This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Local to global principle over number fields for higher moments

Giacomo Micheli Department of Mathematics
University of South Florida
Tampa, FL 33620, United States of America
[email protected]
Severin Schraven Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada [email protected] Simran Tinani Institute of Mathematics
University of Zurich
Winterthurerstrasse 190
8057 Zurich, Switzerland
[email protected]
 and  Violetta Weger Department of Electrical and Computer Engineering
Technical University of Munich
Theresienstrasse 90
80333 Munich, Germany
[email protected]
Abstract.

The local to global principle for densities is a very convenient tool proposed by Poonen and Stoll to compute the density of a given subset of the integers. In this paper we provide an effective criterion to find all higher moments of the density (e.g. the mean, the variance) of a subset of a finite dimensional free module over the ring of algebraic integers of a number field. More precisely, we provide a local to global principle that allows the computation of all higher moments corresponding to the density, over a general number field KK. This work advances the understanding of local to global principles for density computations in two ways: on one hand, it extends a result of Bright, Browning and Loughran, where they provide the local to global principle for densities over number fields; on the other hand, it extends the recent result on a local to global principle for expected values over the integers to both the ring of algebraic integers and to moments higher than the expected value. To show how effective and applicable our method is, we compute the density, mean and variance of Eisenstein polynomials and shifted Eisenstein polynomials over number fields. This extends (and fully covers) results in the literature that were obtained with ad-hoc methods.

Key words and phrases:
Densities, Number Fields, Expected Values, Variance.
2010 Mathematics Subject Classification:

1. Introduction

For a positive integer dd, the density of a set TdT\subseteq\mathbb{Z}^{d} is defined as

ρ(T)=limHT[H,H[d(2H)d,\rho(T)=\lim\limits_{H\to\infty}\frac{\mid T\cap[-H,H[^{d}\mid}{(2H)^{d}},

if it exists. Computing the density of a subset TT of n\mathbb{Z}^{n} is a classical problem in number theory, as it provides an estimate on the relative size of TT and n\mathbb{Z}^{n}

A well-known result in this area is the density of coprime pairs, which has been computed by Mertens [11] and Césaro [5, 4] independently. This result has been generalized to coprime mm-tuples by Nymann [17] and further to rectangular unimodular matrices by Micheli and Weger [15]. Another interesting target set is the set of Eisenstein polynomials, where the results are due to Dubickas [6] in the case of monic polynomials and due to Heymann and Shparlinski [8] in the non-monic case. In addition, Micheli and Schnyder computed the density of shifted and affine Eisenstein polynomials over \mathbb{Z} in [13]. Since the density can also be defined over a general number field, further generalizations of these results appeared (see [7, 15]), using a pull-back function from the set of interest, i.e., the ring of algebraic integers to the integers.

An elegant tool to compute certain densities over the integers is called the local to global principle. This principle was introduced by Poonen and Stoll [18] and uses a local characterization of the target set, i.e., over the pp-adic integers. In fact, all of the above mentioned examples have a density that can be computed through this tool. The local to global principle has been generalized to number fields by Bright et al. in [2] and to function fields by Micheli in [12].

Recently, a new question regarding densities has arisen in [10]: to compute the expected value and the variance of Eisenstein polynomials over the integers. More precisely, the question can be formulated as “On an average, for a random Eisenstein polynomial how many primes pp are such that this Eisenstein polynomial satisfies the criterion of Eisenstein for pp?” This led to [14], where a general definition of the expected value corresponding to the density is given and an addendum to the local to global principle over the integers is provided, which allows to compute these expected values corresponding to the density directly using the local characterization of the target set. In addition, in the thesis [20] the variance of Eisenstein polynomials and other target sets over the integers were determined using an adaption of this new local to global principle.

This paper finally closes all the missing gaps in this historical overview, as we provide a final extension of the local to global principle over number fields, which allows to compute all higher moments of a target set. As an application of this result, we compute the missing density of Eisenstein polynomials over number fields, in addition to their mean and variance.

The paper is organized as follows: in Section 2 we recall the definition of density over the integers as well as over number fields and restate the original local to global principle by Poonen and Stoll and its generalization to number fields by Bright et al. In Section 3 we give the definition of the expected value and higher moments of a system and present the main result, Theorem 11, an extension of the local to global principle, which works over a general number field and allows to compute any higher moment. Finally, we compute the density, the mean and the variance of Eisenstein polynomials over number fields in Section 4.

2. Preliminaries

For a positive integer dd, the density of a set TdT\subseteq\mathbb{Z}^{d} is defined by restricting to a dd-dimensional cube of height HH and letting HH go to infinity.

Definition 1 (Density).

Let d.d\in\mathbb{N}. The density of TdT\subseteq\mathbb{Z}^{d} is defined to be

ρ(T)=limHT[H,H[d(2H)d,\rho(T)=\lim\limits_{H\to\infty}\frac{\mid T\cap[-H,H[^{d}\mid}{(2H)^{d}},

if the limit exists.

Similarly, one can define the upper density ρ¯\overline{\rho} and the lower density ρ¯\underline{\rho} using the limit superior and the limit inferior, respectively.

There exist various tools to compute the density of a set, one of the main tools is the local to global principle [18, 19] by Poonen and Stoll, which allows to compute the density of certain sets by characterizing these sets over the pp-adic integers.

To present the principle we need to introduce the following notation. For a set SS we denote by 2S2^{S} its powerset and by SCS^{C} its complement. In addition, if SS is a subset of a metric space we denote by (S)\partial(S) its boundary. We denote by 𝒫\mathcal{P} the natural primes and for p𝒫p\in\mathcal{P} we denote by p\mathbb{Z}_{p} the pp-adic integers. Let M={}𝒫M_{\mathbb{Q}}=\{\infty\}\cup\mathcal{P} be the set of all places of ,\mathbb{Q}, where we denote by \infty the unique Archimedean place of .\mathbb{Q}. Finally, for d,d\in\mathbb{N}, we denote by μ\mu_{\infty} the Lebesgue measure on d\mathbb{R}^{d} and by μp\mu_{p} the normalized Haar measure on pd.\mathbb{Z}_{p}^{d}.

Theorem 2 ([19, Lemma 1]).

Let dd be a positive integer. Let UdU_{\infty}\subseteq\mathbb{R}^{d}, such that 0U=U\mathbb{R}_{\geq 0}\cdot U_{\infty}=U_{\infty} and μ((U))=0.\mu_{\infty}(\partial(U_{\infty}))=0. Let s=12dμ(U[1,1]d)s_{\infty}=\frac{1}{2^{d}}\mu_{\infty}(U_{\infty}\cap[-1,1]^{d}). For each prime pp, let UppdU_{p}\subseteq\mathbb{Z}_{p}^{d} be such that μp((Up))=0\mu_{p}(\partial(U_{p}))=0 and define sp=μp(Up)s_{p}=\mu_{p}(U_{p}). Define the following map

P:d\displaystyle P:\mathbb{Z}^{d} \displaystyle\rightarrow 2M,\displaystyle 2^{M_{\mathbb{Q}}},
a\displaystyle a \displaystyle\mapsto {νMaUν}.\displaystyle\left\{\nu\in M_{\mathbb{Q}}\mid a\in U_{\nu}\right\}.

If the following is satisfied:

(2.1) limMρ¯({adaUpfor some primep>M})=0,\lim_{M\rightarrow\infty}\bar{\rho}\left(\left\{a\in\mathbb{Z}^{d}\mid a\in U_{p}\ \text{for some prime}\ p>M\right\}\right)=0,

then:

  • i)

    νMsν\sum\limits_{\nu\in M_{\mathbb{Q}}}s_{\nu} converges.

  • ii)

    For 𝒮2M,\mathcal{S}\subseteq 2^{M_{\mathbb{Q}}}, ρ(P1(𝒮))\rho(P^{-1}(\mathcal{S})) exists, and defines a measure on 2M2^{M_{\mathbb{Q}}}.

  • iii)

    For each finite set S2MS\in 2^{M_{\mathbb{Q}}}, we have that

    ρ(P1({S}))=νSsννS(1sν),\rho(P^{-1}(\{S\}))=\prod_{\nu\in S}s_{\nu}\prod_{\nu\not\in S}(1-s_{\nu}),

    and if 𝒮\mathcal{S} consists of infinite subsets of 2M2^{M_{\mathbb{Q}}}, then ρ(P1(𝒮))=0.\rho(P^{-1}(\mathcal{S}))=0.

To show that Condition (2.1) is satisfied, one can often apply the following lemma.

Lemma 3 ( [18, Lemma 2]).

Let dd and MM be positive integers. Let f,g[x1,,xd]f,g\in\mathbb{Z}[x_{1},\ldots,x_{d}] be relatively prime and define

SM(f,g)={adf(a)g(a)0modpfor some primep>M}.S_{M}(f,g)=\{a\in\mathbb{Z}^{d}\mid f(a)\equiv g(a)\equiv 0\mod p\ \text{for some prime}\ p>M\}.

Then

limMρ¯(SM(f,g))=0.\lim\limits_{M\to\infty}\overline{\rho}(S_{M}(f,g))=0.

The notion of density, as well as the local to global principle can be generalized to number fields. For this we will first recall some basics.

Let KK be a number field and denote by 𝔬\mathfrak{o} its ring of integers. For any non-zero prime ideal 𝔭\mathfrak{p} of 𝔬\mathfrak{o} we denote the completion of KK with respect to the non-Archimedean place 𝔭\mathfrak{p} by K𝔭K_{\mathfrak{p}}. Furthermore, we denote by 𝔬𝔭\mathfrak{o}_{\mathfrak{p}} the ring of integers of K𝔭K_{\mathfrak{p}}. Note that 𝔬𝔭\mathfrak{o}_{\mathfrak{p}} is compact in the subspace topology of K𝔭K_{\mathfrak{p}}. Hence, there exists a unique normalized Haar measure on 𝔬𝔭\mathfrak{o}_{\mathfrak{p}}, which we denote by ν𝔭\nu_{\mathfrak{p}}. We define the degree of the number field KK to be the index k=[K:]k=[K:\mathbb{Q}], which is finite by assumption. Thus, one has that 𝔬\mathfrak{o} is isomorphic to k\mathbb{Z}^{k} as a \mathbb{Z}-module. Let 𝔼={e1,,ek}\mathbb{E}=\{e_{1},\dots,e_{k}\} be an integral basis for 𝔬\mathfrak{o}, then we can define for HH\in\mathbb{N} the following set

O(H,𝔼)={j=1kajej𝔬:aj[H,H[}.O(H,\mathbb{E})=\left\{\sum_{j=1}^{k}a_{j}e_{j}\in\mathfrak{o}\ :\ a_{j}\in[-H,H[\cap\mathbb{Z}\right\}.

Let dd\in\mathbb{N} and T𝔬dT\subseteq\mathfrak{o}^{d}, then we define the upper, respectively the lower density on the number field KK as

ρ¯𝔼(T)=lim supH|TO(H,𝔼)d|(2H)dk\displaystyle\overline{\rho}_{\mathbb{E}}(T)=\limsup_{H\rightarrow\infty}\frac{|T\cap O(H,\mathbb{E})^{d}|}{(2H)^{dk}}

and

ρ¯𝔼(T)=lim infH|TO(H,𝔼)d|(2H)dk,\displaystyle\underline{\rho}_{\mathbb{E}}(T)=\liminf_{H\rightarrow\infty}\frac{|T\cap O(H,\mathbb{E})^{d}|}{(2H)^{dk}},

respectively. If ρ¯𝔼(T)=ρ¯𝔼(T)\overline{\rho}_{\mathbb{E}}(T)=\underline{\rho}_{\mathbb{E}}(T), we also define the density of TT with respect to the basis 𝔼\mathbb{E} as

ρ𝔼(T)=limH|TO(H,𝔼)d|(2H)dk.\displaystyle\rho_{\mathbb{E}}(T)=\lim_{H\rightarrow\infty}\frac{|T\cap O(H,\mathbb{E})^{d}|}{(2H)^{dk}}.

Furthermore, in the case where ρ𝔼(T)\rho_{\mathbb{E}}(T) is independent of the integral basis 𝔼\mathbb{E}, we simply write ρ(T)\rho(T). For a non-zero prime ideal 𝔭𝔬\mathfrak{p}\subset\mathfrak{o}, we say that 𝔭\mathfrak{p} is lying above pp for some p𝒫p\in\mathcal{P}, if 𝔭=p\mathfrak{p}\cap\mathbb{Z}=p\mathbb{Z} and we write 𝔭|p\mathfrak{p}|p. Finally, we denote by 𝒫K\mathcal{P}_{K} all non-zero prime ideals in 𝔬\mathfrak{o}.

In [2], Bright et al. provide a generalization of the original local to global principle to number fields. We will state the result translated to our setting. Let us define the \mathbb{R}-algebra k=𝔬k_{\infty}=\mathfrak{o}\otimes_{\mathbb{Z}}\mathbb{R}, which has covolume |ΔK|1/2\lvert\Delta_{K}\rvert^{1/2}, where ΔK\Delta_{K} denotes the discriminant of KK and kk_{\infty} is endowed with the Haar measure ν\nu_{\infty}, see [16, Proposition I.5.2]. That is, for some set XkX\subseteq k_{\infty} we have

ν(X)=1|ΔK|1/2μ(f(X)),\nu_{\infty}(X)=\frac{1}{\lvert\Delta_{K}\rvert^{1/2}}\mu_{\infty}(f(X)),

where μ\mu_{\infty} denotes the Lebesgue measure and ff is the isomorphism KkK\otimes_{\mathbb{Q}}\mathbb{R}\to\mathbb{R}^{k} from [16, Proposition I.5.1]. Let us denote 𝒫K{}\mathcal{P}_{K}\cup\{\infty\} by NKN_{K}.

Theorem 4 ( [2, Proposition 3.2] ).

Let KK be a number field and k=[K:].k=[K:\mathbb{Q}]. Let 𝔼\mathbb{E} be an integral basis of 𝔬\mathfrak{o} and let dd be a positive integer.

For each 𝔭𝒫K\mathfrak{p}\in\mathcal{P}_{K}, let U𝔭𝔬𝔭dU_{\mathfrak{p}}\subseteq\mathfrak{o}_{\mathfrak{p}}^{d} be such that ν𝔭((U𝔭))=0\nu_{\mathfrak{p}}(\partial(U_{\mathfrak{p}}))=0 and define s𝔭=ν𝔭(U𝔭).s_{\mathfrak{p}}=\nu_{\mathfrak{p}}(U_{\mathfrak{p}}). Let UkdU_{\infty}\subseteq k_{\infty}^{d}, such that μ((U))=0\mu_{\infty}(\partial(U_{\infty}))=0 and 0U=U\mathbb{R}_{\geq 0}\cdot U_{\infty}=U_{\infty}. We define s=12dkν(U[1,1]O(1,𝔼)d)s_{\infty}=\frac{1}{2^{dk}}\nu_{\infty}\left(U_{\infty}\cap[-1,1]\cdot O(1,\mathbb{E})^{d}\right) Define the following map

P:𝔬d\displaystyle P:\mathfrak{o}^{d} 2NK,\displaystyle\rightarrow 2^{N_{K}},
a\displaystyle a {ηNKaUη}.\displaystyle\mapsto\{\eta\in N_{K}\ \mid\ a\in U_{\eta}\}.

If the following is satisfied:

(2.2) limMρ¯𝔼(𝔬dp>M𝔭𝒫K,𝔭|pU𝔭)=0,\lim_{M\rightarrow\infty}\overline{\rho}_{\mathbb{E}}\left(\mathfrak{o}^{d}\cap\bigcup_{p>M}\bigcup_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}|p}U_{\mathfrak{p}}\right)=0,

then:

  1. (1)

    ηNKsη\sum\limits_{\eta\in N_{K}}s_{\eta} converges.

  2. (2)

    For 𝒮2NK\mathcal{S}\subseteq 2^{N_{K}}, m(𝒮)ρ𝔼(P1(𝒮))m(\mathcal{S})\coloneqq\rho_{\mathbb{E}}(P^{-1}(\mathcal{S})) exists and defines a measure on 2NK2^{N_{K}}.

  3. (3)

    The measure mm is concentrated at the finite subsets of NKN_{K}. For each finite set S2NKS\in 2^{N_{K}}, we have that

    (2.3) m({S})=ηSsηηS(1sη)m(\{S\})=\prod_{\eta\in S}s_{\eta}\prod_{\eta\notin S}(1-s_{\eta})

    and if 𝒮\mathcal{S} consists of infinite subsets of 2NK2^{N_{K}} then m(𝒮)=0m(\mathcal{S})=0.

Remark 5.

Note that for any two integral bases 𝔼1,𝔼2\mathbb{E}_{1},\mathbb{E}_{2} there exists an integer cc such that for all HH\in\mathbb{N} holds O(H,𝔼1)O(cH,𝔼2)O(H,\mathbb{E}_{1})\subseteq O(cH,\mathbb{E}_{2}), and thus if (2.2) holds for one integral basis, then it holds for all integral bases.

In addition, we have a similar result to Lemma 3 over number fields, in order to show that Condition (2.2) is satisfied. For MM a positive integer and 𝔭𝒫K\mathfrak{p}\in\mathcal{P}_{K}, consider the unique prime integer p𝒫p\in\mathcal{P} with 𝔭p\mathfrak{p}\mid p. We write 𝔭M\mathfrak{p}\succ M if and only if p>Mp>M. Similarly one defines 𝔭M\mathfrak{p}\preceq M. In addition, we will assume that M\infty\preceq M for all MM\in\mathbb{N}.

Lemma 6.

Let dd and MM be positive integers. Let f,g𝔬[x1,,xd]f,g\in\mathfrak{o}[x_{1},\ldots,x_{d}] be relatively prime. Define

SM(f,g)={a𝔬df(a)g(a)0mod𝔭for some prime ideal𝔭M},S_{M}(f,g)=\left\{a\in\mathfrak{o}^{d}\mid f(a)\equiv g(a)\equiv 0\mod\mathfrak{p}\ \text{for some prime ideal}\ \mathfrak{p}\succ M\right\},

then we have for every integral basis 𝔼\mathbb{E} of 𝔬\mathfrak{o}

limMρ¯𝔼(SM(f,g))=0.\lim_{M\rightarrow\infty}\bar{\rho}_{\mathbb{E}}(S_{M}(f,g))=0.
Proof.

This follows directly from [2, Lemma 3.3] applied to the subscheme defined by f=0=gf=0=g. ∎

3. Higher moments

In [14] the authors generalized Theorem 2, the local to global principle over the integers, to expected values. We will now generalize Theorem 4, the local to global principle over number fields, to higher moments.

Before we introduce the definition of expected values of systems (Uη)ηNK(U_{\eta})_{\eta\in N_{K}}, let us notice that for a general number field KK, η=\eta=\infty does no longer correspond to an archimedean place. Still we find it useful to include this possiblity to modifity the box O(H,𝔼)dO(H,\mathbb{E})^{d}. Even though NKN_{K} does no longer correspond to the set of all places, we will keep using the same notation in order to stay consistent with our previous paper [14]. Note that the set of elements living in infinitely many UηU_{\eta}, i.e.,

I={A𝔬dAUηfor infinitely manyηNK}I=\{A\in\mathfrak{o}^{d}\mid A\in U_{\eta}\ \text{for infinitely many}\ \eta\in N_{K}\}

has density zero; this follows directly from Condition (2.2). Let us denote by O(H,𝔼)I=O(H,𝔼)I.O(H,\mathbb{E})_{I}=O(H,\mathbb{E})\setminus I.

Definition 7.

Let dd be a positive integer and assume that UηU_{\eta} satisfies the assumptions of Theorem 4 for all ηNK\eta\in N_{K}, then we define the expected value of the system (Uη)ηNK(U_{\eta})_{\eta\in N_{K}} to be

μ𝔼=limHAO(H,𝔼)Id|{ηNKAUη}|(2H)kd,\mu_{\mathbb{E}}=\lim\limits_{H\to\infty}\displaystyle{\frac{\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}}\lvert\{\eta\in N_{K}\mid A\in U_{\eta}\}\rvert}{(2H)^{kd}}},

if it exists. More generally, for any non-negative integer nn we define the nn-th moment of the system (Uη)ηNK(U_{\eta})_{\eta\in N_{K}} to be

μn,𝔼=limHAO(H,𝔼)Id|{ηNKAUη}|n(2H)kd,\mu_{n,\mathbb{E}}=\lim\limits_{H\to\infty}\displaystyle{\frac{\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}}\lvert\{\eta\in N_{K}\mid A\in U_{\eta}\}\rvert^{n}}{(2H)^{kd}}},

if it exists.

This limit essentially gives the expected value of the number of η\eta, such that a random element in 𝔬d\mathfrak{o}^{d} is in UηU_{\eta}.

Definition 8.

For a set T𝔬dT\subseteq\mathfrak{o}^{d}, we say that a system (Uη)ηNK(U_{\eta})_{\eta\in N_{K}} corresponds to TT, if Condition (2.2) is satisfied and TC=P1({})T^{C}=P^{-1}(\{\emptyset\}).

As in [14] we can restrict Definition 7 to subsets of 𝔬d\mathfrak{o}^{d}, i.e., we define the nn-th moment of the system (Uη)ηNK(U_{\eta})_{\eta\in N_{K}} restricted to T𝔬dT\subseteq\mathfrak{o}^{d} to be

μn,T,𝔼=limHAO(H,𝔼)IdT|{ηNKAUη}|n|O(H,𝔼)IdT|,\mu_{n,T,\mathbb{E}}=\lim\limits_{H\to\infty}\displaystyle{\frac{\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}\cap T}\lvert\{\eta\in N_{K}\mid A\in U_{\eta}\}\rvert^{n}}{\lvert O(H,\mathbb{E})_{I}^{d}\cap T\rvert}},

if it exists. We will write μT,𝔼\mu_{T,\mathbb{E}} for μ1,T,𝔼\mu_{1,T,\mathbb{E}} and if it does not depend on the integral basis 𝔼\mathbb{E}, we will just write μn,T\mu_{n,T}, respectively μT\mu_{T} for μ1,T\mu_{1,T}. Note, that this is similar to the conditional expected value.

For any non-negative integer nn, one can easily pass from μn,𝔼\mu_{n,\mathbb{E}} to μn,T,𝔼\mu_{n,T,\mathbb{E}} and vice versa. The proof is the same as in [14, Lemma 11].

Lemma 9.

If the density of TT with respect to 𝔼\mathbb{E} exists and is non-zero and TT is such that TCP1({})T^{C}\subseteq P^{-1}(\{\emptyset\}), then μn,T,𝔼\mu_{n,T,\mathbb{E}} exists if and only if μn,𝔼\mu_{n,\mathbb{E}} exist. In addition, we have that μn,𝔼=μn,T,𝔼ρ𝔼(T)\mu_{n,\mathbb{E}}=\mu_{n,T,\mathbb{E}}\cdot\rho_{\mathbb{E}}(T).

We have the following straightforward corollary from Theorem 4.

Corollary 10.

Let η1,,ηnNK\eta_{1},\dots,\eta_{n}\in N_{K} with ηiηj\eta_{i}\neq\eta_{j} for iji\neq j and let UηjU_{\eta_{j}} be chosen as in Theorem 4, then

ρ𝔼(j=1n(Uηj𝔬d))=j=1nsηj,\rho_{\mathbb{E}}\left(\bigcap_{j=1}^{n}\left(U_{\eta_{j}}\cap\mathfrak{o}^{d}\right)\right)=\prod_{j=1}^{n}s_{\eta_{j}},

where again sη=νη(Uη).s_{\eta}=\nu_{\eta}(U_{\eta}).

With the above corollary we are able to prove the following generalized version of Theorem 4, the main result of this paper.

Theorem 11.

Let dd and nn be positive integers. Let KK be a number field with k=[K:]k=[K:\mathbb{Q}], 𝔬\mathfrak{o} its ring of integers and 𝔼\mathbb{E} an integral basis of 𝔬\mathfrak{o}. For each 𝔭𝒫K\mathfrak{p}\in\mathcal{P}_{K}, let U𝔭𝔬𝔭dU_{\mathfrak{p}}\subseteq\mathfrak{o}_{\mathfrak{p}}^{d} be such that ν𝔭((U𝔭))=0\nu_{\mathfrak{p}}(\partial(U_{\mathfrak{p}}))=0 and define s𝔭=ν𝔭(U𝔭)s_{\mathfrak{p}}=\nu_{\mathfrak{p}}(U_{\mathfrak{p}}). Let UkdU_{\infty}\subseteq k_{\infty}^{d}, such that μ((U))=0\mu_{\infty}(\partial(U_{\infty}))=0 and 0U=U\mathbb{R}_{\geq 0}\cdot U_{\infty}=U_{\infty}. We define s=12dkν(U[1,1]O(1,𝔼)d)s_{\infty}=\frac{1}{2^{dk}}\nu_{\infty}\left(U_{\infty}\cap[-1,1]\cdot O(1,\mathbb{E})^{d}\right). If

(3.1) limMρ¯𝔼(𝔬dp>M𝔭𝒫K,𝔭|pU𝔭)=0,\lim_{M\rightarrow\infty}\overline{\rho}_{\mathbb{E}}\left(\mathfrak{o}^{d}\cap\bigcup_{p>M}\bigcup_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}|p}U_{\mathfrak{p}}\right)=0,

is satisfied and for some α[0,]\alpha\in[0,\infty] there exist absolute constants c,cc^{\prime},c\in\mathbb{Z}, such that for all H1H\geq 1 and for all AO(H,𝔼)IdA\in O(H,\mathbb{E})_{I}^{d} one has that

(3.2) |{𝔭𝒫K𝔭cHα,AU𝔭O(H,𝔼)Id}|<c\left|\left\{\mathfrak{p}\in\mathcal{P}_{K}\mid\mathfrak{p}\succ c^{\prime}H^{\alpha},A\in U_{\mathfrak{p}}\cap O(H,\mathbb{E})_{I}^{d}\right\}\right|<c

and that there exists a sequence (v𝔭)𝔭𝒫K(v_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{P}_{K}}, such that for all 𝔭1,,𝔭ncHα\mathfrak{p}_{1},\dots,\mathfrak{p}_{n}\preceq c^{\prime}H^{\alpha} one has that

(3.3) |j=1nU𝔭jO(H,𝔼)Id|\displaystyle\left|\bigcap_{j=1}^{n}U_{\mathfrak{p}_{j}}\cap O(H,\mathbb{E})_{I}^{d}\right| (2H)kdj=1nv𝔭j,\displaystyle\leq(2H)^{kd}\prod\limits_{j=1}^{n}v_{\mathfrak{p}_{j}},
(3.4) 𝔭𝒫Kv𝔭\displaystyle\sum_{\mathfrak{p}\in\mathcal{P}_{K}}v_{\mathfrak{p}} converges,\displaystyle\text{converges},

then it follows that

μn,𝔼\displaystyle\mu_{n,\mathbb{E}} =limHAO(H,𝔼)Id|{ηNKAUη}|n(2H)kd\displaystyle=\lim\limits_{H\to\infty}\displaystyle{\frac{\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}}\lvert\{\eta\in N_{K}\mid A\in U_{\eta}\}\rvert^{n}}{(2H)^{kd}}}

exists and μn,𝔼<\mu_{n,\mathbb{E}}<\infty. For τn\tau\in\mathbb{N}^{n} with j=1njτj=n\sum\limits_{j=1}^{n}j\tau_{j}=n, we define (τ)=j=1nτj\ell(\tau)=\sum\limits_{j=1}^{n}\tau_{j} and denote by c(τ)c(\tau) the number of partitions of {1,,n}\{1,\dots,n\} which contain exactly τj\tau_{j} sets of cardinality jj. Then we have the formula

(3.5) μn,𝔼=τn,j=1njτj=nc(τ)η1,,η(τ)NKi<j{1,,(τ)},ηiηjm=1(τ)sηm,\mu_{n,\mathbb{E}}=\sum_{\tau\in\mathbb{N}^{n},\ \sum_{j=1}^{n}j\tau_{j}=n}c(\tau)\sum_{\begin{subarray}{c}\eta_{1},\dots,\eta_{\ell(\tau)}\in N_{K}\\ \forall i<j\in\{1,\dots,\ell(\tau)\},\ \eta_{i}\neq\eta_{j}\end{subarray}}\prod\limits_{m=1}^{\ell(\tau)}s_{\eta_{m}},
Remark 12.

Note that similarly to Remark 5 we get that the conditions are satisfied for all integral bases (with possibly different constants) as soon as they are satisfied for one particular integral basis. Also, the expression in (3.5) is independent of the integral basis for U=U_{\infty}=\emptyset (as only ss_{\infty} depends on 𝔼\mathbb{E}). Note that the dependence on 𝔼\mathbb{E} is not just a technicality, but reflects the fact that the basis alters the way the density of UU_{\infty} is measured (as it is a cone and not a lattice, its density is not invariant under \mathbb{Z}-module isomorphisms). We could easily develop our theorem in the same setting as in [2], where the box O(H,𝔼)dO(H,\mathbb{E})^{d} is replaced by HΩ𝔬dH\Omega_{\infty}\cap\mathfrak{o}^{d} for some bounded set Ωkd\Omega_{\infty}\subset k_{\infty}^{d} with μ(Ω)=0\mu_{\infty}(\partial\Omega_{\infty})=0 and μ(Ω)>0\mu_{\infty}(\Omega_{\infty})>0. The proof would be the same and the results would only differ by normalizing constants.

Finally, if the conditions of Theorem 11 are satisfied for some integer n1n\geq 1, then the same holds true for any positive integer mnm\leq n.

Proof.

For A𝔬dA\in\mathfrak{o}^{d} and ηNK\eta\in N_{K}, we define

τ(A,η)={1,AUη,0,else.\displaystyle\tau(A,\eta)=\begin{cases}1,&A\in U_{\eta},\\ 0,&\text{else}.\end{cases}

For M,M\in\mathbb{N}, we have that

AO(H,𝔼)Id(ηNKτ(A,η))n(2H)kd=j=0n(nj)Rj(M,H),\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}}\frac{\left(\sum\limits_{\eta\in N_{K}}\tau(A,\eta)\right)^{n}}{(2H)^{kd}}=\sum\limits_{j=0}^{n}\binom{n}{j}R_{j}(M,H),

where for all j{0,,n}j\in\{0,\ldots,n\}, we define

Rj(M,H)AO(H,𝔼)Id(𝔭𝒫K,𝔭Mτ(A,𝔭))nj(ηNK,ηMτ(A,η))j(2H)kd.\displaystyle R_{j}(M,H)\coloneqq\sum_{A\in O(H,\mathbb{E})_{I}^{d}}\frac{\left(\sum\limits_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}\tau(A,\mathfrak{p})\right)^{n-j}\left(\sum\limits_{\eta\in N_{K},\ \eta\preceq M}\tau(A,\eta)\right)^{j}}{(2H)^{kd}}.

First we show that for all j{0,,n1}j\in\{0,\dots,n-1\} the terms Rj(M,H)R_{j}(M,H) are negligible for MM going to infinity. We define

A,H|{𝔭𝒫K𝔭cHα,AU𝔭O(H,𝔼)Id}|.\displaystyle\ell_{A,H}\coloneqq\left|\left\{\mathfrak{p}\in\mathcal{P}_{K}\mid\mathfrak{p}\succ c^{\prime}H^{\alpha},A\in U_{\mathfrak{p}}\cap O(H,\mathbb{E})_{I}^{d}\right\}\right|.

Then by (3.2) there exists c>0c>0 such that for all A𝔬dA\in\mathfrak{o}^{d} and all H1H\geq 1 holds A,Hc\ell_{A,H}\leq c. Thus, we get that

Sn(M\displaystyle S_{n}(M ,H):=AO(H,𝔼)Id(𝔭𝒫K,𝔭Mτ(A,𝔭))n(2H)kd\displaystyle,H):=\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}}\frac{\left(\sum\limits_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}\tau(A,\mathfrak{p})\right)^{n}}{(2H)^{kd}}
=\displaystyle= i=0n(ni)AO(H,𝔼)IdA𝔭1,,𝔭nMj=1nU𝔭j|{(𝔭j)j=1n𝒫Kn|M𝔭1,,𝔭icHα𝔭i+1,,𝔭n}|(2H)kd\displaystyle\sum\limits_{i=0}^{n}\binom{n}{i}\sum\limits_{\begin{subarray}{c}A\in O(H,\mathbb{E})_{I}^{d}\\ A\in\bigcup_{\mathfrak{p}_{1},\dots,\mathfrak{p}_{n}\succ M}\bigcap_{j=1}^{n}U_{\mathfrak{p}_{j}}\end{subarray}}\frac{|\{(\mathfrak{p}_{j})_{j=1}^{n}\in\mathcal{P}_{K}^{n}\ |\ M\prec\mathfrak{p}_{1},\dots,\mathfrak{p}_{i}\prec c^{\prime}H^{\alpha}\prec\mathfrak{p}_{i+1},\dots,\mathfrak{p}_{n}\}|}{(2H)^{kd}}
\displaystyle\leq i=0n(ni)AO(H,𝔼)IdA𝔭1,,𝔭nMj=1nU𝔭jA,Hni|{(𝔭j)j=1i𝒫Ki|M𝔭1,,𝔭icHα}|(2H)kd\displaystyle\sum_{i=0}^{n}\binom{n}{i}\sum\limits_{\begin{subarray}{c}A\in O(H,\mathbb{E})_{I}^{d}\\ A\in\bigcup_{\mathfrak{p}_{1},\dots,\mathfrak{p}_{n}\succ M}\bigcap_{j=1}^{n}U_{\mathfrak{p}_{j}}\end{subarray}}\frac{\ell_{A,H}^{n-i}|\{(\mathfrak{p}_{j})_{j=1}^{i}\in\mathcal{P}_{K}^{i}\ |\ M\prec\mathfrak{p}_{1},\dots,\mathfrak{p}_{i}\prec c^{\prime}H^{\alpha}\}|}{(2H)^{kd}}
\displaystyle\leq cn|O(H,𝔼)Id𝔭𝒫K,𝔭MU𝔭|(2H)kd+i=1n(ni)cni(𝔭1,,𝔭i)𝒫KiM𝔭1,,𝔭icHα|O(H,𝔼)Idj=1iU𝔭j|(2H)kd,\displaystyle c^{n}\frac{|O(H,\mathbb{E})_{I}^{d}\cap\bigcup\limits_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}U_{\mathfrak{p}}|}{(2H)^{kd}}+\sum\limits_{i=1}^{n}\binom{n}{i}c^{n-i}\sum\limits_{\begin{subarray}{c}(\mathfrak{p}_{1},\dots,\mathfrak{p}_{i})\in\mathcal{P}_{K}^{i}\\ M\prec\mathfrak{p}_{1},\dots,\mathfrak{p}_{i}\prec c^{\prime}H^{\alpha}\end{subarray}}\frac{|O(H,\mathbb{E})_{I}^{d}\cap\bigcap\limits_{j=1}^{i}U_{\mathfrak{p}_{j}}|}{(2H)^{kd}},

Using (3.3), we further have that

Sn(M,H)\displaystyle S_{n}(M,H)\leq cn|O(H,𝔼)Id𝔭𝒫K,𝔭MU𝔭|(2H)kd\displaystyle c^{n}\frac{|O(H,\mathbb{E})_{I}^{d}\cap\bigcup\limits_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}U_{\mathfrak{p}}|}{(2H)^{kd}}
+i=1n(ni)cni(𝔭1,,𝔭i)𝒫KiM𝔭1,,𝔭icHα(j=2iv𝔭j)v𝔭1ni+1\displaystyle+\sum\limits_{i=1}^{n}\binom{n}{i}c^{n-i}\sum\limits_{\begin{subarray}{c}(\mathfrak{p}_{1},\dots,\mathfrak{p}_{i})\in\mathcal{P}_{K}^{i}\\ M\prec\mathfrak{p}_{1},\dots,\mathfrak{p}_{i}\prec c^{\prime}H^{\alpha}\end{subarray}}\left(\prod_{j=2}^{i}v_{\mathfrak{p}_{j}}\right)v_{\mathfrak{p}_{1}}^{n-i+1}
\displaystyle\leq cn|O(H,𝔼)Id𝔭𝒫K,𝔭MU𝔭|(2H)kd\displaystyle c^{n}\frac{|O(H,\mathbb{E})_{I}^{d}\cap\bigcup\limits_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}U_{\mathfrak{p}}|}{(2H)^{kd}}
+i=1n(ni)cni(𝔭𝒫K,𝔭Mv𝔭)i1(𝔭𝒫K,𝔭Mv𝔭ni+1).\displaystyle+\sum\limits_{i=1}^{n}\binom{n}{i}c^{n-i}\left(\sum_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}v_{\mathfrak{p}}\right)^{i-1}\left(\sum_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}v_{\mathfrak{p}}^{n-i+1}\right).

This implies that

lim supHSn(M,H)\displaystyle\limsup_{H\rightarrow\infty}S_{n}(M,H)\leq cnρ¯𝔼(𝔬d𝔭𝒫K,𝔭MU𝔭)\displaystyle c^{n}\overline{\rho}_{\mathbb{E}}\left(\mathfrak{o}^{d}\cap\bigcup\limits_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}U_{\mathfrak{p}}\right)
+i=1n(ni)cni(𝔭𝒫K,𝔭Mv𝔭)i1(𝔭𝒫K,𝔭Mv𝔭ni+1).\displaystyle+\sum\limits_{i=1}^{n}\binom{n}{i}c^{n-i}\left(\sum\limits_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}v_{\mathfrak{p}}\right)^{i-1}\left(\sum\limits_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\succ M}v_{\mathfrak{p}}^{n-i+1}\right).

Thus, we get from (3.1) and (3.4)

(3.6) limMlim supHSn(M,H)=0.\lim_{M\rightarrow\infty}\limsup_{H\rightarrow\infty}S_{n}(M,H)=0.

On the other hand, (3.3) and (3.4) imply that

(3.7) Rn(M,H)=AO(H,𝔼)Id(ηMτ(A,η))n(2H)kd=η1,,ηnMAO(H,𝔼)Idj=1nτ(A,ηj)(2H)kd=η1,,ηnM|O(H,𝔼)Idj=1nUηj|(2H)kdη1,,ηnMj=1nvηj(ηNKvη)n<.\begin{split}R_{n}(M,H)&=\sum_{A\in O(H,\mathbb{E})_{I}^{d}}\frac{\left(\sum\limits_{\eta\preceq M}\tau(A,\eta)\right)^{n}}{(2H)^{kd}}\\ &=\sum\limits_{\eta_{1},\dots,\eta_{n}\preceq M}\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}}\frac{\prod\limits_{j=1}^{n}\tau(A,\eta_{j})}{(2H)^{kd}}\\ &=\sum\limits_{\eta_{1},\dots,\eta_{n}\preceq M}\frac{|O(H,\mathbb{E})_{I}^{d}\cap\bigcap\limits_{j=1}^{n}U_{\eta_{j}}|}{(2H)^{kd}}\\ &\leq\sum\limits_{\eta_{1},\dots,\eta_{n}\preceq M}\prod\limits_{j=1}^{n}v_{\eta_{j}}\\ &\leq\left(\sum\limits_{\eta\in N_{K}}v_{\eta}\right)^{n}<\infty.\end{split}

For j{1,,n1}j\in\{1,\dots,n-1\} we have by Hölder’s inequality with p=nnjp=\frac{n}{n-j} and q=njq=\frac{n}{j}, that

Rj(M,H)Sn(M,H)(nj)/nRn(M,H)j/n.\displaystyle R_{j}(M,H)\leq S_{n}(M,H)^{(n-j)/n}R_{n}(M,H)^{j/n}.

Thus, by (3.6) and (3.7) we get for all j{0,,n1}j\in\{0,\dots,n-1\}

limMlim supHRj(M,H)=0.\lim_{M\rightarrow\infty}\limsup_{H\rightarrow\infty}R_{j}(M,H)=0.

Hence, if we can show that limMlimHRn(M,H)\lim\limits_{M\rightarrow\infty}\lim\limits_{H\to\infty}R_{n}(M,H) exists, then μn,𝔼\mu_{n,\mathbb{E}} exists as well and we have

μn,𝔼=limMlimHRn(M,H).\mu_{n,\mathbb{E}}=\lim\limits_{M\rightarrow\infty}\lim\limits_{H\rightarrow\infty}R_{n}(M,H).

For τn\tau\in\mathbb{N}^{n} with j=1njτj=n\sum\limits_{j=1}^{n}j\tau_{j}=n, we define (τ)=j=1nτj\ell(\tau)=\sum_{j=1}^{n}\tau_{j} and denote by c(τ)c(\tau) the number of partitions of {1,,n}\{1,\dots,n\} which contain exactly τj\tau_{j} sets of cardinality jj. Using Corollary 10, we obtain

μn,𝔼=\displaystyle\mu_{n,\mathbb{E}}= limMlimHRn(M,H)\displaystyle\lim\limits_{M\rightarrow\infty}\lim\limits_{H\to\infty}R_{n}(M,H)
=\displaystyle= limMlimHη1,,ηnM|O(H,𝔼)Idj=1nUηj|(2H)kd\displaystyle\lim\limits_{M\rightarrow\infty}\lim\limits_{H\to\infty}\sum\limits_{\eta_{1},\dots,\eta_{n}\preceq M}\frac{|O(H,\mathbb{E})_{I}^{d}\cap\bigcap\limits_{j=1}^{n}U_{\eta_{j}}|}{(2H)^{kd}}
=limMlimHτn,j=1njτj=nc(τ)η1,,η(τ)Mi<j{1,,(τ)},ηiηj|O(H,𝔼)Idj=1(τ)Uηj|(2H)kd\displaystyle=\lim\limits_{M\rightarrow\infty}\lim\limits_{H\to\infty}\sum\limits_{\tau\in\mathbb{N}^{n},\ \sum_{j=1}^{n}j\tau_{j}=n}c(\tau)\sum\limits_{\begin{subarray}{c}\eta_{1},\dots,\eta_{\ell(\tau)}\preceq M\\ \forall i<j\in\{1,\dots,\ell(\tau)\},\ \eta_{i}\neq\eta_{j}\end{subarray}}\frac{|O(H,\mathbb{E})_{I}^{d}\cap\bigcap\limits_{j=1}^{\ell(\tau)}U_{\eta_{j}}|}{(2H)^{kd}}
=limMτn,j=1njτj=nc(τ)η1,,η(τ)Mi<j{1,,(τ)},ηiηjρ𝔼(j=1(τ)Uηj𝔬d)\displaystyle=\lim\limits_{M\rightarrow\infty}\sum\limits_{\tau\in\mathbb{N}^{n},\ \sum\limits_{j=1}^{n}j\tau_{j}=n}c(\tau)\sum\limits_{\begin{subarray}{c}\eta_{1},\dots,\eta_{\ell(\tau)}\preceq M\\ \forall i<j\in\{1,\dots,\ell(\tau)\},\ \eta_{i}\neq\eta_{j}\end{subarray}}\rho_{\mathbb{E}}\left(\bigcap\limits_{j=1}^{\ell(\tau)}U_{\eta_{j}}\cap\mathfrak{o}^{d}\right)
=limMτn,j=1njτj=nc(τ)η1,,η(τ)Mi<j{1,,(τ)},ηiηjj=1(τ)sηj\displaystyle=\lim\limits_{M\rightarrow\infty}\sum\limits_{\tau\in\mathbb{N}^{n},\ \sum\limits_{j=1}^{n}j\tau_{j}=n}c(\tau)\sum\limits_{\begin{subarray}{c}\eta_{1},\dots,\eta_{\ell(\tau)}\preceq M\\ \forall i<j\in\{1,\dots,\ell(\tau)\},\ \eta_{i}\neq\eta_{j}\end{subarray}}\prod\limits_{j=1}^{\ell(\tau)}s_{\eta_{j}}
=τn,j=1njτj=nc(τ)η1,,η(τ)NKi<j{1,,(τ)},ηiηjj=1(τ)sηj.\displaystyle=\sum\limits_{\tau\in\mathbb{N}^{n},\ \sum_{j=1}^{n}j\tau_{j}=n}c(\tau)\sum\limits_{\begin{subarray}{c}\eta_{1},\dots,\eta_{\ell(\tau)}\in N_{K}\\ \forall i<j\in\{1,\dots,\ell(\tau)\},\ \eta_{i}\neq\eta_{j}\end{subarray}}\prod\limits_{j=1}^{\ell(\tau)}s_{\eta_{j}}.

Note that this last expression is finite. We have the crude estimate

μn,𝔼2nnn(1+ηNKsη)n<\displaystyle\mu_{n,\mathbb{E}}\leq 2^{n}n^{n}\left(1+\sum\limits_{\eta\in N_{K}}s_{\eta}\right)^{n}<\infty

by (3.4).

Remark 13.

The conditions of Theorem 4 also allow to conclude the existence of all central moments up to order nn. For j{1,,n}j\in\{1,\dots,n\} we have

limHAO(H,𝔼)Id(|{ηNKAUη}|μ𝔼)n(2H)kd=j=0n(nj)(μ𝔼)njμj,𝔼.\lim\limits_{H\to\infty}\displaystyle{\frac{\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}}\left(\lvert\{\eta\in N_{K}\mid A\in U_{\eta}\}\rvert-\mu_{\mathbb{E}}\right)^{n}}{(2H)^{kd}}}=\sum_{j=0}^{n}\binom{n}{j}(-\mu_{\mathbb{E}})^{n-j}\mu_{j,\mathbb{E}}.

Now we briefly compute the variance

σ𝔼2=limHAO(H,𝔼)Id(|{ηNKAUη}|μ𝔼)2(2H)kd.\displaystyle\sigma^{2}_{\mathbb{E}}=\lim\limits_{H\to\infty}\displaystyle{\frac{\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}}(\lvert\{\eta\in N_{K}\mid A\in U_{\eta}\}\rvert-\mu_{\mathbb{E}})^{2}}{(2H)^{kd}}}.

For n=2n=2 we have two τ2\tau\in\mathbb{N}^{2} such that τ1+τ2=2\tau_{1}+\tau_{2}=2, namely τ(1)=(2,0)\tau^{(1)}=(2,0) and τ(2)=(0,1)\tau^{(2)}=(0,1). One readily computes c(τ(1))=1,(τ(1))=2c\left(\tau^{(1)}\right)=1,\ell\left(\tau^{(1)}\right)=2 and c(τ(2))=1,(τ(2))=1c\left(\tau^{(2)}\right)=1,\ell\left(\tau^{(2)}\right)=1. Thus, we get

μ2,𝔼=η1,η2NK,η1η2sη1sη2+ηNKsη=μ𝔼2ηNKsη2+μ𝔼.\displaystyle\mu_{2,\mathbb{E}}=\sum_{\eta_{1},\eta_{2}\in N_{K},\ \eta_{1}\neq\eta_{2}}s_{\eta_{1}}s_{\eta_{2}}+\sum_{\eta\in N_{K}}s_{\eta}=\mu_{\mathbb{E}}^{2}-\sum_{\eta\in N_{K}}s_{\eta}^{2}+\mu_{\mathbb{E}}.

Hence, we obtain

σ𝔼2=μ2,𝔼2μ𝔼2+μ𝔼2=μ𝔼ηNKsη2.\begin{split}\sigma^{2}_{\mathbb{E}}=\mu_{2,\mathbb{E}}-2\mu_{\mathbb{E}}^{2}+\mu_{\mathbb{E}}^{2}=\mu_{\mathbb{E}}-\sum_{\eta\in N_{K}}s_{\eta}^{2}.\end{split}

Also for the variance we can restrict to subsets T𝔬d,T\subseteq\mathfrak{o}^{d}, as

σT,𝔼2=limHAO(H,𝔼)IdT({ηNKAUη}μ𝔼)2O(H,𝔼)dT.\displaystyle\sigma^{2}_{T,\mathbb{E}}=\lim\limits_{H\to\infty}\displaystyle{\frac{\sum\limits_{A\in O(H,\mathbb{E})_{I}^{d}\cap T}(\mid\{\eta\in N_{K}\mid A\in U_{\eta}\}\mid-\mu_{\mathbb{E}})^{2}}{\mid O(H,\mathbb{E})^{d}\cap T\mid}}.

Due to Lemma 9, if TCP1({})T^{C}\subseteq P^{-1}(\{\emptyset\}) and the density of TT is non-zero, we get

σT2=1ρ(T)(μ2ηNKsη2+μ)2μTρ(T)μ+μT2.\displaystyle\sigma^{2}_{T}=\frac{1}{\rho(T)}\left(\mu^{2}-\sum\limits_{\eta\in N_{K}}s_{\eta}^{2}+\mu\right)-\frac{2\mu_{T}}{\rho(T)}\mu+\mu_{T}^{2}.

4. Applications

4.1. Density computations

In this section, we compute the densities of Eisenstein and shifted Eisenstein polynomials over number fields, using Theorem 4.

Definition 14.

Let 𝔭\mathfrak{p} be a non-zero prime ideal of 𝔬\mathfrak{o}. A polynomial f(x)𝔬[x]f(x)\in\mathfrak{o}[x] of degree dd represented by the tuple (a0,,ad1,ad)𝔬d+1(a_{0},\ldots,a_{d-1},a_{d})\in\mathfrak{o}^{d+1} is said to be 𝔭\mathfrak{p}-Eisenstein if

ad𝔭,a0𝔭2 andai𝔭i{0,,d1}.\displaystyle a_{d}\not\in\mathfrak{p},\ a_{0}\not\in\mathfrak{p}^{2}\text{ and}\ a_{i}\in\mathfrak{p}\;\forall i\in\{0,\ldots,d-1\}.

In addition, ff is said to be Eisenstein if there exists a prime ideal 𝔭\mathfrak{p} of 𝔬\mathfrak{o} such that f(x)f(x) is 𝔭\mathfrak{p}-Eisenstein.

Denote by Γ𝔭d{\Gamma_{\mathfrak{p}}}^{d} the set of all 𝔭\mathfrak{p}-Eisenstein polynomials of degree dd and by Γd\Gamma^{d} the set of all Eisenstein polynomials of degree dd. We choose

(4.1) U𝔭=(𝔭𝔬𝔭𝔭2𝔬𝔭)×(𝔭𝔬𝔭)d1×(𝔬𝔭𝔭𝔬𝔭)𝔬𝔭d+1U_{\mathfrak{p}}=(\mathfrak{p}\mathfrak{o}_{\mathfrak{p}}\setminus\mathfrak{p}^{2}\mathfrak{o}_{\mathfrak{p}})\times(\mathfrak{p}\mathfrak{o}_{\mathfrak{p}})^{d-1}\times(\mathfrak{o}_{\mathfrak{p}}\setminus\mathfrak{p}\mathfrak{o}_{\mathfrak{p}})\subseteq\mathfrak{o}_{\mathfrak{p}}^{d+1}

and U=U_{\infty}=\emptyset. Note that we have

(4.2) Γ𝔭d=(𝔭𝔭2)×𝔭d1×(𝔬𝔭)=𝔬d+1U𝔭.{\Gamma_{\mathfrak{p}}}^{d}=(\mathfrak{p}\setminus\mathfrak{p}^{2})\times\mathfrak{p}^{d-1}\times(\mathfrak{o}\setminus\mathfrak{p})=\mathfrak{o}^{d+1}\cap U_{\mathfrak{p}}.

By abuse of notation we will use the same symbol for an element of 𝔬\mathfrak{o} and its image in the ring of integers 𝔬𝔭\mathfrak{o}_{\mathfrak{p}} in the completion K𝔭K_{\mathfrak{p}}.

Corollary 15.

Let KK be a number field, 𝔬\mathfrak{o} its ring of integers and let d2d\geq 2 be an integer. The density of the set Γd\Gamma^{d} of Eisenstein polynomials of degree dd over 𝔬\mathfrak{o} is given by

(4.3) ρ(Γd)=1𝔭𝒫K(1(N(𝔭)1)2N(𝔭)d+2),\rho\left(\Gamma^{d}\right)=1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\left(1-\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+2}}\right),

where N(𝔭)=|𝔬/𝔭|=pdeg(𝔭)N(\mathfrak{p})=|\mathfrak{o}/\mathfrak{p}|=p^{\deg(\mathfrak{p})}, and deg(𝔭)=[𝔬/𝔭:𝔽p]\deg(\mathfrak{p})=[\mathfrak{o}/\mathfrak{p}:\mathbb{F}_{p}].

Proof.

Recall the expressions for the sets Γ𝔭d{\Gamma_{\mathfrak{p}}}^{d} and U𝔭U_{\mathfrak{p}} from equations (4.2) and (4.1). With the system of sets (Uη)ηNK(U_{\eta})_{\eta\in N_{K}}, consider the map PP defined as in Theorem 4. Note that we have

P1({})={a𝔬d+1aU𝔭𝔭𝒫K},P^{-1}(\{\emptyset\})=\{a\in\mathfrak{o}^{d+1}\mid a\not\in U_{\mathfrak{p}}\ \forall\mathfrak{p}\in\mathcal{P}_{K}\},

thus

P1({})C={a𝔬d+1aΓ𝔭d for some 𝔭𝒫K}=Γd.P^{-1}(\{\emptyset\})^{C}=\{a\in\mathfrak{o}^{d+1}\mid\ a\in\Gamma_{\mathfrak{p}}^{d}\ \text{ for some }\mathfrak{p}\in\mathcal{P}_{K}\}=\Gamma^{d}.

In other words, the system (Uη)ηNK(U_{\eta})_{\eta\in N_{K}} corresponds (as per Definition 8) to the set Γd\Gamma^{d} of Eisenstein polynomials of degree dd. We clearly have that (U𝔭)=\partial(U_{\mathfrak{p}})=\emptyset. Hence, in order to apply Theorem 4 to this system, we only have to check (2.2).

Letting f(x1,,xd+1)=x1f(x_{1},\dots,x_{d+1})=x_{1} and g(x1,,xd+1)=x2g(x_{1},\dots,x_{d+1})=x_{2}, we see that

SM(f,g)=𝔭M(𝔭×𝔭×𝔬d1),S_{M}(f,g)=\bigcup\limits_{\mathfrak{p}\succ M}\left(\mathfrak{p}\times\mathfrak{p}\times\mathfrak{o}^{d-1}\right),

and

𝔬d+1(𝔭MU𝔭)=𝔭MΓ𝔭dSM(f,g).\mathfrak{o}^{d+1}\bigcap\left(\bigcup\limits_{\mathfrak{p}\succ M}U_{\mathfrak{p}}\right)=\bigcup\limits_{\mathfrak{p}\succ M}\Gamma_{\mathfrak{p}}^{d}\subseteq S_{M}(f,g).

Thus, the application of Lemma 6 gives Condition (2.2) in this case. One easily computes that

ν𝔭(U𝔭)=(pdeg(𝔭)1)2pdeg(𝔭)(d+2).\nu_{\mathfrak{p}}(U_{\mathfrak{p}})=\dfrac{(p^{\deg(\mathfrak{p})}-1)^{2}}{p^{\deg(\mathfrak{p})(d+2)}}.

Hence, applying Theorem 4 yields

ρ(Γd)\displaystyle\rho(\Gamma^{d}) =1m({})=1ηsηη(1sη)\displaystyle=1-m(\{\emptyset\})=1-\prod\limits_{\eta\in\emptyset}s_{\eta}\prod\limits_{\eta\not\in\emptyset}(1-s_{\eta})
=1𝔭𝒫K(1ν𝔭(U𝔭))\displaystyle=1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}(1-\nu_{\mathfrak{p}}(U_{\mathfrak{p}}))
=1𝔭𝒫K(1(pdeg(𝔭)1)2pdeg(𝔭)(d+2))\displaystyle=1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\left(1-\dfrac{(p^{\deg(\mathfrak{p})}-1)^{2}}{p^{\deg(\mathfrak{p})(d+2)}}\right)
=1𝔭𝒫K(1(N(𝔭)1)2N(𝔭)d+2).\displaystyle=1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\left(1-\dfrac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+2}}\right).

Definition 16.

Let 𝔭\mathfrak{p} be a non-zero prime ideal in 𝔬\mathfrak{o} and f𝔬[x]f\in\mathfrak{o}[x] be a monic polynomial of degree dd. We call ff a shifted 𝔭\mathfrak{p}-Eisenstein polynomial if there exists a b𝔬b\in\mathfrak{o}, such that f(x+b)f(x+b) is 𝔭\mathfrak{p}-Eisenstein. In addition, ff is said to be a shifted Eisenstein polynomial if there exists a prime ideal 𝔭\mathfrak{p} such that ff is a shifted 𝔭\mathfrak{p}-Eisenstein polynomial.

We will denote by Γ~d\widetilde{\Gamma}^{d} and Γ~𝔭d\widetilde{\Gamma}_{\mathfrak{p}}^{d} the set of all shifted Eisenstein polynomials, respectively shifted 𝔭\mathfrak{p}-Eisenstein polynomials, of degree dd. We will identify elements of 𝔬𝔭d+1\mathfrak{o}_{\mathfrak{p}}^{d+1} with monic polynomials of degree dd over 𝔬𝔭\mathfrak{o}_{\mathfrak{p}}.

For b𝔬𝔭d+1b\in\mathfrak{o}_{\mathfrak{p}}^{d+1}, we will denote by σb\sigma_{b} the following map:

σb:𝔬𝔭d+1\displaystyle\sigma_{b}:\mathfrak{o}_{\mathfrak{p}}^{d+1} 𝔬𝔭d+1,\displaystyle\rightarrow\mathfrak{o}_{\mathfrak{p}}^{d+1},
f(x)\displaystyle f(x) f(x+b).\displaystyle\mapsto f(x+b).

Note that σb\sigma_{b} is an automorphism with inverse σb\sigma_{-b}. It is also clearly continuous and linear. Moreover, for any b𝔬b\in\mathfrak{o} we have that 𝔬d+1\mathfrak{o}^{d+1} is invariant under σb\sigma_{b}, in fact σb(𝔬d+1)=𝔬d+1\sigma_{b}(\mathfrak{o}^{d+1})=\mathfrak{o}^{d+1}. By abuse of notation, for b𝔬b\in\mathfrak{o} we also denote the restricted maps 𝔬d+1𝔬d+1\mathfrak{o}^{d+1}\rightarrow\mathfrak{o}^{d+1} by σb\sigma_{b}.

The following two results were developed following the methods in [13].

Proposition 17.

Let f(x)𝔬[x]f(x)\in\mathfrak{o}[x] be a polynomial of degree dd and bb denote any element of 𝔬\mathfrak{o}. Suppose that f(x)f(x) is 𝔭\mathfrak{p}-Eisenstein. Then f(x+b)f(x+b) is 𝔭\mathfrak{p}-Eisenstein if and only if b𝔭b\in\mathfrak{p}.

Proof.

We first write

f(x)=a0+a1x++ad1xd1+adxd.f(x)=a_{0}+a_{1}x+\cdots+a_{d-1}x^{d-1}+a_{d}x^{d}.

For b𝔭b\in\mathfrak{p}, we have that

f(x+b)\displaystyle f(x+b) =a0+a1(x+b)++ad1(x+b)d1+ad(x+b)d=i=0daixi,\displaystyle=a_{0}+a_{1}(x+b)+\cdots+a_{d-1}(x+b)^{d-1}+a_{d}(x+b)^{d}=\sum_{i=0}^{d}a_{i}^{\prime}x^{i},

where ai=j=id(ji)ajbji.a_{i}^{\prime}=\sum_{j=i}^{d}\binom{j}{i}a_{j}b^{j-i}.

Since ff is 𝔭\mathfrak{p}-Eisenstein, we must have that aj0mod𝔭a_{j}\equiv 0\mod\mathfrak{p} for all j{0,,d1}j\in\{0,\ldots,d-1\}, ad0mod𝔭a_{d}\not\equiv 0\mod\mathfrak{p}, and a00mod𝔭2a_{0}\not\equiv 0\mod\mathfrak{p}^{2}.

It follows directly that aiadbdimod𝔭a_{i}^{\prime}\equiv a_{d}b^{d-i}\mod\mathfrak{p} for all i{0,,d1}i\in\{0,\ldots,d-1\}.

Thus, f(x+b)f(x+b) is 𝔭\mathfrak{p}-Eisenstein if and only if

bdi0mod𝔭 0i<d,anda0=j=0dajbj0mod𝔭2,\displaystyle b^{d-i}\equiv 0\mod\mathfrak{p}\;\forall\;0\leq i<d,\;\text{and}\;a_{0}^{\prime}=\sum_{j=0}^{d}a_{j}b^{j}\not\equiv 0\mod\mathfrak{p}^{2},

which is equivalent to

b0mod𝔭,anda0=j=0dajbj0mod𝔭2.\displaystyle b\equiv 0\mod\mathfrak{p},\;\text{and}\;{a_{0}}^{\prime}=\sum_{j=0}^{d}a_{j}b^{j}\not\equiv 0\mod\mathfrak{p}^{2}.

Note, that when b0mod𝔭b\equiv 0\mod\mathfrak{p}, a0a00mod𝔭2{a_{0}}^{\prime}\equiv a_{0}\not\equiv 0\mod\mathfrak{p}^{2} holds by default, since ff is 𝔭\mathfrak{p}-Eisenstein. We have thus shown that f(x+b)f(x+b) is 𝔭\mathfrak{p}-Eisenstein if and only if b0mod𝔭b\equiv 0\mod\mathfrak{p}, as required. ∎

Corollary 18.

Let b1b_{1} and b2b_{2} be elements of 𝔬\mathfrak{o} such that b1b2mod𝔭b_{1}\not\equiv b_{2}\mod\mathfrak{p}. Then

σb11(Γ𝔭d)σb21(Γ𝔭d)=.\sigma_{b_{1}}^{-1}(\Gamma_{\mathfrak{p}}^{d})\cap\sigma_{b_{2}}^{-1}(\Gamma_{\mathfrak{p}}^{d})=\emptyset.
Proof.

Let b=b2b1b=b_{2}-b_{1}, then it is easy to see that the statement of the corollary is equivalent to

Γ𝔭dσb1(Γ𝔭d)=.\ \Gamma_{\mathfrak{p}}^{d}\cap\sigma_{b}^{-1}(\Gamma_{\mathfrak{p}}^{d})=\emptyset.

The claim now follows immediately from Proposition 17. ∎

Theorem 19.

Let 𝔭\mathfrak{p} be a non-zero prime ideal of 𝔬\mathfrak{o}. We have the following decomposition for the set Γ~𝔭d\widetilde{\Gamma}_{\mathfrak{p}}^{d} of all shifted 𝔭\mathfrak{p}-Eisenstein polynomials of degree dd:

Γ~𝔭d=b+𝔭𝔬/𝔭σb1(Γ𝔭d),\widetilde{\Gamma}_{\mathfrak{p}}^{d}=\bigsqcup_{b+\mathfrak{p}\in\mathfrak{o}/\mathfrak{p}}\sigma_{b}^{-1}\left(\Gamma_{\mathfrak{p}}^{d}\right),

where b+𝔭b+\mathfrak{p} is an element in 𝔬/𝔭\mathfrak{o}/\mathfrak{p}.

Proof.

The set of all shifted 𝔭\mathfrak{p}-Eisenstein polynomials of degree dd can be written as the union

(4.4) b𝔬σb1(Γ𝔭d)=b+𝔭𝔬/𝔭cb+𝔭σc1(Γ𝔭d),\bigcup_{b\in\mathfrak{o}}\sigma_{b}^{-1}(\Gamma_{\mathfrak{p}}^{d})=\bigsqcup_{b+\mathfrak{p}\in\mathfrak{o}/\mathfrak{p}}\bigcup_{c\in b+\mathfrak{p}}\sigma_{c}^{-1}(\Gamma_{\mathfrak{p}}^{d}),

where the fact that the first union is disjoint follows from Corollary 18. We also have, from Proposition 17, that for all c1c_{1} and c2c_{2} satisfying c1c2mod𝔭c_{1}\equiv c_{2}\mod\mathfrak{p},

σc11(Γ𝔭d)σc21(Γ𝔭d)=σc11(Γ𝔭d)=σc21(Γ𝔭d).\sigma_{c_{1}}^{-1}(\Gamma_{\mathfrak{p}}^{d})\cap\sigma_{c_{2}}^{-1}(\Gamma_{\mathfrak{p}}^{d})=\sigma_{c_{1}}^{-1}(\Gamma_{\mathfrak{p}}^{d})=\sigma_{c_{2}}^{-1}(\Gamma_{\mathfrak{p}}^{d}).

Thus, the latter union in (4.4) is equal to any one of the sets, and we may write

Γ~𝔭d=b+𝔭𝔬/𝔭σb1(Γ𝔭d),\widetilde{\Gamma}_{\mathfrak{p}}^{d}=\bigsqcup_{b+\mathfrak{p}\in\mathfrak{o}/\mathfrak{p}}\sigma_{b}^{-1}(\Gamma_{\mathfrak{p}}^{d}),

where b+𝔭b+\mathfrak{p} is an element in 𝔬/𝔭\mathfrak{o}/\mathfrak{p}.

Corollary 20.

Let KK be a number field, 𝔬\mathfrak{o} its ring of integers and let d2d\geq 2 be an integer. The density of the shifted Eisenstein polynomials of degree dd over 𝔬\mathfrak{o} is given by

ρ(Γ~d)=1𝔭𝒫K(1(N(𝔭)1)2N(𝔭)d+1),\rho\left(\widetilde{\Gamma}^{d}\right)=1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\left(1-\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+1}}\right),

where N(𝔭)=|𝔬/𝔭|=pdeg(𝔭)N(\mathfrak{p})=|\mathfrak{o}/\mathfrak{p}|=p^{\deg(\mathfrak{p})}, where deg(𝔭)=[𝔬/𝔭:𝔽p]\deg(\mathfrak{p})=[\mathfrak{o}/\mathfrak{p}:\mathbb{F}_{p}].

Proof.

We have,

Γ~𝔭d=b+𝔭𝔬/𝔭σb1((𝔭𝔭2)×𝔭d1×𝔬𝔭)=b+𝔭𝔬/𝔭σb1(Γ𝔭d),\widetilde{\Gamma}_{\mathfrak{p}}^{d}=\bigsqcup_{b+\mathfrak{p}\in\mathfrak{o}/\mathfrak{p}}\sigma_{b}^{-1}\left((\mathfrak{p}\setminus\mathfrak{p}^{2})\times\mathfrak{p}^{d-1}\times\mathfrak{o}\setminus\mathfrak{p}\right)=\bigsqcup_{b+\mathfrak{p}\in\mathfrak{o}/\mathfrak{p}}\sigma_{b}^{-1}\left({\Gamma_{\mathfrak{p}}}^{d}\right),

where b+𝔭b+\mathfrak{p} is an element in 𝔬/𝔭\mathfrak{o}/\mathfrak{p}. Let U𝔭U_{\mathfrak{p}} be defined as before.

We set

U~𝔭=b+𝔭𝔬/𝔭σb1(U𝔭)𝔬𝔭d+1,\widetilde{U}_{\mathfrak{p}}=\bigsqcup\limits_{b+\mathfrak{p}\in\mathfrak{o}/\mathfrak{p}}\sigma_{b}^{-1}\left(U_{\mathfrak{p}}\right)\subset{\mathfrak{o}_{\mathfrak{p}}}^{d+1},

and U~=\widetilde{U}_{\infty}=\emptyset.

As noted before, σb(𝔬d+1)=𝔬d+1\sigma_{b}(\mathfrak{o}^{d+1})=\mathfrak{o}^{d+1} for any b𝔬b\in\mathfrak{o} and thus, we have Γ~𝔭d=𝔬d+1U~𝔭\widetilde{\Gamma}_{\mathfrak{p}}^{d}=\mathfrak{o}^{d+1}\cap\widetilde{U}_{\mathfrak{p}}. Now, with the system of sets U~𝔭\widetilde{U}_{\mathfrak{p}} and the map PP defined as in Theorem 4, we have, as before, that P1({})CP^{-1}(\{\emptyset\})^{C} is the set Γ~d\widetilde{\Gamma}^{d} of shifted Eisenstein polynomials of degree dd. Since 𝔬𝔭\mathfrak{o}_{\mathfrak{p}} is compact, and σb{\sigma_{b}} is a surjective and continuous endomorphism of 𝔬𝔭d+1\mathfrak{o}_{\mathfrak{p}}^{d+1}, we have that for any b𝔬b\in\mathfrak{o}, σb\sigma_{b} preserves the Haar measure. Thus,

ν𝔭(U~𝔭)=ν𝔭(b+𝔭𝔬/𝔭σb1(U𝔭))=|𝔬/𝔭|ν𝔭(U𝔭)=pdeg(𝔭)ν𝔭(U𝔭).\nu_{\mathfrak{p}}(\widetilde{U}_{\mathfrak{p}})=\nu_{\mathfrak{p}}\left(\bigsqcup_{b+\mathfrak{p}\in\mathfrak{o}/\mathfrak{p}}\sigma_{b}^{-1}\left(U_{\mathfrak{p}}\right)\right)=\left\lvert{\mathfrak{o}}/{\mathfrak{p}}\right\rvert\nu_{\mathfrak{p}}({U}_{\mathfrak{p}})=p^{\deg(\mathfrak{p})}\cdot\nu_{\mathfrak{p}}({U}_{\mathfrak{p}}).

We first deal with the case d3d\geq 3 and verify condition (2.2) for the system (U~η)ηNK(\widetilde{U}_{\eta})_{\eta\in N_{K}}. For this, we define polynomials F,G𝔬[x0,,xd]F,G\in\mathfrak{o}[x_{0},\ldots,x_{d}] as

F(x0,,xd)\displaystyle F(x_{0},\ldots,x_{d}) =d2x0xdx1xd1,\displaystyle=d^{2}x_{0}x_{d}-x_{1}x_{d-1},
G(x0,,xd)\displaystyle G(x_{0},\ldots,x_{d}) =x2xd2(d2)2x0xd.\displaystyle=x_{2}x_{d-2}-\binom{d}{2}^{2}x_{0}x_{d}.

Clearly, these are coprime for any value of d3d\geq 3. We claim that

(4.5) 𝔬d+1(𝔭MU~𝔭)=𝔭MΓ~𝔭dSM(F,G).\mathfrak{o}^{d+1}\bigcap\left(\bigcup\limits_{\mathfrak{p}\succ M}\widetilde{U}_{\mathfrak{p}}\right)=\bigcup\limits_{\mathfrak{p}\succ M}\widetilde{\Gamma}_{\mathfrak{p}}^{d}\subseteq S_{M}(F,G).

Let a=(a0,a1,,ad)Γ~𝔭da^{\prime}=(a_{0}^{\prime},a_{1}^{\prime},\ldots,a_{d}^{\prime})\in\widetilde{\Gamma}_{\mathfrak{p}}^{d} for some 𝔭M\mathfrak{p}\succ M. Then, there exists b𝔬b\in\mathfrak{o} such that σb(a)=a=(a0,,ad)\sigma_{-b}(a^{\prime})=a=(a_{0},\dots,a_{d}) is 𝔭\mathfrak{p}-Eisenstein. This is equivalent to saying a=σb(a)a^{\prime}=\sigma_{b}(a) and hence we have the relations aj=i=jd(ij)aibija_{j}^{\prime}=\sum_{i=j}^{d}\binom{i}{j}a_{i}b^{i-j}, ai0mod𝔭a_{i}\equiv 0\mod\mathfrak{p} for i{0,,d1}i\in\{0,\dots,d-1\} and ad𝔭a_{d}\not\in\mathfrak{p}. Thus, aj=(dj)adbdjmod𝔭a_{j}^{\prime}=\binom{d}{j}a_{d}b^{d-j}\mod\mathfrak{p}. Clearly, ajadj(dj)2ad2bdmod𝔭a_{j}^{\prime}a_{d-j}^{\prime}\equiv\binom{d}{j}^{2}a_{d}^{2}b^{d}\mod\mathfrak{p}, and in particular

a0ad\displaystyle a_{0}^{\prime}a_{d}^{\prime} ad2bdmod𝔭,\displaystyle\equiv a_{d}^{2}b^{d}\mod\mathfrak{p},
a1ad1\displaystyle a_{1}^{\prime}a_{d-1}^{\prime} ad2bdd2mod𝔭,\displaystyle\equiv a_{d}^{2}b^{d}d^{2}\mod\mathfrak{p},
a2ad2\displaystyle a_{2}^{\prime}a_{d-2}^{\prime} ad2bd(d2)2mod𝔭.\displaystyle\equiv a_{d}^{2}b^{d}\binom{d}{2}^{2}\mod\mathfrak{p}.

Therefore, we get

F(a)G(a)0mod𝔭F(a^{\prime})\equiv G(a^{\prime})\equiv 0\mod\mathfrak{p}

or in other words aSM(F,G)a^{\prime}\in S_{M}(F,G). This proves (4.5).

Finally, from Lemma 6 we have

limMρ¯𝔼(SM(F,G))=0\lim_{M\rightarrow\infty}\bar{\rho}_{\mathbb{E}}(S_{M}(F,G))=0

and thus

limMρ¯𝔼(𝔬d+1(𝔭MU~𝔭))=0.\lim_{M\rightarrow\infty}\bar{\rho}_{\mathbb{E}}\left(\mathfrak{o}^{d+1}\bigcap\left(\bigcup\limits_{\mathfrak{p}\succ M}\widetilde{U}_{\mathfrak{p}}\right)\right)=0.

Thus, applying Theorem 4 and using (4.1), we get

ρ(Γ~d)=1m({})\displaystyle\rho\left(\widetilde{\Gamma}^{d}\right)=1-m(\{\emptyset\}) =1𝔭𝒫K(1ν𝔭(U~𝔭))\displaystyle=1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}(1-\nu_{\mathfrak{p}}(\widetilde{U}_{\mathfrak{p}}))
=1𝔭𝒫K(1pdeg(𝔭)(pdeg(𝔭)1)2pdeg(𝔭)(d+2))\displaystyle=1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\left(1-p^{\deg(\mathfrak{p})}\cdot\dfrac{(p^{\deg(\mathfrak{p})}-1)^{2}}{p^{\deg(\mathfrak{p})(d+2)}}\right)
=1𝔭𝒫K(1(N(𝔭)1)2N(𝔭)d+1).\displaystyle=1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\left(1-\dfrac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+1}}\right).

Now we turn to the case d=2d=2. We use the same strategy as in [13, Prop. 10] and fix some positive integer MM and some integral basis 𝔼\mathbb{E} of 𝔬\mathfrak{o}. Then we consider the system

V𝔭={U~𝔭,𝔭M,,else,\displaystyle V_{\mathfrak{p}}=\begin{cases}\widetilde{U}_{\mathfrak{p}},&\mathfrak{p}\preceq M,\\ \emptyset,&\text{else},\end{cases}

and V=V_{\infty}=\emptyset. The system (Vη)ηNK(V_{\eta})_{\eta\in N_{K}} clearly satisfies the conditions of Theorem 4 and thus

1ρ¯𝔼(Γ~2)ρ¯𝔼(ηNKVη𝔬3)\displaystyle 1\geq\underline{\rho}_{\mathbb{E}}(\widetilde{\Gamma}^{2})\geq\underline{\rho}_{\mathbb{E}}\left(\bigcup_{\eta\in N_{K}}V_{\eta}\cap\mathfrak{o}^{3}\right) =1𝔭𝒫K,𝔭M(1(N(𝔭)1)2N(𝔭)3)\displaystyle=1-\prod_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\preceq M}\left(1-\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{3}}\right)
(4.6) 1𝔭𝒫K,𝔭M(112N(𝔭)).\displaystyle\geq 1-\prod_{\mathfrak{p}\in\mathcal{P}_{K},\ \mathfrak{p}\preceq M}\left(1-\frac{1}{2N(\mathfrak{p})}\right).

By [9, Ch. VIII, Theorem 6] the series 𝔭𝒫KN(𝔭)1\sum_{\mathfrak{p}\in\mathcal{P}_{K}}N(\mathfrak{p})^{-1} diverges to infinity. Hence, the product of (4.6) goes to zero for MM\rightarrow\infty. Thus, we get

ρ(Γ~2)=1=1𝔭𝒫K(1(N(𝔭)1)2N(𝔭)3).\rho(\widetilde{\Gamma}^{2})=1=1-\prod_{\mathfrak{p}\in\mathcal{P}_{K}}\left(1-\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{3}}\right).

4.2. Computations of Higher Moments

In this section, we will apply Theorem 11 to compute the expected value and the variance of non-zero prime ideals 𝔭𝔬\mathfrak{p}\subset\mathfrak{o} over a general number field KK such that a polynomial of degree dd is 𝔭\mathfrak{p}-Eisenstein. A minor modification yields the same claim for shifted Eisenstein polynomials.

Corollary 21.

Let d2d\geq 2 be an integer and let KK be number field and Γd\Gamma^{d} be the Eisenstein polynomials of degree dd. We associate the system U𝔭=(𝔭𝔬𝔭𝔭2𝔬𝔭)×(𝔭𝔬𝔭)d1×(𝔬𝔭𝔭𝔬𝔭)U_{\mathfrak{p}}=(\mathfrak{p}\mathfrak{o}_{\mathfrak{p}}\setminus\mathfrak{p}^{2}\mathfrak{o}_{\mathfrak{p}})\times(\mathfrak{p}\mathfrak{o}_{\mathfrak{p}})^{d-1}\times(\mathfrak{o}_{\mathfrak{p}}\setminus\mathfrak{p}\mathfrak{o}_{\mathfrak{p}}) and U=U_{\infty}=\emptyset. This system satifies the conditions of Theorem 11 for any nn\in\mathbb{N}.

In particular, we have

ρ(Γd)\displaystyle\rho\left(\Gamma^{d}\right) =(1𝔭𝒫K(1(N(𝔭)1)2N(𝔭)d+2)),\displaystyle=\left(1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\left(1-\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+2}}\right)\right),
μ\displaystyle\mu =𝔭𝒫K(N(𝔭)1)2N(𝔭)d+2,μΓd=ρ(Γd)1μ,\displaystyle=\sum\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+2}},\quad\mu_{\Gamma^{d}}=\rho(\Gamma^{d})^{-1}\mu,

where N(𝔭)=|𝔬/𝔭|=pdeg(𝔭)N(\mathfrak{p})=|\mathfrak{o}/\mathfrak{p}|=p^{\deg(\mathfrak{p})} and deg(𝔭)=[𝔬/𝔭:𝔽p]\deg(\mathfrak{p})=[\mathfrak{o}/\mathfrak{p}:\mathbb{F}_{p}].

Furthermore, the restricted variance is given by

σΓd2=1ρ(Γd)(μ2η𝒫K(1(N(𝔭)1)2N(𝔭)d+2)2+μ)2μΓdρ(Γd)μ+μΓd2.\displaystyle\sigma^{2}_{\Gamma^{d}}=\frac{1}{\rho(\Gamma^{d})}\left(\mu^{2}-\sum\limits_{\eta\in\mathcal{P}_{K}}\left(1-\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+2}}\right)^{2}+\mu\right)-\frac{2\mu_{\Gamma^{d}}}{\rho(\Gamma^{d})}\mu+\mu_{\Gamma^{d}}^{2}.
Proof.

We start by noting that ρ(Γd)\rho(\Gamma^{d}) was already computed in (4.3).

As 𝔬\mathfrak{o} is a Dedekind domain, we get that the intersection of infinitely many prime ideals in 𝔬\mathfrak{o} is the zero ideal. In particular, we have that the intersection of infinitely many ideals of the form 𝔭𝔭2\mathfrak{p}\setminus\mathfrak{p}^{2} must be the empty set and hence, I=I=\emptyset and O(H,𝔼)I=O(H,𝔼)O(H,\mathbb{E})_{I}=O(H,\mathbb{E}).

We need to check the assumptions of Theorem 11. Condition (3.1) follows directly from Lemma 6 applied to the polynomials f(x0,,xd)=x0f(x_{0},\dots,x_{d})=x_{0} and g(x0,,xd)=x1g(x_{0},\dots,x_{d})=x_{1}.

Next we show that (3.2) is satisfied for any α>0\alpha>0. Let A=(A0,,Ad)𝔬d+1A=(A_{0},\dots,A_{d})\in\mathfrak{o}^{d+1}, then we define fA(x)=j=0dAdjxjf_{A}(x)=\sum_{j=0}^{d}A_{d-j}x^{j} and we denote by disc(fA)\operatorname{disc}(f_{A}) the discriminant of fAf_{A}. If {𝔭𝒫KAU𝔭}=\{\mathfrak{p}\in\mathcal{P}_{K}\ \mid\ A\in U_{\mathfrak{p}}\}=\emptyset, then (3.2) is trivially satisfied. Thus, we will now assume that {𝔭𝒫KAU𝔭}\{\mathfrak{p}\in\mathcal{P}_{K}\ \mid\ A\in U_{\mathfrak{p}}\}\neq\emptyset.

As the discriminant is the Sylvester matrix of the resultant of fAf_{A} and fAf_{A}^{\prime}, we get (as AdA_{d} will always be multiplied by some AjA_{j} with j{0,,d1}j\in\{0,\dots,d-1\})

disc(fA)𝔭𝒫K,AU𝔭𝔭.\displaystyle\operatorname{disc}(f_{A})\in\bigcap_{\mathfrak{p}\in\mathcal{P}_{K},A\in U_{\mathfrak{p}}}\mathfrak{p}.

Combining this with the observation that disc(fA)0\operatorname{disc}(f_{A})\neq 0 as fAf_{A} is irreducible (as AA is contained in some U𝔭U_{\mathfrak{p}}, fAf_{A} satisfies the criterion of Eisenstein), we get

(4.7) |NK/(disc(fA))|=N(disc(fA)𝔬)𝔭𝒫K,AU𝔭|N(𝔭)|Hα|{𝔭𝒫K𝔭Hα,AU𝔭}|,\begin{split}|N_{K/\mathbb{Q}}(\operatorname{disc}(f_{A}))|&=N(\langle\operatorname{disc}(f_{A})\rangle_{\mathfrak{o}})\\ &\geq\prod_{\mathfrak{p}\in\mathcal{P}_{K},\ A\in U_{\mathfrak{p}}}|N(\mathfrak{p})|\geq H^{\alpha|\{\mathfrak{p}\in\mathcal{P}_{K}\ \mid\ \mathfrak{p}\succeq H^{\alpha},A\in U_{\mathfrak{p}}\}|},\end{split}

where we denote by NN the absolute norm and NK/N_{K/\mathbb{Q}} the ideal norm on 𝔬\mathfrak{o}.

On the other hand, using that the resultant is a homogeneous polynomial of degree 2d22d-2 and NK/(disc(fA))=det(𝔬𝔬,xdisc(fA)x)N_{K/\mathbb{Q}}(\operatorname{disc}(f_{A}))=\operatorname{det}_{\mathbb{Z}}(\mathfrak{o}\rightarrow\mathfrak{o},x\mapsto\operatorname{disc}(f_{A})x), there exists a constant c>0c>0, depending only on 𝔼\mathbb{E}, such that for all H1H\geq 1 and all A𝔬d+1A\in\mathfrak{o}^{d+1} holds

(4.8) |NK/(disc(fA))|cH(2d2)k,|N_{K/\mathbb{Q}}(\operatorname{disc}(f_{A}))|\leq cH^{(2d-2)k},

where k=[K:]k=[K:\mathbb{Q}]. Thus, combining (4.7) and (4.8) and taking the logarithm, we obtain for H1H\geq 1

α|{𝔭𝒫K𝔭Hα,AU𝔭}|ln(c)+(2d2)k.\displaystyle\alpha|\{\mathfrak{p}\in\mathcal{P}_{K}\ \mid\ \mathfrak{p}\succeq H^{\alpha},A\in U_{\mathfrak{p}}\}|\leq\ln(c)+(2d-2)k.

Hence, Condition (3.2) holds for any choice of α>0\alpha>0.

Now we check Conditions (3.3) and (3.4). Let 𝔼\mathbb{E} be an integral basis of 𝔬\mathfrak{o}, k=[K:]k=[K:\mathbb{Q}] and φ:𝔬k\varphi:\mathfrak{o}\rightarrow\mathbb{Z}^{k} be the isomorphism of \mathbb{Z}-modules induced by the basis 𝔼\mathbb{E}. We get

|j=1nU𝔭jO(H,𝔼)d+1|(2H)(d+1)k(|j=1n𝔭jO(H,𝔼)|(2H)k)d.\displaystyle\frac{\left|\bigcap_{j=1}^{n}U_{\mathfrak{p}_{j}}\cap O(H,\mathbb{E})^{d+1}\right|}{(2H)^{(d+1)k}}\leq\left(\frac{\left|\bigcap_{j=1}^{n}\mathfrak{p}_{j}\cap O(H,\mathbb{E})\right|}{(2H)^{k}}\right)^{d}.

Hence, we are only interested in ideals of the form j=1n𝔭j\bigcap_{j=1}^{n}\mathfrak{p}_{j}. In fact, as φ\varphi preserves densities of lattices, it is enough to consider its image in k\mathbb{Z}^{k} under φ\varphi. By a similar argument as for [1, Proposition 1] one can show that for any nn\in\mathbb{N} there exists a universal constant c>0c>0 such that for any lattice Γn\Gamma\subseteq\mathbb{R}^{n} of full rank and all H1H\in\mathbb{N}_{\geq 1} holds

||Γ[H,H)n|(2H)nρ(Γ)|cρ(Γ)(diam(Γ)H+(diam(Γ)H)2),\left|\frac{|\Gamma\cap[-H,H)^{n}|}{(2H)^{n}}-\rho(\Gamma)\right|\leq c\rho(\Gamma)\left(\frac{\operatorname{diam}(\Gamma)}{H}+\left(\frac{\operatorname{diam}(\Gamma)}{H}\right)^{2}\right),

where diam(Γ)\operatorname{diam}(\Gamma) denotes the diameter of the fundamental domain of Γ\Gamma.

Hence, if diam(φ(j=1n𝔭j))cH\operatorname{diam}(\varphi(\bigcap_{j=1}^{n}\mathfrak{p}_{j}))\leq cH, then we can estimate

(4.9) |j=1n𝔭jO(H,𝔼)|(2H)k=|φ(j=1n𝔭j)[H,H)k|(2H)kcρ(φ(j=1n𝔭j))=cρ(j=1n𝔭j)=cj=1n[𝔬:𝔭j]1=cj=1npjdeg(𝔭j)cj=1n1pj.\begin{split}&\frac{\left|\bigcap_{j=1}^{n}\mathfrak{p}_{j}\cap O(H,\mathbb{E})\right|}{(2H)^{k}}=\frac{\left|\varphi\left(\bigcap_{j=1}^{n}\mathfrak{p}_{j}\right)\cap[-H,H)^{k}\right|}{(2H)^{k}}\leq c^{\prime}\rho\left(\varphi\left(\bigcap_{j=1}^{n}\mathfrak{p}_{j}\right)\right)\\ &=c^{\prime}\rho\left(\bigcap_{j=1}^{n}\mathfrak{p}_{j}\right)=c^{\prime}\prod_{j=1}^{n}[\mathfrak{o}:\mathfrak{p}_{j}]^{-1}=c^{\prime}\prod_{j=1}^{n}p_{j}^{-\operatorname{deg}(\mathfrak{p}_{j})}\leq c^{\prime}\prod_{j=1}^{n}\frac{1}{p_{j}}.\end{split}

Thus, for d2d\geq 2 we can pick v𝔭=(1+c)/pdv_{\mathfrak{p}}=(1+c^{\prime})/p^{d} and the series converges. All we need to show is that there exists some α>0\alpha>0 and some universal constant C>0C>0 such that for 𝔭1,,𝔭nHα\mathfrak{p}_{1},\dots,\mathfrak{p}_{n}\preceq H^{\alpha} holds

diam(φ(j=1n𝔭j))CH.\displaystyle\operatorname{diam}\left(\varphi\left(\bigcap_{j=1}^{n}\mathfrak{p}_{j}\right)\right)\leq CH.

However, by Minkowski’s Second Theorem [3, Chapter VIII.2, Theorem 1] we have for any ideal 𝔞𝔬\mathfrak{a}\in\mathfrak{o}

diam(φ(𝔞))ρ(φ(𝔞))1=ρ(𝔞)1=[𝔬:𝔞].\displaystyle\operatorname{diam}(\varphi(\mathfrak{a}))\leq\rho(\varphi(\mathfrak{a}))^{-1}=\rho(\mathfrak{a})^{-1}=[\mathfrak{o}:\mathfrak{a}].

By the Chinese Remainder Theorem we get

diam(φ(j=1n𝔭j))[𝔬:j=1n𝔭j]=j=1n[𝔬:𝔭j]j=1npjk,\displaystyle\operatorname{diam}\left(\varphi\left(\bigcap_{j=1}^{n}\mathfrak{p}_{j}\right)\right)\leq[\mathfrak{o}:\bigcap_{j=1}^{n}\mathfrak{p}_{j}]=\prod_{j=1}^{n}[\mathfrak{o}:\mathfrak{p}_{j}]\leq\prod_{j=1}^{n}p_{j}^{k},

Hence, if 𝔭1,,𝔭nHα\mathfrak{p}_{1},\dots,\mathfrak{p}_{n}\preceq H^{\alpha}, then we get

diam(j=1n𝔭j)Hαnk.\displaystyle\operatorname{diam}\left(\bigcap_{j=1}^{n}\mathfrak{p}_{j}\right)\leq H^{\alpha nk}.

Choosing α=1/(nk)\alpha=1/(nk), we obtain

diam(j=1n𝔭j)H.\displaystyle\operatorname{diam}\left(\bigcap_{j=1}^{n}\mathfrak{p}_{j}\right)\leq H.

The argument of Corollary 21 can be generalized to shifted Eisenstein polynomials as well.

Corollary 22.

Let d3d\geq 3 be an integer and let KK be number field and Γ~d\widetilde{\Gamma}^{d} be the shifted Eisenstein polynomials of degree dd. We associate the system

U~𝔭=b+𝔭𝔬/𝔭σb1((𝔭𝔬𝔭𝔭2𝔬𝔭)×(𝔭𝔬𝔭)d1×(𝔬𝔭𝔭𝔬𝔭))\widetilde{U}_{\mathfrak{p}}=\bigcup_{b+\mathfrak{p}\in\mathfrak{o}/\mathfrak{p}}\sigma_{b}^{-1}\left((\mathfrak{p}\mathfrak{o}_{\mathfrak{p}}\setminus\mathfrak{p}^{2}\mathfrak{o}_{\mathfrak{p}})\times(\mathfrak{p}\mathfrak{o}_{\mathfrak{p}})^{d-1}\times(\mathfrak{o}_{\mathfrak{p}}\setminus\mathfrak{p}\mathfrak{o}_{\mathfrak{p}})\right)

and U~=\widetilde{U}_{\infty}=\emptyset. Then the system (U~𝔭)𝔭NK(\widetilde{U}_{\mathfrak{p}})_{\mathfrak{p}\in N_{K}} satisfies the conditions of Theorem 11 for any nn\in\mathbb{N}.

In particular, we have

ρ(Γ~d)\displaystyle\rho(\widetilde{\Gamma}^{d}) =(1𝔭𝒫K(1(N(𝔭)1)2N(𝔭)d+1)),\displaystyle=\left(1-\prod\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\left(1-\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+1}}\right)\right),
μ\displaystyle\mu =𝔭𝒫K(N(𝔭)1)2N(𝔭)d+1,μΓ~d=ρ(Γ~d)1μ,\displaystyle=\sum\limits_{\mathfrak{p}\in\mathcal{P}_{K}}\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+1}},\quad\mu_{\widetilde{\Gamma}^{d}}=\rho(\widetilde{\Gamma}^{d})^{-1}\mu,

where N(𝔭)=|𝔬/𝔭|=pdeg(𝔭)N(\mathfrak{p})=|\mathfrak{o}/\mathfrak{p}|=p^{\deg(\mathfrak{p})} and deg(𝔭)=[𝔬/𝔭:𝔽p]\deg(\mathfrak{p})=[\mathfrak{o}/\mathfrak{p}:\mathbb{F}_{p}].

Furthermore, the restricted variance is given by

σΓ~d2=1ρ(Γ~d)(μ2η𝒫K(1(N(𝔭)1)2N(𝔭)d+1)2+μ)2μΓ~dρ(Γ~d)μ+μΓ~d2.\displaystyle\sigma^{2}_{\widetilde{\Gamma}^{d}}=\frac{1}{\rho(\widetilde{\Gamma}^{d})}\left(\mu^{2}-\sum\limits_{\eta\in\mathcal{P}_{K}}\left(1-\frac{(N(\mathfrak{p})-1)^{2}}{N(\mathfrak{p})^{d+1}}\right)^{2}+\mu\right)-\frac{2\mu_{\widetilde{\Gamma}^{d}}}{\rho(\widetilde{\Gamma}^{d})}\mu+\mu_{\widetilde{\Gamma}^{d}}^{2}.
Proof.

Recall that we already have verified (3.1) in the proof of Corollary 20.

To show (3.2) we just note that the discriminant of f(x)f(x) is equal to the discriminant of f(x+a)f(x+a) for any a𝔬a\in\mathfrak{o}. Hence, the same proof as in Corollary 21 works to verify (3.2) for any α>0\alpha>0.

In order to verify (3.3) and (3.4), we use Theorem 19 to obtain

j=1nU~𝔭jO(H,𝔼)d+1\displaystyle\bigcap_{j=1}^{n}\widetilde{U}_{\mathfrak{p}_{j}}\cap O(H,\mathbb{E})^{d+1} =j=1nΓ~𝔭jdO(H,𝔼)d+1\displaystyle=\bigcap_{j=1}^{n}\widetilde{\Gamma}_{\mathfrak{p}_{j}}^{d}\cap O(H,\mathbb{E})^{d+1}
=j=1nbj+𝔭j𝔬/𝔭jσbj1(Γ𝔭jd)O(H,𝔼)d+1\displaystyle=\bigcap_{j=1}^{n}\bigsqcup_{b_{j}+\mathfrak{p}_{j}\in\mathfrak{o}/\mathfrak{p}_{j}}\sigma_{b_{j}}^{-1}(\Gamma_{\mathfrak{p}_{j}}^{d})\cap O(H,\mathbb{E})^{d+1}
=b1+𝔭1𝔬/𝔭1,,bn+𝔭n𝔬/𝔭nj=1nσbj1(Γ𝔭jd)O(H,𝔼)d+1.\displaystyle=\bigcup_{b_{1}+\mathfrak{p}_{1}\in\mathfrak{o}/\mathfrak{p}_{1},\dots,b_{n}+\mathfrak{p}_{n}\in\mathfrak{o}/\mathfrak{p}_{n}}\bigcap_{j=1}^{n}\sigma_{b_{j}}^{-1}(\Gamma_{\mathfrak{p}_{j}}^{d})\cap O(H,\mathbb{E})^{d+1}.

By the Chinese Remainder Theorem there exists b𝔬b\in\mathfrak{o} such that b+𝔭j=bj+𝔭jb+\mathfrak{p}_{j}=b_{j}+\mathfrak{p}_{j} for all j{1,,n}j\in\{1,\dots,n\} and thus, by Proposition 17, we have σbj1(Γ𝔭jd)=σb1(Γ𝔭jd)\sigma_{b_{j}}^{-1}(\Gamma_{\mathfrak{p}_{j}}^{d})=\sigma_{b}^{-1}(\Gamma_{\mathfrak{p}_{j}}^{d}). This implies

j=1nσbj1(Γ𝔭jd)=j=1nσb1(Γ𝔭jd)=σb1(j=1nΓ𝔭jd).\displaystyle\bigcap_{j=1}^{n}\sigma_{b_{j}}^{-1}(\Gamma_{\mathfrak{p}_{j}}^{d})=\bigcap_{j=1}^{n}\sigma_{b}^{-1}(\Gamma_{\mathfrak{p}_{j}}^{d})=\sigma_{b}^{-1}\left(\bigcap_{j=1}^{n}\Gamma_{\mathfrak{p}_{j}}^{d}\right).

Combining the previous identities yields

j=1nU~𝔭jO(H,𝔼)d+1=b+j=1n𝔭j𝔬/j=1n𝔭jσb1(j=1nΓ𝔭jd+1)O(H,𝔼)d+1.\displaystyle\bigcap_{j=1}^{n}\widetilde{U}_{\mathfrak{p}_{j}}\cap O(H,\mathbb{E})^{d+1}=\bigcup_{b+\bigcap_{j=1}^{n}\mathfrak{p}_{j}\in\mathfrak{o}/\bigcap_{j=1}^{n}\mathfrak{p}_{j}}\sigma_{b}^{-1}\left(\bigcap_{j=1}^{n}\Gamma_{\mathfrak{p}_{j}}^{d+1}\right)\cap O(H,\mathbb{E})^{d+1}.

Hence, we choose α=1/(nk)\alpha=1/(nk) and denote by φ:𝔬k\varphi:\mathfrak{o}\rightarrow\mathbb{Z}^{k} again the isomorphism induced by 𝔼\mathbb{E}. By the same argument as in the proof of Corollary 21 we get that for 𝔭1,,𝔭nHα\mathfrak{p}_{1},\dots,\mathfrak{p}_{n}\preceq H^{\alpha} we have diam(φ(j=1n𝔭j))H\operatorname{diam}(\varphi(\bigcap_{j=1}^{n}\mathfrak{p}_{j}))\leq H and thus by the computation (4.9) we obtain

|j=1nU~𝔭jO(H,𝔼)d+1|(2H)k(d+1)\displaystyle\frac{\left|\bigcap_{j=1}^{n}\widetilde{U}_{\mathfrak{p}_{j}}\cap O(H,\mathbb{E})^{d+1}\right|}{(2H)^{k(d+1)}} (j=1npjdeg(𝔭j))|j=1nU𝔭jO(H,𝔼)d+1|(2H)k(d+1)\displaystyle\leq\left(\prod_{j=1}^{n}p_{j}^{\operatorname{deg}(\mathfrak{p}_{j})}\right)\frac{\left|\bigcap_{j=1}^{n}U_{\mathfrak{p}_{j}}\cap O(H,\mathbb{E})^{d+1}\right|}{(2H)^{k(d+1)}}
j=1npj(d1)deg(𝔭j)j=1n1pj2,\displaystyle\leq\prod_{j=1}^{n}p_{j}^{-(d-1)\operatorname{deg}(\mathfrak{p}_{j})}\leq\prod_{j=1}^{n}\frac{1}{p_{j}^{2}},

where we used d3d\geq 3 to get the last inequality. Therefore, also (3.3) and (3.4) are verified. Thus, all the claims follow from Theorem 11. ∎

Remark 23.

Note that Corollary 22 does not extend to d=2d=2. For d=2d=2 the conditions of Theorem 11 are satisfied for no positive integer. In fact, the system does not even satisfy the weaker conditions of Theorem 4 as ηNKsη\sum_{\eta\in N_{K}}s_{\eta} diverges, as we saw in the proof of Corollary 20.

Acknowledgments

The work of Giacomo Micheli is partially supported by the National Science Foundation grant number 2127742. The work of Severin Schraven is supported by NSERC of Canada. The work of Simran Tinani is supported by armasuisse Science and Technology. The work of Violetta Weger is supported by the Swiss National Science Foundation grant number 195290.

References

  • [1] Michael Baake, Robert V Moody, and Peter AB Pleasants. Diffraction from visible lattice points and kkth power free integers. Discrete Mathematics, 221(1-3):3–42, 2000.
  • [2] Martin Bright, Tim Daniel Browning, and Daniel Loughran. Failures of Weak Approximation in Families. Compositio Mathematica, 152(7):1435–1475, 2016.
  • [3] John William Scott Cassels. An introduction to the geometry of numbers. Springer Science & Business Media, 2012.
  • [4] Ernesto Cesaro. Question 75 (solution). Mathesis, 3:224–225, 1883.
  • [5] Ernesto Cesaro. Probabilité de certains faits arithméthiques. Mathesis, 4:150–151, 1884.
  • [6] Arturas Dubickas. Polynomials irreducible by Eisenstein’s criterion. Applicable Algebra in Engineering, Communication and Computing, 14(2):127–132, 2003.
  • [7] Andrea Ferraguti and Giacomo Micheli. On the Mertens-Césaro Theorem for Number Fields. Bulletin of the Australian Mathematical Society, 93(02):199–210, 2016.
  • [8] Randell Heyman and Igor E. Shparlinski. On the number of Eisenstein polynomials of bounded height. Applicable Algebra in Engineering, Communication and Computing, 24(2):149–156, 2013.
  • [9] Serge Lang. Algebraic number theory, volume 110. Springer Science & Business Media, 2013.
  • [10] Shi-Mei Ma, Kevin J. McGown, Devon Rhodes, and Mathias Wanner. On the number of primes for which a polynomial is eisenstein. Integers, 18:A101, 2018.
  • [11] Franz Mertens. Ueber einige Asymptotische Gesetze der Zahlentheorie. Journal für die reine und angewandte Mathematik, 77:289–338, 1874.
  • [12] Giacomo Micheli. A local to global principle for densities over function fields. arXiv preprint arXiv:1701.01178, 2017.
  • [13] Giacomo Micheli and Reto Schnyder. The Density of Shifted and Affine Eisenstein Polynomials. Proceedings of the American Mathematical Society, 144(11):4651–4661, 2016.
  • [14] Giacomo Micheli, Severin Schraven, and Violetta Weger. A local to global principle for expected values. Journal of Number Theory, 2021.
  • [15] Giacomo Micheli and Violetta Weger. On rectangular unimodular matrices over the algebraic integers. SIAM Journal on Discrete Mathematics, 33(1):425–437, 2019.
  • [16] Jürgen Neukirch. Algebraic number theory, volume 322. Springer Science & Business Media, 2013.
  • [17] James E. Nymann. On the Probability that kk Positive Integers are Relatively Prime. Journal of Number Theory, 4(5):469–473, 1972.
  • [18] Bjorn Poonen and Michael Stoll. The Cassels-Tate Pairing on Polarized Abelian Varieties. Annals of Mathematics, 150(3):1109–1149, 1999.
  • [19] Bjorn Poonen and Michael Stoll. A Local-Global Principle for Densities. In Scott D. Ahlgren, George E. Andrews, and K. Ono, editors, Topics in Number Theory, volume 467 of Mathematics and Its Applications, pages 241–244. Springer US, 1999.
  • [20] Violetta Weger. Information Set Decoding in the Lee Metric and the Local to Global Principle for Densities. PhD thesis, University of Zurich, 2020.