This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Local geometry of NAE-SAT solutions in the condensation regime

Allan Sly Department of Mathematics, Princeton University. Email: [email protected]    Youngtak Sohn Department of Mathematics Massachusetts Institute of Technology. Email: [email protected]
Abstract

The local behavior of typical solutions of random constraint satisfaction problems (csp) describes many important phenomena including clustering thresholds, decay of correlations, and the behavior of message passing algorithms. When the constraint density is low, studying the planted model is a powerful technique for determining this local behavior which in many examples has a simple Markovian structure. Work of Coja-Oghlan, Kapetanopoulos, Müller (2020) showed that for a wide class of models, this description applies up to the so-called condensation threshold.

Understanding the local behavior after the condensation threshold is more complex due to long-range correlations. In this work, we revisit the random regular nae-sat model in the condensation regime and determine the local weak limit which describes a random solution around a typical variable. This limit exhibits a complicated non-Markovian structure arising from the space of solutions being dominated by a small number of large clusters. This is the first description of the local weak limit in the condensation regime for any sparse random csps in the one-step replica symmetry breaking (1rsb) class. Our result is non-asymptotic, and characterizes the tight fluctuation O(n1/2)O(n^{-1/2}) around the limit. Our proof is based on coupling the local neighborhoods of an infinite spin system, which encodes the structure of the clusters, to a broadcast model on trees whose channel is given by the 1rsb belief-propagation fixed point. We believe that our proof technique has broad applicability to random csps in the 1rsb class.

1 Introduction

A random constraint satisfaction problem (rcsp) involves nn variables z¯={zi}in𝔛n\underline{z}=\{z_{i}\}_{i\leq n}\in\mathfrak{X}^{n} drawn from a finite alphabet set 𝔛\mathfrak{X}, satisfying mαnm\equiv\alpha n random constraints. The aim is to analyze the solution space of rcsps as nn and mm increase, with α\alpha constant. Major advances have been made by statistical physicists using deep but non-rigorous theory, which describes a series of phase transitions as the constraint density α\alpha grows. Their insights apply to a wide class of rcsps belonging to the so-called one-step replica symmetry breaking (1rsb) class, including kk-sat, nae-sat, and coloring ([20, 18], see also [3], [19]). We’ll begin by describing some of the main predictions made by the physicists [18]. See Figure 1 for the pictorial description of the conjectured phase diagram.

Refer to captionRefer to captionRefer to captionRefer to captionRefer to captionαuniq\alpha_{\textsf{uniq}}αclust\alpha_{\textsf{clust}}αcond\alpha_{\textsf{cond}}αsat\alpha_{\textsf{sat}}uniquenessextremalityclusteringcondensationunsatconstraint density α\alpha
Figure 1: Figure adapted from [18, 14]. A pictorial description of the conjectured phase diagram of random constraint satisfaction problems in the one-step replica symmetry breaking class. In the condensation regime (αcond,αsat)(\alpha_{\textsf{cond}},\alpha_{\textsf{sat}}), a bounded number of clusters contain most of the solutions and the uniform measure over the solutions fails to be contiguous with the planted model.

When the density of constraints α\alpha is below the uniqueness threshold αuniq\alpha_{\textsf{uniq}}, all of the solutions lie in a single cluster. Here, a cluster is defined to be the connected component of the solution space, where two solutions are connected if they differ by a small, say logn\log n, number of variables. As α\alpha increases, the space of solutions undergoes a shattering threshold αclust\alpha_{\textsf{clust}} after which the space of solutions shatters into exponentially many clusters of solutions, each well separated from each other  [1]. While the space of solutions becomes more complex at this point, the behavior of a typical solution retains a simple description. In particular, the uniform measure over the solutions is contiguous with respect to the so-called planted model. This was recently established rigorously by Coja-Oghlan, Kapetanopoulos, and Müller [10] up to the condensation threshold αcond\alpha_{\textsf{cond}} for several models including nae-sat and coloring.

A second threshold, which is of primary interest in this paper, is the condensation threshold αcond\alpha_{\textsf{cond}}. For α(αclust,αcond)\alpha\in(\alpha_{\textsf{clust}},\alpha_{\textsf{cond}}) each cluster of solutions has only an exponentially small fraction of the total number of solutions while for α(αcond,αsat)\alpha\in(\alpha_{\textsf{cond}},\alpha_{\textsf{sat}}) most of the solutions are contained in O(1)O(1) number of clusters. Indeed, a more refined prediction is that the cluster sizes follow a Poisson-Dirichlet distribution [18]. This is the regime in which the model is said to be 1rsb, or in the condensation regime. Formally, this means that if we look at the normalized Hamming distance of two randomly chosen solutions, it is concentrated on two points. This corresponds to a positive probability of having two solutions in the same cluster in which case they are close as well as a positive probability of two solutions in different clusters in which case they are much further. While this is predicted in many models it has so far only been established in the regular nae-sat for large kk [28].

It is further conjectured that not only does the structure of the space of solutions exhibit a phase transition at αcond\alpha_{\textsf{cond}}, so does the local distribution of the individual solutions themselves. In particular, given a solution drawn uniformly at random, consider the empirical distribution of the solution in a ball of radius 2t2t around variables 1in1\leq i\leq n. Here, a ball of radius 2t2t is with respect to the factor graph induced by the constraints and the variables. For example, if 22 variables are involved in the same constraint, they have distance 22.

For α<αcond\alpha<\alpha_{\textsf{cond}}, because of contiguity, it suffices to study the planted model to determine the limit of such local empirical distribution. Here, the planted model means taking a fixed “planted” assignment of the variables and then choosing the constraints conditioned to satisfy the planted assignment. The local empirical distribution of the planted model admits a simple description as it can be studied with the configuration model. In the case of nae-sat or colorings on random regular graphs, it is simply the uniform distribution on solutions on a regular tree, which is Markovian in the sense that the spins along any path follow a Markov chain whose transition probabilities can be readily calculated. This then describes the behavior of a random solution up to αcond\alpha_{\textsf{cond}}.

In this paper, we investigate the regime α>αcond\alpha>\alpha_{\textsf{cond}} in the random dd-regular kk-nae-sat model for large kk0k\geq k_{0}, where k0k_{0} is an absolute constant. This regime presents a complex local empirical distribution, deviating from the planted model. The nae-sat problem offers additional symmetries compared to kk-sat that make it more tractable from a mathematical viewpoint. Nevertheless, it is predicted to belong to the same 1rsb universality class of rcsps as random kk-sat and random graph coloring, thus sharing similar qualitative behaviors. Let us give an informal statement of our main theorem.

Theorem 1.1.

(Informal) For kk0k\geq k_{0} and α(αcond(k),αsat(k))\alpha\in(\alpha_{\textsf{cond}}(k),\alpha_{\textsf{sat}}(k)), consider a random regular k-nae-satk\textsc{-nae-sat} solution z¯{0,1}n\underline{\textbf{z}}\in\{0,1\}^{n} defined in Section 1.1. For t1t\geq 1, the empirical distribution over balls of radius 2t2t of the solution z¯\underline{\textbf{z}} converges to an explicit non-Markovian limit 𝒫t\mathcal{P}_{\star}^{t} with Θk(1/n)\Theta_{k}(1/\sqrt{n}) fluctuations.

We refer to Theorem 1.3 below for the formal statement. Explicit definition of 𝒫t\mathcal{P}_{\star}^{t} is given in Section 1.4. Unlike in the planted case, 𝒫t\mathcal{P}_{\star}^{t} is non-Markovian as shown in Section 1.5.

We emphasize that for t2t\geq 2, characterization of the local weak limit 𝒫t\mathcal{P}_{\star}^{t} with O(n1/2)O(n^{-1/2}) fluctuation poses significant difficulties, demanding novel methods not covered in earlier works [28, 29]. Indeed, [28] has only studied statistics of depth 22 neighborhoods, and they established concentration in \ell^{\infty}-distance of the free component profile with larger distance O(n1/2logn)O(n^{-1/2}\log n). In order to establish Theorem 1.1, we establish 1\ell^{1}-type concentration with optimal fluctuation O(n1/2)O(n^{-1/2}), which is much stronger since there are typically nΩk(1)n^{\Omega_{k}(1)} types of free trees. Further, we construct a delicate coupling in the infinite spin system encoding the clusters, which we call component coloring, and improve the concentration of depth 22 neighborhoods to greater distances. Section 2 provides a high level overview of our proof methodology, which we believe has wide applicability to 1rsb class random csps.

We further remark that the characterization of the local weak limit in the condensation regime (αcond,αsat)(\alpha_{\textsf{cond}},\alpha_{\textsf{sat}}) is delicate due to the randomness coming from the weights for the clusters. Indeed, we expect that for a different notion of the local distribution studied in [23], where a uniformly random vertex is chosen first and then the marginal of a neighborhood around the vertex is considered, the local weak limit will then be random, which is a mixture of extremal Gibbs measures with weights drawn from a Poisson-Dirichlet distribution. Since showing that the relative sizes of the clusters follow a Poisson-Dirichlet process in the regime (αcond,αsat)(\alpha_{\textsf{cond}},\alpha_{\textsf{sat}}) is open for any rcsp’s in 1rsb universality class, we leave this different notion of local weak limit as a conjecture. See Section 1.5 for a further discussion.

1.1 Definitions and Main result

We first define the random regular nae-sat model. An instance of a dd-regular kk-nae-sat problem can be represented by a labelled (d,k)(d,k)-regular bipartite graph as follows. Let V={v1,,vn}V=\{v_{1},\ldots,v_{n}\} and F={a1,,am}F=\{a_{1},\ldots,a_{m}\} be the sets of variables and clauses, respectively. Connect viv_{i} and aja_{j} by an edge if the variable viv_{i} participates in the clause aja_{j}. Denote this bipartite graph by G=(V,F,E)G=(V,F,E), and for eEe\in E, let Le{0,1}\texttt{L}_{e}\in\{0,1\} denote the literal assigned to the edge ee. Then, nae-sat instance is defined by 𝒢=(V,F,E,L¯)(V,F,E,{Le}eE)\mathcal{G}=(V,F,E,\underline{\texttt{L}})\equiv(V,F,E,\{\texttt{L}_{e}\}_{e\in E}).

For each eEe\in E, we denote the variable (resp. clause) adjacent to it by v(e)v(e) (resp. a(e)a(e)). Moreover, δv\delta v (resp. δa\delta a) are the collection of adjacent edges to vVv\in V (resp. aFa\in F). Then, a nae-sat solution is formally defined as follows.

Definition 1.2.

For an integer l1l\geq 1 and z¯=(zi){0,1}l\underline{z}=(z_{i})\in\{0,1\}^{l}, define

Inae(z¯):=𝟙{z¯ is neither identically 0 nor 1}.I^{\textsc{nae}}(\underline{z}):=\mathds{1}\{\underline{z}\textnormal{ is neither identically }0\textnormal{ nor }1\}. (1)

Let 𝒢=(V,F,E,L¯)\mathcal{G}=(V,F,E,\underline{\texttt{L}}) be a nae-sat instance. An assignment z¯{0,1}V\underline{z}\in\{0,1\}^{V} is called a solution if

Inae(z¯;𝒢):=aFInae((zv(e)Le)eδa)=1,I^{\textsc{nae}}(\underline{z};\mathcal{G}):=\prod_{a\in F}I^{\textsc{nae}}\big{(}(z_{v(e)}\oplus\texttt{L}_{e})_{e\in\delta a}\big{)}=1, (2)

where \oplus denotes the addition mod 2. Denote the set of solutions by SOL(𝒢){0,1}V\textsf{SOL}(\mathcal{G})\subset\{0,1\}^{V}.

The random regular nae-sat instance 𝓖=(V,F,E,L¯)\boldsymbol{\mathcal{G}}=(V,F,\textbf{E},\underline{\textbf{L}}) is then generated by a perfect matching between the set of half-edges adjacent to variables and half-edges adjacent to clauses which are labelled from 11 to nd=mknd=mk. Thus, E is a uniform permutation in SndS_{nd}. Conditioned on E, the literals L¯=(Le)eE\underline{\textbf{L}}=(\textbf{L}_{e})_{e\in\textbf{E}} is drawn i.i.d. from 𝖴𝗇𝗂𝖿({0,1}){\sf Unif}(\{0,1\}). We use the notation z¯𝖴𝗇𝗂𝖿(𝖲𝖮𝖫(𝓖))\underline{\textbf{z}}\sim{\sf Unif}({\sf SOL}(\boldsymbol{\mathcal{G}})) for a nae-sat solution drawn uniformly at random given a random regular nae-sat instance 𝓖\boldsymbol{\mathcal{G}}.

We next define the distribution in a local neighborhood of vVv\in V and a depth t1t\geq 1. Hereafter we denote d(,)d𝒢(,)d(\cdot,\cdot)\equiv d_{\mathcal{G}}(\cdot,\cdot) by the graph distance on the factor graph 𝒢\mathcal{G}. Let Nt(v,𝒢)N_{t}(v,\mathcal{G}) be the 2t322t-\frac{3}{2} neighborhood around vv in 𝒢\mathcal{G}. That is, Nt(v,𝒢)N_{t}(v,\mathcal{G}) contains the variables wVw\in V such that the distance d(v,w)d(v,w) in 𝒢\mathcal{G} is at most 2t22t-2 (tt layers of variables including ii), and clauses aFa\in F such that d(v,a)2t3d(v,a)\leq 2t-3 (t1t-1 layers of clauses).

We have used the distance 2t322t-\frac{3}{2} instead of 2t22t-2 to include the boundary half-edges (half-edges that are not connected within Nt(v,𝒢)N_{t}(v,\mathcal{G})) hanging from the leaf variables {wV:d(v,w)=2t2}\{w\in V:d(v,w)=2t-2\}, which will be convenient for the proof. Denote the set of boundary half-edges (resp. full-edges) of Nt(v,𝒢)N_{t}(v,\mathcal{G}) by Nt(v,𝒢)\partial N_{t}(v,\mathcal{G}) (resp. E𝗂𝗇(Nt(v,𝒢)E_{\sf in}(N_{t}(v,\mathcal{G})), and let E(Nt(v,𝒢)):=E𝗂𝗇(Nt(v,𝒢))Nt(v,𝒢)E(N_{t}(v,\mathcal{G})):=E_{\sf in}(N_{t}(v,\mathcal{G}))\sqcup\partial N_{t}(v,\mathcal{G}). The set of variables (resp. clauses) in Nt(v,𝒢)N_{t}(v,\mathcal{G}) is denoted by V(Nt(v,𝒢))V(N_{t}(v,\mathcal{G})) (resp. F(Nt(v,𝒢))F(N_{t}(v,\mathcal{G}))).

We take the convention that the full-edges of eE𝗂𝗇(Nt(v,𝒢))e\in E_{\sf in}(N_{t}(v,\mathcal{G})) store literal information Le\texttt{L}_{e} while the boundary half-edges eNt(v,𝒢)e\in\partial N_{t}(v,\mathcal{G}) do not. To this end, for 𝒢=(V,F,E,L¯)\mathcal{G}=(V,F,E,\underline{\texttt{L}}) and z¯{0,1}V\underline{z}\in\{0,1\}^{V}, denote

L¯t(v,𝒢):=(Le)eE𝗂𝗇(Nt(v,𝒢)),z¯t(v,𝒢):=(zv)vV(Nt(v,𝒢)).\underline{\texttt{L}}_{t}(v,\mathcal{G}):=(\texttt{L}_{e})_{e\in E_{\sf in}(N_{t}(v,\mathcal{G}))},\quad\underline{z}_{t}(v,\mathcal{G}):=(z_{v})_{v\in V(N_{t}(v,\mathcal{G}))}\,.

Note that if Nt(v,𝒢)N_{t}(v,\mathcal{G}) does not contain a cycle, it is isomorphic to (d,k)(d,k)-regular tree. Denote the infinitary (d,k)(d,k) regular factor tree rooted at a variable ρ\rho by 𝒯d,k𝒯d,k(ρ)\mathscr{T}_{d,k}\equiv\mathscr{T}_{d,k}(\rho). Here, we consider ρ\rho as a variable and its dd descendants as clauses. Similarly, all the clauses have kk descendant variables. Thus, the variables are located at even depths whereas the clauses are located at odd depths. Then, 𝒯d,k,t\mathscr{T}_{d,k,t} is defined by 2t322t-\frac{3}{2} neighborhood around the root ρ\rho in 𝒯d,k\mathscr{T}_{d,k} (see Figure 2). We use the notation V(𝒯d,k,t),F(𝒯d,k,t),E𝗂𝗇(𝒯d,k,t),V(\mathscr{T}_{d,k,t}),F(\mathscr{T}_{d,k,t}),E_{\sf in}(\mathscr{T}_{d,k,t}), and 𝒯d,k,t\partial\mathscr{T}_{d,k,t} respectively for the set of variables, clauses, full-edges, and boundary half-edges of 𝒯d,k,t\mathscr{T}_{d,k,t}.

Figure 2: 𝒯d,k,t\mathscr{T}_{d,k,t} for d=k=3d=k=3 and t=2t=2. Variables and clauses are drawn by the circular and square nodes, respectively. The boundary half-edges in 𝒯d,k,t\partial\mathscr{T}_{d,k,t} are highlighted blue.

For (z¯t,L¯t){0,1}V(𝒯d,k,t)×{0,1}E𝗂𝗇(𝒯d,k,t)(\underline{z}_{t},\underline{\texttt{L}}_{t})\in\{0,1\}^{V(\mathscr{T}_{d,k,t})}\times\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})} and vVv\in V, define the random variable XvtXvt[𝓖,z¯,z¯t,L¯t]X_{v}^{t}\equiv X_{v}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}},\underline{z}_{t},\underline{\texttt{L}}_{t}] by

XvtXvt[𝓖,z¯,z¯t,L¯t]:=𝟙{Nt(v,𝓖) is a tree, L¯t(v,𝓖)=L¯t,  and z¯t(v,𝓖)=z¯t}.X_{v}^{t}\equiv X_{v}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}},\underline{z}_{t},\underline{\texttt{L}}_{t}]:=\mathds{1}\{N_{t}(v,\boldsymbol{\mathcal{G}})\textnormal{ is a tree, ~{}$\underline{\textbf{L}}_{t}(v,\boldsymbol{\mathcal{G}})=\underline{\texttt{L}}_{t}$,~{} and }~{}~{}\underline{\textbf{z}}_{t}(v,\boldsymbol{\mathcal{G}})=\underline{z}_{t}\}\;.

Then the depth tt empirical distribution is given by

nt[𝓖,z¯](z¯t,L¯t)=1nvVXvt.\mathbb{P}_{n}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}}](\underline{z}_{t},\underline{\texttt{L}}_{t})=\frac{1}{n}\sum_{v\in V}X_{v}^{t}.

Note that nt[𝓖,z¯]\mathbb{P}_{n}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}}] is a random measure on {0,1}V(𝒯d,k,t)\{0,1\}^{V(\mathscr{T}_{d,k,t})}. The total mass is 1O(n1)1-O(n^{-1}) with high probability because of rare neighborhoods which contain a cycle. Our main theorem below determines the limit of nt[𝓖,z¯]\mathbb{P}_{n}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}}] with O(n1/2)O(n^{-1/2}) fluctuation, thus such cyclic neighborhoods may be neglected.

Theorem 1.3.

For kk0k\geq k_{0} and α(αcond(k),αsat(k))\alpha\in(\alpha_{\textsf{cond}}(k),\alpha_{\textsf{sat}}(k)), let 𝓖\boldsymbol{\mathcal{G}} be a random regular k-nae-satk\textsc{-nae-sat} instance. Given 𝓖\boldsymbol{\mathcal{G}}, draw a uniformly random nae-sat solution z¯𝖴𝗇𝗂𝖿(𝖲𝖮𝖫(𝓖))\underline{\textbf{z}}\sim{\sf Unif}({\sf SOL}(\boldsymbol{\mathcal{G}})). For any t1t\geq 1, there is an explicit non-random 𝒫t𝒫t[α,k]𝒫({0,1}V(𝒯d,k,t))\mathcal{P}^{\star}_{t}\equiv\mathcal{P}^{\star}_{t}[\alpha,k]\in\mathscr{P}\big{(}\{0,1\}^{V(\mathscr{T}_{d,k,t})}\big{)} defined in Section 1.4 such that the following holds. For any ε>0\varepsilon>0, there exists CC(ε,α,k,t)>0C\equiv C(\varepsilon,\alpha,k,t)>0 such that we have with probability at least 1ε1-\varepsilon over (𝓖,z¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{z}}),

dTV(nt[𝓖,z¯],𝒫t)Cnd_{\operatorname{TV}}\Big{(}\mathbb{P}_{n}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}}\,]\;,\;\mathcal{P}_{\star}^{t}\Big{)}\leq\frac{C}{\sqrt{n}} (3)
Remark 1.4.

For the random regular kk-nae-sat model for kk0k\geq k_{0}, the thresholds αsat(k)\alpha_{\textsf{sat}}(k) and αcond(k)\alpha_{\textsf{cond}}(k) were established respectively in [13] and [33]. Further, they showed that the set (αcond(k),αsat(k))(\alpha_{\textsf{cond}}(k),\alpha_{\textsf{sat}}(k)) is contained in [αlbd,αubd][\alpha_{\textsf{lbd}},\alpha_{\textsf{ubd}}], where αlbd(2k12)log2\alpha_{\textsf{lbd}}\equiv(2^{k-1}-2)\log 2 and αubd2k1log2\alpha_{\textsf{ubd}}\equiv 2^{k-1}\log 2. Thus, we assume that α[αlbd,αubd]\alpha\in[\alpha_{\textsf{lbd}},\alpha_{\textsf{ubd}}] throughout the paper. We also remark that the large kk expansion of αcond(k)\alpha_{\textsf{cond}}(k) and αsat(k)\alpha_{\textsf{sat}}(k) [33] is given by

αcond(k)=2k1log2log2+ok(1),αsat(k)=2k1log212log214+ok(1).\alpha_{\textsf{cond}}(k)=2^{k-1}\log 2-\log 2+o_{k}(1)\,,\quad\alpha_{\textsf{sat}}(k)=2^{k-1}\log 2-\frac{1}{2}\log 2-\frac{1}{4}+o_{k}(1)\,.

The quantities αcond(k)\alpha_{\textsf{cond}}(k) and αsat(k)\alpha_{\textsf{sat}}(k) are formally defined in equation (4) below.

We emphasize that the fluctuation Cn\frac{C}{\sqrt{n}} is optimal as local neighborhood frequencies have central limit theorem fluctuations.111Our proof method also shows that there exists a constant C(ε,α,k,t)C^{\prime}(\varepsilon,\alpha,k,t) such that dTV(nt[𝓖,z¯],𝒫t)Cn1/2d_{\operatorname{TV}}\big{(}\mathbb{P}_{n}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}}\,],\mathcal{P}_{\star}^{t}\big{)}\geq C^{\prime}n^{-1/2} with probability 1ε1-\varepsilon. This lower bound follows straightforwardly from our analysis by considering fluctuation that comes from variables that are in a free tree with a single free variable (see Section 2.1 for the definition). Thus, we focus on achieving a tight upper bound. In particular, it is arguably much stronger than the asymptotic statement, where one only specifies the limit 𝒫t\mathcal{P}^{\star}_{t}, and not the rate O(n1/2)O(n^{-1/2}) in (3). For example, Theorem 1.3 imply that dTV(nt[𝓖,z¯],𝒫t)annd_{\operatorname{TV}}\Big{(}\mathbb{P}_{n}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}}\,]\;,\;\mathcal{P}_{\star}^{t}\Big{)}\leq\frac{a_{n}}{\sqrt{n}} with probability 1on(1)1-o_{n}(1), for any ana_{n} which diverges to \infty.

1.2 Related works

Local weak convergence of graphs, also known as Benjamini-Schramm convergence, gives a way of describing the local distributional limit of a sequence of (possibly random) graphs. It was developed independently by Aldous [4] to study the Assignment Problem and by Benjamini and Schramm [5] to study recurrence of random walks on planar graphs.

The notion of local weak convergence generalizes naturally to the graphs that are labeled by a spin system, which we study in this work, and it is conjectured that many global properties of the spin systems are determined by the local weak limit. Indeed, in the context of rcsps, statistical physics predictions [34, 25, 18] that describe a series of phase transitions rcsp in the 1rsb universality class are based on the local weak limit. The shattering and freezing thresholds are described explicitly in terms of transitions in the behaviour of the broadcast model which corresponds to the local weak limit in this regime. The condensation corresponds to the point at which the local weak limit stops being given by the simple broadcasting model description.

Earlier mathematical literature on local weak limits for rcsps was centered around understanding the shattering and freezing thresholds. The shattering threshold is conjectured to coincide with the reconstruction threshold of the local weak limit, which asks whether the spin at the root is dependent on asymptotically far away vertices. Several results relate tree thresholds to the analogous on graphs. Gerschenfeld and Montanari [16] showed that on locally treelike graphs, reconstruction on the graph is equivalent to that of the tree if two independent solutions have approximately independent empirical distributions. Montanari, Restrepo and Tetali [24] extended this to a wider class of rcsps. Later, Coja-Oghlan, Efthymiou, and Jaafari established the local weak convergence in the kk-colouring model up to the condensation threshold for large enough kk in [9]. On the other hand, the freezing threshold for colouring models was established by Molloy  [21] and for a wider class of models in [22].

As noted above, studying the planted model has been a powerful tool to study the local weak limit of rcsps below condensation. A spectacular application of this method was by Achlioptas and Coja-Oghlan who established regimes of clustering for solutions for the colouring, kk-sat and nae-sat [1]. This was established via the second moment method which shows that most graphs have similar numbers of solutions. A more refined picture can be established by Robinson and Wormald’s small graph conditioning method [32] to show that the planted model is contiguous with respect to the original distribution [17].

Another setting where local weak convergence has played a key role is in the study of the stochastic block model (SBM). This is a model of inhomogeneous graphs that contains communities and is an important test-bed for the statistical theory of community detection in networks. Understanding the local weak limit of the SBM has led to sharp information theoretic bounds on when detection of communities is possible [26, 27].

1.3 Clusters

A central role in understanding the nae-sat model and sparse rcsps in general is to study how the space of solutions splits into small rigid clusters. In a typical solution, a small but constant fraction of variables can be flipped between 0 and 11 without violating any constraints giving rise to exponentially many nearby solutions. In order to give a combinatorial definition of a cluster, the so-called coarsening algorithm inductively maps variables taking values in {0,1}\{0,1\} to f free if they can be flipped without violating any constraints [31, 13]. A constraint is considered satisfied if one of its variables is free and the algorithm continues until no more variables can be set to f resulting in a {0,1,f}\{0,1,\textnormal{\small{{f}}}\} valued configuration called a frozen configuration. Every valid frozen configuration satisfies the following properties.

Definition 1.5 (Coarsening and Frozen configuration).

Given a nae-sat instance 𝒢=(V,F,E,L¯)\mathcal{G}=(V,F,E,\underline{\texttt{L}}) and a nae-sat solution z¯𝖲𝖮𝖫(𝒢)\underline{z}\in{\sf SOL}(\mathcal{G}), the coarsening x¯{0,1,f}V\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V} of z¯\underline{z} is defined by the following algorithm. For each variable vVv\in V, whenever the value of zv{0,1}z_{v}\in\{0,1\} can be flipped between 0/10/1 without violating any constraints, change zvz_{v} to f. Iterate until no more variable can be set to f. Note that the resulting configuration must satisfy the following. We call x¯{0,1,f}V\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V} a (valid) frozen configuration if it satisfies

  • No nae-sat constraints are violated for x¯\underline{x}. That is, Inae(x¯;𝒢)=1I^{\textsc{nae}}(\underline{x};\mathscr{G})=1.

  • For vVv\in V, xv{0,1}x_{v}\in\{0,1\} if and only if it is forced to be so. That is, xv{0,1}x_{v}\in\{0,1\} if and only if there exists eδve\in\delta v such that a(e)a(e) becomes violated if Le\texttt{L}_{e} is negated, i.e., Inae(x¯;𝒢𝟙e)=0I^{\textsc{nae}}(\underline{x};\mathscr{G}\oplus\mathds{1}_{e})=0 where 𝒢𝟙e\mathscr{G}\oplus\mathds{1}_{e} denotes 𝒢\mathscr{G} with Le\texttt{L}_{e} flipped. Conversely xv=fx_{v}=\textnormal{\small{{f}}} if and only if no such eδve\in\delta v exists.

Frozen model solutions are themselves a random csp but without clusters, because they are in effect clusters of solutions projected to a single point. [13] showed that for α[αlbd,αubd]\alpha\in[\alpha_{\textsf{lbd}},\alpha_{\textsf{ubd}}], with high probability all solutions map via coarsening algorithms to frozen configurations with a low density (less than 7/2k7/2^{k}) of free variables. Thus, free variables form subcrtical clusters that are almost all small subcritical branching process trees. The size of a cluster is the product over the trees of the number of solutions in each tree.

An alternative definition of the cluster model is in terms of fixed points of the Belief Propagation (BP) equations. On each directed edge ee we define a pair of messages me(m˙e,m^e){{\texttt{m}}}_{e}\equiv(\dot{{{\texttt{m}}}}_{e},\hat{{{\texttt{m}}}}_{e}) taking values in the set of probability distributions on {0,1}\{0,1\}. The messages satisfy the BP equations if

m˙e(z)=eδv(e)em^e(z)z{0,1}eδv(e)em^e(z),\dot{{{\texttt{m}}}}_{e}(z)=\frac{\prod_{e^{\prime}\in\delta v(e)\setminus e}\hat{{{\texttt{m}}}}_{e^{\prime}}(z)}{\sum_{z^{\prime}\in\{0,1\}}\prod_{e^{\prime}\in\delta v(e)\setminus e}\hat{{{\texttt{m}}}}_{e^{\prime}}(z^{\prime})}\,,

and

m^e(z)=z¯δa(e){0,1}d𝟏(ze=z)Inae((z¯L)δa(e))eδa(e)em˙e(ze)z¯δa(e){0,1}dInae((z¯L)δa(e))eδa(e)em˙e(ze).\hat{{{\texttt{m}}}}_{e}(z)=\frac{\sum_{\underline{z}_{\delta a(e)}\in\{0,1\}^{d}}\mathbf{1}(z_{e}=z)I^{\textsc{nae}}((\underline{z}\oplus L)_{\delta a(e)})\prod_{e^{\prime}\in\delta a(e)\setminus e}\dot{{{\texttt{m}}}}_{e^{\prime}}(z_{e^{\prime}})}{\sum_{\underline{z}_{\delta a(e)}\in\{0,1\}^{d}}I^{\textsc{nae}}((\underline{z}\oplus L)_{\delta a(e)})\prod_{e^{\prime}\in\delta a(e)\setminus e}\dot{{{\texttt{m}}}}_{e^{\prime}}(z_{e^{\prime}})}\,.

The interpretation of m˙e(z)\dot{{{\texttt{m}}}}_{e}(z) is the probability that vv is equal to zz in a random solution in that cluster after the edge ee is removed. Frozen variables correspond to those which have at least one incoming message m^\hat{{{\texttt{m}}}} that is a point mass. A solution to the BP equations m¯(me)eE\underline{{{\texttt{m}}}}\equiv({{\texttt{m}}}_{e})_{e\in E} can be arrived from a nae-sat solution z¯\underline{z} by starting with m˙e(y)=I(zv(e)=y)\dot{{{\texttt{m}}}}_{e}(y)=I(z_{v(e)}=y) for eEe\in E and y{0,1}y\in\{0,1\} and then iteratively calculating m^\hat{{{\texttt{m}}}} from m˙\dot{{{\texttt{m}}}} and then m˙\dot{{{\texttt{m}}}} from m^\hat{{{\texttt{m}}}}. From almost all solutions z¯\underline{z} these converge in a finite number of iterations.

The number of solutions in a configuration corresponding to a cluster x¯\underline{x}, or equivalently m¯\underline{{{\texttt{m}}}}, is given by

size(m¯,𝒢)=vVφ˙(m^δv)eEφ¯(m˙e,m^e)aFφ^lit((m^L)δa)\textsf{size}(\underline{{{\texttt{m}}}},\mathcal{G})=\prod_{v\in V}\dot{\varphi}(\hat{{{\texttt{m}}}}_{\delta v})\prod_{e\in E}\bar{\varphi}(\dot{{{\texttt{m}}}}_{e},\hat{{{\texttt{m}}}}_{e})\prod_{a\in F}\hat{\varphi}^{\textnormal{lit}}((\hat{{{\texttt{m}}}}\oplus L)_{\delta a})

for explicit functions (φ˙,φ¯,φ^lit)(\dot{\varphi},\bar{\varphi},\hat{\varphi}^{\textnormal{lit}}) defined in equation (28) of [33] or equation (59) below. The challenge in the condensation regime is that the typical number of solutions is much smaller than the expected number of solutions. This is because the largest contribution to the expected value comes from rare clusters, which are large. But it is exactly these clusters whose local distribution behaves like the planted model. Their absence in a typical realization results in a different empirical distribution. Instead, following the physics heuristics of [18] implemented rigorously in [33, 28], we weight frozen model configurations according to size(m¯,𝒢)λ\textsf{size}(\underline{{{\texttt{m}}}},\mathcal{G})^{\lambda} and tune λ\lambda to give clusters that correspond to the largest size that appears. To this end, we define the following measure-valued functions. For μ𝒫([0,1])\mu\in\mathscr{P}([0,1]), where 𝒫(A)\mathscr{P}(A) denotes the set of probability measures on a measurable space AA, let

^λμ(B)\displaystyle\hat{\mathcal{R}}_{\lambda}\mu(B) 1𝒵^(μ)(2i=1k1xii=1k1(1xi))λ𝟏{1i=1k1xi2i=1k1xii=1k1(1xi)B}i=1k1μ(dxi),\displaystyle\equiv\frac{1}{\hat{\mathscr{Z}}(\mu)}\int\bigg{(}2-\prod_{i=1}^{k-1}x_{i}-\prod_{i=1}^{k-1}(1-x_{i})\bigg{)}^{\lambda}\mathbf{1}\bigg{\{}\frac{1-\prod_{i=1}^{k-1}x_{i}}{2-\prod_{i=1}^{k-1}x_{i}-\prod_{i=1}^{k-1}(1-x_{i})}\in B\bigg{\}}\,\prod_{i=1}^{k-1}{\mu}({\rm d}x_{i})\,,
˙λμ(B)\displaystyle\dot{\mathcal{R}}_{\lambda}\mu(B) 1𝒵˙(μ)(i=1d1yi+i=1d1(1yi))λ𝟏{i=1d1yii=1d1yi+i=1d1(1yi)B}i=1d1μ(dyi),\displaystyle\equiv\frac{1}{\dot{\mathscr{Z}}(\mu)}\int\bigg{(}\prod_{i=1}^{d-1}y_{i}+\prod_{i=1}^{d-1}(1-y_{i})\bigg{)}^{\lambda}\mathbf{1}\bigg{\{}\frac{\prod_{i=1}^{d-1}y_{i}}{\prod_{i=1}^{d-1}y_{i}+\prod_{i=1}^{d-1}(1-y_{i})}\in B\bigg{\}}\,\prod_{i=1}^{d-1}\mu({\rm d}y_{i})\,,

where 𝒵^(μ)\hat{\mathscr{Z}}(\mu) and 𝒵˙(μ)\dot{\mathscr{Z}}(\mu) are normalizing constants to make ^λμ\hat{\mathcal{R}}_{\lambda}\mu and ˙λμ\dot{\mathcal{R}}_{\lambda}\mu a probability measure. Denote λ˙λ^λ:𝒫([0,1])𝒫([0,1])\mathcal{R}_{\lambda}\equiv\dot{\mathcal{R}}_{\lambda}\circ\hat{\mathcal{R}}_{\lambda}:\mathscr{P}([0,1])\to\mathscr{P}([0,1]). The fixed point of λ\mathcal{R}_{\lambda} was established in [33].

Proposition 1.6 (Proposition 1.2 in [33]).

Fix kk0k\geq k_{0}. For λ[0,1]\lambda\in[0,1] and α[αlbd,αubd]\alpha\in[\alpha_{\textsf{lbd}},\alpha_{\textsf{ubd}}], the following holds. Let μ˙λ,0=12δ0+12δ1\dot{\mu}_{\lambda,0}=\frac{1}{2}\delta_{0}+\frac{1}{2}\delta_{1} and for t0t\geq 0, recursively set μ˙λ,t+1=λμ˙λ,t\dot{\mu}_{\lambda,t+1}=\mathcal{R}_{\lambda}\dot{\mu}_{\lambda,t}. Then, μ˙λ,t\dot{\mu}_{\lambda,t} converges to μ˙λ𝒫([0,1])\dot{\mu}_{\lambda}\in\mathscr{P}([0,1]) in total variation distance as tt\to\infty. Moreover, μ˙λμ˙λ[α,k]\dot{\mu}_{\lambda}\equiv\dot{\mu}_{\lambda}[\alpha,k] satisfies μ˙λ(dx)=μ˙λ(d(1x))\dot{\mu}_{\lambda}(dx)=\dot{\mu}_{\lambda}(d(1-x)) and μ˙λ((0,1))7/2k\dot{\mu}_{\lambda}((0,1))\leq 7/2^{k}.

Denote μ^λ^μ˙λ\hat{\mu}_{\lambda}\equiv\hat{\mathcal{R}}\dot{\mu}_{\lambda}. Define the measures w˙λ,w^λ,w¯λ𝒫([0,1])\dot{w}_{\lambda},\hat{w}_{\lambda},\bar{w}_{\lambda}\in\mathscr{P}([0,1]) by

w˙λ(B)\displaystyle\dot{w}_{\lambda}(B) =(𝒵˙λ)1(i=1dyi+i=1d(1yi))λ𝟏{i=1dyi+i=1d(1yi)B}i=1dμ^λ(dyi),\displaystyle=({\dot{\mathscr{Z}}}_{\lambda}^{\prime})^{-1}\int\bigg{(}\prod_{i=1}^{d}y_{i}+\prod_{i=1}^{d}(1-y_{i})\bigg{)}^{\lambda}\mathbf{1}\bigg{\{}\prod_{i=1}^{d}y_{i}+\prod_{i=1}^{d}(1-y_{i})\in B\bigg{\}}\prod_{i=1}^{d}\hat{\mu}_{\lambda}({\rm d}y_{i})\,,
w^λ(B)\displaystyle\hat{w}_{\lambda}(B) =(𝒵^λ)1(1i=1kxii=1k(1xi))λ𝟏{1i=1kxii=1k(1xi)B}i=1kμ˙λ(dxi),\displaystyle=({\hat{\mathscr{Z}}}_{\lambda}^{\prime})^{-1}\int\bigg{(}1-\prod_{i=1}^{k}x_{i}-\prod_{i=1}^{k}(1-x_{i})\bigg{)}^{\lambda}\mathbf{1}\bigg{\{}1-\prod_{i=1}^{k}x_{i}-\prod_{i=1}^{k}(1-x_{i})\in B\bigg{\}}\prod_{i=1}^{k}\dot{\mu}_{\lambda}({\rm d}x_{i})\,,
w¯λ(B)\displaystyle\bar{w}_{\lambda}(B) =(𝒵¯λ)1(xy+(1x)(1y))λ𝟏{xy+(1x)(1y)B}μ˙λ(dx)μ^λ(dy),,\displaystyle=({\bar{\mathscr{Z}}}_{\lambda}^{\prime})^{-1}\iint\bigg{(}xy+(1-x)(1-y)\bigg{)}^{\lambda}\mathbf{1}\Big{\{}xy+(1-x)(1-y)\in B\Big{\}}\dot{\mu}_{\lambda}(dx)\hat{\mu}_{\lambda}({\rm d}y)\,,,

where 𝒵˙λ,𝒵^λ,𝒵¯λ\dot{\mathscr{Z}}_{\lambda}^{\prime},\hat{\mathscr{Z}}_{\lambda}^{\prime},\bar{\mathscr{Z}}_{\lambda}^{\prime} are normalizing constants. Let

𝔉(λ;α)\displaystyle\mathfrak{F}(\lambda;\alpha) =log𝒵˙λ+αlog𝒵^λαklog𝒵¯λ,\displaystyle=\log\dot{\mathscr{Z}}_{\lambda}+\alpha\log\hat{\mathscr{Z}}_{\lambda}-\alpha k\log\bar{\mathscr{Z}}_{\lambda},
s(λ;α)\displaystyle s(\lambda;\alpha) =log(x)w˙λ(dx)+αlog(x)w^λ(dx)αklog(x)w¯λ(dx).\displaystyle=\int\log(x)\dot{w}_{\lambda}({\rm d}x)+\alpha\int\log(x)\hat{w}_{\lambda}({\rm d}x)-\alpha k\int\log(x)\bar{w}_{\lambda}({\rm d}x).

Then, αcondαcond(k)\alpha_{\textsf{cond}}\equiv\alpha_{\textsf{cond}}(k) and αsatαsat(k)\alpha_{\textsf{sat}}\equiv\alpha_{\textsf{sat}}(k) are defined by

αcondsup{α[αlbd,αubd]:𝔉(1;α)>s(1;α)},αsatsup{α[αlbd,αubd]:𝔉(0;α)>0}.\alpha_{\textsf{cond}}\equiv\sup\Big{\{}\alpha\in[\alpha_{\textsf{lbd}},\alpha_{\textsf{ubd}}]:\mathfrak{F}(1;\alpha)>s(1;\alpha)\Big{\}}\,,\quad\alpha_{\textsf{sat}}\equiv\sup\Big{\{}\alpha\in[\alpha_{\textsf{lbd}},\alpha_{\textsf{ubd}}]:\mathfrak{F}(0;\alpha)>0\Big{\}}\,. (4)

It was shown in [33, Proposition 1.4] that αcond(k)\alpha_{\textsf{cond}}(k) and αsat(k)\alpha_{\textsf{sat}}(k) is well defined for kk0k\geq k_{0}. Then, for α(αcond,αsat)\alpha\in(\alpha_{\textsf{cond}},\alpha_{\textsf{sat}}), we set λλ[α,k]\lambda^{\star}\equiv\lambda^{\star}[\alpha,k] and ss[α,k]s^{\star}\equiv s^{\star}[\alpha,k] so that

λ:=sup{λ[0,1]:𝔉(λ;α)λs(λ;α)>0}s:=s(λ;α).\lambda^{\star}:=\sup\{\lambda\in[0,1]:\mathfrak{F}(\lambda;\alpha)-\lambda s(\lambda;\alpha)>0\}\quad\quad s^{\star}:=s(\lambda^{\star};\alpha). (5)

We remark that [28, 29] proved that in the condensation regime α(αcond,αsat)\alpha\in(\alpha_{\textsf{cond}},\alpha_{\textsf{sat}}), both the number of solutions and the number of solutions in the largest cluster are of size Θ(exp(ns12λlogn))\Theta\Big{(}\exp\big{(}ns^{\star}-\frac{1}{2\lambda^{\star}}\log n\big{)}\Big{)}.

1.4 Local weak limit

We now specify the distribution over solution given the literals L¯t{0,1}E𝗂𝗇(𝒯d,k,t)\underline{\texttt{L}}_{t}\in\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})}, where we recall that 𝒯d,k\mathscr{T}_{d,k} is the infinite (d,k)(d,k) regular factor tree rooted at a variable ρ\rho, and 𝒯d,k,t\mathscr{T}_{d,k,t} is the sub-tree of 𝒯d,k\mathscr{T}_{d,k} up to depth 2t322t-\frac{3}{2}. First, we choose a random cluster in terms of its BP messages m=(m˙,m^){{\texttt{m}}}=(\dot{{{\texttt{m}}}},\hat{{{\texttt{m}}}}). Note that if we set the incoming messages m^e\hat{{{\texttt{m}}}}_{e} at the boundary edges e𝒯d,k,te\in\partial\mathscr{T}_{d,k,t}, then there is a unique extension to the internal edges E𝗂𝗇(𝒯d,k,t)E_{\sf in}(\mathscr{T}_{d,k,t}) solving the BP equations, which gives m¯t(me)eE(𝒯d,k,t)\underline{{{\texttt{m}}}}_{t}\equiv({{\texttt{m}}}_{e})_{e\in E(\mathscr{T}_{d,k,t})}. With abuse of notation, identify m˙e,m^e({0,1})\dot{{{\texttt{m}}}}_{e},\hat{{{\texttt{m}}}}_{e}\in\mathbb{P}(\{0,1\}) with m˙e(1),m^e(1)[0,1]\dot{{{\texttt{m}}}}_{e}(1),\hat{{{\texttt{m}}}}_{e}(1)\in[0,1]. For L¯t{0,1}E𝗂𝗇(𝒯d,k,t)\underline{\texttt{L}}_{t}\in\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})}, we assign the weight

νλ(dm¯t;L¯t)=(𝒵λ)1(vV(𝒯d,k,t)φ˙(m^δv)eE𝗂𝗇(𝒯d,k,t)φ¯(m˙e,m^e)aF(𝒯d,k,t)φ^lit((m^L¯)δa))λe𝒯d,k,tμ^λ(dm^e),\nu_{\lambda}({\rm d}\underline{{{\texttt{m}}}}_{t};\underline{\texttt{L}}_{t})=(\mathcal{Z}_{\lambda})^{-1}\bigg{(}\prod_{v\in V(\mathscr{T}_{d,k,t})}\dot{\varphi}(\hat{{{\texttt{m}}}}_{\delta v})\prod_{e\in E_{\sf in}(\mathscr{T}_{d,k,t})}\bar{\varphi}(\dot{{{\texttt{m}}}}_{e},\hat{{{\texttt{m}}}}_{e})\prod_{a\in F(\mathscr{T}_{d,k,t})}\hat{\varphi}^{\textnormal{lit}}((\hat{{{\texttt{m}}}}\oplus\underline{\texttt{L}})_{\delta a})\bigg{)}^{\lambda}\prod_{e\in\partial\mathscr{T}_{d,k,t}}\hat{\mu}_{\lambda}({\rm d}\hat{{{\texttt{m}}}}_{e})\,,

where the normalization constant 𝒵λ\mathcal{Z}_{\lambda} is given by

𝒵λ=(vV(𝒯d,k,t)φ˙(m^δv)eE𝗂𝗇(𝒯d,k,t)φ(m˙e,m^e)aF(𝒯d,k,t)φ^lit((m^L¯)δa))λe𝒯d,k,tμ^λ(dm^e).\mathcal{Z}_{\lambda}=\int\bigg{(}\prod_{v\in V(\mathscr{T}_{d,k,t})}\dot{\varphi}(\hat{{{\texttt{m}}}}_{\delta v})\prod_{e\in E_{\sf in}(\mathscr{T}_{d,k,t})}\varphi(\dot{{{\texttt{m}}}}_{e},\hat{{{\texttt{m}}}}_{e})\prod_{a\in F(\mathscr{T}_{d,k,t})}\hat{\varphi}^{\textnormal{lit}}((\hat{{{\texttt{m}}}}\oplus\underline{\texttt{L}})_{\delta a})\bigg{)}^{\lambda}\prod_{e\in\partial\mathscr{T}_{d,k,t}}\hat{\mu}_{\lambda}({\rm d}\hat{{{\texttt{m}}}}_{e})\,.

Given m¯t\underline{{{\texttt{m}}}}_{t}, let x¯(m¯t)(xv)vV(𝒯d,k,t)\underline{x}(\underline{{{\texttt{m}}}}_{t})\equiv(x_{v})_{v\in V(\mathscr{T}_{d,k,t})} be the frozen configuration associated with m¯t\underline{{{\texttt{m}}}}_{t}. That is, if there exists eδve\in\delta v such that m^e=δz\hat{{{\texttt{m}}}}_{e}=\delta_{z} for some z{0,1}z\in\{0,1\}, then set xv=zx_{v}=z, and otherwise, set xv=fx_{v}=\textnormal{\small{{f}}}. For z¯t{0,1}V(𝒯d,k,t)\underline{z}_{t}\in\{0,1\}^{V(\mathscr{T}_{d,k,t})}, we write z¯tL¯tx¯(m¯t)\underline{z}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{x}(\underline{{{\texttt{m}}}}_{t}) if z¯v=x¯v\underline{z}_{v}=\underline{x}_{v} whenever x¯v{0,1}\underline{x}_{v}\in\{0,1\} and z¯t\underline{z}_{t} is a valid nae-sat configuration for literals L¯t\underline{\texttt{L}}_{t}. In other words, z¯t\underline{z}_{t} is a valid assignment of the spins in the free variables of x¯(m¯t)\underline{x}(\underline{{{\texttt{m}}}}_{t}). For λλ[α,k]\lambda^{\star}\equiv\lambda^{\star}[\alpha,k] in (5), define the probability measure 𝒫t𝒫t[α,k]𝒫({0,1}V(𝒯d,k,t)×{0,1}E𝗂𝗇(𝒯d,k,t))\mathcal{P}_{\star}^{t}\equiv\mathcal{P}_{\star}^{t}[\alpha,k]\in\mathscr{P}\big{(}\{0,1\}^{V(\mathscr{T}_{d,k,t})}\times\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})}\big{)} by

𝒫t(z¯t,L¯t)=2|E𝗂𝗇(𝒯d,k,t)|I(z¯tL¯tx¯(mt))e𝒯d,k,tm^e(z¯v(e))z¯tI(z¯tL¯tx¯(mt))e𝒯d,k,tm^e(z¯v(e))νλ(dm¯t;L¯t).\mathcal{P}_{\star}^{t}(\underline{z}_{t},\underline{\texttt{L}}_{t})=2^{-|E_{\sf in}(\mathscr{T}_{d,k,t})|}\int\frac{I\big{(}\underline{z}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{x}({{\texttt{m}}}_{t})\big{)}\prod_{e\in\partial\mathscr{T}_{d,k,t}}\hat{{{\texttt{m}}}}_{e}(\underline{z}_{v(e)})}{\sum_{\underline{z}^{\prime}_{t}}I\big{(}\underline{z}^{\prime}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{x}({{\texttt{m}}}_{t})\big{)}\prod_{e\in\partial\mathscr{T}_{d,k,t}}\hat{{{\texttt{m}}}}_{e}(\underline{z}^{\prime}_{v(e)})}\nu_{\lambda^{\star}}({\rm d}\underline{{{\texttt{m}}}}_{t};\underline{\texttt{L}}_{t}). (6)

This construction picks a frozen configuration x¯\underline{x} according to the λ\lambda^{\star}-weighted measure and then picks a random solution properly weighted by the effect of the x¯\underline{x} outside of the neighborhood.

1.5 Further discussion

Having established the local weak limit 𝒫t𝒫t[α,k]\mathcal{P}_{\star}^{t}\equiv\mathcal{P}_{\star}^{t}[\alpha,k] for α(αcond,αsat)\alpha\in(\alpha_{\textsf{cond}},\alpha_{\textsf{sat}}), natural questions arise: is 𝒫t[α,k]\mathcal{P}_{\star}^{t}[\alpha,k] a Gibbs measure? Can 𝒫t[α,k]\mathcal{P}_{\star}^{t}[\alpha,k] be described in a Markovian fashion?

As one might expect, the answer to the first question is yes in a rather simple manner. Note that given m¯t\underline{{{\texttt{m}}}}_{t}, the integrand in equation (6) defines a Gibbs measure over z¯t\underline{z}_{t} with BP messages (m^e,m˙e)eE(𝒯d,k,t)(\hat{{{\texttt{m}}}}_{e},\dot{{{\texttt{m}}}}_{e})_{e\in E(\mathscr{T}_{d,k,t})}. Thus, 𝒫t\mathcal{P}_{\star}^{t} is a mixture of such measures, which is again a Gibbs measure. Furthermore, let F0F(𝒯d,k,t)F_{0}\subset F(\mathscr{T}_{d,k,t}) be a subset of clauses and V0:={vV(𝒯d,k,t):d(F0,v)=1}V_{0}:=\{v\in V(\mathscr{T}_{d,k,t}):d(F_{0},v)=1\} be the variables adjacent to them. Denote the boundary variables in V0V_{0} by V0:={vV0:d(ρ,v)=2t2 or d(F0𝖼,v)=1}\partial V_{0}:=\{v\in V_{0}:d(\rho,v)=2t-2\textnormal{ or }d(F_{0}^{\sf c},v)=1\}. Then, conditional on z¯V0V0𝖼\underline{z}_{\partial V_{0}\sqcup V_{0}^{\sf c}} and L¯t\underline{\texttt{L}}_{t}, it follows from the definition that 𝒫t(|z¯V0V0𝖼,L¯t)\mathcal{P}_{\star}^{t}(\cdot\,|\,\underline{z}_{\partial V_{0}\sqcup V_{0}^{\sf c}},\underline{\texttt{L}}_{t}) is simply a uniform measure over the nae-sat solutions in V0F0V_{0}\cup F_{0}.222Here, note that for two nae-sat solutions z¯t,z¯t\underline{z}_{t},\underline{z}_{t}^{\prime} such that z¯V0V0𝖼=z¯V0V0𝖼\underline{z}_{\partial V_{0}\sqcup V_{0}^{\sf c}}=\underline{z}_{\partial V_{0}\sqcup V_{0}^{\sf c}}^{\prime}, z¯tL¯tx¯(mt)\underline{z}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{x}({{\texttt{m}}}_{t}) if and only if z¯tL¯tx¯(mt)\underline{z}_{t}^{\prime}\sim_{\underline{\texttt{L}}_{t}}\underline{x}({{\texttt{m}}}_{t}). Thus, in this sense, all the interesting aspects of 𝒫t\mathcal{P}_{\star}^{t} comes from the boundary conditions (m^e)e𝒯d,k,t(\hat{{{\texttt{m}}}}_{e})_{e\in\partial\mathscr{T}_{d,k,t}}.

For the second question, the measure 𝒫t\mathcal{P}_{\star}^{t} is non-Markovian. Let us first show this in the limiting case of t=t=\infty. Note that the BP messages induced by z¯\underline{z} are measurable with respect to z¯\underline{z}. We condition on zρ=1z_{\rho}=1 and on the literals L¯t\underline{\texttt{L}}_{t} and edges around the root eδρe\in\delta\rho satisfies m^e[1]{0,12}\hat{{{\texttt{m}}}}_{e}[1]\in\{0,\frac{1}{2}\}. Assume it was Markovian. Then conditional on the root the messages to the root from each subtree are conditionally independent. Let YiY_{i} be the indicator that the ii-th edge of ρ\rho is forcing. Then taking a ball of radius 1 around the root, if any of the clauses are forcing 𝒵λ=1\mathcal{Z}_{\lambda}=1 while if they are all separating then the root is a free singleton and 𝒵λ=2λ\mathcal{Z}_{\lambda}=2^{\lambda}. Hence we have that with p=μ^λ(0)μ^λ(0)+μ^λ(1/2)p=\frac{\hat{\mu}_{\lambda^{\star}}(0)}{\hat{\mu}_{\lambda^{\star}}(0)+\hat{\mu}_{\lambda^{\star}}(1/2)},

[Yρ=yρ]=1zpiyi(1p)diyi2(λ1)I(y0)\mathbb{P}[Y_{\partial\rho}=y_{\partial\rho}]=\frac{1}{z}p^{\sum_{i}y_{i}}(1-p)^{d-\sum_{i}y_{i}}2^{(\lambda^{\star}-1)I(y\equiv 0)}

and so it is not a product measure. The factor of 2(λ1)2^{(\lambda^{\star}-1)} comes from 𝒵λ\mathcal{Z}_{\lambda} and the probability 212^{-1} of zρ=1z_{\rho}=1. As the measure is non-Markovian for t=t=\infty, it must also be non-Markovian for some large fixed tt.

We remark that our description of local weak limit holds even below αcond\alpha_{\textsf{cond}}. Note that in μ˙λμ˙λ[α,k]\dot{\mu}_{\lambda}\equiv\dot{\mu}_{\lambda}[\alpha,k] in Proposition 1.6 is well-defined even for α[αlbd,αcond]\alpha\in[\alpha_{\textsf{lbd}},\alpha_{\textsf{cond}}]. Thus, in such regime, 𝒫t[α,k]\mathcal{P}_{\star}^{t}[\alpha,k] is well-defined with equation (6), where λ[α,k]1\lambda^{\star}[\alpha,k]\equiv 1 for ααcond\alpha\leq\alpha_{\textsf{cond}}, and (a modification) of our proof shows that Theorem 1.3 holds for α[αlbd,αcond]\alpha\in[\alpha_{\textsf{lbd}},\alpha_{\textsf{cond}}]. However, when λ=1\lambda^{\star}=1, it can be shown that 𝒫t\mathcal{P}_{\star}^{t} is just a uniform measure over (z¯t,L¯t)(\underline{z}_{t},\underline{\texttt{L}}_{t}), which is a nae-sat solution and can be described by a simple broadcast model. This coincides with the description of the local weak limit obtained in [10] for entire range α(0,αcond)\alpha\in(0,\alpha_{\textsf{cond}}), thus below condensation, our method is just a more complicated way of determining the local weak limit.

We further remark that there are two different notions of local weak convergence of a solution  [23]. In the terminology of [23], our result is called convergence locally on average as we have taken the empirical distribution averaged over all the vertices of the graph. A stronger notion is convergence in probability locally which asks that at almost all fixed variables ii, the distribution of solutions in a ball of radius tt around ii converges. This stronger notion was proved by [10] for α<αcond\alpha<\alpha_{\textsf{cond}}. In contrast, it is not true for α>αcond\alpha>\alpha_{\textsf{cond}} because the local distribution is itself random depending on the clusters and their relative weights. To be more precise, let ~v,t[𝒢]\widetilde{\mathbb{P}}_{v,t}[\mathcal{G}] denote the distribution of (𝒛¯t(v,𝒢),L¯t(v,𝒢))(\boldsymbol{\underline{z}}_{t}(v,\mathcal{G}),\underline{\texttt{L}}_{t}(v,\mathcal{G})), where 𝒛¯𝖴𝗇𝗂𝖿(𝖲𝖮𝖫(𝒢))\boldsymbol{\underline{z}}\sim{\sf Unif}({\sf SOL}(\mathcal{G})). Then, consider ~𝐯,t[𝓖]\widetilde{\mathbb{P}}_{\mathbf{v},t}[\boldsymbol{\mathcal{G}}], where 𝐯\mathbf{v} is drawn uniformly at random from VV and 𝓖\boldsymbol{\mathcal{G}} is a random regular nae-sat instance. Then, we conjecture that in the condensation regime α(αcond,αsat)\alpha\in(\alpha_{\textsf{cond}},\alpha_{\textsf{sat}}), the random element ~𝐯,t[𝓖]\widetilde{\mathbb{P}}_{\mathbf{v},t}[\boldsymbol{\mathcal{G}}] in 𝒫({0,1}V(𝒯d,k,t)×{0,1}E𝗂𝗇(𝒯d,k,t))\mathscr{P}\big{(}\{0,1\}^{V(\mathscr{T}_{d,k,t})}\times\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})}\big{)} equipped weak star topology converges weakly to

~𝐯,t[𝓖]w12(~,+t+~,t),\widetilde{\mathbb{P}}_{\mathbf{v},t}[\boldsymbol{\mathcal{G}}]\stackrel{{\scriptstyle w}}{{\longrightarrow}}\frac{1}{2}\Big{(}\widetilde{\mathbb{P}}_{\star,+}^{t}+\widetilde{\mathbb{P}}_{\star,-}^{t}\Big{)},

where the random elements ~,+t,~,t\widetilde{\mathbb{P}}_{\star,+}^{t},\widetilde{\mathbb{P}}_{\star,-}^{t} are defined as follows. For (z¯t,L¯t){0,1}V(𝒯d,k,t)×{0,1}E𝗂𝗇(𝒯d,k,t)(\underline{z}_{t},\underline{\texttt{L}}_{t})\in\{0,1\}^{V(\mathscr{T}_{d,k,t})}\times\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})},

~,+t(z¯t,L¯t)=i=1ωiI(z¯tL¯tx¯(mt(i)))e𝒯d,k,tm^e(i)(z¯v(e))z¯tI(z¯tL¯tx¯(mt(i)))e𝒯d,k,tm^e(i)(z¯v(e)),~,t(z¯t,L¯t):=~,+t(¬z¯t,L¯t).\widetilde{\mathbb{P}}_{\star,+}^{t}(\underline{z}_{t},\underline{\texttt{L}}_{t})=\sum_{i=1}^{\infty}\omega_{i}\cdot\frac{I\big{(}\underline{z}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{x}({{\texttt{m}}}_{t}^{(i)})\big{)}\prod_{e\in\partial\mathscr{T}_{d,k,t}}\hat{{{\texttt{m}}}}_{e}^{(i)}(\underline{z}_{v(e)})}{\sum_{\underline{z}^{\prime}_{t}}I\big{(}\underline{z}^{\prime}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{x}({{\texttt{m}}}_{t}^{(i)})\big{)}\prod_{e\in\partial\mathscr{T}_{d,k,t}}\hat{{{\texttt{m}}}}_{e}^{(i)}(\underline{z}^{\prime}_{v(e)})}\,,\quad\widetilde{\mathbb{P}}_{\star,-}^{t}(\underline{z}_{t},\underline{\texttt{L}}_{t}):=\widetilde{\mathbb{P}}_{\star,+}^{t}(\neg\,\underline{z}_{t},\underline{\texttt{L}}_{t})\,.

Here, (ωi)i1(\omega_{i})_{i\geq 1} follows Poisson-Dirichlet distribution with parameter λλ[α,k]\lambda^{\star}\equiv\lambda^{\star}[\alpha,k] (see Chapter 2 of [30] for the definition of Poisson Dirichlet process) and (mt(i))i1i.i.d.νλ(;L¯t)\big{(}{{\texttt{m}}}_{t}^{(i)}\big{)}_{i\geq 1}\stackrel{{\scriptstyle i.i.d.}}{{\sim}}\nu_{\lambda^{\star}}(\cdot\,;\,\underline{\texttt{L}}_{t}). Also, ¬z¯t\neg\,\underline{z}_{t} is obtained from z¯t\underline{z}_{t} by flipping 0 and 11. Establishing this conjecture is equivalent to showing that the cluster sizes follow Poisson-Dirichlet distribution, which is a major open problem for rcsp’s in 1rsb class.

2 Proof overview

In this section, we give an overview of the proof of Theorem 1.3 which is equivalent to

lim supClim supn(|1nvVXvt𝒫t(z¯t,L¯t)|Cn)=0,for all(z¯t,L¯t){0,1}V(𝒯d,k,t).\limsup_{C\to\infty}\limsup_{n\to\infty}\mathbb{P}\left(\;\bigg{|}\frac{1}{n}\sum_{v\in V}X_{v}^{t}-\mathcal{P}_{\star}^{t}(\underline{z}_{t},\underline{\texttt{L}}_{t})\bigg{|}\geq\frac{C}{\sqrt{n}}\;\right)=0,\quad\textnormal{for all}\quad(\underline{z}_{t},\underline{\texttt{L}}_{t})\in\{0,1\}^{V(\mathscr{T}_{d,k,t})}. (7)

Based on 1rsb{\tiny{1}}\textsc{rsb} heuristics, we analyze the law of z¯𝖴𝗇𝗂𝖿(𝖲𝖮𝖫(𝓖))\underline{\textbf{z}}\sim{\sf Unif}({\sf SOL}(\boldsymbol{\mathcal{G}})) by first conditioning on it’s coarsening x¯{0,1,f}V\underline{\textbf{x}}\in\{0,1,\textnormal{\small{{f}}}\}^{V}: we will see in Section 2.1 that conditioned on (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}}), the law of z¯\underline{\textbf{z}} can be described in a relatively simple manner based on belief propagation. We then divide the cases into whether the frozen configuration (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}}) is favorable or not. By Chebyshev’s inequality, it suffices to show that for any ε>0\varepsilon>0, there exists a set 𝒳𝖿𝖺𝗏𝒳𝖿𝖺𝗏(ε)\mathscr{X}_{\sf fav}\equiv\mathscr{X}_{\sf fav}(\varepsilon) of favorable frozen configurations such that ((𝓖,x¯)𝒳𝖿𝖺𝗏)ε\mathbb{P}\left((\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\in\mathscr{X}_{\sf fav}\right)\leq\varepsilon and

sup(𝒢,x¯)𝒳𝖿𝖺𝗏Var(\displaystyle\sup_{(\mathcal{G},\underline{x})\in\mathscr{X}_{\sf fav}}\operatorname{Var}\Big{(} vVXvt|(𝓖,x¯)=(𝒢,x¯))Cn,\displaystyle\sum_{v\in V}X_{v}^{t}\,\,\Big{|}\,\,(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})\Big{)}\leq C\sqrt{n}\;, (8)
sup(𝒢,x¯)𝒳𝖿𝖺𝗏|1n𝔼[\displaystyle\sup_{(\mathcal{G},\underline{x})\in\mathscr{X}_{\sf fav}}\bigg{|}\frac{1}{n}\mathbb{E}\Big{[} vVXvt|(𝓖,x¯)=(𝒢,x¯)]𝒫t(z¯t,L¯t)|Cn,\displaystyle\sum_{v\in V}X_{v}^{t}\,\,\Big{|}\,\,(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})\Big{]}-\mathcal{P}_{\star}^{t}(\underline{z}_{t},\underline{\texttt{L}}_{t})\bigg{|}\leq\frac{C}{\sqrt{n}}\;, (9)

where CC(ε,k,t)>0C\equiv C(\varepsilon,k,t)>0 is a constant that depends only on ε,k,t\varepsilon,k,t. In the subsequent subsections, we explain the main ideas on how to establish (8) and (9) on some typical event 𝒳𝖿𝖺𝗏\mathscr{X}_{\sf fav}. In Section 2.1, we define the notion of free components, which intuitively are the connected components of the subgraph formed by the free variables. Free components play a crucial role in understanding the law of z¯𝖴𝗇𝗂𝖿(𝖲𝖮𝖫(𝓖))\underline{\textbf{z}}\sim{\sf Unif}({\sf SOL}(\boldsymbol{\mathcal{G}})) conditioned on its coarsening x¯\underline{\textbf{x}}. Indeed, we show in Section 2.2 that the variance control (8) follows from the exponential decay of the frequencies of the free components, which was established in [28]. Obtaining the bias control (9) is where most of the challenges lie in. In Sections 2.3 and 2.4, we explain the main ideas to establish (9).

Notations: Throughout, we let x¯{0,1,f}V\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V} be a valid frozen configuration on a nae-sat instance 𝒢=(V,F,E,L¯)\mathcal{G}=(V,F,E,\underline{\texttt{L}}). We often identify V{1,2,,n}V\equiv\{1,2,\ldots,n\} for convenience. For non-negative quantities f=fd,k,n,tf=f_{d,k,n,t} and g=gd,k,n,tg=g_{d,k,n,t}, we use any of the equivalent notations f=Ok,t(g),g=Ωk,t(f),fk,tgf=O_{k,t}(g),g=\Omega_{k,t}(f),f\lesssim_{k,t}g and gk,tfg\gtrsim_{k,t}f to indicate that there exists a constant Ck,tC_{k,t}, which depends only on kk and tt. We drop the subscript tt the constant CC only depends on kk.

2.1 Free components

Given (𝒢,x¯)(\mathcal{G},\underline{x}), a variable vVv\in V is called frozen in x¯\underline{x} if xv{0,1}x_{v}\in\{0,1\}. If xv=fx_{v}=\textnormal{\small{{f}}}, it is free. A clause aFa\in F is called separating if there are 22 adjacent frozen variables that evaluate 0 and 11, i.e. there exist e,eδae,e^{\prime}\in\delta a such that Lexv(e)=0,Lexv(e)=1.\texttt{L}_{e}\oplus x_{v(e)}=0,\quad\texttt{L}_{e^{\prime}}\oplus x_{v(e^{\prime})}=1. A clause aFa\in F is non-separating if it is not separating. Observe that a separating clause can never be violated no matter how the free variables in x¯\underline{x} are filled with 0 or 11.

An edge eEe\in E is called forcing if flipping the value of xv(e)x_{v(e)} invalidates a(e)a(e), i.e. Lexv(e)1=Lexv(e){0,1}\texttt{L}_{e}\oplus x_{v(e)}\oplus 1=\texttt{L}_{e^{\prime}}\oplus x_{v(e^{\prime})}\in\{0,1\} for all eδaee^{\prime}\in\delta a\setminus e. A clause aFa\in F is forcing, if there exists eδae\in\delta a which is a forcing edge. In particular, a forcing clause is also separating.

Definition 2.1.

Given (𝒢,x¯)(\mathcal{G},\underline{x}), a free piece, denoted by 𝔣in\mathfrak{f}^{\textnormal{in}}, is a connected component of the subgraph induced by the free variables and non-separating clauses in x¯\underline{x}. A free component is a union of 𝔣in\mathfrak{f}^{\textnormal{in}} and the half-edges adjacent to 𝔣in\mathfrak{f}^{\textnormal{in}}. Thus, 𝔣\mathfrak{f} is composed of the free piece 𝔣in\mathfrak{f}^{\textnormal{in}} and the boundary half-edges hanging from 𝔣in\mathfrak{f}^{\textnormal{in}}. Moreover, the (half-)edges of 𝔣\mathfrak{f} are labelled as follows.

  • Denote by V(𝔣),F(𝔣),E(𝔣)V(\mathfrak{f}),F(\mathfrak{f}),E(\mathfrak{f}) the set of variables, clauses, and full-edges of 𝔣\mathfrak{f} (i.e. edges of 𝔣in\mathfrak{f}^{\textnormal{in}}), respectively. Then, each eE(𝔣)e\in E(\mathfrak{f}) is labelled by its literal Le\texttt{L}_{e}.

  • Let ˙𝔣\dot{\partial}\mathfrak{f} (resp. ^𝔣\hat{\partial}\mathfrak{f}) be the set of boundary half-edges adjacent to F(𝔣)F(\mathfrak{f}) (resp. V(𝔣)V(\mathfrak{f})), and write 𝔣:=˙𝔣^𝔣\partial{\mathfrak{f}}:=\dot{\partial}\mathfrak{f}\sqcup\hat{\partial}\mathfrak{f}. Then, e˙𝔣e\in\dot{\partial}\mathfrak{f} is labelled with the information (xv(e),Le){0,1}2(x_{v(e)},\texttt{L}_{e})\in\{0,1\}^{2}. Here xv(e){0,1}x_{v(e)}\in\{0,1\} is guaranteed, since it must be frozen. The label xv(e)x_{v(e)} is called spin-label whereas Le\texttt{L}_{e} is called literal-label. The other boundary half-edges e^𝔣e\in\hat{\partial}\mathfrak{f}, which must be adjacent to separating clauses in 𝒢\mathcal{G}, are unlabelled.

A free tree is a free component 𝔣\mathfrak{f} which does not contain a cycle. We often use the notation 𝔱\mathfrak{t} to denote a free tree and the notation 𝔣\mathfrak{f} for a generic free component, which may contain a cycle. We denote the collection of free components inside (x¯,𝒢)(\underline{x},\mathcal{G}) by (x¯,𝒢)\mathscr{F}(\underline{x},\mathcal{G}) and the collection of free trees by 𝗍𝗋(x¯,𝒢)(x¯,𝒢)\mathscr{F}_{{\sf tr}}(\underline{x},\mathcal{G})\subseteq\mathscr{F}(\underline{x},\mathcal{G}). We use the notation v𝔣=|V(𝔣)|,f𝔣=|F(𝔣)|v_{\mathfrak{f}}=|V(\mathfrak{f})|,f_{\mathfrak{f}}=|F(\mathfrak{f})|, and e𝔣=|E(𝔣)|e_{\mathfrak{f}}=|E(\mathfrak{f})| for the number of variables, clauses, and edges of a free component 𝔣\mathfrak{f}.

We remark that an equivalent labelling scheme was also used in [28, Definition 2.18]. However, the notion of ‘free tree’ in [28] (see Definition 2.16) is slightly different than the one in Definition 2.1. Namely, [28] further introduced an equivalence relation and defined a ‘free tree’ as an equivalence class. It is crucial that we do not make this reduction for the purpose of coupling described in Section 2.4.

Note that a free component 𝔣(x¯,𝒢)\mathfrak{f}\in\mathscr{F}(\underline{x},\mathcal{G}) is embedded in 𝒢\mathcal{G} by definition. However, it can also be treated as a separate labelled graph. To this end, we denote the set of possible free components (up to graph and label isomorphisms) by \mathscr{F} and the set of possible free trees by 𝗍𝗋\mathscr{F}_{{\sf tr}}\subsetneq\mathscr{F}. For 𝔣\mathfrak{f}\in\mathscr{F}, define the weight of 𝔣\mathfrak{f} as

w𝔣:=|{z¯V(𝔣){0,1}V(𝔣): the coarsening of the nae-sat solution z¯V(𝔣) is 𝔣}|,w_{\mathfrak{f}}:=\left|\left\{\underline{z}_{V(\mathfrak{f})}\in\{0,1\}^{V(\mathfrak{f})}:\textnormal{ the coarsening of the $\textsc{nae-sat}$ solution $\underline{z}_{V(\mathfrak{f})}$ is $\mathfrak{f}$}\right\}\right|, (10)

where z¯V(𝔣)\underline{z}_{V(\mathfrak{f})} is a nae-sat solution if it satisfies every clauses in 𝔣\mathfrak{f} (recall that the every (half-)edges adjacent to clauses store literal information) and the coarsening is taken with respect to the clauses of 𝔣\mathfrak{f} as the same manner as described in Definition 1.5. A crucial observation then follows.

Observation 2.2.

Since a separating clause can never be violated, we have size(x¯,𝒢)=𝔣(x¯,𝒢)w𝔣\textsf{size}(\underline{x},\mathcal{G})=\prod_{\mathfrak{f}\in\mathscr{F}(\underline{x},\mathcal{G})}w_{\mathfrak{f}}. Thus, sampling a random regular nae-sat instance 𝓖\boldsymbol{\mathcal{G}} and a uniformly random nae-sat solution z¯𝖴𝗇𝗂𝖿(𝖲𝖮𝖫(𝓖))\underline{\textbf{z}}\in{\sf Unif}({\sf SOL}(\boldsymbol{\mathcal{G}})) is equivalent to the following sampling procedure.

  1. (a)

    Sample a random regular nae-sat instance 𝓖\boldsymbol{\mathcal{G}}. Then, sample a frozen configuration, or equivalently a cluster, x¯{0,1,f}V\underline{\textbf{x}}\in\{0,1,\textnormal{\small{{f}}}\}^{V} with probability proportional to its weight size(x¯,𝓖)\textsf{size}(\underline{\textbf{x}},\boldsymbol{\mathcal{G}}), namely (x¯=x¯|𝓖)=size(x¯,𝓖)/|𝖲𝖮𝖫(𝓖)|\mathbb{P}(\underline{\textbf{x}}=\underline{x}\,|\,\boldsymbol{\mathcal{G}})=\textsf{size}(\underline{x},\boldsymbol{\mathcal{G}})/|{\sf SOL}(\boldsymbol{\mathcal{G}})|.

  2. (b)

    Given (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}}), sample a nae-sat solution z¯\underline{\textbf{z}} uniformly at random among those which are coarsened to x¯\underline{\textbf{x}}. Equivalently, for each free component 𝔣(x¯,𝓖),\mathfrak{f}\in\mathscr{F}(\underline{\textbf{x}},\boldsymbol{\mathcal{G}}), independently sample z¯V(𝔣){0,1}V(𝔣)\underline{\textbf{z}}_{V(\mathfrak{f})}\in\{0,1\}^{V(\mathfrak{f})} uniformly at random among those which are coarsened to 𝔣\mathfrak{f}.

We remark that for a free tree 𝔱𝗍𝗋\mathfrak{t}\in\mathscr{F}_{{\sf tr}}, every nae-sat solution z¯V(𝔱)\underline{z}_{V(\mathfrak{t})} of 𝔱\mathfrak{t} is coarsened to 𝔱\mathfrak{t}, so size(𝔱)\textsf{size}(\mathfrak{t}) is the number of nae-sat solutions of 𝔱\mathfrak{t}. Moreover, sampling a nae-sat solution z¯V(𝔱){0,1}V(𝔱)\underline{\textbf{z}}_{V(\mathfrak{t})}\in\{0,1\}^{V(\mathfrak{t})} of 𝔱\mathfrak{t} uniformly at random can be analyzed in a simple manner. That is, any marginals of the law of z¯V(𝔱)\underline{\textbf{z}}_{V(\mathfrak{t})} can be described by a belief propagation (see Section A).

For the rest of this subsection, we review the notion of component coloring in [28]. Define the set 𝒞\mathscr{C} as

𝒞:={R0,R1,B0,B1,S}{(𝔣,e):𝔣,eE(𝔣)}.\mathscr{C}:=\{{{\scriptsize{\texttt{R}}}}_{0},{{\scriptsize{\texttt{R}}}}_{1},{{\scriptsize{\texttt{B}}}}_{0},{{\scriptsize{\texttt{B}}}}_{1},{\scriptsize{\texttt{S}}}\}\cup\{(\mathfrak{f},e):\mathfrak{f}\in\mathscr{F},\,e\in E(\mathfrak{f})\}. (11)

Here, we take the convention that (𝔣,e)=(𝔣,e)(\mathfrak{f},e)=(\mathfrak{f}^{\prime},e^{\prime}) if there exists a graph isomorphism from 𝔣\mathfrak{f} to 𝔣\mathfrak{f}^{\prime} that keeps the labels unchanged and maps ee to ee^{\prime}. The symbols R0,R1{{\scriptsize{\texttt{R}}}}_{0},{{\scriptsize{\texttt{R}}}}_{1} (resp. B0,B1{{\scriptsize{\texttt{B}}}}_{0},{{\scriptsize{\texttt{B}}}}_{1}) represent ‘red’ (resp. ‘blue’) spins, and S represent ‘separating’ spin. The terminologies were introduced in [33], building on the works [11, 8].

Definition 2.3.

Let x¯{0,1,f}V\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V} be a (valid) frozen configuration on 𝒢\mathcal{G}. The component coloring σ¯(σe)𝒞E\underline{\sigma}\equiv(\sigma_{e}){}\in\mathscr{C}^{E} corresponding to x¯\underline{x} is defined by the following procedure.

  1. 1.

    For each frozen variable vVv\in V, i.e. xv{0,1}x_{v}\in\{0,1\}, and an adjacent edge eδve\in\delta v, assign σe=Rxv\sigma_{e}={{\scriptsize{\texttt{R}}}}_{x_{v}} if ee is forcing, σe=Bxv\sigma_{e}={{\scriptsize{\texttt{B}}}}_{x_{v}} otherwise.

  2. 2.

    For each separating clause aa and an adjacent edge eδae\in\delta a, assign σe=S\sigma_{e}={\scriptsize{\texttt{S}}} if xv(e)=fx_{v(e)}=\textnormal{\small{{f}}}.

  3. 3.

    For the other edges eEe\in E, which must be contained in a free component of x¯\underline{x}, let 𝔣e\mathfrak{f}_{e}\in\mathscr{F} be the free component that contains ee. We then set σe=(𝔣e,e)𝒞\sigma_{e}=(\mathfrak{f}_{e},e)\in\mathscr{C}.

Given 𝒢\mathcal{G}, we call a component coloring σ¯\underline{\sigma} valid on 𝒢\mathcal{G} if there exists a valid frozen configuration x¯\underline{x} on 𝒢\mathcal{G} such that it maps to σ¯\underline{\sigma} with the above procedure. Then, it is straightforward to see that the procedure in Definition 2.3 gives a one-to-one correspondence between the valid frozen configurations and the valid component colorings. The following remark plays an important role later in Section 2.4.

Remark 2.4.

Given (𝒢,x¯)(\mathcal{G},\underline{x}), suppose eEe\in E is contained in a free component. Note that by Definition 2.1, (𝔣e,e)(\mathfrak{f}_{e},e) contains the information on literals of 𝔣e\mathfrak{f}_{e} and spin labels on boundary half-edges of 𝔣\mathfrak{f}. Therefore, σe=(𝔣e,e)\sigma_{e}=(\mathfrak{f}_{e},e) completely determines the colors of adjacent edges, (σe)eδv(e)eδa(e)e(\sigma_{e^{\prime}})_{e^{\prime}\in\delta v(e)\setminus e\,\sqcup\,\delta a(e)\setminus e}.

2.2 Exponential decay of the frequencies of free components

By Observation 2.2, conditional on (𝓖,x¯)=(𝒢,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x}), we have that XitX_{i}^{t} and XjtX_{j}^{t} are independent if Nt(i,𝒢)Nt(j,𝒢)=N_{t}(i,\mathcal{G})\cap N_{t}(j,\mathcal{G})=\emptyset and there is no free component intersecting both Nt(i,𝒢)N_{t}(i,\mathcal{G}) and Nt(j,𝒢)N_{t}(j,\mathcal{G}). Thus, the critical component in establishing the variance control (8) is to show that the large free components are rare in a typical frozen configuration, which enables us to argue that for most i,jVi,j\in V, XitX_{i}^{t} and XjtX_{j}^{t} are (conditionally) independent. We formalize this idea in this subsection. We start with the definition of boundary profile and free component profile introduced in [28, Definition 3.2].

Definition 2.5.

Given (𝒢,x¯)(\mathcal{G},\underline{x}), the unnormalized free component profile of x¯\underline{x} is the sequence (n𝔣[𝒢,x¯])𝔣(n_{\mathfrak{f}}[\mathcal{G},\underline{x}])_{\mathfrak{f}\in\mathscr{F}}, where n𝔣[𝒢,x¯]n_{\mathfrak{f}}[\mathcal{G},\underline{x}] is the number of free component 𝔣\mathfrak{f} inside (𝒢,x¯)(\mathcal{G},\underline{x}). The free component profile is then {p𝔣[𝒢,x¯]}𝔣:={n𝔣[𝒢,x¯]n}𝔣\{p_{\mathfrak{f}}[\mathcal{G},\underline{x}]\}_{\mathfrak{f}\in\mathscr{F}}:=\Big{\{}\frac{n_{\mathfrak{f}}[\mathcal{G},\underline{x}]}{n}\Big{\}}_{\mathfrak{f}\in\mathscr{F}}. The boundary profile of (𝒢,x¯)(\mathcal{G},\underline{x}) is the tuple B[𝒢,x¯](B˙,B^,B¯)B[\mathcal{G},\underline{x}]\equiv(\dot{B},\hat{B},\bar{B}) defined as follows. Let σ¯𝒞E\underline{\sigma}\in\mathscr{C}^{E} be the component coloring corresponding to x¯\underline{x} in Definition 2.3. Then, B˙\dot{B}, B^,\hat{B}, and B¯\bar{B} are respectively measures on {R,B}d\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}^{d}, {R,B,S}k\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{k} and {R,B,S}\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\} defined as

B˙(τ¯):=|{vV:σ¯δv=τ¯}|/|V|for all τ¯{R,B}d,B^(τ¯):=|{aF:σ¯δa=τ¯}|/|F|for all τ¯{R,B,S}k,B¯(τ):=|{eE:σe=τ}|/|E|for all τ{R,B,S}.\begin{split}&\dot{B}(\underline{\tau}):=|\{v\in V:\underline{\sigma}_{\delta v}=\underline{\tau}\}|/|V|\quad\textnormal{for all }\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}^{d}\;,\\ &\hat{B}(\underline{\tau}):=|\{a\in F:\underline{\sigma}_{\delta a}=\underline{\tau}\}|/|F|\quad\textnormal{for all }\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{k}\;,\\ &\bar{B}(\tau):=|\{e\in E:\sigma_{e}=\tau\}|/|E|\quad\textnormal{for all }{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}\;.\end{split}

Finally, the (11-neighborhood) coloring profile of (𝒢,x¯)(\mathcal{G},\underline{x}) is the collection of the boundary profile and the free component profile, which we denote by ξ[𝒢,x¯]:=(B[𝒢,x¯],{p𝔣[x¯]}𝔣)\xi[\mathcal{G},\underline{x}]:=(B[\mathcal{G},\underline{x}],\{p_{\mathfrak{f}}[\underline{x}]\}_{\mathfrak{f}\in\mathscr{F}}).

For r>0r>0, let 𝔈r\mathfrak{E}_{r} be the collection of free component profiles satisfying the exponential decay of frequencies in its number of variables with rate 2rk2^{-rk}. That is,

𝔈r:={(p𝔣)𝔣:𝔣,v(𝔣)=vp𝔣2rkv,v1}.\mathfrak{E}_{r}:=\Big{\{}(p_{\mathfrak{f}})_{\mathfrak{f}\in\mathscr{F}}:\sum_{\mathfrak{f}\in\mathscr{F},v(\mathfrak{f})=v}p_{\mathfrak{f}}\leq 2^{-rkv},~{}~{}\forall v\geq 1\;\Big{\}}. (12)

With slight abuse of notation, we also denote ξ=(B,{p𝔣}𝔣)𝔈r\xi=(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}})\in\mathfrak{E}_{r} if {p𝔣}𝔣𝔈r\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\in\mathfrak{E}_{r}. In Section 3, we show that (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}}) is contained in the set 𝔈14\mathfrak{E}_{\frac{1}{4}} and there are no multi-cyclic free components, i.e. a free component with more than one cycle, with high probability.

Lemma 2.6.

For kk0k\geq k_{0} and α(αcond(k),αsat(k))\alpha\in(\alpha_{\textsf{cond}}(k),\alpha_{\textsf{sat}}(k)), we have that

({p𝔣[𝓖,x¯]}𝔣𝔈14orp𝔣[𝓖,x¯]0for some multi-cyclic 𝔣)=on(1).\mathbb{P}\left(\{p_{\mathfrak{f}}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}\,]\}_{\mathfrak{f}\in\mathscr{F}}\notin\mathfrak{E}_{\frac{1}{4}}~{}~{}\textnormal{or}~{}~{}p_{\mathfrak{f}}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\neq 0~{}~{}\textnormal{for some multi-cyclic $\mathfrak{f}\in\mathscr{F}$}\right)=o_{n}(1).

Moreover, we show that if {p𝔣[𝓖,x¯]}𝔣𝔈14\big{\{}p_{\mathfrak{f}}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}\,]\big{\}}_{\mathfrak{f}\in\mathscr{F}}\in\mathfrak{E}_{\frac{1}{4}} holds, then our desired variance control (8) holds.

Lemma 2.7.

Consider a frozen configuration (𝒢,x¯)(\mathcal{G},\underline{x}) which satisfy {p𝔣[𝒢,x¯]}𝔣𝔈14\big{\{}p_{\mathfrak{f}}[\mathcal{G},\underline{x}\,]\big{\}}_{\mathfrak{f}\in\mathscr{F}}\in\mathfrak{E}_{\frac{1}{4}}. Then, we have

Var(i=1nXit|(𝓖,x¯)=(𝒢,x¯))k,tn.\operatorname{Var}\Big{(}\sum_{i=1}^{n}X_{i}^{t}\,\,\Big{|}\,\,(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})\Big{)}\lesssim_{k,t}\sqrt{n}. (13)
Proof.

Given (𝒢,x¯)(\mathcal{G},\underline{x}) with {p𝔣[𝒢,x¯]}𝔣𝔈14\big{\{}p_{\mathfrak{f}}[\mathcal{G},\underline{x}\,]\big{\}}_{\mathfrak{f}\in\mathscr{F}}\in\mathfrak{E}_{\frac{1}{4}}, denote by I𝗀[𝒢,x¯]I_{{\sf g}}[\mathcal{G},\underline{x}] by the collection of (i,j)V2(i,j)\in V^{2} such that Nt(i,𝒢)Nt(j,𝒢)=N_{t}(i,\mathcal{G})\cap N_{t}(j,\mathcal{G})=\emptyset and there exists no free component 𝔣(x¯,𝒢)\mathfrak{f}\in\mathscr{F}(\underline{x},\mathcal{G}) which intersect both Nt(i,𝒢)N_{t}(i,\mathcal{G}) and Nt(j,𝒢)N_{t}(j,\mathcal{G}). Then, by Observation 2.2, we have that

(i,j)I𝗀[𝒢,x¯]Cov(Xit,Xjt|(𝓖,x¯)=(𝒢,x¯))=0.(i,j)\in I_{{\sf g}}[\mathcal{G},\underline{x}]\implies\operatorname{Cov}\Big{(}X_{i}^{t},X_{j}^{t}\,\,\Big{|}\,\,(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})\Big{)}=0.

Note that for a fixed iVi\in V, there are at most (kd)2t2(kd)^{2t-2} number of jVj\in V with d(i,j)4t4d(i,j)\leq 4t-4. Moreover, for a fixed free component 𝔣(x¯,𝒢)\mathfrak{f}\in\mathscr{F}(\underline{x},\mathcal{G}), if Nt(i,𝒢)N_{t}(i,\mathcal{G}) intersects with 𝔣\mathfrak{f}, then there must be a variable vV(𝔣)v\in V(\mathfrak{f}) with d(i,v)2r2d(i,v)\leq 2r-2 (the boundary of Nt(i,𝒢)N_{t}(i,\mathcal{G}) are formed by variables, not clauses), so there are at most v𝔣(kd)t1v_{\mathfrak{f}}(kd)^{t-1} number of such variables iVi\in V. Hence, it follows that

|V2I𝗀[𝒢,x¯]|n((kd)2t2+𝔣v𝔣2(kd)2t2p𝔣[𝒢,x¯])k,tn,\left|V^{2}\setminus I_{{\sf g}}[\mathcal{G},\underline{x}]\right|\leq n\bigg{(}(kd)^{2t-2}+\sum_{\mathfrak{f}\in\mathscr{F}}v_{\mathfrak{f}}^{2}(kd)^{2t-2}\cdot p_{\mathfrak{f}}[\mathcal{G},\underline{x}]\bigg{)}\lesssim_{k,t}n,

where the last inequality holds since 𝔣v𝔣2p𝔣[𝒢,x¯]vv22kv4\sum_{\mathfrak{f}\in\mathscr{F}}v_{\mathfrak{f}}^{2}\cdot p_{\mathfrak{f}}[\mathcal{G},\underline{x}]\leq\sum_{v}v^{2}2^{-\frac{kv}{4}} holds due to {p𝔣[𝒢,x¯]}𝔣𝔈14\big{\{}p_{\mathfrak{f}}[\mathcal{G},\underline{x}\,]\big{\}}_{\mathfrak{f}\in\mathscr{F}}\in\mathfrak{E}_{\frac{1}{4}}. Therefore, our claim (13) follows. ∎

2.3 Tight concentration of free component profile

We now consider the bias control in (9). First, let us examine the case where t=1t=1. Then, N1(i,𝓖)N_{1}(i,\boldsymbol{\mathcal{G}}) is always isomorphic to 𝒯d,k,1\mathcal{T}_{d,k,1}, which consists of a single variable ρ\rho and boundary half-edges adjacent to it (with no literals), thus z1{0,1}𝒯d,k,1z_{1}\in\{0,1\}^{\mathcal{T}_{d,k,1}} is given by z1=zρ{0,1}z_{1}=z_{\rho}\in\{0,1\}. Thus, if a variable iVi\in V is frozen with respect to (𝒢,x¯)(\mathcal{G},\underline{x}), then Xi1Xi1[𝒢,x¯,z¯1,L¯1]X_{i}^{1}\equiv X_{i}^{1}[\mathcal{G},\underline{x},\underline{z}_{1},\underline{\texttt{L}}_{1}] is deterministic, which equals the indicator that xi=zρx_{i}=z_{\rho}.

On the other hand, if a variable iVi\in V is frozen with respect to (𝒢,x¯)(\mathcal{G},\underline{x}), then recalling Observation 2.2, 𝔼[Xi1|(𝓖,x¯)=(𝒢,x¯)]\mathbb{E}[X_{i}^{1}\,|\,(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})] is a function which only depends on 𝔣\mathfrak{f}, the free component which contains iVi\in V. More precisely, 𝔼[Xi1|(𝓖,x¯)=(𝒢,x¯)]\mathbb{E}[X_{i}^{1}\,|\,(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})] equals the probability that 𝒛i=zρ\boldsymbol{z}_{i}=z_{\rho}, where z¯V(𝔣){0,1}V(𝔣)\underline{\textbf{z}}_{V(\mathfrak{f})}\in\{0,1\}^{V(\mathfrak{f})} is sampled u.a.r. among those which are coarsened to 𝔣\mathfrak{f}. When 𝔣\mathfrak{f} is a free tree, this probability can be evaluated using a belief propagation.

Therefore, if we establish the tight O(n1/2)O(n^{-1/2}) concentration of the number of frozen variables of (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}}) and the analogue 1\ell^{1}- type concentration on the free component profile {p𝔣[𝓖,x¯]}𝔣\{p_{\mathfrak{f}}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\}_{\mathfrak{f}\in\mathscr{F}}, then we can establish tight bias control (9) for the simplest case t=1t=1. In fact, the former concentration of the number of the frozen variables can be established using the concentration of the boundary profile B[𝓖,x¯]B[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}] around the optimal boundary profile BB^{\star} using the results of [28]. We review the definition of BB^{\star} [28] in Section A below.

However, establishing O(n1/2)O(n^{-1/2}) concentration of the free component profile {p𝔣[𝓖,x¯]}𝔣\{p_{\mathfrak{f}}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\}_{\mathfrak{f}\in\mathscr{F}} in 1\ell^{1}-type distance poses significant challenges. Indeed, the results of [28] only imply a much weaker concentration in \ell^{\infty}-distance of the free component profile with larger distance O(lognn)O(\frac{\log n}{\sqrt{n}}), and it is apriori not clear if the stronger 1\ell^{1}-type concentration can be established, let alone removing the logn\log n factor to obtain the optimal fluctuation as in Theorem 1.3. Note that there are unbounded number of types of free components in a typical frozen configuration (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})333From the branching process heuristics described in [13], a typical frozen configuration has the largest free tree with Θk(logn)\Theta_{k}(\log n) variables as one can infer from Lemma 2.6, and there are exponentially many types of free trees with a given number of variables vv, so there are typically nΩk(1)n^{\Omega_{k}(1)} types of free trees.

Nevertheless, we show in Section 3 that by a delicate use of a local central limit theorem for triangular arrays [7] and the exponential decay of the free component profile (cf. Lemma 2.6), the free component profile concentrates in 1\ell^{1}-type distance on the optimal scale O(n1/2)O(n^{-1/2}). To be precise, consider the following distance of 22 coloring profiles ξ1=(B1,{p𝔣1}𝔣)\xi^{1}=(B^{1},\{p_{\mathfrak{f}}^{1}\}_{\mathfrak{f}\in\mathscr{F}}) and ξ2=(B2,{p𝔣2}𝔣)\xi^{2}=(B^{2},\{p_{\mathfrak{f}}^{2}\}_{\mathfrak{f}\in\mathscr{F}}):

ξ1ξ2:=B1B21+𝔣|p𝔣1p𝔣2|(v𝔣+f𝔣).\left\|{\xi^{1}-\xi^{2}}\right\|_{\scalebox{0.55}{$\square$}}:=\left\|{B^{1}-B^{2}}\right\|_{1}+\sum_{\mathfrak{f}\in\mathscr{F}}\left|p_{\mathfrak{f}}^{1}-p_{\mathfrak{f}}^{2}\right|(v_{\mathfrak{f}}+f_{\mathfrak{f}}). (14)

We show in Section 3 that the following Theorem holds.

Theorem 2.8.

For kk0k\geq k_{0} and α(αcond(k),αsat(k))\alpha\in(\alpha_{\textsf{cond}}(k),\alpha_{\textsf{sat}}(k)) there exists an explicit ξξ[α,k](B,{p𝔣}𝔣)\xi^{\star}\equiv\xi^{\star}[\alpha,k]\equiv(B^{\star},\{p_{\mathfrak{f}}^{\star}\}_{\mathfrak{f}\in\mathscr{F}}) in Definition 3.7 such that the following holds. For any ε>0\varepsilon>0, there exists a constant C(ε,k)>0C(\varepsilon,k)>0 such that

(ξ[𝓖,x¯]ξCn)ε.\mathbb{P}\left(\big{\|}\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}\,]-\xi^{\star}\big{\|}_{\scalebox{0.55}{$\square$}}\geq\frac{C}{\sqrt{n}}\right)\leq\varepsilon.

2.4 From 11-neighborhoods to tt-neighborhoods

In this subsection, we discuss the ideas for establishing the bias control (9) for general t2t\geq 2.

Given (𝒢,x¯)(\mathcal{G},\underline{x}), let σ¯𝒞E\underline{\sigma}\in\mathscr{C}^{E} be the corresponding component coloring (cf. Definition 2.3). Note that by Observation 2.2, the quantity 𝔼[Xit|(𝓖,x¯)=(𝒢,x¯)]\mathbb{E}[X_{i}^{t}\,|\,(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})] is completely determined by the configuration of free components intersecting with Nt(i,𝒢)N_{t}(i,\mathcal{G}). Further, note that σe,eE(Nt(i,𝒢))\sigma_{e},e\in E(N_{t}(i,\mathcal{G})) encodes the free component that ee is contained in. Here, we emphasize that E(Nt(i,𝒢))E(N_{t}(i,\mathcal{G})) contains the boundary half-edges Nt(i,𝒢)\partial N_{t}(i,\mathcal{G}). Therefore, Nt(i,𝒢)N_{t}(i,\mathcal{G}) , σ¯t(i,𝒢)(σe)eE(Nt(i,𝒢))\underline{\sigma}_{t}(i,\mathcal{G})\equiv(\sigma_{e})_{e\in E(N_{t}(i,\mathcal{G}))}, and L¯t(i,𝒢)\underline{\texttt{L}}_{t}(i,\mathcal{G}) determine 𝔼[Xit|(𝓖,x¯)=(𝒢,x¯)]\mathbb{E}[X_{i}^{t}\,|\,(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})] (see Remark 2.12 below) with one exception: namely, when there is a free component 𝔣(x¯,𝒢)\mathfrak{f}\in\mathscr{F}(\underline{x},\mathcal{G}) that intersects Nt(i,𝒢)N_{t}(i,\mathcal{G}) twice, i.e. 𝔣Nt(i,𝒢)\mathfrak{f}\cap N_{t}(i,\mathcal{G}) is disconnected. Fortunately, as shown below, this exceptional case is very rare and, thus, can be neglected.

Note that in the exceptional case described above, there must be a self-avoiding cycle, i.e. a cycle that does not self-intersect, within 𝔣Nt(i,𝒢)\mathfrak{f}\cup N_{t}(i,\mathcal{G}). That is, consider 22 variables v1,v2v_{1},v_{2} that are in 22 disjoint connected components in 𝔣Nt(i,𝒢)\mathfrak{f}\cap N_{t}(i,\mathcal{G}). Then, there must exist 22 distinct self-avoiding paths that connect v1,v2v_{1},v_{2}, where the first one lies within 𝔣\mathfrak{f} and the second one lies within Nt(i,𝒢)N_{t}(i,\mathcal{G}), and concatenating them produces a self-avoiding cycle. Observe that the length of this cycle might be as large as Θk(logn)\Theta_{k}(\log n) given the exponential decay in Lemma 2.6 due to the case where 𝔣\mathfrak{f} is large. However, if we only count the edges that are not contained in free components, which we call boundary-transversing length, the number of such edges in the cycle is at most 2t2t, since v1v_{1} and v2v_{2} are connected with path of length no larger than 2t2t. The lemma below shows that such cycles are rare.

Lemma 2.9.

Given (𝒢,x¯)=(V,F,E,L¯,x¯)(\mathcal{G},\underline{x})=(V,F,E,\underline{\texttt{L}},\underline{x}) and a cycle 𝒞\mathcal{C} inside the bipartite graph (V,F,E)(V,F,E), define the boundary-transversing length of 𝒞\mathcal{C} by the number of edges in 𝒞\mathcal{C} that are not contained in free components of x¯\underline{x}. Denote N𝖼𝗒𝖼𝖻(2t;𝒢,x¯)N_{{\sf cyc}}^{\sf b}(2t;\mathcal{G},\underline{x}) by the number of self-avoiding cycles whose boundary-transversing length is at most 2t2t. Uniformly over ξ=(B,{p𝔣}𝔣)\xi=(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}) such that {p𝔣}𝔣𝔈14\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\in\mathfrak{E}_{\frac{1}{4}}, p𝔣=0p_{\mathfrak{f}}=0 if 𝔣\mathfrak{f} is multi-cylcic, and BB1n1/3\left\|{B-B^{\star}}\right\|_{1}\leq n^{-1/3}, we have for each fixed t1t\geq 1 that

ξ(N𝖼𝗒𝖼𝖻(2t;𝓖,x¯)n1/3)(N𝖼𝗒𝖼𝖻(2t;𝓖,x¯)n1/3|ξ[𝓖,x¯]=ξ)=on(1).\mathbb{P}_{\xi}\Big{(}N_{{\sf cyc}}^{{\sf b}}(2t;\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\geq n^{1/3}\Big{)}\equiv\mathbb{P}\Big{(}N_{{\sf cyc}}^{{\sf b}}(2t;\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\geq n^{1/3}\,\,\Big{|}\,\,\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]=\xi\Big{)}=o_{n}(1).
Remark 2.10.

Hereafter, we denote ξ\mathbb{P}_{\xi} (resp. 𝔼ξ\mathbb{E}_{\xi}) to be the probability (resp. expectation) with respect to the conditional measure (|ξ[𝓖,x¯]=ξ)\mathbb{P}(\cdot\,|\,\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]=\xi). Since ξ=ξ[𝒢,x¯]\xi=\xi[\mathcal{G},\underline{x}] determines the size of x¯\underline{x}, size(x¯,𝒢)\textsf{size}(\underline{x},\mathcal{G}) (cf. Observation 2.2), ξ\mathbb{P}_{\xi} is a uniform measure over (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}}) with the constraint ξ[𝓖,x¯]=ξ\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]=\xi. Thus, ξ\mathbb{P}_{\xi} can be described in terms of a configuration model with colored edges. This fact is further explained in Observation 4.5 below. We remark that a similar idea was also used in [6].

Having Lemma 2.9 in hand, we focus our attention on the empirical measure of (σ¯t(i,𝒢),L¯t(i,𝒢))iV\big{(}\underline{\sigma}_{t}(i,\mathcal{G}),\underline{\texttt{L}}_{t}(i,\mathcal{G})\big{)}_{i\in V}.

Definition 2.11.

We say (σ¯t,L¯t)𝒞E(𝒯d,k,t)×{0,1}E𝗂𝗇(𝒯d,k,t)(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})\in\mathscr{C}^{E(\mathscr{T}_{d,k,t})}\times\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})} is a valid (literal-reinforced-) tt-coloring if it can be realized as (σ¯t(i,𝒢),L¯t(i,𝒢))=(σ¯t,L¯t)\big{(}\underline{\sigma}_{t}(i,\mathcal{G}),\underline{\texttt{L}}_{t}(i,\mathcal{G})\big{)}=(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}) for some valid component coloring (𝒢,σ¯)(\mathcal{G},\underline{\sigma}) and iVi\in V.

We take the convention that the 22 valid tt-colorings (σ¯t(),L¯t())((σe())eE(𝒯d,k,t),(Le())eE𝗂𝗇(𝒯d,k,t))(\underline{\sigma}^{(\ell)}_{t},\underline{\texttt{L}}^{(\ell)}_{t})\equiv\big{(}(\sigma^{(\ell)}_{e})_{e\in E(\mathscr{T}_{d,k,t})},(\texttt{L}^{(\ell)}_{e})_{e\in E_{\sf in}(\mathscr{T}_{d,k,t})}\big{)}, =1,2,\ell=1,2, are the same if there is an automorphism ϕ\phi of 𝒯d,k,t\mathscr{T}_{d,k,t} such that σe(1)=σϕ(e)(2),eE(𝒯d,k,t)\sigma^{(1)}_{e}=\sigma^{(2)}_{\phi(e)},e\in E(\mathscr{T}_{d,k,t}), and Le(1)=Lϕ(e)(2),eE𝗂𝗇(𝒯d,k,t)\texttt{L}^{(1)}_{e}=\texttt{L}^{(2)}_{\phi(e)},e\in E_{\sf in}(\mathscr{T}_{d,k,t}). Denote Ωt\Omega_{t} by the set of all valid tt-colorings considered up to automorphisms. Then, the t-coloring profile of a valid frozen configuration (𝒢,x¯)(\mathcal{G},\underline{x}) is the probability measure νtνt[𝒢,x¯]\nu_{t}\equiv\nu_{t}[\mathcal{G},\underline{x}] on the set Ωt{𝖼𝗒𝖼}\Omega_{t}\sqcup\{{\sf cyc}\} defined by

νt(τt,L¯t):=|{iV:σ¯t(i,𝒢)=τ¯tandL¯t(i,𝒢)=L¯t}|/|V|for all(τt,L¯t)Ωt,νt(𝖼𝗒𝖼):=|{iV:Nt(i,𝒢) contains a cycle}|/|V|.\begin{split}&\nu_{t}(\tau_{t},\underline{\texttt{L}}_{t}):=\big{|}\{i\in V:\;\underline{\sigma}_{t}(i,\mathcal{G})=\underline{\tau}_{t}~{}~{}\textnormal{and}~{}~{}\underline{\texttt{L}}_{t}(i,\mathcal{G})=\underline{\texttt{L}}_{t}\}\big{|}\,/\,|V|\quad\textnormal{for all}\quad(\tau_{t},\underline{\texttt{L}}_{t})\in\Omega_{t}\;,\\ &\nu_{t}({\sf cyc}):=\big{|}\{i\in V:\;N_{t}(i,\mathcal{G})\textnormal{ contains a cycle}\}\big{|}\,/\,|V|\;.\end{split}
Remark 2.12.

Given (𝒢,x¯)(\mathcal{G},\underline{x}) and iVi\in V, suppose that 𝔣Nt(i,𝒢)\mathfrak{f}\cap N_{t}(i,\mathcal{G}) is connected for every 𝔣(x¯,𝒢)\mathfrak{f}\in\mathscr{F}(\underline{x},\mathcal{G}). Then,

𝔼[Xit[𝓖,z¯,z¯t,L¯t]|(𝓖,x¯)=(𝒢,x¯)]=pz¯t(σ¯t(i,𝒢),L¯t)𝟙(Nt(i,𝒢) is a tree and L¯t(i,𝒢)=L¯t).\mathbb{E}\big{[}X_{i}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}},\underline{z}_{t},\underline{\texttt{L}}_{t}]\;\big{|}\;(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})\big{]}=p_{\underline{z}_{t}}\big{(}\underline{\sigma}_{t}(i,\mathcal{G}),\underline{\texttt{L}}_{t}\big{)}\mathds{1}\left(\textnormal{$N_{t}(i,\mathcal{G})$ is a tree and $\underline{\texttt{L}}_{t}(i,\mathcal{G})=\underline{\texttt{L}}_{t}$}\right).

Here, pz¯t(σ¯t,L¯t)p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}) is defined as follows for z¯t{0,1}V(𝒯d,k,t),L¯t{0,1}E𝗂𝗇(𝒯d,k,t)\underline{z}_{t}\in\{0,1\}^{V(\mathscr{T}_{d,k,t})},\underline{\texttt{L}}_{t}\in\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})}, σ¯t(σe)eE(𝒯d,k,t)𝒞t\underline{\sigma}_{t}\equiv(\sigma_{e})_{e\in E(\mathscr{T}_{d,k,t})}\in\mathscr{C}_{t}. Note that (σ¯t,L¯t)(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}) not only determines the {0,1,f}\{0,1,\textnormal{\small{{f}}}\} configuration on V(𝒯d,k,t)V(\mathscr{T}_{d,k,t}), but also the hanging free trees on 𝒯d,k,t\partial\mathscr{T}_{d,k,t}. That is, for e𝒯d,k,te\in\partial\mathscr{T}_{d,k,t}, σe\sigma_{e} encodes the free component 𝔣e\mathfrak{f}_{e}, if any, that ee resides in. Assuming that all the free components 𝔣e\mathfrak{f}_{e} are disjoint for e𝒯d,k,te\in\partial\mathscr{T}_{d,k,t}, pz¯t(σ¯t,L¯t)p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}) is the probability of obtaining z¯t\underline{z}_{t} when we independently sample for each 𝔣{𝔣e}eE(𝒯d,k,t)\mathfrak{f}\in\{\mathfrak{f}_{e}\}_{e\in E(\mathscr{T}_{d,k,t})}, a nae-sat solution z¯V(𝔣){0,1}V(𝔣)\underline{\textbf{z}}_{V(\mathfrak{f})}\in\{0,1\}^{V(\mathfrak{f})} uniformly at random among those which are coarsened to 𝔣\mathfrak{f}. When {𝔣e}eE(𝒯d,k,t)\{\mathfrak{f}_{e}\}_{e\in E(\mathscr{T}_{d,k,t})} are all free trees, the value pz¯t(σ¯t)p_{\underline{z}_{t}}(\underline{\sigma}_{t}) can be expressed in terms of belief-propagation.

The main component in obtaining the bias control (9) is to enhance the concentration of coloring profile as stated in Theorem 2.8 to that of tt-coloring profile.

Definition 2.13.

For C>0C>0, let ΞCΞC,n\Xi_{C}\equiv\Xi_{C,n} be the set of coloring profile ξ\xi which satisfy both ξξCn\left\|{\xi-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\leq\frac{C}{\sqrt{n}} and 𝔼ξ[N𝖼𝗒𝖼(2t;𝒢)]C\mathbb{E}_{\xi}\big{[}N_{{\sf cyc}}(2t;\mathcal{G})\big{]}\leq C, where N𝖼𝗒𝖼(2t;𝒢)N_{{\sf cyc}}(2t;\mathcal{G}) denotes the number of cycles in 𝒢\mathcal{G} of length at most 2t2t.

Theorem 2.14.

For kk0k\geq k_{0} and α(αcond(k),αsat(k))\alpha\in(\alpha_{\textsf{cond}}(k),\alpha_{\textsf{sat}}(k)) there exists an explicit νtνt[α,k]𝒫(Ωt)\nu^{\star}_{t}\equiv\nu^{\star}_{t}[\alpha,k]\in\mathscr{P}(\Omega_{t}) in Definition 4.4 below, such that the following holds. For any ε>0,C>0\varepsilon>0,C>0, and t1t\geq 1, there exists a constant KK(C,ε,k,t)>0K\equiv K(C,\varepsilon,k,t)>0 such that uniformly over any vector w[1,1]Ωt{𝖼𝗒𝖼}w\in[-1,1]^{\Omega_{t}\cup\{{\sf cyc}\}} and ξΞC\xi\in\Xi_{C}, we have

ξ(|νt[𝓖,x¯]νt,w|Kn)ε.\mathbb{P}_{\xi}\bigg{(}\Big{|}\big{\langle}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]-\nu_{t}^{\star}\,,\,w\big{\rangle}\Big{|}\geq\frac{K}{\sqrt{n}}\bigg{)}\leq\varepsilon\;.

The proof of Theorem 2.14 is provided in Section 4. For the remainder of this subsection, we discuss the high-level ideas in proving Theorem 2.14.

The measure νt\nu_{t}^{\star} in Theorem 2.14 can be described by a so-called broadcast model based on ξ\xi^{\star} (see Section 4.1). Indeed, this description is what we will use to prove Theorem 2.14. Let 𝔼ξ𝝂t𝒫(Ωt{𝖼𝗒𝖼})\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\in\mathscr{P}(\Omega_{t}\cup\{{\sf cyc}\}) be the conditional expectation given ξ\xi of the random element 𝝂tνt[𝓖,x¯]\boldsymbol{\nu}_{t}\equiv\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}\,] in 𝒫(Ωt{𝖼𝗒𝖼})\mathscr{P}(\Omega_{t}\cup\{{\sf cyc}\}). Then, by Chebyshev’s inequality, Theorem 2.14 is implied by

dTV(𝔼ξ𝝂t,νt)k,tn1/2,dTV(𝔼ξ[𝝂t𝝂t],𝔼ξ𝝂t𝔼ξ𝝂t)k,tn1,d_{\operatorname{TV}}\left(\,\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\,,\,\nu_{t}^{\star}\,\right)\lesssim_{k,t}n^{-1/2}\;\;,\quad\quad d_{\operatorname{TV}}\left(\,\mathbb{E}_{\xi}[\boldsymbol{\nu}_{t}\otimes\boldsymbol{\nu}_{t}]\,,\,\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\otimes\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\,\right)\lesssim_{k,t}n^{-1}\;\;, (15)

uniformly over ξΞC\xi\in\Xi_{C}, where 𝝂t𝝂t𝒫((Ωt{𝖼𝗒𝖼})2)\boldsymbol{\nu}_{t}\otimes\boldsymbol{\nu}_{t}\in\mathscr{P}\left((\Omega_{t}\cup\{{\sf cyc}\})^{2}\right) is the product measure of 𝝂t\boldsymbol{\nu}_{t}’s.

We establish the first claim in (15) by coupling the measures 𝔼ξ[𝝂t]\mathbb{E}_{\xi}[\boldsymbol{\nu}_{t}] and νt\nu_{t}^{\star}. Since 𝔼ξ[𝝂t]\mathbb{E}_{\xi}[\boldsymbol{\nu}_{t}] can be described by a certain sampling with replacement procedure based on ξ\xi and νt\nu_{\star}^{t} is the analog sampling without replacement procedure based on ξ\xi^{\star}, we construct a coupling of the two procedures based on a coupling of ξ\xi and ξ\xi^{\star}. The Ok,t(n1/2)O_{k,t}(n^{-1/2}) probability of error comes from the coupling of ξ\xi and ξ\xi^{\star}, since the difference between sampling with or without replcement only induces error of probability Ok,t(n1)O_{k,t}(n^{-1}). Similarly, we establish the second claim in (15), where the dominant probability of error now comes from the latter difference.

In the coupling argument above, rare spins might cause problems. However, recalling Remark 2.4, if eEe\in E is contained in a free component, σe=(𝔣e,e)\sigma_{e}=(\mathfrak{f}_{e},e) completely determines the colors of adjacent edges, (σe)eδv(e)eδa(e)e(\sigma_{e^{\prime}})_{e^{\prime}\in\delta v(e)\setminus e\,\sqcup\,\delta a(e)\setminus e}. Moreover, the condition ξξ=on(1)\left\|{\xi-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}=o_{n}(1) guarantees that the number of boundary spins {R,B,S}\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\} are at least Ωk(n)\Omega_{k}(n). Therefore, Remark 2.4 rules out the difficulties coming from the rare spins, and this is the sole reason we work with the more complicated component colorings instead of the simpler ‘coloring configuration’ defined in [33].

Proof of Theorem 1.3.

It suffices to prove (7) for any fixed (z¯t,L¯t){0,1}V(𝒯d,k,t)×{0,1}E𝗂𝗇(𝒯d,k,t)(\underline{z}_{t},\underline{\texttt{L}}_{t})\in\{0,1\}^{V(\mathscr{T}_{d,k,t})}\times\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})}. To this end, fix any ε>0\varepsilon>0. Then, recalling the set ΞC\Xi_{C} from Definition 2.13, there exists C=C(ε,k,t)C=C(\varepsilon,k,t) such that

(ξ[𝓖,x¯]ΞC)ε3.\mathbb{P}\left(\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\in\Xi_{C}\right)\leq\frac{\varepsilon}{3}\;. (16)

Indeed, for large enough C>0C>0, Theorem 2.8 guarantees that ξ[𝓖,x¯]ξCn1/2\left\|{\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\leq Cn^{-1/2} holds with probability at least 1ε/61-\varepsilon/6, and since 𝔼[𝔼[N𝖼𝗒𝖼(2t;𝒢)|ξ[𝓖,x¯]]]=𝔼[N𝖼𝗒𝖼(2t;𝒢)]k,t1\mathbb{E}\big{[}\mathbb{E}\big{[}N_{{\sf cyc}}(2t;\mathcal{G})\,|\,\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\big{]}\big{]}=\mathbb{E}[N_{{\sf cyc}}(2t;\mathcal{G})]\lesssim_{k,t}1 holds by tower property, Markov’s inequality shows that 𝔼ξ[N𝖼𝗒𝖼(2t;𝒢)]C\mathbb{E}_{\xi}\big{[}N_{{\sf cyc}}(2t;\mathcal{G})\big{]}\leq C is also satisfied with probability at least 1ε/61-\varepsilon/6.

Now, with C=C(ε,k,t)C=C(\varepsilon,k,t) that satisfies (16), Theorem 2.14 then shows that there exists K=K(ε,t,k)K=K(\varepsilon,t,k) such that

supξΞCξ(|νt[𝓖,x¯]νt,pz¯t,L¯t|Kn)ε3,\sup_{\xi\in\Xi_{C}}\mathbb{P}_{\xi}\bigg{(}\Big{|}\big{\langle}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]-\nu_{t}^{\star}\,,\,p_{\underline{z}_{t},\underline{\texttt{L}}_{t}}\big{\rangle}\Big{|}\geq\frac{K}{\sqrt{n}}\bigg{)}\leq\frac{\varepsilon}{3}\;, (17)

where pz¯t,L¯t[0,1]Ωt{𝖼𝗒𝖼}p_{\underline{z}_{t},\underline{\texttt{L}}_{t}}\in[0,1]^{\Omega_{t}\sqcup\{{\sf cyc}\}} is defined by pz¯t,L¯t(σ¯t,L¯t)=pz¯t(σ¯t,L¯t)𝟙(L¯t=L¯t)[0,1]p_{\underline{z}_{t},\underline{\texttt{L}}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}^{\prime}_{t})=p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})\mathds{1}(\underline{\texttt{L}}^{\prime}_{t}=\underline{\texttt{L}}_{t})\in[0,1] for (σ¯t,L¯t)Ωt(\underline{\sigma}_{t},\underline{\texttt{L}}^{\prime}_{t})\in\Omega_{t} (see Remark 2.12 for the definition of pz¯t(σ¯t,L¯t)p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})), and pz¯t,L¯t(𝖼𝗒𝖼)0p_{\underline{z}_{t},\underline{\texttt{L}}_{t}}({\sf cyc})\equiv 0. Moreover, the result of Appendix B in [33] imply that 𝒫t\mathcal{P}^{t}_{\star} defined in Section 1.4 satisfies 𝒫t(z¯t,L¯t)=σ¯t𝒞tνt(σ¯t,L¯t)pz¯t(σ¯t,L¯t)\mathcal{P}_{\star}^{t}(\underline{z}_{t},\underline{\texttt{L}}_{t})=\sum_{\underline{\sigma}_{t}\in\mathscr{C}_{t}}\nu_{t}^{\star}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}). To this end, we define 𝒳𝖿𝖺𝗏𝒳𝖿𝖺𝗏(ε,k,t)\mathscr{X}_{\sf fav}\equiv\mathscr{X}_{\sf fav}(\varepsilon,k,t) to be the favorable set of (𝒢,x¯)(\mathcal{G},\underline{x}) which satisfies the following 4 conditions.

(i)ξ[𝒢,x¯]𝔈14,(ii)ξ[𝒢,x¯]ΞC,(iii)N𝖼𝗒𝖼𝖻(2t;𝒢,x¯)n1/3,(iv)|νt[𝓖,x¯],pz¯t,L¯t𝒫t(z¯t,L¯t)|Kn(i)~{}\xi[\mathcal{G},\underline{x}]\in\mathfrak{E}_{\frac{1}{4}}\,,~{}~{}~{}(ii)~{}\xi[\mathcal{G},\underline{x}]\in\Xi_{C}\,,~{}~{}~{}(iii)~{}N_{{\sf cyc}}^{\sf b}(2t;\mathcal{G},\underline{x})\leq n^{1/3}\,,~{}~{}~{}~{}(iv)~{}\big{|}\big{\langle}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\,,\,p_{\underline{z}_{t},\underline{\texttt{L}}_{t}}\big{\rangle}-\mathcal{P}_{\star}^{t}(\underline{z}_{t},\underline{\texttt{L}}_{t})\big{|}\leq\frac{K}{\sqrt{n}}

Then, Lemma 2.6, Lemma 2.9, and equations (16), (17) show that

((𝒢,x¯)𝒳𝖿𝖺𝗏)2ε/3+on(1).\mathbb{P}\big{(}(\mathcal{G},\underline{x})\notin\mathscr{X}_{\sf fav}\big{)}\leq 2\varepsilon/3+o_{n}(1)\,.

Moreover, because of the first condition ξ[𝒢,x¯]𝔈14\xi[\mathcal{G},\underline{x}]\in\mathfrak{E}_{\frac{1}{4}}, the variance control for 𝒳𝖿𝖺𝗏\mathscr{X}_{\sf fav} in (8) holds by Lemma 2.7. With regards to the bias control (9), let V𝗀[𝒢,x¯]VV_{{\sf g}}[\mathcal{G},\underline{x}]\subset V be the set of vVv\in V such that Nt(v,𝒢)N_{t}(v,\mathcal{G}) is a tree and for every 𝔣(x¯,𝒢)\mathfrak{f}\in\mathscr{F}(\underline{x},\mathcal{G}), the graph Nt(v,𝒢)𝔣N_{t}(v,\mathcal{G})\cap\mathfrak{f} is connected. Then, for vV𝗀[𝒢,x¯]v\in V_{\sf g}[\mathcal{G},\underline{x}], we have by Remark 2.12 that 𝔼[Xit[𝓖,z¯,z¯t,L¯t]|(𝓖,x¯)=(𝒢,x¯)]=pz¯t,L¯t(σ¯t(i,𝒢),L¯Nt(i,𝒢))\mathbb{E}\big{[}X_{i}^{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{z}},\underline{z}_{t},\underline{\texttt{L}}_{t}]\;\big{|}\;(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})\big{]}=p_{\underline{z}_{t},\underline{\texttt{L}}_{t}}\big{(}\underline{\sigma}_{t}(i,\mathcal{G}),\underline{\texttt{L}}_{N_{t}(i,\mathcal{G})}\big{)}. Thus, for (𝒢,x¯)𝒳𝖿𝖺𝗏(\mathcal{G},\underline{x})\in\mathscr{X}_{\sf fav},

|1n𝔼[i=1nXit|(𝓖,x¯)=(𝒢,x¯)]𝒫t(z¯t,L¯t)|Kn+|(V𝗀[𝒢,x¯])c|n.\bigg{|}\frac{1}{n}\mathbb{E}\Big{[}\sum_{i=1}^{n}X_{i}^{t}\,\,\Big{|}\,\,(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=(\mathcal{G},\underline{x})\Big{]}-\mathcal{P}_{\star}^{t}(\underline{z}_{t},\underline{\texttt{L}}_{t})\bigg{|}\leq\frac{K}{\sqrt{n}}+\frac{\big{|}(V_{{\sf g}}[\mathcal{G},\underline{x}])^{\textsf{c}}\big{|}}{n}.

If vV𝗀[𝒢,x¯]v\notin V_{{\sf g}}[\mathcal{G},\underline{x}], then either vv is included in a cycle of lengh at most 2t2t or Nt(v,𝒢)N_{t}(v,\mathcal{G}) contains an {R,B,S}\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}-colored-edge (i.e. an edge not contained in a free component) in a self-avoiding cycle whose boundary-transversing length is at most 2t2t (see the paragraph above Lemma 2.9). Thus, we have for (𝒢,x¯)𝒳𝖿𝖺𝗏(\mathcal{G},\underline{x})\in\mathscr{X}_{\sf fav} that

|(V𝗀[𝒢,x¯])c|2t|N𝖼𝗒𝖼(2t;𝒢)|+2t(kd)t|N𝖼𝗒𝖼𝖻(2t;𝒢,x¯)|2t(1+(kd)t)|N𝖼𝗒𝖼𝖻(2t;𝒢,x¯)|k,tn1/3.\Big{|}(V_{{\sf g}}[\mathcal{G},\underline{x}])^{\textsf{c}}\Big{|}\leq 2t\cdot\Big{|}N_{{\sf cyc}}(2t;\mathcal{G})\Big{|}+2t(kd)^{t}\cdot\Big{|}N_{{\sf cyc}}^{\sf b}(2t;\mathcal{G},\underline{x})\Big{|}\leq 2t\big{(}1+(kd)^{t}\big{)}\cdot\Big{|}N_{{\sf cyc}}^{\sf b}(2t;\mathcal{G},\underline{x})\Big{|}\lesssim_{k,t}n^{1/3}.

Therefore, both conditions (8) and (9) holds on the set 𝒳𝖿𝖺𝗏\mathscr{X}_{\sf fav} with ((𝒢,x¯)𝒳𝖿𝖺𝗏)ε\mathbb{P}((\mathcal{G},\underline{x})\notin\mathscr{X}_{\sf fav})\leq\varepsilon. By Chebyshev’s inequality, this concludes the proof of (7), thus the proof of Theorem 1.3. ∎

3 Concentration of coloring profile in 1\ell^{1}-type distance

In this section, we prove Lemma 2.6 and Theorem 2.8. While Lemma 2.6 follows from the results of [28, 29, 28], Theorem 2.8 requires a careful control on the frequencies of large free trees. Throughout, we consider kk large enough so that the results of [28, 29, 28] hold and α(αcond(k),αsat(k))\alpha\in(\alpha_{\textsf{cond}}(k),\alpha_{\textsf{sat}}(k)).

3.1 Exponential decay of free component profile

Recall the notation of coloring profile ξ[𝒢,x¯]:=(B[𝒢,x¯],{p𝔣[x¯]}𝔣)\xi[\mathcal{G},\underline{x}]:=(B[\mathcal{G},\underline{x}],\{p_{\mathfrak{f}}[\underline{x}]\}_{\mathfrak{f}\in\mathscr{F}}) from Definition 2.5. We denote s(C)s(C,n)s12λlognn+Cns_{\circ}(C)\equiv s_{\circ}(C,n)\equiv s^{\star}-\frac{1}{2\lambda^{\star}}\frac{\log n}{n}+\frac{C}{n} for CC\in\mathbb{R}, where ss(α,k)>0s^{\star}\equiv s^{\star}(\alpha,k)>0 and λλ(α,k)(0,1)\lambda^{\star}\equiv\lambda^{\star}(\alpha,k)\in(0,1) are defined in (5). Throughout, we let (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}}) be a random frozen configuration drawn with probability proportional to its size (cf. (a)(a) of Observation 2.2). The proof of Lemma 2.6 is followed by the Proposition below, which is established using the estimates from [28, 29, 28].

Proposition 3.1.

For C¯(C1,C2)2\underline{C}\equiv(C_{1},C_{2})\in\mathbb{R}^{2} with C2>0C_{2}>0, define Γ(C¯)Γn(C¯)\Gamma(\underline{C})\equiv\Gamma_{n}(\underline{C}) by the set of frozen configurations (𝒢,x¯)(\mathcal{G},\underline{x}) which satisfy the following conditions:

  • |𝖲𝖮𝖫(𝒢)|[ens(C2),ens(C2)]\left|{\sf SOL}(\mathcal{G})\right|\in[e^{ns_{\circ}(-C_{2})},e^{ns_{\circ}(C_{2})]} and size(x¯;𝒢)ens(C1)\textsf{size}(\underline{x};\mathcal{G})\geq e^{ns_{\circ}(C_{1})}.

  • Let Ξ0\Xi_{0} be the set of coloring profile ξ=(B,{p𝔣}𝔣)\xi=(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}) such that ξ𝔈14,𝔣𝗍𝗋p𝔣[𝒢,x¯]lognn\xi\in\mathfrak{E}_{\frac{1}{4}},\sum_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}p_{\mathfrak{f}}[\mathcal{G},\underline{x}]\leq\frac{\log n}{n}, and p𝔣[𝒢,x¯]=0p_{\mathfrak{f}}[\mathcal{G},\underline{x}]=0 if 𝔣\mathfrak{f}\in\mathscr{F} is multi-cyclic, i.e. contains at least 22 cycles. Then, ξ(𝒢,x¯)Ξ0\xi(\mathcal{G},\underline{x})\in\Xi_{0} holds.

Then, for any ε>0\varepsilon>0, there exists C¯C¯(ε,α,k)\underline{C}\equiv\underline{C}(\varepsilon,\alpha,k) such that (𝓖,x¯)Γ(C¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\in\Gamma(\underline{C}) with probability at least 1ε1-\varepsilon.

Proof.

Fix ε>0\varepsilon>0. By Theorem 1.1 of [28], there exists C2C2(ε,α,k)>0C_{2}\equiv C_{2}(\varepsilon,\alpha,k)>0 such that

(|𝖲𝖮𝖫(𝓖)|[ens(C2),ens(C2)])ε3.\mathbb{P}\Big{(}\big{|}{\sf SOL}(\boldsymbol{\mathcal{G}})\big{|}\notin\big{[}e^{ns_{\circ}(-C_{2})},e^{ns_{\circ}(C_{2})}\big{]}\Big{)}\leq\frac{\varepsilon}{3}.

Moreover, since (x¯=x¯|𝓖)=size(x¯;𝓖)/|𝖲𝖮𝖫(𝒢)|\mathbb{P}(\underline{\textbf{x}}=\underline{x}\,|\,\boldsymbol{\mathcal{G}})=\textsf{size}(\underline{x};\boldsymbol{\mathcal{G}})/|{\sf SOL}(\mathcal{G})|, we have

(size(x¯;𝓖)ens(C1)and|𝖲𝖮𝖫(𝓖)|[ens(C2),ens(C2)]|𝓖)ens(C2)Z¯1,s(C1),\mathbb{P}\Big{(}\textsf{size}(\underline{\textbf{x}};\boldsymbol{\mathcal{G}})\leq e^{ns_{\circ}(C_{1})}~{}\,\textnormal{and}~{}~{}\big{|}{\sf SOL}(\boldsymbol{\mathcal{G}})\big{|}\in\big{[}e^{ns_{\circ}(-C_{2})},e^{ns_{\circ}(C_{2})}\big{]}\,\,\Big{|}\,\,\boldsymbol{\mathcal{G}}\Big{)}\leq e^{-ns_{\circ}(-C_{2})}\overline{\textnormal{{Z}}}_{1,s_{\circ}(C_{1})}, (18)

where

Z¯1,s(C1)Z¯1,s(C1)(𝓖):=x¯{0,1,f}Vsize(x¯;𝓖)𝟙(size(x¯;𝓖)ens(C1)).\overline{\textnormal{{Z}}}_{1,s_{\circ}(C_{1})}\equiv\overline{\textnormal{{Z}}}_{1,s_{\circ}(C_{1})}(\boldsymbol{\mathcal{G}}):=\sum_{\underline{x}\in\{0,1,f\}^{V}}\textsf{size}(\underline{x};\boldsymbol{\mathcal{G}})\mathds{1}\big{(}\textsf{size}(\underline{x};\boldsymbol{\mathcal{G}})\leq e^{ns_{\circ}(C_{1})}\big{)}.

In the proof of Theorem 1.1-(a)(a) in [28] (see equation (3.79) therein), it was shown that

𝔼Z¯1,s(C1)kn12λens+(1λ)C1.\mathbb{E}\overline{\textnormal{{Z}}}_{1,s_{\circ}(C_{1})}\lesssim_{k}n^{-\frac{1}{2\lambda^{\star}}}e^{ns^{\star}+(1-\lambda^{\star})C_{1}}.

We remark that in [28], they introduced a truncation of free and red variables, but this truncation only induces a difference that is exponentially small in nn (see Lemma 2.12 of [28], or Lemma 3.3 of [33]). Thus, taking expectation in (18) shows that

(size(x¯;𝓖)ens(C1)and|𝖲𝖮𝖫(𝓖)|[ens(C2),ens(C2)])e(1λ)C1+C2ε3,\mathbb{P}\Big{(}\textsf{size}(\underline{\textbf{x}};\boldsymbol{\mathcal{G}})\leq e^{ns_{\circ}(C_{1})}~{}\,\textnormal{and}~{}~{}\big{|}{\sf SOL}(\boldsymbol{\mathcal{G}})\big{|}\in\big{[}e^{ns_{\circ}(-C_{2})},e^{ns_{\circ}(C_{2})}\big{]}\Big{)}\leq e^{(1-\lambda^{\star})C_{1}+C_{2}}\leq\frac{\varepsilon}{3},

where we took C1C1(ε,α,k)C_{1}\equiv C_{1}(\varepsilon,\alpha,k) small enough so that e(1λ)C1+C2ε/3e^{(1-\lambda^{\star})C_{1}+C_{2}}\leq\varepsilon/3.

We now establish the second condition of Γ(C¯)\Gamma(\underline{C}). Let

Z¯λ[(Ξ0)c]Z¯λ[(Ξ0)c](𝓖):=x¯{0,1,f}Vsize(x¯;𝓖)λ𝟙(ξ(𝓖,x¯)Ξ0),\overline{\textnormal{{Z}}}_{\lambda^{\star}}\big{[}(\Xi_{0})^{\textsf{c}}\big{]}\equiv\overline{\textnormal{{Z}}}_{\lambda^{\star}}\big{[}(\Xi_{0})^{\textsf{c}}\big{]}(\boldsymbol{\mathcal{G}}):=\sum_{\underline{x}\in\{0,1,f\}^{V}}\textsf{size}(\underline{x};\boldsymbol{\mathcal{G}})^{\lambda^{\star}}\mathds{1}\big{(}\,\xi(\boldsymbol{\mathcal{G}},\underline{x})\notin\Xi_{0}\,\big{)},

and similarly, let Z¯λZ¯λ(𝓖)\overline{\textnormal{{Z}}}_{\lambda^{\star}}\equiv\overline{\textnormal{{Z}}}_{\lambda^{\star}}(\boldsymbol{\mathcal{G}}) defined by the same equation, but without the indicator term above. Then, it was shown in Proposition 3.5 of [28] that

𝔼Z¯λ[(Ξ0)c]klog3nn2𝔼Z¯λklog3nn2enλs,\mathbb{E}\overline{\textnormal{{Z}}}_{\lambda^{\star}}\big{[}(\Xi_{0})^{\textsf{c}}\big{]}\lesssim_{k}\frac{\log^{3}n}{n^{2}}\mathbb{E}\overline{\textnormal{{Z}}}_{\lambda^{\star}}\lesssim_{k}\frac{\log^{3}n}{n^{2}}e^{n\lambda^{\star}s^{\star}},

where the final estimate is from Corollary 3.6 and Theorem 3.21 of [28]. Thus, proceeding in a similar manner as in (18), we have

(ξ(𝓖,x¯)Ξ0and|𝖲𝖮𝖫(𝓖)|[ens(C2),ens(C2)])nenλs+(2λ)C2𝔼Z¯λ[(Ξ0)c]=on(1).\mathbb{P}\Big{(}\xi(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\notin\Xi_{0}~{}\,\textnormal{and}~{}~{}\big{|}{\sf SOL}(\boldsymbol{\mathcal{G}})\big{|}\in\big{[}e^{ns_{\circ}(-C_{2})},e^{ns_{\circ}(C_{2})}\big{]}\Big{)}\leq\sqrt{n}e^{n\lambda^{\star}s^{\star}+(2-\lambda^{\star})C_{2}}\cdot\mathbb{E}\overline{\textnormal{{Z}}}_{\lambda^{\star}}\big{[}(\Xi_{0})^{\textsf{c}}\big{]}=o_{n}(1).

Therefore, this concludes the proof. ∎

Proof of Lemma 2.6.

For ε>0\varepsilon>0, consider Γ(C¯)\Gamma(\underline{C}) for C¯C¯(ε,α,k)\underline{C}\equiv\underline{C}(\varepsilon,\alpha,k) from the conclusion of Proposition 3.1. Since Γ(C¯)\Gamma(\underline{C}) contains the coloring profile with exponential decay and the absence of multi-cyclic free components, we have

lim supn(ξ[𝓖,x¯]𝔈14orp𝔣[𝓖,x¯]0for some multi-cyclic𝔣)lim supn((𝓖,x¯)Γ(C¯))ε.\limsup_{n\to\infty}\mathbb{P}\Big{(}\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\notin\mathfrak{E}_{\frac{1}{4}}~{}~{}\textnormal{or}~{}~{}p_{\mathfrak{f}}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\neq 0~{}~{}\textnormal{for some multi-cyclic}~{}\mathfrak{f}\in\mathscr{F}\Big{)}\leq\limsup_{n\to\infty}\mathbb{P}\Big{(}(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\notin\Gamma(\underline{C})\Big{)}\leq\varepsilon.

Since ε>0\varepsilon>0 is arbitrary, the left hand side must equal 0. ∎

Finally, the concentration of the boundary profile B[𝓖,x¯]B[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}] can also be established using the first moment estimates from Section 3 of [28]. We first recall the following notation from [28]: for λ[0,1]\lambda\in[0,1] and s[0,log2)s\in[0,\log 2),

Zλ:=x¯{0,1,f}Vsize(x¯;𝓖)λ𝟙{R(x¯)ndf(x¯)n72k}Zλ,s:=x¯{0,1,f}Vsize(x¯;𝓖)λ𝟙{R(x¯)ndf(x¯)n72k,enssize(x¯;𝒢)<ens+1},\begin{split}&\textnormal{{Z}}_{\lambda}:=\sum_{\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V}}\textsf{size}(\underline{x};\boldsymbol{\mathcal{G}})^{\lambda}\mathds{1}\left\{\frac{{{\scriptsize{\texttt{R}}}}(\underline{x})}{nd}\vee\frac{\textnormal{\small{{f}}}(\underline{x})}{n}\leq\frac{7}{2^{k}}\right\}\\ &\textnormal{{Z}}_{\lambda,s}:=\sum_{\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V}}\textsf{size}(\underline{x};\boldsymbol{\mathcal{G}})^{\lambda}\mathds{1}\left\{\frac{{{\scriptsize{\texttt{R}}}}(\underline{x})}{nd}\vee\frac{\textnormal{\small{{f}}}(\underline{x})}{n}\leq\frac{7}{2^{k}},~{}e^{ns}\leq\textsf{size}(\underline{x};\mathcal{G})<e^{ns+1}\right\},\end{split} (19)

where R(x¯){{\scriptsize{\texttt{R}}}}(\underline{x}) denotes the number of forcing edge in (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{x}) and f(x¯)\textnormal{\small{{f}}}(\underline{x}) denotes the number of free variables in x¯\underline{x}. Similarly, we define the quantities Zλ𝗍𝗋\textnormal{{Z}}_{\lambda}^{{\sf tr}} and Zλ,s𝗍𝗋\textnormal{{Z}}_{\lambda,s}^{{\sf tr}} by the contribution of the sum in (19) from frozen configurations x¯\underline{x} that does not contain cyclic free components, i.e. (x¯,𝓖)𝗍𝗋\mathscr{F}(\underline{x},\boldsymbol{\mathcal{G}})\subset\mathscr{F}_{{\sf tr}}. Moreover, denote by Zλ[B]\textnormal{{Z}}_{\lambda}[B] (resp. Zλ,s[B]\textnormal{{Z}}_{\lambda,s}[B]) the contribution to Zλ\textnormal{{Z}}_{\lambda} (resp. Zλ,s\textnormal{{Z}}_{\lambda,s}) from frozen configuration x¯\underline{x} having boundary profile B[𝓖,x¯]=BB[\boldsymbol{\mathcal{G}},\underline{x}]=B. The quantities Zλ𝗍𝗋[B]\textnormal{{Z}}_{\lambda}^{{\sf tr}}[B] and Zλ,s𝗍𝗋[B]\textnormal{{Z}}_{\lambda,s}^{{\sf tr}}[B] are analogously defined.

Proposition 3.2.

There exists the optimal boundary profile BB[α,k]B^{\star}\equiv B^{\star}[\alpha,k] so that the following holds. For any ε>0\varepsilon>0, there exists CC(ε,α,k)>0C\equiv C(\varepsilon,\alpha,k)>0 such that unifromly over |ss|n2/3|s-s^{\star}|\leq n^{-2/3}, we have

𝔼Zλ,s[BB1Cn]ε𝔼Zλ,s\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\bigg{[}\left\|{B-B^{\star}}\right\|_{1}\geq\frac{C}{\sqrt{n}}\bigg{]}\leq\varepsilon\cdot\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}
Proof.

The proof follows from Section 3 of [28], but we include it for completeness. By equations (3.66) and (3.71) in the proof of Proposition 3.23 of [28], we have that uniformly over |ss|n2/3|s-s^{\star}|\leq n^{-2/3},

𝔼Zλ,s[BB1n1/3]=on(1)𝔼Zλ,s.\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\bigg{[}\left\|{B-B^{\star}}\right\|_{1}\geq n^{-1/3}\bigg{]}=o_{n}(1)\cdot\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}.

On the other hand, the equations (3.66) and (3.77) in [28] show that uniformly over BB1n1/3\left\|{B-B^{\star}}\right\|_{1}\leq n^{-1/3} and |ss|n2/3|s-s^{\star}|\leq n^{-2/3}, we have

𝔼Zλ,s[B]=(1+on(1))C1(α,k)𝔼Zλ,s𝗍𝗋[B],\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}[B]=(1+o_{n}(1))C_{1}(\alpha,k)\cdot\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}^{{\sf tr}}[B]\,,

for some C1(α,k)>0C_{1}(\alpha,k)>0 (C1(α,k)=eξuni(B,s)C_{1}(\alpha,k)=e^{\xi^{\textnormal{uni}}(B^{\star},s^{\star})} in [28]). Moreover, Lemma 3.16 and Proposition 3.17 of [28] imply that (see equations (3.64) and the one below in [28]) uniformly over |ss|n2/3|s-s^{\star}|\leq n^{-2/3},

𝔼Zλ,s𝗍𝗋[BB1Cn]kexp(Ωk(C)2)𝔼Zλ,s𝗍𝗋.\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}^{{\sf tr}}\bigg{[}\left\|{B-B^{\star}}\right\|_{1}\geq\frac{C}{\sqrt{n}}\bigg{]}\lesssim_{k}\exp\left(-\Omega_{k}(C{\,{}^{2}})\right)\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}^{{\sf tr}}.

Since 𝔼Zλ,s𝗍𝗋𝔼Zλ,s\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}^{{\sf tr}}\leq\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}, taking CC large enough completes the proof. ∎

3.2 Concentration of free tree profile

Having established the concentration of boundary profile in Proposition 3.2, we now establish the concentration of free component profile as in Theorem 2.8. By Proposition 3.1, we have with high probability that the number of cyclic free components is at most logn\log n and the largest free component is of size Ok(logn)O_{k}(\log n), thus all the interest is in the concentration of the free tree profile.

Proposition 3.8 in [28] shows that different free components are independent in the appropriate measure, which enables us to use local central limit theorem for triangular array [7]. We first introduce the necessary notations: for a coloring profile ξ=(B,{p𝔣}𝔣)\xi=(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}), let Zλ[ξ]Zλ[B,{p𝔣}𝔣]\textnormal{{Z}}_{\lambda}[\xi]\equiv\textnormal{{Z}}_{\lambda}[B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}] denote the contribution to Zλ\textnormal{{Z}}_{\lambda} from frozen configuration x¯\underline{x} with coloring profile ξ[𝓖,x¯]=ξ\xi[\boldsymbol{\mathcal{G}},\underline{x}]=\xi. Note that in order for Zλ[ξ]0\textnormal{{Z}}_{\lambda}[\xi]\neq 0, BB and {p𝔣}𝔣\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}} must be compatible in the following sense (see Definition 3.2 in [28]).

Definition 3.3.

For a free component 𝔣\mathfrak{f}, let 𝔟𝔣(Bx)\mathfrak{b}_{\mathfrak{f}}({{\scriptsize{\texttt{B}}}}_{x}) for x{0,1}x\in\{0,1\} count the number of boundary half-edges e˙𝔣e\in\dot{\partial}\mathfrak{f} such that the spin-label equals xx. Thus, 𝔟𝔣(B0)+𝔟𝔣(B1)=|˙𝔣|\mathfrak{b}_{\mathfrak{f}}({{\scriptsize{\texttt{B}}}}_{0})+\mathfrak{b}_{\mathfrak{f}}({{\scriptsize{\texttt{B}}}}_{1})=|\dot{\partial}\mathfrak{f}| holds. Further denote 𝔟𝔣(S)=|^𝔣|\mathfrak{b}_{\mathfrak{f}}({\scriptsize{\texttt{S}}})=|\hat{\partial}\mathfrak{f}|. We define the vector 𝔟¯𝔣3\underline{\mathfrak{b}}_{\mathfrak{f}}\in\mathbb{N}^{3} associated with 𝔣\mathfrak{f}\in\mathscr{F} as 𝔟¯𝔣:=(𝔟𝔣(B0),𝔟𝔣(B1),𝔟𝔣(S))\underline{\mathfrak{b}}_{\mathfrak{f}}:=(\,\mathfrak{b}_{\mathfrak{f}}({{\scriptsize{\texttt{B}}}}_{0}),\,\mathfrak{b}_{\mathfrak{f}}({{\scriptsize{\texttt{B}}}}_{1}),\,\mathfrak{b}_{\mathfrak{f}}({\scriptsize{\texttt{S}}})\,). Also, let h¯h¯[{p𝔣}𝔣]=(hB0,hB1,hS)3\underline{h}\equiv\underline{h}[\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}]=(h_{{{\scriptsize{\texttt{B}}}}_{0}},\,h_{{{\scriptsize{\texttt{B}}}}_{1}},\,h_{{\scriptsize{\texttt{S}}}})\in\mathbb{R}^{3} be hσ=𝔣𝔟𝔣(σ)p𝔣h_{\sigma}=\sum_{\mathfrak{f}\in\mathscr{F}}\mathfrak{b}_{\mathfrak{f}}(\sigma)p_{\mathfrak{f}} for σ{B0,B1,S}\sigma\in\{{{\scriptsize{\texttt{B}}}}_{0},{{\scriptsize{\texttt{B}}}}_{1},{\scriptsize{\texttt{S}}}\}. Then, the free component profile {p𝔣}𝔣\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}} is compatible with the boundary profile BB, which we denote by {p𝔣}𝔣B\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\sim B, if for τ{B,S}\tau\in\{{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\},

B¯(τ)=1dσ¯{R,B}dB˙(σ¯)i=1d𝟙(σi=τ)+𝟙(τ=S)dh(τ)=1kσ¯{R,B,S}kB^(σ¯)j=1k𝟙(σj=τ)+𝟙(τ{B0,B1})dh(τ),\begin{split}\bar{B}(\tau)&=\frac{1}{d}\sum_{\underline{\sigma}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}^{d}}\dot{B}(\underline{\sigma})\sum_{i=1}^{d}\mathds{1}(\sigma_{i}=\tau)+\frac{\mathds{1}(\tau={\scriptsize{\texttt{S}}})}{d}h(\tau)\\ &=\frac{1}{k}\sum_{\underline{\sigma}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{k}}\hat{B}(\underline{\sigma})\sum_{j=1}^{k}\mathds{1}(\sigma_{j}=\tau)+\frac{\mathds{1}(\tau\in\{{{\scriptsize{\texttt{B}}}}_{0},{{\scriptsize{\texttt{B}}}}_{1}\})}{d}h(\tau)\,,\end{split} (20)

and we have

𝔣p𝔣v𝔣=1B˙,1,𝔣p𝔣f𝔣=dk(1B^,1),𝔣p𝔣e𝔣=d(1B¯,1),\sum_{\mathfrak{f}\in\mathscr{F}}p_{\mathfrak{f}}v_{\mathfrak{f}}=1-\langle\dot{B},\textbf{1}\rangle\,,\quad\quad\sum_{\mathfrak{f}\in\mathscr{F}}p_{\mathfrak{f}}f_{\mathfrak{f}}=\frac{d}{k}(1-\langle\hat{B},\textbf{1}\rangle)\,,\quad\quad\sum_{\mathfrak{f}\in\mathscr{F}}p_{\mathfrak{f}}e_{\mathfrak{f}}=d(1-\langle\bar{B},\textbf{1}\rangle)\,, (21)

where 1 denotes the all-11 vector. With slight abuse of notation, we call h¯h¯[B]3\underline{h}\equiv\underline{h}[B]\in\mathbb{R}^{3} determined from the equation (20) the induced boundary profile. We also remark that the last equality in (21) is actually redundant, since it is implied by the other equalities in (20) and (21).

Remark 3.4.

If {p𝔣}𝔣B\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\sim B and p𝔣=0p_{\mathfrak{f}}=0 holds if 𝔣\mathfrak{f} is multi-cyclic, then (21) implies that

h1B˙,𝟙+dk(1B^,𝟙)d(1B¯,𝟙)=𝔣p𝔣(v𝔣+f𝔣e𝔣)=𝔱𝗍𝗋p𝔱.h_{\circ}\equiv 1-\langle\dot{B},\mathds{1}\rangle+\frac{d}{k}(1-\langle\hat{B},\mathds{1}\rangle)-d(1-\langle\bar{B},\mathds{1}\rangle)=\sum_{\mathfrak{f}\in\mathscr{F}}p_{\mathfrak{f}}(v_{\mathfrak{f}}+f_{\mathfrak{f}}-e_{\mathfrak{f}})=\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}p_{\mathfrak{t}}. (22)

Thus, hh[B]h_{\circ}\equiv h_{\circ}[B] determines the number of free trees 𝔱𝗍𝗋n𝔱\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}n_{\mathfrak{t}} when there is no multi-cyclic free component.

We then define the set of labeled component (𝔣)\mathscr{L}(\mathfrak{f}) of a free component 𝔣\mathfrak{f}\in\mathscr{F} (see Definition 2.20 in [28]). A labeled component 𝔣lab\mathfrak{f}^{\textnormal{lab}} is obtained from 𝔣\mathfrak{f} by adding additional labels on ithe half-edges and 𝔣\mathfrak{f} as follows. For aF(𝔣)a\in F(\mathfrak{f}) (resp. vV(𝔣)v\in V(\mathfrak{f}) ), arbitrarily label half-edges adjacent to aa (resp. vv) by 1,,k1,...,k (resp. 1,,d1,...,d). If 𝔣\mathfrak{f} is cyclic then add an additional label by first choosing a spanning tree of 𝔣\mathfrak{f} and labeling their edges by “tree”. We consider 𝔣lab\mathfrak{f}^{\textnormal{lab}} up to graph and label isomorphism, so |(𝔣)||\mathscr{L}(\mathfrak{f})| counts the number of labeled components up to such isomorphism. If we let T𝔣T_{\mathfrak{f}} be the number of spanning trees of 𝔣\mathfrak{f} (T𝔱=1T_{\mathfrak{t}}=1), then, the embedding number of 𝔣\mathfrak{f} is defined by

J𝔣:=d1v(𝔣)kf(𝔣)|(𝔣)|T𝔣.J_{\mathfrak{f}}:=d^{1-v(\mathfrak{f})}k^{-f(\mathfrak{f})}\frac{|\mathscr{L}(\mathfrak{f})|}{T_{\mathfrak{f}}}\;.
Proposition 3.5 (Proposition 3.7 in [28]).

Fix λ[0,1]\lambda\in[0,1]. For a coloring profile ξ=(B,{p𝔣}𝔣)\xi=(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}) such that {p𝔣}𝔣B\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\sim B, we have

𝔼Zλ[B,{p𝔣}𝔣]=n!m!nd!(ndB¯)!(nB˙)!(mB^)!σ¯{R,B,S}kv^(σ¯)mB^(σ¯)𝔣[1(np𝔣)!(de𝔣f𝔣kf𝔣J𝔣w𝔣λ)np𝔣],\mathbb{E}\textnormal{{Z}}_{\lambda}[B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}]=\frac{n!m!}{nd!}\frac{(nd\bar{B})!}{(n\dot{B})!(m\hat{B})!}\prod_{\underline{\sigma}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{k}}\hat{v}(\underline{\sigma})^{m\hat{B}(\underline{\sigma})}\prod_{\mathfrak{f}\in\mathscr{F}}\left[\frac{1}{(np_{\mathfrak{f}})!}\Big{(}d^{e_{\mathfrak{f}}-f_{\mathfrak{f}}}k^{f_{\mathfrak{f}}}J_{\mathfrak{f}}w_{\mathfrak{f}}^{\lambda}\Big{)}^{np_{\mathfrak{f}}}\right],

where v^(σ¯)\hat{v}(\underline{\sigma}) for σ¯{R,B,S}k\underline{\sigma}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{k} is defined in (65) below.

Remark 3.6.

There is a slight difference between Proposition 3.5 and Proposition 3.7 of [28] because of the difference of the notion of ‘free tree’. Namely, the ‘free tree’ in [28] corresponds to an equivalence class of our notion of free trees. However, the proof of Proposition 3.7 of [28] proceeds exactly by first establishing Proposition 3.5, and collapsing the equivalence class of free trees.

We now define the optimal free tree profile and optimal coloring profile ξ\xi^{\star} used in Theoerem 2.8.

Definition 3.7.

For a free tree 𝔱𝗍𝗋\mathfrak{t}\in\mathscr{F}_{{\sf tr}}, the optimal free tree profile is {p𝔱}𝔱𝗍𝗋\{p^{\star}_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}, which is defined by

p𝔱:=J𝔱w𝔱λ¯(𝒵˙)v𝔱(𝒵^)f𝔱q˙(B0)|˙𝔱|(2λq^(S))|^𝔱|,p_{\mathfrak{t}}^{\star}:=\frac{J_{\mathfrak{t}}w_{\mathfrak{t}}^{\lambda^{\star}}}{\bar{\mathfrak{Z}}^{\star}(\dot{\mathscr{Z}}^{\star})^{v_{\mathfrak{t}}}(\hat{\mathscr{Z}}^{\star})^{f_{\mathfrak{t}}}}\dot{q}^{\star}({{\scriptsize{\texttt{B}}}}_{0})^{|\dot{\partial}\mathfrak{t}|}(2^{-\lambda}\hat{q}^{\star}({\scriptsize{\texttt{S}}}))^{|\hat{\partial}\mathfrak{t}|},

where the quantities ¯,𝒵˙,𝒵^,q˙(B0),q^(S)\bar{\mathfrak{Z}}^{\star},\dot{\mathscr{Z}}^{\star},\hat{\mathscr{Z}}^{\star},\dot{q}^{\star}({{\scriptsize{\texttt{B}}}}_{0}),\hat{q}^{\star}({\scriptsize{\texttt{S}}}), which only depend on (α,k)(\alpha,k), are defined in Definition A.12. For a cyclic free component 𝔣𝗍𝗋\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}, we define p𝔣=0p_{\mathfrak{f}}^{\star}=0. Then, with the optimal boundary profile BB^{\star} in Proposition 3.2, we define the optimal coloring profile ξ\xi^{\star} to be ξ(B,{p𝔣}𝔣\xi^{\star}\equiv(B^{\star},\{p_{\mathfrak{f}}^{\star}\}_{\mathfrak{f}\in\mathscr{F}}.

An important observation is that p𝔱p_{\mathfrak{t}}^{\star} can be expressed by

p𝔱=J𝔱w𝔱λexp(θ¯,(1,𝔟¯𝔱)),p^{\star}_{\mathfrak{t}}=J_{\mathfrak{t}}w_{\mathfrak{t}}^{\lambda^{\star}}\exp\left(\big{\langle}\,\underline{\theta}^{\star}\,,\,(1,\underline{\mathfrak{b}}_{\mathfrak{t}})\,\big{\rangle}\right)\,, (23)

where the vector θ¯(θ,θB0,θB1,θS)4\underline{\theta}^{\star}\equiv(\theta^{\star}_{\circ},\theta^{\star}_{{{\scriptsize{\texttt{B}}}}_{0}},\theta^{\star}_{{{\scriptsize{\texttt{B}}}}_{1}},\theta^{\star}_{{\scriptsize{\texttt{S}}}})\in\mathbb{R}^{4} is defined by θlog((𝒵˙)kkdkd(𝒵^)dkdkd¯)\theta^{\star}_{\circ}\equiv\log\big{(}\frac{(\dot{\mathscr{Z}}^{\star})^{\frac{k}{kd-k-d}}(\hat{\mathscr{Z}}^{\star})^{\frac{d}{kd-k-d}}}{\bar{\mathfrak{Z}}^{\star}}\big{)}, θB0θB1log(q˙(B0)(𝒵˙)1kdkd(𝒵^)d1kdkd)\theta^{\star}_{{{\scriptsize{\texttt{B}}}}_{0}}\equiv\theta^{\star}_{{{\scriptsize{\texttt{B}}}}_{1}}\equiv\log\big{(}\frac{\dot{q}^{\star}({{\scriptsize{\texttt{B}}}}_{0})}{(\dot{\mathscr{Z}}^{\star})^{\frac{1}{kd-k-d}}(\hat{\mathscr{Z}}^{\star})^{\frac{d-1}{kd-k-d}}}\big{)}, and θSlog(2λq^(S)(𝒵˙)k1kdkd(𝒵^)1kdkd)\theta^{\star}_{{\scriptsize{\texttt{S}}}}\equiv\log\big{(}\frac{2^{-\lambda}\hat{q}^{\star}({\scriptsize{\texttt{S}}})}{(\dot{\mathscr{Z}}^{\star})^{\frac{k-1}{kd-k-d}}(\hat{\mathscr{Z}}^{\star})^{\frac{1}{kd-k-d}}}\big{)}.

Remark 3.8.

It was shown in Lemma B.2 of [28] that the optimal free tree profile {p𝔱}\{p_{\mathfrak{t}}^{\star}\} and the optimal boundary profile BB^{\star} are compatible. That is, h(hB0,hB1,hS)h^{\star}\equiv(h^{\star}_{{{\scriptsize{\texttt{B}}}}_{0}},h^{\star}_{{{\scriptsize{\texttt{B}}}}_{1}},h^{\star}_{{\scriptsize{\texttt{S}}}}) and hh^{\star}_{\circ} induced from BB^{\star} by the equations (20) and (22) satisfy 𝔱𝗍𝗋p𝔱=h\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}p_{\mathfrak{t}}^{\star}=h^{\star}_{\circ} and 𝔱𝗍𝗋𝔟𝔱(σ)p𝔱=hσ\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}\mathfrak{b}_{\mathfrak{t}}(\sigma)p_{\mathfrak{t}}^{\star}=h^{\star}_{\sigma} for σ{B,S}\sigma\in\{{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}.

The following proposition shows the 1\ell^{1}-type concentration of the free tree profile conditional on the (B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}}, where Ψ𝗍𝗒𝗉Ψ𝗍𝗒𝗉(C)\Psi_{{\sf typ}}\equiv\Psi_{{\sf typ}}(C) is defined by the set of (B,s,{p𝔣}𝔣𝗍𝗋)(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}) which satisfy

BB1Cn,|ss|n2/3,𝔣𝗍𝗋p𝔣lognn,andp𝔣=0 if 𝔣 is multi-cyclic or v(𝔣)logn.\left\|{B-B^{\star}}\right\|_{1}\leq\frac{C}{\sqrt{n}}\,,~{}~{}|s-s^{\star}|\leq n^{-2/3}\,,~{}~{}\sum_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}p_{\mathfrak{f}}\leq\frac{\log n}{n}\,,~{}~{}\textnormal{and}~{}~{}p_{\mathfrak{f}}=0\textnormal{ if $\mathfrak{f}$ is multi-cyclic or $v(\mathfrak{f})\geq\log n$.} (24)
Proposition 3.9.

For any ε>0\varepsilon>0 and a constant C>0C>0, there exists another constant C0C_{0}, which only depends on ε,C,α,k\varepsilon,C,\alpha,k, such that uniformly over (B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉(C)(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}}(C),

{p𝔱}𝔱𝗍𝗋:𝔱|p𝔱p𝔱|v𝔱C0n𝔼Zλ,s[B,{p𝔱}𝔱𝗍𝗋,{p𝔣}𝗍𝗋]ε{p𝔱}𝔱𝗍𝗋𝔼Zλ,s[B,{p𝔱}𝔱𝗍𝗋,{p𝔣}𝗍𝗋]\sum_{\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}:\sum_{\mathfrak{t}}\big{|}p_{\mathfrak{t}}-p_{\mathfrak{t}}^{\star}\big{|}v_{\mathfrak{t}}\geq\frac{C_{0}}{\sqrt{n}}}\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\Big{[}B,\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}},\{p_{\mathfrak{f}}\}_{\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}\Big{]}\leq\varepsilon\cdot\sum_{\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}}\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\Big{[}B,\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}},\{p_{\mathfrak{f}}\}_{\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}\Big{]} (25)
Remark 3.10.

Note that by the definition of Ψ𝗍𝗒𝗉\Psi_{{\sf typ}} in (24), every cyclic free component has one cycle and has variables v𝔣<lognv_{\mathfrak{f}}<\log n. Since every clause in a free component must have at least 2 full-edges adjacent to them (otherwise, the clause is forcing), it follows that 2f𝔣e𝔣2f_{\mathfrak{f}}\leq e_{\mathfrak{f}}. For 𝔣\mathfrak{f}\in\mathscr{F} having at most one cycle, this implies that f𝔣e𝔣f_{\mathfrak{f}}\leq e_{\mathfrak{f}}. In particular, we may assume that f𝔣<lognf_{\mathfrak{f}}<\log n holds if p𝔣0p_{\mathfrak{f}}\neq 0 and (B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}}.

We now discuss the main ideas behind the proof of Proposition 3.9. By Proposition 3.5, we can express444From (21), the term 𝔣(de𝔣f𝔣kf𝔣)np𝔣\prod_{\mathfrak{f}\in\mathscr{F}}(d^{e_{\mathfrak{f}}-f_{\mathfrak{f}}}k^{f_{\mathfrak{f}}})^{np_{\mathfrak{f}}} in Proposition 3.5 cancels out

𝔼Zλ,s[B,{p𝔱}𝔱𝗍𝗋,{p𝔣}𝗍𝗋]{p𝔱}𝔱𝗍𝗋𝔼Zλ,s[B,{p𝔱}𝔱𝗍𝗋,{p𝔣}𝗍𝗋]=𝔣𝗍𝗋[1(np𝔣)!(J𝔣w𝔣λ)np𝔣]{p𝔱}𝔱𝗍𝗋𝔣𝗍𝗋[1(np𝔣)!(J𝔣w𝔣λ)np𝔣],\frac{\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\Big{[}B,\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}},\{p_{\mathfrak{f}}\}_{\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}\Big{]}}{\sum_{\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}}\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\Big{[}B,\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}},\{p_{\mathfrak{f}}\}_{\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}\Big{]}}=\frac{\prod_{\mathfrak{f}\in\mathscr{F}_{{\sf tr}}}\left[\frac{1}{(np_{\mathfrak{f}})!}\left(J_{\mathfrak{f}}w_{\mathfrak{f}}^{\lambda}\right)^{np_{\mathfrak{f}}}\right]}{\sum_{\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}}\prod_{\mathfrak{f}\in\mathscr{F}_{{\sf tr}}}\left[\frac{1}{(np_{\mathfrak{f}})!}\left(J_{\mathfrak{f}}w_{\mathfrak{f}}^{\lambda}\right)^{np_{\mathfrak{f}}}\right]}\,, (26)

where the sum in the denominator in the rhs is restricted to sum over {p𝔱}𝔱𝗍𝗋\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}} which satisfy {p𝔣}𝔣{{p𝔱}𝔱𝗍𝗋,{p𝔣}𝔣𝗍𝗋}(B,s)\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\equiv\{\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}},\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}\}\sim(B,s), where

{p𝔣}𝔣(B,s){p𝔣}𝔣Band𝔣p𝔣logw𝔣[s,s+1/n).\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\sim(B,s)\iff\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\sim B~{}~{}\textnormal{and}~{}~{}\sum_{\mathfrak{f}\in\mathscr{F}}p_{\mathfrak{f}}\log w_{\mathfrak{f}}\in[s,s+1/n)\,.

The rightmost condition comes from the fact that we defined Zλ,s\textnormal{{Z}}_{\lambda,s} in (19) as the contribution to Zλ\textnormal{{Z}}_{\lambda} from x¯\underline{x} such that size(x¯,𝓖)=𝔣w𝔣[ens,ens+1)\textsf{size}(\underline{x},\boldsymbol{\mathcal{G}})=\prod_{\mathfrak{f}\in\mathscr{F}}w_{\mathfrak{f}}\in[e^{ns},e^{ns+1}).

Thus, apriori, the rhs of (26) is a probability of a configuration of free trees conditional on a large deviation event. A classical tool in large deviation theory [12] is to introduce an exponential scaling factor to move from the large deviation regime to a moderate deviation regime. Since we are considering BB1=O(n1/2)\left\|{B-B^{\star}}\right\|_{1}=O(n^{-1/2}), we can use the optimal scaling factor θ¯\underline{\theta}^{\star} from (23) (see Remark 3.8). To this end, we introduce a probability distribution over the free trees

θ¯(X=𝔱)J𝔱w𝔱λexp(θ¯,(1,𝔟¯𝔱))h=(h)1p𝔱,\mathbb{P}_{\underline{\theta}^{\star}}(X=\mathfrak{t})\equiv\frac{J_{\mathfrak{t}}w_{\mathfrak{t}}^{\lambda^{\star}}\exp\left(\big{\langle}\,\underline{\theta}^{\star}\,,\,(1,\underline{\mathfrak{b}}_{\mathfrak{t}})\,\big{\rangle}\right)}{h^{\star}_{\circ}}=(h^{\star}_{\circ})^{-1}p_{\mathfrak{t}}^{\star}\,,

and let X1,,XnhX_{1},...,X_{nh_{\circ}} be a i.i.d. sample from θ¯()\mathbb{P}_{\underline{\theta}^{\star}}(\cdot), where hh[B]h_{\circ}\equiv h_{\circ}[B] is defined in (22). Recall from Remark 3.4 that when p𝔣=0p_{\mathfrak{f}}=0 for multi-cyclic 𝔣\mathfrak{f}, {p𝔣}𝔣B\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\sim B implies that the total number of free trees is given by nhnh_{\circ}. Thus, from the identity (26), the ratio of interest in (25) can be expressed by

{p𝔱}𝔱𝗍𝗋:𝔱|p𝔱p𝔱|v𝔱C0n𝔼Zλ,s[B,{p𝔱}𝔱𝗍𝗋,{p𝔣}𝗍𝗋]{p𝔱}𝔱𝗍𝗋𝔼Zλ,s[B,{p𝔱}𝔱𝗍𝗋,{p𝔣}𝗍𝗋]=θ(𝔱𝗍𝗋v𝔱|1ni=1nh𝟙(Xi=𝔱)p𝔱|C0n|𝒜),\frac{\sum_{\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}:\sum_{\mathfrak{t}}\big{|}p_{\mathfrak{t}}-p_{\mathfrak{t}}^{\star}\big{|}v_{\mathfrak{t}}\geq\frac{C_{0}}{\sqrt{n}}}\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\Big{[}B,\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}},\{p_{\mathfrak{f}}\}_{\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}\Big{]}}{\sum_{\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}}\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\Big{[}B,\{p_{\mathfrak{t}}\}_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}},\{p_{\mathfrak{f}}\}_{\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}\Big{]}}=\mathbb{P}_{\theta^{\star}}\bigg{(}\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}v_{\mathfrak{t}}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{C_{0}}{\sqrt{n}}\,\,\bigg{|}\,\,\mathscr{A}\bigg{)}, (27)

where the event 𝒜𝒜(B,s,{p𝔣}𝔣𝗍𝗋)\mathscr{A}\equiv\mathscr{A}(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}) regarding X1,,XnhX_{1},...,X_{nh_{\circ}} is given by

𝒜{i=1nh𝔟¯Xi=nh¯(B)𝔣𝗍𝗋np𝔣𝔟¯𝔣andi=1nhlogwXi+𝔣𝗍𝗋np𝔣logw𝔣[ns,ns+1)}.\mathscr{A}\equiv\Big{\{}\sum_{i=1}^{nh_{\circ}}\underline{\mathfrak{b}}_{X_{i}}=n\underline{h}(B)-\sum_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}np_{\mathfrak{f}}\underline{\mathfrak{b}}_{\mathfrak{f}}~{}~{}~{}~{}\textnormal{and}~{}~{}~{}~{}\sum_{i=1}^{nh_{\circ}}\log w_{X_{i}}+\sum_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}np_{\mathfrak{f}}\log w_{\mathfrak{f}}\in[ns,ns+1)\Big{\}}. (28)

Observe that the event 𝒜\mathscr{A} is a moderate deviation event for (B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉Ψ𝗍𝗒𝗉(C)(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}}\equiv\Psi_{{\sf typ}}(C). Indeed, since 𝔼θ𝔟¯X=(h)1h\mathbb{E}_{\theta^{\star}}\underline{\mathfrak{b}}_{X}=(h_{\circ}^{\star})^{-1}h^{\star} (cf. Remark 3.8), we have uniformly over Ψ𝗍𝗒𝗉\Psi_{{\sf typ}} that

nh𝔼θ𝔟¯Xinh¯(B)+𝔣𝗍𝗋np𝔣𝔟¯𝔣kn(|h(B)h|+h¯(B)h¯1)+log2nn,\Big{\|}nh_{\circ}\mathbb{E}_{\theta^{\star}}\underline{\mathfrak{b}}_{X_{i}}-n\underline{h}(B)+\sum_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}np_{\mathfrak{f}}\underline{\mathfrak{b}}_{\mathfrak{f}}\Big{\|}\lesssim_{k}n\big{(}|h_{\circ}(B)-h_{\circ}^{\star}|+\left\|{\underline{h}(B)-\underline{h}^{\star}}\right\|_{1}\big{)}+\log^{2}n\lesssim\sqrt{n},

where the first inequality holds since for 𝔣\mathfrak{f} that contains at most one cycle, 𝔟¯𝔣1kv𝔣\left\|{\underline{\mathfrak{b}}_{\mathfrak{f}}}\right\|_{1}\lesssim_{k}v_{\mathfrak{f}} holds (cf. Remark 3.10), and the second inequality holds since Bh¯(B)B\to\underline{h}(B) is Ok(1)O_{k}(1)-Lipschitz (see (20) and (22)). Similarly, |nh𝔼θlogwXns𝔣𝗍𝗋np𝔣logw𝔣|kn|nh_{\circ}\mathbb{E}_{\theta^{\star}}\log w_{X}-ns-\sum_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}np_{\mathfrak{f}}\log w_{\mathfrak{f}}|\lesssim_{k}\sqrt{n} holds. Thus, local central limit theorem with triangular arrays [7] show that uniformly over (B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}},

θ¯(𝒜)kn2.\mathbb{P}_{\underline{\theta}^{\star}}(\mathscr{A})\asymp_{k}n^{-2}. (29)

Therefore, if in the rhs of (27), the sum were replaced by a supremum over free trees and C0C_{0} could be allowed to grow with nn, say C0=Ω(logn)C_{0}=\Omega(\log n), then we could resort to concentration inequalities (e.g. Chernoff bounds) to show the conditional probability of interest is less than ε\varepsilon. Indeed, this was the strategy taken in [28] (see e.g. Section 6 therein).

However, to obtain the 1\ell^{1}-type control as in Proposition 3.9, we need to take acount for the sum over free trees and conditioning on 𝒜\mathscr{A} in (27) more carefully. Our strategy is to first divide the \mathscr{F} into typical and atypical set of free trees: for n2n\geq 2, let

𝗍𝗋𝗍𝗒𝗉𝗍𝗋𝗍𝗒𝗉(n){𝔱𝗍𝗋:p𝔱n1/2},𝗍𝗋𝖺𝗍𝗒𝗉𝗍𝗋𝖺𝗍𝗒𝗉(n)𝗍𝗋𝗍𝗋𝗍𝗒𝗉.\mathscr{F}_{{\sf tr}}^{{\sf typ}}\equiv\mathscr{F}_{{\sf tr}}^{{\sf typ}}(n)\equiv\big{\{}\mathfrak{t}\in\mathscr{F}_{{\sf tr}}:p_{\mathfrak{t}}^{\star}\geq n^{-1/2}\big{\}}\,,~{}~{}~{}\mathscr{F}_{{\sf tr}}^{{\sf atyp}}\equiv\mathscr{F}_{{\sf tr}}^{{\sf atyp}}(n)\equiv\mathscr{F}_{{\sf tr}}\setminus\mathscr{F}_{{\sf tr}}^{{\sf typ}}.

For each free tree 𝔱𝗍𝗋𝗍𝗒𝗉𝗍𝗋𝖺𝗍𝗒𝗉\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}\sqcup\mathscr{F}_{{\sf tr}}^{{\sf atyp}}, we assign a cost ε𝔱\varepsilon_{\mathfrak{t}} that is summable, and bound the probability that the empirical count of 𝔱\mathfrak{t} among XiX_{i}’s deviate from p𝔱p_{\mathfrak{t}}^{\star} by distance ε𝔱n\frac{\varepsilon_{\mathfrak{t}}}{\sqrt{n}} conditional on 𝒜\mathscr{A}. For atypical trees 𝔱𝗍𝗋𝖺𝗍𝗒𝗉\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf atyp}}, we design such cost ε𝔱\varepsilon_{\mathfrak{t}} crudely based on a Chernoff bound (cf. Lemma 3.11). On the contrary, for typical trees 𝔱𝗍𝗋𝗍𝗒𝗉\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}, we assign ε𝔱\varepsilon_{\mathfrak{t}} carefully by showing that the conditioning on 𝒜\mathscr{A} has a negligible effect on the probability of interest for typical trees, which we argue by a local central limit theorem for triangular arrays [7] (cf. Lemma 3.12).

We first start with the easier case of atypical trees. A crucial fact that we use throughout the proof is that p𝔣𝔈12p_{\mathfrak{f}}^{\star}\in\mathfrak{E}_{\frac{1}{2}} holds from Lemma 3.13 in [28].

Lemma 3.11.

For 𝒜𝒜(B,s,{p𝔣}𝔣𝗍𝗋)\mathscr{A}\equiv\mathscr{A}(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}) in (28) and C>0C>0, we have uniformly over (B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉(C)(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}}(C) that

θ¯(𝔱𝗍𝗋𝖺𝗍𝗒𝗉v𝔱|1ni=1nh𝟙(Xi=𝔱)p𝔱|n1/2(logn)1/2|𝒜)=on(1).\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf atyp}}}v_{\mathfrak{t}}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq n^{-1/2}(\log n)^{-1/2}\,\,\Big{|}\,\,\mathscr{A}\Big{)}=o_{n}(1). (30)
Proof.

Since θ¯(𝒜)kn2\mathbb{P}_{\underline{\theta}^{\star}}(\mathscr{A})\gtrsim_{k}n^{-2} uniformly over (B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}} by (29), it suffices to show that the unconditional probability in (30) is n2\ll n^{-2}. Throughout, we abbreviate θ\mathbb{P}\equiv\mathbb{P}_{\theta^{\star}} for simplicity.

Note that if v(𝔱)lognklog2v(\mathfrak{t})\geq\frac{\log n}{k\log 2}, then 𝔱𝗍𝗋𝖺𝗍𝗒𝗉\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf atyp}} by p𝔣𝔈12p_{\mathfrak{f}}^{\star}\in\mathfrak{E}_{\frac{1}{2}}. We first deal with the case v(𝔱)lognklog2v(\mathfrak{t})\geq\frac{\log n}{k\log 2}. For vlognklog2v\geq\frac{\log n}{k\log 2}, let εv=(v2logn)1\varepsilon_{v}=(v^{2}\log n)^{-1}. Then,

(𝔱:v𝔱=vv|1ni=1nh𝟙(Xi=𝔱)p𝔱|εvn)Lvsupv(𝔱)=v(|1ni=1nh𝟙(Xi=𝔱)p𝔱|εvvLvn),\mathbb{P}\Big{(}\sum_{\mathfrak{t}:v_{\mathfrak{t}}=v}v\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{v}}{\sqrt{n}}\Big{)}\leq L_{v}\cdot\sup_{v(\mathfrak{t})=v}\mathbb{P}\Big{(}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{v}}{vL_{v}\sqrt{n}}\Big{)}\,, (31)

where Lv:=|{𝔱𝗍𝗋:v(𝔱)=v}|L_{v}:=|\{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}:v(\mathfrak{t})=v\}|. An important observation is that Lv(Ck)vL_{v}\leq(Ck)^{v} for some universal constant C>0C>0555There are at most 4v+f4^{v+f} number of isomorphism classes of trees with v+fv+f nodes (see Section 9.5 in [15]). The factor kvk^{v} comes from assigning the number of spin-labels {0,1}\{0,1\} to the clauses in 𝔣\mathfrak{f} which have boundary-half edges.. Thus, it follows that for v(𝔱)=vlognklog2v(\mathfrak{t})=v\geq\frac{\log n}{k\log 2},

|h𝔼𝟙(Xi=𝔱)p𝔱|kp𝔱n2kv2nεvvLvn,|h_{\circ}\mathbb{E}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}|\lesssim_{k}\frac{p_{\mathfrak{t}}^{\star}}{\sqrt{n}}\leq\frac{2^{-\frac{kv}{2}}}{\sqrt{n}}\ll\frac{\varepsilon_{v}}{vL_{v}\sqrt{n}}\,,

where the second inequality is due to {p𝔣}𝔈12\{p_{\mathfrak{f}}^{\star}\}\in\mathfrak{E}_{\frac{1}{2}}. Thus, we can use Chernoff’s bound in the rhs of (31) to have

(𝔱:v𝔱=vv|1ni=1nh𝟙(Xi=𝔱)p𝔱|εvn)(Ck)vexp(Ω(εv2v2(Ck)2vp𝔱)).\mathbb{P}\Big{(}\sum_{\mathfrak{t}:v_{\mathfrak{t}}=v}v\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{v}}{\sqrt{n}}\Big{)}\leq(Ck)^{v}\exp\Big{(}-\Omega\Big{(}\frac{\varepsilon_{v}^{2}}{v^{2}(Ck)^{2v}p_{\mathfrak{t}}^{\star}}\Big{)}\Big{)}\,.

Again, using the fact p𝔱2kv2p_{\mathfrak{t}}^{\star}\leq 2^{-\frac{kv}{2}}, the rhs above is at most exp(Ω(2kv3/(logn)2))\exp\big{(}-\Omega\big{(}2^{\frac{kv}{3}}/(\log n)^{2}\big{)}\big{)}. Therefore,

vlognklog2(𝔱:v𝔱=vv|1ni=1nh𝟙(Xi=𝔱)p𝔱|εvn)=exp(Ω(n2/3log2n))n2.\sum_{v\geq\frac{\log n}{k\log 2}}\mathbb{P}\Big{(}\sum_{\mathfrak{t}:v_{\mathfrak{t}}=v}v\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{v}}{\sqrt{n}}\Big{)}=\exp\Big{(}-\Omega\Big{(}\frac{n^{2/3}}{\log^{2}n}\Big{)}\Big{)}\ll n^{-2}\,. (32)

Since vεv(logn)1(logn)1/2\sum_{v}\varepsilon_{v}\asymp(\log n)^{-1}\ll(\log n)^{-1/2}, (32) takes care of the case v(𝔱)lognklog2v(\mathfrak{t})\geq\frac{\log n}{k\log 2}.

Let us now consider the case where v(𝔱)lognklog2v(\mathfrak{t})\leq\frac{\log n}{k\log 2} and p𝔱n1/2p_{\mathfrak{t}}^{\star}\leq n^{-1/2}. Note that since Lv(Ck)vL_{v}\leq(Ck)^{v}, the number of such trees is at most nO(logkk)n^{O(\frac{\log k}{k})}. Thus, we have for some universal constant C>0C^{\prime}>0,

(v(𝔱)lognklog2,p𝔱n1/2v𝔱|1ni=1nh𝟙(Xi=𝔱)p𝔱|n1/2(logn)1/22)nClogkksupp𝔱n1/2(|1ni=1nh𝟙(Xi=𝔱)p𝔱|n12Clogkk),\begin{split}&\mathbb{P}\bigg{(}\sum_{v(\mathfrak{t})\leq\frac{\log n}{k\log 2},\,p_{\mathfrak{t}}^{\star}\leq n^{-1/2}}v_{\mathfrak{t}}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{n^{-1/2}(\log n)^{-1/2}}{2}\bigg{)}\\ &\leq n^{\frac{C^{\prime}\log k}{k}}\sup_{p_{\mathfrak{t}}^{\star}\leq n^{-1/2}}\mathbb{P}\bigg{(}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq n^{-\frac{1}{2}-\frac{C^{\prime}\log k}{k}}\bigg{)}\,,\end{split}

Note that if p𝔱n1/2p_{\mathfrak{t}}^{\star}\leq n^{-1/2}, then |h(Xi=𝔱)p𝔱|kn1/2p𝔱n1n1/2Clogk/k|h_{\circ}\mathbb{P}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}|\lesssim_{k}n^{-1/2}p_{\mathfrak{t}}^{\star}\leq n^{-1}\ll n^{-1/2-C^{\prime}\log k/k} for large enough kk. Thus, using Chernoff’s bound in the rhs above, it follows that

(v(𝔱)lognklog2,p𝔱n1/2v𝔱|1ni=1nh𝟙(Xi=𝔱)p𝔱|n1/2(logn)1/22)nClogkkexp(Ω(n122Clogkk))n2\mathbb{P}\bigg{(}\sum_{v(\mathfrak{t})\leq\frac{\log n}{k\log 2},\,p_{\mathfrak{t}}^{\star}\leq n^{-1/2}}v_{\mathfrak{t}}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{n^{-1/2}(\log n)^{-1/2}}{2}\bigg{)}\leq n^{\frac{C^{\prime}\log k}{k}}\exp\Big{(}-\Omega\big{(}n^{\frac{1}{2}-\frac{2C^{\prime}\log k}{k}}\big{)}\Big{)}\ll n^{-2} (33)

The estimates (32) and (33) conclude the proof. ∎

Next, we consider the more delicate case of typical trees.

Lemma 3.12.

For C>0C>0, there exist constants C~C~(C,α,k)\widetilde{C}\equiv\widetilde{C}(C,\alpha,k) and CkC_{k}, such that the following holds. For any 𝔱𝗍𝗋𝗍𝗒𝗉\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}, and ε𝔱>0\varepsilon_{\mathfrak{t}}>0, we have

θ¯(v𝔱|1ni=1nh𝟙(Xi=𝔱)p𝔱|ε𝔱n|𝒜)C~θ¯(v𝔱|1ni=1nh𝟙(Xi=𝔱)p𝔱|ε𝔱n)+exp(Ckn)\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}v_{\mathfrak{t}}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{\sqrt{n}}\,\,\Big{|}\,\,\mathscr{A}\Big{)}\leq\widetilde{C}\cdot\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}v_{\mathfrak{t}}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{\sqrt{n}}\Big{)}+\exp(-C_{k}\sqrt{n}) (34)
Proof.

We first show that the fraction (nh)1i=1nh𝟙(Xi=𝔱)(nh_{\circ})^{-1}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t}) is bounded away from 11 w.h.p.. To this end, for 𝔱𝗍𝗋𝗍𝗒𝗉\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}, denote the random set of indices such that Xi=𝔱X_{i}=\mathfrak{t} by I𝔱{1inh:Xi=𝔱}\textnormal{{I}}_{\mathfrak{t}}\equiv\{1\leq i\leq nh_{\circ}:X_{i}=\mathfrak{t}\}. Let the constant ε0ε0(α,k)>0\varepsilon_{0}\equiv\varepsilon_{0}(\alpha,k)>0 be chosen so that (1+ε0)sup𝔱𝗍𝗋p𝔱<(1ε0)h(1+\varepsilon_{0})\sup_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}p_{\mathfrak{t}}^{\star}<(1-\varepsilon_{0})h_{\circ}^{\star}. Such ε0>0\varepsilon_{0}>0 exists since h=𝔱𝗍𝗋p𝔱>0h_{\circ}^{\star}=\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}p_{\mathfrak{t}}^{\star}>0 (cf. Remark 3.8) and |𝗍𝗋|=|\mathscr{F}_{{\sf tr}}|=\infty. Then, by a Chernoff bound,

θ¯(i=1nh𝟙(Xi=𝔱)n(1ε0)h)exp(Ωk(np𝔱ε02))exp(Ckn).\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})\geq n(1-\varepsilon_{0})h_{\circ}^{\star}\Big{)}\leq\exp\Big{(}-\Omega_{k}\big{(}np_{\mathfrak{t}}^{\star}\varepsilon_{0}^{2}\big{)}\Big{)}\leq\exp(-C_{k}\sqrt{n})\,. (35)

Thus, |I𝔱|n(1ε0)h|\textnormal{{I}}_{\mathfrak{t}}|\leq n(1-\varepsilon_{0})h_{\circ}^{\star} holds with probability 1exp(Ckn)1-\exp(-C_{k}\sqrt{n}). Note that we can express

θ¯(𝒜{|1ni=1nh𝟙(Xi=𝔱)p𝔱|ε𝔱v𝔱n})=I:||I|np𝔱|ε𝔱v𝔱nθ¯(𝒜{I𝔱=I}).\mathbb{P}_{\underline{\theta}^{\star}}\bigg{(}\mathscr{A}\cap\Big{\{}\,\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{v_{\mathfrak{t}}\sqrt{n}}\,\Big{\}}\bigg{)}=\sum_{I:\big{|}\frac{|I|}{n}-p_{\mathfrak{t}}^{\star}\big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{v_{\mathfrak{t}}\sqrt{n}}}\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\mathscr{A}\cap\Big{\{}\textnormal{{I}}_{\mathfrak{t}}=I\Big{\}}\Big{)}\,.

Having (35) in mind, we bound the rhs above by

sup|I|n(1ε0)hθ¯(𝒜|I𝔱=I)θ¯(|1ni=1nh𝟙(Xi=𝔱)p𝔱|ε𝔱v𝔱n)+θ¯(i=1nh𝟙(Xi=𝔱)n(1ε0)h)\sup_{|I|\leq n(1-\varepsilon_{0})h_{\circ}^{\star}}\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\mathscr{A}\,\,\Big{|}\,\,\textnormal{{I}}_{\mathfrak{t}}=I\Big{)}\cdot\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{v_{\mathfrak{t}}\sqrt{n}}\Big{)}+\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})\geq n(1-\varepsilon_{0})h_{\circ}^{\star}\Big{)}

Thus, because θ¯(𝒜)kn2exp(Ckn)\mathbb{P}_{\underline{\theta}^{\star}}(\mathscr{A})\gtrsim_{k}n^{-2}\gg\exp(-C_{k}\sqrt{n}), it follows that

θ¯(|1ni=1nh𝟙(Xi=𝔱)p𝔱|ε𝔱v𝔱n|𝒜)θ¯(|1ni=1nh𝟙(Xi=𝔱)p𝔱|ε𝔱v𝔱n)+exp(Ckn),\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{v_{\mathfrak{t}}\sqrt{n}}\,\,\Big{|}\,\,\mathscr{A}\Big{)}\leq\mathcal{R}\cdot\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{v_{\mathfrak{t}}\sqrt{n}}\Big{)}+\exp(-C_{k}^{\prime}\sqrt{n})\,, (36)

where :=sup|I|n(1ε0)hθ¯(𝒜|I𝔱=I)θ¯(𝒜)\mathcal{R}:=\sup_{|I|\leq n(1-\varepsilon_{0})h_{\circ}^{\star}}\frac{\mathbb{P}_{\underline{\theta}^{\star}}(\mathscr{A}\,|\,\textnormal{{I}}_{\mathfrak{t}}=I)}{\mathbb{P}_{\underline{\theta}^{\star}}(\mathscr{A})}. We now argue that k1\mathcal{R}\lesssim_{k}1 by a local central limit theorem: note that the distribution of X1,,XnhX_{1},...,X_{nh_{\circ}} given I𝔱=I\textnormal{{I}}_{\mathfrak{t}}=I are i.i.d from the distribution 𝔱(Xi=𝔱):=p𝔱hp𝔱𝟙(𝔱𝔱)\mathbb{P}^{-\mathfrak{t}}(X_{i}=\mathfrak{t}^{\prime}):=\frac{p_{\mathfrak{t}^{\prime}}^{\star}}{h_{\circ}^{\star}-p_{\mathfrak{t}}^{\star}}\mathds{1}(\mathfrak{t}^{\prime}\neq\mathfrak{t}), 𝔱𝗍𝗋\mathfrak{t}^{\prime}\in\mathscr{F}_{{\sf tr}}. Thus, it follows that

θ¯(𝒜|I𝔱=I)=𝔱(𝒜|I|),where𝒜:={i>𝔟¯Xi=nh¯(B)𝔣𝗍𝗋np𝔣𝔟¯𝔣𝔟¯𝔱,i>logwXi+𝔣𝗍𝗋np𝔣logw𝔣+logw𝔱[ns,ns+1)}.\begin{split}&\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\mathscr{A}\,\,\Big{|}\,\,\textnormal{{I}}_{\mathfrak{t}}=I\Big{)}=\mathbb{P}^{-\mathfrak{t}}\big{(}\mathscr{A}_{|I|}\big{)},\quad\textnormal{where}\\ &\mathscr{A}_{\ell}:=\Big{\{}\sum_{i>\ell}\underline{\mathfrak{b}}_{X_{i}}=n\underline{h}(B)-\sum_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}np_{\mathfrak{f}}\underline{\mathfrak{b}}_{\mathfrak{f}}-\ell\cdot\underline{\mathfrak{b}}_{\mathfrak{t}},~{}~{}~{}\sum_{i>\ell}\log w_{X_{i}}+\sum_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}np_{\mathfrak{f}}\log w_{\mathfrak{f}}+\ell\cdot\log w_{\mathfrak{t}}\in[ns,ns+1)\Big{\}}.\end{split}

By local central limit theorem for triangular arrays, we have for 𝒜𝒜(B,s,{p𝔣}𝔣𝗍𝗋)\mathscr{A}_{\ell}\equiv\mathscr{A}_{\ell}(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}}) that

lim supnsup(B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉(C)𝔱𝗍𝗋𝗍𝗒𝗉,n(1ε0)hn2𝔱(𝒜)<.\limsup_{n\to\infty}\sup_{\begin{subarray}{c}(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}}(C)\\ \mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}},\;\ell\leq n(1-\varepsilon_{0})h_{\circ}^{\star}\end{subarray}}\;n^{2}\cdot\mathbb{P}^{-\mathfrak{t}}\big{(}\mathscr{A}_{\ell}\big{)}<\infty\,.

Recalling that θ¯(𝒜)kn2\mathbb{P}_{\underline{\theta}^{\star}}(\mathscr{A})\gtrsim_{k}n^{-2} holds (cf. (29)), we therefore have that C~\mathcal{R}\leq\widetilde{C} for some C~C~(C,α,k)\widetilde{C}\equiv\widetilde{C}(C,\alpha,k). Plugging this estimate into (36) concludes the proof. ∎

Having Lemmas 3.11 and 3.12 in hand, we now prove Proposition 3.9.

Proof of Proposition 3.9.

Fix C>0C>0 and ε>0\varepsilon>0. By Lemma 3.11, it suffices to restrict our attention to the typical trees. That is, recalling the identity (27), it suffices to show that there exists C0C0(ε,C,α,k)C_{0}\equiv C_{0}(\varepsilon,C,\alpha,k) such that for any (B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉(C)(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}}(C),

θ¯(𝔱𝗍𝗋𝗍𝗒𝗉v𝔱|1ni=1nh𝟙(Xi=𝔱)p𝔱|C0n|𝒜)ε.\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}}v_{\mathfrak{t}}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{C_{0}}{\sqrt{n}}\,\,\Big{|}\,\,\mathscr{A}\Big{)}\leq\varepsilon\,. (37)

To prove (37), we assign a cost ε𝔱\varepsilon_{\mathfrak{t}} to each typical tree 𝔱𝗍𝗋𝗍𝗒𝗉\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}. We choose ε𝔱εv𝔱=C0(v2(Ck)v)1\varepsilon_{\mathfrak{t}}\equiv\varepsilon_{v_{\mathfrak{t}}}=C_{0}^{\prime}(v^{2}(Ck)^{v})^{-1}, where C>0C>0 is the universal constant from the bound Lv:=|{𝔱𝗍𝗋:v𝔱=v}|(Ck)vL_{v}:=|\{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}:v_{\mathfrak{t}}=v\}|\leq(Ck)^{v}, and C0=C0(C,ε,α,k)C_{0}^{\prime}=C_{0}^{\prime}(C,\varepsilon,\alpha,k) is determined later. Then, we let C0=C0(C,ε,α,k)C_{0}=C_{0}(C,\varepsilon,\alpha,k) to be large enough so that

𝔱𝗍𝗋𝖺𝗍𝗒𝗉ε𝔱v1εvLv=C0v1v2C0.\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf atyp}}}\varepsilon_{\mathfrak{t}}\leq\sum_{v\geq 1}\varepsilon_{v}L_{v}=C_{0}^{\prime}\sum_{v\geq 1}v^{-2}\leq C_{0}\,.

Thus, Lemma 3.12 shows that the lhs of (37) is bounded by

C~𝔱𝗍𝗋𝗍𝗒𝗉θ¯(|1ni=1nh𝟙(Xi=𝔱)p𝔱|ε𝔱v𝔱n)+|𝗍𝗋𝗍𝗒𝗉|exp(Ckn),\widetilde{C}\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}}\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{v_{\mathfrak{t}}\sqrt{n}}\Big{)}+|\mathscr{F}_{{\sf tr}}^{{\sf typ}}|\exp(-C_{k}\sqrt{n})\,,

where C~C~(C,α,k)\widetilde{C}\equiv\widetilde{C}(C,\alpha,k) is from Lemma 3.12. An important observation is that 𝗍𝗋𝗍𝗒𝗉{𝔱𝗍𝗋:v𝔱lognklog2}\mathscr{F}_{{\sf tr}}^{{\sf typ}}\subset\{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}:v_{\mathfrak{t}}\leq\frac{\log n}{k\log 2}\} since {p𝔣}𝔣𝔈12\{p_{\mathfrak{f}}^{\star}\}_{\mathfrak{f}\in\mathscr{F}}\in\mathfrak{E}_{\frac{1}{2}} holds by Lemma 3.13 in [28]. Thus, |𝗍𝗋𝗍𝗒𝗉|(Ck)lognklog2=nO(1)|\mathscr{F}_{{\sf tr}}^{{\sf typ}}|\leq(Ck)^{\frac{\log n}{k\log 2}}=n^{O(1)}. Therefore, altogether,

θ¯(𝔱𝗍𝗋𝗍𝗒𝗉v𝔱|1ni=1nh𝟙(Xi=𝔱)p𝔱|C0n|𝒜)C~𝔱𝗍𝗋𝗍𝗒𝗉θ¯(|1ni=1nh𝟙(Xi=𝔱)p𝔱|ε𝔱v𝔱n)+on(1).\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}}v_{\mathfrak{t}}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{C_{0}}{\sqrt{n}}\,\,\Big{|}\,\,\mathscr{A}\Big{)}\leq\widetilde{C}\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}}\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{v_{\mathfrak{t}}\sqrt{n}}\Big{)}+o_{n}(1)\,. (38)

The final step is to bound the rhs above by a Chernoff bound. Choose C0=C0(C,ε,α,k)C_{0}^{\prime}=C_{0}^{\prime}(C,\varepsilon,\alpha,k) large enough so that for every v1v\geq 1,

n|hθ¯(Xi=𝔱)p𝔱|C~p𝔱C~2kv2C02v2(Ck)v,\sqrt{n}\big{|}h_{\circ}\mathbb{P}_{\underline{\theta}^{\star}}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\big{|}\leq\widetilde{C}^{\prime}p_{\mathfrak{t}^{\star}}\leq\widetilde{C}^{\prime}2^{-\frac{kv}{2}}\leq\frac{C_{0}^{\prime}}{2v^{2}(Ck)^{v}}\,,

where the first inequality holds for some C~C~(C,α,k)\widetilde{C}^{\prime}\equiv\widetilde{C}^{\prime}(C,\alpha,k) since Bh(B)B\to h_{\circ}(B) is Lipschitz and BB1Cn\left\|{B-B^{\star}}\right\|_{1}\leq\frac{C}{\sqrt{n}} by definition of Ψ𝗍𝗒𝗉(C)\Psi_{{\sf typ}}(C) in (24). Thus, we have by a Chernoff bound that

𝔱𝗍𝗋𝗍𝗒𝗉θ¯(|1ni=1nh𝟙(Xi=𝔱)p𝔱|ε𝔱v𝔱n)𝔱𝗍𝗋𝗍𝗒𝗉exp(ε𝔱2C(v𝔱p𝔱)2)v1(Ck)vexp((C0)22kv2Cv6(Ck)2v),\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}}\mathbb{P}_{\underline{\theta}^{\star}}\Big{(}\Big{|}\frac{1}{n}\sum_{i=1}^{nh_{\circ}}\mathds{1}(X_{i}=\mathfrak{t})-p_{\mathfrak{t}}^{\star}\Big{|}\geq\frac{\varepsilon_{\mathfrak{t}}}{v_{\mathfrak{t}}\sqrt{n}}\Big{)}\leq\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}^{{\sf typ}}}\exp\Big{(}-\frac{\varepsilon_{\mathfrak{t}}^{2}}{C(v_{\mathfrak{t}}p_{\mathfrak{t}}^{\star})^{2}}\Big{)}\leq\sum_{v\geq 1}(Ck)^{v}\exp\Big{(}-\frac{(C_{0}^{\prime})^{2}2^{\frac{kv}{2}}}{Cv^{6}(Ck)^{2v}}\Big{)}\,, (39)

where C>0C>0 denotes a universal constant. If we denote the rhs above by f(C0)f(C_{0}^{\prime}), then ff does not depend on any other parameters and clearly satisfy limC0f(C0)=0\lim_{C_{0}^{\prime}\to\infty}f(C_{0}^{\prime})=0. Therefore, taking C0C_{0}^{\prime} to be large enough so that f(C0)(2C~)1εf(C_{0}^{\prime})\leq(2\widetilde{C})^{-1}\varepsilon concludes the proof by (38) and (39). ∎

By a corollary of Proposition 3.2 and Proposition 3.9, we have the following.

Corollary 3.13.

Recall the set of coloring profile Ξ0\Xi_{0} from Proposition 3.1. Then, for any ε>0\varepsilon>0, there exists C0C0(ε,α,k)C_{0}\equiv C_{0}(\varepsilon,\alpha,k) such that uniformly over |ss|n2/3|s-s^{\star}|\leq n^{-2/3},

𝔼Zλ,s[ξξC0nandξΞ0]ε𝔼Zλ,s\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\Big{[}\left\|{\xi-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\geq\frac{C_{0}}{\sqrt{n}}\,~{}\textnormal{and}~{}~{}\xi\in\Xi_{0}\Big{]}\leq\varepsilon\cdot\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}
Proof.

For ξΞ0\xi\in\Xi_{0}, the quantity ξξ\left\|{\xi-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}} defined in (14) can be bounded by

ξξBB1+2𝔱𝗍𝗋|p𝔱p𝔱|v𝔱+log2nn,\left\|{\xi-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\leq\left\|{B-B^{\star}}\right\|_{1}+2\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}|p_{\mathfrak{t}}-p_{\mathfrak{t}}^{\star}|v_{\mathfrak{t}}+\frac{\log^{2}n}{n}\,,

since by Remark 3.10, f𝔣v𝔣f_{\mathfrak{f}}\leq v_{\mathfrak{f}} holds for non multi-cyclic free component 𝔣\mathfrak{f}, and v(𝔣)4lognklog2v(\mathfrak{f})\leq\frac{4\log n}{k\log 2} holds if p𝔣0p_{\mathfrak{f}}\neq 0 from ξ𝔈14\xi\in\mathfrak{E}_{\frac{1}{4}}. Thus, by taking C0C0(ε,α,k)C_{0}\equiv C_{0}(\varepsilon,\alpha,k) large enough, Proposition 3.2 shows that for some CC(ε,α,k)>0C\equiv C(\varepsilon,\alpha,k)>0,

𝔼Zλ,s[ξξC0nandξΞ0]ε2𝔼Zλ,s+𝔼Zλ,s[BB1Cn,𝔱𝗍𝗋|p𝔱p𝔱|v𝔱C02n,and(B,{p𝔣}𝔣)Ξ0].\begin{split}&\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\Big{[}\left\|{\xi-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\geq\frac{C_{0}}{\sqrt{n}}\,~{}\textnormal{and}~{}~{}\xi\in\Xi_{0}\Big{]}\\ &\leq\frac{\varepsilon}{2}\cdot\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}+\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\bigg{[}\left\|{B-B^{\star}}\right\|_{1}\leq\frac{C}{\sqrt{n}}\,,~{}\sum_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}}|p_{\mathfrak{t}}-p_{\mathfrak{t}}^{\star}|v_{\mathfrak{t}}\geq\frac{C_{0}}{2\sqrt{n}}\,,~{}\textnormal{and}~{}~{}(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}})\in\Xi_{0}\bigg{]}.\end{split} (40)

Here, we used the fact that p𝔣=0p_{\mathfrak{f}}^{\star}=0 for cyclic free components 𝔣\mathfrak{f} (cf. Definition 3.7). Note that BB1Cn\left\|{B-B^{\star}}\right\|_{1}\leq\frac{C}{\sqrt{n}}, |ss|n2/3|s-s^{\star}|\leq n^{-2/3}, and (B,{p𝔣}𝔣)Ξ0(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}})\in\Xi_{0} implies that (B,s,{p𝔣}𝔣𝗍𝗋)Ψ𝗍𝗒𝗉(C)(B,s,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}\setminus\mathscr{F}_{{\sf tr}}})\in\Psi_{{\sf typ}}(C). Therefore, Proposition 3.9 shows that if take C0C0(ε,α,k)C_{0}\equiv C_{0}(\varepsilon,\alpha,k) large enough, the rightmost term in (40) is at most ε2𝔼Zλ,s\frac{\varepsilon}{2}\cdot\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}. ∎

Finally, it is straightforward to establish Theorem 2.8 from Proposition 3.1 and Corollary 3.13.

Proof of Theorem 2.8.

By Proposition 3.1, there exist C¯C¯(ε,α,k)\underline{C}\equiv\underline{C}(\varepsilon,\alpha,k) such that ((𝓖,x¯)Γ(C¯))ε/2\mathbb{P}\big{(}(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\notin\Gamma(\underline{C})\big{)}\leq\varepsilon/2. For such C¯=(C1,C2)\underline{C}=(C_{1},C_{2}), we have that

((𝓖,x¯)Γ(C¯)andξ[𝓖,x¯]ξC0n)=𝔼[𝔼[x¯:(𝓖,x¯)Γ(C¯)ξ[𝓖,x¯]ξC0nsize(x¯;𝓖)|𝖲𝖮𝖫(𝓖)||𝓖]]nenλs+(2λ)C2s[s(C1),s(C2)]𝔼Zλ,s[ξξC0nandξΞ0]+on(1)\begin{split}&\mathbb{P}\bigg{(}(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\in\Gamma(\underline{C})~{}~{}\textnormal{and}~{}~{}\left\|{\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\geq\frac{C_{0}}{\sqrt{n}}\bigg{)}=\mathbb{E}\bigg{[}\mathbb{E}\bigg{[}\sum_{\begin{subarray}{c}\underline{x}:(\boldsymbol{\mathcal{G}},\underline{x})\in\Gamma(\underline{C})\\ \left\|{\xi[\boldsymbol{\mathcal{G}},\underline{x}]-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\geq\frac{C_{0}}{\sqrt{n}}\end{subarray}}\;\frac{\textsf{size}(\underline{x};\boldsymbol{\mathcal{G}})}{|{\sf SOL}(\boldsymbol{\mathcal{G}})|}\,\,\Big{|}\,\,\boldsymbol{\mathcal{G}}\bigg{]}\bigg{]}\\ &\leq\sqrt{n}e^{n\lambda^{\star}s^{\star}+(2-\lambda^{\star})C_{2}}\sum_{s\in[s_{\circ}(C_{1}),s_{\circ}(C_{2})]}\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\Big{[}\left\|{\xi-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\geq\frac{C_{0}}{\sqrt{n}}\,~{}\textnormal{and}~{}~{}\xi\in\Xi_{0}\Big{]}+o_{n}(1)\,\end{split} (41)

where the extra on(1)o_{n}(1) comes from the truncation of the number of free variables and forcing edges in the definition of Zλ,s\textnormal{{Z}}_{\lambda^{\star},s} in (19) (cf. Lemma 2.17 in [33]). By Corollary 3.13, the sum in the rhs above can be made small enough compared to s[s(C1),s(C2)]𝔼Zλ,s\sum_{s\in[s_{\circ}(C_{1}),s_{\circ}(C_{2})]}\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}. Moreover, Theorem 3.22 in [28] shows that uniformly over |ss|n2/3|s-s^{\star}|\leq n^{-2/3}, 𝔼Zλ,skn1/2enλs\mathbb{E}\textnormal{{Z}}_{\lambda^{\star},s}\asymp_{k}n^{-1/2}e^{n\lambda^{\star}s^{\star}} holds (see also equation (3.54) therein). Note that ss lies in the lattice n1n^{-1}\mathbb{Z}, so the number of s[s(C1),s(C2)]s\in[s_{\circ}(C_{1}),s_{\circ}(C_{2})] is at most C2C1+1\lceil C_{2}-C_{1}+1\rceil. Therefore, taking C0C0(ε,α,k)>0C_{0}\equiv C_{0}(\varepsilon,\alpha,k)>0 large enough compared to |C1||C2||C_{1}|\vee|C_{2}| in (41), we have by Corollary 3.13 that ((𝓖,x¯)Γ(C¯)andξ[𝓖,x¯]ξC0n)ε2\mathbb{P}\big{(}(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\in\Gamma(\underline{C})~{}~{}\textnormal{and}~{}~{}\left\|{\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\geq\frac{C_{0}}{\sqrt{n}}\big{)}\leq\frac{\varepsilon}{2}, which concludes the proof. ∎

4 Coupling tt-neighborhoods to a broadcast process on a tree

In this section, we prove Lemma 2.9 and Theorem 2.14. We mostly focus on the proof of Theorem 2.14, and the proof of Lemma 2.9, which is based on a first moment estimate, is provided at the end of this section. Throughout, we let (𝓖,x¯)(\boldsymbol{\mathcal{G}},\underline{\textbf{x}}) be a random frozen configuration drawn with probability proportional to its size (cf. (a)(a) of Observation 2.2).

As mentioned in Section 2.4, the key idea in proving Theorem 2.14 is to construct a coupling between the measures 𝔼ξνt[𝓖,x¯]\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}] and νt\nu^{\star}_{t}, and another coupling between 𝔼ξ[νt[𝓖,x¯]νt[𝓖,x¯]]\mathbb{E}_{\xi}\big{[}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\otimes\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\big{]} and 𝔼ξνt[𝓖,x¯]𝔼ξνt[𝓖,x¯]\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\otimes\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}].

Proposition 4.1.

There exists an explicit νtνt[α,k]𝒫(Ωt)\nu^{\star}_{t}\equiv\nu^{\star}_{t}[\alpha,k]\in\mathscr{P}(\Omega_{t}) such that the following holds: for any t1t\geq 1 and C>0C>0, there exists a constant KK(C,k,t)K\equiv K(C,k,t) such that

supξΞCdTV(𝔼ξνt[𝓖,x¯],νt)Kn\displaystyle\sup_{\xi\in\Xi_{C}}d_{\operatorname{TV}}(\,\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\,,\,\nu_{t}^{\star}\,)\leq\frac{K}{\sqrt{n}} (42)
supξΞCdTV(𝔼ξ[νt[𝓖,x¯]νt[𝓖,x¯]],𝔼ξνt[𝓖,x¯]𝔼ξνt[𝓖,x¯])Kn\displaystyle\sup_{\xi\in\Xi_{C}}d_{\operatorname{TV}}\Big{(}\,\mathbb{E}_{\xi}\big{[}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\otimes\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\big{]}\,,\,\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\otimes\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\,\Big{)}\leq\frac{K}{n} (43)

Proposition 4.1 clearly implies Theorem 2.14, and we include the proof for completeness.

Proof of Theorem 2.14.

By Chebyshev’s inequality, we have for any w[1,1]Ωt{𝖼𝗒𝖼}w\in[-1,1]^{\Omega_{t}\cup\{{\sf cyc}\}} that

ξ(|νt[𝓖,x¯]νt,w|K0n)n(K0)2((𝔼ξνt[𝓖,x¯]νt,w)2+Varξ(νt[𝓖,x¯],w))n(K0)2(𝔼ξ𝝂tνt12+𝔼ξ[𝝂t𝝂t]𝔼ξ𝝂t𝔼ξ𝝂t1),\begin{split}\mathbb{P}_{\xi}\bigg{(}\Big{|}\big{\langle}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]-\nu_{t}^{\star}\,,\,w\big{\rangle}\Big{|}\geq\frac{K_{0}}{\sqrt{n}}\bigg{)}&\leq\frac{n}{(K_{0})^{2}}\left(\Big{(}\big{\langle}\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]-\nu_{t}^{\star}\,,\,w\big{\rangle}\Big{)}^{2}+\operatorname{Var}_{\xi}\Big{(}\big{\langle}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\,,\,w\big{\rangle}\Big{)}\right)\\ &\leq\frac{n}{(K_{0})^{2}}\left(\Big{\|}\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}-\nu_{t}^{\star}\Big{\|}_{1}^{2}+\Big{\|}\mathbb{E}_{\xi}[\boldsymbol{\nu}_{t}\otimes\boldsymbol{\nu}_{t}]-\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\otimes\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\Big{\|}_{1}\right)\,,\end{split}

where we abbreviated 𝝂tνt[𝓖,x¯]\boldsymbol{\nu}_{t}\equiv\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}] in the last line. Recall that dTV(μ,ν)=12μν1d_{\operatorname{TV}}(\mu,\nu)=\frac{1}{2}\left\|{\mu-\nu}\right\|_{1} holds for any probability measures μ,ν\mu,\nu. Thus, taking K0K0(C,ε,k,t)K_{0}\equiv K_{0}(C,\varepsilon,k,t) large enough so that (K0)28ε1(K1)2(K_{0})^{2}\geq 8\varepsilon^{-1}(K\vee 1)^{2} for KK(C,k,t)K\equiv K(C,k,t) in Proposition 4.1 concludes the proof. ∎

Thus, the rest of this section is devoted to the proof of Proposition 4.1 except for a brief moment where we prove Lemma 2.9.

4.1 A broadcast process with edge configurations

In this subsection, we define the optimal tt-coloring profile νtνt[α,k]\nu^{\star}_{t}\equiv\nu^{\star}_{t}[\alpha,k] based on the optimal coloring profile ξξ[α,k]\xi^{\star}\equiv\xi^{\star}[\alpha,k] in Definition 3.7. The following notations will be useful throughout.

We say τ¯𝒞d\underline{\tau}\in\mathscr{C}^{d} (resp. (τ¯,L¯)(𝒞×{0,1})k(\underline{\tau},\underline{\texttt{L}}^{\prime})\in(\mathscr{C}\times\{0,1\})^{k}) is valid if it can be realized as σ¯δv=τ¯\underline{\sigma}_{\delta v}=\underline{\tau} (resp. (σ¯δa,L¯δa)=(τ¯,L¯)(\underline{\sigma}_{\delta a},\underline{\texttt{L}}_{\delta a})=(\underline{\tau},\underline{\texttt{L}}^{\prime})) for a valid component coloring (V,F,E,L¯,σ¯)(V,F,E,\underline{\texttt{L}},\underline{\sigma}) and vVv\in V (resp. aFa\in F). We say τ¯𝒞k\underline{\tau}\in\mathscr{C}^{k} is valid if there exists L¯{0,1}k\underline{\texttt{L}}^{\prime}\in\{0,1\}^{k} such that (τ¯,L¯)(\underline{\tau},\underline{\texttt{L}}^{\prime}) is valid. We denote the collection of valid τ¯𝒞d\underline{\tau}\in\mathscr{C}^{d} such that τ¯{R,B,S}d\underline{\tau}\not\subset\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{d} by 𝒞˙f\dot{\mathscr{C}}_{\textnormal{\small{{f}}}}, and denote the collection of valid τ¯𝒞k\underline{\tau}\in\mathscr{C}^{k} such that τ¯{R,B,S}k\underline{\tau}\not\subset\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{k} by 𝒞^f\hat{\mathscr{C}}_{\textnormal{\small{{f}}}}

Note that for τ¯𝒞˙f\underline{\tau}\in\dot{\mathscr{C}}_{\textnormal{\small{{f}}}} and σ¯δv=τ¯\underline{\sigma}_{\delta v}=\underline{\tau}, then the free component 𝔣(τ¯)\mathfrak{f}(\underline{\tau})\in\mathscr{F} that contains vv is determined solely with τ¯\underline{\tau}. Similarly, for τ¯𝒞^f\underline{\tau}\in\hat{\mathscr{C}}_{\textnormal{\small{{f}}}}, the free component 𝔣(τ¯)\mathfrak{f}(\underline{\tau}) induces is well-defined. Conversely, given a free component 𝔣,vV(𝔣)\mathfrak{f}\in\mathscr{F},v\in V(\mathfrak{f}), and aF(𝔣)a\in F(\mathfrak{f}), the component colorings σ¯δv𝒞d\underline{\sigma}_{\delta v}\in\mathscr{C}^{d} and σ¯δa𝒞k\underline{\sigma}_{\delta a}\in\mathscr{C}^{k} are determined up to a permutation of the coordinates. For τ¯𝒞˙f\underline{\tau}\in\dot{\mathscr{C}}_{\textnormal{\small{{f}}}}, define the multiplicity of τ¯\underline{\tau} by

m˙(τ¯):=|{vV(𝔣(τ¯)):σ¯δvper(τ¯)}|,\dot{m}(\underline{\tau}):=\big{|}\{v\in V(\mathfrak{f}(\underline{\tau})):\underline{\sigma}_{\delta v}\in\textnormal{per}(\underline{\tau})\}\big{|}\,, (44)

where per(τ¯)\textnormal{per}(\underline{\tau}) denotes the set of permutations τ¯\underline{\tau}. Similarly, the multiplicity of τ¯𝒞^f\underline{\tau}\in\hat{\mathscr{C}}_{\textnormal{\small{{f}}}} is defined by

m^(τ¯):=|{aF(𝔣(τ¯)):σ¯δaper(τ¯)}|.\hat{m}(\underline{\tau}):=\big{|}\{a\in F(\mathfrak{f}(\underline{\tau})):\underline{\sigma}_{\delta a}\in\textnormal{per}(\underline{\tau})\}\big{|}\,. (45)
Remark 4.2.

Let σ¯𝒞E\underline{\sigma}\in\mathscr{C}^{E} be a valid component coloring corresponding to (𝒢,x¯)(\mathcal{G},\underline{x}). Note that for τ¯𝒞˙f\underline{\tau}\in\dot{\mathscr{C}}_{\textnormal{\small{{f}}}}, the quantity m˙(τ¯)p𝔣(τ¯)[𝒢,x¯]\dot{m}(\underline{\tau})\cdot p_{\mathfrak{f}(\underline{\tau})}[\mathcal{G},\underline{x}] equals the fraction of variables such that σ¯δvper(τ¯)\underline{\sigma}_{\delta v}\in\textnormal{per}(\underline{\tau}). A similar remark can be made for τ¯𝒞^f\underline{\tau}\in\hat{\mathscr{C}}_{\textnormal{\small{{f}}}}. On the other hand, the empirical profile of spins adjacent to frozen variables and separating clauses is encoded by B[𝒢,x¯]B[\mathcal{G},\underline{x}]. Thus, the coloring profile ξ=ξ[𝒢,x¯]\xi=\xi[\mathcal{G},\underline{x}] alone determines the spin profiles {σ¯δv}vV\{\underline{\sigma}_{\delta v}\}_{v\in V} and {σ¯δa}aF\{\underline{\sigma}_{\delta a}\}_{a\in F} up to a permutation of the coordinates, which serves as a useful fact throughout this section.

We now introduce the broadcast model on an infinite (d,k)(d,k)-regular tree with edge configurations.

Definition 4.3.

Consider symmetric probability distributions ˙𝒫(𝒞d)\dot{\mathcal{H}}\in\mathscr{P}(\mathscr{C}^{d}), ^𝒫(𝒞k)\hat{\mathcal{H}}\in\mathscr{P}(\mathscr{C}^{k}) with the same marginal ¯𝒫(𝒞)\bar{\mathcal{H}}\in\mathscr{P}(\mathscr{C}). That is, ˙(σ1,,σd)=˙(σπ(1),,σπ(d))\dot{\mathcal{H}}(\sigma_{1},\ldots,\sigma_{d})=\dot{\mathcal{H}}(\sigma_{\pi(1)},\ldots,\sigma_{\pi(d)}) holds for πSd\pi\in S_{d} and (σ1,,σd)𝒞d(\sigma_{1},\ldots,\sigma_{d})\in\mathscr{C}^{d}. An analogous condition holds for ^\hat{\mathcal{H}}. Moreover, for any τ𝒞\tau\in\mathscr{C},

¯(τ):=τ¯𝒞d˙(τ¯)𝟙{τ1=τ}=τ¯𝒞k^(τ¯)𝟙{τ1=τ}.\bar{\mathcal{H}}(\tau):=\sum_{\underline{\tau}\in\mathscr{C}^{d}}\dot{\mathcal{H}}(\underline{\tau})\mathds{1}\{\tau_{1}=\tau\}=\sum_{\underline{\tau}\in\mathscr{C}^{k}}\hat{\mathcal{H}}(\underline{\tau})\mathds{1}\{\tau_{1}=\tau\}\,. (46)

Given such channel (˙,^)(\dot{\mathcal{H}},\hat{\mathcal{H}}), and an infinite (d,k)(d,k)-regular tree 𝒯d,k\mathscr{T}_{d,k} with root ρ\rho, the broadcast process (with edge configurations) is a probability distribution of (𝝈¯t,L¯t)=((𝝈e)eE(𝒯d,k,t),(Le)eE𝗂𝗇(𝒯d,k,t))(\underline{\boldsymbol{\sigma}}_{t},\underline{\textbf{L}}_{t})=\big{(}(\boldsymbol{\sigma}_{e})_{e\in E(\mathscr{T}_{d,k,t})},(\textbf{L}_{e})_{e\in E_{\sf in}(\mathscr{T}_{d,k,t})}\big{)} defined as follows. The spin neighborhood around the root 𝝈¯δρ𝒞d\underline{\boldsymbol{\sigma}}_{\delta\rho}\in\mathscr{C}^{d} is drawn from the distribution ˙\dot{\mathcal{H}}. Then, it is propagated along the variables and clauses with the following rule: if an edge eE(𝒯d,k)e\in E(\mathscr{T}_{d,k}) has children edges δa(e)e\delta a(e)\setminus e, i.e. when d(a(e),ρ)>d(v(e),ρ)d(a(e),\rho)>d(v(e),\rho), then for τ¯=(τ1,,τk)𝒞k\underline{\tau}=(\tau_{1},\ldots,\tau_{k})\in\mathscr{C}^{k} and τ𝒞\tau\in\mathscr{C},

(𝝈¯δa(e)=τ¯|𝝈e=τ)=1k^(τ¯)i=1k𝟙(τi=τ)¯(τ)=:^(τ¯|τ).\mathbb{P}\big{(}\underline{\boldsymbol{\sigma}}_{\delta a(e)}=\underline{\tau}\,\big{|}\boldsymbol{\sigma}_{e}=\tau\big{)}=\frac{1}{k}\frac{\hat{\mathcal{H}}(\underline{\tau})\sum_{i=1}^{k}\mathds{1}(\tau_{i}=\tau)}{\bar{\mathcal{H}}(\tau)}=:\hat{\mathcal{H}}(\underline{\tau}\,|\,\tau)\,. (47)

If an edge eE(𝒯d,k)e\in E(\mathscr{T}_{d,k}) has children edges δv(e)e\delta v(e)\setminus e, i.e. when d(v(e),ρ)>d(a(e),ρ)d(v(e),\rho)>d(a(e),\rho), then for τ¯=(τ1,,τd)𝒞d\underline{\tau}=(\tau_{1},\ldots,\tau_{d})\in\mathscr{C}^{d} and τ𝒞\tau\in\mathscr{C},

(𝝈¯δv(e)=τ¯|𝝈e=τ)=1d˙(τ¯)i=1d𝟙(τi=τ)¯(τ)=:˙(τ¯|τ).\mathbb{P}\big{(}\underline{\boldsymbol{\sigma}}_{\delta v(e)}=\underline{\tau}\,\big{|}\boldsymbol{\sigma}_{e}=\tau\big{)}=\frac{1}{d}\frac{\dot{\mathcal{H}}(\underline{\tau})\sum_{i=1}^{d}\mathds{1}(\tau_{i}=\tau)}{\bar{\mathcal{H}}(\tau)}=:\dot{\mathcal{H}}(\underline{\tau}\,|\,\tau)\,.

Finally, conditional on (𝝈e)eE(𝒯d,k)(\boldsymbol{\sigma}_{e})_{e\in E(\mathscr{T}_{d,k})}, draw L¯δa{0,1}k\underline{\textbf{L}}_{\delta a}\in\{0,1\}^{k} for each clause aF(𝒯d,k)a\in F(\mathscr{T}_{d,k}) independently and uniformly at random among L¯{0,1}k\underline{\texttt{L}}\in\{0,1\}^{k} such that (𝝈¯δa,L¯)(\underline{\boldsymbol{\sigma}}_{\delta a},\underline{\texttt{L}}) is valid.

In the last step above, we remark that when σ¯δa𝒞^f\underline{\sigma}_{\delta a}\in\hat{\mathscr{C}}_{\textnormal{\small{{f}}}}, then there exists a unique L¯δa{0,1}k\underline{\texttt{L}}_{\delta a}\in\{0,1\}^{k} such that (σ¯δa,L¯δa)(\underline{\sigma}_{\delta a},\underline{\texttt{L}}_{\delta a}) is valid since the non-boundary component coloring carries the literal information.

Definition 4.4.

Let ˙˙[α,k]𝒫(𝒞d)\dot{\mathcal{H}}^{\star}\equiv\dot{\mathcal{H}}^{\star}[\alpha,k]\in\mathscr{P}(\mathscr{C}^{d}) and ^^[α,k]\hat{\mathcal{H}}^{\star}\equiv\hat{\mathcal{H}}^{\star}[\alpha,k] be defined as follows.

˙(τ¯):={B˙(τ¯)τ¯{R,B,S}d,(|per(τ¯)|)1m˙(τ¯)p𝔣(τ¯)τ¯𝒞˙f,\displaystyle\dot{\mathcal{H}}^{\star}(\underline{\tau}):=\begin{cases}\dot{B}^{\star}(\underline{\tau})&\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{d},\\ (|\textnormal{per}(\underline{\tau})|)^{-1}\cdot\dot{m}(\underline{\tau})\cdot p^{\star}_{\mathfrak{f}(\underline{\tau})}&\underline{\tau}\in\dot{\mathscr{C}}_{\textnormal{\small{{f}}}},\end{cases} ^(τ¯):={B^(τ¯)τ¯{R,B,S}d,kd(|per(τ¯)|)1m^(τ¯)p𝔣(τ¯)τ¯𝒞^f.\displaystyle\hat{\mathcal{H}}^{\star}(\underline{\tau}):=\begin{cases}\hat{B}^{\star}(\underline{\tau})&\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{d},\\ \frac{k}{d}\cdot(|\textnormal{per}(\underline{\tau})|)^{-1}\cdot\hat{m}(\underline{\tau})\cdot p^{\star}_{\mathfrak{f}(\underline{\tau})}&\underline{\tau}\in\hat{\mathscr{C}}_{\textnormal{\small{{f}}}}\,.\end{cases}

The compatibility {p𝔣}𝔣B\{p_{\mathfrak{f}}^{\star}\}_{\mathfrak{f}\in\mathscr{F}}\sim B^{\star} (cf. Remark 3.8) guarantees that ˙\dot{\mathcal{H}}^{\star} and ^\hat{\mathcal{H}}^{\star} have total mass 11 and have the same marginals. Consider the sample (𝝈¯t,L¯t)(\underline{\boldsymbol{\sigma}}^{\star}_{t},\underline{\textbf{L}}^{\star}_{t}) drawn from the broadcast process with channel (˙,^)(\dot{\mathcal{H}}^{\star},\hat{\mathcal{H}}^{\star}). Then, the optimal tt-neighborhood coloring profile νtνt[α,k]\nu^{\star}_{t}\equiv\nu^{\star}_{t}[\alpha,k] is the distribution of (𝝈¯t,L¯t)Ωt(\underline{\boldsymbol{\sigma}}^{\star}_{t},\underline{\textbf{L}}^{\star}_{t})\in\Omega_{t}, considered up to automorphisms as in Definition 2.11.

4.2 Coupling based on a configuration model

We now prove Proposition 4.1. We focus on the estimate dTV(𝔼ξνt[𝓖,x¯],νt)k,tn1/2d_{\operatorname{TV}}(\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}],\nu^{\star}_{t})\lesssim_{k,t}n^{-1/2} (cf. (42)) as the second estimate (43) is obtained in a simpler manner. Throughout, we fix ξΞC\xi\in\Xi_{C}.

Recall that the law ξ():=((𝓖,x¯)=|ξ[𝓖,x¯]=ξ)\mathbb{P}_{\xi}(\cdot):=\mathbb{P}\big{(}(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})=\cdot\,\big{|}\,\xi[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]=\xi\big{)} is a uniform distribution of (𝒢,x¯)(\mathcal{G},\underline{x}) that satisfy ξ[𝒢,x¯]=ξ\xi[\mathcal{G},\underline{x}]=\xi (cf. Remark 2.10). With abuse of notation, we write ξ[𝒢,σ¯]=ξ\xi[\mathcal{G},\underline{\sigma}]=\xi for σ¯\underline{\sigma} corresponding to a frozen configuration (𝒢,x¯)(\mathcal{G},\underline{x}) with ξ[𝒢,x¯]=ξ\xi[\mathcal{G},\underline{x}]=\xi, and consider ξ()\mathbb{P}_{\xi}(\cdot) also as a distribution of component coloring (𝓖,𝝈¯)(\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}}) conditioned on ξ[𝓖,𝝈¯]=ξ\xi[\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}}]=\xi, which is uniform.

Then, note that 𝔼ξνt[𝓖,x¯]𝒫(Ωt{𝖼𝗒𝖼})\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\in\mathscr{P}(\Omega_{t}\sqcup\{{\sf cyc}\}) is the law of (𝝈¯t(𝐯,𝓖),L¯t(𝐯,𝓖))\big{(}\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v},\boldsymbol{\mathcal{G}}),\underline{\textbf{L}}_{t}(\mathbf{v},\boldsymbol{\mathcal{G}})\big{)} considered up to automorphisms where (𝓖,𝝈¯)(V,F,E,L¯,𝝈¯)ξ(\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}})\equiv(V,F,\textbf{E},\underline{\textbf{L}},\underline{\boldsymbol{\sigma}})\sim\mathbb{P}_{\xi} and 𝐯𝖴𝗇𝗂𝖿(V)\mathbf{v}\sim{\sf Unif}(V). Here, we take the convention that if Nt(𝐯,G)N_{t}(\mathbf{v},\textnormal{{G}}) contains a cycle, then (𝝈¯t(𝐯,𝓖),L¯t(𝐯,𝓖))𝖼𝗒𝖼\big{(}\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v},\boldsymbol{\mathcal{G}}),\underline{\textbf{L}}_{t}(\mathbf{v},\boldsymbol{\mathcal{G}})\big{)}\equiv{\sf cyc}. Moreover, the following observation, which follows from Remark 4.2, shows that (𝓖,𝝈¯)ξ(\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}})\in\mathbb{P}_{\xi} is a sample from a configuration model. It serves as our main intuition in the construction of the coupling.

Observation 4.5.

Consider a coloring profile ξ=(B,{p𝔣}𝔣)\xi=(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}), where {p𝔣}𝔣B\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\sim B 666Here, we assume that nB˙,mH^,n\dot{B},m\hat{H}, and {np𝔣}𝔣\{np_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}} are integer valued.. Then, (𝓖,𝝈¯)ξ(\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}})\sim\mathbb{P}_{\xi} can be drawn from the following configuration model.

  1. (a)

    For τ¯(τ1,,τd){R,B,S}d\underline{\tau}\equiv(\tau_{1},\ldots,\tau_{d})\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{d}, consider nB˙(τ1,,τd)n\dot{B}(\tau_{1},\ldots,\tau_{d}) number of variables and assign to each of the variables the spin τi\tau_{i} to its ii’th half-edge, 1id1\leq i\leq d. For τ¯𝒞˙f\underline{\tau}\in\dot{\mathscr{C}}_{\textnormal{\small{{f}}}}, consider nm˙(τ¯)p𝔣(τ¯)n\cdot\dot{m}(\underline{\tau})\cdot p_{\mathfrak{f}(\underline{\tau})} number of variables and assign to each of the variables the spin τ𝝅(i)\tau_{\boldsymbol{\pi}(i)} to its ii’th half-edge, 1id1\leq i\leq d, where 𝝅Sd\boldsymbol{\pi}\in S_{d} is a u.a.r. permutation. The total number of variables considered is nn by compatibility (cf. Definition 3.3). Then, permute the location of the considered variables u.a.r., i.e. assign a random order to the nn variables.

  2. (b)

    Similarly, for τ¯{R,B,S}k\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{k}, consider mB^(τ¯)m\hat{B}(\underline{\tau}) number of clauses with its neighboring spin τ¯\underline{\tau}, and for τ¯𝒞^f\underline{\tau}\in\hat{\mathscr{C}}_{\textnormal{\small{{f}}}}, consider nm^(τ¯)p𝔣(τ¯)n\cdot\hat{m}(\underline{\tau})\cdot p_{\mathfrak{f}(\underline{\tau})} with its neighboring spins a u.a.r. permutation of τ¯\underline{\tau}. Then, permute the location of the considered clauses u.a.r..

  3. (c)

    Subsequently, match the half-edges adjacent to variables and the half-edges adjacent to clauses among those that have the same spin in a uniformly random manner.

  4. (d)

    Finally, we draw the literals: for each clause aFa\in F, independently draw L¯δa{0,1}k\underline{\textbf{L}}_{\delta a}\in\{0,1\}^{k} uniformly at random among those which (𝝈¯δa,L¯δa)(\underline{\boldsymbol{\sigma}}_{\delta a},\underline{\textbf{L}}_{\delta a}) is valid.

Remark 4.6.

Note that a priori, the Steps (a)(a) and (b)(b) in Observation 4.5 does not permute the spins adjacent to frozen variables and separating clauses, i.e. τ¯{R,B,S}d\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{d} and τ¯{R,B,S}k\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{k}. This is because B˙(τ¯)\dot{B}(\underline{\tau}) and B^(τ¯)\hat{B}(\underline{\tau}) stores the information on the orderings of τ¯\underline{\tau}. However, we do not distinguish such orderings for (σ¯t,L¯t)Ωt(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})\in\Omega_{t}: for permutations π1Sk\pi_{1}\in S_{k} and π2Sd\pi_{2}\in S_{d}, let ξπ1,π2(B˙π1,B^π2,B¯,{p𝔣}𝔣)\xi_{\pi_{1},\pi_{2}}\equiv(\dot{B}_{\pi_{1}},\hat{B}_{\pi_{2}},\bar{B},\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}), where B˙π1(τ¯)B˙(τπ1(1),,τπ1(d))\dot{B}_{\pi_{1}}(\underline{\tau})\equiv\dot{B}(\tau_{\pi_{1}(1)},\ldots,\tau_{\pi_{1}(d)}) and B^π2\hat{B}_{\pi_{2}} is similarly defined. Then, we have that 𝔼ξνt[𝓖,x¯]=𝔼ξπ1,π2νt[𝓖,x¯]\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]=\mathbb{E}_{\xi_{\pi_{1},\pi_{2}}}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}] and 𝔼ξνt[𝓖,x¯]νt[𝓖,x¯]=𝔼ξπ1,π2νt[𝓖,x¯]νt[𝓖,x¯]\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\otimes\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]=\mathbb{E}_{\xi_{\pi_{1},\pi_{2}}}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\otimes\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]. Thus, for the purpose of proving Proposition 4.1, we may assume that the spins τ¯{R,B,S}d\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{d} and τ¯{R,B,S}k\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{k} are permuted u.a.r. like the spins τ¯𝒞˙𝔣\underline{\tau}\in\dot{\mathscr{C}}_{\mathfrak{f}} and τ¯𝒞^𝔣\underline{\tau}\in\hat{\mathscr{C}}_{\mathfrak{f}} in the Steps (a)(a) and (b)(b) in Observation 4.5.

Remark 4.7.

Note that Observation 4.5 and Remark 4.6 show that 𝔼ξνt[𝓖,x¯]=𝖫𝖺𝗐(𝝈¯𝗍(𝐯,𝓖),L¯𝗍(𝐯,𝓖))\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]=\sf Law\big{(}\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v},\boldsymbol{\mathcal{G}}),\underline{\textbf{L}}_{t}(\mathbf{v},\boldsymbol{\mathcal{G}})\big{)}, where (𝓖,𝝈¯)ξ(\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}})\sim\mathbb{P}_{\xi} and 𝐯𝖴𝗇𝗂𝖿(V)\mathbf{v}\sim{\sf Unif}(V), is an exploration process, which can be described in a breadth-first manner as follows.

  1. (a)

    Consider nn variables with dd half-edges hanging and mm clauses with kk half-edges hanging. Each half-edge is assigned a color σ𝒞\sigma\in\mathscr{C} by the Steps (a)(a), (b)(b) in Observation 4.5 and Remark 4.6. Then, pick a variable 𝐯\mathbf{v} uniformly at random among nn variables.

  2. (b)

    Let (e1,,ed)=δ𝐯(e_{1},...,e_{d})=\delta\mathbf{v} be the half-edges adjacent to 𝐯\mathbf{v}. For e1e_{1} match it with a half-edge hanging on a clause u.a.r. among those which have the same color σe1\sigma_{e_{1}}. Similarly, match e2e_{2} with a half-edge u.a.r. among those which have the same color and have not been matched, i.e. e2e_{2} cannot be matched with the half-edge that e1e_{1} has been matched with. Repeat the same procedure for e3,,ede_{3},...,e_{d}, i.e. match them sequentially u.a.r. among those which have the same color and have not been matched previously.

  3. (c)

    By the previous step, we obtain a 22-neighborhood around 𝐯\mathbf{v} (not necessarily a tree) with the boundary half-edges hanging on clauses. For each boundary half-edges, we repeat the same procedure. We repeat this process until depth 2t2t to obtain the 2t322t-\frac{3}{2} neighborhood of 𝐯\mathbf{v} denoted by Nt(𝐯)N_{t}(\mathbf{v}), and a coloring configuration on Nt(𝐯)N_{t}(\mathbf{v}) denoted by 𝝈¯t(𝐯)𝒞E(𝒯d,k,t){𝖼𝗒𝖼}\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v})\in\mathscr{C}^{E(\mathscr{T}_{d,k,t})}\sqcup\{{\sf cyc}\}. Finally, for each clause aNt(𝐯)a\in N_{t}(\mathbf{v}), independently draw L¯δa{0,1}k\underline{\textbf{L}}_{\delta a}\in\{0,1\}^{k} uniformly at random among those which (𝝈¯δa,L¯δa)(\underline{\boldsymbol{\sigma}}_{\delta a},\underline{\textbf{L}}_{\delta a}) is valid. The final output is (𝝈¯t(𝐯),L¯t(𝐯))Ωt{𝖼𝗒𝖼}(\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}),\underline{\textbf{L}}_{t}(\mathbf{v}))\in\Omega_{t}\sqcup\{{\sf cyc}\}.

The description of the exploration process above is a sampling without replacement version (due to the pairs of half-edges already matched) of the broadcast process with the channel (˙𝗌𝗒,^𝗌𝗒)(\dot{\mathcal{H}}^{\sf sy},\hat{\mathcal{H}}^{\sf sy}) given as follows: for ξ=(B,{p𝔣}𝔣)\xi=(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}), the symmetrized coloring profile of ξ\xi is defined by (˙𝗌𝗒,^𝗌𝗒)(˙𝗌𝗒[ξ],^𝗌𝗒[ξ])𝒫(𝒞d)×𝒫(𝒞k)(\dot{\mathcal{H}}^{\sf sy},\hat{\mathcal{H}}^{\sf sy})\equiv(\dot{\mathcal{H}}^{\sf sy}[\xi],\hat{\mathcal{H}}^{\sf sy}[\xi])\in\mathscr{P}(\mathscr{C}^{d})\times\mathscr{P}(\mathscr{C}^{k}), where

˙𝗌𝗒(τ¯):={(|per(τ¯)|)1τ¯per(τ¯)B˙(τ¯)τ¯{R,B,S}d,(|per(τ¯)|)1m˙(τ¯)p𝔣(τ¯)τ¯𝒞˙f,^𝗌𝗒(τ¯):={(|per(τ¯)|)1τ¯per(τ¯)B^(τ¯)τ¯{R,B,S}d,kd(|per(τ¯)|)1m^(τ¯)p𝔣(τ¯)τ¯𝒞^f.\begin{split}&\dot{\mathcal{H}}^{\sf sy}(\underline{\tau}):=\begin{cases}(|\textnormal{per}(\underline{\tau})|)^{-1}\cdot\sum_{\underline{\tau}^{\prime}\in\textnormal{per}(\underline{\tau})}\dot{B}(\underline{\tau}^{\prime})&~{}~{}\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{d},\\ (|\textnormal{per}(\underline{\tau})|)^{-1}\cdot\dot{m}(\underline{\tau})\cdot p_{\mathfrak{f}(\underline{\tau})}&~{}~{}\underline{\tau}\in\dot{\mathscr{C}}_{\textnormal{\small{{f}}}},\end{cases}\\ &\hat{\mathcal{H}}^{\sf sy}(\underline{\tau}):=\begin{cases}(|\textnormal{per}(\underline{\tau})|)^{-1}\cdot\sum_{\underline{\tau}^{\prime}\in\textnormal{per}(\underline{\tau})}\hat{B}(\underline{\tau}^{\prime})&\underline{\tau}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}^{d},\\ \frac{k}{d}\cdot(|\textnormal{per}(\underline{\tau})|)^{-1}\cdot\hat{m}(\underline{\tau})\cdot p_{\mathfrak{f}(\underline{\tau})}&\underline{\tau}\in\hat{\mathscr{C}}_{\textnormal{\small{{f}}}}\,.\end{cases}\end{split} (48)

The only difference between the exploration process 𝔼ξνt[𝓖,x¯]\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}] and the broadcast model with channel (˙𝗌𝗒,^𝗌𝗒)(\dot{\mathcal{H}}^{\sf sy},\hat{\mathcal{H}}^{\sf sy}) is that during the process when the boundary half-edge ee has spin σe{R,B,S}\sigma_{e}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}, then the distribution of the spins of the children edges has a slight tilt compared to ˙𝗌𝗒\dot{\mathcal{H}}^{\sf sy} or ^𝗌𝗒\hat{\mathcal{H}}^{\sf sy} due to the pairs of half-edges already matched. 777If σe{R,B,S}\sigma_{e}\notin\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}, then the spins of the children edges are deterministic (see Remark 2.4). The following lemma shows that this tilt is Ok,t(n1)O_{k,t}(n^{-1}) and that the error arising from the difference of channels (˙𝗌𝗒,^𝗌𝗒)(\dot{\mathcal{H}}^{\sf sy},\hat{\mathcal{H}}^{\sf sy}) and (˙,^)(\dot{\mathcal{H}}^{\star},\hat{\mathcal{H}}^{\star}) is Ok,t(n1/2)O_{k,t}(n^{-1/2}):

Lemma 4.8.

Let ˙𝒫(𝒞d),^𝒫(𝒞k)\dot{\mathcal{H}}\in\mathscr{P}(\mathscr{C}^{d}),\hat{\mathcal{H}}\in\mathscr{P}(\mathscr{C}^{k}) be symmetric probability measures with the same marginal ¯𝒫(𝒞)\bar{\mathcal{H}}\in\mathscr{P}(\mathscr{C}) that satisfy (46). For τ{R,B,S}\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}, non-negative integer 1\ell_{1}\in\mathbb{N}, and vectors ¯˙2(˙2(σ¯))σ¯𝒞d𝒞d,¯^2(^2(σ¯))σ¯𝒞k𝒞k\dot{\underline{\ell}}_{2}\equiv(\dot{\ell}_{2}(\underline{\sigma}))_{\underline{\sigma}\in\mathscr{C}^{d}}\in\mathbb{N}^{\mathscr{C}^{d}},\hat{\underline{\ell}}_{2}\equiv(\hat{\ell}_{2}(\underline{\sigma}))_{\underline{\sigma}\in\mathscr{C}^{k}}\in\mathbb{N}^{\mathscr{C}^{k}}, define the conditional probability measures H˙1,¯˙2(|τ)˙1,¯˙2,n(|τ)𝒫(𝒞d)\dot{H}_{\ell_{1},\dot{\underline{\ell}}_{2}}(\cdot\,|\,\tau)\equiv\dot{\mathcal{H}}_{\ell_{1},\dot{\underline{\ell}}_{2},n}(\cdot\,|\,\tau)\in\mathscr{P}(\mathscr{C}^{d}) and ^1,¯^2(|τ)^1,¯^2,n(|τ)𝒫(𝒞k)\hat{\mathcal{H}}_{\ell_{1},\hat{\underline{\ell}}_{2}}(\cdot\,|\,\tau)\equiv\hat{\mathcal{H}}_{\ell_{1},\hat{\underline{\ell}}_{2},n}(\cdot\,|\,\tau)\in\mathscr{P}(\mathscr{C}^{k}) as follows. For σ¯=(σ1,,σd)𝒞d\underline{\sigma}=(\sigma_{1},\ldots,\sigma_{d})\in\mathscr{C}^{d} and σ¯=(σ1,,σk)𝒞k\underline{\sigma}^{\prime}=(\sigma^{\prime}_{1},\ldots,\sigma^{\prime}_{k})\in\mathscr{C}^{k}, let

˙1,¯˙2(σ¯|τ)=n˙(σ¯)i=1d𝟙(σi=τ)˙2(σ¯)nd¯(τ)1,^1,¯^2(σ¯|τ)=m^(σ¯)i=1k𝟙(σi=τ)^2(σ¯)nd¯(τ)1.\dot{\mathcal{H}}_{\ell_{1},\dot{\underline{\ell}}_{2}}\big{(}\underline{\sigma}\,\big{|}\,\tau\big{)}=\frac{n\dot{\mathcal{H}}(\underline{\sigma})\sum_{i=1}^{d}\mathds{1}(\sigma_{i}=\tau)-\dot{\ell}_{2}(\underline{\sigma})}{nd\bar{\mathcal{H}}(\tau)-\ell_{1}}\,,~{}~{}~{}~{}~{}\hat{\mathcal{H}}_{\ell_{1},\hat{\underline{\ell}}_{2}}\big{(}\underline{\sigma}^{\prime}\,\big{|}\,\tau\big{)}=\frac{m\hat{\mathcal{H}}(\underline{\sigma}^{\prime})\sum_{i=1}^{k}\mathds{1}(\sigma^{\prime}_{i}=\tau)-\hat{\ell}_{2}(\underline{\sigma}^{\prime})}{nd\bar{\mathcal{H}}(\tau)-\ell_{1}}\,.

For any constant C>0C>0, there is a constant K(C0,t,k)>0K(C_{0},t,k)>0 such that for (˙𝗌𝗒,^𝗌𝗒)(˙𝗌𝗒[ξ],^𝗌𝗒[ξ])𝒫(𝒞d)×𝒫(𝒞k)(\dot{\mathcal{H}}^{\sf sy},\hat{\mathcal{H}}^{\sf sy})\equiv(\dot{\mathcal{H}}^{\sf sy}[\xi],\hat{\mathcal{H}}^{\sf sy}[\xi])\in\mathscr{P}(\mathscr{C}^{d})\times\mathscr{P}(\mathscr{C}^{k}), we have uniformly over ξΞC\xi\in\Xi_{C}, τ{R,B,S}\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}, and 1,1,¯˙21,¯˙21,¯^21,¯^212(kd)2t\ell_{1},\ell_{1}^{\prime},\big{\|}\dot{\underline{\ell}}_{2}\big{\|}_{1},\big{\|}\dot{\underline{\ell}}_{2}^{\prime}\big{\|}_{1},\big{\|}\hat{\underline{\ell}}_{2}\big{\|}_{1},\big{\|}\hat{\underline{\ell}}_{2}^{\prime}\big{\|}_{1}\leq 2(kd)^{2t} that

dTV(˙1,¯˙2𝗌𝗒(|τ),˙1,¯˙2𝗌𝗒(|τ))dTV(^1,¯^2𝗌𝗒(|τ),^1,¯^2𝗌𝗒(|τ))Kn,dTV(˙𝗌𝗒,˙)dTV(˙1,¯˙2𝗌𝗒(|τ),˙0,0(|τ))dTV(^1,¯^2𝗌𝗒(|τ),^0,0(|τ))Kn.\begin{split}d_{\operatorname{TV}}\Big{(}\dot{\mathcal{H}}_{\ell_{1},\dot{\underline{\ell}}_{2}}^{\sf sy}\big{(}\cdot\,\big{|}\,\tau\big{)}\;,\;\dot{\mathcal{H}}_{\ell_{1}^{\prime},\dot{\underline{\ell}}_{2}^{\prime}}^{\sf sy}\big{(}\cdot\,\big{|}\,\tau\big{)}\Big{)}\vee d_{\operatorname{TV}}\Big{(}\hat{\mathcal{H}}_{\ell_{1},\hat{\underline{\ell}}_{2}}^{\sf sy}\big{(}\cdot\,\big{|}\,\tau\big{)}\;,\;\hat{\mathcal{H}}_{\ell_{1}^{\prime},\hat{\underline{\ell}}_{2}^{\prime}}^{\sf sy}\big{(}\cdot\,\big{|}\,\tau\big{)}\Big{)}&\leq\frac{K}{n}\,,\\ d_{\operatorname{TV}}\big{(}\dot{\mathcal{H}}^{\sf sy}\,,\,\dot{\mathcal{H}}^{\star}\big{)}\vee d_{\operatorname{TV}}\Big{(}\dot{\mathcal{H}}_{\ell_{1},\dot{\underline{\ell}}_{2}}^{\sf sy}\big{(}\cdot\,\big{|}\,\tau\big{)}\;,\;\dot{\mathcal{H}}_{0,0}^{\star}\big{(}\cdot\,\big{|}\,\tau\big{)}\Big{)}\vee d_{\operatorname{TV}}\Big{(}\hat{\mathcal{H}}_{\ell_{1},\hat{\underline{\ell}}_{2}}^{\sf sy}\big{(}\cdot\,\big{|}\,\tau\big{)}\;,\;\hat{\mathcal{H}}_{0,0}^{\star}\big{(}\cdot\,\big{|}\,\tau\big{)}\Big{)}&\leq\frac{K}{\sqrt{n}}\,.\end{split} (49)
Proof.

By definition of (˙𝗌𝗒,^𝗌𝗒)(˙𝗌𝗒[ξ],^𝗌𝗒[ξ])(\dot{\mathcal{H}}^{\sf sy},\hat{\mathcal{H}}^{\sf sy})\equiv(\dot{\mathcal{H}}^{\sf sy}[\xi],\hat{\mathcal{H}}^{\sf sy}[\xi]) in (48) and Definition 4.4 of ˙,^\dot{\mathcal{H}}^{\star},\hat{\mathcal{H}}^{\star}, we have by triangular inequality that

˙𝗌𝗒˙1B˙B˙1+τ¯𝒞˙f(|per(τ¯)|)1|p𝔣(τ¯)p𝔣(τ¯)|m˙(τ¯)=B˙B˙1+𝔣|p𝔣p𝔣|v𝔣ξξCn,\begin{split}\big{\|}\dot{\mathcal{H}}^{\sf sy}-\dot{\mathcal{H}}^{\star}\big{\|}_{1}&\leq\big{\|}\dot{B}-\dot{B}^{\star}\big{\|}_{1}+\sum_{\underline{\tau}\in\dot{\mathscr{C}}_{\textnormal{\small{{f}}}}}\big{(}|\textnormal{per}(\underline{\tau})|\big{)}^{-1}\big{|}p_{\mathfrak{f}(\underline{\tau})}-p^{\star}_{\mathfrak{f}(\underline{\tau})}\big{|}\dot{m}(\underline{\tau})\\ &=\big{\|}\dot{B}-\dot{B}^{\star}\big{\|}_{1}+\sum_{\mathfrak{f}\in\mathscr{F}}\big{|}p_{\mathfrak{f}}-p^{\star}_{\mathfrak{f}}\big{|}v_{\mathfrak{f}}\leq\left\|{\xi-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\leq\frac{C}{\sqrt{n}},\end{split} (50)

where the equality holds since τ¯𝒞˙f(|per(τ¯)|)1m˙(τ¯)𝟙(f(τ)=𝔣)=v𝔣\sum_{\underline{\tau}\in\dot{\mathscr{C}}_{\textnormal{\small{{f}}}}}\big{(}|\textnormal{per}(\underline{\tau})|\big{)}^{-1}\dot{m}(\underline{\tau})\mathds{1}(f(\tau)=\mathfrak{f})=v_{\mathfrak{f}} for 𝔣\mathfrak{f}\in\mathscr{F} by definition of m˙(τ¯)\dot{m}(\underline{\tau}) in (44), and the last inequality is by Definition 2.13 of ξΞC\xi\in\Xi_{C}. Analogously, we have that

^𝗌𝗒^1B^B^1+𝔣|p𝔣p𝔣|f𝔣ξξCn.\big{\|}\hat{\mathcal{H}}^{\sf sy}-\hat{\mathcal{H}}^{\star}\big{\|}_{1}\leq\big{\|}\hat{B}-\hat{B}^{\star}\big{\|}_{1}+\sum_{\mathfrak{f}\in\mathscr{F}}\big{|}p_{\mathfrak{f}}-p^{\star}_{\mathfrak{f}}\big{|}f_{\mathfrak{f}}\leq\left\|{\xi-\xi^{\star}}\right\|_{\scalebox{0.55}{$\square$}}\leq\frac{C}{\sqrt{n}}. (51)

Note that the equations above also imply that dTV(¯𝗌𝗒,¯)Cnd_{\operatorname{TV}}(\bar{\mathcal{H}}^{\sf sy},\bar{\mathcal{H}}^{\star})\leq\frac{C}{\sqrt{n}} holds, where ¯𝗌𝗒\bar{\mathcal{H}}^{\sf sy} is the marginal of (˙𝗌𝗒,¯𝗌𝗒)(˙𝗌𝗒[ξ],¯𝗌𝗒[ξ])(\dot{\mathcal{H}}^{\sf sy},\bar{\mathcal{H}}^{\sf sy})\equiv(\dot{\mathcal{H}}^{\sf sy}[\xi],\bar{\mathcal{H}}^{\sf sy}[\xi]) and H¯\bar{H}^{\star} is the marginal of (˙,^)(\dot{\mathcal{H}}^{\star},\hat{\mathcal{H}}^{\star}). Moreover, the compatibility {p𝔣}𝔣B\{p_{\mathfrak{f}}^{\star}\}_{\mathfrak{f}\in\mathscr{F}}\sim B^{\star} shows that the H¯\bar{H}^{\star} at the boundary spins τ{R,B,S}\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\} is given by ¯(τ)=B¯(τ)\bar{\mathcal{H}}^{\star}(\tau)=\bar{B}^{\star}(\tau). From the definition of B¯\bar{B}^{\star} in Definition A.12, we have minτ{R,B,S}B¯(τ)k1\min_{\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}}\bar{B}^{\star}(\tau)\gtrsim_{k}1. Hence, it follows that uniformly over ξΞC\xi\in\Xi_{C},

minτ{R,B,S}¯(τ)¯𝗌𝗒(τ¯)k1.\min_{\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}}\bar{\mathcal{H}}^{\star}(\tau)\wedge\bar{\mathcal{H}}^{\sf sy}(\underline{\tau})\gtrsim_{k}1. (52)

The estimates (50), (51), and (52) easily imply the estimate (49), and we omit the details. ∎

Having Lemma 4.8 in hand, we now prove Proposition 4.1.

Proof of Proposition 4.1.

Throughout, we fix C>0C>0 and treat it as a constant that depends on k,tk,t. We also fix ξΞC\xi\in\Xi_{C}. Recall that by Definition 2.13 of ΞC\Xi_{C}, we have 𝔼ξ[N𝖼𝗒𝖼(2t;𝒢)]C\mathbb{E}_{\xi}[N_{{\sf cyc}}(2t;\mathcal{G})]\leq C. Thus, for 𝐯𝖴𝗇𝗂𝖿(V)\mathbf{v}\sim{\sf Unif}(V), the probability of having a cycle in Nt(𝐯,𝓖)N_{t}(\mathbf{v},\boldsymbol{\mathcal{G}}) is Ok,t(n1)O_{k,t}(n^{-1}) by Markov’s inequality, which will be useful in the coupling below.

First, we consider the single copy estimate dTV(𝔼ξνt[𝓖,x¯],νt)k,tn1/2d_{\operatorname{TV}}(\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}],\nu^{\star}_{t})\lesssim_{k,t}n^{-1/2}. We proceed by coupling the exploration process (𝝈¯t(𝐯),L¯t(𝐯))𝔼ξνt[𝓖,x¯](\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}),\underline{\textbf{L}}_{t}(\mathbf{v}))\sim\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}] in Remark 4.7 and the broadcast process {(𝝈e,Le)}eE(𝒯d,k,t)\{(\boldsymbol{\sigma}^{\star}_{e},\textbf{L}^{\star}_{e})\}_{e\in E(\mathscr{T}_{d,k,t})} with channel (˙,^)(\dot{\mathcal{H}}^{\star},\hat{\mathcal{H}}^{\star}) in Definition 4.4. Throughout, we abbreviate (˙𝗌𝗒,¯𝗌𝗒)(˙𝗌𝗒[ξ],¯𝗌𝗒[ξ])(\dot{\mathcal{H}}^{\sf sy},\bar{\mathcal{H}}^{\sf sy})\equiv(\dot{\mathcal{H}}^{\sf sy}[\xi],\bar{\mathcal{H}}^{\sf sy}[\xi]).

We begin by revealing the spins in the neighbor of 𝐯\mathbf{v} and ρ\rho, i.e. 𝝈¯δ𝐯\underline{\boldsymbol{\sigma}}_{\delta\mathbf{v}} and 𝝈¯δρ\underline{\boldsymbol{\sigma}}^{\star}_{\delta\rho}. Recall that the distribution of 𝝈¯δ𝐯\underline{\boldsymbol{\sigma}}_{\delta\mathbf{v}} is ˙𝗌𝗒\dot{\mathcal{H}}^{\sf sy} and the distribution of 𝝈¯δρ\underline{\boldsymbol{\sigma}}^{\star}_{\delta\rho} is ˙\dot{\mathcal{H}}^{\star}. By Lemma 4.8, we have dTV(˙𝗌𝗒,˙)k,tn1/2d_{\operatorname{TV}}(\dot{\mathcal{H}}^{\sf sy},\dot{\mathcal{H}}^{\star})\lesssim_{k,t}n^{-1/2}, thus we can couple 𝝈¯δ𝐯\underline{\boldsymbol{\sigma}}_{\delta\mathbf{v}} and 𝝈¯δρ\underline{\boldsymbol{\sigma}}^{\star}_{\delta\rho} so that 𝝈¯δ𝐯=𝝈¯δρ\underline{\boldsymbol{\sigma}}_{\delta\mathbf{v}}=\underline{\boldsymbol{\sigma}}^{\star}_{\delta\rho} with probability at least 1Ok,t(n1/2)1-O_{k,t}(n^{-1/2}).

Next, we sequentially reveal the spins and the literals associated with the ‘children half-edges’ of a boundary half-edge. That is, for each boundary half-edge ee adjacent to a variable, we reveal the half-edge ee^{\prime} that is matched with ee, and reveal the spins and literals associated with children half-edges δa(e)e\delta a(e^{\prime})\setminus e^{\prime}. If boundary half-edge ee is adjacent to a clause, we reveal the half-edge ee^{\prime} matched with ee and only reveal the spins associated with children half-edges δv(e)e\delta v(e^{\prime})\setminus e^{\prime}. This procedure is carried out by utilizing a breadth-first search for both the neighbors of 𝐯\mathbf{v} and ρ\rho.

At time 1\ell\geq 1, denote the revealed neighborhood of 𝐯\mathbf{v} by 𝒩(𝐯)\mathcal{N}_{\ell}(\mathbf{v}) and the revealed neighborhood of ρ\rho by 𝒩(ρ)\mathcal{N}_{\ell}(\rho). We let 𝒩(𝐯)\partial\mathcal{N}_{\ell}(\mathbf{v}) and 𝒩(ρ)\partial\mathcal{N}_{\ell}(\rho) be the set of boundary half-edges of 𝒩(𝐯)\mathcal{N}_{\ell}(\mathbf{v}) and 𝒩(ρ)\mathcal{N}_{\ell}(\rho). Also, denote the revealed spins (resp. literals) in 𝒩(𝐯)\mathcal{N}_{\ell}(\mathbf{v}) by 𝝈¯𝒩(𝐯)\underline{\boldsymbol{\sigma}}_{\mathcal{N}_{\ell}(\mathbf{v})} (resp. L¯𝒩(𝐯)\underline{\textbf{L}}_{\mathcal{N}_{\ell}(\mathbf{v})}) and the revealed spins (resp. literals) in 𝒩(ρ)\mathcal{N}_{\ell}(\rho) by 𝝈¯𝒩(ρ)\underline{\boldsymbol{\sigma}}^{\star}_{\mathcal{N}_{\ell}(\rho)} (resp. L¯𝒩(ρ)\underline{\textbf{L}}^{\star}_{\mathcal{N}_{\ell}(\rho)}). Then, define the event \mathscr{E}_{\ell} of success by

:={𝒩(𝐯) is a tree and (𝝈¯𝒩(𝐯),L¯𝒩(𝐯))=(𝝈¯𝒩(ρ),L¯𝒩(ρ))}.\mathscr{E}_{\ell}:=\Big{\{}\textnormal{$\mathcal{N}_{\ell}(\mathbf{v})$ is a tree and $(\underline{\boldsymbol{\sigma}}_{\mathcal{N}_{\ell}(\mathbf{v})},\underline{\textbf{L}}_{\mathcal{N}_{\ell}(\mathbf{v})})=(\underline{\boldsymbol{\sigma}}^{\star}_{\mathcal{N}_{\ell}(\rho)},\underline{\textbf{L}}^{\star}_{\mathcal{N}_{\ell}(\rho)})$}\Big{\}}.

Now, suppose at time +1\ell+1, we take a boundary half-edge e𝒩(𝐯)e\in\partial\mathcal{N}_{\ell}(\mathbf{v}) adjacent to a variable v(e)𝒩(𝐯)v(e)\in\mathcal{N}_{\ell}(\mathbf{v}), and reveal the connection of ee, and the spins and literals of children half-edges of ee. Note that the probability of creating a cycle by revealing the connection of ee is Ok,t(n1)O_{k,t}(n^{-1}) since a priori, the probability of having a cycle in Nt(𝐯,𝓖)N_{t}(\mathbf{v},\boldsymbol{\mathcal{G}}) is Ok,t(n1)O_{k,t}(n^{-1}) by definition of ΞC\Xi_{C}. Moreover, if the spin at ee, 𝝈e\boldsymbol{\sigma}_{e}, is free, i.e. 𝝈e{R,B,S}\boldsymbol{\sigma}_{e}\notin\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}, then the spins and literals of children half-edges δa(e)e\delta a(e)\setminus e is completely determined by 𝝈e\boldsymbol{\sigma}_{e} (cf. Remark 2.4).

On the other hand, if 𝝈e{R,B,S}\boldsymbol{\sigma}_{e}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}, then conditioned on 𝒩(𝐯)\mathcal{N}_{\ell}(\mathbf{v}) and 𝝈¯𝒩(𝐯)\underline{\boldsymbol{\sigma}}_{\mathcal{N}_{\ell}(\mathbf{v})}, 𝝈¯δa(e)\underline{\boldsymbol{\sigma}}_{\delta a(e)} is drawn from ^1,¯^2𝗌𝗒(|𝝈e)\hat{\mathcal{H}}^{\sf sy}_{\ell_{1},\hat{\underline{\ell}}_{2}}(\cdot\,|\,\boldsymbol{\sigma}_{e}), defined in Lemma 4.8. Here, 1,¯^2(^2(σ¯))σ¯𝒞k𝒞k\ell_{1}\in\mathbb{N},\hat{\underline{\ell}}_{2}\equiv(\hat{\ell}_{2}(\underline{\sigma}))_{\underline{\sigma}\in\mathscr{C}^{k}}\in\mathbb{N}^{\mathscr{C}^{k}} is determined by 𝝈¯𝒩(𝐯)\underline{\boldsymbol{\sigma}}_{\mathcal{N}_{\ell}(\mathbf{v})}. More precisely, 1\ell_{1} is the number of edges ee^{\prime} in 𝒩(𝐯)\mathcal{N}_{\ell}(\mathbf{v}) that have spins 𝝈e=𝝈e\boldsymbol{\sigma}_{e^{\prime}}=\boldsymbol{\sigma}_{e}, and ^2(σ¯)\hat{\ell}_{2}(\underline{\sigma}) is the number of clauses aa in 𝒩(𝐯)\mathcal{N}_{\ell}(\mathbf{v}) that have spin neighborhood 𝝈¯δa=σ¯\underline{\boldsymbol{\sigma}}_{\delta a}=\underline{\sigma} (up to a permutation) times the number of 𝝈¯e\underline{\boldsymbol{\sigma}}_{e} in σ¯\underline{\sigma}. In particular, note that 1,¯^21(kd)2t\ell_{1},\big{\|}\hat{\underline{\ell}}_{2}\big{\|}_{1}\leq(kd)^{2t} holds.

Thus, Lemma 4.8 shows that conditioned on 𝒩(v),𝝈¯𝒩(𝐯)\mathcal{N}_{\ell}(v),\underline{\boldsymbol{\sigma}}_{\mathcal{N}_{\ell}(\mathbf{v})}, and \mathscr{E}_{\ell}, we can couple the spins of the children half-edges 𝝈¯δa(e)e\underline{\boldsymbol{\sigma}}_{\delta a(e)\setminus e} and 𝝈¯δa(ϕ(e))ϕ(e)\underline{\boldsymbol{\sigma}}^{\star}_{\delta a(\phi(e))\setminus\phi(e)}, where ϕ(e)\phi(e) is the boundary half-edge of 𝒩(ρ)\mathcal{N}_{\ell}(\rho) corresponding to ee, so that 𝝈¯δa(e)e=𝝈¯δa(ϕ(e))ϕ(e)\underline{\boldsymbol{\sigma}}_{\delta a(e)\setminus e}=\underline{\boldsymbol{\sigma}}^{\star}_{\delta a(\phi(e))\setminus\phi(e)} with probability at least 1Ok,t(n1/2)1-O_{k,t}(n^{-1/2}). Finally, conditioned on 𝝈¯δa(e)e=𝝈¯δa(ϕ(e))ϕ(e)\underline{\boldsymbol{\sigma}}_{\delta a(e)\setminus e}=\underline{\boldsymbol{\sigma}}^{\star}_{\delta a(\phi(e))\setminus\phi(e)}, the literals L¯δa(e)\underline{\textbf{L}}_{\delta a(e)} and L¯a(ϕ(e))\underline{\textbf{L}}^{\star}_{a(\phi(e))} is distributed the same, so we can use the same randomness to ensure L¯δa(e)=L¯a(ϕ(e))\underline{\textbf{L}}_{\delta a(e)}=\underline{\textbf{L}}^{\star}_{a(\phi(e))}. Therefore, we have that

(+1c)k,tn1/2.\mathbb{P}\big{(}\mathscr{E}_{\ell+1}^{\textsf{c}}\cap\mathscr{E}_{\ell}\big{)}\lesssim_{k,t}n^{-1/2}. (53)

The same analysis applies when the boundary half-edge eδ𝒩(𝐯)e\in\delta\mathcal{N}_{\ell}(\mathbf{v}) is adjacent to a clause a(e)𝒩(𝐯)a(e)\in\mathcal{N}_{\ell}(\mathbf{v}) to ensure that (53). Since it takes at most (kd)2t=Ok,t(1)\ell\leq(kd)^{2t}=O_{k,t}(1) times to explore the 2t322t-\frac{3}{2} neighborhood around 𝐯\mathbf{v}, summing up (53) shows that dTV(𝔼ξνt[𝓖,x¯],νt)k,tn1/2d_{\operatorname{TV}}(\mathbb{E}_{\xi}\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}],\nu^{\star}_{t})\lesssim_{k,t}n^{-1/2}.

Second, we consider the pair copy estimate dTV(𝔼ξ[𝝂t𝝂t],𝔼ξ𝝂t𝔼ξ𝝂t)k,tn1d_{\operatorname{TV}}\left(\mathbb{E}_{\xi}[\boldsymbol{\nu}_{t}\otimes\boldsymbol{\nu}_{t}],\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\otimes\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\right)\lesssim_{k,t}n^{-1} for 𝝂tνt[𝓖,x¯]\boldsymbol{\nu}_{t}\equiv\nu_{t}[\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]. Observe that 𝔼ξ[𝝂t𝝂t]\mathbb{E}_{\xi}[\boldsymbol{\nu}_{t}\otimes\boldsymbol{\nu}_{t}] is the law of (𝝈¯t(𝐯1,𝓖),L¯t(𝐯1,𝓖),𝝈¯t(𝐯2,𝓖),L¯t(𝐯2,𝓖))\big{(}\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}),\underline{\textbf{L}}_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}),\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}),\underline{\textbf{L}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}})\big{)}, where (𝓖,𝝈¯)ξ(\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}})\sim\mathbb{P}_{\xi} and 𝐯1,𝐯2i.i.d𝖴𝗇𝗂𝖿(V)\mathbf{v}^{1},\mathbf{v}^{2}\stackrel{{\scriptstyle i.i.d}}{{\sim}}{\sf Unif}(V). Note that if we let (𝓖1,𝝈¯1)=(𝓖,𝝈¯)(\boldsymbol{\mathcal{G}}^{1},\underline{\boldsymbol{\sigma}}^{1})=(\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}}) and (𝓖2,𝝈¯2)ξ(\boldsymbol{\mathcal{G}}^{2},\underline{\boldsymbol{\sigma}}^{2})\sim\mathbb{P}_{\xi} be independent of (𝓖1,𝝈¯1)(\boldsymbol{\mathcal{G}}^{1},\underline{\boldsymbol{\sigma}}^{1}), then 𝔼ξ𝝂t𝔼ξ𝝂t\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\otimes\mathbb{E}_{\xi}\boldsymbol{\nu}_{t} is the law of (𝝈¯t(𝐯1,𝓖1),L¯t(𝐯1,𝓖1),𝝈¯t(𝐯2,𝓖2),L¯t(𝐯2,𝓖2))\big{(}\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}),\underline{\textbf{L}}_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}),\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}^{2}),\underline{\textbf{L}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}^{2})\big{)}. Thus, it suffices to construct a coupling of (𝝈¯t(𝐯2,𝓖1),L¯t(𝐯2,𝓖1))\big{(}\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}^{1}),\underline{\textbf{L}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}^{1})\big{)} and (𝝈¯t(𝐯2,𝓖2),L¯t(𝐯2,𝓖2))\big{(}\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}^{2}),\underline{\textbf{L}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}^{2})\big{)} conditional on Nt(𝐯1,𝓖1),𝝈¯t(𝐯1,𝓖1),N_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}),\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}), and L¯t(𝐯1,𝓖1)\underline{\textbf{L}}_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}).

Observe that conditional on Nt(𝐯1,𝓖1),𝝈¯t(𝐯1,𝓖1),L¯t(𝐯1,𝓖1)N_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}),\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}),\underline{\textbf{L}}_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}), and the event Nt(𝐯1,𝓖1)Nt(𝐯2,𝓖1)=N_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1})\cap N_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}^{1})=\emptyset, which happens with probability 1Ok,t(n1)1-O_{k,t}(n^{-1}), the law of (𝝈¯t(𝐯2,𝓖1),L¯t(𝐯2,𝓖1))\big{(}\underline{\boldsymbol{\sigma}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}^{1}),\underline{\textbf{L}}_{t}(\mathbf{v}^{2},\boldsymbol{\mathcal{G}}^{1})\big{)} can be described as an alternate exploration process. The only difference between the exploration process described in Remark 4.7 is that the variables, clauses, full-edges, and boundary half-edges of Nt(𝐯1,𝓖1)N_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}) cannot be used nor matched during the process. Thus, we can couple these 2 exploration processes by a breadth-first search as before. The probability of error comes from 2 sources as before. The first is from forming a cycle in either of the processes, which has probability Ok,t(n1)O_{k,t}(n^{-1}). The second is the difference of 1,¯˙2,¯^2\ell_{1},\dot{\underline{\ell}}_{2},\hat{\underline{\ell}}_{2} regarding the distribution of the spins associated with children half-edges. That is, because the alternate process cannot use variables, clauses, and edges of Nt(𝐯1,𝓖1)N_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}), the associated 1,¯˙2,¯^2\ell_{1}^{\prime},\dot{\underline{\ell}}_{2}^{\prime},\hat{\underline{\ell}}_{2}^{\prime} can differ from 1,¯˙2,¯^2\ell_{1},\dot{\underline{\ell}}_{2},\hat{\underline{\ell}}_{2} associated with the original exploration process. Note that however, the number of variables, clauses, and edges in Nt(𝐯1,𝓖1)N_{t}(\mathbf{v}^{1},\boldsymbol{\mathcal{G}}^{1}) is at most (kd)2t(kd)^{2t}, so we still have that 1,¯˙21,¯^212(kd)2t\ell_{1}^{\prime},\big{\|}\dot{\underline{\ell}}_{2}^{\prime}\big{\|}_{1},\big{\|}\hat{\underline{\ell}}_{2}^{\prime}\big{\|}_{1}\leq 2(kd)^{2t}. Hence, by Lemma 4.8, the error probability is at most Ok,t(n1)O_{k,t}(n^{-1}). We, therefore, conclude that dTV(𝔼ξ[𝝂t𝝂t],𝔼ξ𝝂t𝔼ξ𝝂t)k,tn1d_{\operatorname{TV}}\left(\mathbb{E}_{\xi}[\boldsymbol{\nu}_{t}\otimes\boldsymbol{\nu}_{t}],\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\otimes\mathbb{E}_{\xi}\boldsymbol{\nu}_{t}\right)\lesssim_{k,t}n^{-1}.

We conclude this section with the proof of Lemma 2.9

Proof of Lemma 2.9.

By Markov’s inequality, it suffices to show that 𝔼ξN𝖼𝗒𝖼𝖻(2t;𝓖,x¯)n1/4\mathbb{E}_{\xi}N^{\sf b}_{{\sf cyc}}(2t;\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\leq n^{1/4}, uniformly over ξ=(B,{p𝔣}𝔣)\xi=(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}) such that {p𝔣}𝔣𝔈14\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\in\mathfrak{E}_{\frac{1}{4}}, p𝔣=0p_{\mathfrak{f}}=0 if 𝔣\mathfrak{f} is multi-cylcic, and BB1n1/3\left\|{B-B^{\star}}\right\|_{1}\leq n^{-1/3}. Note that from the definition of B¯\bar{B}^{\star} in Definition A.12, we have minτ{R,B,S}B¯(τ)k1\min_{\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}}\bar{B}^{\star}(\tau)\gtrsim_{k}1, thus if BB1n1/3\left\|{B-B^{\star}}\right\|_{1}\leq n^{-1/3}, then we have minτ{R,B,S}B¯(τ)k1\min_{\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}}\bar{B}(\tau)\gtrsim_{k}1. Note that minτ{R,B,S}B¯(τ)k1\min_{\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}}\bar{B}(\tau)\gtrsim_{k}1 is equivalent to the fact that there are Ωk(n)\Omega_{k}(n) number of edges that have spins τ\tau for each τ{R,B,S}\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}. This fact plays a key role in the analysis below.

Let (𝓖,𝝈¯)(\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}}) be the component coloring corresponding to (𝓖,x¯)ξ(\boldsymbol{\mathcal{G}},\underline{\textbf{x}})\sim\mathbb{P}_{\xi}. Then, recall from Observation 4.5 that (𝓖,𝝈¯)(\boldsymbol{\mathcal{G}},\underline{\boldsymbol{\sigma}}) can be drawn from a configuration model. In the description of the configuration model in Observation 4.5, we further condition on Steps (a)(a), (b)(b), and the connections of free components therein. That is, we condition on the location of the variables (resp. clauses) with assigned spin neighborhoods τ¯𝒞d\underline{\tau}\in\mathscr{C}^{d} (resp. τ¯𝒞k\underline{\tau}\in\mathscr{C}^{k}), and also on the matchings of the half-edges with associated spin τ{R,B,S}\tau\notin\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}. Then, the randomness comes from the u.a.r. matching of the half-edges that have the same associated spins τ{R,B,S}\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}, and also from assigning literals. Since we do not bother with the literals of 𝒞\mathcal{C}, we only analyze the former randomness with regards to the u.a.r. matching of the {R,B,S}\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}-colored spins.

Let 𝒞=(e1,,e2κ)\mathcal{C}=(e_{1},\ldots,e_{2\kappa}) be a self-avoiding cycle with boundary-transversing length 2t2t. Let (SSl)1lK(\SS_{l})_{1\leq l\leq K} be the boundary segments of 𝒞\mathcal{C}, where SSl=(eil,eil+1,,ejl)\SS_{l}=(e_{i_{l}},e_{i_{l}+1},\ldots,e_{j_{l}}) satisfies the condition below. Intuitively, the boundary segment encodes a path that connects two free components by {R,B,S}\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}-colored edges.

  1. (1)

    Suppose that the endpoints of the segment (eil,,ejl)(e_{i_{l}},\ldots,e_{j_{l}}) are formed by variables v(eil)v(e_{i_{l}}) and v(ejl)v(e_{j_{l}}). That is, a(eil)=a(eil+1),v(eil+1)=v(eil+2),,a(ejl1)=a(ejl)a(e_{i_{l}})=a(e_{i_{l}+1})\,,\,v(e_{i_{l}+1})=v(e_{i_{l}+2})\,,\,\ldots\,,\,a(e_{j_{l}-1})=a(e_{j_{l}}). Then, v(eil)v(e_{i_{l}}) and v(ejl)v(e_{j_{l}}) are free, but all the other variables v(eil+1),,v(ejl1)v(e_{i_{l}+1}),\ldots,v(e_{j_{l}-1}) are frozen. Also, the clauses a(eil),,a(ejl)a(e_{i_{l}}),\,\ldots,\,a(e_{j_{l}}) are separating.

  2. (2)

    If the endpoints of the segment (eil,,ejl)(e_{i_{l}},\ldots,e_{j_{l}}) are clauses, then a(eil)a(e_{i_{l}}) and a(ejl)a(e_{j_{l}}) is non-separating while all the other clauses in the segment is separating. Also, the variables in the segment is frozen.

  3. (3)

    If the endpoints of the segment (eil,,ejl)(e_{i_{l}},\ldots,e_{j_{l}}) are formed by a variable and a clause, they are respectively free and non-separating. All the other variables and clauses are respectively frozen and separating.

We assume that SSl\SS_{l} and SSl+1\SS_{l+1}, where SSK+1SS1\SS_{K+1}\equiv\SS_{1}, are adjacent in the sense that the right endpoint in SSl\SS_{l}, which is either v(ejl)v(e_{j_{l}}) or a(ejl)a(e_{j_{l}}), and the left endpoint in SSl+1\SS_{l+1}, which is either v(eil+1)v(e_{i_{l+1}}) or a(eil+1)a(e_{i_{l+1}}), lies in the same free component. Also, we denote the length of SSl\SS_{l} by LlL_{l} for 1lK1\leq l\leq K. Then by definition of the boundary-transversing length, we have that l=1KLl=2t\sum_{l=1}^{K}L_{l}=2t holds. In particular, we have that K2tK\leq 2t.

Observe that the cycle 𝒞\mathcal{C} is ‘almost’ determined by the boundary segments (SSl)lK(\SS_{l})_{l\leq K}. Namely, since all cyclic free components have at most one cycle, there are at most 22 paths from the right endpoint of SSl\SS_{l} to the left endpoint of SSl+1\SS_{l+1}. Therefore, if we fix the configuration of boundary segments (SSl)lK(\SS_{l})_{l\leq K}, there are at most 2K22t2^{K}\leq 2^{2t} corresponding self-avoiding cycles whose boundary-transversing length is 2t2t.

Now suppose that eie_{i} is contained in a boundary segment. Then, by its definition, either v(ei)v(e_{i}) is frozen or a(ei)a(e_{i}) is separating (both statements hold when v(ei),a(ei)v(e_{i}),a(e_{i}) are not endpoints). Without loss of generality, suppose v(ei)v(e_{i}) is frozen. Then, the revealed spin neighborhood of v(ei)v(e_{i}) must be τ¯=(τl)ld{R,B}d\underline{\tau}=(\tau_{l})_{l\leq d}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}^{d}. Since we have minτ{R,B,S}B¯(τ)k1\min_{\tau\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}}\bar{B}(\tau)\gtrsim_{k}1, the number of edges with spin τl\tau_{l} is Ωk(n)\Omega_{k}(n) for every ldl\leq d. Thus, the probability of having an edge ei=(v(ei),a(ei))e_{i}=(v(e_{i}),a(e_{i})) under u.a.r. matching of the half-edges with the same spins is at most Ok(n1)O_{k}(n^{-1}). Therefore, the probability of containing a specific configuration of a boundary segment SS\SS is Ok(nL(SS))O_{k}(n^{-L(\SS)}), where L(SS)L(\SS) denotes the length of SS\SS.

Moreover, note that the number of choosing variables and clauses involved in (SS)1K(\SS_{\ell})_{1\leq\ell\leq K} is at most Ok,t(n2t(logn)K)O_{k,t}(n^{2t}(\log n)^{K}), which can be argued as follows. The number of choosing variables and clauses involved in SS1\SS_{1} is Ok(nL1+1)O_{k}(n^{L_{1}+1}). Then, since the left endpoint of SS2\SS_{2} must lie in the same free component as the right endpoint of SS1\SS_{1}, and the largest free component has Ok(logn)O_{k}(\log n) number of variables and clauses (cf. ξ𝔈14\xi\in\mathfrak{E}_{\frac{1}{4}}), there are at most Ok(nL2logn)O_{k}(n^{L_{2}}\log n) number of choosing the variables and the clauses involved in SS2\SS_{2}. By repeating this and noting that the right endpoint of SSK\SS_{K} must lie in the same free component as in the left endpoint of SS1\SS_{1}, the total number is Ok,t(n2t(logn)K)O_{k,t}(n^{2t}(\log n)^{K}).

To conclude, we have shown that the probability of containing boundary segments (SSl)lK(\SS_{l})_{l\leq K} is at most Ok(n2t)O_{k}(n^{-2t}), and number of choosing the (SSl)lK(\SS_{l})_{l\leq K} is at most Ok,t(n2t(logn)K)O_{k,t}(n^{2t}(\log n)^{K}). Also, K2tK\leq 2t and there are 22K2^{2K} number of self-avoiding cycles whose boundary-transversing length is 2t2t. Therefore, it follows that 𝔼ξ[N𝖼𝗒𝖼𝖻[2t;𝓖,x¯]k,t(logn)2tn1/4\mathbb{E}_{\xi}[N^{\sf b}_{{\sf cyc}}[2t;\boldsymbol{\mathcal{G}},\underline{\textbf{x}}]\lesssim_{k,t}(\log n)^{2t}\ll n^{1/4} hold uniformly over ξ=(B,{p𝔣}𝔣)\xi=(B,\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}) such that {p𝔣}𝔣𝔈14\{p_{\mathfrak{f}}\}_{\mathfrak{f}\in\mathscr{F}}\in\mathfrak{E}_{\frac{1}{4}}, p𝔣=0p_{\mathfrak{f}}=0 if 𝔣\mathfrak{f} is multi-cylcic, and BB1n1/3\left\|{B-B^{\star}}\right\|_{1}\leq n^{-1/3}, which concludes the proof. ∎

Acknowledgements

We thank Andrea Montanari for helpful discussions. Youngtak Sohn is supported by Simons-NSF Collaboration on Deep Learning NSF DMS-2031883 and Vannevar Bush Faculty Fellowship award ONR-N00014-20-1-2826. Allan Sly is supported by a Simons Investigator grant and a MacArthur Fellowship.

References

  • [1] Achlioptas, D., and Coja-Oghlan, A. Algorithmic barriers from phase transitions. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science (2008), IEEE, pp. 793–802.
  • [2] Achlioptas, D., and Moore, C. Random kk-SAT: two moments suffice to cross a sharp threshold. SIAM J. Comput. 36, 3 (2006), 740–762.
  • [3] Achlioptas, D., Naor, A., and Peres, Y. Rigorous location of phase transitions in hard optimization problems. Nature 435, 7043 (2005), 759–764.
  • [4] Aldous, D. J. The ζ\zeta (2) limit in the random assignment problem. Random Structures & Algorithms 18, 4 (2001), 381–418.
  • [5] Benjamini, I., and Schramm, O. Recurrence of distributional limits of finite planar graphs. Electronic Journal of Probability [electronic only] 6 (2001).
  • [6] Bordenave, C., and Caputo, P. Large deviations of empirical neighborhood distribution in sparse random graphs. Probability Theory and Related Fields 163, 1 (2015), 149–222.
  • [7] Borovkov, A. A. Generalization and refinement of the integro-local stone theorem for sums of random vectors. Theory of Probability & Its Applications 61, 4 (2017), 590–612.
  • [8] Coja-Oghlan, A. The asymptotic k-sat threshold. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing (New York, NY, USA, 2014), STOC ’14, Association for Computing Machinery, p. 804–813.
  • [9] Coja-Oghlan, A., Efthymiou, C., and Jaafari, N. Local convergence of random graph colorings. Combinatorica 38, 2 (2018), 341–380.
  • [10] Coja-Oghlan, A., Kapetanopoulos, T., and Müller, N. The replica symmetric phase of random constraint satisfaction problems. Combinatorics, Probability and Computing 29, 3 (2020), 346–422.
  • [11] Coja-Oghlan, A., and Panagiotou, K. Going after the k-sat threshold. In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing (New York, NY, USA, 2013), STOC ’13, Association for Computing Machinery, p. 705–714.
  • [12] Dembo, A., and Zeitouni, O. Large deviations techniques and applications, vol. 38 of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2010.
  • [13] Ding, J., Sly, A., and Sun, N. Satisfiability threshold for random regular NAE-SAT. Commun. Math. Phys. 341, 2 (2016), 435–489.
  • [14] Ding, J., Sly, A., and Sun, N. Proof of the satisfiability conjecture for large kk. Annals of Mathematics 196, 1 (2022), 1 – 388.
  • [15] Flajolet, P., and Sedgewick, R. Analytic combinatorics. Cambridge University press, 2009.
  • [16] Gerschenfeld, A., and Montanari, A. Reconstruction for models on random graphs. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07) (2007), IEEE, pp. 194–204.
  • [17] Janson, S. Random regular graphs: asymptotic distributions and contiguity. Combinatorics, Probability and Computing 4, 4 (1995), 369–405.
  • [18] Krz̧akała, F., Montanari, A., Ricci-Tersenghi, F., Semerjian, G., and Zdeborová, L. Gibbs states and the set of solutions of random constraint satisfaction problems. Proceedings of the National Academy of Sciences 104, 25 (2007), 10318–10323.
  • [19] Mézard, M., and Montanari, A. Information, physics, and computation. Oxford Graduate Texts. Oxford University Press, 01 2009.
  • [20] Mézard, M., Parisi, G., and Zecchina, R. Analytic and algorithmic solution of random satisfiability problems. Science 297, 5582 (2002), 812–815.
  • [21] Molloy, M. The freezing threshold for k-colourings of a random graph. Journal of the ACM (JACM) 65, 2 (2018), 1–62.
  • [22] Molloy, M., and Restrepo, R. Frozen variables in random boolean constraint satisfaction problems. In Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA, 2013), SODA ’13, Society for Industrial and Applied Mathematics, pp. 1306–1318.
  • [23] Montanari, A., Mossel, E., and Sly, A. The weak limit of ising models on locally tree-like graphs. Probability Theory and Related Fields 152 (2012), 31–51.
  • [24] Montanari, A., Restrepo, R., and Tetali, P. Reconstruction and clustering in random constraint satisfaction problems. SIAM Journal on Discrete Mathematics 25, 2 (2011), 771–808.
  • [25] Montanari, A., Ricci-Tersenghi, F., and Semerjian, G. Clusters of solutions and replica symmetry breaking in random k-satisfiability. Journal of Statistical Mechanics: Theory and Experiment 2008, 04 (2008), P04004.
  • [26] Mossel, E., Neeman, J., and Sly, A. Reconstruction and estimation in the planted partition model. Probability Theory and Related Fields 162 (2015), 431–461.
  • [27] Mossel, E., Sly, A., and Sohn, Y. Exact phase transitions for stochastic block models and reconstruction on trees. arXiv preprint, arXiv:2212.03362 (2022).
  • [28] Nam, D., Sly, A., and Sohn, Y. One-step replica symmetry breaking of random regular NAE-SAT I. arXiv preprint, arXiv:2011.14270 (2020).
  • [29] Nam, D., Sly, A., and Sohn, Y. One-step replica symmetry breaking of random regular NAE-SAT II. arXiv preprint, arXiv: 2112.00152 (2021).
  • [30] Panchenko, D. The Sherrington-Kirkpatrick model. Springer Monographs in Mathematics. Springer, New York, 2013.
  • [31] Parisi, G. On local equilibrium equations for clustering states. arXiv:cs/0212047 (2002).
  • [32] Robinson, R. W., and Wormald, N. C. Almost all regular graphs are hamiltonian. Random Structures & Algorithms 5, 2 (1994), 363–374.
  • [33] Sly, A., Sun, N., and Zhang, Y. The number of solutions for random regular NAE-SAT. Probability Theory and Related Fields 182, 1 (2022), 1–109.
  • [34] Zdeborová, L., and Krzakała, F. Phase transitions in the coloring of random graphs. Physical Review E 76, 3 (2007), 031131.

Appendix A The belief-propagation fixed point

In this appendix, we review the combinatorial models for frozen configurations described in Section 2 of [33]. We also review the belief propagation fixed point established in Section 5 of [33], and the related notion of optimal boundary profile in Section 3 of [28].

A.1 Message configurations and the Bethe formula

We first introduce the message configuration, which enables us to calculate the size of a free tree, i.e. w𝔱w_{\mathfrak{t}}, by local quantities. The message configuration is given by τ¯=(τe)eEE\underline{\tau}=(\tau_{e})_{e\in E}\in\mathscr{M}^{E} (\mathscr{M} is defined below). Here, τe=(τ˙e,τ^e)\tau_{e}=(\dot{\tau}_{e},\hat{\tau}_{e}), where τ˙\dot{\tau} (resp. τ^\hat{\tau}) denotes the message from v(e)v(e) to a(e)a(e) (resp. a(e)a(e) to v(e)v(e)). A message will carry information of the structure of the free tree it belongs to. To this end, we first define the notion of joining ll trees at a vertex (either variable or clause) to produce a new tree. Let t1,,tlt_{1},\ldots,t_{l} be a collection of rooted bipartite factor trees satisfying the following conditions:

  • Their roots ρ1,,ρl\rho_{1},\ldots,\rho_{l} are all of the same type (i.e., either all-variables or all-clauses) and are all degree one.

  • If an edge in tit_{i} is adjacent to a degree one vertex, which is not the root, then the edge is called a boundary-edge. The rest of the edges are called internal-edges. For the case where tit_{i} consist of a single edge and a single vertex, we regard the single edge to be a boundary-edge.

  • t1,,tlt_{1},\ldots,t_{l} are boundary-labelled trees, meaning that their variables, clauses, and internal edges are unlabelled (except we distinguish the root), but the boundary edges are assigned with values from {0,1,S}\{0,1,{\scriptsize{\texttt{S}}}\}, where S stands for ‘separating’.

Then, the joined tree tj(t1,,tl)t\equiv\textsf{j}(t_{1},\ldots,t_{l}) is obtained by identifying all the roots as a single vertex oo, and adding an edge which joins oo to a new root oo^{\prime} of an opposite type of oo (e.g., if oo was a variable, then oo^{\prime} is a clause). Note that t=j(t1,,tl)t=\textsf{j}(t_{1},\ldots,t_{l}) is also a boundary-labelled tree, whose labels at the boundary edges are induced by those of t1,,tlt_{1},\ldots,t_{l}.

For the simplest trees that consist of single vertex and a single edge, we use 0 (resp. 11) to stand for the ones whose edge is labelled 0 (resp. 11): for the case of τ˙\dot{\tau}, the root is the clause, and for the case of τ^\hat{\tau}, the root is the variable. Also, if its root is a variable and its edge is labelled S, we write the tree as S.

We can also define the Boolean addition to a boundary-labelled tree tt as follows. For the trees 0,10,1, the Boolean-additions 0L0\oplus\texttt{L}, 1L1\oplus\texttt{L} are defined as above (tLt\oplus\texttt{L}), and we define SL=S{\scriptsize{\texttt{S}}}\oplus\texttt{L}={\scriptsize{\texttt{S}}} for L{0,1}\texttt{L}\in\{0,1\}. For the rest of the trees, t0:=tt\oplus 0:=t, and t1t\oplus 1 is the boundary-labelled tree with the same graphical structure as tt and the labels of the boundary Boolean-added by 11 (Here, we define S1=S{\scriptsize{\texttt{S}}}\oplus 1={\scriptsize{\texttt{S}}} for the S-labels).

Definition A.1 (Message configuration).

Let ˙0:={0,1,}\dot{\mathscr{M}}_{0}:=\{0,1,\star\} and ^0:=\hat{\mathscr{M}}_{0}:=\emptyset. Suppose that ˙t,^t\dot{\mathscr{M}}_{t},\hat{\mathscr{M}}_{t} are defined, and we inductively define ˙t+1,^t+1\dot{\mathscr{M}}_{t+1},\hat{\mathscr{M}}_{t+1} as follows: For τ¯^(^t)d1\hat{\underline{\tau}}\in(\hat{\mathscr{M}}_{t})^{d-1}, τ¯˙(˙t)k1\dot{\underline{\tau}}\in(\dot{\mathscr{M}}_{t})^{k-1}, we write {τ^i}:={τ^1,,τ^d1}\{\hat{\tau}_{i}\}:=\{\hat{\tau}_{1},\ldots,\hat{\tau}_{d-1}\} and similarly for {τ˙i}\{\dot{\tau}_{i}\}. We define

T^(τ¯˙):={0{τ˙i}={1};1{τ˙i}={0};S{τ˙i}{0,1};{τ˙i},{0,1}{τ˙i};𝗃(τ¯˙)otherwise,\displaystyle\hat{T}\left(\dot{\underline{\tau}}\right):=\begin{cases}0&\{\dot{\tau}_{i}\}=\{1\};\\ 1&\{\dot{\tau}_{i}\}=\{0\};\\ {\scriptsize{\texttt{S}}}&\{\dot{\tau}_{i}\}\supseteq\{0,1\};\\ \star&\star\in\{\dot{\tau}_{i}\},\{0,1\}\nsubseteq\{\dot{\tau}_{i}\};\\ \mathsf{j}\left(\dot{\underline{\tau}}\right)&\textnormal{otherwise},\end{cases} T˙(τ¯^):={00{τ^i}^t{1};11{τ^i}^t{0};z{0,1}{τ^i};{τ^i}^t{0,1};𝗃(τ¯^){τ^i}^t{0,1,}.\displaystyle\dot{T}(\hat{\underline{\tau}}):=\begin{cases}0&0\in\{\hat{\tau}_{i}\}\subseteq\hat{\mathscr{M}}_{t}\setminus\{1\};\\ 1&1\in\{\hat{\tau}_{i}\}\subseteq\hat{\mathscr{M}}_{t}\setminus\{0\};\\ \small{\texttt{z}}&\{0,1\}\subseteq\{\hat{\tau}_{i}\};\\ \star&\star\in\{\hat{\tau}_{i}\}\subseteq\hat{\mathscr{M}}_{t}\setminus\{0,1\};\\ \mathsf{j}\left(\hat{\underline{\tau}}\right)&\{\hat{\tau}_{i}\}\subseteq\hat{\mathscr{M}}_{t}\setminus\{0,1,\star\}.\end{cases} (54)

Further, we set ˙t+1:=˙tT˙(^td1){z}\dot{\mathscr{M}}_{t+1}:=\dot{\mathscr{M}}_{t}\cup\dot{T}(\hat{\mathscr{M}}_{t}^{d-1})\setminus\{\small{\texttt{z}}\}, and ^t+1:=^tT^(˙tk1)\hat{\mathscr{M}}_{t+1}:=\hat{\mathscr{M}}_{t}\cup\hat{T}(\dot{\mathscr{M}}_{t}^{k-1}), and define ˙\dot{\mathscr{M}} (resp. ^\hat{\mathscr{M}}) to be the union of all ˙t\dot{\mathscr{M}}_{t} (resp. ^t\hat{\mathscr{M}}_{t}) and :=˙×^\mathscr{M}:=\dot{\mathscr{M}}\times\hat{\mathscr{M}}. Then, a message configuration on 𝒢=(V,F,E,L¯)\mathcal{G}=(V,F,E,\underline{\texttt{L}}) is a configuration τ¯E\underline{\tau}\in\mathscr{M}^{E} that satisfies the local equations given by

τe=(τ˙e,τ^e)=(T˙(τ¯^δv(e)e),LeT^((L¯τ¯˙)δa(e)e)),\tau_{e}=(\dot{\tau}_{e},\hat{\tau}_{e})=\left(\dot{T}\big{(}\hat{\underline{\tau}}_{\delta v(e)\setminus e}\big{)},\texttt{L}_{e}\oplus\hat{T}\big{(}(\underline{\texttt{L}}\oplus\dot{\underline{\tau}})_{\delta a(e)\setminus e}\big{)}\right), (55)

for all eEe\in E.

In the definition, \star is the symbol introduced to cover cycles, and z is an error message. See Figure 1 in Section 2 of [33] for an example of \star message.

When a frozen configuration x¯\underline{x} on 𝒢\mathcal{G} with no free cycles is given, we can construct a message configuration τ¯\underline{\tau} via the following procedure:

  1. 1.

    For a forcing edges ee, set τ^e=xv(e)\hat{\tau}_{e}=x_{v(e)}. Also, for an edge eEe\in E, if there exists eδv(e)ee^{\prime}\in\delta v(e)\setminus e such that τ^e{0,1}\hat{\tau}_{e^{\prime}}\in\{0,1\}, then set τ˙e=xv(e)\dot{\tau}_{e}=x_{v(e)}.

  2. 2.

    For an edge eEe\in E, if there exists e1,e2δa(e)ee_{1},e_{2}\in\delta a(e)\setminus e such that {Le1τ˙e1,Le2τ˙e2}={0,1}\{\texttt{L}_{e_{1}}\oplus\dot{\tau}_{e_{1}},\texttt{L}_{e_{2}}\oplus\dot{\tau}_{e_{2}}\}=\{0,1\}, then set τ^e=S\hat{\tau}_{e}={\scriptsize{\texttt{S}}}.

  3. 3.

    After these steps, apply the local equations (55) recursively to define τ˙e\dot{\tau}_{e} and τ^e\hat{\tau}_{e} wherever possible.

  4. 4.

    For the places where it is no longer possible to define their messages until the previous step, set them to be \star.

In fact, the following lemma shows the relation between the frozen and message configurations. We refer to [33], Lemma 2.7 for its proof.

Lemma A.2.

The mapping explained above defines a bijection

{Frozen configurations x¯{0,1,f}Vwithout free cycles}{Message configurationsτ¯E}.\begin{Bmatrix}\textnormal{Frozen configurations }\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V}\\ \textnormal{without free cycles}\end{Bmatrix}\quad\longleftrightarrow\quad\begin{Bmatrix}\textnormal{Message configurations}\\ \underline{\tau}\in\mathscr{M}^{E}\end{Bmatrix}. (56)

Next, we introduce a dynamic programming method based on belief propagation to calculate the size of a free tree by local quantities from a message configuration.

Definition A.3.

Let 𝒫{0,1}\mathcal{P}\{0,1\} denote the space of probability measures on {0,1}\{0,1\}. We define the mappings m˙:˙𝒫{0,1}\dot{{{\texttt{m}}}}:\dot{\mathscr{M}}\rightarrow\mathcal{P}\{0,1\} and m^:^𝒫{0,1}\hat{{{\texttt{m}}}}:\hat{\mathscr{M}}\rightarrow\mathcal{P}\{0,1\} as follows. For τ˙{0,1}\dot{\tau}\in\{0,1\} and τ^{0,1}\hat{\tau}\in\{0,1\}, let m˙[τ˙]=δτ˙\dot{{{\texttt{m}}}}[\dot{\tau}]=\delta_{\dot{\tau}}, m^[τ^]=δτ^\hat{{{\texttt{m}}}}[\hat{\tau}]=\delta_{\hat{\tau}}. For τ˙˙{0,1,}\dot{\tau}\in\dot{\mathscr{M}}\setminus\{0,1,\star\} and τ^^{0,1,}\hat{\tau}\in\hat{\mathscr{M}}\setminus\{0,1,\star\}, m˙[τ˙]\dot{{{\texttt{m}}}}[\dot{\tau}] and m^[τ^]\hat{{{\texttt{m}}}}[\hat{\tau}] are recursively defined:

  • Let τ˙=T˙(τ^1,,τ^d1)\dot{\tau}=\dot{T}(\hat{\tau}_{1},\ldots,\hat{\tau}_{d-1}), with {τ^i}\star\notin\{\hat{\tau}_{i}\}. Define

    z˙[τ˙]:=𝐱{0,1}i=1d1m^[τ^i](𝐱),m˙[τ˙](𝐱):=1z˙[τ˙]i=1d1m^[τ^i](𝐱).\dot{z}[\dot{\tau}]:=\sum_{\mathbf{x}\in\{0,1\}}\prod_{i=1}^{d-1}\hat{{{\texttt{m}}}}[\hat{\tau}_{i}](\mathbf{x}),\quad\dot{{{\texttt{m}}}}[\dot{\tau}](\mathbf{x}):=\frac{1}{\dot{z}[\dot{\tau}]}\prod_{i=1}^{d-1}\hat{{{\texttt{m}}}}[\hat{\tau}_{i}](\mathbf{x}). (57)

    Note that z˙[τ˙]\dot{z}[\dot{\tau}] and m˙[τ˙](𝐱)\dot{{{\texttt{m}}}}[\dot{\tau}](\mathbf{x}) are well-defined, since (τ^1,,τ^d1)(\hat{\tau}_{1},\ldots,\hat{\tau}_{d-1}) can be recoved from τ˙\dot{\tau} up to permutation.

  • Let τ^=T^(τ˙1,,τ˙k1)\hat{\tau}=\hat{T}(\dot{\tau}_{1},\ldots,\dot{\tau}_{k-1}), with {τ˙i}\star\notin\{\dot{\tau}_{i}\}. Define

    z^[τ^]:=2𝐱{0,1}i=1k1m˙[τ˙i](𝐱),m^[τ^](𝐱):=1z^[τ^]{1i=1k1m˙[τ˙i](𝐱)}.\hat{z}[\hat{\tau}]:=2-\sum_{\mathbf{x}\in\{0,1\}}\prod_{i=1}^{k-1}\dot{{{\texttt{m}}}}[\dot{\tau}_{i}](\mathbf{x}),\quad\hat{{{\texttt{m}}}}[\hat{\tau}](\mathbf{x}):=\frac{1}{\hat{z}[\hat{\tau}]}\left\{1-\prod_{i=1}^{k-1}\dot{{{\texttt{m}}}}[\dot{\tau}_{i}](\mathbf{x})\right\}. (58)

    Similarly as above, z^[τ^]\hat{z}[\hat{\tau}] and m^[τ^]\hat{{{\texttt{m}}}}[\hat{\tau}] are well-defined.

Moreover, observe that inductively, m˙[τ˙],m^[τ^]\dot{{{\texttt{m}}}}[\dot{\tau}],\hat{{{\texttt{m}}}}[\hat{\tau}] are not Dirac measures unless τ˙,τ^{0,1}\dot{\tau},\hat{\tau}\in\{0,1\}.

It turns out that m˙[],m^[]\dot{{{\texttt{m}}}}[\star],\hat{{{\texttt{m}}}}[\star] can be arbitrary measures for our purpose, and hence we assume that they are uniform measures on {0,1}\{0,1\}.

The equations (57) and (58) are known as belief propagation equations. We refer the detailed explanation to Section 2 of [33] where the same notions are introduced, or to Chapter 14 of [19] for more fundamental background. From these quantities, we define the following local weights.

φ¯(τ˙,τ^):={𝐱{0,1}m˙[τ˙](𝐱)m^[τ^](𝐱)}1;φ^lit(τ˙1,,τ˙k):=1𝐱{0,1}i=1km˙[τ˙i](𝐱);φ˙(τ^1,,τ^d):=𝐱{0,1}i=1dm^[τ^i](𝐱).\begin{split}&\bar{\varphi}(\dot{\tau},\hat{\tau}):=\bigg{\{}\sum_{\mathbf{x}\in\{0,1\}}\dot{{{\texttt{m}}}}[\dot{\tau}](\mathbf{x})\hat{{{\texttt{m}}}}[\hat{\tau}](\mathbf{x})\bigg{\}}^{-1};\quad\hat{\varphi}^{\textnormal{lit}}(\dot{\tau}_{1},\ldots,\dot{\tau}_{k}):=1-\sum_{\mathbf{x}\in\{0,1\}}\prod_{i=1}^{k}\dot{{{\texttt{m}}}}[\dot{\tau}_{i}](\mathbf{x});\\ &\dot{\varphi}(\hat{\tau}_{1},\ldots,\hat{\tau}_{d}):=\sum_{\mathbf{x}\in\{0,1\}}\prod_{i=1}^{d}\hat{{{\texttt{m}}}}[\hat{\tau}_{i}](\mathbf{x}).\end{split} (59)
Lemma A.4 ([33], Lemma 2.9 and Corollary 2.10; [19], Ch. 14).

Let x¯\underline{x} be a frozen configuration on 𝒢=(V,F,E,L¯)\mathcal{G}=(V,F,E,\underline{\texttt{L}}) without any free cycles, and τ¯\underline{\tau} be the corresponding message configuration. Then, we have that

w𝔱=vV(𝔱){φ˙(τ¯^δv)eδvφ¯(τe)}aF(𝔱)φ^lit((τ¯˙L¯)δa).w_{\mathfrak{t}}=\prod_{v\in V(\mathfrak{t})}\left\{\dot{\varphi}(\hat{\underline{\tau}}_{\delta v})\prod_{e\in\delta v}\bar{\varphi}(\tau_{e})\right\}\prod_{a\in F(\mathfrak{t})}\hat{\varphi}^{\textnormal{lit}}\big{(}(\dot{\underline{\tau}}\oplus\underline{\texttt{L}})_{\delta a}\big{)}. (60)

Furthermore, we have

size(x¯,𝒢)=vVφ˙(τ¯^δv)aFφ^lit((τ¯˙L¯)δa)eEφ¯(τe).\textsf{size}(\underline{x},\mathcal{G})=\prod_{v\in V}\dot{\varphi}(\hat{\underline{\tau}}_{\delta v})\prod_{a\in F}\hat{\varphi}^{\textnormal{lit}}\big{(}(\dot{\underline{\tau}}\oplus\underline{\texttt{L}})_{\delta a}\big{)}\prod_{e\in E}\bar{\varphi}(\tau_{e}).

A.2 Colorings

In this subsection, we introduce the coloring configuration, which is a simplification of the message configuration. Recall the definition of =˙×^,\mathscr{M}=\dot{\mathscr{M}}\times\hat{\mathscr{M}}, and let {F}\{\scriptsize{\texttt{F}}\}\subset\mathscr{M} be defined by {F}:={τ:τ˙{0,1,},τ^{0,1,}}\{\scriptsize{\texttt{F}}\}:=\{\tau\in\mathscr{M}:\,\dot{\tau}\notin\{0,1,\star\},\hat{\tau}\notin\{0,1,\star\}\}. Define Ω:={R0,R1,B0,B1}{F}\Omega:=\{{{\scriptsize{\texttt{R}}}}_{0},{{\scriptsize{\texttt{R}}}}_{1},{{\scriptsize{\texttt{B}}}}_{0},{{\scriptsize{\texttt{B}}}}_{1}\}\cup\{\scriptsize{\texttt{F}}\} and let S:Ω\textsf{S}:\mathscr{M}\to\Omega be the projections given by

S(τ):={R0τ^=0;R1τ^=1;B0τ^0,τ˙=0;B1τ^1,τ˙=1;τotherwise, i.e., τ{F},\textsf{S}(\tau):=\begin{cases}{{\scriptsize{\texttt{R}}}}_{0}&\hat{\tau}=0;\\ {{\scriptsize{\texttt{R}}}}_{1}&\hat{\tau}=1;\\ {{\scriptsize{\texttt{B}}}}_{0}&\hat{\tau}\neq 0,\,\dot{\tau}=0;\\ {{\scriptsize{\texttt{B}}}}_{1}&\hat{\tau}\neq 1,\,\dot{\tau}=1;\\ \tau&\textnormal{otherwise, i.e., }\tau\in\{\scriptsize{\texttt{F}}\},\end{cases} (61)

The coloring model if the projection of message configurations under the projection S. For simplicity, we abbreviate {R}={R0,R1}\{{{\scriptsize{\texttt{R}}}}\}=\{{{\scriptsize{\texttt{R}}}}_{0},{{\scriptsize{\texttt{R}}}}_{1}\} and {B}={B0,B1}\{{{\scriptsize{\texttt{B}}}}\}=\{{{\scriptsize{\texttt{B}}}}_{0},{{\scriptsize{\texttt{B}}}}_{1}\}, and define the Boolean addition as B𝐱L:=B𝐱L{{\scriptsize{\texttt{B}}}}_{\mathbf{x}}\oplus\texttt{L}:={{\scriptsize{\texttt{B}}}}_{\mathbf{x}\oplus\texttt{L}}, and similarly for R𝐱{{\scriptsize{\texttt{R}}}}_{\mathbf{x}}. Also, for σ{R,B,S}\sigma\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}},{\scriptsize{\texttt{S}}}\}, we set σ˙:=σ=:σ^\dot{\sigma}:=\sigma=:\hat{\sigma}.

Definition A.5 (Colorings).

For σ¯Ωd\underline{\sigma}\in\Omega^{d}, let

I˙(σ¯):={1R0{σi}{R0,B0};1R1{σi}{R1,B1};1{σi}{F}, and σ˙i=T˙((σ^j)ji),i;0otherwise.\dot{I}(\underline{\sigma}):=\begin{cases}1&{{\scriptsize{\texttt{R}}}}_{0}\in\{\sigma_{i}\}\subseteq\{{{\scriptsize{\texttt{R}}}}_{0},{{\scriptsize{\texttt{B}}}}_{0}\};\\ 1&{{\scriptsize{\texttt{R}}}}_{1}\in\{\sigma_{i}\}\subseteq\{{{\scriptsize{\texttt{R}}}}_{1},{{\scriptsize{\texttt{B}}}}_{1}\};\\ 1&\{\sigma_{i}\}\subseteq\{{\scriptsize{\texttt{F}}}\},\textnormal{ and }\dot{\sigma}_{i}=\dot{T}\big{(}(\hat{\sigma}_{j})_{j\neq i}\big{)},\ \forall i;\\ 0&\textnormal{otherwise}.\end{cases}

Also, define I^lit:Ωk\hat{I}^{\textnormal{lit}}:\Omega^{k}\to\mathbb{R} to be

I^lit(σ¯):={1i:σi=R0 and {σj}ji={B1};1i:σi=R1 and {σj}ji={B0};1{B}{σi}{B}{σ{F}:σ^=S};1{σi}{B0,F},|{i:σi{F}}|2, and σ^i=T^((σ˙j)ji;0),i s.t. σiB0;1{σi}{B1,F},|{i:σi{F}}|2, and σ^i=T^((σ˙j)ji;0),i s.t. σiB1;0otherwise.\begin{split}\hat{I}^{\textnormal{lit}}(\underline{\sigma})&:=\begin{cases}1&\exists i:\,\sigma_{i}={{\scriptsize{\texttt{R}}}}_{0}\textnormal{ and }\{\sigma_{j}\}_{j\neq i}=\{{{\scriptsize{\texttt{B}}}}_{1}\};\\ 1&\exists i:\,\sigma_{i}={{\scriptsize{\texttt{R}}}}_{1}\textnormal{ and }\{\sigma_{j}\}_{j\neq i}=\{{{\scriptsize{\texttt{B}}}}_{0}\};\\ 1&\{{{\scriptsize{\texttt{B}}}}\}\subseteq\{\sigma_{i}\}\subseteq\{{{\scriptsize{\texttt{B}}}}\}\cup\{\sigma\in\{\scriptsize{\texttt{F}}\}:\,\hat{\sigma}={\scriptsize{\texttt{S}}}\};\\ 1&\{\sigma_{i}\}\subseteq\{{{\scriptsize{\texttt{B}}}}_{0},{\scriptsize{\texttt{F}}}\},\,|\{i:\sigma_{i}\in\{{\scriptsize{\texttt{F}}}\}\}|\geq 2,\textnormal{ and }\hat{\sigma}_{i}=\hat{T}((\dot{\sigma}_{j})_{j\neq i};0),\ \forall i\textnormal{ s.t. }\sigma_{i}\neq{{\scriptsize{\texttt{B}}}}_{0};\\ 1&\{\sigma_{i}\}\subseteq\{{{\scriptsize{\texttt{B}}}}_{1},{\scriptsize{\texttt{F}}}\},\,|\{i:\sigma_{i}\in\{{\scriptsize{\texttt{F}}}\}\}|\geq 2,\textnormal{ and }\hat{\sigma}_{i}=\hat{T}((\dot{\sigma}_{j})_{j\neq i};0),\ \forall i\textnormal{ s.t. }\sigma_{i}\neq{{\scriptsize{\texttt{B}}}}_{1};\\ 0&\textnormal{otherwise}.\end{cases}\end{split}

On a nae-sat instance 𝒢=(V,F,E,L¯)\mathcal{G}=(V,F,E,\underline{\texttt{L}}), σ¯ΩE\underline{\sigma}\in\Omega^{E} is a (valid) coloring if I˙(σ¯δv)=I^lit((σ¯L¯)δa)=1\dot{I}(\underline{\sigma}_{\delta v})=\hat{I}^{\textnormal{lit}}((\underline{\sigma}\oplus\underline{\texttt{L}})_{\delta a})=1 for all vV,aFv\in V,a\in F.

Given nae-sat instance 𝒢\mathcal{G}, it was shown in Lemma 2.12 of [33] that there is a bijection

{message configurationsτ¯E}{coloringsσ¯ΩE}\begin{Bmatrix}\textnormal{message configurations}\\ \underline{\tau}\in\mathscr{M}^{E}\end{Bmatrix}\ \longleftrightarrow\ \begin{Bmatrix}\textnormal{colorings}\\ \underline{\sigma}\in\Omega^{E}\end{Bmatrix} (62)

The weight elements for coloring, denoted by Φ˙,Φ^lit,Φ¯\dot{\Phi},\hat{\Phi}^{\textnormal{lit}},\bar{\Phi}, are defined as follows. For σ¯Ωd,\underline{\sigma}\in\Omega^{d}, let

Φ˙(σ¯):={φ˙(σ¯^)I˙(σ¯)=1 and {σi}{F};1I˙(σ¯)=1 and {σi}{B,R};0otherwise, i.e., I˙(σ¯)=0.\begin{split}\dot{\Phi}(\underline{\sigma}):=\begin{cases}\dot{\varphi}(\hat{\underline{\sigma}})&\dot{I}(\underline{\sigma})=1\textnormal{ and }\{\sigma_{i}\}\subseteq\{\scriptsize{\texttt{F}}\};\\ 1&\dot{I}(\underline{\sigma})=1\textnormal{ and }\{\sigma_{i}\}\subseteq\{{{\scriptsize{\texttt{B}}}},{{\scriptsize{\texttt{R}}}}\};\\ 0&\textnormal{otherwise, i.e., }\dot{I}(\underline{\sigma})=0.\end{cases}\end{split}

For σ¯Ωk\underline{\sigma}\in\Omega^{k}, let

Φ^lit(σ¯):={φ^lit((τ˙(σi))i)I^lit(σ¯)=1 and {σi}{R}=;1I^lit(σ¯)=1 and {σi}{R};0otherwise, i.e., I^lit(σ¯)=0.\hat{\Phi}^{\textnormal{lit}}(\underline{\sigma}):=\begin{cases}\hat{\varphi}^{\textnormal{lit}}((\dot{\tau}(\sigma_{i}))_{i})&\hat{I}^{\textnormal{lit}}(\underline{\sigma})=1\textnormal{ and }\{\sigma_{i}\}\cap\{{{\scriptsize{\texttt{R}}}}\}=\emptyset;\\ 1&\hat{I}^{\textnormal{lit}}(\underline{\sigma})=1\textnormal{ and }\{\sigma_{i}\}\cap\{{{\scriptsize{\texttt{R}}}}\}\neq\emptyset;\\ 0&\textnormal{otherwise, i.e., }\hat{I}^{\textnormal{lit}}(\underline{\sigma})=0.\end{cases}

(If σ{R},\sigma\notin\{{{\scriptsize{\texttt{R}}}}\}, then τ˙(σi)\dot{\tau}(\sigma_{i}) is well-defined.) Lastly, let

Φ¯(σ):={φ¯(σ)σ{F};1σ{R,B}.\bar{\Phi}(\sigma):=\begin{cases}\bar{\varphi}(\sigma)&\sigma\in\{\scriptsize{\texttt{F}}\};\\ 1&\sigma\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}.\end{cases}

Note that if σ^=S\hat{\sigma}={\scriptsize{\texttt{S}}}, then φ¯(σ˙,σ^)=2\bar{\varphi}(\dot{\sigma},\hat{\sigma})=2 for any σ˙\dot{\sigma}. The rest of the details explaining the compatibility of φ\varphi and Φ\Phi can be found in [33], Section 2.4. Then, the formula for the cluster size we have seen in Lemma A.4 works the same for the coloring configuration.

Lemma A.6 ([33], Lemma 2.13).

Let x¯{0,1,f}V\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V} be a frozen configuration on 𝒢=(V,F,E,L¯)\mathcal{G}=(V,F,E,\underline{\texttt{L}}), and let σ¯ΩE\underline{\sigma}\in\Omega^{E} be the corresponding coloring. Define

w𝒢lit(σ¯):=vVΦ˙(σ¯δv)aFΦ^lit((σ¯L¯)δa)eEΦ¯(σe).w_{\mathcal{G}}^{\textnormal{lit}}(\underline{\sigma}):=\prod_{v\in V}\dot{\Phi}(\underline{\sigma}_{\delta v})\prod_{a\in F}\hat{\Phi}^{\textnormal{lit}}((\underline{\sigma}\oplus\underline{\texttt{L}})_{\delta a})\prod_{e\in E}\bar{\Phi}(\sigma_{e}).

Then, we have size(x¯;𝒢)=w𝒢lit(σ¯)\textsf{size}(\underline{x};\mathcal{G})=w_{\mathcal{G}}^{\textnormal{lit}}(\underline{\sigma}).

Among the valid frozen configurations, we can ignore the contribution from the configurations with too many free or red colors, as observed in the following lemma.

Lemma A.7 ([13] Proposition 2.2 ,[33] Lemma 3.3).

For a frozen configuration x¯{0,1,f}V\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V}, let R(x¯){{\scriptsize{\texttt{R}}}}(\underline{x}) count the number of forcing edges and f(x¯)\textnormal{\small{{f}}}(\underline{x}) count the number of free variables. There exists an absolute constant c>0c>0 such that for kk0k\geq k_{0}, α[αlbd,αubd]\alpha\in[\alpha_{\textsf{lbd}},\alpha_{\textsf{ubd}}], and λ(0,1]\lambda\in(0,1],

x¯{0,1,f}V𝔼[size(x¯;𝒢)λ]𝟙{R(x¯)ndf(x¯)n>72k}ecn,\sum_{\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V}}\mathbb{E}\left[\textsf{size}(\underline{x};\mathcal{G})^{\lambda}\right]\mathds{1}\left\{\frac{{{\scriptsize{\texttt{R}}}}(\underline{x})}{nd}\vee\frac{\textnormal{\small{{f}}}(\underline{x})}{n}>\frac{7}{2^{k}}\right\}\leq e^{-cn},

where size(x¯;𝒢)\textsf{size}(\underline{x};\mathcal{G}) is the number of nae-sat solutions x¯{0,1}V\underline{\textbf{x}}\in\{0,1\}^{V} which extends x¯{0,1,f}V\underline{x}\in\{0,1,\textnormal{\small{{f}}}\}^{V}.

Definition A.8 (Truncated colorings).

Let 1L<1\leq L<\infty, x¯\underline{x} be a frozen configuration on 𝒢\mathcal{G} without free cycles and σ¯ΩE\underline{\sigma}\in\Omega^{E} be the coloring corresponding to x¯\underline{x}. We say σ¯\underline{\sigma} is a (valid) LL-truncated coloring if |V(𝔱)|L|V(\mathfrak{t})|\leq L for all 𝔱(x¯,𝒢)\mathfrak{t}\in\mathscr{F}(\underline{x},\mathscr{G}). For an equivalent definition, let |σ|:=v(σ˙)+v(σ^)1|\sigma|:=v(\dot{\sigma})+v(\hat{\sigma})-1 for σ{F}\sigma\in\{\scriptsize{\texttt{F}}\}, where v(σ˙)v(\dot{\sigma}) (resp. v(σ^)v(\hat{\sigma})) denotes the number of variables in σ˙\dot{\sigma} (resp. σ^\hat{\sigma}). Define ΩL:={R,B}{F}L\Omega_{L}:=\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}\cup\{\scriptsize{\texttt{F}}\}_{L}, where {F}L\{\scriptsize{\texttt{F}}\}_{L} be the collection of σ{F}\sigma\in\{\scriptsize{\texttt{F}}\} such that |σ|L|\sigma|\leq L. Then, σ¯\underline{\sigma} is a (valid) LL-truncated coloring if σ¯ΩLE\underline{\sigma}\in\Omega_{L}^{E}.

To clarify the names, we often call the original coloring σ¯ΩE\underline{\sigma}\in\Omega^{E} the untruncated coloring.

A.3 Averaging over the literals

We now consider 𝔼lit[w𝒢lit(σ¯)]\mathbb{E}^{\textnormal{lit}}[w_{\mathcal{G}}^{\textnormal{lit}}(\underline{\sigma})] for a given coloring σ¯ΩE,\underline{\sigma}\in\Omega^{E}, where 𝔼lit\mathbb{E}^{\textnormal{lit}} denotes the expectation over the literals L¯Unif[{0,1}E]\underline{\texttt{L}}\sim\textnormal{Unif}[\{0,1\}^{E}]. From Lemma A.6, we can write

w𝒢(σ¯)λ:=𝔼lit[w𝒢lit(σ¯)λ]=vVΦ˙(σ¯δv)λaF𝔼litΦ^lit((σ¯L¯)δa)λeEΦ¯(σe)λ.w_{\mathcal{G}}(\underline{\sigma})^{\lambda}:=\mathbb{E}^{\textnormal{lit}}[w_{\mathcal{G}}^{\textnormal{lit}}(\underline{\sigma})^{\lambda}]=\prod_{v\in V}\dot{\Phi}(\underline{\sigma}_{\delta v})^{\lambda}\prod_{a\in F}\mathbb{E}^{\textnormal{lit}}\hat{\Phi}^{\textnormal{lit}}((\underline{\sigma}\oplus\underline{\texttt{L}})_{\delta a})^{\lambda}\prod_{e\in E}\bar{\Phi}(\sigma_{e})^{\lambda}. (63)

Define Φ^(σ¯δa)λ:=𝔼lit[Φ^lit((σ¯L¯)δa)λ].\hat{\Phi}(\underline{\sigma}_{\delta a})^{\lambda}:=\mathbb{E}^{\textnormal{lit}}[\hat{\Phi}^{\textnormal{lit}}((\underline{\sigma}\oplus\underline{\texttt{L}})_{\delta a})^{\lambda}]. To give a more explicit expression of this formula, we recall a property of Φ^lit\hat{\Phi}^{\textnormal{lit}} from [33], Lemma 2.17:

Lemma A.9 ([33], Lemma 2.17).

Φ^lit\hat{\Phi}^{\textnormal{lit}} can be factorized as Φ^lit(σ¯L¯)=I^lit(σL¯)Φ^m(σ¯)\hat{\Phi}^{\textnormal{lit}}(\underline{\sigma}\oplus\underline{\texttt{L}})=\hat{I}^{\textnormal{lit}}(\sigma\oplus\underline{\texttt{L}})\hat{\Phi}^{\textnormal{m}}(\underline{\sigma}) for

Φ^m(σ¯):=max{Φ^lit(σ¯L¯):L¯{0,1}k}={1σ¯{R,B}k,z^[σ^j]φ¯(σj)σ¯Ωk with σj{f}.\hat{\Phi}^{\textnormal{m}}(\underline{\sigma}):=\max\big{\{}\hat{\Phi}^{\textnormal{lit}}(\underline{\sigma}\oplus\underline{\texttt{L}}):\underline{\texttt{L}}\in\{0,1\}^{k}\big{\}}=\begin{cases}1&\underline{\sigma}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}^{k},\\ \frac{\hat{z}[\hat{\sigma}_{j}]}{\bar{\varphi}(\sigma_{j})}&\underline{\sigma}\in\Omega^{k}\textnormal{ with }\sigma_{j}\in\{\textnormal{\small{{f}}}\}.\end{cases} (64)

As a consequence, we can write Φ^(σ¯)λ=Φ^m(σ¯)λv^(σ¯)\hat{\Phi}(\underline{\sigma})^{\lambda}=\hat{\Phi}^{\textnormal{m}}(\underline{\sigma})^{\lambda}\hat{v}(\underline{\sigma}), where

v^(σ¯):=𝔼lit[I^lit(σ¯L¯)].\hat{v}(\underline{\sigma}):=\mathbb{E}^{\textnormal{lit}}[\hat{I}^{\textnormal{lit}}(\underline{\sigma}\oplus\underline{\texttt{L}})]. (65)

A.4 Optimal boundary profile

We define bp functional, which was introduced in Section 5 of [33]. For probability measures 𝐪˙,𝐪^𝒫(ΩL)\dot{\mathbf{q}},\hat{\mathbf{q}}\in\mathscr{P}(\Omega_{L}), where L<L<\infty, let

[𝐁˙1,λ(𝐪^)](σ)Φ¯(σ)λσ¯ΩLd𝟙{σ1=σ}Φ˙(σ¯)λi=2d𝐪^(σi)[𝐁^1,λ(𝐪˙)](σ)Φ¯(σ)λσ¯ΩLk𝟙{σ1=σ}Φ^(σ¯)λi=2d𝐪˙(σi),\begin{split}&[\dot{\mathbf{B}}_{1,\lambda}(\hat{\mathbf{q}})](\sigma)\cong\bar{\Phi}(\sigma)^{\lambda}\sum_{\underline{\sigma}\in\Omega_{L}^{d}}\mathds{1}\{\sigma_{1}=\sigma\}\dot{\Phi}(\underline{\sigma})^{\lambda}\prod_{i=2}^{d}\hat{\mathbf{q}}(\sigma_{i})\\ &[\hat{\mathbf{B}}_{1,\lambda}(\dot{\mathbf{q}})](\sigma)\cong\bar{\Phi}(\sigma)^{\lambda}\sum_{\underline{\sigma}\in\Omega_{L}^{k}}\mathds{1}\{\sigma_{1}=\sigma\}\hat{\Phi}(\underline{\sigma})^{\lambda}\prod_{i=2}^{d}\dot{\mathbf{q}}(\sigma_{i}),\end{split} (66)

where σΩL\sigma\in\Omega_{L} and \cong denotes equality up to normlization, so that the output is a probability measure. We denote 𝒵˙𝒵˙q^,𝒵^𝒵^q˙\dot{\mathscr{Z}}\equiv\dot{\mathscr{Z}}_{\hat{q}},\hat{\mathscr{Z}}\equiv\hat{\mathscr{Z}}_{\dot{q}} by the normalizing constants for (66). Now, restrict the domain to the probability measures with one-sided dependence, i.e. satisfying 𝐪˙(σ)q˙(σ˙)\dot{\mathbf{q}}(\sigma)\cong\dot{q}(\dot{\sigma}) and 𝐪^(σ)q^(σ^)\hat{\mathbf{q}}(\sigma)\cong\hat{q}(\hat{\sigma}) for some q˙𝒫(𝒞˙)\dot{q}\in\mathscr{P}(\dot{\mathscr{C}}) and q^𝒫(𝒞^)\hat{q}\in\mathscr{P}(\hat{\mathscr{C}}). It can be checked that 𝐁˙1,λ,𝐁^1,λ\dot{\mathbf{B}}_{1,\lambda},\hat{\mathbf{B}}_{1,\lambda} preserve the one-sided property, inducing

BP˙λ,L:𝒫(Ω^L)𝒫(Ω˙L),BP^λ,L:𝒫(Ω˙L)𝒫(Ω^L).\dot{\textnormal{BP}}_{\lambda,L}:\mathscr{P}(\hat{\Omega}_{L})\rightarrow\mathscr{P}(\dot{\Omega}_{L}),\quad\hat{\textnormal{BP}}_{\lambda,L}:\mathscr{P}(\dot{\Omega}_{L})\rightarrow\mathscr{P}(\hat{\Omega}_{L}).

We then define BPλ,L:=BP˙λ,LBP^λ,L\textnormal{BP}_{\lambda,L}:=\dot{\textnormal{BP}}_{\lambda,L}\circ\hat{\textnormal{BP}}_{\lambda,L}. The untruncated BP map, which we denote by BPλ:𝒫(Ω˙)𝒫(Ω˙)\textnormal{BP}_{\lambda}:\mathscr{P}(\dot{\Omega})\to\mathscr{P}(\dot{\Omega}), is analogously defined, where we replace Ω˙L\dot{\Omega}_{L}(resp. Ω^L\hat{\Omega}_{L}) with Ω˙\dot{\Omega}(resp. Ω^\hat{\Omega}). Let 𝚪C\mathbf{\Gamma}_{C} be the set of q˙𝒫(Ω˙)\dot{q}\in\mathscr{P}(\dot{\Omega}) such that

q˙(σ˙)=q˙(σ˙1)forσ˙Ω˙,andq˙(R)+2kq˙(f)Cq˙(B)q˙(R)1C2k.\dot{q}(\dot{\sigma})=\dot{q}(\dot{\sigma}\oplus 1)\quad\text{for}\quad\dot{\sigma}\in\dot{\Omega},\quad\text{and}\quad\frac{\dot{q}({{\scriptsize{\texttt{R}}}})+2^{k}\dot{q}(\textnormal{\small{{f}}})}{C}\leq\dot{q}({{\scriptsize{\texttt{B}}}})\leq\frac{\dot{q}({{\scriptsize{\texttt{R}}}})}{1-C2^{-k}}. (67)
Proposition A.10 (Proposition 5.5 item a,b of [33]).

For λ[0,1]\lambda\in[0,1], the following holds:

  1. 1.

    There exists a large enough universal constant CC such that the map BPBPλ,L\textnormal{BP}\equiv\textnormal{BP}_{\lambda,L} has a unique fixed point q˙λ,L𝚪C\dot{q}^{\star}_{\lambda,L}\in\mathbf{\Gamma}_{C}. Moreover, if q˙𝚪C\dot{q}\in\mathbf{\Gamma}_{C}, BPq˙𝚪C\textnormal{BP}\dot{q}\in\mathbf{\Gamma}_{C} holds with

    BPq˙q˙λ,L1k22kq˙q˙λ,L1.||\textnormal{BP}\dot{q}-\dot{q}^{\star}_{\lambda,L}||_{1}\lesssim k^{2}2^{-k}||\dot{q}-\dot{q}^{\star}_{\lambda,L}||_{1}. (68)

    The same holds for the untruncated BP, i.e. BPλ\textnormal{BP}_{\lambda}, with fixed point q˙λΓC\dot{q}^{\star}_{\lambda}\in\Gamma_{C}. q˙λ,L\dot{q}^{\star}_{\lambda,L} for large enough LL and q˙λ\dot{q}^{\star}_{\lambda} have full support in their domains.

  2. 2.

    In the limit LL\to\infty, q˙λ,Lq˙λ10||\dot{q}^{\star}_{\lambda,L}-\dot{q}^{\star}_{\lambda}||_{1}\to 0.

For q˙𝒫(Ω˙)\dot{q}\in\mathscr{P}(\dot{\Omega}), denote q^BP^q˙\hat{q}\equiv\hat{\textnormal{BP}}\dot{q}, and define Hq˙=(H˙q˙,H^q˙,H¯q˙)𝚫H_{\dot{q}}=(\dot{H}_{\dot{q}},\hat{H}_{\dot{q}},\bar{H}_{\dot{q}})\in\boldsymbol{\Delta} by

H˙q˙(σ¯)=Φ˙(σ¯)λ˙i=1dq^(σ^i),H^q˙(σ¯)=Φ^(σ¯)λ^i=1kq˙(σ˙i),H¯q˙(σ)=Φ¯(σ)λ¯q˙(σ˙)q^(σ^),\dot{H}_{\dot{q}}(\underline{\sigma})=\frac{\dot{\Phi}(\underline{\sigma})^{\lambda}}{\dot{\mathfrak{Z}}}\prod_{i=1}^{d}\hat{q}(\hat{\sigma}_{i}),\quad\hat{H}_{\dot{q}}(\underline{\sigma})=\frac{\hat{\Phi}(\underline{\sigma})^{\lambda}}{\hat{\mathfrak{Z}}}\prod_{i=1}^{k}\dot{q}(\dot{\sigma}_{i}),\quad\bar{H}_{\dot{q}}(\sigma)=\frac{\bar{\Phi}(\sigma)^{-\lambda}}{\bar{\mathfrak{Z}}}\dot{q}(\dot{\sigma})\hat{q}(\hat{\sigma}), (69)

where ˙˙q˙,^^q˙\dot{\mathfrak{Z}}\equiv\dot{\mathfrak{Z}}_{\dot{q}},\hat{\mathfrak{Z}}\equiv\hat{\mathfrak{Z}}_{\dot{q}} and ¯¯q˙\bar{\mathfrak{Z}}\equiv\bar{\mathfrak{Z}}_{\dot{q}} are normalizing constants.

Definition A.11 (Definition 5.6 of [33]).

The optimal coloring profile for the untruncated model is the tuple Hλ=(H˙λ,H^λ,H¯λ)H^{\star}_{\lambda}=(\dot{H}^{\star}_{\lambda},\hat{H}^{\star}_{\lambda},\bar{H}^{\star}_{\lambda}), defined respectively by Hλ,L:=Hq˙λ,LH^{\star}_{\lambda,L}:=H_{\dot{q}^{\star}_{\lambda,L}} and Hλ:=Hq˙λH^{\star}_{\lambda}:=H_{\dot{q}^{\star}_{\lambda}}.

Definition A.12 (optimal boundary profile, free tree profile and weight).

The optimal boundary profile, the optimal free tree profile and the optimal weight are defined by the following.

  • The optimal boundary profile for the truncated model is the tuple Bλ(B˙λ,B^λ,B¯λ)B^{\star}_{\lambda}\equiv(\dot{B}^{\star}_{\lambda},\hat{B}^{\star}_{\lambda},\bar{B}^{\star}_{\lambda}), defined by restricting the optimal coloring profile to (˙)d,(^)k,^(\dot{\partial}^{\bullet})^{d},(\hat{\partial}^{\bullet})^{k},\hat{\partial}^{\bullet}:

    B˙λ(σ¯):=H˙λ(σ¯)forσ¯(˙)dB^λ(σ¯):=τ¯Ωk,τ¯S=σ¯H^λ(τ¯)forσ¯(^)kB¯λ(σ):=τΩ,τS=σH¯λ(τ)forσ^,\begin{split}&\dot{B}^{\star}_{\lambda}(\underline{\sigma}):=\dot{H}^{\star}_{\lambda}(\underline{\sigma})\quad\textnormal{for}\quad\underline{\sigma}\in(\dot{\partial}^{\bullet})^{d}\\ &\hat{B}^{\star}_{\lambda}(\underline{\sigma}):=\sum_{\underline{\tau}\in\Omega^{k},\underline{\tau}_{{\scriptsize{\texttt{S}}}}=\underline{\sigma}}\hat{H}^{\star}_{\lambda}(\underline{\tau})\quad\textnormal{for}\quad\underline{\sigma}\in(\hat{\partial}^{\bullet})^{k}\\ &\bar{B}^{\star}_{\lambda}(\sigma):=\sum_{\tau\in\Omega,\tau_{{\scriptsize{\texttt{S}}}}=\sigma}\bar{H}^{\star}_{\lambda}(\tau)\quad\textnormal{for}\quad\sigma\in\hat{\partial}^{\bullet},\end{split} (70)

    where τS\tau_{{\scriptsize{\texttt{S}}}} is defined by the simplified coloring of τΩ\tau\in\Omega, where τS:=τ\tau_{{\scriptsize{\texttt{S}}}}:=\tau, if τ^S\hat{\tau}\neq{\scriptsize{\texttt{S}}}, and τS:=S\tau_{{\scriptsize{\texttt{S}}}}:={\scriptsize{\texttt{S}}}, if τ^=S\hat{\tau}={\scriptsize{\texttt{S}}}. τ¯S\underline{\tau}_{{\scriptsize{\texttt{S}}}} is the coordinate-wise simplified coloring of τ¯\underline{\tau}.

  • The (normalized) optimal free tree profile (p𝔱,λ)𝔱𝗍𝗋(p_{\mathfrak{t},\lambda}^{\star})_{\mathfrak{t}\in\mathscr{F}_{{\sf tr}}} for the truncated model is defined as follows. Recall the normalizing constants 𝒵˙𝒵˙q^λ,𝒵^𝒵^q˙λ\dot{\mathscr{Z}}^{\star}\equiv\dot{\mathscr{Z}}_{\hat{q}^{\star}_{\lambda}},\hat{\mathscr{Z}}\equiv\hat{\mathscr{Z}}_{\dot{q}^{\star}_{\lambda}} for the BP map in (66), where q^λBP^q˙λ\hat{q}^{\star}_{\lambda}\equiv\hat{\textnormal{BP}}\dot{q}^{\star}_{\lambda}, and ¯¯q˙λ\bar{\mathfrak{Z}}^{\star}\equiv\bar{\mathfrak{Z}}_{\dot{q}^{\star}_{\lambda}} in (69). Writing q˙=q˙λ\dot{q}^{\star}=\dot{q}^{\star}_{\lambda} and q^=q^λ\hat{q}^{\star}=\hat{q}^{\star}_{\lambda}, define

    p𝔱,λ:=J𝔱w𝔱λ¯(𝒵˙)v(𝔱)(𝒵^)f(𝔱)q˙(B0)η𝔱(B0)+η𝔱(B1)(2λq^(S))η𝔱(S),p_{\mathfrak{t},\lambda}^{\star}:=\frac{J_{\mathfrak{t}}w_{\mathfrak{t}}^{\lambda}}{\bar{\mathfrak{Z}}^{\star}(\dot{\mathscr{Z}}^{\star})^{v(\mathfrak{t})}(\hat{\mathscr{Z}}^{\star})^{f(\mathfrak{t})}}\dot{q}^{\star}({{\scriptsize{\texttt{B}}}}_{0})^{\eta_{\mathfrak{t}}({{\scriptsize{\texttt{B}}}}_{0})+\eta_{\mathfrak{t}}({{\scriptsize{\texttt{B}}}}_{1})}(2^{-\lambda}\hat{q}^{\star}({\scriptsize{\texttt{S}}}))^{\eta_{\mathfrak{t}}({\scriptsize{\texttt{S}}})}, (71)

    for 𝔱\mathfrak{t}\in\mathscr{F} with v(𝔱)Lv(\mathfrak{t})\leq L.

Appendix B Equivalence of the descriptions of the local weak limit

In this section, we prove the following proposition. Recall the definition of 𝒫t\mathcal{P}_{\star}^{t} in Section 1.4 and the definition of νt\nu^{\star}_{t} in Definition 4.4. Also, recall the definition of pz¯t(σ¯t,L¯t)p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}) in Remark 2.12.

Proposition B.1.

For any z¯t{0,1}V(𝒯d,k,t)\underline{z}_{t}\in\{0,1\}^{V(\mathscr{T}_{d,k,t})} and L¯t{0,1}E𝗂𝗇(𝒯d,k,t)\underline{\texttt{L}}_{t}\in\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})}, we have that

𝒫t(z¯t,L¯t)=σ¯t𝒞tνt(σ¯t,L¯t)pz¯t(σ¯t,L¯t).\mathcal{P}_{\star}^{t}(\underline{z}_{t},\underline{\texttt{L}}_{t})=\sum_{\underline{\sigma}_{t}\in\mathscr{C}_{t}}\nu_{t}^{\star}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})\,.

To prove Proposition B.1, we first reduce the component coloring model to the coloring model. To this end, we define the analog of νt\nu^{\star}_{t} for the coloring model. Throughout, we use the supercript to distinguish a coloring σΩ\sigma^{\circ}\in\Omega from a component coloring σ𝒞\sigma\in\mathscr{C}. Moreover, we denote the optimal coloring profile for the untruncated model with λ=λ\lambda=\lambda^{\star} by HHλH^{\star}\equiv H^{\star}_{\lambda^{\star}}.

Definition B.2.

Consider the broadcast process with channel H(H˙,H^,H¯)H^{\star}\equiv(\dot{H}^{\star},\hat{H}^{\star},\bar{H}^{\star}) analogous to Definition 4.3. That is, given a 𝒯d,k\mathscr{T}_{d,k} with root ρ\rho, the spins around the root 𝝈¯δρΩd\underline{\boldsymbol{\sigma}}^{\circ}_{\delta\rho}\in\Omega^{d} is drawn from H˙\dot{H}^{\star}. Then, it is propagated along the variables and clauses as follows. If an edge eE(𝒯d,k)e\in E(\mathscr{T}_{d,k}) has children edges δa(e)e\delta a(e)\setminus e, then for τ¯=(τ1,,τk)Ωk\underline{\tau}^{\circ}=(\tau_{1}^{\circ},\ldots,\tau_{k}^{\circ})\in\Omega^{k} and τΩ\tau^{\circ}\in\Omega,

(𝝈¯δa(e)=τ¯|𝝈e=τ)=1kH^(τ¯)i=1k𝟙(τi=τ)H¯(τ).\mathbb{P}\big{(}\underline{\boldsymbol{\sigma}}^{\circ}_{\delta a(e)}=\underline{\tau}^{\circ}\,\big{|}\boldsymbol{\sigma}_{e}^{\circ}=\tau^{\circ}\big{)}=\frac{1}{k}\frac{\hat{H}^{\star}(\underline{\tau}^{\circ})\sum_{i=1}^{k}\mathds{1}(\tau_{i}^{\circ}=\tau^{\circ})}{\bar{H}^{\star}(\tau^{\circ})}\,.

If an edge eE(𝒯d,k)e\in E(\mathscr{T}_{d,k}) has children edges δv(e)e\delta v(e)\setminus e, then for τ¯=(τ1,,τd)Ωd\underline{\tau}^{\circ}=(\tau^{\circ}_{1},\ldots,\tau^{\circ}_{d})\in\Omega^{d} and τΩ\tau^{\circ}\in\Omega,

(𝝈¯δv(e)=τ¯|𝝈e=τ)=1dH˙(τ¯)i=1d𝟙(τi=τ)H¯(τ).\mathbb{P}\big{(}\underline{\boldsymbol{\sigma}}^{\circ}_{\delta v(e)}=\underline{\tau}^{\circ}\,\big{|}\boldsymbol{\sigma}_{e}^{\circ}=\tau^{\circ}\big{)}=\frac{1}{d}\frac{\dot{H}^{\star}(\underline{\tau}^{\circ})\sum_{i=1}^{d}\mathds{1}(\tau_{i}^{\circ}=\tau^{\circ})}{\bar{H}^{\star}(\tau^{\circ})}\,.

Then, conditional on (𝝈e)eE(𝒯d,k)(\boldsymbol{\sigma}_{e}^{\circ})_{e\in E(\mathscr{T}_{d,k})}, draw L¯δa{0,1}k\underline{\textbf{L}}_{\delta a}\in\{0,1\}^{k} for each clause aF(𝒯d,k)a\in F(\mathscr{T}_{d,k}) independently and uniformly at random among L¯\underline{\texttt{L}} which satisfy I^lit(σ¯δaL¯)=1\hat{I}^{\textnormal{lit}}(\underline{\sigma}^{\circ}_{\delta a}\oplus\underline{\texttt{L}})=1. Define νt,νt,[α,k]\nu^{\star,\circ}_{t}\equiv\nu^{\star,\circ}_{t}[\alpha,k] by the law of (𝝈¯t,L¯t)((𝝈e)eE(𝒯d,k,t),(Le)eE𝗂𝗇(𝒯d,k,t))(\underline{\boldsymbol{\sigma}}_{t}^{\circ},\underline{\textbf{L}}_{t})\equiv\big{(}(\boldsymbol{\sigma}_{e}^{\circ})_{e\in E(\mathscr{T}_{d,k,t})},(\textbf{L}_{e})_{e\in E_{\sf in}(\mathscr{T}_{d,k,t})}\big{)} considered up to automorphisms analogous to Definition 2.11.

Observe that for a tt-coloring (σ¯t,L¯t)Ωt(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})\in\Omega_{t} such that σ¯t=(σe)eE(𝒯d,k,t)\underline{\sigma}_{t}=(\sigma_{e})_{e\in E(\mathscr{T}_{d,k,t})} does not contain a cyclic free component, i.e. if σe=(𝔣,e)\sigma_{e}=(\mathfrak{f},e^{\prime}), then 𝔣𝗍𝗋\mathfrak{f}\in\mathscr{F}_{{\sf tr}}, we can reconstruct the corresponding coloring configuration σ¯t(σe)eE(𝒯d,k,t)\underline{\sigma}^{\circ}_{t}\equiv(\sigma_{e}^{\circ})_{e\in E(\mathscr{T}_{d,k,t})} by the following procedure.

  • For eE(𝒯d,k,t)e\in E(\mathscr{T}_{d,k,t}), if σe{R,B}\sigma_{e}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}, then set σe=σe\sigma^{\circ}_{e}=\sigma_{e}.

  • Suppose that σe=(𝔱,e)\sigma_{e}=(\mathfrak{t},e^{\prime}) for some 𝔱𝗍𝗋\mathfrak{t}\in\mathscr{F}_{{\sf tr}} and eE(𝔱)e^{\prime}\in E(\mathfrak{t}). Then, since the free tree 𝔱\mathfrak{t} contains the information of its boundary spins and literal information, we can apply the map T˙()\dot{T}(\cdot) and T^()\hat{T}(\cdot) (cf. Definition A.1) from the boundary of 𝔱\mathfrak{t} to recover the coloring σe(𝔱)=(σ˙e(𝔱),σ^e(𝔱))Ω\sigma_{e^{\prime}}^{\circ}(\mathfrak{t})=\big{(}\dot{\sigma}_{e^{\prime}}^{\circ}(\mathfrak{t}),\hat{\sigma}_{e^{\prime}}^{\circ}(\mathfrak{t})\big{)}\in\Omega at the edge ee^{\prime}. Then, define the map ψ:{(𝔱,e):𝔱𝗍𝗋,eE(𝔱)}Ω\psi:\{(\mathfrak{t},e^{\prime}):\mathfrak{t}\in\mathscr{F}_{{\sf tr}},e^{\prime}\in E(\mathfrak{t})\}\to\Omega by ψ(𝔱,e)=σe(𝔱)\psi(\mathfrak{t},e^{\prime})=\sigma_{e^{\prime}}^{\circ}(\mathfrak{t}), and set σe=ψ(σe)\sigma^{\circ}_{e}=\psi(\sigma_{e}).

  • For all eE(𝒯d,k,t)e\in E(\mathscr{T}_{d,k,t}) such that σe=S\sigma_{e}={\scriptsize{\texttt{S}}}, set σ^e=S\hat{\sigma}^{\circ}_{e}={\scriptsize{\texttt{S}}}. Note that after this step, σ^e\hat{\sigma}_{e}^{\circ} have been determined for eE(𝒯d,k,t)e\in E(\mathscr{T}_{d,k,t}).

  • Finally, for eE(𝒯d,k,t)e\in E(\mathscr{T}_{d,k,t}) such that σe=S\sigma_{e}={\scriptsize{\texttt{S}}}, set σ˙e:=T˙(σ¯^δv(e)e)\dot{\sigma}^{\circ}_{e}:=\dot{T}(\hat{\underline{\sigma}}^{\circ}_{\delta v(e)\setminus e}) (cf. Definition A.1), which is well-defined since if σ¯t\underline{\sigma}_{t} is valid per Definition 2.11, then σe=S\sigma_{e}={\scriptsize{\texttt{S}}} implies that there exists no edge eδv(e)e^{\prime}\in\delta v(e) such that σe{R,B}\sigma_{e}^{\prime}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}.

We denote Ψ(σ¯t,L¯t):=(σ¯t,L¯t)\Psi(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}):=(\underline{\sigma}^{\circ}_{t},\underline{\texttt{L}}_{t}) by the resulting coloring configuration. Then, the lemma below follows easily from the relationship between HH^{\star} and p𝔱p_{\mathfrak{t}}^{\star} established in Lemma B.1 in [28].

Lemma B.3.

If (𝛔¯t,L¯t)νt(\underline{\boldsymbol{\sigma}}_{t},\underline{\textbf{L}}_{t})\sim\nu_{t}^{\star}, then Ψ(𝛔¯t,L¯t)νt,\Psi(\underline{\boldsymbol{\sigma}}_{t},\underline{\textbf{L}}_{t})\sim\nu_{t}^{\star,\circ}.

Another important ingredient of the proof of Proposition B.1 is the relationship with the fixed point μ˙λ\dot{\mu}_{\lambda} (cf. Proposition 1.6) and q˙λ\dot{q}^{\star}_{\lambda} (cf. Proposition A.10) established in [33]. Recall that we defined {F}{τ:τ˙{0,1,},τ^{0,1,}}\{\scriptsize{\texttt{F}}\}\equiv\{\tau\in\mathscr{M}:\,\dot{\tau}\notin\{0,1,\star\},\hat{\tau}\notin\{0,1,\star\}\} and Ω{R0,R1,B0,B1}{F}\Omega\equiv\{{{\scriptsize{\texttt{R}}}}_{0},{{\scriptsize{\texttt{R}}}}_{1},{{\scriptsize{\texttt{B}}}}_{0},{{\scriptsize{\texttt{B}}}}_{1}\}\cup\{\scriptsize{\texttt{F}}\}.

Lemma B.4 (Lemma B.2 and B.3 in [33]).

Recall the BP fixed point q˙λ\dot{q}^{\star}_{\lambda} and q^λBPq˙λ\hat{q}^{\star}_{\lambda}\equiv\textnormal{BP}\dot{q}^{\star}_{\lambda} in Proposition A.10. For λ[0,1]\lambda\in[0,1], we have that

τ˙˙{0,1,}(m˙[τ˙](1))λq˙λ(τ˙)=τ˙˙{0,1,}(m˙[τ˙](0))λq˙λ(τ˙)=q˙λ(R1)q˙λ(B1),τ^^{0,1,}(m^[τ^](1))λq^λ(τ^)=τ^^{0,1,}(m^[τ^](0))λq^λ(τ^)=q^λ(B1).\begin{split}&\sum_{\dot{\tau}\notin\dot{\mathscr{M}}\setminus\{0,1,\star\}}\big{(}\dot{{{\texttt{m}}}}[\dot{\tau}](1)\big{)}^{\lambda}\dot{q}^{\star}_{\lambda}(\dot{\tau})=\sum_{\dot{\tau}\notin\dot{\mathscr{M}}\setminus\{0,1,\star\}}\big{(}\dot{{{\texttt{m}}}}[\dot{\tau}](0)\big{)}^{\lambda}\dot{q}^{\star}_{\lambda}(\dot{\tau})=\dot{q}^{\star}_{\lambda}({{\scriptsize{\texttt{R}}}}_{1})-\dot{q}^{\star}_{\lambda}({{\scriptsize{\texttt{B}}}}_{1})\,,\\ &\sum_{\hat{\tau}\notin\hat{\mathscr{M}}\setminus\{0,1,\star\}}\big{(}\hat{{{\texttt{m}}}}[\hat{\tau}](1)\big{)}^{\lambda}\hat{q}^{\star}_{\lambda}(\hat{\tau})=\sum_{\hat{\tau}\notin\hat{\mathscr{M}}\setminus\{0,1,\star\}}\big{(}\hat{{{\texttt{m}}}}[\hat{\tau}](0)\big{)}^{\lambda}\hat{q}^{\star}_{\lambda}(\hat{\tau})=\hat{q}^{\star}_{\lambda}({{\scriptsize{\texttt{B}}}}_{1})\,.\end{split}

Moreover, the fixed point μ˙λ\dot{\mu}_{\lambda} and μ^λ^λμ˙λ\hat{\mu}_{\lambda}\equiv\hat{\mathcal{R}}_{\lambda}\dot{\mu}_{\lambda} in Proposition 1.6 is a discrete measure on [0,1][0,1] whose support is at most countable, which is given as follows. For y[0,1]y\in[0,1], we have

μ˙λ(y)=τ˙˙{0,1,}q˙λ(τ˙)1q˙λ(R)𝟙{m˙[τ˙](1)=y}+𝐱{0,1}q˙λ(B𝐱)1q˙λ(R)𝟙{y=𝐱},μ^λ(y)=τ^^{0,1,}q^λ(τ^)1q^λ(B)𝟙{m^[τ^](1)=y}+𝐱{0,1}q^λ(R𝐱)1q^λ(B)𝟙{y=𝐱}.\begin{split}\dot{\mu}_{\lambda}(y)&=\sum_{\dot{\tau}\in\dot{\mathscr{M}}\setminus\{0,1,\star\}}\frac{\dot{q}^{\star}_{\lambda}(\dot{\tau})}{1-\dot{q}^{\star}_{\lambda}({{\scriptsize{\texttt{R}}}})}\mathds{1}\{\dot{{{\texttt{m}}}}[\dot{\tau}](1)=y\}+\sum_{\mathbf{x}\in\{0,1\}}\frac{\dot{q}^{\star}_{\lambda}({{\scriptsize{\texttt{B}}}}_{\mathbf{x}})}{1-\dot{q}^{\star}_{\lambda}({{\scriptsize{\texttt{R}}}})}\mathds{1}\{y=\mathbf{x}\}\,,\\ \hat{\mu}_{\lambda}(y)&=\sum_{\hat{\tau}\in\hat{\mathscr{M}}\setminus\{0,1,\star\}}\frac{\hat{q}^{\star}_{\lambda}(\hat{\tau})}{1-\hat{q}^{\star}_{\lambda}({{\scriptsize{\texttt{B}}}})}\mathds{1}\{\hat{{{\texttt{m}}}}[\hat{\tau}](1)=y\}+\sum_{\mathbf{x}\in\{0,1\}}\frac{\hat{q}^{\star}_{\lambda}({{\scriptsize{\texttt{R}}}}_{\mathbf{x}})}{1-\hat{q}^{\star}_{\lambda}({{\scriptsize{\texttt{B}}}})}\mathds{1}\{y=\mathbf{x}\}\,.\end{split}

With Lemma B.4 in hand, we establish the relationship between νt,\nu^{\star,\circ}_{t} and νλ\nu_{\lambda^{\star}}, defined in Section 1.4. Denote by νt,(;L¯t)\nu_{t}^{\star,\circ}(\,\cdot\,;\,\underline{\texttt{L}}_{t}) the law of 𝝈¯t\underline{\boldsymbol{\sigma}}_{t}^{\circ} conditional on L¯t=L¯t\underline{\textbf{L}}_{t}=\underline{\texttt{L}}_{t}, where (𝝈¯t,L¯t)νt,(\underline{\boldsymbol{\sigma}}_{t}^{\circ},\underline{\textbf{L}}_{t})\sim\nu_{t}^{\star,\circ}.

Lemma B.5.

For any L¯t{0,1}E𝗂𝗇(𝒯d,k,t)\underline{\texttt{L}}_{t}\in\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})}, there exists a coupling between 𝛔¯t(𝛔e)eE(𝒯d,k,t)νt,(;L¯t)\underline{\boldsymbol{\sigma}}_{t}^{\circ}\equiv(\boldsymbol{\sigma}_{e}^{\circ})_{e\in E(\mathscr{T}_{d,k,t})}\sim\nu_{t}^{\star,\circ}(\,\cdot\,;\,\underline{\texttt{L}}_{t}) and m¯t(me)eE(𝒯d,k,t)νλ(;L¯t)\underline{{{\texttt{m}}}}_{t}\equiv({{\texttt{m}}}_{e})_{e\in E(\mathscr{T}_{d,k,t})}\sim\nu_{\lambda^{\star}}(\,\cdot\,;\,\underline{\texttt{L}}_{t}) such that it satisfies the following conditions almost surely.

  1. 1.

    The frozen configurations corresponding to 𝝈¯t\underline{\boldsymbol{\sigma}}_{t}^{\circ} and m¯t\underline{{{\texttt{m}}}}_{t} are the same. More precisely, for any eE(𝒯d,k,t)e\in E(\mathscr{T}_{d,k,t}) and 𝐱{0,1}\mathbf{x}\in\{0,1\}, m^e=δ𝐱\hat{{{\texttt{m}}}}_{e}=\delta_{\mathbf{x}} if and only if 𝝈e=R𝐱\boldsymbol{\sigma}_{e}^{\circ}={{\scriptsize{\texttt{R}}}}_{\mathbf{x}}.

  2. 2.

    For any e𝒯d,k,te\in\partial\mathscr{T}_{d,k,t}, whenever 𝝈e{R,B}\boldsymbol{\sigma}_{e}^{\circ}\notin\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}, m˙e=m˙[𝝈˙e]\dot{{{\texttt{m}}}}_{e}=\dot{{{\texttt{m}}}}[\dot{\boldsymbol{\sigma}}_{e}^{\circ}] and m^e=m^[𝝈^e]\hat{{{\texttt{m}}}}_{e}=\hat{{{\texttt{m}}}}[\hat{\boldsymbol{\sigma}}_{e}^{\circ}] hold, where m˙[]\dot{{{\texttt{m}}}}[\cdot] and m^[]\hat{{{\texttt{m}}}}[\cdot] are defined in (57) and (58) respectively. Otherwise, for 𝐱{0,1}\mathbf{x}\in\{0,1\} and e𝒯d,k,te\in\partial\mathscr{T}_{d,k,t}, m˙e=δ𝐱\dot{{{\texttt{m}}}}_{e}=\delta_{\mathbf{x}} holds if 𝝈e=B𝐱\boldsymbol{\sigma}_{e}^{\circ}={{\scriptsize{\texttt{B}}}}_{\mathbf{x}}, and m^e=δ𝐱\hat{{{\texttt{m}}}}_{e}=\delta_{\mathbf{x}} holds if 𝝈e=R𝐱\boldsymbol{\sigma}_{e}^{\circ}={{\scriptsize{\texttt{R}}}}_{\mathbf{x}}.

Proof.

For a message m(m˙,m^)𝒫({0,1})2{{\texttt{m}}}\equiv(\dot{{{\texttt{m}}}},\hat{{{\texttt{m}}}})\in\mathscr{P}(\{0,1\})^{2}, define it’s simplified message by msms[m]{{\texttt{m}}}^{\textnormal{s}}\equiv{{\texttt{m}}}^{\textnormal{s}}[{{\texttt{m}}}] by

ms={(,δ𝐱)if m^=δ𝐱 for some 𝐱{0,1},(δ𝐱,)if m^{δ0,δ1} and m˙=δ𝐱 for some 𝐱{0,1},motherwise.{{\texttt{m}}}^{\textnormal{s}}=\begin{cases}(*,\delta_{\mathbf{x}})~{}~{}~{}~{}&\textnormal{if $\hat{{{\texttt{m}}}}=\delta_{\mathbf{x}}$ for some $\mathbf{x}\in\{0,1\}$,}\\ (\delta_{\mathbf{x}},*)~{}~{}~{}~{}&\textnormal{if $\hat{{{\texttt{m}}}}\notin\{\delta_{0},\delta_{1}\}$ and $\dot{{{\texttt{m}}}}=\delta_{\mathbf{x}}$ for some $\mathbf{x}\in\{0,1\}$,}\\ {{\texttt{m}}}~{}~{}~{}~{}&\textnormal{otherwise.}\end{cases}

Thus, ms{{\texttt{m}}}^{\textnormal{s}} is obtained by erasing one side of m when m^{δ0,δ1}\hat{{{\texttt{m}}}}\in\{\delta_{0},\delta_{1}\} or m˙{δ0,δ1}\dot{{{\texttt{m}}}}\in\{\delta_{0},\delta_{1}\}. Note that such procedure is similar to the projection in (61) that leads to the coloring. To this end, for a coloring σΩ\sigma^{\circ}\in\Omega, we define its simplified message mm[σ]{{\texttt{m}}}^{\circ}\equiv{{\texttt{m}}}^{\circ}[\sigma^{\circ}] by

m={(,δ𝐱)if σ=R𝐱 for some 𝐱{0,1},(δ𝐱,)if σ=B𝐱 for some 𝐱{0,1},(m˙[σ˙],m^[σ^])if σ{F}.{{\texttt{m}}}^{\circ}=\begin{cases}(*,\delta_{\mathbf{x}})~{}~{}~{}~{}&\textnormal{if $\sigma^{\circ}={{\scriptsize{\texttt{R}}}}_{\mathbf{x}}$ for some $\mathbf{x}\in\{0,1\}$,}\\ (\delta_{\mathbf{x}},*)~{}~{}~{}~{}&\textnormal{if $\sigma^{\circ}={{\scriptsize{\texttt{B}}}}_{\mathbf{x}}$ for some $\mathbf{x}\in\{0,1\}$,}\\ (\dot{{{\texttt{m}}}}[\dot{\sigma}],\hat{{{\texttt{m}}}}[\hat{\sigma}])~{}~{}~{}~{}&\textnormal{if $\sigma^{\circ}\in\{\scriptsize{\texttt{F}}\}$.}\end{cases}

For m¯tνλ(;L¯t)\underline{{{\texttt{m}}}}_{t}\sim\nu_{\lambda^{\star}}(\,\cdot\,;\,\underline{\texttt{L}}_{t}), denote its simplified message by m¯tsms[m¯t]\underline{{{\texttt{m}}}}^{\textnormal{s}}_{t}\equiv{{\texttt{m}}}^{\textnormal{s}}[\underline{{{\texttt{m}}}}_{t}], where ms[]{{\texttt{m}}}^{\textnormal{s}}[\cdot] is applied coordinatewise. Similarly, for 𝝈¯tνt,(;L¯t)\underline{\boldsymbol{\sigma}}^{\circ}_{t}\sim\nu^{\star,\circ}_{t}(\,\cdot\,;\,\underline{\texttt{L}}_{t}), denote its simplirifed message by m¯tm[𝝈¯t]\underline{{{\texttt{m}}}}^{\circ}_{t}\equiv{{\texttt{m}}}^{\circ}[\underline{\boldsymbol{\sigma}}^{\circ}_{t}], where m[]{{\texttt{m}}}^{\circ}[\cdot] is applied coordinatewise. Then, we claim that

m¯ts=dm¯t\underline{{{\texttt{m}}}}^{\textnormal{s}}_{t}\stackrel{{\scriptstyle d}}{{=}}\underline{{{\texttt{m}}}}^{\circ}_{t} (72)

Note that (72) implies our goal by definition of ms{{\texttt{m}}}^{\textnormal{s}} and m{{\texttt{m}}}^{\circ}, so we establish (72) for the rest of the proof. Throughout, we assume that L¯t0\underline{\texttt{L}}_{t}\equiv 0 for simplicity. By the symmetry of nae-sat model, it is straightforward to generalize the argument to any L¯t{0,1}E𝗂𝗇(𝒯d,k,t)\underline{\texttt{L}}_{t}\in\{0,1\}^{E_{\sf in}(\mathscr{T}_{d,k,t})}.

Observe that νλ\nu_{\lambda^{\star}} defined in Section 1.4 is a Gibbs measure on the tree 𝒯d,k,t\mathscr{T}_{d,k,t}, so it can be described as a broadcast model analogous to νt,\nu_{t}^{\star,\circ} in Definition B.2. The channel (K˙,K^)(\dot{K},\hat{K}) of the broadcast model is given as follows. K˙\dot{K} and K^\hat{K} are probability measures on (𝒫({0,1})2)d\left(\mathscr{P}(\{0,1\})^{2}\right)^{d} and (𝒫({0,1})2)k\left(\mathscr{P}(\{0,1\})^{2}\right)^{k} given by

K˙(m1,,md)=(Z˙)1φ˙(m^1,,m^d)λi=1dμ^λ(m^i(1)),K^(m1,,mk)=(Z^)1φ^lit(m˙1,,m˙d)λi=1kμ˙λ(m˙i(1)),\begin{split}&\dot{K}({{\texttt{m}}}_{1},\ldots,{{\texttt{m}}}_{d})=(\dot{Z})^{-1}\dot{\varphi}(\hat{{{\texttt{m}}}}_{1},\ldots,\hat{{{\texttt{m}}}}_{d})^{\lambda^{\star}}\prod_{i=1}^{d}\hat{\mu}_{\lambda^{\star}}\left(\hat{{{\texttt{m}}}}_{i}(1)\right)\,,\\ &\hat{K}({{\texttt{m}}}_{1},\ldots,{{\texttt{m}}}_{k})=(\hat{Z})^{-1}\hat{\varphi}^{\textnormal{lit}}(\dot{{{\texttt{m}}}}_{1},\ldots,\dot{{{\texttt{m}}}}_{d})^{\lambda^{\star}}\prod_{i=1}^{k}\dot{\mu}_{\lambda^{\star}}\left(\dot{{{\texttt{m}}}}_{i}(1)\right)\,,\end{split}

where Z˙\dot{Z} and Z^\hat{Z} are normalizing constants. Since m¯ts\underline{{{\texttt{m}}}}^{\textnormal{s}}_{t} is obtained by a projection of m¯tνλ(;L¯t)\underline{{{\texttt{m}}}}_{t}\sim\nu_{\lambda^{\star}}(\,\cdot\,;\,\underline{\texttt{L}}_{t}), m¯ts\underline{{{\texttt{m}}}}^{\textnormal{s}}_{t} is a broadcast model with channel (K˙s,K^s)(\dot{K}^{\textnormal{s}},\hat{K}^{\textnormal{s}}). Here, K˙s\dot{K}^{\textnormal{s}} is the probability measure given by the projection of K˙\dot{K} according to ms[]{{\texttt{m}}}^{\textnormal{s}}[\cdot]: for m1s,,mds𝒫({0,1})2𝐱{0,1}{(,δ𝐱),(δ𝐱,)}{{\texttt{m}}}_{1}^{\textnormal{s}},\ldots,{{\texttt{m}}}_{d}^{\textnormal{s}}\in\mathscr{P}(\{0,1\})^{2}\sqcup_{\mathbf{x}\in\{0,1\}}\{(*,\delta_{\mathbf{x}}),(\delta_{\mathbf{x}},*)\},

K˙s(m1s,,mds)=m1,,mdK˙(m1,,md)𝟙{ms[mi]=misfor all1id}.\dot{K}^{\textnormal{s}}({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{d})=\sum_{{{\texttt{m}}}_{1},\ldots,{{\texttt{m}}}_{d}}\dot{K}({{\texttt{m}}}_{1},\ldots,{{\texttt{m}}}_{d})\mathds{1}\left\{{{\texttt{m}}}^{\textnormal{s}}[{{\texttt{m}}}_{i}]={{\texttt{m}}}^{\textnormal{s}}_{i}~{}~{}\textnormal{for all}~{}~{}1\leq i\leq d\right\}\,.

K^s\hat{K}^{\textnormal{s}} is defined similarly. Observe that we can simplify K˙s\dot{K}^{\textnormal{s}} using Lemma B.4 as follows. Consider the case where the simplified messages (m1s,,mds)({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{d}) are adjacent to a frozen variable, i.e. (m1s,,mds)𝐱{0,1}({(,δ𝐱),(δ𝐱,)})d({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{d})\in\sqcup_{\mathbf{x}\in\{0,1\}}\left(\{(*,\delta_{\mathbf{x}}),(\delta_{\mathbf{x}},*)\}\right)^{d}. Without loss of generality, suppose (m1s,,mds)({(,δ1),(δ1,)})d({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{d})\in\left(\{(*,\delta_{1}),(\delta_{1},*)\}\right)^{d} and let I:={1id:mis=(,δ1)}I:=\{1\leq i\leq d:{{\texttt{m}}}^{\textnormal{s}}_{i}=(*,\delta_{1})\} be the indices that correspond to the non-forcing messages. Then, note that (m1,,md)({{\texttt{m}}}_{1},\ldots,{{\texttt{m}}}_{d}) that satisfy ms[mi]=mis{{\texttt{m}}}^{\textnormal{s}}[{{\texttt{m}}}_{i}]={{\texttt{m}}}^{\textnormal{s}}_{i} for 1id1\leq i\leq d is determined by (m^i)iI𝒫({0,1}){δ0,δ1}(\hat{{{\texttt{m}}}}_{i})_{i\in I}\subset\mathscr{P}(\{0,1\})\setminus\{\delta_{0},\delta_{1}\}. Also, φ˙(m^1,,m^d)=iIm^i(1)\dot{\varphi}(\hat{{{\texttt{m}}}}_{1},\ldots,\hat{{{\texttt{m}}}}_{d})=\prod_{i\in I}\hat{{{\texttt{m}}}}_{i}(1) holds by definition of φ˙\dot{\varphi}. Thus, we have

K˙s(m1s,,mds)=(Z˙)1μ^λ(1)d|I|iI(m^i𝒫({0,1}){δ0,δ1}(m^i(1))λμ^λ(m^i(1)))=(Z˙(1q^λ(B))d)1q^λ(R1)d|I|q^λ(B1)|I|,\begin{split}\dot{K}^{\textnormal{s}}({{\texttt{m}}}_{1}^{\textnormal{s}},\ldots,{{\texttt{m}}}_{d}^{\textnormal{s}})&=(\dot{Z})^{-1}\hat{\mu}_{\lambda^{\star}}(1)^{d-|I|}\cdot\prod_{i\in I}\Bigg{(}\sum_{\hat{{{\texttt{m}}}}_{i}\in\mathscr{P}(\{0,1\})\setminus\{\delta_{0},\delta_{1}\}}\big{(}\hat{{{\texttt{m}}}}_{i}(1)\big{)}^{\lambda^{\star}}\hat{\mu}_{\lambda^{\star}}\big{(}\hat{{{\texttt{m}}}}_{i}(1)\big{)}\Bigg{)}\\ &=\Big{(}\dot{Z}\big{(}1-\hat{q}^{\star}_{\lambda^{\star}}({{\scriptsize{\texttt{B}}}})\big{)}^{d}\Big{)}^{-1}\hat{q}^{\star}_{\lambda^{\star}}({{\scriptsize{\texttt{R}}}}_{1})^{d-|I|}\hat{q}^{\star}_{\lambda^{\star}}({{\scriptsize{\texttt{B}}}}_{1})^{|I|}\,,\end{split} (73)

where the last equality is due to Lemma B.4. Next, consider the case where the simplified messages are adjacent to a free variable, i.e. m1s,,mds(𝒫({0,1}){δ0,δ1})2{{\texttt{m}}}_{1}^{\textnormal{s}},\ldots,{{\texttt{m}}}_{d}^{\textnormal{s}}\in\big{(}\mathscr{P}(\{0,1\})\setminus\{\delta_{0},\delta_{1}\}\big{)}^{2}. Then, by Lemma B.4, we have

K˙s(m1s,,mds)=K˙(m1s,,mds)=(Z˙(1q^λ(B))d)1τ^1,,τ^d^{0,1,}φ˙(m^[τ^1],,m^[τ^d])λi=1dq^λ(τ^i).\begin{split}\dot{K}^{\textnormal{s}}({{\texttt{m}}}_{1}^{\textnormal{s}},\ldots,{{\texttt{m}}}_{d}^{\textnormal{s}})=\dot{K}({{\texttt{m}}}_{1}^{\textnormal{s}},\ldots,{{\texttt{m}}}_{d}^{\textnormal{s}})=\Big{(}\dot{Z}\big{(}1-\hat{q}^{\star}_{\lambda^{\star}}({{\scriptsize{\texttt{B}}}})\big{)}^{d}\Big{)}^{-1}\sum_{\hat{\tau}_{1},\ldots,\hat{\tau}_{d}\in\hat{\mathscr{M}}\setminus\{0,1,\star\}}\dot{\varphi}\big{(}\hat{{{\texttt{m}}}}[\hat{\tau}_{1}],\ldots,\hat{{{\texttt{m}}}}[\hat{\tau}_{d}]\big{)}^{\lambda^{\star}}\prod_{i=1}^{d}\hat{q}^{\star}_{\lambda^{\star}}(\hat{\tau}_{i})\,.\end{split} (74)

Similarly, we can simplify K^s\hat{K}^{\textnormal{s}} as follows. Consider the case where the simplified messages (m1s,,mks)({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{k}) are adjacent to a forcing clause, i.e. (m1s,,mks)𝐱{0,1}Per((,δ𝐱),(δ1𝐱,)k1)({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{k})\in\sqcup_{\mathbf{x}\in\{0,1\}}\textnormal{Per}\big{(}(*,\delta_{\mathbf{x}}),(\delta_{1-\mathbf{x}},*)^{k-1}\big{)}. Without loss of generality, suppose (m1s,,mks)=((,δ1),(δ0,)k1)({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{k})=\big{(}(*,\delta_{1}),(\delta_{0},*)^{k-1}\big{)}. Then, note that (m1,,mk)({{\texttt{m}}}_{1},\ldots,{{\texttt{m}}}_{k}) that satisfy ms[mi]=mis{{\texttt{m}}}^{\textnormal{s}}[{{\texttt{m}}}_{i}]={{\texttt{m}}}^{\textnormal{s}}_{i} for 1ik1\leq i\leq k is determined by m˙1𝒫({0,1})\dot{{{\texttt{m}}}}_{1}\in\mathscr{P}(\{0,1\}). Also, φ^lit(m˙1,,m˙k)=m˙1(0)\hat{\varphi}^{\textnormal{lit}}(\dot{{{\texttt{m}}}}_{1},\ldots,\dot{{{\texttt{m}}}}_{k})=\dot{{{\texttt{m}}}}_{1}(0) holds by definition of φ^lit\hat{\varphi}^{\textnormal{lit}}. Thus, we have

K^s(m1s,,m^ks)=(Z^)1μ˙λ(1)k1(m˙1𝒫({0,1})(m˙1(0))λμ˙λ(m˙1(1)))=(Z^(1q˙λ(R))k)1q˙λ(B1)k1q˙λ(R0),\begin{split}\hat{K}^{\textnormal{s}}({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,\hat{{{\texttt{m}}}}^{\textnormal{s}}_{k})&=(\hat{Z})^{-1}\dot{\mu}_{\lambda^{\star}}(1)^{k-1}\cdot\Bigg{(}\sum_{\dot{{{\texttt{m}}}}_{1}\in\mathscr{P}(\{0,1\})}\big{(}\dot{{{\texttt{m}}}}_{1}(0)\big{)}^{\lambda^{\star}}\dot{\mu}_{\lambda^{\star}}\big{(}\dot{{{\texttt{m}}}}_{1}(1)\big{)}\Bigg{)}\\ &=\Big{(}\hat{Z}\big{(}1-\dot{q}^{\star}_{\lambda^{\star}}({{\scriptsize{\texttt{R}}}})\big{)}^{k}\Big{)}^{-1}\dot{q}^{\star}_{\lambda^{\star}}({{\scriptsize{\texttt{B}}}}_{1})^{k-1}\dot{q}^{\star}_{\lambda^{\star}}({{\scriptsize{\texttt{R}}}}_{0})\,,\end{split} (75)

where the last equality is due to Lemma B.4. Next, consider the case where the simplified messages are adjacent to a non-forcing clause, i.e. m1s,,mks(𝒫({0,1}))2𝐱{0,1}{(δ𝐱,)}{{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{k}\in\big{(}\mathscr{P}(\{0,1\})\big{)}^{2}\sqcup_{\mathbf{x}\in\{0,1\}}\big{\{}(\delta_{\mathbf{x}},*)\big{\}}. Then, note that for all (m1,,mk)({{\texttt{m}}}_{1},\ldots,{{\texttt{m}}}_{k}) that satisfy ms[mi]=mis{{\texttt{m}}}^{\textnormal{s}}[{{\texttt{m}}}_{i}]={{\texttt{m}}}^{\textnormal{s}}_{i} for 1ik1\leq i\leq k, (m˙1,,m˙k)(\dot{{{\texttt{m}}}}_{1},\ldots,\dot{{{\texttt{m}}}}_{k}) is determined by (m1s,,mks)({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{k}). With abuse of notation, set q˙λ(𝐱)q˙λ(B𝐱)\dot{q}^{\star}_{\lambda^{\star}}(\mathbf{x})\equiv\dot{q}^{\star}_{\lambda^{\star}}({{\scriptsize{\texttt{B}}}}_{\mathbf{x}}) for 𝐱{0,1}\mathbf{x}\in\{0,1\}. Then, by Lemma B.4, we have

K^s(m1s,,mks)=m1,,mkK^(m1,,mk)𝟙{ms[mi]=misfor all1ik}=(Z^(1q˙λ(R))k)1τ˙1,,τ˙k˙{}φ^lit(m˙[τ˙1],,m˙[τ˙k])λi=1dq˙λ(τ˙i).\begin{split}\hat{K}^{\textnormal{s}}({{\texttt{m}}}^{\textnormal{s}}_{1},\ldots,{{\texttt{m}}}^{\textnormal{s}}_{k})&=\sum_{{{\texttt{m}}}_{1},\ldots,{{\texttt{m}}}_{k}}\hat{K}({{\texttt{m}}}_{1},\ldots,{{\texttt{m}}}_{k})\mathds{1}\left\{{{\texttt{m}}}^{\textnormal{s}}[{{\texttt{m}}}_{i}]={{\texttt{m}}}^{\textnormal{s}}_{i}~{}~{}\textnormal{for all}~{}~{}1\leq i\leq k\right\}\\ &=\Big{(}\hat{Z}\big{(}1-\dot{q}^{\star}_{\lambda^{\star}}({{\scriptsize{\texttt{R}}}})\big{)}^{k}\Big{)}^{-1}\sum_{\dot{\tau}_{1},\ldots,\dot{\tau}_{k}\in\dot{\mathscr{M}}\setminus\{\star\}}\hat{\varphi}^{\textnormal{lit}}\big{(}\dot{{{\texttt{m}}}}[\dot{\tau}_{1}],\ldots,\dot{{{\texttt{m}}}}[\dot{\tau}_{k}]\big{)}^{\lambda^{\star}}\prod_{i=1}^{d}\dot{q}^{\star}_{\lambda^{\star}}(\dot{\tau}_{i})\,.\end{split} (76)

Now, since mt{{\texttt{m}}}^{\circ}_{t} is obtained by a projection of 𝝈¯tνt,(;L¯t)\underline{\boldsymbol{\sigma}}_{t}^{\circ}\sim\nu_{t}^{\star,\circ}(\,\cdot\,;\,\underline{\texttt{L}}_{t}), mt{{\texttt{m}}}^{\circ}_{t} is a broadcast model with channel (K˙,K^)(\dot{K}^{\circ},\hat{K}^{\circ}), where (K˙,K^)(\dot{K}^{\circ},\hat{K}^{\circ}) is given by

K˙(m1,,md)=σ1,,σdH˙(σ1,,σd)𝟙{m[σi]=mifor all1id},K^(m1,,mk)=σ1,,σkH^,lit(σ1,,σk)𝟙{m[σi]=mifor all1ik},\begin{split}&\dot{K}^{\circ}({{\texttt{m}}}^{\circ}_{1},\ldots,{{\texttt{m}}}^{\circ}_{d})=\sum_{\sigma_{1}^{\circ},\ldots,\sigma^{\circ}_{d}}\dot{H}^{\star}(\sigma_{1}^{\circ},\ldots,\sigma_{d}^{\circ})\mathds{1}\left\{{{\texttt{m}}}^{\circ}[\sigma_{i}^{\circ}]={{\texttt{m}}}^{\circ}_{i}~{}~{}\textnormal{for all}~{}~{}1\leq i\leq d\right\}\,,\\ &\hat{K}^{\circ}({{\texttt{m}}}^{\circ}_{1},\ldots,{{\texttt{m}}}^{\circ}_{k})=\sum_{\sigma_{1}^{\circ},\ldots,\sigma^{\circ}_{k}}\hat{H}^{\star,\textnormal{lit}}(\sigma_{1}^{\circ},\ldots,\sigma_{k}^{\circ})\mathds{1}\left\{{{\texttt{m}}}^{\circ}[\sigma_{i}^{\circ}]={{\texttt{m}}}^{\circ}_{i}~{}~{}\textnormal{for all}~{}~{}1\leq i\leq k\right\}\,,\end{split} (77)

where H^,lit\hat{H}^{\star,\textnormal{lit}} is defined as

H^,lit(σ¯)=Φ^lit(σ¯)λ^liti=1kq˙λ(σi).\hat{H}^{\star,\textnormal{lit}}(\underline{\sigma}^{\circ})=\frac{\hat{\Phi}^{\textnormal{lit}}(\underline{\sigma}^{\circ})^{\lambda^{\star}}}{\hat{\mathfrak{Z}}^{\textnormal{lit}}}\prod_{i=1}^{k}\dot{q}^{\star}_{\lambda^{\star}}(\sigma^{\circ}_{i})\,.

In the above equation, ^lit\hat{\mathfrak{Z}}^{\textnormal{lit}} is a normalizing constant.

Observe that the expressions of K˙s\dot{K}^{\textnormal{s}} and K^s\hat{K}^{\textnormal{s}} obtained in (73)-(76) show that (K˙s,K^s)(\dot{K}^{\textnormal{s}},\hat{K}^{\textnormal{s}}) equals the channel (K^,K^)(\hat{K}^{\circ},\hat{K}^{\circ}) in (77). Therefore, we conclude that the law of m¯ts\underline{{{\texttt{m}}}}^{\textnormal{s}}_{t} and the law of m¯t\underline{{{\texttt{m}}}}^{\circ}_{t} is the same, which concludes the proof of (72). ∎

Proof of Proposition B.1.

To begin with, a standard dynamic programming (or belief propagation) calculation (e.g. see [2, Chapter 14] or the proof of [33, Lemma 2.9]) shows that we can express pz¯t(σ¯t,L¯t)p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}) as follows. Let (σ¯t,L¯t)=Ψ(σ¯t,L¯t)(\underline{\sigma}^{\circ}_{t},\underline{\texttt{L}}_{t})=\Psi(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}) be the coloring configuration corresponding to (σ¯t,L¯t)(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}). Note that σ¯t(σe)eE(𝒯d,k,t)\underline{\sigma}^{\circ}_{t}\equiv(\sigma^{\circ}_{e})_{e\in E(\mathscr{T}_{d,k,t})} determines the frozen configuration x¯t(xv)vV(𝒯d,k,t)x¯[σ¯t]{0,1,f}V(𝒯d,k,t)\underline{x}_{t}\equiv(x_{v})_{v\in V(\mathscr{T}_{d,k,t})}\equiv\underline{x}[\underline{\sigma}^{\circ}_{t}]\in\{0,1,\textnormal{\small{{f}}}\}^{V(\mathscr{T}_{d,k,t})}. Write z¯tL¯tσ¯t\underline{z}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{\sigma}^{\circ}_{t} when z¯t=(zv)vV(𝒯d,k,t)\underline{z}_{t}=(z_{v})_{v\in V(\mathscr{T}_{d,k,t})} is a valid nae-sat solution w.r.t. the literals L¯t\underline{\texttt{L}}_{t} and zv=xvz_{v}=x_{v} whenever xv{0,1}x_{v}\in\{0,1\}. Then,

pz¯t(σ¯t,L¯t)=𝟙{z¯tL¯tσ¯t}e𝒯d,k,t:σe{R,B}m^[σ^e](zv(e))z¯t{0,1}V(𝒯d,k,t)𝟙{z¯tL¯tσ¯t}e𝒯d,k,t:σe{R,B}m^[σ^e](zv(e)).p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})=\frac{\mathds{1}\{\underline{z}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{\sigma}_{t}^{\circ}\}\prod_{e\in\partial\mathscr{T}_{d,k,t}:\sigma^{\circ}_{e}\not\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}}\hat{{{\texttt{m}}}}[\hat{\sigma}_{e}^{\circ}](z_{v(e)})}{\sum_{\underline{z}^{\prime}_{t}\in\{0,1\}^{V(\mathscr{T}_{d,k,t})}}\mathds{1}\{\underline{z}_{t}^{\prime}\sim_{\underline{\texttt{L}}_{t}}\underline{\sigma}_{t}^{\circ}\}\prod_{e\in\partial\mathscr{T}_{d,k,t}:\sigma^{\circ}_{e}\not\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}}\hat{{{\texttt{m}}}}[\hat{\sigma}_{e}^{\circ}](z_{v(e)}^{\prime})}\,.

Note that in the expression above, σe{R,B}\sigma_{e}^{\circ}\notin\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\} guarantees that m^[σ^e]𝒫({0,1})\hat{{{\texttt{m}}}}[\hat{\sigma}_{e}^{\circ}]\in\mathscr{P}(\{0,1\}) is well defined. Thus, combining with Lemma B.3, σ¯t𝒞tνt(σ¯t,L¯t)pz¯t(σ¯t,L¯t)\sum_{\underline{\sigma}_{t}\in\mathscr{C}_{t}}\nu_{t}^{\star}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t}) equals

2|E𝗂𝗇(𝒯d,k,t)|𝔼𝝈¯tνt,(;L¯t)[𝟙{z¯tL¯t𝝈¯t}e𝒯d,k,t:𝝈e{R,B}m^[𝝈^e](zv(e))z¯t{0,1}V(𝒯d,k,t)𝟙{z¯tL¯t𝝈¯t}e𝒯d,k,t:𝝈e{R,B}m^[𝝈^e](zv(e))].2^{-|E_{\sf in}(\mathscr{T}_{d,k,t})|}\cdot\mathbb{E}_{\underline{\boldsymbol{\sigma}}^{\circ}_{t}\sim\nu_{t}^{\star,\circ}(\,\cdot\,;\,\underline{\texttt{L}}_{t})}\left[\frac{\mathds{1}\{\underline{z}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{\boldsymbol{\sigma}}_{t}^{\circ}\}\prod_{e\in\partial\mathscr{T}_{d,k,t}:\boldsymbol{\sigma}^{\circ}_{e}\not\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}}\hat{{{\texttt{m}}}}[\hat{\boldsymbol{\sigma}}_{e}^{\circ}](z_{v(e)})}{\sum_{\underline{z}^{\prime}_{t}\in\{0,1\}^{V(\mathscr{T}_{d,k,t})}}\mathds{1}\{\underline{z}_{t}^{\prime}\sim_{\underline{\texttt{L}}_{t}}\underline{\boldsymbol{\sigma}}_{t}^{\circ}\}\prod_{e\in\partial\mathscr{T}_{d,k,t}:\boldsymbol{\sigma}^{\circ}_{e}\not\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}}\hat{{{\texttt{m}}}}[\hat{\boldsymbol{\sigma}}_{e}^{\circ}](z_{v(e)}^{\prime})}\right]\,.

Furthermore, by Lemma B.5, we can couple 𝝈¯t(𝝈e)eE(𝒯d,k,t)νt,(;L¯t)\underline{\boldsymbol{\sigma}}_{t}^{\circ}\equiv(\boldsymbol{\sigma}_{e}^{\circ})_{e\in E(\mathscr{T}_{d,k,t})}\sim\nu_{t}^{\star,\circ}(\,\cdot\,;\,\underline{\texttt{L}}_{t}) and m¯t(me)eE(𝒯d,k,t)νλ(;L¯t)\underline{{{\texttt{m}}}}_{t}\equiv({{\texttt{m}}}_{e})_{e\in E(\mathscr{T}_{d,k,t})}\sim\nu_{\lambda^{\star}}(\,\cdot\,;\,\underline{\texttt{L}}_{t}) so that almost surely, their frozen configurations are the same and the boundary messages (m˙[𝝈˙e],m^[𝝈^e])(\dot{{{\texttt{m}}}}[\dot{\boldsymbol{\sigma}}_{e}^{\circ}],\hat{{{\texttt{m}}}}[\hat{\boldsymbol{\sigma}}_{e}^{\circ}]) and me{{\texttt{m}}}_{e} are the same for e𝒯d,k,te\in\partial\mathscr{T}_{d,k,t} whenever 𝝈e{R,B}\boldsymbol{\sigma}_{e}^{\circ}\notin\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}. Here, note that m˙[𝝈˙e],m^[𝝈^e]{δ0,δ1}\dot{{{\texttt{m}}}}[\dot{\boldsymbol{\sigma}}_{e}^{\circ}],\hat{{{\texttt{m}}}}[\hat{\boldsymbol{\sigma}}_{e}^{\circ}]\notin\{\delta_{0},\delta_{1}\} holds if 𝝈e{R,B}\boldsymbol{\sigma}_{e}^{\circ}\notin\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}, so for such e𝒯d,k,te\in\partial\mathscr{T}_{d,k,t}, m˙e,m^e{δ0,δ1}\dot{{{\texttt{m}}}}_{e},\hat{{{\texttt{m}}}}_{e}\not\in\{\delta_{0},\delta_{1}\}. Also, if 𝝈e{R,B}\boldsymbol{\sigma}_{e}^{\circ}\in\{{{\scriptsize{\texttt{R}}}},{{\scriptsize{\texttt{B}}}}\}, m˙e{δ0,δ1}\dot{{{\texttt{m}}}}_{e}\in\{\delta_{0},\delta_{1}\} or m^e{δ0,δ1}\hat{{{\texttt{m}}}}_{e}\in\{\delta_{0},\delta_{1}\} by our construction of the coupling. Thus, the expression in the display above equals

2|E𝗂𝗇(𝒯d,k,t)|𝔼m¯tνλ(;L¯t)[𝟙{z¯tL¯tx¯(m¯t)}e𝒯d,k,t:m˙e,m^e{δ0,δ1}m^e(zv(e))z¯t{0,1}V(𝒯d,k,t)𝟙{z¯tL¯tx¯(m¯t)}e𝒯d,k,t:m˙e,m^e{δ0,δ1}m^e(zv(e))].2^{-|E_{\sf in}(\mathscr{T}_{d,k,t})|}\cdot\mathbb{E}_{\underline{{{\texttt{m}}}}_{t}\sim\nu_{\lambda^{\star}}(\,\cdot\,;\,\underline{\texttt{L}}_{t})}\left[\frac{\mathds{1}\{\underline{z}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{x}(\underline{{{\texttt{m}}}}_{t})\}\prod_{e\in\partial\mathscr{T}_{d,k,t}:\dot{{{\texttt{m}}}}_{e},\hat{{{\texttt{m}}}}_{e}\notin\{\delta_{0},\delta_{1}\}}\hat{{{\texttt{m}}}}_{e}(z_{v(e)})}{\sum_{\underline{z}^{\prime}_{t}\in\{0,1\}^{V(\mathscr{T}_{d,k,t})}}\mathds{1}\{\underline{z}_{t}^{\prime}\sim_{\underline{\texttt{L}}_{t}}\underline{x}(\underline{{{\texttt{m}}}}_{t})\}\prod_{e\in\partial\mathscr{T}_{d,k,t}:\dot{{{\texttt{m}}}}_{e},\hat{{{\texttt{m}}}}_{e}\notin\{\delta_{0},\delta_{1}\}}\hat{{{\texttt{m}}}}_{e}(z_{v(e)}^{\prime})}\right]\,.

Finally, observe that given m¯t\underline{{{\texttt{m}}}}_{t} and e𝒯d,k,te\in\partial\mathscr{T}_{d,k,t}, the condition m˙e{δ0,δ1}\dot{{{\texttt{m}}}}_{e}\in\{\delta_{0},\delta_{1}\} or m^e{δ0,δ1}\hat{{{\texttt{m}}}}_{e}\in\{\delta_{0},\delta_{1}\} implies that v(e)v(e) is frozen in the frozen configuration x¯(m¯t)\underline{x}(\underline{{{\texttt{m}}}}_{t}). Thus, given m¯t\underline{{{\texttt{m}}}}_{t} and e𝒯d,k,te\in\partial\mathscr{T}_{d,k,t} such that m˙e{δ0,δ1}\dot{{{\texttt{m}}}}_{e}\in\{\delta_{0},\delta_{1}\} or m^e{δ0,δ1}\hat{{{\texttt{m}}}}_{e}\in\{\delta_{0},\delta_{1}\}, m^e(zv(e))\hat{{{\texttt{m}}}}_{e}(z^{\prime}_{v}(e)) is the same for all z¯t{0,1}V(𝒯d,k,t)\underline{z}^{\prime}_{t}\in\{0,1\}^{V(\mathscr{T}_{d,k,t})} such that z¯tL¯tx¯(mt)\underline{z}_{t}^{\prime}\sim_{\underline{\texttt{L}}_{t}}\underline{x}({{\texttt{m}}}_{t}). Therefore, we have that

σ¯t𝒞tνt(σ¯t,L¯t)pz¯t(σ¯t,L¯t)=2|E𝗂𝗇(𝒯d,k,t)|𝔼m¯tνλ(;L¯t)[𝟙{z¯tL¯tx¯(m¯t)}e𝒯d,k,tm^e(zv(e))z¯t{0,1}V(𝒯d,k,t)𝟙{z¯tL¯tx¯(m¯t)}e𝒯d,k,tm^e(zv(e))],\sum_{\underline{\sigma}_{t}\in\mathscr{C}_{t}}\nu_{t}^{\star}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})p_{\underline{z}_{t}}(\underline{\sigma}_{t},\underline{\texttt{L}}_{t})=2^{-|E_{\sf in}(\mathscr{T}_{d,k,t})|}\mathbb{E}_{\underline{{{\texttt{m}}}}_{t}\sim\nu_{\lambda^{\star}}(\,\cdot\,;\,\underline{\texttt{L}}_{t})}\left[\frac{\mathds{1}\{\underline{z}_{t}\sim_{\underline{\texttt{L}}_{t}}\underline{x}(\underline{{{\texttt{m}}}}_{t})\}\prod_{e\in\partial\mathscr{T}_{d,k,t}}\hat{{{\texttt{m}}}}_{e}(z_{v(e)})}{\sum_{\underline{z}^{\prime}_{t}\in\{0,1\}^{V(\mathscr{T}_{d,k,t})}}\mathds{1}\{\underline{z}_{t}^{\prime}\sim_{\underline{\texttt{L}}_{t}}\underline{x}(\underline{{{\texttt{m}}}}_{t})\}\prod_{e\in\partial\mathscr{T}_{d,k,t}}\hat{{{\texttt{m}}}}_{e}(z_{v(e)}^{\prime})}\right]\,,

which concludes the proof. ∎