,y)\varPhi(x,y). If |x|1|x|\geq 1, we have

Φ(x,y)\displaystyle\varPhi(x,y) =ξ1,ξ2N1N2ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1eixξ1+iyξdξ1dξ\displaystyle=\int_{\mathbb{R}^{2}_{\xi_{1},\xi}}\sum_{N_{1}\nsim N^{2}}\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}e^{ix\xi_{1}+iy\xi}~{}d\xi_{1}d\xi
=1x2ξ1,ξ2N1N2ξ12(ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1)eixξ1+iyξdξ1dξ.\displaystyle=-\frac{1}{x^{2}}\int_{\mathbb{R}^{2}_{\xi_{1},\xi}}\sum_{N_{1}\nsim N^{2}}\partial_{\xi_{1}}^{2}\left(\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}\right)e^{ix\xi_{1}+iy\xi}~{}d\xi_{1}d\xi.

Thus,

|Φ(x,y)|\displaystyle|\varPhi(x,y)| x22N1,NφN(ξ)max{N2,N1}N12χ|ξ1|N1dξ1dξx2.\displaystyle\lesssim x^{-2}\int_{\mathbb{R}^{2}}\sum_{N_{1},N}\frac{\varphi_{N}(\xi)}{\max\{N^{2},N_{1}\}N_{1}^{2}}\chi_{|\xi_{1}|\lesssim N_{1}}~{}d\xi_{1}d\xi\lesssim x^{-2}.

If |y|1|y|\geq 1, |x|1|x|\leq 1, we only consider the case N1N2N_{1}\gg N^{2}. The argument for N1N2N_{1}\ll N^{2} is simpler. Integrating by parts, we have

|ξ1,ξ2N1N2ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1eixξ1+iyξdξ1dξ|\displaystyle\quad\left|\int_{\mathbb{R}^{2}_{\xi_{1},\xi}}\sum_{N_{1}\gg N^{2}}\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}e^{ix\xi_{1}+iy\xi}~{}d\xi_{1}d\xi\right|
=y2|ξ1,ξ2N1N2ξ2(ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1)eixξ1+iyξdξ1dξ|\displaystyle=y^{-2}\left|\int_{\mathbb{R}^{2}_{\xi_{1},\xi}}\sum_{N_{1}\gg N^{2}}\partial_{\xi}^{2}\left(\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}\right)e^{ix\xi_{1}+iy\xi}~{}d\xi_{1}d\xi\right|
y2Nξ|ξ1N1N2ξ2(ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1)eixξ1dξ1|𝑑ξ\displaystyle\lesssim y^{-2}\sum_{N}\int_{\mathbb{R}_{\xi}}\left|\int_{\mathbb{R}_{\xi_{1}}}\sum_{N_{1}\gg N^{2}}\partial_{\xi}^{2}\left(\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}\right)e^{ix\xi_{1}}~{}d\xi_{1}\right|d\xi
:=y2M(x).\displaystyle:=y^{-2}M(x).

By Minkowski inequality and Plancherel identity, we have

MLx2\displaystyle\|M\|_{L^{2}_{x}} NξN1N2ξ2(ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1)Lξ12𝑑ξ\displaystyle\lesssim\sum_{N}\int_{\mathbb{R}_{\xi}}\left\|\sum_{N_{1}\gg N^{2}}\partial_{\xi}^{2}\left(\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}\right)\right\|_{L^{2}_{\xi_{1}}}~{}d\xi
Nξχ|ξ|NN2dξ1.\displaystyle\lesssim\sum_{N}\int_{\mathbb{R}_{\xi}}\frac{\chi_{|\xi|\lesssim N}}{N^{2}}~{}d\xi\lesssim 1.

By similar argument for |x|1,|y|1|x|\geq 1,|y|\geq 1, one has |Φ(x,y)||x|2|y|2|\varPhi(x,y)|\lesssim|x|^{-2}|y|^{-2}.

For |x|1|x|\leq 1, |y|1|y|\leq 1, we have

|Φ(x,y)|\displaystyle|\varPhi(x,y)| =|1x2ξ1,ξN1N2ξ1(ψN(ξ)ψN1(ξ1)ξ2+ξ2ξ1)eixξ1+iyξdξ1dξ|\displaystyle=\left|\frac{1}{x}\int_{\mathbb{R}^{2}_{\xi_{1},\xi}}\sum_{N_{1}\nsim N^{2}}\partial_{\xi_{1}}\left(\frac{\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\xi^{2}+\xi-2\xi_{1}}\right)e^{ix\xi_{1}+iy\xi}~{}d\xi_{1}d\xi\right|
|x|12N1,NψN(ξ)max{N2,N1}N1χ|ξ1|N1dξ1dξ|x|1.\displaystyle\lesssim|x|^{-1}\int_{\mathbb{R}^{2}}\sum_{N_{1},N}\frac{\psi_{N}(\xi)}{\max\{N^{2},N_{1}\}N_{1}}\chi_{|\xi_{1}|\lesssim N_{1}}~{}d\xi_{1}d\xi\lesssim|x|^{-1}.

Note that by the former argument, we also have |Φ(x,y)|y2M(x)|\varPhi(x,y)|\leq y^{-2}M(x) where ML2M\in L^{2}. |Φ(x,y)||x|3/4M(x)1/4|y|1/2|\varPhi(x,y)|\lesssim|x|^{-3/4}M(x)^{1/4}|y|^{-1/2}. Note that by Hölder inequality, we have |x|3/4M(x)1/4χ|x|1L1|x|^{-3/4}M(x)^{1/4}\chi_{|x|\leq 1}\in L^{1}. Let

h1(x)=x2+(|x|3/4M(x)1/4+M(x))χ|x|1,h2(y)=|y|1/2χ|y|1+y2.h_{1}(x)=\langle x\rangle^{-2}+(|x|^{-3/4}M(x)^{1/4}+M(x))\chi_{|x|\leq 1},h_{2}(y)=|y|^{-1/2}\chi_{|y|\leq 1}+\langle y\rangle^{-2}.

We have |Φ(x,y)|h1(x)h2(y)|\varPhi(x,y)|\lesssim h_{1}(x)h_{2}(y), h1,h2L1h_{1},h_{2}\in L^{1}. We finish the proof. ∎

Lemma 5.7.

Let 0<T10<T\leq 1, s1>0s_{1}>0, 3/4<s2<2s1+3/23/4<s_{2}<2s_{1}+3/2, s2s1+2s_{2}\leq s_{1}+2. Then,

C(u,v)Ys2TT3/4uXTs12vYs2T,D(u)Ys2TT1/2uXs1T4.\displaystyle\|C(u,v)\|_{Y^{s_{2}}_{T}}\lesssim T^{3/4}\|u\|_{X_{T}^{s_{1}}}^{2}\|v\|_{Y^{s_{2}}_{T}},\quad\|D(u)\|_{Y^{s_{2}}_{T}}\lesssim T^{1/2}\|u\|_{X^{s_{1}}_{T}}^{4}.
Proof.

By Plancherel identity and maximal function estimate, we have (s2>3/4s_{2}>3/4)

C(u,v)Ys2T\displaystyle\quad\|C(u,v)\|_{Y^{s_{2}}_{T}}
0TN1N2Ns2ψN(ξ)ψN1(ξ1)max{N2,N1}|uv^|(t,ξ1)|u^|(t,ξ1ξ)dξ1L2ξdt.\displaystyle\lesssim\int_{0}^{T}\Bigg{\|}\int_{\mathbb{R}}\sum_{N_{1}\nsim N^{2}}\frac{N^{s_{2}}\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\max\{N^{2},N_{1}\}}|\widehat{uv}|(t^{\prime},\xi_{1})|\hat{u}|(t^{\prime},\xi_{1}-\xi)~{}d\xi_{1}\Bigg{\|}_{L^{2}_{\xi}}dt^{\prime}.

If s1>1/2s_{1}>1/2, s2s1+2s_{2}\leq s_{1}+2, we have

N1N2Ns2ψN(ξ)ψN1(ξ1)max{N2,N1}|uv^|(t,ξ1)|u^|(t,ξ1ξ)dξ1L2ξ\displaystyle\quad\Bigg{\|}\int_{\mathbb{R}}\sum_{N_{1}\nsim N^{2}}\frac{N^{s_{2}}\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\max\{N^{2},N_{1}\}}|\widehat{uv}|(t^{\prime},\xi_{1})|\hat{u}|(t^{\prime},\xi_{1}-\xi)~{}d\xi_{1}\Bigg{\|}_{L^{2}_{\xi}}
N1,NNs22ψN(ξ)ψN1(ξ1)Ns1\displaystyle\lesssim\Bigg{\|}\int_{\mathbb{R}}\sum_{N_{1},N}\frac{N^{s_{2}-2}\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{N^{s_{1}}}
(ξ1s1+ξ1ξs1)|uv^|(t,ξ1)|u^|(t,ξ1ξ)dξ1L2ξ\displaystyle\qquad\cdot(\langle\xi_{1}\rangle^{s_{1}}+\langle\xi_{1}-\xi\rangle^{s_{1}})|\widehat{uv}|(t^{\prime},\xi_{1})|\hat{u}|(t^{\prime},\xi_{1}-\xi)~{}d\xi_{1}\Bigg{\|}_{L^{2}_{\xi}}
(ξ1s1+ξ1ξs1)|uv^|(t,ξ1)|u^|(t,ξ1ξ)dξ1L2ξ\displaystyle\lesssim\Bigg{\|}\int_{\mathbb{R}}(\langle\xi_{1}\rangle^{s_{1}}+\langle\xi_{1}-\xi\rangle^{s_{1}})|\widehat{uv}|(t^{\prime},\xi_{1})|\hat{u}|(t^{\prime},\xi_{1}-\xi)~{}d\xi_{1}\Bigg{\|}_{L^{2}_{\xi}}
uvHs1u^L1+uv^L1uHs1u2Hs1vHs2.\displaystyle\lesssim\|uv\|_{H^{s_{1}}}\|\hat{u}\|_{L^{1}}+\|\widehat{uv}\|_{L^{1}}\|u\|_{H^{s_{1}}}\lesssim\|u\|^{2}_{H^{s_{1}}}\|v\|_{H^{s_{2}}}.

If 0<s11/20<s_{1}\leq 1/2, 1/2<s2<2s1+3/21/2<s_{2}<2s_{1}+3/2, for N1NN_{1}\nsim N, we have

N1NNs2ψN(ξ)ψN1(ξ1)max{N2,N1}|uv^|(t,ξ1)|u^|(t,ξ1ξ)dξ1L2ξ\displaystyle\quad\Bigg{\|}\int_{\mathbb{R}}\sum_{N_{1}\nsim N}\frac{N^{s_{2}}\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\max\{N^{2},N_{1}\}}|\widehat{uv}|(t^{\prime},\xi_{1})|\hat{u}|(t^{\prime},\xi_{1}-\xi)~{}d\xi_{1}\Bigg{\|}_{L^{2}_{\xi}}
N1,NNs22ψN(ξ)ψN1(ξ1)N1s1Ns1\displaystyle\lesssim\Bigg{\|}\int_{\mathbb{R}}\sum_{N_{1},N}\frac{N^{s_{2}-2}\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{N_{1}^{s_{1}}N^{s_{1}}}
ξ1s1ξ1ξs1|uv^|(t,ξ1)|u^|(t,ξ1ξ)dξ1L2ξ\displaystyle\qquad\cdot\langle\xi_{1}\rangle^{s_{1}}\langle\xi_{1}-\xi\rangle^{s_{1}}|\widehat{uv}|(t^{\prime},\xi_{1})|\hat{u}|(t^{\prime},\xi_{1}-\xi)~{}d\xi_{1}\Bigg{\|}_{L^{2}_{\xi}}
N1,NNs22s1N1s1min{N,N1}1/2uvHs1uHs1\displaystyle\lesssim\sum_{N_{1},N}\frac{N^{s_{2}-2-s_{1}}}{N_{1}^{s_{1}}}\min\{N,N_{1}\}^{1/2}\|uv\|_{H^{s_{1}}}\|u\|_{H^{s_{1}}}
uHs1vHs2(uL+uHs1).\displaystyle\lesssim\|u\|_{H^{s_{1}}}\|v\|_{H^{s_{2}}}(\|u\|_{L^{\infty}}+\|u\|_{H^{s_{1}}}).

For N1NN_{1}\sim N, s2<2s1+3/2s_{2}<2s_{1}+3/2, we have

N1NNs2ψN(ξ)ψN1(ξ1)max{N2,N1}|uv^|(t,ξ1)|u^|(t,ξ1ξ)dξ1L2ξ\displaystyle\quad\Bigg{\|}\int_{\mathbb{R}}\sum_{N_{1}\sim N}\frac{N^{s_{2}}\psi_{N}(\xi)\psi_{N_{1}}(\xi_{1})}{\max\{N^{2},N_{1}\}}|\widehat{uv}|(t^{\prime},\xi_{1})|\hat{u}|(t^{\prime},\xi_{1}-\xi)~{}d\xi_{1}\Bigg{\|}_{L^{2}_{\xi}}
N1NNs22MNMs1+1/2ψN(ξ)ψN1(ξ1)|uv^|(t,ξ1)L2uHs1L2ξ\displaystyle\lesssim\Bigg{\|}\sum_{N_{1}\sim N}N^{s_{2}-2}\sum_{M\lesssim N}M^{-s_{1}+{1/2}}\psi_{N}(\xi)\|\psi_{N_{1}}(\xi_{1})|\widehat{uv}|(t^{\prime},\xi_{1})\|_{L^{2}}\|u\|_{H^{s_{1}}}\Bigg{\|}_{L^{2}_{\xi}}
N1NψN(ξ)ξ1s1ψN1(ξ1)|uv^|(t,ξ1)L2uHs1L2\displaystyle\lesssim\Bigg{\|}\sum_{N_{1}\sim N}\psi_{N}(\xi)\|\langle\xi_{1}\rangle^{s_{1}}\psi_{N_{1}}(\xi_{1})|\widehat{uv}|(t^{\prime},\xi_{1})\|_{L^{2}}\|u\|_{H^{s_{1}}}\Bigg{\|}_{L^{2}}
uvHs1uHs1uHs1vHs2(uL+uHs1).\displaystyle\lesssim\|uv\|_{H^{s_{1}}}\|u\|_{H^{s_{1}}}\lesssim\|u\|_{H^{s_{1}}}\|v\|_{H^{s_{2}}}(\|u\|_{L^{\infty}}+\|u\|_{H^{s_{1}}}).

Overall, we obtain

C(u,v)Ys2T\displaystyle\|C(u,v)\|_{Y^{s_{2}}_{T}} 0Tu(t)Hs1v(t)Hs2(u(t)L+u(t)Hs1)dt\displaystyle\lesssim\int_{0}^{T}\|u(t^{\prime})\|_{H^{s_{1}}}\|v(t^{\prime})\|_{H^{s_{2}}}(\|u(t^{\prime})\|_{L^{\infty}}+\|u(t^{\prime})\|_{H^{s_{1}}})~{}dt^{\prime}
TuXs1T2vYs2T+T3/4uXs1TuLT4LxvYs2T\displaystyle\lesssim T\|u\|_{X^{s_{1}}_{T}}^{2}\|v\|_{Y^{s_{2}}_{T}}+T^{3/4}\|u\|_{X^{s_{1}}_{T}}\|u\|_{L_{T}^{4}L_{x}^{\infty}}\|v\|_{Y^{s_{2}}_{T}}
T3/4uXs1T2vYs2T.\displaystyle\lesssim T^{3/4}\|u\|_{X^{s_{1}}_{T}}^{2}\|v\|_{Y^{s_{2}}_{T}}.

By the same argument, we have

D(u)Ys2T\displaystyle\|D(u)\|_{Y^{s_{2}}_{T}} 0T|u|2u(t)Hs1u(t)Hs1dt\displaystyle\lesssim\int_{0}^{T}\||u|^{2}u(t^{\prime})\|_{H^{s_{1}}}\|u(t^{\prime})\|_{H^{s_{1}}}~{}dt^{\prime}
0Tu(t)Hs12u(t)L2dtT1/2uXs1T4.\displaystyle\lesssim\int_{0}^{T}\|u(t^{\prime})\|_{H^{s_{1}}}^{2}\|u(t^{\prime})\|_{L^{\infty}}^{2}~{}dt^{\prime}\lesssim T^{1/2}\|u\|_{X^{s_{1}}_{T}}^{4}.

We finish the proof of this lemma. ∎

Lemma 5.8.

Let 0<T<10<T<1, 5/4<s24s15/4<s_{2}\leq 4s_{1}. Then we have

R(u)Ys2TT1/2uXs1T2.\|R(u)\|_{Y^{s_{2}}_{T}}\lesssim T^{1/2}\|u\|_{X^{s_{1}}_{T}}^{2}.
Proof.

By Lemma 4.12, we have

R(u)C([0,T];Hs2)Js2R(u)V2K,TT1/2Js1uU2S,T2T1/2uXs1T2.\displaystyle\|R(u)\|_{C([0,T];H^{s_{2}})}\lesssim\|J^{s_{2}}R(u)\|_{V^{2}_{K,T}}\lesssim T^{1/2}\|J^{s_{1}}u\|_{U^{2}_{S,T}}^{2}\lesssim T^{1/2}\|u\|_{X^{s_{1}}_{T}}^{2}.

By general extension result Proposition 2.16 in [6], we only need to show

R(S(t)Js1u0)Lx2LTT1/2u0L22.\displaystyle\|R(S(t)J^{-s_{1}}u_{0})\|_{L_{x}^{2}L_{T}^{\infty}}\lesssim T^{1/2}\|u_{0}\|_{L^{2}}^{2}.

Since vLx2LTJs~vU2K,T\|v\|_{L_{x}^{2}L_{T}^{\infty}}\lesssim\|J^{\tilde{s}}v\|_{U^{2}_{K,T}}, s~>3/4\forall~{}\tilde{s}>3/4, 0<T<10<T<1, then for any ϵ>0\epsilon>0 we have

R(S(t)Jsu0)Lx2LTN1PNR(S(t)Js1u0)Lx2LT\displaystyle\|R(S(t)J^{-s}u_{0})\|_{L_{x}^{2}L_{T}^{\infty}}\lesssim\sum_{N\sim 1}\|P_{N}R(S(t)J^{-s_{1}}u_{0})\|_{L_{x}^{2}L_{T}^{\infty}}
+N1N2N21N3/4+ϵ(PN(PN1S(t)Js1u0PN2S(t)Js1u¯0))U2K,T.\displaystyle\quad+\sum_{N_{1}\sim N_{2}\sim N^{2}\gg 1}N^{3/4+\epsilon}\|\mathscr{B}(P_{N}(P_{N_{1}}S(t)J^{-s_{1}}u_{0}P_{N_{2}}S(t)J^{-s_{1}}\bar{u}_{0}))\|_{U^{2}_{K,T}}.

For the first term, it is easy to obtain

N1PNR(S(t)Jsu0)Lx2LTTu0L22.\sum_{N\sim 1}\|P_{N}R(S(t)J^{-s}u_{0})\|_{L_{x}^{2}L_{T}^{\infty}}\lesssim T\|u_{0}\|_{L^{2}}^{2}.

For the second term, by duality we need to estimate

0Tx(PN1S(t)Js1u0PN2S(t)Js1u¯0)PNvdxdt.\displaystyle\int_{0}^{T}\int_{\mathbb{R}}\partial_{x}(P_{N_{1}}S(t)J^{-s_{1}}u_{0}P_{N_{2}}S(t)J^{-s_{1}}\bar{u}_{0})P_{N}v~{}dxdt.

By Cauchy-Schwarz inequality and (4.2), the upper term is controlled by

P~N(PN1S(t)Js1u0PN2S(t)Js1u¯0)Lx,T2xPNvL2x,T\displaystyle\quad\|\tilde{P}_{N}(P_{N_{1}}S(t)J^{-s_{1}}u_{0}P_{N_{2}}S(t)J^{-s_{1}}\bar{u}_{0})\|_{L_{x,T}^{2}}\|\partial_{x}P_{N}v\|_{L^{2}_{x,T}}
N1/2Js1PN1u0L2Js1PN2u0L2NPNvLx,T2\displaystyle\lesssim N^{-1/2}\|J^{-s_{1}}P_{N_{1}}u_{0}\|_{L^{2}}\|J^{-s_{1}}P_{N_{2}}u_{0}\|_{L^{2}}N\|P_{N}v\|_{L_{x,T}^{2}}
N4s1+1/2T1/2PN1u0L2PN2u0L2vV2K.\displaystyle\lesssim N^{-4s_{1}+1/2}T^{1/2}\|P_{N_{1}}u_{0}\|_{L^{2}}\|P_{N_{2}}u_{0}\|_{L^{2}}\|v\|_{V^{2}_{K}}.

Thus one has

RS(t)Jsu0Lx2LT\displaystyle\quad\|RS(t)J^{-s}u_{0}\|_{L_{x}^{2}L_{T}^{\infty}}
N1N2N4s1+5/4+ϵT1/2PN1u0L2PN2u0L2+Tu0L22T1/2u0L22.\displaystyle\lesssim\sum_{N_{1}\sim N_{2}}N^{-4s_{1}+5/4+\epsilon}T^{1/2}\|P_{N_{1}}u_{0}\|_{L^{2}}\|P_{N_{2}}u_{0}\|_{L^{2}}+T\|u_{0}\|_{L^{2}}^{2}\lesssim T^{1/2}\|u_{0}\|_{L^{2}}^{2}.

The last inequality we use the condition 4s1>5/44s_{1}>5/4. ∎

Lemma 5.9.

Let 0<T<10<T<1, s2s11/4s_{2}\geq s_{1}\geq 1/4. We have

𝒜(uv)Xs1TT3/4uXs1TvYs2T,𝒜(|u|2u)Xs1TT1/2uXs1T3.\displaystyle\|\mathscr{A}(uv)\|_{X^{s_{1}}_{T}}\lesssim T^{3/4}\|u\|_{X^{s_{1}}_{T}}\|v\|_{Y^{s_{2}}_{T}},\quad\|\mathscr{A}(|u|^{2}u)\|_{X^{s_{1}}_{T}}\lesssim T^{1/2}\|u\|_{X^{s_{1}}_{T}}^{3}.
Proof.

By Lemma 4.8, one has 𝒜(|u|2u)Xs1TT1/2uXs1T3\|\mathscr{A}(|u|^{2}u)\|_{X^{s_{1}}_{T}}\lesssim T^{1/2}\|u\|_{X^{s_{1}}_{T}}^{3}. We also have

𝒜(uv)Xs1T\displaystyle\|\mathscr{A}(uv)\|_{X^{s_{1}}_{T}} T3/4Js1uLT8L4xJs1vLTL2x\displaystyle\lesssim T^{3/4}\|J^{s_{1}}u\|_{L_{T}^{8}L^{4}_{x}}\|J^{s_{1}}v\|_{L_{T}^{\infty}L^{2}_{x}}
T3/4Js1uU2S,TvYs1T\displaystyle\lesssim T^{3/4}\|J^{s_{1}}u\|_{U^{2}_{S,T}}\|v\|_{Y^{s_{1}}_{T}}
T3/4uXs1TvYs1T.\displaystyle\lesssim T^{3/4}\|u\|_{X^{s_{1}}_{T}}\|v\|_{Y^{s_{1}}_{T}}.

We conclude the proof. ∎

Proposition 5.10.

Let s1>5/16s_{1}>5/16, s1+1<s2max{4s1,s1+2}s_{1}+1<s_{2}\leq\max\{4s_{1},s_{1}+2\}. (S-KdV) is local well-posed in Hs1×Hs2H^{s_{1}}\times H^{s_{2}}.

Proof.

Consider the mapping 𝒯\mathcal{T}. Let v(t)=w(t)+B(u(t))B(u0)v(t)=w(t)+B(u(t))-B(u_{0}). Define

𝒯:(uw)(S(t)u0i𝒜(uv+|u|2u)(t)K(t)v0+D(u)(t)+R(u)(t)+C(u,v)(t)(v2/2)(t)).\mathcal{T}:\begin{pmatrix}u\\ w\end{pmatrix}\mapsto\begin{pmatrix}S(t)u_{0}-i\mathscr{A}(uv+|u|^{2}u)(t)\\ K(t)v_{0}+D(u)(t)+R(u)(t)+C(u,v)(t)-\mathscr{B}(v^{2}/2)(t)\end{pmatrix}.

Let 0<T<10<T<1. By Lemmas 5.45.9, we have

𝒯(u,w)Xs1T×Ys2T\displaystyle\|\mathcal{T}(u,w)\|_{X^{s_{1}}_{T}\times Y^{s_{2}}_{T}} u0Hs1+v0Hs2+T3/4(uXs1T\displaystyle\lesssim\|u_{0}\|_{H^{s_{1}}}+\|v_{0}\|_{H^{s_{2}}}+T^{3/4}(\|u\|_{X^{s_{1}}_{T}}
+uXs1T2)(wYs2T+uXs1T2)\displaystyle\quad+\|u\|_{X^{s_{1}}_{T}}^{2})(\|w\|_{Y^{s_{2}}_{T}}+\|u\|_{X^{s_{1}}_{T}}^{2})
+T1/2(uXs1T2+uXs1T3+uXs1T4+wXs1T2).\displaystyle\quad+T^{1/2}(\|u\|_{X^{s_{1}}_{T}}^{2}+\|u\|_{X^{s_{1}}_{T}}^{3}+\|u\|_{X^{s_{1}}_{T}}^{4}+\|w\|_{X^{s_{1}}_{T}}^{2}).

Similarly one has

𝒯(u1,w1)𝒯(u2,w2)Xs1T×Ys2T\displaystyle\quad\|\mathcal{T}(u_{1},w_{1})-\mathcal{T}(u_{2},w_{2})\|_{X^{s_{1}}_{T}\times Y^{s_{2}}_{T}}
T1/2(u1u2,w1w2)Xs1T×Ys2T\displaystyle\lesssim T^{1/2}\|(u_{1}-u_{2},w_{1}-w_{2})\|_{X^{s_{1}}_{T}\times Y^{s_{2}}_{T}}
(1+(u1,w1)4Xs1T×Ys2T+(u2,w2)4Xs1T×Ys2T)\displaystyle\qquad\cdot\left(1+\|(u_{1},w_{1})\|^{4}_{X^{s_{1}}_{T}\times Y^{s_{2}}_{T}}+\|(u_{2},w_{2})\|^{4}_{X^{s_{1}}_{T}\times Y^{s_{2}}_{T}}\right)

Thus, for sufficiently small TT, we obtain a solution of (5.1). Then, (u,w+B(u)B(u0))C([0,T];Hs1)×C([0,T];Hs2)(u,w+B(u)-B(u_{0}))\in C([0,T];H^{s_{1}})\times C([0,T];H^{s_{2}}) is the solution of initial equation (S-KdV) with initial data (u0,v0)(u_{0},v_{0}). ∎

5.2 Lower region

In this subsection, we show the local well-posedness of (S-KdV) with 5/4<s19/45/4<s_{1}\leq 9/4, s2=3/4s_{2}=-3/4. Consider the equation (4.10) with v0H3/41\|v_{0}\|_{H^{-3/4}}\ll 1, 0<λ10<\lambda\ll 1.

By Lemma 4.15, Proposition 4.16, we have a solution of (4.10) (u,v)X~λ,T1,b×FT(u,v)\in\tilde{X}_{\lambda,T}^{1,b}\times F_{T} with initial data (u0,v0)Hs1×H3/4(u_{0},v_{0})\in H^{s_{1}}\times H^{-3/4}.

The main problem comes from the term uvuv. We should gain 33-order derivative for high modulation cases. To achieve this, we use norm form argument.

Define bilinear operator TMλT_{M_{\lambda}} by

TMλ(f,g)(x)=ξ1(ξ1+ξ2=ξMλ(ξ,ξ1)f^(ξ1)g^(ξ2))T_{M_{\lambda}}(f,g)(x)=\mathscr{F}_{\xi}^{-1}\left(\int_{\xi_{1}+\xi_{2}=\xi}M_{\lambda}(\xi,\xi_{1})\hat{f}(\xi_{1})\hat{g}(\xi_{2})\right)

where ξ2=ξξ1\xi_{2}=\xi-\xi_{1} and

Mλ(ξ,ξ1):=1(2π)1/2N1φN/8(ξ1)ψN(ξ)λξ2λξ12ξ23.M_{\lambda}(\xi,\xi_{1}):=\frac{1}{(2\pi)^{1/2}}\sum_{N\gg 1}\frac{\varphi_{N/8}(\xi_{1})\psi_{N}(\xi)}{\lambda\xi^{2}-\lambda\xi_{1}^{2}-\xi_{2}^{3}}.

Recall some notations in Subsection 4.3. Integration by parts we have

Lemma 5.11.

Let (u,v)X~λ,T1,b×FT(u,v)\in\tilde{X}_{\lambda,T}^{1,b}\times F_{T} be a solution of (4.10). Then for 0tT0\leq t\leq T, one has

𝒜λ(uv)\displaystyle\mathscr{A}_{\lambda}(uv) =B(u(t),v(t))B(u0,v0)+λC1(u,v)\displaystyle=B(u(t),v(t))-B(u_{0},v_{0})+\lambda C_{1}(u,v)
+λ1D1(u,v)+C2(u)+C3(u,v)+R(u,v)\displaystyle\quad+\lambda^{-1}D_{1}(u,v)+C_{2}(u)+C_{3}(u,v)+R(u,v)

where

B(u0,v0)=iTMλ(u0,v0),\displaystyle B(u_{0},v_{0})=-iT_{M_{\lambda}}(u_{0},v_{0}),
C1(u,v)=𝒜λ(TMλ(uv,v)),C2(u)=𝒜λ(u,x(|u|2)),\displaystyle C_{1}(u,v)=\mathscr{A}_{\lambda}(T_{M_{\lambda}}(uv,v)),~{}~{}C_{2}(u)=-\mathscr{A}_{\lambda}(u,\partial_{x}(|u|^{2})),
C3(u,v)=𝒜λ(u,vxv),D1(u,v)=𝒜λ(TMλ(|u|2u,v)),\displaystyle C_{3}(u,v)=-\mathscr{A}_{\lambda}(u,v\partial_{x}v),~{}~{}D_{1}(u,v)=\mathscr{A}_{\lambda}(T_{M_{\lambda}}(|u|^{2}u,v)),
R(u,v)=𝒜λ(NPN(P>N/8uv)).\displaystyle R(u,v)=\mathscr{A}_{\lambda}\left(\sum_{N}P_{N}(P_{>N/8}uv)\right).

Let u~(t)=u(t)λB(u(t),v(t))\tilde{u}(t)=u(t)-\lambda B(u(t),v(t)). Then u~\tilde{u} satisfies the integral equation

u~(t)\displaystyle\tilde{u}(t) =u(0)λB(u(0),v(0))+λR(u~+λB(u,v),v)\displaystyle=u(0)-\lambda B(u(0),v(0))+\lambda R(\tilde{u}+\lambda B(u,v),v) (5.2)
+λ2C1(u,v)+D1(u,v)+λC2(u)+λC3(u,v)\displaystyle\quad+\lambda^{2}C_{1}(u,v)+D_{1}(u,v)+\lambda C_{2}(u)+\lambda C_{3}(u,v)
+λ10tSλ(tt)(|u~+λB(u,v)|2(u~+λB(u,v)))dt.\displaystyle\quad+\lambda^{-1}\int_{0}^{t}S_{\lambda}(t-t^{\prime})(|\tilde{u}+\lambda B(u,v)|^{2}(\tilde{u}+\lambda B(u,v)))~{}dt^{\prime}.

We will solve u~\tilde{u} by using Bourgain space X~s1,b~λ,T\tilde{X}^{s_{1},\tilde{b}}_{\lambda,T} for some b~>1/2\tilde{b}>1/2.

Lemma 5.12.

Let s0>1/2s_{0}>1/2. Then B(u0,v0)Hsu0Hs0v0Hs3\|B(u_{0},v_{0})\|_{H^{s}}\lesssim\|u_{0}\|_{H^{s_{0}}}\|v_{0}\|_{H^{s-3}}.

Proof.

By the definition of MλM_{\lambda} we have

B(u0,v0)Hs\displaystyle\|B(u_{0},v_{0})\|_{H^{s}} Ns3ξ1φN(ξ1)|u0^(ξ1)|ψN(ξ)|v0^(ξξ1)|dξ1l2N1\displaystyle\lesssim\left\|N^{s-3}\int_{\mathbb{R}_{\xi_{1}}}\varphi_{N}(\xi_{1})|\widehat{u_{0}}(\xi_{1})|\psi_{N}(\xi)|\widehat{v_{0}}(\xi-\xi_{1})|~{}d\xi_{1}\right\|_{l^{2}_{N\gg 1}}
u0L1v0Hs3u0Hs0v0Hs3.\displaystyle\lesssim\|u_{0}\|_{\mathscr{F}L^{1}}\|v_{0}\|_{H^{s-3}}\lesssim\|u_{0}\|_{H^{s_{0}}}\|v_{0}\|_{H^{s-3}}.

We finish the proof. ∎

Lemma 5.13.

Let (u,v)X~λ,T1,b×FT(u,v)\in\tilde{X}_{\lambda,T}^{1,b}\times F_{T} be a solution of (4.10). Then there exists b~>1/2\tilde{b}>1/2 such that

C1(u,v),D1(u,v),C2(u),C3(u,v),R(B(u,v),v)X~9/4,b~λ,T.C_{1}(u,v),D_{1}(u,v),C_{2}(u),C_{3}(u,v),R(B(u,v),v)\in\tilde{X}^{9/4,\tilde{b}}_{\lambda,T}.
Proof.

We only need to prove

TMλ(uv,v)X~λ9/4,b~1\displaystyle\|T_{M_{\lambda}}(uv,v)\|_{\tilde{X}_{\lambda}^{9/4,\tilde{b}-1}} λ1/6uX~λ1,bvF2,\displaystyle\lesssim\lambda^{-1/6}\|u\|_{\tilde{X}_{\lambda}^{1,b}}\|v\|_{F}^{2}, (5.3)
TMλ(|u|2u,v)X~λ9/4,b~1\displaystyle\|T_{M_{\lambda}}(|u|^{2}u,v)\|_{\tilde{X}_{\lambda}^{9/4,\tilde{b}-1}} uX~1,bλ3vF,\displaystyle\lesssim\|u\|_{\tilde{X}^{1,b}_{\lambda}}^{3}\|v\|_{F}, (5.4)
TMλ(u,x(|u|2))X~λ9/4,b~1\displaystyle\|T_{M_{\lambda}}(u,\partial_{x}(|u|^{2}))\|_{\tilde{X}_{\lambda}^{9/4,\tilde{b}-1}} uX~1,bλ3,\displaystyle\lesssim\|u\|_{\tilde{X}^{1,b}_{\lambda}}^{3}, (5.5)
TMλ(u,vxv)X~9/4,b~1λ\displaystyle\|T_{M_{\lambda}}(u,v\partial_{x}v)\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}} uX~1,bλvF2\displaystyle\lesssim\|u\|_{\tilde{X}^{1,b}_{\lambda}}\|v\|_{F}^{2} (5.6)

and

NPN(P>N/8B(u,v)v)X~λ9/4,b~1uX~1,bλvF2.\left\|\sum_{N}P_{N}(P_{>N/8}B(u,v)v)\right\|_{\tilde{X}_{\lambda}^{9/4,\tilde{b}-1}}\lesssim\|u\|_{\tilde{X}^{1,b}_{\lambda}}\|v\|_{F}^{2}. (5.7)

For (5.3), due to the definition of MλM_{\lambda}, one has

TMλ(uv,v)X~9/4,b~1λN9/4P~NTMλ(uv,PNv)X~0,b~1λl2N1.\displaystyle\|T_{M_{\lambda}}(uv,v)\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}}\sim\|N^{9/4}\|\tilde{P}_{N}T_{M_{\lambda}}(uv,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}\|_{l^{2}_{N\gg 1}}.

For the term TMλ(uP1v,PNv)T_{M_{\lambda}}(uP_{1}v,P_{N}v), we have

P~NTMλ(uP1v,PNv)X~0,b~1λ\displaystyle\quad\|\tilde{P}_{N}T_{M_{\lambda}}(uP_{1}v,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}
supwL2τ,ξ14|Mλ(ξ,ξ1)uP1v^(τ1,ξ1)||PNv^(ττ1,ξξ1)w(τ,ξ)|τ+λξ21b~\displaystyle\lesssim\sup_{\|w\|_{L^{2}_{\tau,\xi}}\leq 1}\int_{\mathbb{R}^{4}}\frac{|M_{\lambda}(\xi,\xi_{1})\widehat{uP_{1}v}(\tau_{1},\xi_{1})||\widehat{P_{N}v}(\tau-\tau_{1},\xi-\xi_{1})w(\tau,\xi)|}{\langle\tau+\lambda\xi^{2}\rangle^{1-\tilde{b}}}
N3supwL2τ,ξ1uP1vL2t,x1(|PNv^|)Lt,x61(|w|τ+λξ2b~1)L3t,x\displaystyle\lesssim N^{-3}\sup_{\|w\|_{L^{2}_{\tau,\xi}\leq 1}}\|uP_{1}v\|_{L^{2}_{t,x}}\|\mathscr{F}^{-1}(|\widehat{P_{N}v}|)\|_{L_{t,x}^{6}}\|\mathscr{F}^{-1}(|w|\langle\tau+\lambda\xi^{2}\rangle^{\tilde{b}-1})\|_{L^{3}_{t,x}}

By refined Strichartz estimate for Schrödinger equation, for b~3/4\tilde{b}\leq 3/4 one has

P~NTMλ(uP1v,PNv)X~0,b~1λ\displaystyle\quad\|\tilde{P}_{N}T_{M_{\lambda}}(uP_{1}v,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}
N19/6λ1/12uLxLt2P1vLx2LtPNvX0,1/2,1\displaystyle\lesssim N^{-19/6}\lambda^{-1/12}\|u\|_{L_{x}^{\infty}L_{t}^{2}}\|P_{1}v\|_{L_{x}^{2}L_{t}^{\infty}}\|P_{N}v\|_{X^{0,1/2,1}}
N29/12λ1/12uX~1,bλvF2.\displaystyle\lesssim N^{-29/12}\lambda^{-1/12}\|u\|_{\tilde{X}^{1,b}_{\lambda}}\|v\|_{F}^{2}.

Thus we obtain

N9/4P~NTMλ(uP1v,PNv)X~0,b~1λl2N1λ1/12uX~1,bλvF2.\|N^{9/4}\|\tilde{P}_{N}T_{M_{\lambda}}(uP_{1}v,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}\|_{l^{2}_{N\gg 1}}\lesssim\lambda^{-1/12}\|u\|_{\tilde{X}^{1,b}_{\lambda}}\|v\|_{F}^{2}.

For the term TMλ(uPKv,PNv)T_{M_{\lambda}}(uP_{K}v,P_{N}v), K2K\geq 2, in fact we would estimate

1τ,ξ2|Mλ(ξ,ξ1)uPKv^(τ1,ξ1)||PNv^(ττ1,ξξ1)|dξ1dτ1X~0,b~1λ.\left\|\mathscr{F}^{-1}_{\tau,\xi}\int_{\mathbb{R}^{2}}|M_{\lambda}(\xi,\xi_{1})\widehat{uP_{K}v}(\tau_{1},\xi_{1})||\widehat{P_{N}v}(\tau-\tau_{1},\xi-\xi_{1})|~{}d\xi_{1}d\tau_{1}\right\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}.

Since PNuX~s,bλ=1(|PNu^|)X~s,bλ\|P_{N}u\|_{\tilde{X}^{s,b}_{\lambda}}=\|\mathscr{F}^{-1}(|\widehat{P_{N}u}|)\|_{\tilde{X}^{s,b}_{\lambda}}, PNvYs,b,q=1(|PNv^|)Ys,b,q\|P_{N}v\|_{Y^{s,b,q}}=\|\mathscr{F}^{-1}(|\widehat{P_{N}v}|)\|_{Y^{s,b,q}}, without of loss of generality we would assume that u^,v^0\hat{u},\hat{v}\geq 0. Thus for 0<ϵ<40<\epsilon<4 one has

4|Mλ(ξ,ξ1)uPKv^(τ1,ξ1)||PNv^(ττ1,ξξ1)w(τ,ξ)|τ+λξ21b~\displaystyle\quad\int_{\mathbb{R}^{4}}\frac{|M_{\lambda}(\xi,\xi_{1})\widehat{uP_{K}v}(\tau_{1},\xi_{1})||\widehat{P_{N}v}(\tau-\tau_{1},\xi-\xi_{1})w(\tau,\xi)|}{\langle\tau+\lambda\xi^{2}\rangle^{1-\tilde{b}}}
N3PN(uPKv)L(6ϵ)/(5ϵ)xLt2(6ϵ)/(4ϵ)PNvLxLt2\displaystyle\lesssim N^{-3}\|P_{\ll N}(uP_{K}v)\|_{L^{(6-\epsilon)/(5-\epsilon)}_{x}L_{t}^{2(6-\epsilon)/(4-\epsilon)}}\|P_{N}v\|_{L_{x}^{\infty}L_{t}^{2}}
1(|w|τ+λξ2b~1)Lt,x6ϵ.\displaystyle\quad\cdot\|\mathscr{F}^{-1}(|w|\langle\tau+\lambda\xi^{2}\rangle^{\tilde{b}-1})\|_{L_{t,x}^{6-\epsilon}}.

For b~(12ϵ)/(244ϵ)\tilde{b}\leq(12-\epsilon)/(24-4\epsilon), one has

1(|w|τ+λξ2b~1)Lt,x6ϵλ1/6wL2t,x.\|\mathscr{F}^{-1}(|w|\langle\tau+\lambda\xi^{2}\rangle^{\tilde{b}-1})\|_{L_{t,x}^{6-\epsilon}}\lesssim\lambda^{-1/6}\|w\|_{L^{2}_{t,x}}.

Thus for KNK\lesssim N we obtain (ϵ1\epsilon\ll 1)

TMλ(uPKv,PNv)X~0,b~1λ\displaystyle\quad\|T_{M_{\lambda}}(uP_{K}v,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}
N3λ1/6PN(uPKv)L(6ϵ)/(5ϵ)xLt2(6ϵ)/(4ϵ)PNvLxLt2\displaystyle\lesssim N^{-3}\lambda^{-1/6}\|P_{\ll N}(uP_{K}v)\|_{L^{(6-\epsilon)/(5-\epsilon)}_{x}L_{t}^{2(6-\epsilon)/(4-\epsilon)}}\|P_{N}v\|_{L_{x}^{\infty}L_{t}^{2}}
N4λ1/6uLx2LtPKvLt,x2(6ϵ)/(4ϵ)PNvX0,1/2,1\displaystyle\lesssim N^{-4}\lambda^{-1/6}\|u\|_{L_{x}^{2}L_{t}^{\infty}}\|P_{K}v\|_{L_{t,x}^{2(6-\epsilon)/(4-\epsilon)}}\|P_{N}v\|_{X^{0,1/2,1}}
N4λ1/6K3/4uX~1,b~λvF2.\displaystyle\lesssim N^{-4}\lambda^{-1/6}K^{3/4}\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}^{2}.

For KNK\gg N one has

TMλ(uPKv,PNv)X~0,b~1λ\displaystyle\quad\|T_{M_{\lambda}}(uP_{K}v,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}
=TMλ(PKuPKv,PNv)X~0,b~1λ\displaystyle=\|T_{M_{\lambda}}(P_{\sim K}uP_{K}v,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}
N3λ1/6PN(PKuPKv)Lx8(6ϵ)/(347ϵ)Lt2(6ϵ)/(4ϵ)PNvLx8Lt2\displaystyle\lesssim N^{-3}\lambda^{-1/6}\|P_{\ll N}(P_{\sim K}uP_{K}v)\|_{L_{x}^{8(6-\epsilon)/(34-7\epsilon)}L_{t}^{2(6-\epsilon)/(4-\epsilon)}}\|P_{N}v\|_{L_{x}^{8}L_{t}^{2}}
N3λ1/6PKuLx2LtPKvLx8(6ϵ)/(103ϵ)Lt2(6ϵ)/(4ϵ)PNvX3/4,1/2,1.\displaystyle\lesssim N^{-3}\lambda^{-1/6}\|P_{\sim K}u\|_{L_{x}^{2}L_{t}^{\infty}}\|P_{K}v\|_{L_{x}^{8(6-\epsilon)/(10-3\epsilon)}L_{t}^{2(6-\epsilon)/(4-\epsilon)}}\|P_{N}v\|_{X^{-3/4,1/2,1}}.

By scaling argument and PKuLx2LtK1/2uX0,b~\|P_{K}u\|_{L_{x}^{2}L_{t}^{\infty}}\lesssim K^{1/2}\|u\|_{X^{0,\tilde{b}}}, we have

PKuLx2Ltλ1/2K1/2PKuXλ0,b~K1/2PKuX1,b~λ.\|P_{\sim K}u\|_{L_{x}^{2}L_{t}^{\infty}}\lesssim\langle\lambda^{1/2}K\rangle^{1/2}\|P_{\sim K}u\|_{X_{\lambda}^{0,\tilde{b}}}\lesssim K^{-1/2}\|P_{\sim K}u\|_{X^{1,\tilde{b}}_{\lambda}}.

By Hölder inequality one has

PKvLx8(6ϵ)/(103ϵ)Lt2(6ϵ)/(4ϵ)\displaystyle\quad\|P_{K}v\|_{L_{x}^{8(6-\epsilon)/(10-3\epsilon)}L_{t}^{2(6-\epsilon)/(4-\epsilon)}}
PKvLt,x28/(3(6ϵ))PKvLt,x8(229ϵ)/(12(6ϵ))PKvLxLt21/4\displaystyle\lesssim\|P_{K}v\|_{L_{t,x}^{2}}^{8/(3(6-\epsilon))}\|P_{K}v\|_{L_{t,x}^{8}}^{(22-9\epsilon)/(12(6-\epsilon))}\|P_{K}v\|_{L_{x}^{\infty}L_{t}^{2}}^{1/4}
K1/4PKvX0,1/2,1.\displaystyle\lesssim K^{-1/4}\|P_{K}v\|_{X^{0,1/2,1}}.

Thus we have

TMλ(uPKv,PNv)X~0,b~1λ\displaystyle\quad\|T_{M_{\lambda}}(uP_{K}v,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}
N3λ1/6PKuX1,b~λPKvX3/4,1/2,1PNvX3/4,1/2,1.\displaystyle\lesssim N^{-3}\lambda^{-1/6}\|P_{\sim K}u\|_{X^{1,\tilde{b}}_{\lambda}}\|P_{K}v\|_{X^{-3/4,1/2,1}}\|P_{N}v\|_{X^{-3/4,1/2,1}}.

Thus we obtain

TMλ(uP>1v,PNv)X~0,b~1λK2TMλ(uPKv,PNv)X~0,b~1λ\displaystyle\quad\|T_{M_{\lambda}}(uP_{>1}v,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}\leq\sum_{K\geq 2}\|T_{M_{\lambda}}(uP_{K}v,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}
KNN4λ1/6K3/4uX~1,b~λvF\displaystyle\lesssim\sum_{K\lesssim N}N^{-4}\lambda^{-1/6}K^{3/4}\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}
+KNN3λ1/6PKuX1,b~λPKvX3/4,1/2,1PNvX3/4,1/2,1\displaystyle\quad+\sum_{K\gg N}N^{-3}\lambda^{-1/6}\|P_{\sim K}u\|_{X^{1,\tilde{b}}_{\lambda}}\|P_{K}v\|_{X^{-3/4,1/2,1}}\|P_{N}v\|_{X^{-3/4,1/2,1}}
N13/4uX~1,b~λvF2+N3λ1/6uX~1,b~λvFPNvX3/4,1/2,1.\displaystyle\lesssim N^{-13/4}\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}^{2}+N^{-3}\lambda^{-1/6}\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}\|P_{N}v\|_{X^{-3/4,1/2,1}}.

Overall one has

TMλ(uv,v)X~9/4,b~1λλ1/6uX~1,b~λvF2.\displaystyle\|T_{M_{\lambda}}(uv,v)\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}}\lesssim\lambda^{-1/6}\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}^{2}.

For (5.4) we have

TMλ(|u|2u,v)X~9/4,b~1λ\displaystyle\|T_{M_{\lambda}}(|u|^{2}u,v)\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}} N9/4TMλ(|u|2u,PNv)X~0,b~1λl2N1\displaystyle\sim\|N^{9/4}\|T_{M_{\lambda}}(|u|^{2}u,P_{N}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}\|_{l^{2}_{N\gg 1}}
N9/4N3u^Lτ,ξ13PNvLt,x2l2N1\displaystyle\lesssim\|N^{9/4}N^{-3}\|\widehat{u}\|_{L_{\tau,\xi}^{1}}^{3}\|P_{N}v\|_{L_{t,x}^{2}}\|_{l^{2}_{N\gg 1}}
uX~1,b~λ3vF.\displaystyle\lesssim\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}^{3}\|v\|_{F}.

For (5.5) we have

TMλ(u,x(|u|2))X~9/4,b~1λ\displaystyle\|T_{M_{\lambda}}(u,\partial_{x}(|u|^{2}))\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}} N9/4TMλ(u,PNx(|u|2))X~0,b~1λl2N1\displaystyle\sim\|N^{9/4}\|T_{M_{\lambda}}(u,P_{N}\partial_{x}(|u|^{2}))\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}\|_{l^{2}_{N\gg 1}}
N9/4N3Nu^Lτ,ξ1PN(|u|2)Lt,x2l2N1\displaystyle\lesssim\|N^{9/4}N^{-3}N\|\widehat{u}\|_{L_{\tau,\xi}^{1}}\|P_{N}(|u|^{2})\|_{L_{t,x}^{2}}\|_{l^{2}_{N\gg 1}}
uX~1,b~λ|u|2X~λ1,0\displaystyle\lesssim\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\||u|^{2}\|_{\tilde{X}_{\lambda}^{1,0}}
uX~1,b~λ3.\displaystyle\lesssim\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}^{3}.

For (5.6) we have

TMλ(u,vxv)X~9/4,b~1λ\displaystyle\quad\|T_{M_{\lambda}}(u,v\partial_{x}v)\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}}
TMλ(u,x(P1vPNv))X~9/4,b~1λ+TMλ(u,x(P>1vP>1v))X~9/4,b~1λ.\displaystyle\lesssim\|T_{M_{\lambda}}(u,\partial_{x}(P_{1}vP_{\sim N}v))\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}}+\|T_{M_{\lambda}}(u,\partial_{x}(P_{>1}vP_{>1}v))\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}}.

For the first term one has

TMλ(u,x(P1vPNv))X~9/4,b~1λ\displaystyle\quad\|T_{M_{\lambda}}(u,\partial_{x}(P_{1}vP_{\sim N}v))\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}}
N9/4N3P1vPNvLt,x2u^Lτ,ξ1l2N1\displaystyle\lesssim\|N^{9/4}N^{-3}\|P_{1}vP_{\sim N}v\|_{L_{t,x}^{2}}\|\hat{u}\|_{L_{\tau,\xi}^{1}}\|_{l^{2}_{N\gg 1}}
N3/4P1vLx2LtPNvLxLt2l2N1uX~1,b~λ\displaystyle\lesssim\|N^{-3/4}\|P_{1}v\|_{L_{x}^{2}L_{t}^{\infty}}\|P_{\sim N}v\|_{L_{x}^{\infty}L_{t}^{2}}\|_{l^{2}_{N\gg 1}}\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}
uX~1,b~λvF2.\displaystyle\lesssim\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}^{2}.

For the second term one has

TMλ(u,x(P>1vP>1v))X~9/4,b~1λ2\displaystyle\quad\|T_{M_{\lambda}}(u,\partial_{x}(P_{>1}vP_{>1}v))\|_{\tilde{X}^{9/4,\tilde{b}-1}_{\lambda}}^{2}
N1N1/2τ1,ξ12φN(ξ1)ψN(ξ)|u^(τ1,ξ1)||(P>1v)2^|(ττ1,ξξ1)τ+λξ21b~L2τ,ξ2.\displaystyle\lesssim\sum_{N\gg 1}N^{1/2}\left\|\int_{\mathbb{R}_{\tau_{1},\xi_{1}}^{2}}\frac{\varphi_{N}(\xi_{1})\psi_{N}(\xi)|\hat{u}(\tau_{1},\xi_{1})||\widehat{(P_{>1}v)^{2}}|(\tau-\tau_{1},\xi-\xi_{1})}{\langle\tau+\lambda\xi^{2}\rangle^{1-\tilde{b}}}\right\|_{L^{2}_{\tau,\xi}}^{2}.

Without loss of generality we would assume that u^,v^0\hat{u},\hat{v}\geq 0. Let λ1=τ1+λξ12\lambda_{1}=\langle\tau_{1}+\lambda\xi_{1}^{2}\rangle, λ2=τ2ξ23\lambda_{2}=\langle\tau_{2}-\xi_{2}^{3}\rangle, λ3=λτ3ξ33\lambda_{3}=\langle\lambda\tau_{3}-\xi_{3}^{3}\rangle, λ=τ+λξ2\lambda=\langle\tau+\lambda\xi^{2}\rangle. Note that for ξ1+ξ2+ξ3=ξ\xi_{1}+\xi_{2}+\xi_{3}=\xi, τ1+τ2+τ3=τ\tau_{1}+\tau_{2}+\tau_{3}=\tau, |ξ1|N|\xi_{1}|\ll N, |ξ|N|\xi|\sim N one has

λ1+λ2+λ3+λ|ξ23+ξ33+λξ12λξ2|Nmax{|ξ2|,|ξ3|}2.\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda\gtrsim|\xi_{2}^{3}+\xi_{3}^{3}+\lambda\xi_{1}^{2}-\lambda\xi^{2}|\sim N\max\{|\xi_{2}|,|\xi_{3}|\}^{2}.

By symmetry we can assume |ξ2||ξ3||\xi_{2}|\gtrsim|\xi_{3}|. Let f1,f2,g1,g20f_{1},f_{2},g_{1},g_{2}\geq 0, Ω\Omega be the set |ξ1||ξ|N,λjLj,λL|\xi_{1}|\ll|\xi|\sim N,\lambda_{j}\sim L_{j},\lambda\sim L, |ξ2|N2|ξ3|N3|\xi_{2}|\sim N_{2}\gtrsim|\xi_{3}|\sim N_{3}. We claim: There exists ϵ>0\epsilon>0 such that

ξ1+ξ2+ξ3=ξ,τ1+τ2+τ3=τξ11χΩf1(τ1,ξ1)g1(τ2,ξ2)g2(τ3,ξ3)f2(τ,ξ)\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}+\xi_{3}=\xi,\\ \tau_{1}+\tau_{2}+\tau_{3}=\tau\end{subarray}}\langle\xi_{1}\rangle^{-1}\chi_{\Omega}f_{1}(\tau_{1},\xi_{1})g_{1}(\tau_{2},\xi_{2})g_{2}(\tau_{3},\xi_{3})f_{2}(\tau,\xi) (5.8)
(L1L2L3)12L1b~ϵN14ϵ(N2N3)34f1L2g1L2g2L2f2L2.\displaystyle\lesssim(L_{1}L_{2}L_{3})^{\frac{1}{2}}L^{1-\tilde{b}-\epsilon}N^{-\frac{1}{4}-\epsilon}(N_{2}N_{3})^{-\frac{3}{4}}\|f_{1}\|_{L^{2}}\|g_{1}\|_{L^{2}}\|g_{2}\|_{L^{2}}\|f_{2}\|_{L^{2}}.

Using this one has

τ1,ξ12φN(ξ1)ψN(ξ)|u^(τ1,ξ1)||(P>1v)2^|(ττ1,ξξ1)τ+λξ21b~L2τ,ξ\displaystyle\quad\left\|\int_{\mathbb{R}_{\tau_{1},\xi_{1}}^{2}}\frac{\varphi_{N}(\xi_{1})\psi_{N}(\xi)|\hat{u}(\tau_{1},\xi_{1})||\widehat{(P_{>1}v)^{2}}|(\tau-\tau_{1},\xi-\xi_{1})}{\langle\tau+\lambda\xi^{2}\rangle^{1-\tilde{b}}}\right\|_{L^{2}_{\tau,\xi}}
N1/4ϵ/2uX~1,b~λvF2\displaystyle\lesssim N^{-1/4-\epsilon/2}\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}^{2}

and then concludes the proof of (5.6). To show (5.8) we divide the integral into several parts. Let Lmax=max{L1,L2,L3,L}L_{\max}=\max\{L_{1},L_{2},L_{3},L\}.

If L=LmaxNN22L=L_{\max}\gtrsim NN_{2}^{2}, 0<ϵ10<\epsilon\ll 1, b~5/8ϵ\tilde{b}\leq 5/8-\epsilon, then one has

ξ1+ξ2+ξ3=ξ,τ1+τ2+τ3=τξ11χΩ,L=Lmaxf1(τ1,ξ1)g1(τ2,ξ2)g2(τ3,ξ3)f2(τ,ξ)\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}+\xi_{3}=\xi,\\ \tau_{1}+\tau_{2}+\tau_{3}=\tau\end{subarray}}\langle\xi_{1}\rangle^{-1}\chi_{\Omega,L=L_{\max}}f_{1}(\tau_{1},\xi_{1})g_{1}(\tau_{2},\xi_{2})g_{2}(\tau_{3},\xi_{3})f_{2}(\tau,\xi)
1(ξ11χλ1L1f1)Lx4Lt1(g1χλ2L2,|ξ2|N2)LxLt2\displaystyle\lesssim\|\mathscr{F}^{-1}(\langle\xi_{1}\rangle^{-1}\chi_{\lambda_{1}\sim L_{1}}f_{1})\|_{L_{x}^{4}L_{t}^{\infty}}\|\mathscr{F}^{-1}(g_{1}\chi_{\lambda_{2}\sim L_{2},|\xi_{2}|\sim N_{2}})\|_{L_{x}^{\infty}L_{t}^{2}}
1(g2χλ2L3,|ξ2|N3)Lx4Ltf2L2\displaystyle\quad\cdot\|\mathscr{F}^{-1}(g_{2}\chi_{\lambda_{2}\sim L_{3},|\xi_{2}|\sim N_{3}})\|_{L_{x}^{4}L_{t}^{\infty}}\|f_{2}\|_{L^{2}}
L11/2f1L2N21L21/2g1L2N31/4L31/2g2L2f2L2\displaystyle\lesssim L_{1}^{1/2}\|f_{1}\|_{L^{2}}N_{2}^{-1}L_{2}^{1/2}\|g_{1}\|_{L^{2}}N_{3}^{1/4}L_{3}^{1/2}\|g_{2}\|_{L^{2}}\|f_{2}\|_{L^{2}}
(L1L2L3)1/2L1b~ϵN1/4ϵ(N2N3)3/4f1L2g1L2g2L2f2L2.\displaystyle\lesssim(L_{1}L_{2}L_{3})^{1/2}L^{1-\tilde{b}-\epsilon}N^{-1/4-\epsilon}(N_{2}N_{3})^{-3/4}\|f_{1}\|_{L^{2}}\|g_{1}\|_{L^{2}}\|g_{2}\|_{L^{2}}\|f_{2}\|_{L^{2}}.

If L2=LmaxNN22L_{2}=L_{\max}\gtrsim NN_{2}^{2}, b~7/124ϵ/3\tilde{b}\leq 7/12-4\epsilon/3, one has

ξ1+ξ2+ξ3=ξ,τ1+τ2+τ3=τξ11χΩ,L=Lmaxf1(τ1,ξ1)g1(τ2,ξ2)g2(τ3,ξ3)f2(τ,ξ)\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}+\xi_{3}=\xi,\\ \tau_{1}+\tau_{2}+\tau_{3}=\tau\end{subarray}}\langle\xi_{1}\rangle^{-1}\chi_{\Omega,L=L_{\max}}f_{1}(\tau_{1},\xi_{1})g_{1}(\tau_{2},\xi_{2})g_{2}(\tau_{3},\xi_{3})f_{2}(\tau,\xi)
1(ξ11χλ1L1f1)L4xLtg1L2\displaystyle\lesssim\|\mathscr{F}^{-1}(\langle\xi_{1}\rangle^{-1}\chi_{\lambda_{1}\sim L_{1}}f_{1})\|_{L^{4}_{x}L_{t}^{\infty}}\|g_{1}\|_{L^{2}}
1(g2χλ2L3,|ξ2|N3)LxLt21(f2χλL,|ξ|N)Lx4Lt\displaystyle\quad\cdot\|\mathscr{F}^{-1}(g_{2}\chi_{\lambda_{2}\sim L_{3},|\xi_{2}|\sim N_{3}})\|_{L_{x}^{\infty}L_{t}^{2}}\|\mathscr{F}^{-1}(f_{2}\chi_{\lambda\sim L,|\xi|\sim N})\|_{L_{x}^{4}L_{t}^{\infty}}
(L1L3L)1/2N31N1/4f1L2g1L2g2L2f2L2\displaystyle\lesssim(L_{1}L_{3}L)^{1/2}N_{3}^{-1}N^{1/4}\|f_{1}\|_{L^{2}}\|g_{1}\|_{L^{2}}\|g_{2}\|_{L^{2}}\|f_{2}\|_{L^{2}}
(L1L2L3)1/2L1b~ϵN1/4ϵ(N2N3)3/4f1L2g1L2g2L2f2L2.\displaystyle\lesssim(L_{1}L_{2}L_{3})^{1/2}L^{1-\tilde{b}-\epsilon}N^{-1/4-\epsilon}(N_{2}N_{3})^{-3/4}\|f_{1}\|_{L^{2}}\|g_{1}\|_{L^{2}}\|g_{2}\|_{L^{2}}\|f_{2}\|_{L^{2}}.

The argument for L3=LmaxL_{3}=L_{\max} is similar. If L1=LmaxL_{1}=L_{\max}, b~7/124ϵ/3\tilde{b}\leq 7/12-4\epsilon/3 one has

ξ1+ξ2+ξ3=ξ,τ1+τ2+τ3=τξ11χΩ,L=Lmaxf1(τ1,ξ1)g1(τ2,ξ2)g2(τ3,ξ3)f2(τ,ξ)\displaystyle\quad\int_{\begin{subarray}{c}\xi_{1}+\xi_{2}+\xi_{3}=\xi,\\ \tau_{1}+\tau_{2}+\tau_{3}=\tau\end{subarray}}\langle\xi_{1}\rangle^{-1}\chi_{\Omega,L=L_{\max}}f_{1}(\tau_{1},\xi_{1})g_{1}(\tau_{2},\xi_{2})g_{2}(\tau_{3},\xi_{3})f_{2}(\tau,\xi)
f1L21(g1χλ2L2,|ξ3|N2)LxLt2\displaystyle\lesssim\|f_{1}\|_{L^{2}}\|\mathscr{F}^{-1}(g_{1}\chi_{\lambda_{2}\sim L_{2},|\xi_{3}|\sim N_{2}})\|_{L_{x}^{\infty}L_{t}^{2}}
1(g2χλ3L3,|ξ3|N3)Lx4Lt1(f2χλL,|ξ|N)Lx4Lt\displaystyle\quad\cdot\|\mathscr{F}^{-1}(g_{2}\chi_{\lambda_{3}\sim L_{3},|\xi_{3}|\sim N_{3}})\|_{L_{x}^{4}L_{t}^{\infty}}\|\mathscr{F}^{-1}(f_{2}\chi_{\lambda\sim L,|\xi|\sim N})\|_{L_{x}^{4}L_{t}^{\infty}}
(L2L3L)1/2N21N31/4N1/4f1L2g1L2g2L2f2L2\displaystyle\lesssim(L_{2}L_{3}L)^{1/2}N_{2}^{-1}N_{3}^{1/4}N^{1/4}\|f_{1}\|_{L^{2}}\|g_{1}\|_{L^{2}}\|g_{2}\|_{L^{2}}\|f_{2}\|_{L^{2}}
(L1L2L3)1/2L1b~ϵN1/4ϵ(N2N3)3/4f1L2g1L2g2L2f2L2.\displaystyle\lesssim(L_{1}L_{2}L_{3})^{1/2}L^{1-\tilde{b}-\epsilon}N^{-1/4-\epsilon}(N_{2}N_{3})^{-3/4}\|f_{1}\|_{L^{2}}\|g_{1}\|_{L^{2}}\|g_{2}\|_{L^{2}}\|f_{2}\|_{L^{2}}.

Thus we obtain (5.8) and then (5.3).

(5.7) is equivalent to

N9/4PN(P>N/8B(u,v)v)X~λ0,b~1l2NuX~1,bλvF2.\|N^{9/4}\|P_{N}(P_{>N/8}B(u,v)v)\|_{\tilde{X}_{\lambda}^{0,\tilde{b}-1}}\|_{l^{2}_{N}}\lesssim\|u\|_{\tilde{X}^{1,b}_{\lambda}}\|v\|_{F}^{2}.

For the term PN(PNB(u,v)P1v)=PN(B(u,PNv)P1v)P_{N}(P_{\gtrsim N}B(u,v)P_{1}v)=P_{N}(B(u,P_{\sim N}v)P_{1}v) we have

PN(PNB(u,v)P1v)X~0,b~1λ\displaystyle\quad\|P_{N}(P_{\gtrsim N}B(u,v)P_{1}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}
(PNB(u,PNv))P1vL2t,x\displaystyle\leq\|(P_{\gtrsim N}B(u,P_{\sim N}v))P_{1}v\|_{L^{2}_{t,x}}
N3(xu)(t,ξ)Lξ1LtPNvLt,x2vF.\displaystyle\lesssim N^{-3}\|(\mathscr{F}_{x}u)(t,\xi)\|_{L_{\xi}^{1}L_{t}^{\infty}}\|P_{\sim N}v\|_{L_{t,x}^{2}}\|v\|_{F}.

Thus

N9/4(P>N/8B(u,v)P1v)X~λ0,b~1l2N1\displaystyle\|N^{9/4}(P_{>N/8}B(u,v)P_{1}v)\|_{\tilde{X}_{\lambda}^{0,\tilde{b}-1}}\|_{l^{2}_{N\gg 1}} u^L1τ,ξN3/4PNvl2N1Lt,x2vF\displaystyle\lesssim\|\hat{u}\|_{L^{1}_{\tau,\xi}}\|N^{-3/4}P_{\sim N}v\|_{l^{2}_{N\gg 1}L_{t,x}^{2}}\|v\|_{F}
uX~1,b~λvF2.\displaystyle\lesssim\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}^{2}.

For other cases, we would assume that u^,v^0\hat{u},\hat{v}\geq 0. Let K2K\geq 2.

PN(P>N/8B(u,v)PKv)X~λ0,b~12\displaystyle\quad\|P_{N}(P_{>N/8}B(u,v)P_{K}v)\|_{\tilde{X}_{\lambda}^{0,\tilde{b}-1}}^{2}
2ψ(ξ/N)φ>N/8(ξ1)B(u,v)^(τ1,ξ1)PKv^(ττ1,ξξ1)τ+λξ222b~dτ1dξ1L2τ,ξ2.\displaystyle\lesssim\left\|\int_{\mathbb{R}^{2}}\frac{\psi(\xi/N)\varphi_{>N/8}(\xi_{1})\widehat{B(u,v)}(\tau_{1},\xi_{1})\widehat{P_{K}v}(\tau-\tau_{1},\xi-\xi_{1})}{\langle\tau+\lambda\xi^{2}\rangle^{2-2\tilde{b}}}~{}d\tau_{1}d\xi_{1}\right\|_{L^{2}_{\tau,\xi}}^{2}.

If KNK\lesssim N we only need to consider PN(B(PNu,PNv)PKv)P_{N}(B(P_{\ll N}u,P_{\sim N}v)P_{K}v). This case can reduce to (5.8). We have

PN(B(PNu,PNv)PKv)X~0,b~1λN13/4ϵuX~1,b~λvF2.\|P_{N}(B(P_{\ll N}u,P_{\sim N}v)P_{K}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}\lesssim N^{-13/4-\epsilon}\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}^{2}.

Thus

KNN9/4PN(B(u,v)PKv)X~0,b~1λl2N1uX~1,b~λvF2.\displaystyle\left\|\sum_{K\lesssim N}N^{9/4}\|P_{N}(B(u,v)P_{K}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}\right\|_{l^{2}_{N\gg 1}}\lesssim\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}^{2}.

If KNK\gg N we only need to consider PN(B(PKu,PKv)PKv)P_{N}(B(P_{\ll K}u,P_{\sim K}v)P_{K}v). Following the argument for (5.8) one has

PN(B(PKu,PKv)PKv)X~0,b~1λ\displaystyle\quad\|P_{N}(B(P_{\ll K}u,P_{\sim K}v)P_{K}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}
N13/4ϵuX~1,b~λK3/2PKvY0,1/2,1PKvY0,1/2,1.\displaystyle\lesssim N^{-13/4-\epsilon}\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}K^{-3/2}\|P_{\sim K}v\|_{Y^{0,1/2,1}}\|P_{K}v\|_{Y^{0,1/2,1}}.

Thus we obtain

KNN9/4PN(B(u,v)PKv)X~0,b~1λl2N1uX~1,b~λvF2.\displaystyle\left\|\sum_{K\gg N}N^{9/4}\|P_{N}(B(u,v)P_{K}v)\|_{\tilde{X}^{0,\tilde{b}-1}_{\lambda}}\right\|_{l^{2}_{N\gg 1}}\lesssim\|u\|_{\tilde{X}^{1,\tilde{b}}_{\lambda}}\|v\|_{F}^{2}.

We finish the proof of the lemma. ∎

Lemma 5.14.

Let s>0,0<T<1s>0,0<T<1. There exists ϵ0>0\epsilon_{0}>0 such that for any 0<ϵϵ00<\epsilon\leq\epsilon_{0} one has

NPN(P>N/8u~v)X~s,1/2+2ϵλ,Tλ1/2u~X~s,1/2+ϵλ,TvFT.\left\|\sum_{N}P_{N}(P_{>N/8}\tilde{u}v)\right\|_{\tilde{X}^{s,-1/2+2\epsilon}_{\lambda,T}}\lesssim\lambda^{-1/2}\|\tilde{u}\|_{\tilde{X}^{s,1/2+\epsilon}_{\lambda,T}}\|v\|_{F_{T}}.
Proof.

For low frequency of vv we have

NPN(P>N/8u~P1v)X~s,1/2+2ϵλ,T\displaystyle\left\|\sum_{N}P_{N}(P_{>N/8}\tilde{u}P_{1}v)\right\|_{\tilde{X}^{s,-1/2+2\epsilon}_{\lambda,T}} NsP>N/8u~P1vLT2l2NLx2\displaystyle\lesssim\|N^{s}P_{>N/8}\tilde{u}P_{1}v\|_{L_{T}^{2}l^{2}_{N}L_{x}^{2}}
T1/2u~LtHxsP1vLx,T\displaystyle\lesssim T^{1/2}\|\tilde{u}\|_{L_{t}^{\infty}H_{x}^{s}}\|P_{1}v\|_{L_{x,T}^{\infty}}
T1/2u~X~s,1/2+ϵλ,TvFT.\displaystyle\lesssim T^{1/2}\|\tilde{u}\|_{\tilde{X}^{s,1/2+\epsilon}_{\lambda,T}}\|v\|_{F_{T}}.

For other parts we only need to show

PN(P>N/8u~P>1v)X~0,1/2+2ϵλλ1/2P>N/8u~X~0,1/2+ϵλvY3/4,1/2,1.\|P_{N}(P_{>N/8}\tilde{u}P_{>1}v)\|_{\tilde{X}^{0,-1/2+2\epsilon}_{\lambda}}\lesssim\lambda^{-1/2}\|P_{>N/8}\tilde{u}\|_{\tilde{X}^{0,1/2+\epsilon}_{\lambda}}\|v\|_{Y^{-3/4,1/2,1}}.

In fact one has

u~P>1vX~0,1/2+2ϵλλ1/2u~X~0,1/2+ϵλvY3/4,1/2,1.\|\tilde{u}P_{>1}v\|_{\tilde{X}^{0,-1/2+2\epsilon}_{\lambda}}\lesssim\lambda^{-1/2}\|\tilde{u}\|_{\tilde{X}^{0,1/2+\epsilon}_{\lambda}}\|v\|_{Y^{-3/4,1/2,1}}.

See for example Lemma 3.4 (a) in [5]. ∎

Lemma 5.15.

Let s>1/2,T>0s>1/2,T>0. u,v,wCTHxsu,v,w\in C_{T}H_{x}^{s}. Then

uv¯wX~s,0λ,TT1/2uCTHxsvCTHxswCTHxs.\displaystyle\|u\bar{v}w\|_{\tilde{X}^{s,0}_{\lambda,T}}\lesssim T^{1/2}\|u\|_{C_{T}H_{x}^{s}}\|v\|_{C_{T}H_{x}^{s}}\|w\|_{C_{T}H_{x}^{s}}.
Proof.

By algebraic property of HsH^{s}, s>1/2s>1/2 we have

uv¯wX~s,0λ,T=Js(uv¯w)Lx,T2T1/2JsuLTLx2JsvLTLx2JswLTLx2.\displaystyle\|u\bar{v}w\|_{\tilde{X}^{s,0}_{\lambda,T}}=\|J^{s}(u\bar{v}w)\|_{L_{x,T}^{2}}\lesssim T^{1/2}\|J^{s}u\|_{L_{T}^{\infty}L_{x}^{2}}\|J^{s}v\|_{L_{T}^{\infty}L_{x}^{2}}\|J^{s}w\|_{L_{T}^{\infty}L_{x}^{2}}.

We conclude the proof. ∎

By Lemmas 5.125.15 and standard argument, we obtain

Proposition 5.16.

Let (u,v)X~λ,T1,b×FT(u,v)\in\tilde{X}_{\lambda,T}^{1,b}\times F_{T} be a solution of (4.10) with initial data u0Hs1u_{0}\in H^{s_{1}}, 5/4<s9/45/4<s\leq 9/4. Then (u,v)C([0,T];Hs×H3/4)(u,v)\in C([0,T];H^{s}\times H^{-3/4}). Also the mapping Hs×H3/4C([0,T];Hs×H3/4),(u0,v0)(u,v)H^{s}\times H^{-3/4}\longrightarrow C([0,T];H^{s}\times H^{-3/4}),~{}(u_{0},v_{0})\mapsto(u,v) is continuous.

Proof.

(u,v)X~λ,T1,b×FT(u,v)\in\tilde{X}_{\lambda,T}^{1,b}\times F_{T} be the solution of (4.10). Then by Lemmas 5.135.15, we obtain the unique solution u~X~s,b~λ,T\tilde{u}\in\tilde{X}^{s,\tilde{b}}_{\lambda,T} of equation (5.2) by standard contraction mapping argument. Then by Lemma 5.12, u=u~+λB(u,v)C([0,T];Hs)u=\tilde{u}+\lambda B(u,v)\in C([0,T];H^{s}). Since the mapping (u0,v0)B(u,v)(u_{0},v_{0})\mapsto B(u,v) and (u0,v0)u~(u_{0},v_{0})\mapsto\tilde{u} are continuous from Hs×H3/4H^{s}\times H^{-3/4} to C([0,T];Hs×H3/4)C([0,T];H^{s}\times H^{-3/4}), we finish the proof. ∎

Remark 5.17.

For the region s2>3/4s_{2}>-3/4, s2+2<s1s2+3s_{2}+2<s_{1}\leq s_{2}+3, the argument is simpler than the case s2=3/4s_{2}=-3/4. In fact, for s2>3/4s_{2}>-3/4, let λ=1\lambda=1 in the former argument and we substitute X~1,bλ\tilde{X}^{1,b}_{\lambda}, FF by Xs2+2,b1X^{s_{2}+2,b_{1}}, Ys2,b2Y^{s_{2},b_{2}} respectively. Let (u,v)Xs2+2,b1T×Ys2,b2T(u,v)\in X^{s_{2}+2,b_{1}}_{T}\times Y^{s_{2},b_{2}}_{T} be the solution of (S-KdV) with initial data (u0,v0)Hs1×Hs2(u_{0},v_{0})\in H^{s_{1}}\times H^{s_{2}}, s2+2<s1s2+3s_{2}+2<s_{1}\leq s_{2}+3. Then we have B(u,v)CTHs2+3xB(u,v)\in C_{T}H^{s_{2}+3}_{x} and

C1(u,v),D1(u,v),C2(u),C3(u,v),R(B(u,v),v)Xs2+3,b~T\displaystyle C_{1}(u,v),D_{1}(u,v),C_{2}(u),C_{3}(u,v),R(B(u,v),v)\in X^{s_{2}+3,\tilde{b}}_{T}

for some b~>1/2\tilde{b}>1/2. Combining with Lemmas 5.145.15, we obtain the unique solution u~Xs1,b~T\tilde{u}\in X^{s_{1},\tilde{b}}_{T} of equation (5.2). Then by the same argument as the case s2=3/4s_{2}=-3/4, we know that (u,v)(u,v) is in C([0,T];Hs1×Hs2)C([0,T];H^{s_{1}}\times H^{s_{2}}) and relies on (u0,v0)Hs1×Hs2(u_{0},v_{0})\in H^{s_{1}}\times H^{s_{2}} continuously.

Acknowledgments: The first and second authors are supported in part by the NSFC, grant 12171007. The second author is also supported in part by the NSFC, grant 12301116. The authors would like to thank Professors Boling Guo and Baoxiang Wang for their invaluable support and encouragement.

References

  • [1] D. Bekiranov, T. Ogawa, and G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2907–2919.
  • [2] C. Benea and C. Muscalu, Multiple vector-valued inequalities via the helicoidal method, Anal. & PDE 9 (2016), no. 8, 1931–1988.
  • [3] A. Corcho and F. Linares,  Well-posedness for the Schrödinger-Korteweg-de Vries system, Tran. Amer. Math. Soc. 359 (2007), no. 9, 4089–4106.
  • [4] B. Guo and C. Miao, Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations, Acta Math. Sin. 15 (1999), 215–224.
  • [5] Z. Guo and Y. Wang, On  the  well-posedness of the Schrödinger-Korteweg- de Vries system, J. Differential Equations 249 (2010), no. 10, 2500–2520.
  • [6] M. Hadac, S. Herr, and H. Koch, Well-posedness and scattering for the KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 917–941.
  • [7] B. Harrop-Griffiths, R. Killip, and M. Visan, Sharp well-posedness for the cubic NLS and mKdV in Hs()H^{s}(\mathbb{R}), arXiv:2003.05011 (2020).
  • [8] C. E. Kenig, G. Ponce, and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1, 33–69.
  • [9]  , A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573–603.
  • [10]  , On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617–633.
  • [11] R. Killip and M. Vişan, KdV is well-posed in H1H^{-1}, Ann. of Math. 190 (2019), no. 1, 249–305.
  • [12] H. Koch and D. Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 (2005), no. 2, 217–284.
  • [13] L. Molinet and F. Ribaud, Well-posedness results for the generalized Benjamin–Ono equation with small initial data, J. Math. Pures Appl. 83 (2004), no. 2, 277–311.
  • [14] T. Tao, Multilinear weighted convolution of L2L^{2} functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123 (2001), no. 5, 839–908.
  • [15] M. Tsutsumi, Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation, Math. Sci. Appl 2 (1993), 513–528.
  • [16] H. Wang and S. Cui, The Cauchy problem for the Schrödinger–KdV system, J. Differential Equations 250 (2011), no. 9, 3559–3583.

Yingzhe Ban: The Graduate School of China Academy of Engineering Physics, Beijing, 100088, P.R. China

E-mail address: [email protected]

Jie Chen: School of Sciences, Jimei University, Xiamen 361021, P.R. China

E-mail address: [email protected]

Ying Zhang: The Graduate School of China Academy of Engineering Physics, Beijing, 100088, P.R. China

E-mail address: [email protected]