This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Local well-posedness for dispersion generalized Benjamin-Ono equations in Fourier-Lebesgue spaces

Zijun Chen School of Mathematics, Monash University, VIC 3800, Australia [email protected]
Abstract.

We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation where 0<α10<\alpha\leq 1

{tu+|x|1+αxu+uux=0,u(x,0)=u0(x),\displaystyle\left\{\begin{array}[]{l}\partial_{t}u+|\partial_{x}|^{1+\alpha}\partial_{x}u+uu_{x}=0,\\ u(x,0)=u_{0}(x),\end{array}\right.

is locally well-posed in the Fourier-Lebesgue space H^rs()\widehat{H}^{s}_{r}(\mathbb{R}). This is proved via Picard iteration arguments using Xs,bX^{s,b}-type space adapted to the Fourier-Lebesgue space, inspired by the work of Grünrock and Vega. Note that, previously, Molinet, Saut and Tzvetkov [22] proved that the solution map is not C2C^{2} in HsH^{s} for any ss if 0α<10\leq\alpha<1. However, in the Fourier-Lebesgue space, we have a stronger smoothing effect to handle the high×lowhigh\times low interactions.

Key words and phrases:
dgBO equations, local well-posedness, Fourier-Lebesgue spaces
2020 Mathematics Subject Classification:
35E15, 35Q53

1. Introduction

In this paper, we consider the Cauchy problem for the dispersion generalized Benjamin-Ono equation (dgBO)

{tu+|x|1+αxu+uux=0,(x,t)2,u(x,0)=u0(x),\displaystyle\left\{\begin{array}[]{l}\partial_{t}u+|\partial_{x}|^{1+\alpha}\partial_{x}u+uu_{x}=0,\ (x,t)\in{\mathbb{R}}^{2},\\ u(x,0)=u_{0}(x),\end{array}\right. (1.3)

where 0α10\leq\alpha\leq 1. Here u:2u:{\mathbb{R}}^{2}{\rightarrow}{\mathbb{R}} is a real-valued function and |x||\partial_{x}| is the Fourier multiplier operator with symbol |ξ||\xi|. These equations arise as mathematical models for the weakly nonlinear propagation of long waves. The case α=0\alpha=0 corresponds to the Benjamin-Ono equation and the case α=1\alpha=1 corresponds to the Korteweg-de Vries equation. The equation (1.3) is invariant under the following scaling transform:

u(x,t)uλ(x,t)=λ1+α2u(λx,λ2+αt),λ>0.u(x,t)\rightarrow u_{\lambda}(x,t)=\lambda^{\frac{1+\alpha}{2}}u\left(\lambda x,\lambda^{2+\alpha}t\right),\quad\lambda>0. (1.4)

The scaling critical Sobolev space of (1.3) is H˙1+α2\dot{H}^{-\frac{1+\alpha}{2}} in the sense that the homogeneous Sobolev norm is invariant under the scaling transform (1.4).

The low regularity well-posedness of (1.3) in Sobolev spaces Hs()H^{s}(\mathbb{R}) has been extensively studied in recent years; we will summarize the most recent findings.

α=0\alpha=0: (1.3) is known as the Benjamin-Ono equation. Ponce [23] first proved C0C^{0} local well-posedness (C0C^{0} LWP) in HsH^{s} for s32s\geq\frac{3}{2} using the energy method with enhanced dispersive smoothing. Later, Koch-Tzvetkov [21] refined the energy method and smoothing effect to improve LWP for s>54s>\frac{5}{4}. This approach was further refined by Kenig-Keonig [17], which led to LWP for s>98s>\frac{9}{8}.

Tao [25] applied a gauge transformation to effectively remove the derivative (or at least the worst terms that involve the derivative) from the nonlinearity and obtained the global well-posedness (GWP) for s1s\geq 1. By a synthesis of Tao’s gauge transformation and Xs,bX^{s,b} techniques, Ionescu-Kenig [12] improved the range to s0s\geq 0. Recently, Killip-Laurens-Visan [18] obtained a sharp GWP for s>12s>-\frac{1}{2} by using a new gauge transform and delving into the complete integrability of BO equations.

α=1\alpha=1: (1.3) is the KdV equation. The first C2C^{2} local well-posedness by contraction principle was proved by Kenig-Ponce-Vega [15] for s>34s>\frac{3}{4}. Bourgain [1] extended this result to s0s\geq 0 by developing Xs,bX^{s,b} spaces. Then by developing the bilinear estimates in Xs,bX^{s,b} space, Kenig-Ponce-Vega [16] were able to prove local well-posedness for s>34s>-\frac{3}{4}. Christ-Colliander-Tao [2], Guo [8] and Kishimoto [20] discussed the endpoint s=34s=-\frac{3}{4}. Recently, Killip-Visan [19] obtained a sharp C0C^{0} GWP for s1s\geq-1 by using similar strategies mentioned above for BO equations.

0<α<10<\alpha<1: Kenig-Ponce-Vega [14] have shown that (1.3) is C0C^{0} locally well-posed provided s34(2α)s\geq\frac{3}{4}(2-\alpha), using the energy method with enhanced smoothing effect. The Sobolev index has been pushed down to s>1αs>1-\alpha by Guo [9]. Herr-Ionescu-Kenig-Koch [11] used a para-differential renormalization method to show the range of s0s\geq 0.

Note that there is only C0C^{0} local well-posedness in HsH^{s} if 0α<10\leq\alpha<1. This indicates that only the HsH^{s} assumption on the initial data is not sufficient to prove local well-posedness of dgBO via Picard iteration, as the ill-posedness result from Molinet-Saut-Tzvetkov [22], by showing the solution mapping fails to be C2C^{2} smooth from HsH^{s} to C([0,T];Hs)C\left([0,T];H^{s}\right) at the origin for any ss. The reason is that the dispersive effect of the dispersive group of dgBO is too weak to recover the derivative in the nonlinearity. Hence the high×lowhigh\times low interactions break down the C2C^{2} smoothness.

Therefore, to study the well-posedness of dgBO when 0α10\leq\alpha\leq 1 in the sense that the solution mapping is uniformly continuous, we might choose to abandon HsH^{s} and prove it still via contraction mapping principle in some other space of initial data. For instance, Herr [10] applied a weighted Sobolev data space to obtain the well-posedness of dgBO equations for 0<α<10<\alpha<1. We also got some inspiration from the work of Grünrock and Vega. Grünrock [5] obtained LWP of the modified KdV equation in Fourier-Lebesgue spaces H^rs\widehat{H}^{s}_{r} for 43<r2\frac{4}{3}<r\leq 2 and s1212rs\geq\frac{1}{2}-\frac{1}{2r}, which was enhanced by Grünrock-Vega [6] to 1<r21<r\leq 2 and s1212rs\geq\frac{1}{2}-\frac{1}{2r}. Furthermore, Grünrock in [7] studied the hierarchies of higher order mKdV and KdV equations systematically by using a mixed resolution space X^r,ps,b{\widehat{X}}^{s,b}_{r,p} where the time parameter pp depends on the value of rr. This initial data space, Fourier-Lebesgue space H^rs\widehat{H}^{s}_{r}, involves LrL^{r}-type integrability to a spatial weight, in addition to HsH^{s} regularity, where the norm is defined by

fH^rs():=ξsf^(ξ)Lξr,1/r+1/r=1\|f\|_{\widehat{H}_{r}^{s}(\mathbb{R})}:=\left\|\langle\xi\rangle^{s}\widehat{f}(\xi)\right\|_{L_{\xi}^{r^{\prime}}},1/r+1/r^{\prime}=1 (1.5)

for s,1rs\in\mathbb{R},1\leq r\leq\infty. From the scaling point of view, the spaces H^rs\widehat{H}^{s}_{r} behave like the Bessel potential spaces Hrs{H}^{s}_{r} which are embedded in H^rs\widehat{H}^{s}_{r} for 1r21\leq r\leq 2 by Hausdorff-Young inequality, and like HσH^{\sigma} if s1r+12=σs-\frac{1}{r}+\frac{1}{2}=\sigma.

Now, we state our main result:

Theorem 1.1.

Let 0<α10<\alpha\leq 1 and 1<r<1+α1<r<1+\alpha. The Cauchy problem (1.3) is locally well-posed in H^rs()\widehat{H}_{r}^{s}(\mathbb{R}) if

s>1α+2r+α2r.s>-1-\alpha+\frac{2}{r}+\frac{\alpha}{2r}. (1.6)

This paper emphasises the local well-posedness result, which can be obtained by the contraction mapping principle so that the flow map is real analytic. Since the dispersive effect of dgBO is weak when 0α<10\leq\alpha<1, it previously failed to prove the local well-posedness by Picard iteration in the classical Sobolev space HsH^{s}. However, we observe a stronger local smoothing effect in H^rs\widehat{H}_{r}^{s} when r<2r<2, hence we may expect something better in this type of space. The answer is yes and the contraction mapping principle works.

2. Function spaces and linear estimates

We use the notation XYX\lesssim Y for X,YX,Y\in\mathbb{R} to denote that there exists a constant C>0C>0 such that XCYX\leq CY. The notation XYX\sim Y denotes that there exist positive constants c,Cc,C such that cYXCYcY\leq X\leq CY. For aa\in{\mathbb{R}}, a±a\pm denotes a±εa\pm\varepsilon for any sufficiently small ε>0\varepsilon>0. We use capitalized variables {N,L,N1,N2,}\{N,L,N_{1},N_{2},\cdots\} to denote dyadic numbers, unless otherwise specified. u^\widehat{u} denotes the standard Fourier transform xu\mathcal{F}_{x}u, tu\mathcal{F}_{t}u or t,xu\mathcal{F}_{t,x}u. Let ω(ξ)=ξ|ξ|1+α\omega(\xi)=-\xi|\xi|^{1+\alpha} be the dispersion relation associated with the equation (1.3) and Wα(t)=1eitω(ξ)W_{\alpha}(t)={\mathcal{F}}^{-1}e^{it\omega(\xi)}{\mathcal{F}} be the linear propagator.

Let ψC0()\psi\in C_{0}^{\infty}({\mathbb{R}}) be a real-valued, non-negative, even, and radially-decreasing function such that suppψ[5/4,5/4]{\mbox{supp}}\psi\subset[-5/4,5/4] and ψ1\psi\equiv 1 in [1,1][-1,1]. +={0}{\mathbb{Z}}_{+}={\mathbb{N}}\cup\{0\}. For a dyadic number N2+N\in 2^{{\mathbb{Z}}_{+}}, denote χ(ξ):=ψ(ξ)ψ(2ξ)\chi(\xi):=\psi(\xi)-\psi(2\xi) and χN:=χ(N1)\chi_{N}:=\chi(N^{-1}\cdot). The Littlewood-Paley projectors for frequency and modulation are defined by

P1f^=ψ(ξ)f^,\displaystyle\widehat{P_{1}f}=\psi(\xi)\widehat{f}, PNf^=χN(ξ)f^forN2;\displaystyle\quad\widehat{P_{N}f}=\chi_{N}(\xi)\widehat{f}\ \text{for}\ N\geq 2; (2.1)
Q1f^=ψ(τω(ξ))f^,\displaystyle\widehat{Q_{1}f}=\psi(\tau-\omega(\xi))\widehat{f}, QLf^=χL(τω(ξ))f^forL2.\displaystyle\quad\widehat{Q_{L}f}=\chi_{L}(\tau-\omega(\xi))\widehat{f}\ \text{for}\ L\geq 2.

The Fourier-Lebesgue type Bourgain space X^rs,b\widehat{X}_{r}^{s,b} associated to (1.3) is defined by the norm

uX^rs,b=ξsτω(ξ)bu^(ξ,τ)Lτ,ξr\|u\|_{\widehat{X}_{r}^{s,b}}=\left\|\langle\xi\rangle^{s}\langle\tau-\omega(\xi)\rangle^{b}\widehat{u}(\xi,\tau)\right\|_{L^{r^{\prime}}_{\tau,\xi}} (2.2)

for s,bs,b\in\mathbb{R} and 1r1\leq r\leq\infty, where =(1+||2)12\langle\cdot\rangle=(1+|\cdot|^{2})^{\frac{1}{2}}. When s=b=0s=b=0, we write X^rs,b\widehat{X}^{s,b}_{r} as L^t,xr\widehat{L}^{r}_{t,x} for simplicity. We use the dyadic frequency localization operators PNP_{N} and QLQ_{L} to rewrite (2.2) as

uX^rs,b=(N,LNsrLbrPNQLuL^t,xrr)1r.\|u\|_{\widehat{X}^{s,b}_{r}}=\left(\sum_{N,L}N^{sr^{\prime}}L^{br^{\prime}}\left\|P_{N}Q_{L}u\right\|_{\widehat{L}_{t,x}^{r}}^{r^{\prime}}\right)^{\frac{1}{r^{\prime}}}. (2.3)

By slightly modifying the proof of mKdV equations for the unitary group {etx3}\{e^{-t\partial_{x}^{3}}\} in [5], it is easy to obtain some linear estimates for the unitary group {et|x|1+α}\{e^{-t|\partial_{x}|^{1+\alpha}}\} in X^rs,b\widehat{X}^{s,b}_{r} spaces.

Lemma 2.1 (Extension Lemma).

Let ZZ be any space-time Banach space satisfying the time modulation estimate

g(t)F(t,x)ZgLt()F(t,x)Z\left\|g(t)F(t,x)\right\|_{Z}\leq\|g\|_{L_{t}^{\infty}({\mathbb{R}})}\|F(t,x)\|_{Z} (2.4)

for any FZF\in Z and gLt()g\in L_{t}^{\infty}({\mathbb{R}}). Let T:(h1,,hk)T(h1,,hk)T:(h_{1},\cdots,h_{k})\rightarrow T(h_{1},\cdots,h_{k}) be a spatial multilinear operator for which one has the estimate

T(Wα(t)f1,,Wα(t)fk)Zj=1kfjL^xr\left\|T(W_{\alpha}(t)f_{1},\cdots,W_{\alpha}(t)f_{k})\right\|_{Z}{\lesssim}\prod_{j=1}^{k}\|f_{j}\|_{\widehat{L}_{x}^{r}} (2.5)

for all f1,,fkL^xrf_{1},\cdots,f_{k}\in\widehat{L}^{r}_{x}. Then for b>1/rb>1/r, we have the estimate

T(u1,,uk)Zkj=1kujX^r0,b\|T(u_{1},\cdots,u_{k})\|_{Z}{\lesssim}_{k}\prod_{j=1}^{k}\|u_{j}\|_{\widehat{X}_{r}^{0,b}} (2.6)

for all u1,,ukX^r0,bu_{1},\cdots,u_{k}\in\widehat{X}_{r}^{0,b}.

Proof.

When k=1k=1, this is proved in Lemma 2.1 [5]. For k2k\geq 2, one can prove it by slightly modifying the proof in [26] Lemma 4.1 and [5] Lemma 2.1. We omit the details. ∎

As a corollary of Lemma 2.1, if b>1/rb>1/r, we have the following embedding

X^rs,bC(;H^rs).\widehat{X}_{r}^{s,b}\subset C(\mathbb{R};\widehat{H}^{s}_{r}). (2.7)
Lemma 2.2 (Strichartz estimates).

Assume that (q,p)(q,p) satisfies

2q+1p=1r.\frac{2}{q}+\frac{1}{p}=\frac{1}{r}. (2.8)

Then for all ϕ𝒮()\phi\in{\mathcal{S}}({\mathbb{R}})

Dα/qWα(t)ϕLtqLxpϕL^xr\displaystyle\|D^{\alpha/q}W_{\alpha}(t)\phi\|_{L_{t}^{q}L_{x}^{p}}{\lesssim}\|\phi\|_{\widehat{L}_{x}^{r}} (2.9)

holds if one of the following conditions is satisfied:

(1) 4q,4<p;\displaystyle(1)\ 4\leq q\leq\infty,4<p\leq\infty; (2.10)
(2) 1/41/p1/p+1/q<1/2;\displaystyle(2)\ 1/4\leq 1/p\leq 1/p+1/q<1/2;
(3)(q,p)=(,2).\displaystyle(3)\ (q,p)=(\infty,2).

Moreover, by Lemma 2.1, we have for any b>1rb>\frac{1}{r} and uX^r0,bu\in\widehat{X}_{r}^{0,b},

Dα/quLtqLxpuX^r0,b.\left\|D^{\alpha/q}u\right\|_{L_{t}^{q}L_{x}^{p}}\lesssim\|u\|_{\widehat{X}_{r}^{0,b}}. (2.11)
Lemma 2.3 (Local smoothing estimates).

For all ϕ𝒮()\phi\in{\mathcal{S}}({\mathbb{R}}), we have

Wα(t)ϕLxL^trϕH^˙r1+αr.\displaystyle\|W_{\alpha}(t)\phi\|_{L_{x}^{\infty}\widehat{L}_{t}^{r}}{\lesssim}\|\phi\|_{\dot{\widehat{H}}^{-\frac{1+\alpha}{r}}_{r}}. (2.12)
Proof.

By the change of variables η=ω(ξ)\eta=\omega(\xi), we get

Wα(t)ϕ\displaystyle W_{\alpha}(t)\phi =eitω(ξ)eixξϕ^(ξ)𝑑ξ\displaystyle=\int e^{it\omega(\xi)}e^{ix\xi}\widehat{\phi}(\xi)d\xi
=eitηeixω1(η)ϕ^(ω1(η))(ω1(η))𝑑η.\displaystyle=\int e^{it\eta}e^{ix\omega^{-1}(\eta)}\widehat{\phi}(\omega^{-1}(\eta))(\omega^{-1}(\eta))^{\prime}d\eta.

A straightforward computation with |ω(ξ)|=|ξ|1+α|\omega^{\prime}(\xi)|=|\xi|^{1+\alpha} gives

Wα(t)ϕLxL^tr\displaystyle\|W_{\alpha}(t)\phi\|_{L_{x}^{\infty}\widehat{L}_{t}^{r}} =ϕ^(ω1(η))(ω1(η))Lηr\displaystyle=\left\|\widehat{\phi}(\omega^{-1}(\eta))(\omega^{-1}(\eta))^{\prime}\right\|_{L_{\eta}^{r^{\prime}}}
=(|ϕ^(ξ)ω(ξ)|r|ω(ξ)|𝑑ξ)1r\displaystyle=\left(\int\left|\frac{\widehat{\phi}(\xi)}{\omega^{\prime}(\xi)}\right|^{r^{\prime}}|\omega^{\prime}(\xi)|d\xi\right)^{\frac{1}{r^{\prime}}}
=(||ξ|1+αrϕ^(ξ)|r𝑑ξ)1r=ϕH^˙r1+αr.\displaystyle=\left(\int\left||\xi|^{-\frac{1+\alpha}{r}}\widehat{\phi}(\xi)\right|^{r^{\prime}}d\xi\right)^{\frac{1}{r^{\prime}}}=\|\phi\|_{\dot{\widehat{H}}^{-\frac{1+\alpha}{r}}_{r}}.

The Duhamel integral of (1.3) is given by

u(t)=Γu(t):=Wα(t)u0+0tWα(ts)𝒩(u)(s)𝑑su(t)=\Gamma u(t):=W_{\alpha}(t)u_{0}+\int_{0}^{t}W_{\alpha}(t-s)\mathcal{N}(u)(s)ds (2.13)

where 𝒩\mathcal{N} is the nonlinear function of uu. Let 0<T10<T\leq 1 and ψT(t)=ψ(t/T)\psi_{T}(t)=\psi(t/T). To apply the contraction principle in X^rs,b\widehat{X}^{s,b}_{r}, we shall introduce the restriction norm space X^rs,b(T)\widehat{X}^{s,b}_{r}(T) by

fX^rs,b(T):=inf{f~X^rs,b:f~|[T,T]×=f}.\|f\|_{\widehat{X}^{s,b}_{r}(T)}:=\inf\left\{\|\tilde{f}\|_{\widehat{X}^{s,b}_{r}}:\left.\tilde{f}\right|_{[-T,T]\times\mathbb{R}}=f\right\}. (2.14)

For uX^rs,b(T)u\in\widehat{X}^{s,b}_{r}(T) with extension u~X^rs,b\tilde{u}\in\widehat{X}^{s,b}_{r}, an extension of Γu\Gamma u is given by

Γu~(t)=ψ(t)Wα(t)u0+ψT(t)0tWα(ts)𝒩(u~)(s)𝑑s.\widetilde{\Gamma u}(t)=\psi(t)W_{\alpha}(t)u_{0}+\psi_{T}(t)\int_{0}^{t}W_{\alpha}(t-s)\mathcal{N}(\tilde{u})(s)ds. (2.15)

Thus, it reduces to prove

ΓuX^rs,b(T)ψ(t)Wα(t)u0X^rs,b+ψT(t)0tWα(ts)𝒩(u~)(s)𝑑sX^rs,b.\|\Gamma u\|_{\widehat{X}^{s,b}_{r}(T)}\leq\left\|\psi(t)W_{\alpha}(t)u_{0}\right\|_{\widehat{X}^{s,b}_{r}}+\left\|\psi_{T}(t)\int_{0}^{t}W_{\alpha}(t-s)\mathcal{N}(\tilde{u})(s)ds\right\|_{\widehat{X}^{s,b}_{r}}. (2.16)

Furthermore, we prove the following linear estimates.

Proposition 2.4 (Linear estimates).

(a) Assume s,bs,b\in\mathbb{R}, 1r1\leq r\leq\infty and ϕH^rs\phi\in\widehat{H}^{s}_{r}. Then there exists C>0C>0 such that

ψ(t)Wα(t)ϕX^rs,bCϕH^rs.\displaystyle\|\psi(t)W_{\alpha}(t)\phi\|_{\widehat{X}^{s,b}_{r}}\leq C\|\phi\|_{\widehat{H}^{s}_{r}}. (2.17)

(b) Assume ss\in{\mathbb{R}}, 1<r<1<r<\infty, and b+1b0b>1rb^{\prime}+1\geq b\geq 0\geq b^{\prime}>-\frac{1}{r^{\prime}}. Then there exists C>0C>0 such that

ψT(t)0tWα(ts)F(s)𝑑sX^rs,bCT1+bbFX^rs,b.\displaystyle\left\|\psi_{T}(t)\int_{0}^{t}W_{\alpha}(t-s)F(s)ds\right\|_{\widehat{X}^{s,b}_{r}}\leq CT^{1+b^{\prime}-b}\|F\|_{\widehat{X}^{s,b^{\prime}}_{r}}. (2.18)

Therefore, to prove the local well-posedness of dgBO (1.3), we focus on showing nonlinear estimates in X^rs,b\widehat{X}^{s,b}_{r} spaces. Given b>1rb>\frac{1}{r} and b(b1,0]b^{\prime}\in(b-1,0], it turns to prove

𝒩(u~)X^rs,bu~X^rs,b2.\|\mathcal{N}(\tilde{u})\|_{\widehat{X}^{s,b^{\prime}}_{r}}\lesssim\|\tilde{u}\|_{\widehat{X}^{s,b}_{r}}^{2}. (2.19)

Without loss of generality, let b=1r+εb=\frac{1}{r}+\varepsilon and b=1r+2εb^{\prime}=-\frac{1}{r^{\prime}}+2\varepsilon. For brevity, in the nonlinear estimate (2.19), we still use uu to denote u~\tilde{u}. By duality argument, (2.19) is implied as

|4u^1(ξ1,τ1)u^2(ξ2,τ2)v^(ξ1+ξ2,τ1+τ2)𝑑ξ1𝑑ξ2𝑑τ1𝑑τ2|\displaystyle\left|\int_{\mathbb{R}^{4}}\widehat{u}_{1}(\xi_{1},\tau_{1})\widehat{u}_{2}(\xi_{2},\tau_{2})\widehat{v}(\xi_{1}+\xi_{2},\tau_{1}+\tau_{2})d\xi_{1}d\xi_{2}d\tau_{1}d\tau_{2}\right| (2.20)
\displaystyle\lesssim j=12ujX^rs,1/r+εvX^rs1,1/r2ε.\displaystyle\prod^{2}_{j=1}\|u_{j}\|_{{\widehat{X}}_{r}^{s,1/r+\varepsilon}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}-2\varepsilon}}.

For ξ1,ξ2\xi_{1},\xi_{2}\in{\mathbb{R}} and ω:\omega:{\mathbb{R}}\rightarrow{\mathbb{R}}, define the resonance function

Ω(ξ1,ξ2)=ω(ξ1)+ω(ξ2)ω(ξ1+ξ2),\Omega(\xi_{1},\xi_{2})=\omega(\xi_{1})+\omega(\xi_{2})-\omega(\xi_{1}+\xi_{2}), (2.21)

which plays a crucial role in bilinear estimates of the Xs,bX^{s,b}-type space. See [24] for a perspective discussion. Let σj\sigma_{j} and σ\sigma denote the modulations given by

σi=τiω(ξi),σ=τω(ξ).\sigma_{i}=\tau_{i}-\omega(\xi_{i}),\quad\sigma=\tau-\omega(\xi).

Under the restrictions ξ=ξ1+ξ2\xi=\xi_{1}+\xi_{2} and τ=τ1+τ2\tau=\tau_{1}+\tau_{2}, we have

τω(ξ)=τ1ω(ξ1)+τ2ω(ξ2)+Ω(ξ1,ξ2).\tau-\omega(\xi)=\tau_{1}-\omega(\xi_{1})+\tau_{2}-\omega(\xi_{2})+\Omega(\xi_{1},\xi_{2}). (2.22)

We apply Littlewood-Paley dyadic decomposition (2.1) to each component of (2.20). Then to prove (2.20), it suffices to prove

|4u^1(ξ1,τ1)u^2(ξ2,τ2)v^(ξ1+ξ2,τ1+τ2)𝑑ξ1𝑑ξ2𝑑τ1𝑑τ2|\displaystyle\left|\int_{\mathbb{R}^{4}}\widehat{u}_{1}(\xi_{1},\tau_{1})\widehat{u}_{2}(\xi_{2},\tau_{2})\widehat{v}(\xi_{1}+\xi_{2},\tau_{1}+\tau_{2})d\xi_{1}d\xi_{2}d\tau_{1}d\tau_{2}\right| (2.23)
\displaystyle\lesssim L1,L2,LN1,N2,NC(L1,L2,L)C(N1,N2,N)\displaystyle\sum_{L_{1},L_{2},L}\sum_{N_{1},N_{2},N}C(L_{1},L_{2},L)C(N_{1},N_{2},N)
j=12QLjPNjujX^rs,1/r+εQLPNvX^rs1,1/r2ε,\displaystyle\cdot\prod^{2}_{j=1}\|Q_{L_{j}}P_{N_{j}}u_{j}\|_{{\widehat{X}}_{r}^{s,1/r+\varepsilon}}\|Q_{L}P_{N}v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}-2\varepsilon}},

where C(L1,L2,L)C(L_{1},L_{2},L) and C(N1,N2,N)C(N_{1},N_{2},N) are suitable bounds that allow us to sum over all dyadic numbers.

3. Bilinear Estimates

In this section, we prove some dyadic bilinear estimates which are crucial for proving (2.23) in the next section. For compactly supported non-negative functions f1,f2Lr(×)f_{1},f_{2}\in L^{r^{\prime}}({\mathbb{R}}\times{\mathbb{R}}) with

supp(fi)DNi,Li:={(ξi,σi):|ξi|Ni,|σi|Li},i=1,2{\mbox{supp}}(f_{i})\subset D_{N_{i},L_{i}}:=\left\{(\xi_{i},\sigma_{i}):|\xi_{i}|\sim N_{i},|\sigma_{i}|\sim L_{i}\right\},\ i=1,2

and fLr(×)f\in L^{r}({\mathbb{R}}\times{\mathbb{R}}) with

supp(f)DN,L:={(ξ,σ):|ξ|N,|σ|L},{\mbox{supp}}(f)\subset D_{N,L}:=\left\{(\xi,\sigma):|\xi|\sim N,|\sigma|\sim L\right\},

we define

J(f1,f2,f)=4f1(ξ1,σ1)f2(ξ2,σ2)f(ξ1+ξ2,σ1+σ2+Ω(ξ1,ξ2))𝑑ξ1𝑑ξ2𝑑σ1𝑑σ2.J\left(f_{1},f_{2},f\right)=\int_{\mathbb{R}^{4}}f_{1}\left(\xi_{1},\sigma_{1}\right)f_{2}\left(\xi_{2},\sigma_{2}\right)f\left(\xi_{1}+\xi_{2},\sigma_{1}+\sigma_{2}+\Omega\left(\xi_{1},\xi_{2}\right)\right)d\xi_{1}d\xi_{2}d\sigma_{1}d\sigma_{2}.

It is convenient to define LmaxL_{\max}, LmedL_{\operatorname*{med}} and LminL_{\min} as the maximum, median and minimum values of LL, L1L_{1} and L2L_{2}, respectively. Similarly, define NmaxN_{\max}, NmedN_{\operatorname*{med}} and NminN_{\min} as the maximum, median and minimum values of NN, N1N_{1} and N2N_{2}.

Now, we state our bilinear estimates.

Lemma 3.1.

For any N1,N2,NN_{1},N_{2},N and L1,L2,LL_{1},L_{2},L, we have

J(f1,f2,f)ABf1Lrf2LrfLrJ\left(f_{1},f_{2},f\right)\lesssim A\cdot B\cdot\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}} (3.1)

where

A=Lmin1rmin{L11r1r,L21r1r},A=L_{\min}^{\frac{1}{r^{\prime}}}\min\left\{L_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}},L_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\right\}, (3.2)

and

B=Nmin1rmin{N11r1r,N21r1r}.B=N_{\min}^{\frac{1}{r^{\prime}}}\min\left\{N_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}},N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\right\}. (3.3)
Proof.

The proof only relies on the change of variables. We first integrate over σ1\sigma_{1} and σ2\sigma_{2}. If L2=LmaxL_{2}=L_{\max}, we may use the change of variables θ1=σ1\theta_{1}=\sigma_{1} and θ2=σ1+σ2+Ω(ξ1,ξ2)\theta_{2}=\sigma_{1}+\sigma_{2}+\Omega\left(\xi_{1},\xi_{2}\right). By Hölder inequality, we get

J(f1,f2,f)\displaystyle J\left(f_{1},f_{2},f\right)
=\displaystyle= 4f1(ξ1,θ1)f2(ξ2,θ2θ1Ω(ξ1,ξ2))f(ξ1+ξ2,θ2)𝑑θ1𝑑θ2𝑑ξ1𝑑ξ2\displaystyle\int_{\mathbb{R}^{4}}f_{1}\left(\xi_{1},\theta_{1}\right)f_{2}\left(\xi_{2},\theta_{2}-\theta_{1}-\Omega\left(\xi_{1},\xi_{2}\right)\right)f\left(\xi_{1}+\xi_{2},\theta_{2}\right)d\theta_{1}d\theta_{2}d\xi_{1}d\xi_{2}
\displaystyle\lesssim 2f1(ξ1,θ1)f(ξ1+ξ2,θ2)Lθ1,θ2rf2(ξ2,θ2θ1Ω(ξ1,ξ2))Lθ1,θ2r𝑑ξ1𝑑ξ2\displaystyle\int_{\mathbb{R}^{2}}\left\|f_{1}\left(\xi_{1},\theta_{1}\right)f\left(\xi_{1}+\xi_{2},\theta_{2}\right)\right\|_{L_{\theta_{1},\theta_{2}}^{r}}\left\|f_{2}\left(\xi_{2},\theta_{2}-\theta_{1}-\Omega\left(\xi_{1},\xi_{2}\right)\right)\right\|_{L_{\theta_{1},\theta_{2}}^{r^{\prime}}}d\xi_{1}d\xi_{2}
\displaystyle\lesssim L11r1rmin{L11r,L1r}2f1(ξ1,σ1)Lσ1rf(ξ1+ξ2,σ)Lσrf2(ξ2,σ2)Lσ2r𝑑ξ1𝑑ξ2.\displaystyle L_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\min\left\{L_{1}^{\frac{1}{r^{\prime}}},L^{\frac{1}{r^{\prime}}}\right\}\int_{\mathbb{R}^{2}}\left\|f_{1}\left(\xi_{1},\sigma_{1}\right)\right\|_{L_{\sigma_{1}}^{r^{\prime}}}\left\|f\left(\xi_{1}+\xi_{2},\sigma\right)\right\|_{L_{\sigma}^{r}}\left\|f_{2}\left(\xi_{2},\sigma_{2}\right)\right\|_{L_{\sigma_{2}}^{r^{\prime}}}d\xi_{1}d\xi_{2}.

Then, the integration over ξ1\xi_{1} and ξ2\xi_{2}

2f1(ξ1,σ1)Lσ1rf(ξ1+ξ2,σ)Lσrf2(ξ2,σ2)Lσ2r𝑑ξ1𝑑ξ2\int_{\mathbb{R}^{2}}\left\|f_{1}\left(\xi_{1},\sigma_{1}\right)\right\|_{L_{\sigma_{1}}^{r^{\prime}}}\left\|f\left(\xi_{1}+\xi_{2},\sigma\right)\right\|_{L_{\sigma}^{r}}\left\|f_{2}\left(\xi_{2},\sigma_{2}\right)\right\|_{L_{\sigma_{2}}^{r^{\prime}}}d\xi_{1}d\xi_{2} (3.4)

pushes us to consider three subcases as follows.

  • Subcase 1.1. We may integrate f1f_{1} and f2f_{2} first. By Hölder inequality, we have

(3.4)f1Lrf2Lrmin{N11r,N21r}fLr.\eqref{case_1}\lesssim\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\min\left\{N_{1}^{\frac{1}{r}},N_{2}^{\frac{1}{r}}\right\}\left\|f\right\|_{L^{r}}.
  • Subcase 1.2. We also may integrate f1f_{1} and ff first. A change of variables =ξ1\ell=\xi_{1} and η=ξ1+ξ2\eta=\xi_{1}+\xi_{2} gives

(3.4)=\displaystyle\eqref{case_1}= 2f1(,σ1)Lσ1rf(η,σ)Lσrf2(η,σ2)Lσ2r𝑑η𝑑\displaystyle\int_{\mathbb{R}^{2}}\left\|f_{1}\left(\ell,\sigma_{1}\right)\right\|_{L_{\sigma_{1}}^{r^{\prime}}}\left\|f\left(\eta,\sigma\right)\right\|_{L_{\sigma}^{r}}\left\|f_{2}\left(\eta-\ell,\sigma_{2}\right)\right\|_{L_{\sigma_{2}}^{r^{\prime}}}d\eta d\ell
\displaystyle\lesssim N11r1rf1LrfLrmin{N11r,N1r}f2Lr.\displaystyle N_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}\min\left\{N_{1}^{\frac{1}{r^{\prime}}},N^{\frac{1}{r^{\prime}}}\right\}\left\|f_{2}\right\|_{L^{r^{\prime}}}.
  • Subcase 1.3. Lastly, we may integrate f2f_{2} and ff first. A change of variables =ξ2\ell=\xi_{2} and η=ξ1+ξ2\eta=\xi_{1}+\xi_{2} gives

(3.4)=\displaystyle\eqref{case_1}= 2f1(η,σ1)Lσ1rf(η,σ)Lσrf2(,σ2)Lσ2r𝑑η𝑑\displaystyle\int_{\mathbb{R}^{2}}\left\|f_{1}\left(\eta-\ell,\sigma_{1}\right)\right\|_{L_{\sigma_{1}}^{r^{\prime}}}\left\|f\left(\eta,\sigma\right)\right\|_{L_{\sigma}^{r}}\left\|f_{2}\left(\ell,\sigma_{2}\right)\right\|_{L_{\sigma_{2}}^{r^{\prime}}}d\eta d\ell
\displaystyle\lesssim N21r1rf2LrfLrmin{N21r,N1r}f1Lr.\displaystyle N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}\min\left\{N_{2}^{\frac{1}{r^{\prime}}},N^{\frac{1}{r^{\prime}}}\right\}\left\|f_{1}\right\|_{L^{r^{\prime}}}.

Thus, if L2=LmaxL_{2}=L_{\max}, we may obtain

J(f1,f2,f)BL11r1rmin{L11r,L1r}f1Lrf2LrfLr,\displaystyle J\left(f_{1},f_{2},f\right)\lesssim B\cdot L_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\min\left\{L_{1}^{\frac{1}{r^{\prime}}},L^{\frac{1}{r^{\prime}}}\right\}\cdot\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}, (3.5)

where B=Nmin1rmin{N11r1r,N21r1r}B=N_{\min}^{\frac{1}{r^{\prime}}}\min\left\{N_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}},N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\right\}.

f1f_{1} and f2f_{2} are symmetric, hence for L1=LmaxL_{1}=L_{\max} we have

J(f1,f2,f)BL21r1rmin{L21r,L1r}f1Lrf2LrfLr.\displaystyle J\left(f_{1},f_{2},f\right)\lesssim B\cdot L_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\min\left\{L_{2}^{\frac{1}{r^{\prime}}},L^{\frac{1}{r^{\prime}}}\right\}\cdot\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}. (3.6)

Similarly, it is easy to verify that the case L=LmaxL=L_{\max} implies

J(f1,f2,f)Bmin{L11r,L21r}f1Lrf2LrfLr.J\left(f_{1},f_{2},f\right)\lesssim B\cdot\min\left\{L_{1}^{\frac{1}{r}},L_{2}^{\frac{1}{r}}\right\}\cdot\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}. (3.7)

This completes the proof. ∎

In the sequel, we will consider different interactions. To take advantage of the resonance function Ω(ξ1,ξ2)\Omega(\xi_{1},\xi_{2}), we shall first integrate over ξ1\xi_{1} and ξ2\xi_{2}.

Lemma 3.2.

(high×lowhigh\times low)

(a) If L=LmaxL=L_{\max}, we have

J(f1,f2,f)L11rL21rNmax1+αrf1Lrf2LrfLr.J\left(f_{1},f_{2},f\right)\lesssim L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}N_{\max}^{-\frac{1+\alpha}{r}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}. (3.8)

(b) If Li=Lmax(i=1,2)L_{i}=L_{\max}\ (i=1,2), we have

J(f1,f2,f)L11rL21rL1rLi1rNmin1r1r(NmaxαNi)1rf1Lrf2LrfLr.J\left(f_{1},f_{2},f\right)\lesssim L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}L_{i}^{-\frac{1}{r}}N_{\min}^{\frac{1}{r}-\frac{1}{r^{\prime}}}(N_{\max}^{\alpha}N_{i})^{-\frac{1}{r^{\prime}}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}. (3.9)
Proof.

Without loss of generality, we assume N1N2N_{1}\gg N_{2}. Note that Ω(ξ1,ξ2)=ω(ξ1)+ω(ξ2)ω(ξ1+ξ2)\Omega(\xi_{1},\xi_{2})=\omega(\xi_{1})+\omega(\xi_{2})-\omega(\xi_{1}+\xi_{2}), where ω(ξ)=ξ|ξ|1+α\omega(\xi)=-\xi|\xi|^{1+\alpha} and |ω(ξ)||ξ|1+α|\omega^{\prime}(\xi)|\sim|\xi|^{1+\alpha}.

If L=LmaxL=L_{\max}, we may integrate f1f_{1} and f2f_{2} together, which gives

J(f1,f2,f)L11rL21rf1Lrf2Lrf(ξ1+ξ2,Ω(ξ1,ξ2))Lξ1,ξ2r.J\left(f_{1},f_{2},f\right)\lesssim L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\left(\xi_{1}+\xi_{2},\Omega\left(\xi_{1},\xi_{2}\right)\right)\right\|_{L_{\xi_{1},\xi_{2}}^{r}}. (3.10)

Let η=ξ1+ξ2\eta=\xi_{1}+\xi_{2} and =Ω(ξ1,ξ2)\ell=\Omega\left(\xi_{1},\xi_{2}\right). The Jacobian is

(η,)(ξ1,ξ2)=|11ξ1Ωξ2Ω|=ξ2Ωξ1Ω=ω(ξ2)ω(ξ1).\frac{\partial(\eta,\ell)}{\partial\left(\xi_{1},\xi_{2}\right)}=\left|\begin{array}[]{cc}1&1\\ \partial_{\xi_{1}}\Omega&\partial_{\xi_{2}}\Omega\end{array}\right|=\partial_{\xi_{2}}\Omega-\partial_{\xi_{1}}\Omega=\omega^{\prime}(\xi_{2})-\omega^{\prime}(\xi_{1}).

In addition, in high×lowhigh\times low interactions, |ξ1||ξ2||\xi_{1}|\gg|\xi_{2}| yields

|ω(ξ1)ω(ξ2)|||ξ1|1+α|ξ2|1+α||ξ1|1+α.\left|\omega^{\prime}(\xi_{1})-\omega^{\prime}(\xi_{2})\right|\sim\left||\xi_{1}|^{1+\alpha}-|\xi_{2}|^{1+\alpha}\right|\sim|\xi_{1}|^{1+\alpha}. (3.11)

Therefore,

(3.10)\displaystyle\eqref{HL_1} L11rL21rf1Lrf2Lr(2|f(η,)|r1ω(ξ1)ω(ξ2)𝑑η𝑑)1r\displaystyle\lesssim L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left(\int_{\mathbb{R}^{2}}\left|f(\eta,\ell)\right|^{r}\frac{1}{\mid\omega^{\prime}\left(\xi_{1}\right)-\omega^{\prime}\left(\xi_{2}\right)\mid}d\eta d\ell\right)^{\frac{1}{r}}
L11rL21rf1Lrf2Lr(N11+α)1rfLr.\displaystyle\lesssim L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}(N_{1}^{1+\alpha})^{-\frac{1}{r}}\left\|f\right\|_{L^{r}}.

We complete part (a).

If L2=LmaxL_{2}=L_{\max}, we may integrate f1f_{1} and ff together. The change of variables θ1=σ1\theta_{1}=\sigma_{1} and θ2=σ1+σ2+Ω(ξ1,ξ2)\theta_{2}=\sigma_{1}+\sigma_{2}+\Omega\left(\xi_{1},\xi_{2}\right) gives

J(f1,f2,f)\displaystyle J\left(f_{1},f_{2},f\right) (3.12)
=\displaystyle= 4f1(ξ1,θ1)f2(ξ2,θ2θ1Ω(ξ1,ξ2))f(ξ1+ξ2,θ2)𝑑ξ1𝑑ξ2𝑑θ1𝑑θ2\displaystyle\int_{\mathbb{R}^{4}}f_{1}\left(\xi_{1},\theta_{1}\right)f_{2}\left(\xi_{2},\theta_{2}-\theta_{1}-\Omega\left(\xi_{1},\xi_{2}\right)\right)f\left(\xi_{1}+\xi_{2},\theta_{2}\right)d\xi_{1}d\xi_{2}d\theta_{1}d\theta_{2}
\displaystyle\lesssim L11rL1rN21r1rf1LrfLrf2(ξ2,Ω(ξ1,ξ2))Lξ1,ξ2r\displaystyle L_{1}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}\left\|f_{2}\left(\xi_{2},-\Omega\left(\xi_{1},\xi_{2}\right)\right)\right\|_{L_{\xi_{1},\xi_{2}}^{r^{\prime}}}
\displaystyle\lesssim L11rL1rN21r1rf1LrfLr(2|f2(ξ2,ϕ)|r|dξ1dϕ|𝑑ϕ𝑑ξ2)1r\displaystyle L_{1}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}\left(\int_{\mathbb{R}^{2}}\left|f_{2}(\xi_{2},\phi)\right|^{r^{\prime}}\left|\frac{d\xi_{1}}{d\phi}\right|d\phi d\xi_{2}\right)^{\frac{1}{r^{\prime}}}
\displaystyle\lesssim L11rL1rN21r1r(N1αN2)1rf1LrfLrf2Lr.\displaystyle L_{1}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\left(N_{1}^{\alpha}N_{2}\right)^{-\frac{1}{r^{\prime}}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}\left\|f_{2}\right\|_{L^{r^{\prime}}}.

Here, the Jacobian is

|dϕdξ1|=|ξ1Ω(ξ1,ξ2)|=|ω(ξ1)ω(ξ1+ξ2)|.\displaystyle\left|\frac{d\phi}{d\xi_{1}}\right|=\left|\partial_{\xi_{1}}\Omega(\xi_{1},\xi_{2})\right|=\left|\omega^{\prime}(\xi_{1})-\omega^{\prime}(\xi_{1}+\xi_{2})\right|.

Note that |ξ1||ξ2|\left|\xi_{1}\right|\gg\left|\xi_{2}\right|. It means that ξ1\xi_{1} and ξ1+ξ2\xi_{1}+\xi_{2} have the same signs. By the mean value theorem, we have

|ω(ξ1)ω(ξ1+ξ2)||ξ1|α|ξ2|N1αN2.\left|\omega^{\prime}(\xi_{1})-\omega^{\prime}(\xi_{1}+\xi_{2})\right|\sim\left|\xi_{1}\right|^{\alpha}\left|\xi_{2}\right|\sim N_{1}^{\alpha}N_{2}. (3.13)

If L1=LmaxL_{1}=L_{\max}, similarly, we have

J(f1,f2,f)\displaystyle J\left(f_{1},f_{2},f\right) (3.14)
=\displaystyle= 4f1(ξ1,θ1θ2Ω(ξ1,ξ2))f2(ξ2,θ2)f(ξ1+ξ2,θ1)𝑑ξ1𝑑ξ2𝑑θ1𝑑θ2\displaystyle\int_{\mathbb{R}^{4}}f_{1}\left(\xi_{1},\theta_{1}-\theta_{2}-\Omega\left(\xi_{1},\xi_{2}\right)\right)f_{2}\left(\xi_{2},\theta_{2}\right)f\left(\xi_{1}+\xi_{2},\theta_{1}\right)d\xi_{1}d\xi_{2}d\theta_{1}d\theta_{2}
\displaystyle\lesssim L21rL1rN21r1rf2LrfLr(2|f1(ξ1,ϕ)|r|dξ2dϕ|𝑑ϕ𝑑ξ1)1r\displaystyle L_{2}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}\left(\int_{\mathbb{R}^{2}}\left|f_{1}(\xi_{1},\phi)\right|^{r^{\prime}}\left|\frac{d\xi_{2}}{d\phi}\right|d\phi d\xi_{1}\right)^{\frac{1}{r^{\prime}}}
\displaystyle\lesssim L21rL1rN21r1rf2LrfLr(N11+α)1rf1Lr,\displaystyle L_{2}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}\left(N_{1}^{1+\alpha}\right)^{-\frac{1}{r^{\prime}}}\left\|f_{1}\right\|_{L^{r^{\prime}}},

where we use the fact |ξ1+ξ2||ξ2||\xi_{1}+\xi_{2}|\gg|\xi_{2}| and obtain

|dϕdξ2|=|ξ2Ω(ξ1,ξ2)|=|ω(ξ2)ω(ξ1+ξ2)||ξ1|1+αN11+α.\displaystyle\left|\frac{d\phi}{d\xi_{2}}\right|=\left|\partial_{\xi_{2}}\Omega(\xi_{1},\xi_{2})\right|=\left|\omega^{\prime}(\xi_{2})-\omega^{\prime}(\xi_{1}+\xi_{2})\right|\sim\left|\xi_{1}\right|^{1+\alpha}\sim N_{1}^{1+\alpha}. (3.15)

Part (b) is completed. ∎

In what follows, we consider high×highhigh\times high interactions, which indicates N1N2N_{1}\sim N_{2}. In particular, when the frequencies of the two factors are very close, (|ξ1ξ2||ξ1||ξ2|\left|\xi_{1}-\xi_{2}\right|\ll|\xi_{1}|\sim|\xi_{2}|), we go back to the proof of Lemma 9 in [7].

Lemma 3.3.

(high×highhigh\times high)

(a) Assume L=LmaxL=L_{\max}. If ξ1ξ2<0\xi_{1}\xi_{2}<0, we have

J(f1,f2,f)L11rL21r(NmaxαN)1rf1Lrf2LrfLr.J\left(f_{1},f_{2},f\right)\lesssim L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}(N_{\max}^{\alpha}N)^{-\frac{1}{r}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}. (3.16)

If ξ1ξ2>0\xi_{1}\xi_{2}>0, we have for b>1rb>\frac{1}{r}

J(f1,f2,f)Nmaxα2r1f1X^r0,b1f2X^r0,bfLr.\displaystyle J\left(f_{1},f_{2},f\right)\lesssim N_{\max}^{-\frac{\alpha}{2r}}\left\|\mathcal{F}^{-1}f_{1}\right\|_{{\widehat{X}}_{r}^{0,b}}\left\|\mathcal{F}^{-1}f_{2}\right\|_{{\widehat{X}}_{r}^{0,b}}\left\|f\right\|_{L^{r}}. (3.17)

(b) If Li=Lmax(i=1,2)L_{i}=L_{\max}\ (i=1,2), we have

J(f1,f2,f)L11rL21rL1rLj1rNmax1r1r(Nmax1+α)1rf1Lrf2LrfLr.J\left(f_{1},f_{2},f\right)\lesssim L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}L_{j}^{-\frac{1}{r}}N_{\max}^{\frac{1}{r}-\frac{1}{r^{\prime}}}(N_{\max}^{1+\alpha})^{-\frac{1}{r^{\prime}}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}. (3.18)
Proof.

If ξ1\xi_{1} and ξ2\xi_{2} have different signs (ξ1ξ2<0\xi_{1}\xi_{2}<0), we get N1N2NN_{1}\sim N_{2}\gg N or N1N2NN_{1}\sim N_{2}\sim N. It implies that ξ1\xi_{1} and ξ1ξ\xi_{1}-\xi have the same signs. By the mean value theorem, we have

|ω(ξ1)ω(ξ2)|=|ω(ξ1)ω(ξξ1)||ξ1|α|ξ|N1αN.\left|\omega^{\prime}(\xi_{1})-\omega^{\prime}(\xi_{2})\right|=\left|\omega^{\prime}(\xi_{1})-\omega^{\prime}(\xi-\xi_{1})\right|\sim\left|\xi_{1}\right|^{\alpha}\left|\xi\right|\sim N_{1}^{\alpha}N. (3.19)

Hence, with L=LmaxL=L_{\max}, we get

J(f1,f2,f)\displaystyle J\left(f_{1},f_{2},f\right)\lesssim L11rL21rf1Lrf2LrfLrω(ξ1)ω(ξ2)1r\displaystyle L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}\mid\omega^{\prime}(\xi_{1})-\omega^{\prime}(\xi_{2})\mid^{-\frac{1}{r}} (3.20)
\displaystyle\lesssim L11rL21r(N1αN)1rf1Lrf2LrfLr.\displaystyle L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}(N_{1}^{\alpha}N)^{-\frac{1}{r}}\left\|f_{1}\right\|_{L^{r^{\prime}}}\left\|f_{2}\right\|_{L^{r^{\prime}}}\left\|f\right\|_{L^{r}}.

The desired (3.16) is proved.

If ξ1\xi_{1} and ξ2\xi_{2} have the same signs (ξ1ξ2>0\xi_{1}\xi_{2}>0), we need to perform a delicate discussion on |ξ1ξ2||\xi_{1}-\xi_{2}|. Hence, we decompose dyadically with respect to |ξ1ξ2|=12|ξ1ξ2||\xi_{1}-\frac{\xi}{2}|=\frac{1}{2}|\xi_{1}-\xi_{2}| and discuss contributions on AkA_{k}, where

Ak={ξ1:|ξ1ξ/2|2k,k1}andA0={ξ1:1|ξ1ξ/2||ξ1|}.A_{k}=\{\xi_{1}:|\xi_{1}-\xi/2|\sim 2^{-k},k\geq 1\}\ \text{and}\ A_{0}=\{\xi_{1}:1\leq|\xi_{1}-\xi/2|\ll|\xi_{1}|\}. (3.21)

In this subcase, we go back to the following estimate

J(f1,f2,f)f1(ξ1,τ1)f2(ξ2,τ2)𝑑ξ1𝑑τ1Lξ,τrfLξ,τr,\displaystyle J\left(f_{1},f_{2},f\right)\lesssim\left\|\int_{*}f_{1}\left(\xi_{1},\tau_{1}\right)f_{2}\left(\xi_{2},\tau_{2}\right)d\xi_{1}d\tau_{1}\right\|_{L_{\xi,\tau}^{r^{\prime}}}\left\|f\right\|_{L_{\xi,\tau}^{r}},

and focus on

χAk(ξ1)f1(ξ1,τ1)f2(ξ2,τ2)𝑑ξ1𝑑τ1Lξ,τr,\left\|\int_{*}\chi_{A_{k}}(\xi_{1})f_{1}\left(\xi_{1},\tau_{1}\right)f_{2}\left(\xi_{2},\tau_{2}\right)d\xi_{1}d\tau_{1}\right\|_{L_{\xi,\tau}^{r^{\prime}}}, (3.22)

where \int_{*} is shorthand for ξ=ξ1+ξ2,τ=τ1+τ2\int_{\xi=\xi_{1}+\xi_{2},\tau=\tau_{1}+\tau_{2}}. For i=1,2i=1,2, we choose gig_{i} with giLξ,τr=1fiX^r0,b\|g_{i}\|_{L_{\xi,\tau}^{r^{\prime}}}=\|\mathcal{F}^{-1}f_{i}\|_{{\widehat{X}}_{r}^{0,b}} so that (3.22) is rewritten as

χAk(ξ1)g1(ξ1,τ1)g2(ξ2,τ2)σ1bσ2b𝑑ξ1𝑑τ1Lξ,τr.\left\|\int_{*}\chi_{A_{k}}(\xi_{1})\frac{g_{1}\left(\xi_{1},\tau_{1}\right)g_{2}\left(\xi_{2},\tau_{2}\right)}{\langle\sigma_{1}\rangle^{b}\langle\sigma_{2}\rangle^{b}}d\xi_{1}d\tau_{1}\right\|_{L_{\xi,\tau}^{r^{\prime}}}.

We use Hölder’s inequality over τ1\tau_{1} and Lemma 4.2 in [4] to obtain

g1(ξ1,τ1)g2(ξ2,τ2)σ1bσ2b𝑑τ1σresb(|g1(ξ1,τ1)g2(ξ2,τ2)|r𝑑τ1)1r,\int_{*}\frac{g_{1}\left(\xi_{1},\tau_{1}\right)g_{2}\left(\xi_{2},\tau_{2}\right)}{\langle\sigma_{1}\rangle^{b}\langle\sigma_{2}\rangle^{b}}d\tau_{1}\lesssim\langle\sigma_{res}\rangle^{-b}\left(\int_{*}\left|g_{1}\left(\xi_{1},\tau_{1}\right)g_{2}\left(\xi_{2},\tau_{2}\right)\right|^{r^{\prime}}d\tau_{1}\right)^{\frac{1}{r^{\prime}}},

where

σres=τξ1|ξ1|1+αξ2|ξ2|1+α=τ21αξ|ξ|1+αh(x)\sigma_{res}=\tau-\xi_{1}|\xi_{1}|^{1+\alpha}-\xi_{2}|\xi_{2}|^{1+\alpha}=\tau-2^{-1-\alpha}\xi|\xi|^{1+\alpha}-h(x)

with x=ξ1ξ/2x=\xi_{1}-\xi/2 and

h(x)=(ξ/2+x)|ξ/2+x|1+α+(ξ/2x)|ξ/2x|1+α21αξ|ξ|1+α.h(x)=(\xi/2+x)|\xi/2+x|^{1+\alpha}+(\xi/2-x)|\xi/2-x|^{1+\alpha}-2^{-1-\alpha}\xi|\xi|^{1+\alpha}.

Note that h(0)=0h(0)=0. Moreover,

h(x)x|ξ|αandh(0)=0.h^{\prime}(x)\sim x|\xi|^{\alpha}\ \text{and}\ h^{\prime}(0)=0.

Now we turn to the case k=0k=0. Applying Hölder’s inequality over ξ1\xi_{1} gives

χA0(ξ1)|ξ1ξ/2|1rg1(ξ1,τ1)g2(ξ2,τ2)σ1bσ2b|ξ1ξ/2|1r𝑑ξ1𝑑τ1\displaystyle\int_{*}\chi_{A_{0}}(\xi_{1})|\xi_{1}-\xi/2|^{\frac{1}{r}}\frac{g_{1}\left(\xi_{1},\tau_{1}\right)g_{2}\left(\xi_{2},\tau_{2}\right)}{\langle\sigma_{1}\rangle^{b}\langle\sigma_{2}\rangle^{b}}|\xi_{1}-\xi/2|^{-\frac{1}{r}}d\xi_{1}d\tau_{1}
\displaystyle\lesssim (A0|ξ1ξ/2|σresbr𝑑ξ1)1r(|ξ1ξ/2|rr|g1(ξ1,τ1)g2(ξ2,τ2)|r𝑑ξ1𝑑τ1)1r.\displaystyle\left(\int_{A_{0}}|\xi_{1}-\xi/2|\langle\sigma_{res}\rangle^{-br}d\xi_{1}\right)^{\frac{1}{r}}\left(\int_{*}|\xi_{1}-\xi/2|^{-\frac{r^{\prime}}{r}}\left|g_{1}\left(\xi_{1},\tau_{1}\right)g_{2}\left(\xi_{2},\tau_{2}\right)\right|^{r^{\prime}}d\xi_{1}d\tau_{1}\right)^{\frac{1}{r^{\prime}}}.

For the first factor, by the change of variables we have

(τ21αξ|ξ|1+αhbr|ξ|α𝑑h)1r|ξ|αr.\left(\int\langle\tau-2^{-1-\alpha}\xi|\xi|^{1+\alpha}-h\rangle^{-br}|\xi|^{-\alpha}dh\right)^{\frac{1}{r}}\lesssim|\xi|^{-\frac{\alpha}{r}}.

For the second one, using Fubini we arrive at

(|ξ1ξ/2|rr|g1(ξ1,τ1)g2(ξ2,τ2)|r𝑑ξ1𝑑τ1)1rLτr\displaystyle\left\|\left(\int_{*}|\xi_{1}-\xi/2|^{-\frac{r^{\prime}}{r}}\left|g_{1}\left(\xi_{1},\tau_{1}\right)g_{2}\left(\xi_{2},\tau_{2}\right)\right|^{r^{\prime}}d\xi_{1}d\tau_{1}\right)^{\frac{1}{r^{\prime}}}\right\|_{L_{\tau}^{r^{\prime}}}
\displaystyle\lesssim (|ξ1ξ/2|rrg1(ξ1,)Lτrrg2(ξ2,)Lτrr𝑑ξ1)1r\displaystyle\left(\int_{*}|\xi_{1}-\xi/2|^{-\frac{r^{\prime}}{r}}\left\|g_{1}\left(\xi_{1},\cdot\right)\right\|_{L_{\tau}^{r^{\prime}}}^{r^{\prime}}\left\|g_{2}\left(\xi_{2},\cdot\right)\right\|_{L_{\tau}^{r^{\prime}}}^{r^{\prime}}d\xi_{1}\right)^{\frac{1}{r^{\prime}}}
\displaystyle\lesssim (g1(ξ1,)Lτrrg2(ξ2,)Lτrr𝑑ξ1)1r.\displaystyle\left(\int_{*}\left\|g_{1}\left(\xi_{1},\cdot\right)\right\|_{L_{\tau}^{r^{\prime}}}^{r^{\prime}}\left\|g_{2}\left(\xi_{2},\cdot\right)\right\|_{L_{\tau}^{r^{\prime}}}^{r^{\prime}}d\xi_{1}\right)^{\frac{1}{r^{\prime}}}.

Taking Lξr\|\ \|_{L_{\xi}^{r^{\prime}}} gives the bound for the contribution from A0A_{0}.

Then we turn to the case k1k\geq 1. By Taylor’s expansion with |x|<1|x|<1, we obtain |h(x)||x|2|ξ|α|h(x)|\sim|x|^{2}|\xi|^{\alpha} and another estimate of |h(x)||h^{\prime}(x)|; that is, |h(x)||x||ξ|α|h(x)|12|ξ|α2|h^{\prime}(x)|\sim|x||\xi|^{\alpha}\sim|h(x)|^{\frac{1}{2}}|\xi|^{\frac{\alpha}{2}}. Therefore, we have

χAk(ξ1)g1(ξ1,τ1)g2(ξ2,τ2)σ1bσ2b𝑑ξ1𝑑τ1\displaystyle\int_{*}\chi_{A_{k}}(\xi_{1})\frac{g_{1}\left(\xi_{1},\tau_{1}\right)g_{2}\left(\xi_{2},\tau_{2}\right)}{\langle\sigma_{1}\rangle^{b}\langle\sigma_{2}\rangle^{b}}d\xi_{1}d\tau_{1}
\displaystyle\lesssim (χAkσresbr𝑑ξ1)1r(|g1(ξ1,τ1)g2(ξ2,τ2)|r𝑑ξ1𝑑τ1)1r.\displaystyle\left(\int_{\chi_{A_{k}}}\langle\sigma_{res}\rangle^{-br}d\xi_{1}\right)^{\frac{1}{r}}\left(\int_{*}\left|g_{1}\left(\xi_{1},\tau_{1}\right)g_{2}\left(\xi_{2},\tau_{2}\right)\right|^{r^{\prime}}d\xi_{1}d\tau_{1}\right)^{\frac{1}{r^{\prime}}}.

For the first factor, we now use dh=|h|12|ξ|α2dxdh=|h|^{\frac{1}{2}}|\xi|^{\frac{\alpha}{2}}dx and obtain

(χAkσresbr𝑑ξ1)1r(τ21αξ|ξ|1+αhbr|h|12|ξ|α2𝑑h)1r|ξ|α2r.\left(\int_{\chi_{A_{k}}}\langle\sigma_{res}\rangle^{-br}d\xi_{1}\right)^{\frac{1}{r}}\lesssim\left(\int\langle\tau-2^{-1-\alpha}\xi|\xi|^{1+\alpha}-h\rangle^{-br}|h|^{-\frac{1}{2}}|\xi|^{-\frac{\alpha}{2}}dh\right)^{\frac{1}{r}}\lesssim|\xi|^{-\frac{\alpha}{2r}}. (3.23)

Taking Lξ,τr\|\ \|_{L_{\xi,\tau}^{r^{\prime}}} for the second factor gives the bound for k1k\geq 1. Since |ξ|Nmax|\xi|\sim N_{\max}, then the desired (3.17) is proved. Part (a) is completed.

If Li=Lmax(i=1,2)L_{i}=L_{\max}\ (i=1,2), the proof follows a similar argument as (3.9) in Lemma 3.2, where the Jacobian is N11+αN_{1}^{1+\alpha}. Hence, we complete part (b). ∎

4. Proof of Theorem 1.1

In this section, we will prove (2.23) case by case, which is sufficient for the proof of Theorem 1.1. The main ingredients are dyadic bilinear estimates in Section 3 and the use of resonance function (2.21). We still assume N1N2N_{1}\geq N_{2}. In addition, (2.22) implies

Lmax|Ω(ξ1,ξ2)|NmaxαNmin.L_{\max}\gtrsim|\Omega\left(\xi_{1},\xi_{2}\right)|\gtrsim N_{\max}^{\alpha}N_{\min}. (4.1)

To simplify notations, we still write u^i:=(QLiPNiui)(ξi,τi)\widehat{u}_{i}:=\mathcal{F}(Q_{L_{i}}P_{N_{i}}u_{i})(\xi_{i},\tau_{i}) for i=1,2i=1,2, and v^:=(QLPNv)(ξ,τ)\widehat{v}:=\mathcal{F}(Q_{L}P_{N}v)(\xi,\tau). Moreover, we are able to check the boundedness of C(L1,L2,L)C(L_{1},L_{2},L) is easily satisfied. Hence, it suffices to discuss the following boundedness

|J(u^1,u^2,v^)|C(N1,N2,N)i=12uiX^rs,1/r+εvX^rs1,1/r2ε.\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim C(N_{1},N_{2},N)\prod^{2}_{i=1}\|u_{i}\|_{{\widehat{X}}_{r}^{s,1/r+\varepsilon}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}-2\varepsilon}}. (4.2)
Proof of Theorem 1.1.

Case 1: N11N_{1}\lesssim 1 or N11N_{1}\gg 1 and LmaxN19L_{\max}\gg N_{1}^{9}. These two cases are straightforward and can be solved easily by using Lemma 3.1. Therefore, we can conclude the following.

\bullet N11N_{1}\lesssim 1. Since |ξ1|1|\xi_{1}|\lesssim 1, then ξ11\langle\xi_{1}\rangle\sim 1.

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim AB(L1L2)1rL1r++u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r,\displaystyle A\cdot B\cdot\left(L_{1}L_{2}\right)^{-\frac{1}{r}-}L^{-\frac{1}{r^{\prime}}++}\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}},

which is summable, where A,BA,B are defined in Lemma 3.1.

\bulletN11N_{1}\gg 1 and LmaxN19L_{\max}\gg N_{1}^{9}. We may assume L1=LmaxL_{1}=L_{\max}, and the other cases follow by a similar argument. We see that

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim L21r1rmin{L21r,L1r}N11ru^1Lru^2Lrv^Lr\displaystyle L_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\min\left\{L_{2}^{\frac{1}{r^{\prime}}},L^{\frac{1}{r^{\prime}}}\right\}N_{1}^{\frac{1}{r}}\|\hat{u}_{1}\|_{L^{r^{\prime}}}\|\hat{u}_{2}\|_{L^{r^{\prime}}}\|\hat{v}\|_{L^{r}}
\displaystyle\lesssim L21r1rmin{L21r,L1r}N11rN19rN1sL21rN2sL1r++Ns+1\displaystyle L_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\min\left\{L_{2}^{\frac{1}{r^{\prime}}},L^{\frac{1}{r^{\prime}}}\right\}N_{1}^{\frac{1}{r}}N_{1}^{-\frac{9}{r}-}N_{1}^{-s}L_{2}^{-\frac{1}{r}-}N_{2}^{-s}L^{-\frac{1}{r^{\prime}}++}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N1θi=12uiX^rs,1/r+vX^rs1,1/r\displaystyle N_{1}^{-\theta}\prod^{2}_{i=1}\|u_{i}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}

which is bounded for some θ>0\theta>0.

Therefore, we assume that

N11andLmaxN19N_{1}\gg 1\quad\text{and}\quad L_{\max}{\lesssim}N_{1}^{9} (4.3)

in the following.

Case 2: NN1N2N\sim N_{1}\gg N_{2}. In this case, the resonant function |Ω(ξ1,ξ2)||ξ1|1+α|ξξ1|N11+αN2|\Omega\left(\xi_{1},\xi_{2}\right)|\gtrsim|\xi_{1}|^{1+\alpha}|\xi-\xi_{1}|\sim N_{1}^{1+\alpha}N_{2}.

\bullet Subcase 2a: N21N_{2}\lesssim 1. Applying (3.8) directly, we have

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim L11rL21rN11+αru^1Lru^2Lrv^Lr\displaystyle L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}N_{1}^{-\frac{1+\alpha}{r}}\|\hat{u}_{1}\|_{L^{r^{\prime}}}\|\hat{u}_{2}\|_{L^{r^{\prime}}}\|\hat{v}\|_{L^{r}}
\displaystyle\lesssim L11rL21rN11+αrL11rN1sL21rL1r++Ns+1\displaystyle L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}N_{1}^{-\frac{1+\alpha}{r}}L_{1}^{-\frac{1}{r}-}N_{1}^{-s}L_{2}^{-\frac{1}{r}-}L^{-\frac{1}{r^{\prime}}++}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N111+αru1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r.\displaystyle N_{1}^{1-\frac{1+\alpha}{r}}\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}.

We find the condition r<1+αr<1+\alpha, which is our first restriction for rr, depending on α\alpha. Then in what follows, we assume N21N_{2}\gg 1 so that |Ω(ξ1,ξ2)||\Omega\left(\xi_{1},\xi_{2}\right)| can contribute.

\bullet Subcase 2b: L=LmaxL=L_{\max}. By applying (3.8) and (4.1), we get

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim L11rL21rN11+αru^1Lru^2Lrv^Lr\displaystyle L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}N_{1}^{-\frac{1+\alpha}{r}}\|\hat{u}_{1}\|_{L^{r^{\prime}}}\|\hat{u}_{2}\|_{L^{r^{\prime}}}\|\hat{v}\|_{L^{r}}
\displaystyle\lesssim L11rL21rN11+αrL11rN1sL21rN2sL1r++Ns+1\displaystyle L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}N_{1}^{-\frac{1+\alpha}{r}}L_{1}^{-\frac{1}{r}-}N_{1}^{-s}L_{2}^{-\frac{1}{r}-}N_{2}^{-s}L^{-\frac{1}{r^{\prime}}++}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N11+αrN1sN2s(N11+αN2)1rN1+Ns+1\displaystyle N_{1}^{-\frac{1+\alpha}{r}}N_{1}^{-s}N_{2}^{-s}(N_{1}^{1+\alpha}N_{2})^{-\frac{1}{r^{\prime}}}N_{1}^{+}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N1α+N2s1ru1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r.\displaystyle N_{1}^{-\alpha+}N_{2}^{-s-\frac{1}{r^{\prime}}}\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}.

We end up with the conditions α>0\alpha>0 and s>1α+1rs>-1-\alpha+\frac{1}{r}. Note that α\alpha here is restricted to α>0\alpha>0. Hence, the result fails to contain the endpoint α=0\alpha=0.

Remark 1.

Since L=LmaxN19L=L_{\max}{\lesssim}N_{1}^{9}, we have

L1r++L1rN1+,L^{-\frac{1}{r^{\prime}}++}\lesssim L^{-\frac{1}{r^{\prime}}-}N_{1}^{+}, (4.4)

which is used in the third step. We will use the same strategies in the following.

\bullet Subcase 2c: L2=LmaxL_{2}=L_{\max}. By applying (3.9), we get

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim L11rL1rN21r1r(N1αN2)1ru^1Lru^2Lrv^Lr\displaystyle L_{1}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\left(N_{1}^{\alpha}N_{2}\right)^{-\frac{1}{r^{\prime}}}\|\hat{u}_{1}\|_{L^{r^{\prime}}}\|\hat{u}_{2}\|_{L^{r^{\prime}}}\|\hat{v}\|_{L^{r}}
\displaystyle\lesssim L11rL1rN21r1r(N1αN2)1rL11rN1s(N11+αN2)1rN2sL1rN1+Ns+1\displaystyle L_{1}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}\left(N_{1}^{\alpha}N_{2}\right)^{-\frac{1}{r^{\prime}}}L_{1}^{-\frac{1}{r}-}N_{1}^{-s}(N_{1}^{1+\alpha}N_{2})^{-\frac{1}{r}}N_{2}^{-s}L^{-\frac{1}{r^{\prime}}-}N_{1}^{+}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N11α1r+N2s2ru1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r.\displaystyle N_{1}^{1-\alpha-\frac{1}{r}+}N_{2}^{-s-\frac{2}{r^{\prime}}}\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}.

We find the condition r<11αr<\frac{1}{1-\alpha}, which is weaker than r<1+αr<1+\alpha for 0<α10<\alpha\leq 1. Hence, we demand 1<r<1+α1<r<1+\alpha and s>1α+1rs>-1-\alpha+\frac{1}{r}.

\bullet Subcase 2d: L1=LmaxL_{1}=L_{\max}. Similarly, applying (3.9) gives

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim L21rL1rN21r1rN11+αru^1Lru^2Lrv^Lr\displaystyle L_{2}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}N_{1}^{-\frac{1+\alpha}{r^{\prime}}}\|\hat{u}_{1}\|_{L^{r^{\prime}}}\|\hat{u}_{2}\|_{L^{r^{\prime}}}\|\hat{v}\|_{L^{r}}
\displaystyle\lesssim L21rL1rN21r1rN1α+1r(N11+αN2)1rN1sL21rN2sL1rN1+Ns+1\displaystyle L_{2}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{2}^{\frac{1}{r}-\frac{1}{r^{\prime}}}N_{1}^{-\frac{\alpha+1}{r^{\prime}}}(N_{1}^{1+\alpha}N_{2})^{-\frac{1}{r}}N_{1}^{-s}L_{2}^{-\frac{1}{r}-}N_{2}^{-s}L^{-\frac{1}{r^{\prime}}-}N_{1}^{+}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N1α+N2s1ru1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r,\displaystyle N_{1}^{-\alpha+}N_{2}^{-s-\frac{1}{r^{\prime}}}\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}},

We end up again with the condition α>0\alpha>0 and s>1α+1rs>-1-\alpha+\frac{1}{r}.

As a consequence, given 0<α10<\alpha\leq 1, the high×lowhigh\times low interactions give the conditions 1<r<1+α1<r<1+\alpha and s>1α+1rs>-1-\alpha+\frac{1}{r}.

Case 3: N1N2NN_{1}\sim N_{2}\gg N. It implies that ξ1\xi_{1} and ξ2\xi_{2} have different signs (ξ1ξ2<0)(\xi_{1}\xi_{2}<0). In this case, we have |Ω(ξ1,ξ2)||ξ1|1+α|ξ1+ξ2|N11+αN|\Omega\left(\xi_{1},\xi_{2}\right)|{\gtrsim}|\xi_{1}|^{1+\alpha}|\xi_{1}+\xi_{2}|\sim N_{1}^{1+\alpha}N. We begin with N1N\lesssim 1. Similarly, abandoning the use of Lmax|Ω(ξ1,ξ2)|L_{\max}{\gtrsim}|\Omega\left(\xi_{1},\xi_{2}\right)| gives a better regularity for N1N\lesssim 1. Hence,

\bullet Subcase 3a: N1N\lesssim 1. Using (3.18) gives

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim L11rL1rN11r1rN11+αru^1Lru^2Lrv^Lr\displaystyle L_{1}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}}N_{1}^{-\frac{1+\alpha}{r^{\prime}}}\|\hat{u}_{1}\|_{L^{r^{\prime}}}\|\hat{u}_{2}\|_{L^{r^{\prime}}}\|\hat{v}\|_{L^{r}}
\displaystyle\lesssim L11rL1rN11r1rN11+αrL11rN1sL21rN2sL1rN1+\displaystyle L_{1}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}}N_{1}^{-\frac{1+\alpha}{r^{\prime}}}L_{1}^{-\frac{1}{r}-}N_{1}^{-s}L_{2}^{-\frac{1}{r}-}N_{2}^{-s}L^{-\frac{1}{r^{\prime}}-}N_{1}^{+}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N12sα2+2r+u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r.\displaystyle N_{1}^{-2s-\alpha-2+\frac{2}{r}+}\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}.

The boundedness is fine if s>1α2+1rs>-1-\frac{\alpha}{2}+\frac{1}{r}. Then it remains to consider N1N\gg 1.

\bullet Subcase 3b: L=LmaxL=L_{\max}. Using (3.16) gives

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim L11rL21r(N1αN)1ru^1Lru^2Lrv^Lr\displaystyle L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}(N_{1}^{\alpha}N)^{-\frac{1}{r}}\|\hat{u}_{1}\|_{L^{r^{\prime}}}\|\hat{u}_{2}\|_{L^{r^{\prime}}}\|\hat{v}\|_{L^{r}}
\displaystyle\lesssim L11rL21r(N1αN)1rL11rN1sL21rN2sL1rN1+Ns+1\displaystyle L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}(N_{1}^{\alpha}N)^{-\frac{1}{r}}L_{1}^{-\frac{1}{r}-}N_{1}^{-s}L_{2}^{-\frac{1}{r}-}N_{2}^{-s}L^{-\frac{1}{r^{\prime}}-}N_{1}^{+}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim L11rL21r(N1αN)1rL11rN1sL21rN2s(N11+αN)1rN1+Ns+1\displaystyle L_{1}^{\frac{1}{r}}L_{2}^{\frac{1}{r}}(N_{1}^{\alpha}N)^{-\frac{1}{r}}L_{1}^{-\frac{1}{r}-}N_{1}^{-s}L_{2}^{-\frac{1}{r}-}N_{2}^{-s}(N_{1}^{1+\alpha}N)^{-\frac{1}{r^{\prime}}}N_{1}^{+}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N12sα1+1r+Nsi=12uiX^rs,1/r+vX^rs1,1/r.\displaystyle N_{1}^{-2s-\alpha-1+\frac{1}{r}+}N^{s}\prod^{2}_{i=1}\|u_{i}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}.

We find the condition s>12(1α+1r)s>\frac{1}{2}\left(-1-\alpha+\frac{1}{r}\right).

\bullet Subcase 3c: L2=LmaxL_{2}=L_{\max}. Using (3.18) gives

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim L11rL1rN11r1rN11+αru^1Lru^2Lrv^Lr\displaystyle L_{1}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}}N_{1}^{-\frac{1+\alpha}{r^{\prime}}}\|\hat{u}_{1}\|_{L^{r^{\prime}}}\|\hat{u}_{2}\|_{L^{r^{\prime}}}\|\hat{v}\|_{L^{r}}
\displaystyle\lesssim L11rL1rN11r1rN11+αrL11rN1s(N11+αN)1rN2sL1rN1+Ns+1\displaystyle L_{1}^{\frac{1}{r}}L^{\frac{1}{r^{\prime}}}N_{1}^{\frac{1}{r}-\frac{1}{r^{\prime}}}N_{1}^{-\frac{1+\alpha}{r^{\prime}}}L_{1}^{-\frac{1}{r}-}N_{1}^{-s}(N_{1}^{1+\alpha}N)^{-\frac{1}{r}}N_{2}^{-s}L^{-\frac{1}{r^{\prime}}-}N_{1}^{+}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N12sα2+2r+Ns+11ru1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r,\displaystyle N_{1}^{-2s-\alpha-2+\frac{2}{r}+}N^{s+1-\frac{1}{r}}\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}},

which is fine if s>1α2+1rs>-1-\frac{\alpha}{2}+\frac{1}{r}.

\bullet Subcase 3d: L1=LmaxL_{1}=L_{\max}. Since ξ1\xi_{1} and ξ2\xi_{2} are symmetric here, the estimate follows the same lines as in subcase 3c and leads again to condition s>1α2+1rs>-1-\frac{\alpha}{2}+\frac{1}{r}.

In conclusion, the high×highlowhigh\times high\rightarrow low interactions deduce that the boundedness is fine provided that s>12(1α+1r)s>\frac{1}{2}\left(-1-\alpha+\frac{1}{r}\right).

Case 4: N1N2N1N_{1}\sim N_{2}\sim N\gg 1. In this case, we have |Ω(ξ1,ξ2)|N12+α|\Omega\left(\xi_{1},\xi_{2}\right)|{\gtrsim}N_{1}^{2+\alpha}.

\bullet Subcase 4a: L=LmaxL=L_{\max}. The condition here relies heavily on the assumption ξ1ξ2>0\xi_{1}\xi_{2}>0, instead of ξ1ξ2<0\xi_{1}\xi_{2}<0. Hence, by applying (3.17), we have

|J(u^1,u^2,v^)|\displaystyle\left|J(\hat{u}_{1},\hat{u}_{2},\hat{v})\right|\lesssim N1α2ru1X^r0,1/r+u2X^r0,1/r+v^Lr\displaystyle N_{1}^{-\frac{\alpha}{2r}}\|{u}_{1}\|_{{\widehat{X}}_{r}^{0,1/r+}}\|{u}_{2}\|_{{\widehat{X}}_{r}^{0,1/r+}}\|\hat{v}\|_{L^{r}}
\displaystyle\lesssim N1α2rN1sN2s(N12+α)1rN1+Ns+1\displaystyle N_{1}^{-\frac{\alpha}{2r}}N_{1}^{-s}N_{2}^{-s}(N_{1}^{2+\alpha})^{-\frac{1}{r^{\prime}}}N_{1}^{+}N^{s+1}
u1X^rs,1/r+u2X^rs,1/r+vX^rs1,1/r\displaystyle\cdot\|u_{1}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|u_{2}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}}
\displaystyle\lesssim N1sα1+2r+α2r+i=12uiX^rs,1/r+vX^rs1,1/r,\displaystyle N_{1}^{-s-\alpha-1+\frac{2}{r}+\frac{\alpha}{2r}+}\prod^{2}_{i=1}\|u_{i}\|_{{\widehat{X}}_{r}^{s,1/r+}}\|v\|_{{\widehat{X}}_{r^{\prime}}^{-s-1,1/r^{\prime}--}},

We find the condition s>1α+2r+α2rs>-1-\alpha+\frac{2}{r}+\frac{\alpha}{2r}.

\bullet Subcase 4b: L1=LmaxL_{1}=L_{\max} or L2=LmaxL_{2}=L_{\max}. These two cases follow a similar argument as in Subcase 3c, and lead to the condition s>1α+1rs>-1-\alpha+\frac{1}{r}. They are the more harmless cases since the gain from the resonance relation lies completely on the high frequency. Therefore, we omit the proof. Finally, we end up with the demand s>1α+2r+α2rs>-1-\alpha+\frac{2}{r}+\frac{\alpha}{2r} in high×highhighhigh\times high\rightarrow high interactions.

Compiling all cases above and using the standard contraction mapping argument give the desired result of Theorem 1.1. ∎

Acknowledgements

I am grateful for the support and patience of my supervisor, Zihua Guo, who provided useful discussions throughout this paper. Moreover, I would like to thank Professor Axel Grünrock. His papers greatly inspired me and he provided me with valuable guidance for improving the key estimates. In addition, I would like to thank Professor Sebastian Herr for useful comments.

References

  • [1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II, Geom. Funct. Anal. 3 (1993) 209-262.
  • [2] M. Christ, J. Colliander, T. Tao, Asymptotics, frequency modulation and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003) 1235-1293.
  • [3] J. Colliander, C. E. Kenig, G. Staffilani, Local well-posedness for dispersion-generalized Benjamin-Ono equations, Differ. Integral Equ. 16 (2003) 1441-1472.
  • [4] J. Ginibre, Y. Tsutsumi, G. Velo, On the Cauchy Problem for the Zakharov System, J. Funct. Anal. 151 (1997) 384–436.
  • [5] A. Grünrock, An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Notices 61 (2004) 3287-3308.
  • [6] A. Grünrock, L. Vega, Local well-posedness for the modified KdV equation in almost critical H^sr\widehat{H}^{r}_{s} spaces, T. Amer. Math. Soc. 361 (2009) 5681-5694.
  • [7] A. Grünrock, On the hierarchies of higher order mKdV and KdV equations, Open Math. 8 (2010) 500-536.
  • [8] Z. Guo, Global Well-posedness of Korteweg-de Vries equation in H34()H^{-\frac{3}{4}}(\mathbb{R}), J. Math. Pure. Appl. 91 (2009) 583-597.
  • [9] Z. Guo, Local well-posedness for dispersion generalized Benjamin–Ono equations in Sobolev spaces, J. Differ. Equations 252 (2012) 2053-2084.
  • [10] S. Herr, Well-posedness for equations of Benjamin-Ono type, Illinois J. Math. 51 (2007) 951-976.
  • [11] S. Herr, A. D. Ionescu, C. E. Kenig, H. Koch, A para-differential renormalization technique for nonlinear dispersive equations, Commun. Part. Diff. Eq. 35 (2010) 1827-1875.
  • [12] A. D. Ionescu, C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc. 20 (2007) 753–798.
  • [13] A. D. Ionescu, C. E. Kenig, D. Tataru, Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math. 173 (2008) 265-304.
  • [14] C. Kenig, G. Ponce, L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991) 33–69.
  • [15] C.E. Kenig, G. Ponce, L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pur. and Appl. Math. 46 (1993) 527-620.
  • [16] C.E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996) 573-603.
  • [17] C. E. Kenig, K. D. Koenig, On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett. 10 (2003) 879–895.
  • [18] R. Killip, T. Laurens, M. Visan, Sharp well-posedness for the Benjamin-Ono equation, arXiv:2304.00124 (2023).
  • [19] R. Killip, M. Visan, KdV is well-posed in H1H^{-1}, Ann. Math. 190 (2019) 249-305.
  • [20] N. Kishimoto, Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differ. Integral Equ. 22 (2009) 447-464.
  • [21] H. Koch, N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in Hs()H^{s}(\mathbb{R}), Int. Math. Res. Not. 26 (2003) 1449–1464.
  • [22] L. Molinet, J. C. Saut, N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001) 982–988.
  • [23] G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Differ. Integral Equ. 4 (1991) 527-542.
  • [24] T. Tao, Multilinear weighted convolution of L2L^{2} functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123 (2001) 839-908.
  • [25] T. Tao, Global well-posedness of the Benjamin-Ono equation in H1()H^{1}(\mathbb{R}), J. Hyperbol. Differ. Eq. 1 (2004) 27-49.
  • [26] T. Tao, Scattering for the quartic generalized Korteweg-De Vries equation, J. Differ. Equations 232 (2007) 623-651.