This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Local Equilibrium Spin Distribution From Detailed Balance

Ziyue Wang1    Xingyu Guo2 [email protected]    Pengfei Zhuang1 1 Physics Department, Tsinghua University, Beijing 100084, China
2Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
Abstract

As the core ingredient for spin polarization, the local equilibrium spin distribution function is derived from the detailed balance principle. The kinetic theory for interacting fermionic systems is applied to the Nambu–Jona-Lasinio model at quark level. Under the semi-classical expansion with respect to \hbar and non-perturbative expansion with respect to NcN_{c}, the kinetic equations for the vector and axial-vector distribution functions are derived with collision terms. It is found that, for an initially unpolarized system, non-zero spin polarization can be generated at the order of \hbar from the coupling between the vector and axial-vector charges. The local equilibrium spin polarization is derived from the requirement of detailed balance. It arises from the thermal vorticity and is orthogonal to the particle momentum.

I Introduction

The single-particle distribution function is of fundamental significance in off-equilibrium kinetic theory as well as many-body physics in equilibrium state. It has long been well known that for a system consisting of identical particles in thermodynamic equilibrium, the average number of particles in a single-particle state is described by Boltzmann distribution for non-relativistic system, Bose-Einstein distribution for bosons, and Fermi-Dirac distribution for fermions. However, in general, when spin of fermions is an independent degree of freedom, the distribution for spin-1/21/2 particles needs to be extended to describe the thermodynamical equilibrium of spin degrees of freedom Becattini:2013fla . By analyzing the density matrix for spin-1/21/2 particles, it is found that the non-even population of the polarization states arises from a steady gradient of temperature, and is orthogonal to particle momentum Becattini:2013fla . The same equilibrium distribution is also derived in Ref.Fang:2016vpj ; Gao:2018jsi by analyzing the free streaming spin transport equation. On the experimental side, the spin polarization effect in heavy ion collisions has attracted intense attention Liang:2004ph ; Voloshin:2004ha ; Betz:2007kg ; Becattini:2007sr . A large global angular momentum is produced in non-central heavy ion collisions and the spin of hadrons emitted is aligned with the direction of the global angular momentumSTAR:2017ckg ; Adam:2018ivw ; Acharya:2019vpe . The magnitude of the global polarization of Λ\Lambda baryons can be very well described by models based on relativistic hydrodynamics and assuming local thermodynamic equilibrium of the spin degrees of freedomBecattini:2013vja ; Becattini:2015ska ; Becattini:2016gvu ; Karpenko:2016jyx ; Pang:2016igs ; Xie:2017upb . The distribution function of a system of spin 1/21/2 particles is thus not only of significant importance for theoretical interest, but also required to explain the experimental data. As a matter of fact, different forms of equilibrium distribution functions are proposed based on different arguments. The most optimal situation would be to derive an equilibrium form from the entropy productionBecattini:2014yxa or the collision terms for particles with spin. As one of the basic requirements, local thermodynamic equilibrium is defined by means of detailed balance of kinetic theory, namely the collisional integral of the Boltzmann equation vanishesDeGroot:1980dk . In this work, the equilibrium distribution functions for spin-1/21/2 particles are derived based on the detailed balance requirement.

The spin related anomalous transport phenomenon in heavy ion collisions, such as chiral magnetic effect (CME)Kharzeev:2004ey ; Fukushima:2008xe as well as chiral vortical effectNeiman:2010zi call for the spin related transport theory and hydrodynamic theory. The chiral kinetic theorySon:2012bg ; Son:2012wh ; Son:2012zy ; Stephanov:2012ki ; Pu:2010as ; Chen:2012ca ; Hidaka:2016yjf ; Huang:2018wdl ; Liu:2018xip ; Lin:2019ytz is developed to describe the anomalous transport of massless fermions, and is further extended to the spin transport theory of massive fermionsHattori:2019ahi ; Wang:2019moi ; Gao:2019znl ; Weickgenannt:2019dks ; Liu:2020flb . Recently, it is extended from the free streaming scenario to discussing the collisional effectsYang:2020hri ; Weickgenannt:2020aaf ; Carignano:2019zsh ; Li:2019qkf ; Hou:2020mqp . The general framework of spin transport with collision terms is derived based on the Keldysh theoryYang:2020hri . This framework is then applied to the weakly coupled quark-gluon plasma at high temperature to compute the spin-diffusion term for massive quarks up to the leading logarithmic orderYang:2020hri and weakly coupled quantum electrodynamics plasma in Ref.Hou:2020mqp . In this work, we investigate the collision term in spin transport theory based on the framework in Ref.Yang:2020hri . In order to include fermionic 2-by-2 scattering, we consider the interaction among fermions by adopting the Nambu–Jona-Lasinio (NJL) model, and calculate the collisional self-energy by taking semi-classical (\hbar) expansion and non-perturbative (1/Nc1/N_{c}) expansion Klevansky:1997wm . For massive fermions, spin is an independent degree of freedom, we take vector component 𝒱μ\mathcal{V}_{\mu} and axial-vector component 𝒜μ\mathcal{A}_{\mu} of the Wigner function as independent degrees of freedom and derive their kinetic equations at orders 𝒪(0)\mathcal{O}(\hbar^{0}) and 𝒪(1)\mathcal{O}(\hbar^{1}). The local equilibrium forms of vector and axial-vector components are then derived by requiring the detailed balance of the kinetic equations. Within such framework, one only needs to specify an interaction, and no more assumption is required.

The paper is organized as follows: In Section II, we briefly review the Wigner-function approach and derive the kinetic equations for vector and axial-vector components to the first order of \hbar. In Section III, after specifying the scalar four-fermion interaction and reviewing the free fermion solution of the classical Wigner function, we derive the local equilibrium formulae of vector and axial-vector components under the requirement of detailed balance. The spin is found to be polarized by the local vorticity. Eventually, we make concluding remarks and outlook in Section IV. For references, we present most of the details of computations and critical steps for derivations in the Appendix.

II Constraint and Transport Equation

In this section, we review the basic steps of deriving the spin transport equation with collision term. Starting from the Wigner transformation applied to contour Green’s functionYang:2020hri ; Blaizot:2001nr

Sαβ<(>)(X,p)=d4YeipY/S~αβ<(>)(x,y),\displaystyle S_{\alpha\beta}^{<(>)}(X,p)=\int d^{4}Ye^{ip\cdot Y/\hbar}\tilde{S}_{\alpha\beta}^{<(>)}(x,y), (1)

where X=(x+y)/2X=(x+y)/2 and Y=xyY=x-y are the center of mass coordinate and relative coordinate. Here, S~αβ<(x,y)=ψ¯β(y)ψα(x)\tilde{S}_{\alpha\beta}^{<}(x,y)=\langle\bar{\psi}_{\beta}(y)\psi_{\alpha}(x)\rangle and S~αβ>(x,y)=ψα(x)ψ¯β(y)\tilde{S}_{\alpha\beta}^{>}(x,y)=\langle\psi_{\alpha}(x)\bar{\psi}_{\beta}(y)\rangle are lessor and greater propagators, respectively. The Wigner transformation of the Dyson-Schwinger equation of the lessor and greater propagators gives the Kadanoff-Baym equationsYang:2020hri . The sum and difference of Kadanoff-Baym equations gives the constraint and transport equations. Hereafter, we focus only on Sαβ<(X,p)S_{\alpha\beta}^{<}(X,p),

{(γμpμm),S<}+i2[γμ,μS<]\displaystyle\Big{\{}(\gamma^{\mu}p_{\mu}-m),S^{<}\Big{\}}+\frac{i\hbar}{2}\Big{[}\gamma^{\mu},\nabla_{\mu}S^{<}\Big{]} =\displaystyle= i2([Σ<,S>][Σ>,S<]),\displaystyle\frac{i\hbar}{2}\Big{(}\big{[}\Sigma^{<},S^{>}\big{]}_{\star}-\big{[}\Sigma^{>},S^{<}\big{]}_{\star}\Big{)},
[(γμpμm),S<]+i2{γμ,μS<}\displaystyle\Big{[}(\gamma^{\mu}p_{\mu}-m),S^{<}\Big{]}+\frac{i\hbar}{2}\Big{\{}\gamma^{\mu},\nabla_{\mu}S^{<}\Big{\}} =\displaystyle= i2({Σ<,S>}{Σ>,S<}),\displaystyle\frac{i\hbar}{2}\Big{(}\{\Sigma^{<},S^{>}\}_{\star}-\{\Sigma^{>},S^{<}\}_{\star}\Big{)}, (2)

where mm is mass of the fermion, Σ<(>)\Sigma^{<(>)} are the lessor and greater self-energy. The scattering process involves only Σ<(>)\Sigma^{<(>)}, thus we have dropped the real parts of the retarded and advanced self-energies and of the retarded propagators. The star product of two functions A(q,X)A(q,X) and B(q,X)B(q,X) is generated from the Wigner transformation, and stands for the shorthand notation of the following calculations

AB=AB+i2[AB]P.B.+𝒪(2),\displaystyle A\star B=AB+\frac{i\hbar}{2}[AB]_{\text{P.B.}}+\mathcal{O}(\hbar^{2}), (3)

where the Poisson bracket is [AB]P.B.(qμA)(μB)(μA)(qμB)[AB]_{\text{P.B.}}\equiv(\partial_{q}^{\mu}A)(\partial_{\mu}B)-(\partial_{\mu}A)(\partial_{q}^{\mu}B). The commutators are {F,G}FG+GF\{F,G\}\equiv FG+GF, [F,G]FGGF[F,G]\equiv FG-GF, {F,G}FG+GF\{F,G\}_{\star}\equiv F\star G+G\star F and [F,G]FGGF[F,G]_{\star}\equiv F\star G-G\star F, with FF and GG being arbitrary matrix-valued functions.

Different Dirac components of the Wigner function have different physical meanings. Performing the spin decomposition of the Wigner function, one get various components as,

S<=𝒮+i𝒫γ5+𝒱μγμ+𝒜μγ5γμ+12𝒮μνσμν,S>=𝒮¯+i𝒫¯γ5+𝒱¯μγμ+𝒜¯μγ5γμ+12𝒮¯μνσμν,\begin{split}S^{<}=\mathcal{S}+i\mathcal{P}\gamma^{5}+\mathcal{V}_{\mu}\gamma^{\mu}+\mathcal{A}_{\mu}\gamma^{5}\gamma^{\mu}+\frac{1}{2}\mathcal{S}_{\mu\nu}\sigma^{\mu\nu},\\ S^{>}=\bar{\mathcal{S}}+i\bar{\mathcal{P}}\gamma^{5}+\bar{\mathcal{V}}_{\mu}\gamma^{\mu}+\bar{\mathcal{A}}_{\mu}\gamma^{5}\gamma^{\mu}+\frac{1}{2}\bar{\mathcal{S}}_{\mu\nu}\sigma^{\mu\nu},\\ \end{split} (4)

where σμν=i[γμ,γν]/2\sigma^{\mu\nu}=i[\gamma^{\mu},\gamma^{\nu}]/2 and γ5=iγ0γ1γ2γ3\gamma^{5}=i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}. Similarly, the collisions terms in (II) is also decomposed by the Clifford algebra,

C=[Σ<,S>][Σ>,S<]\displaystyle C=\big{[}\Sigma^{<},S^{>}\big{]}_{\star}-~{}\big{[}\Sigma^{>},S^{<}\big{]}_{\star} =\displaystyle= CS+iγ5CP+γμCVμ+γ5γμCAμ+12σμνCTμν,\displaystyle C_{S}+i\gamma^{5}C_{P}+\gamma^{\mu}C_{V_{\mu}}+\gamma^{5}\gamma^{\mu}C_{A_{\mu}}+\frac{1}{2}\sigma^{\mu\nu}C_{T\mu\nu},
D={Σ<,S>}{Σ>,S<}\displaystyle D=\{\Sigma^{<},S^{>}\}_{\star}-\{\Sigma^{>},S^{<}\}_{\star} =\displaystyle= DS+iγ5DP+γμDVμ+γ5γμDAμ+12σμνDTμν.\displaystyle D_{S}+i\gamma^{5}D_{P}+\gamma^{\mu}D_{V_{\mu}}+\gamma^{5}\gamma^{\mu}D_{A_{\mu}}+\frac{1}{2}\sigma^{\mu\nu}D_{T\mu\nu}. (5)

Note that CC and DD contains both the loss term and the gain term, they can be recognized as Igainc=[Σ<,S>]I_{\text{gain}}^{c}=\big{[}\Sigma^{<},S^{>}\big{]}, Ilossc=[Σ>,S<]I^{c}_{\text{loss}}=\big{[}\Sigma^{>},S^{<}\big{]}, Igaina={Σ<,S>}I_{\text{gain}}^{a}=\{\Sigma^{<},S^{>}\} and Ilossa={Σ>,S<}I_{\text{loss}}^{a}=\{\Sigma^{>},S^{<}\}, with cc and aa denoting commutator and anti-commutator respectively. Since Σ\Sigma and SS are both 4×44\times 4 matrices, their multiplication is not commutative. The same spinor-basis decomposition for the self-energies is required to further derive the constraint and transport equation of each spin components,

Σ<=ΣS+iΣPγ5+ΣVμγμ+ΣAμγ5γμ+12ΣTμνσμν,Σ>=Σ¯S+iΣ¯Pγ5+Σ¯Vμγμ+Σ¯Aμγ5γμ+12Σ¯Tμνσμν.\begin{split}\Sigma^{<}=\Sigma_{S}+i\Sigma_{P}\gamma^{5}+\Sigma_{V\mu}\gamma^{\mu}+\Sigma_{A\mu}\gamma^{5}\gamma^{\mu}+\frac{1}{2}\Sigma_{T\mu\nu}\sigma^{\mu\nu},\\ \Sigma^{>}=\bar{\Sigma}_{S}+i\bar{\Sigma}_{P}\gamma^{5}+\bar{\Sigma}_{V\mu}\gamma^{\mu}+\bar{\Sigma}_{A\mu}\gamma^{5}\gamma^{\mu}+\frac{1}{2}\bar{\Sigma}_{T\mu\nu}\sigma^{\mu\nu}.\end{split} (6)

From the sum and difference of Kadanoff-Baym equations (II) as well as decomposition of the Wigner functions (4) and of the collision terms (II), one can derive the ten component functions

pμ𝒱μm𝒮=i4CS,\displaystyle p_{\mu}\mathcal{V}^{\mu}-m\mathcal{S}=\frac{i\hbar}{4}C_{S},
2m𝒫+μ𝒜μ=i2CP,\displaystyle 2m\mathcal{P}+\hbar\nabla_{\mu}\mathcal{A}^{\mu}=-\frac{i\hbar}{2}C_{P},
2pμ𝒮2m𝒱μν𝒮νμ=i2CVμ,\displaystyle 2p_{\mu}\mathcal{S}-2m\mathcal{V}_{\mu}-\hbar\nabla^{\nu}\mathcal{S}_{\nu\mu}=\frac{i\hbar}{2}C_{V_{\mu}},
μ𝒫ϵμνρσpσ𝒮νρ2m𝒜μ=i2CAμ,\displaystyle\hbar\nabla_{\mu}\mathcal{P}-\epsilon_{\mu\nu\rho\sigma}p^{\sigma}\mathcal{S}^{\nu\rho}-2m\mathcal{A}^{\mu}=\frac{i\hbar}{2}C_{A_{\mu}},
[μ𝒱ν]2ϵρσμνpρ𝒜σ2m𝒮μν=i2CTμν,\displaystyle\hbar\nabla_{[\mu}\mathcal{V}_{\nu]}-2\epsilon_{\rho\sigma\mu\nu}p^{\rho}\mathcal{A}^{\sigma}-2m\mathcal{S}_{\mu\nu}=\frac{i\hbar}{2}C_{T\mu\nu}, (7)

and

μ𝒱μ=12DS,\displaystyle\nabla_{\mu}\mathcal{V}^{\mu}=\frac{1}{2}D_{S},
2pμ𝒜μ=2DP,\displaystyle 2p_{\mu}\mathcal{A}^{\mu}=\frac{\hbar}{2}D_{P},
2pν𝒮νμ+μ𝒮=2DVμ,\displaystyle 2p^{\nu}\mathcal{S}_{\nu\mu}+\hbar\nabla_{\mu}\mathcal{S}=\frac{\hbar}{2}D_{V_{\mu}},
2pμ𝒫+2ϵμνρσσ𝒮νρ=2DAμ,\displaystyle 2p_{\mu}\mathcal{P}+\frac{\hbar}{2}\epsilon_{\mu\nu\rho\sigma}\nabla^{\sigma}\mathcal{S}^{\nu\rho}=-\frac{\hbar}{2}D_{A_{\mu}},
2p[μ𝒱ν]+ϵμνρσρ𝒜σ=2DTμν.\displaystyle 2p_{[\mu}\mathcal{V}_{\nu]}+\hbar\epsilon_{\mu\nu\rho\sigma}\nabla^{\rho}\mathcal{A}^{\sigma}=-\frac{\hbar}{2}D_{T\mu\nu}. (8)

Each component of the Wigner function and self-energies can be expanded by \hbar and so as the constraint and transport equations Eq.(II) and Eq.(II). 𝒱\mathcal{V} and 𝒜\mathcal{A} give rise to the vector-charge and axial-charge currents through JVμ=q𝒱μJ_{V}^{\mu}=\int q\mathcal{V}^{\mu} and J5μ=q𝒜μJ_{5}^{\mu}=\int q\mathcal{A}^{\mu}. The axial-charge currents can be regarded as a spin current of fermion. The 16 components given by the spin decomposition are not independent. Up to the first order of \hbar, the scalar component 𝒮\mathcal{S}, pseudo-scalar component 𝒫\mathcal{P} and tensor component 𝒮μν\mathcal{S}_{\mu\nu} can be expressed in terms of 𝒱\mathcal{V} and 𝒜\mathcal{A}, giving

𝒮(0)\displaystyle\mathcal{S}^{(0)} =\displaystyle= pμm𝒱(0)μ,\displaystyle\frac{p_{\mu}}{m}\mathcal{V}^{(0)\mu},
𝒮(1)\displaystyle\mathcal{S}^{(1)} =\displaystyle= pμm𝒱(1)μi4mCS(0),\displaystyle\frac{p_{\mu}}{m}\mathcal{V}^{(1)\mu}-\frac{i}{4m}C_{S}^{(0)},
𝒫(0)\displaystyle\mathcal{P}^{(0)} =\displaystyle= 0,\displaystyle 0,
𝒫(1)\displaystyle\mathcal{P}^{(1)} =\displaystyle= 12mμ𝒜(0)μi4mCP(0),\displaystyle-\frac{1}{2m}\nabla_{\mu}\mathcal{A}^{(0)\mu}-\frac{i}{4m}C_{P}^{(0)},
𝒮μν(0)\displaystyle\mathcal{S}_{\mu\nu}^{(0)} =\displaystyle= 1mϵρσμνpρ𝒜(0)σ,\displaystyle-\frac{1}{m}\epsilon_{\rho\sigma\mu\nu}p^{\rho}\mathcal{A}^{(0)\sigma},
𝒮μν(1)\displaystyle\mathcal{S}^{(1)}_{\mu\nu} =\displaystyle= 12m[μ𝒱ν](0)1mϵρσμνpρ𝒜(1)σi4mCTμν(0).\displaystyle\frac{1}{2m}\nabla_{[\mu}\mathcal{V}^{(0)}_{\nu]}-\frac{1}{m}\epsilon_{\rho\sigma\mu\nu}p^{\rho}\mathcal{A}^{(1)\sigma}-\frac{i}{4m}C^{(0)}_{T\mu\nu}. (9)

Each of 𝒱μ\mathcal{V}_{\mu} and 𝒜μ\mathcal{A}_{\mu} contains 4 components, which are not all independent. pμ𝒜(0)μ=0p_{\mu}\mathcal{A}^{(0)\mu}=0 and p[μ𝒱ν](0)=0p_{[\mu}\mathcal{V}^{(0)}_{\nu]}=0 indicates that 𝒜μ(0)\mathcal{A}^{(0)}_{\mu} has three independent components, while 𝒱μ(0)\mathcal{V}^{(0)}_{\mu} has only one independent component. Because of similar restrictions at 𝒪()\mathcal{O}(\hbar), the number of independent components of 𝒜μ(1)\mathcal{A}^{(1)}_{\mu} and 𝒱μ(1)\mathcal{V}^{(1)}_{\mu} stays the same as at 𝒪(0)\mathcal{O}(\hbar^{0}). In order to keep the description covariant and symmetric, we in the following derive the transport equations of 𝒱μ\mathcal{V}_{\mu} and 𝒜μ\mathcal{A}_{\mu}, but keep in mind that 𝒱μ\mathcal{V}_{\mu} and 𝒜μ\mathcal{A}_{\mu} has redundant components, and that the system has 4 independent degrees of freedom in total, one for number density and three for spin density.

The classical components are on the mass shell (p2m2)𝒱μ(0)=0(p^{2}-m^{2})\mathcal{V}^{(0)}_{\mu}=0, (p2m2)𝒜μ(0)=0(p^{2}-m^{2})\mathcal{A}^{(0)}_{\mu}=0. The transport equations are

(p)𝒱μ(0)=m2DVμ(0)+i2pνCTνμ(0),\displaystyle(p\cdot\nabla)\mathcal{V}^{(0)}_{\mu}=\frac{m}{2}D_{V\mu}^{(0)}+\frac{i}{2}p^{\nu}C_{T\nu\mu}^{(0)},
(p)𝒜μ(0)=m2DAμ(0)i2pμCP(0),\displaystyle(p\cdot\nabla)\mathcal{A}^{(0)}_{\mu}=\frac{m}{2}D_{A\mu}^{(0)}-\frac{i}{2}p_{\mu}C_{P}^{(0)}, (10)

With the spin decomposition of collision terms CC and DD given in Appendix.A, the transport equations of the vector and axial-vector components become,

p𝒱μ(0)\displaystyle p\cdot\nabla\mathcal{V}^{(0)}_{\mu} =\displaystyle= mΣS(0)𝒱μ(0)^+pνΣVν(0)𝒱μ(0)^+m2ϵαβλμΣT(0)αβ𝒜(0)λ^pνmϵαμβλpβΣT(0)αν𝒜(0)λ^pμΣA(0)ν𝒜ν(0)^,\displaystyle m\widehat{\Sigma_{S}^{(0)}\mathcal{V}_{\mu}^{(0)}}+p^{\nu}\widehat{\Sigma_{V\nu}^{(0)}\mathcal{V}_{\mu}^{(0)}}+\frac{m}{2}\epsilon_{\alpha\beta\lambda\mu}\widehat{\Sigma_{T}^{(0)\alpha\beta}\mathcal{A}^{(0)\lambda}}-\frac{p_{\nu}}{m}\epsilon_{\alpha\mu\beta\lambda}p^{\beta}\widehat{\Sigma_{T}^{(0)\alpha\nu}\mathcal{A}^{(0)\lambda}}-p_{\mu}\widehat{\Sigma_{A}^{(0)\nu}\mathcal{A}_{\nu}^{(0)}},
p𝒜μ(0)\displaystyle p\cdot\nabla\mathcal{A}^{(0)}_{\mu} =\displaystyle= mΣS(0)𝒜μ(0)^+pνΣVν(0)𝒜μ(0)^+m2ϵαβλμΣT(0)αβ𝒱(0)λ^+ΣAμ(0)pν𝒱ν(0)^pμΣAν(0)𝒱(0)ν^,\displaystyle m\widehat{\Sigma_{S}^{(0)}\mathcal{A}_{\mu}^{(0)}}+p^{\nu}\widehat{\Sigma_{V\nu}^{(0)}\mathcal{A}_{\mu}^{(0)}}+\frac{m}{2}\epsilon_{\alpha\beta\lambda\mu}\widehat{\Sigma_{T}^{(0)\alpha\beta}\mathcal{V}^{(0)\lambda}}+\widehat{\Sigma_{A\mu}^{(0)}p^{\nu}\mathcal{V}_{\nu}^{(0)}}-p_{\mu}\widehat{\Sigma_{A\nu}^{(0)}\mathcal{V}^{(0)\nu}}, (11)

where, same as in Ref.Yang:2020hri , the hat operator is defined as FG^=F¯GFG¯\widehat{FG}=\bar{F}G-F\bar{G}. Since the spin polarization is in general a quantum effect, it is crucial to investigate the transport equation at the first order of \hbar, especially the transport equation of 𝒜μ(1)\mathcal{A}_{\mu}^{(1)}. Taking the semiclassical expansion of Eq.(II) and Eq.(II), and considering the relation between various spin components Eq.(II), the on-shell conditions and transport equations at 𝒪()\mathcal{O}(\hbar) are modified into

(p2m2)𝒱μ(1)=ipμ4CS(0)+im4CVμ(0),\displaystyle(p^{2}-m^{2})\mathcal{V}^{(1)}_{\mu}=\frac{ip_{\mu}}{4}C_{S}^{(0)}+\frac{im}{4}C_{V\mu}^{(0)},
(p2m2)𝒜μ(1)=14pμDP(0)i8ϵμαβγpαCT(0)βγ+i4mCAμ(0),\displaystyle(p^{2}-m^{2})\mathcal{A}_{\mu}^{(1)}=\frac{1}{4}p^{\mu}D_{P}^{(0)}-\frac{i}{8}\epsilon_{\mu\alpha\beta\gamma}p^{\alpha}C_{T}^{(0)\beta\gamma}+\frac{i}{4}mC_{A\mu}^{(0)},
(p)𝒱μ(1)=m2DVμ(1)+i2pνCTνμ(1)+i4μCS(0),\displaystyle(p\cdot\nabla)\mathcal{V}_{\mu}^{(1)}=\frac{m}{2}D_{V\mu}^{(1)}+\frac{i}{2}p^{\nu}C_{T\nu\mu}^{(1)}+\frac{i}{4}\nabla_{\mu}C_{S}^{(0)},
(p)𝒜μ(1)=m2DAμ(1)i2pμCP(1)i8ϵμσνρσCT(0)νρ,\displaystyle(p\cdot\nabla)\mathcal{A}^{(1)}_{\mu}=\frac{m}{2}D_{A\mu}^{(1)}-\frac{i}{2}p_{\mu}C_{P}^{(1)}-\frac{i}{8}\epsilon_{\mu\sigma\nu\rho}\nabla^{\sigma}C_{T}^{(0)\nu\rho}, (12)

together with the restrictions at first order of \hbar, pμ𝒜(1)μ=14DP(0)p_{\mu}\mathcal{A}^{(1)\mu}=\frac{1}{4}D_{P}^{(0)} and p[μ𝒱ν](1)=12ϵμνρσρ𝒜(0)σ14DTμν(0)p_{[\mu}\mathcal{V}^{(1)}_{\nu]}=-\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}\nabla^{\rho}\mathcal{A}^{(0)\sigma}-\frac{1}{4}D^{(0)}_{T\mu\nu}. With the spin decomposition and semi-classical expansion of collision terms CC and DD in Appendix.A, as well as the relation between the spin components of the Wigner function Eq.(II), the on-shell relation become

(p2m2)𝒱μ(1)\displaystyle(p^{2}-m^{2})\mathcal{V}^{(1)}_{\mu} =\displaystyle= m2ΣP(0)𝒜μ(0)^12ϵμναβpαΣV(0)ν𝒜(0)β^m2ΣTμν(0)𝒱(0)ν^,\displaystyle-\frac{m}{2}\widehat{\Sigma_{P}^{(0)}\mathcal{A}_{\mu}^{(0)}}-\frac{1}{2}\epsilon_{\mu\nu\alpha\beta}p^{\alpha}\widehat{\Sigma_{V}^{(0)\nu}\mathcal{A}^{(0)\beta}}-\frac{m}{2}\widehat{\Sigma_{T\mu\nu}^{(0)}\mathcal{V}^{(0)\nu}},
(p2m2)𝒜μ(1)\displaystyle(p^{2}-m^{2})\mathcal{A}_{\mu}^{(1)} =\displaystyle= pμ2mpνΣP(0)𝒱ν(0)^m2ΣP(0)𝒱μ(0)^+ϵμαβγpαΣA(0)β𝒜(0)γ^,\displaystyle\frac{p^{\mu}}{2m}p^{\nu}\widehat{\Sigma_{P}^{(0)}\mathcal{V}_{\nu}^{(0)}}-\frac{m}{2}\widehat{\Sigma_{P}^{(0)}\mathcal{V}_{\mu}^{(0)}}+\epsilon_{\mu\alpha\beta\gamma}p^{\alpha}\widehat{\Sigma_{A}^{(0)\beta}\mathcal{A}^{(0)\gamma}}, (13)

In general, at 𝒪()\mathcal{O}(\hbar) order, 𝒱μ(1)\mathcal{V}^{(1)}_{\mu} and 𝒜μ(1)\mathcal{A}^{(1)}_{\mu} are off-shell because of the interaction. The restrictions at 𝒪()\mathcal{O}(\hbar) again eliminate the redundant components in 𝒜μ(1)\mathcal{A}^{(1)}_{\mu} and 𝒱μ(1)\mathcal{V}^{(1)}_{\mu},

p[μ𝒱ν](1)\displaystyle p_{[\mu}\mathcal{V}^{(1)}_{\nu]} =\displaystyle= 12ϵμναβα𝒜(0)β+12mϵμναβpαΣS(0)𝒜(0)β^+12ϵμναβΣV(0)α𝒜(0)β^+12mp[μΣP(0)𝒜ν](0)^\displaystyle-\frac{1}{2}\epsilon_{\mu\nu\alpha\beta}\nabla^{\alpha}\mathcal{A}^{(0)\beta}+\frac{1}{2m}\epsilon_{\mu\nu\alpha\beta}p^{\alpha}\widehat{\Sigma_{S}^{(0)}\mathcal{A}^{(0)\beta}}+\frac{1}{2}\epsilon_{\mu\nu\alpha\beta}\widehat{\Sigma_{V}^{(0)\alpha}\mathcal{A}^{(0)\beta}}+\frac{1}{2m}p_{[\mu}\widehat{\Sigma_{P}^{(0)}\mathcal{A}_{\nu]}^{(0)}}
12mpρΣTμν(0)𝒱ρ(0)^12ϵμναβΣA(0)α𝒱(0)β^,\displaystyle-\frac{1}{2m}p^{\rho}\widehat{\Sigma_{T\mu\nu}^{(0)}\mathcal{V}_{\rho}^{(0)}}-\frac{1}{2}\epsilon_{\mu\nu\alpha\beta}\widehat{\Sigma_{A}^{(0)\alpha}\mathcal{V}^{(0)\beta}},
pμ𝒜(1)μ\displaystyle p_{\mu}\mathcal{A}^{(1)\mu} =\displaystyle= 12mpνΣP(0)𝒱ν(0)^+12mpρΣTρν(0)𝒜(0)ν^.\displaystyle\frac{1}{2m}p^{\nu}\widehat{\Sigma_{P}^{(0)}\mathcal{V}_{\nu}^{(0)}}+\frac{1}{2m}p^{\rho}\widehat{\Sigma_{T\rho\nu}^{(0)}\mathcal{A}^{(0)\nu}}. (14)

Since the RHS of the restrictions contains only the 𝒪(0)\mathcal{O}(\hbar^{0}) components, 𝒱μ(1)\mathcal{V}^{(1)}_{\mu} contains still only one independent component representing first order correction to number density, while 𝒜μ(1)\mathcal{A}^{(1)}_{\mu} contains three independent components representing first order correction to spin density.

The transport equations of the first order components 𝒱μ(1)\mathcal{V}^{(1)}_{\mu} and 𝒜μ(1)\mathcal{A}^{(1)}_{\mu} are

(p)𝒱μ(1)\displaystyle(p\cdot\nabla)\mathcal{V}^{(1)}_{\mu} =\displaystyle= +mΣS(0)𝒱μ(1)^+pνΣVν(0)𝒱μ(1)^pμΣA(0)ν𝒜ν(1)^pνmϵρσαμpρΣT(0)αν𝒜(1)σ^+m2ϵσνλμΣT(0)σν𝒜(1)λ^\displaystyle+m\widehat{\Sigma_{S}^{(0)}\mathcal{V}_{\mu}^{(1)}}+p^{\nu}\widehat{\Sigma_{V\nu}^{(0)}\mathcal{V}_{\mu}^{(1)}}-p_{\mu}\widehat{\Sigma_{A}^{(0)\nu}\mathcal{A}^{(1)}_{\nu}}-\frac{p_{\nu}}{m}\epsilon_{\rho\sigma\alpha\mu}p^{\rho}\widehat{\Sigma_{T}^{(0)\alpha\nu}\mathcal{A}^{(1)\sigma}}+\frac{m}{2}\epsilon_{\sigma\nu\lambda\mu}\widehat{\Sigma_{T}^{(0)\sigma\nu}\mathcal{A}^{(1)\lambda}}
+mΣS(1)𝒱μ(0)^+pνΣVν(1)𝒱μ(0)^pμΣA(1)ν𝒜ν(0)^pνmϵαμβλpβΣT(1)αν𝒜(0)λ^+m2ϵσνλμΣT(1)σν𝒜(0)λ^\displaystyle+m\widehat{\Sigma_{S}^{(1)}\mathcal{V}_{\mu}^{(0)}}+p^{\nu}\widehat{\Sigma_{V\nu}^{(1)}\mathcal{V}_{\mu}^{(0)}}-p_{\mu}\widehat{\Sigma_{A}^{(1)\nu}\mathcal{A}_{\nu}^{(0)}}-\frac{p_{\nu}}{m}\epsilon_{\alpha\mu\beta\lambda}p^{\beta}\widehat{\Sigma_{T}^{(1)\alpha\nu}\mathcal{A}^{(0)\lambda}}+\frac{m}{2}\epsilon_{\sigma\nu\lambda\mu}\widehat{\Sigma_{T}^{(1)\sigma\nu}\mathcal{A}^{(0)\lambda}}
+12mpν[ΣTμν(0)(pα𝒱α(0)^)]P.B.m2[ΣTμν(0)𝒱(0)ν^]P.B.+12ϵμναβpν[ΣA(0)α𝒱(0)β^]P.B.\displaystyle+\frac{1}{2m}p^{\nu}[\widehat{\Sigma_{T\mu\nu}^{(0)}(p^{\alpha}\mathcal{V}_{\alpha}^{(0)}})]_{\text{P.B.}}-\frac{m}{2}[\widehat{\Sigma_{T\mu\nu}^{(0)}\mathcal{V}^{(0)\nu}}]_{\text{P.B.}}+\frac{1}{2}\epsilon_{\mu\nu\alpha\beta}p^{\nu}[\widehat{\Sigma_{A}^{(0)\alpha}\mathcal{V}^{(0)\beta}}]_{\text{P.B.}}
12mpνΣTαμ(0)[α𝒱(0)ν]^+12mpνΣTαν(0)[α𝒱μ](0)^+12ϵβνλμΣA(0)βν𝒱(0)λ^\displaystyle-\frac{1}{2m}p_{\nu}\widehat{\Sigma_{T\alpha\mu}^{(0)}\nabla^{[\alpha}\mathcal{V}^{(0)\nu]}}+\frac{1}{2m}p_{\nu}\widehat{\Sigma_{T}^{\alpha\nu(0)}\nabla_{[\alpha}\mathcal{V}^{(0)}_{\mu]}}+\frac{1}{2}\epsilon_{\beta\nu\lambda\mu}\widehat{\Sigma_{A}^{(0)\beta}\nabla^{\nu}\mathcal{V}^{(0)\lambda}}
+12ϵμναβ(αΣV(0)ν)𝒜(0)β^12mpμ(νΣP(0))𝒜ν(0)^12m(pννΣP(0))𝒜μ(0)^+12mpνϵμναβ(αΣS(0))𝒜(0)β^,\displaystyle+\frac{1}{2}\epsilon_{\mu\nu\alpha\beta}(\nabla^{\alpha}\widehat{\Sigma_{V}^{(0)\nu})\mathcal{A}^{(0)\beta}}-\frac{1}{2m}p_{\mu}(\nabla^{\nu}\widehat{\Sigma_{P}^{(0)})\mathcal{A}_{\nu}^{(0)}}-\frac{1}{2m}(p^{\nu}\nabla_{\nu}\widehat{\Sigma_{P}^{(0)})\mathcal{A}_{\mu}^{(0)}}+\frac{1}{2m}p^{\nu}\epsilon_{\mu\nu\alpha\beta}(\nabla^{\alpha}\widehat{\Sigma_{S}^{(0)})\mathcal{A}^{(0)\beta}},

and

(p)𝒜μ(1)\displaystyle(p\cdot\nabla)\mathcal{A}_{\mu}^{(1)} =\displaystyle= +mΣS(0)𝒜μ(1)^+pνΣVν(0)𝒜μ(1)^+pνΣAμ(0)𝒱ν(1)^+m2ϵαβλμΣT(0)αβ𝒱(1)λ^pμΣAν(0)𝒱(1)ν^\displaystyle+m\widehat{\Sigma_{S}^{(0)}\mathcal{A}^{(1)}_{\mu}}+p^{\nu}\widehat{\Sigma_{V\nu}^{(0)}\mathcal{A}^{(1)}_{\mu}}+p^{\nu}\widehat{\Sigma_{A\mu}^{(0)}\mathcal{V}^{(1)}_{\nu}}+\frac{m}{2}\epsilon_{\alpha\beta\lambda\mu}\widehat{\Sigma_{T}^{(0)\alpha\beta}\mathcal{V}^{(1)\lambda}}-p_{\mu}\widehat{\Sigma_{A\nu}^{(0)}\mathcal{V}^{(1)\nu}}
+mΣS(1)𝒜μ(0)^+pνΣVν(1)𝒜μ(0)^+pνΣAμ(1)𝒱ν(0)^+m2ϵαβλμΣT(1)αβ𝒱(0)λ^pμΣAν(1)𝒱(0)ν^\displaystyle+m\widehat{\Sigma_{S}^{(1)}\mathcal{A}_{\mu}^{(0)}}+p^{\nu}\widehat{\Sigma_{V\nu}^{(1)}\mathcal{A}_{\mu}^{(0)}}+p^{\nu}\widehat{\Sigma_{A\mu}^{(1)}\mathcal{V}_{\nu}^{(0)}}+\frac{m}{2}\epsilon_{\alpha\beta\lambda\mu}\widehat{\Sigma_{T}^{(1)\alpha\beta}\mathcal{V}^{(0)\lambda}}-p_{\mu}\widehat{\Sigma_{A\nu}^{(1)}\mathcal{V}^{(0)\nu}}
12ϵμνρσ(σΣV(0)ν)𝒱(0)ρ^m2[ΣP(0)𝒱μ(0)^]P.B.+12mpμ[ΣP(0)(pν𝒱ν(0)^)]P.B.\displaystyle-\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}(\nabla^{\sigma}\widehat{\Sigma_{V}^{(0)\nu})\mathcal{V}^{(0)\rho}}-\frac{m}{2}[\widehat{\Sigma_{P}^{(0)}\mathcal{V}_{\mu}^{(0)}}]_{\text{P.B.}}+\frac{1}{2m}p_{\mu}[\widehat{\Sigma_{P}^{(0)}(p^{\nu}\mathcal{V}_{\nu}^{(0)}})]_{\text{P.B.}}
+12ϵμσνρσΣA(0)ν𝒜(0)ρ^+12ϵνμαβ[ΣA(0)ν(pα𝒜(0)β^)]P.B.m2[ΣTμν(0)𝒜(0)ν^]P.B.+12mpμ[ΣTρν(0)(pρ𝒜(0)ν^)]P.B.\displaystyle+\frac{1}{2}\epsilon_{\mu\sigma\nu\rho}\nabla^{\sigma}\widehat{\Sigma_{A}^{(0)\nu}\mathcal{A}^{(0)\rho}}+\frac{1}{2}\epsilon_{\nu\mu\alpha\beta}[\widehat{\Sigma_{A}^{(0)\nu}(p^{\alpha}\mathcal{A}^{(0)\beta}})]_{\text{P.B.}}-\frac{m}{2}[\widehat{\Sigma_{T\mu\nu}^{(0)}\mathcal{A}^{(0)\nu}}]_{\text{P.B.}}+\frac{1}{2m}p_{\mu}[\widehat{\Sigma_{T\rho\nu}^{(0)}(p^{\rho}\mathcal{A}^{(0)\nu}})]_{\text{P.B.}}
12mpσσ(ΣTμν(0)𝒜(0)ν^)+12mpνσ(ΣTμν(0)𝒜σ(0)^)+12mpμσ(ΣTσν(0)𝒜(0)ν^)12mpνσ(ΣTσν(0)𝒜μ(0)^).\displaystyle-\frac{1}{2m}p_{\sigma}\nabla^{\sigma}(\widehat{\Sigma_{T\mu\nu}^{(0)}\mathcal{A}^{(0)\nu}})+\frac{1}{2m}p^{\nu}\nabla^{\sigma}(\widehat{\Sigma_{T\mu\nu}^{(0)}\mathcal{A}_{\sigma}^{(0)}})+\frac{1}{2m}p_{\mu}\nabla^{\sigma}(\widehat{\Sigma_{T\sigma\nu}^{(0)}\mathcal{A}^{(0)\nu}})-\frac{1}{2m}p^{\nu}\nabla^{\sigma}(\widehat{\Sigma_{T\sigma\nu}^{(0)}\mathcal{A}_{\mu}^{(0)}}).

The first two lines in Eq.(II) and Eq.(II) are dynamical effects, which contain for instance the diffusion effect. These terms have the same structure as the collision terms in the classical limit (11). The last three lines in both transport equations relate to the derivatives of self-energies and distribution functions, which are inhomogeneous effects. These terms are also quantum effects, which generate the coupled transport of vector charge and axial-vector charge. As we will see in the following, these inhomogeneous effects produce spin polarization from the thermal vorticity.

III Fermionic 22 by 22 scattering

In this paper, we focus on deriving the local equilibrium distribution from the detailed balance principle. For this purpose, the interaction needs to be specified to calculate the explicit expression of off-diagonal self-energies Σ<\Sigma^{<} and Σ>\Sigma^{>}. Considering the fact that, different interaction determines only how fast the system reaches equilibrium state, but not the equilibrium distribution function, therefore, we adopt the NJL-type model with scalar-channel of interaction and calculate the fermionic 22 by 22 scattering,

=ψ¯(i/m)ψ+G(ψ¯ψ)2.\displaystyle\mathcal{L}=\bar{\psi}(i\hbar\partial\!\!\!/-m)\psi+G(\bar{\psi}\psi)^{2}. (17)

In general a large part of the light fermion mass comes from the chiral condensate, however, we here work in the chiral restored phase to simplify the calculation, and consider only the current mass. Due to the nature of the strong coupling theory, two expansions must be applied: one expansion in the inverse number of colors 1/Nc1/N_{c}, and one semiclassical expansion in powers of \hbar. Directly translating from the diagramsKlevansky:1997wm , and then perform the Wigner transformation, this results in the self-energy to the 1/Nc1/N_{c} order (denoted by LO) and to the 1/Nc21/N_{c}^{2} order (denoted by NL)

ΣLO>(X,p)\displaystyle\Sigma^{>}_{\text{LO}}(X,p) =\displaystyle= G2𝑑PS>(X,p1)Tr[S<(X,p2)S>(X,p3)],\displaystyle G^{2}\int dP~{}S^{>}(X,p_{1})\text{Tr}\Big{[}S^{<}(X,p_{2})S^{>}(X,p_{3})\Big{]},
ΣNL>(X,p)\displaystyle\Sigma^{>}_{\text{NL}}(X,p) =\displaystyle= G2𝑑PS>(X,p1)S<(X,p2)S>(X,p3),\displaystyle-G^{2}\int dP~{}S^{>}(X,p_{1})S^{<}(X,p_{2})S^{>}(X,p_{3}), (18)

with the momentum integral defined as 𝑑P=d4p1d4p2d4p3(2π)4(2π)4(2π)4(2π)4δ(pp1+p2p3)\int dP=\int\frac{d^{4}p_{1}d^{4}p_{2}d^{4}p_{3}}{(2\pi)^{4}(2\pi)^{4}(2\pi)^{4}}(2\pi)^{4}\delta(p-p_{1}+p_{2}-p_{3}). The lesser self-energy ΣLO<\Sigma^{<}_{\text{LO}} and ΣNL<\Sigma^{<}_{\text{NL}} can be obtained by taking the exchange S>S<S^{>}\leftrightarrow S^{<} from (III). As clarified in Klevansky:1997wm , the self-energy ΣLO<(>)\Sigma^{<(>)}_{\text{LO}} and ΣNL<(>)\Sigma^{<(>)}_{\text{NL}} correspond to different scattering channels. However, the spin decomposition of ΣNL<(>)\Sigma^{<(>)}_{\text{NL}} is much more complicated when the Green’s function involves Dirac structure. Besides, since the detailed balance requires that the gain term and the loss term cancel with each other in arbitrary collision channel, to simplify the calculation, we consider only the collisional self-energy at 𝒪(1/Nc)\mathcal{O}(1/N_{c}) order. The spin decomposition of ΣLO\Sigma_{\text{LO}} follows simply from that of S<(>)(X,p1)S^{<(>)}(X,p_{1}), since the Tr(S<(X,p2)S>(X,p3))=𝒮2𝒮¯3𝒫2𝒫¯3+𝒱μ2𝒱¯3μ𝒜μ2𝒜¯3μ+12𝒮μν2𝒮¯3μν\text{Tr}(S^{<}(X,p_{2})S^{>}(X,p_{3}))=\mathcal{S}^{2}\bar{\mathcal{S}}^{3}-\mathcal{P}^{2}\bar{\mathcal{P}}^{3}+\mathcal{V}^{2}_{\mu}\bar{\mathcal{V}}^{3\mu}-\mathcal{A}^{2}_{\mu}\bar{\mathcal{A}}^{3\mu}+\frac{1}{2}\mathcal{S}^{2}_{\mu\nu}\bar{\mathcal{S}}^{3\mu\nu} is a number. The self-energy ΣLO>\Sigma^{>}_{\text{LO}} can be decomposed as Σ¯iLO=G2𝑑PTr(S<(X,p2)S>(X,p3))Si<(X,p1)\bar{\Sigma}^{\text{LO}}_{i}=G^{2}\int dP~{}\text{Tr}\big{(}S^{<}(X,p_{2})S^{>}(X,p_{3})\big{)}{S}^{<}_{i}(X,p_{1}). For instance, Σ¯S\bar{\Sigma}_{S} corresponds to 𝒮¯\bar{\mathcal{S}}, Σ¯Vμ\bar{\Sigma}_{V\mu} corresponds to 𝒱¯μ\bar{\mathcal{V}}_{\mu}, and Σ¯Aμ\bar{\Sigma}_{A\mu} corresponds to 𝒜¯μ\bar{\mathcal{A}}_{\mu} and so on.

III.1 Classical Limit

Substituting in the spin components of the self-energy in the transport equation of 𝒱μ(0)\mathcal{V}^{(0)}_{\mu} and 𝒜μ(0)\mathcal{A}^{(0)}_{\mu} in Eq.(11), one has the transport equations including the collision terms. Considering the relation between 𝒮(0)\mathcal{S}^{(0)} and 𝒱μ(0)\mathcal{V}^{(0)}_{\mu}, and that 𝒱μ(0)\mathcal{V}^{(0)}_{\mu} can be decomposed to 𝒱μ(0)δ(p2m2)pμfV\mathcal{V}^{(0)}_{\mu}\propto\delta(p^{2}-m^{2})p^{\mu}f_{V}, it would be convenient to derive the collision terms in transport equation of vector charge distribution fVf_{V} and the axial-vector charge distribution fAf_{A} from the following two equations,

p𝒮(0)\displaystyle p\cdot\nabla\mathcal{S}^{(0)} =\displaystyle= G2𝑑P[(1+p2p3m2)(𝒮2𝒮3^𝒜2μ𝒜μ3^)+p3μp2νm2𝒜μ2𝒜ν3^][(m+pp1m)(𝒮𝒮1^𝒜ν𝒜ν1^)+p1μpνm𝒜μ𝒜ν1^],\displaystyle G^{2}\int dP\Big{[}\Big{(}1+\frac{p_{2}\cdot p_{3}}{m^{2}}\Big{)}\left(\widehat{\mathcal{S}^{2}{\mathcal{S}}^{3}}-\widehat{\mathcal{A}^{2\mu}\mathcal{A}^{3}_{\mu}}\right)+\frac{p_{3}^{\mu}p_{2}^{\nu}}{m^{2}}\widehat{{\mathcal{A}^{2}_{\mu}\mathcal{A}}^{3}_{\nu}}\Big{]}\Big{[}\Big{(}m+\frac{p\cdot p_{1}}{m}\Big{)}\left(\widehat{\mathcal{S}{\mathcal{S}}^{1}}-\widehat{\mathcal{A}^{\nu}{\mathcal{A}}^{1}_{\nu}}\right)+\frac{p_{1}^{\mu}p^{\nu}}{m}\widehat{\mathcal{A}^{\mu}{\mathcal{A}}^{1}_{\nu}}\Big{]},
p𝒜μ(0)\displaystyle p\cdot\nabla\mathcal{A}^{(0)}_{\mu} =\displaystyle= G2𝑑P[(1+p2p3m2)(𝒮2𝒮3^𝒜2μ𝒜μ3^)+p3μp2νm2𝒜μ2𝒜ν3^][(m+pp1m)(𝒜μ𝒮1^+𝒮𝒜μ1^)pμ+p1μmpν𝒮𝒜ν1^].\displaystyle G^{2}\int dP\Big{[}\Big{(}1+\frac{p_{2}\cdot p_{3}}{m^{2}}\Big{)}\left(\widehat{\mathcal{S}^{2}{\mathcal{S}}^{3}}-\widehat{\mathcal{A}^{2\mu}\mathcal{A}^{3}_{\mu}}\right)+\frac{p_{3}^{\mu}p_{2}^{\nu}}{m^{2}}\widehat{{\mathcal{A}^{2}_{\mu}\mathcal{A}}^{3}_{\nu}}\Big{]}\Big{[}\Big{(}m+\frac{p\cdot p_{1}}{m}\Big{)}(\widehat{\mathcal{A}_{\mu}{\mathcal{S}}^{1}}+\widehat{\mathcal{S}\mathcal{A}_{\mu}^{1}})-\frac{p_{\mu}+p_{1\mu}}{m}p^{\nu}\widehat{\mathcal{S}\mathcal{A}^{1}_{\nu}}\Big{]}.

Note that all the components on the right hand side are at leading order of \hbar. Before moving on to analyzing the scattering channels, we first recall the classical free fermion solution of the various components of Wigner function Weickgenannt:2019dks . From the definition of the Wigner function as well as the contour green’s function, the classical Wigner function in a free fermion system is given by

S<(X,p)\displaystyle S^{<}(X,p) =\displaystyle= 1(2π)3δ(p2m2)sr{θ(p0)u¯s(𝐩)ur(𝐩)fqsr(X,p)+θ(p0)v¯s(𝐩)vr(𝐩)f¯q¯sr(X,p)},\displaystyle\frac{1}{(2\pi)^{3}}\delta(p^{2}-m^{2})\sum_{sr}\Big{\{}\theta(p^{0})\bar{u}_{s}(\mathbf{p}){u}_{r}(\mathbf{p})f_{q}^{sr}(X,p)+\theta(-p^{0})\bar{v}_{s}(-\mathbf{p}){v}_{r}(-\mathbf{p})\bar{f}_{\bar{q}}^{sr}(X,-p)\Big{\}},
S>(X,p)\displaystyle S^{>}(X,p) =\displaystyle= 1(2π)3δ(p2m2)sr{θ(p0)u¯s(𝐩)ur(𝐩)f¯qsr(X,p)+θ(p0)v¯s(𝐩)vr(𝐩)fq¯sr(X,p)},\displaystyle\frac{1}{(2\pi)^{3}}\delta(p^{2}-m^{2})\sum_{sr}\Big{\{}\theta(p^{0})\bar{u}_{s}(\mathbf{p}){u}_{r}(\mathbf{p})\bar{f}_{q}^{sr}(X,p)+\theta(-p^{0})\bar{v}_{s}(-\mathbf{p}){v}_{r}(-\mathbf{p}){f}_{\bar{q}}^{sr}(X,-p)\Big{\}}, (20)

where f¯qsr(X,p)=δsrfqsr(X,p)\bar{f}_{{q}}^{sr}(X,p)=\delta_{sr}-{f}_{{q}}^{sr}(X,p) and f¯q¯sr(X,p)=δsrfq¯sr(X,p)\bar{f}_{\bar{q}}^{sr}(X,-p)=\delta_{sr}-{f}_{\bar{q}}^{sr}(X,-p) can be obtained from the ensemble average of the creation and annihilation operators. fqsrf_{q}^{sr} is an element of a 2×22\times 2 Hermitian matrix, which can be diagonalized to give fqsf_{q}^{s}, and one can easily find that f¯qsr\bar{f}_{q}^{sr} gives 1fqs1-f_{q}^{s} after being diagonalized. With s=±1s=\pm 1 denoting the spin up and down along the direction set by the unit vector n±μn^{\pm\mu}. The mean polarization vector (in the LAB frame) is n(0)μ(X,p)=θ(p0)n+μ(X,𝐩)θ(p0)nμ(X,𝐩)n^{(0)\mu}(X,p)=\theta(p^{0})n^{+\mu}(X,\mathbf{p})-\theta(-p^{0})n^{-\mu}(X,-\mathbf{p}), which is a unit time-like vector satisfying n(0)μ(X,p)nμ(0)(X,p)=1n^{(0)\mu}(X,p)n^{(0)}_{\mu}(X,p)=-1, with

n±μ(X,𝐩)=±(𝐧±𝐩m,𝐧±+𝐧±𝐩m(E𝐩+m)𝐩).\displaystyle n^{\pm\mu}(X,\mathbf{p})=\pm\left(\frac{\mathbf{n}_{*}^{\pm}\cdot\mathbf{p}}{m}~{},~{}\mathbf{n}_{*}^{\pm}+\frac{\mathbf{n}_{*}^{\pm}\cdot\mathbf{p}}{m(E_{\mathbf{p}}+m)}\mathbf{p}\right). (21)

𝐧±\mathbf{n}_{*}^{\pm} is the direction of mean polarization of particles (label by +) or anti-particles (label by -) with momentum 𝐩\mathbf{p} measured in the Particle Rest Frame, and satisfies 𝐧±𝐧±=1\mathbf{n}_{*}^{\pm}\cdot\mathbf{n}_{*}^{\pm}=-1. And likewise for spin decomposition of S>S^{>}, it can be obtained simply by taking the exchange fqf¯qf_{q}\leftrightarrow\bar{f}_{q} and fq¯f¯q¯f_{\bar{q}}\leftrightarrow\bar{f}_{\bar{q}}. Note that fqsf_{q}^{s} is the particle distribution parallel(s=+) and antiparallel(s=-) to the unit vector n±μn^{\pm\mu}. One can also introduce the vector charge distribution fVf_{V} and axial charge distribution fAf_{A}, which are combinations of fqsf_{q}^{s}, fq++fq=fVqf_{q}^{+}+f_{q}^{-}=f_{Vq} and fq+fq=fAqf_{q}^{+}-f_{q}^{-}=f_{Aq}. The magnitude of polarization can be defined through fAq=fVq(X,𝐩)ζq(X,𝐩)f_{Aq}=f_{Vq}(X,\mathbf{p})\zeta_{q}(X,\mathbf{p}). fqs=fVq(1+sζq)f_{q}^{s}=f_{Vq}(1+s\zeta_{q}), the positive quantity ζq/q¯(X,𝐩)\zeta_{q/\bar{q}}(X,\mathbf{p}) defines the magnitude of spin polarization. The case ζq/q¯(X,𝐩)=1\zeta_{q/\bar{q}}(X,\mathbf{p})=1 corresponds to a pure state, while the case ζq/q¯(X,𝐩)<1\zeta_{q/\bar{q}}(X,\mathbf{p})<1 describes a mixed state Florkowski:2019gio . It is worth noticing that, for outgoing particles one can varify f¯qs=1fqs\bar{f}_{q}^{s}=1-f_{q}^{s}, so that f¯V=1fV\bar{f}_{V}=1-f_{V} and f¯A=fA\bar{f}_{A}=-f_{A}. This can also be understood from the fact that, the axial distribution function fAf_{A} comes from the off-diagonal component of fsrf^{sr}, and f¯sr=δrsfsr\bar{f}^{sr}=\delta_{rs}-{f}^{sr} leads to f¯A=fA\bar{f}_{A}=-f_{A}. With the vector charge distribution fVf_{V} and axial charge distribution fAf_{A}, the classical components can be rewritten as

𝒱μ(0)(X,p)\displaystyle\mathcal{V}^{(0)}_{\mu}(X,p) =\displaystyle= 2pμ(2π)32E𝐩{δ(p0E𝐩)fVq(X,𝐩)+δ(p0+E𝐩)f¯Vq¯(X,𝐩)},\displaystyle\frac{2p_{\mu}}{(2\pi)^{3}2E_{\mathbf{p}}}\Big{\{}\delta(p^{0}-E_{\mathbf{p}})f_{Vq}(X,\mathbf{p})+\delta(p^{0}+E_{\mathbf{p}})\bar{f}_{V\bar{q}}(X,-\mathbf{p})\Big{\}},
𝒜μ(0)(X,p)\displaystyle\mathcal{A}^{(0)}_{\mu}(X,p) =\displaystyle= 2m(2π)32E𝐩{δ(p0E𝐩)nμ+(X,𝐩)fAq(X,𝐩)δ(p0+E𝐩)nμ(X,𝐩)f¯Aq¯(X,𝐩)}.\displaystyle\frac{2m}{(2\pi)^{3}2E_{\mathbf{p}}}\Big{\{}\delta(p^{0}-E_{\mathbf{p}})n^{+}_{\mu}(X,\mathbf{p})f_{Aq}(X,\mathbf{p})-\delta(p^{0}+E_{\mathbf{p}})n^{-}_{\mu}(X,-\mathbf{p})\bar{f}_{A\bar{q}}(X,-\mathbf{p})\Big{\}}. (22)

And likewise, for 𝒱¯μ(0)\bar{\mathcal{V}}^{(0)}_{\mu} and 𝒜¯μ(0)\bar{\mathcal{A}}_{\mu}^{(0)}, one just takes the replacement fVq/q¯f¯Vq/q¯f_{Vq/\bar{q}}\leftrightarrow\bar{f}_{Vq/\bar{q}} and fAq/q¯f¯Aq/q¯f_{Aq/\bar{q}}\leftrightarrow\bar{f}_{Aq/\bar{q}}.

Consider the transport of particle sector in 𝒱μ(0)\mathcal{V}^{(0)}_{\mu} and 𝒜μ(0)\mathcal{A}_{\mu}^{(0)}, namely the lefthand side contains the delta function δ(p0E𝐩)\delta(p^{0}-E_{\mathbf{p}}). Yet in S<(p2)S^{<}(p_{2}), S>(p3)S^{>}(p_{3}) and S<(p1)S^{<}(p_{1}), both particle and antiparticle exist, these corresponds to different scattering process. Only three of the eight channels are allowed by the energy-momentum conservation. Each term contains a product of a combination of four quark and anti-quark distribution functions, with fVq(X,𝐩)f_{Vq}(X,\mathbf{p}) at present in all the terms, being the external function under study. One may attribute a diagram to each of these processes in a loose sense, by assigning incoming quark lines to fVqf_{Vq}; the incoming antiquark line to fVq¯f_{V\bar{q}}; the outgoing quark lines to f¯Vq\bar{f}_{Vq}; the outgoing antiquark lines to f¯Vq¯\bar{f}_{V\bar{q}}. The allowed channels correspond to the quark-quark scattering as well as quark-antiquark scattering. Other channels involve particle and antiparticle creation and annihilation, and can be categorized as off-shell processes. Together with the gain term, one can obtain the transport equation of the vector charge. In the following, when considering detailed balance, we only focus on the first channel, namely the quark-quark scattering.

In kinetic theory, the local equilibrium state is specified by the distribution functions that eliminate the collision kernel. This implies that the distribution functions must depend only on the linear combination of the collisional conserved quantities: the particle number, the energy and momentum, and angular momentum.

We first focus on the collision term of p𝒮(0)p\cdot\nabla\mathcal{S}^{(0)} in Eq.(III.1). In the following, we neglect the subscript qq in fVqf_{Vq}, and take fVf_{V} for the particle sector. The detailed balance requires the collision term to be vanishing, which can be further divided into terms with only vector charge distribution, term involving only axial charge distribution, as well as mixed terms with both fVf_{V} and fAf_{A}. Terms involving only vector charge distribution is

m(m2+p2p3)(m2+pp1)(fVq𝐩1f¯V𝐩f¯V𝐩2fV𝐩3fV𝐩f¯V𝐩1fV𝐩2f¯V𝐩3).\displaystyle m(m^{2}+{p_{2}\cdot p_{3}})(m^{2}+p\cdot p_{1})\big{(}f_{Vq}^{\mathbf{p}_{1}}\bar{f}_{V}^{\mathbf{p}}\bar{f}_{V}^{\mathbf{p}_{2}}{f}_{V}^{\mathbf{p}_{3}}-f_{V}^{\mathbf{p}}\bar{f}_{V}^{\mathbf{p}_{1}}{f}_{V}^{\mathbf{p}_{2}}\bar{f}_{V}^{\mathbf{p}_{3}}\big{)}. (23)

The vanishing of this term implies that the local equilibrium distribution fVqLEf_{Vq}^{\text{LE}} is the Fermi-Dirac distribution. Requiring that the 𝒜μ(0)\mathcal{A}_{\mu}^{(0)} has the structure 𝒜μ(0)=mnμfA\mathcal{A}_{\mu}^{(0)}=mn_{\mu}f_{A}, then one can easily show that terms contains only 𝒜μ\mathcal{A}_{\mu} vanishes in the local equilibrium,

m[(p2n3)(p3n2)(pn1)(p1n)+(m2+p2p3)(m2+pp1)(nn1)(n2n3)\displaystyle m\big{[}(p_{2}\cdot n_{3})(p_{3}\cdot n_{2})(p\cdot n_{1})(p_{1}\cdot n)+(m^{2}+p_{2}\cdot p_{3})(m^{2}+p\cdot p_{1})(n\cdot n_{1})(n_{2}\cdot n_{3}) (24)
(m2+p2p3)(pn1)(p1n)(n3n2)(m2+pp1)(nn1)(p2n3)(p3n2)](f¯A𝐩fA𝐩1f¯A𝐩2fA𝐩3fA𝐩f¯A𝐩1fA𝐩2f¯A𝐩3).\displaystyle-(m^{2}+p_{2}\cdot p_{3})(p\cdot n_{1})(p_{1}\cdot n)(n_{3}\cdot n_{2})-(m^{2}+p\cdot p_{1})(n\cdot n_{1})(p_{2}\cdot n_{3})(p_{3}\cdot n_{2})\big{]}(\bar{f}_{A}^{\mathbf{p}}f_{A}^{\mathbf{p}_{1}}\bar{f}_{A}^{\mathbf{p}_{2}}f_{A}^{\mathbf{p}_{3}}-{f}_{A}^{\mathbf{p}}\bar{f}_{A}^{\mathbf{p}_{1}}{f}_{A}^{\mathbf{p}_{2}}\bar{f}_{A}^{\mathbf{p}_{3}}).

Considering that f¯A=fA\bar{f}_{A}=-{f}_{A}, one has explicitly f¯A𝐩fA𝐩1f¯A𝐩2fA𝐩3fA𝐩f¯A𝐩1fA𝐩2f¯A𝐩3=0\bar{f}_{A}^{\mathbf{p}}f_{A}^{\mathbf{p}_{1}}\bar{f}_{A}^{\mathbf{p}_{2}}f_{A}^{\mathbf{p}_{3}}-{f}_{A}^{\mathbf{p}}\bar{f}_{A}^{\mathbf{p}_{1}}{f}_{A}^{\mathbf{p}_{2}}\bar{f}_{A}^{\mathbf{p}_{3}}=0. This does not have any restriction on the equilibrium distribution function. Finally, terms involving mixture of fVf_{V} and fAf_{A} is

m(m2+p2p3)((pn1)(p1n)(m2+pp1)n1n)(f¯V𝐩2fV𝐩3fV𝐩2f¯V𝐩3)fA𝐩fA𝐩1\displaystyle m(m^{2}+p_{2}\cdot p_{3})((p\cdot n^{1})(p_{1}\cdot n)-(m^{2}+{p\cdot p_{1}})n_{1}\cdot n)(\bar{f}_{V}^{\mathbf{p}_{2}}{f}_{V}^{\mathbf{p}_{3}}-{f}_{V}^{\mathbf{p}_{2}}\bar{f}_{V}^{\mathbf{p}_{3}}){f}_{A}^{\mathbf{p}}{f}_{A}^{\mathbf{p}_{1}} (25)
+\displaystyle+ m(m2+pp1)((p2n3)(p3n2)(m2+p2p3)n2n3)(f¯V𝐩1fV𝐩fV𝐩1f¯V𝐩)fA𝐩2fA𝐩3.\displaystyle m(m^{2}+p\cdot p_{1})((p_{2}\cdot n^{3})(p_{3}\cdot n^{2})-(m^{2}+{p_{2}\cdot p_{3}})n_{2}\cdot n_{3})(\bar{f}_{V}^{\mathbf{p}_{1}}{f}_{V}^{\mathbf{p}}-{f}_{V}^{\mathbf{p}_{1}}\bar{f}_{V}^{\mathbf{p}}){f}_{A}^{\mathbf{p}_{2}}{f}_{A}^{\mathbf{p}_{3}}.

A trivial solution is fAqLE=0f_{Aq}^{\text{LE}}=0, indicating that at classical level, the axial charge distribution function has only trivial solution, if the system is not initially polarized.

We then consider the collision term in the transport equation p𝒜μ(0)p\cdot\nabla\mathcal{A}^{(0)}_{\mu} in Eq.(III.1). Terms in the momentum integral can be simplified to

\displaystyle- m(m2+p2p3)(m2+p1p)nμfA𝐩(fV𝐩1f¯V𝐩2fV𝐩3+f¯V𝐩1fV𝐩2f¯V𝐩3)\displaystyle m(m^{2}+p_{2}\cdot p_{3})(m^{2}+p_{1}\cdot p)n_{\mu}{f}_{A}^{\mathbf{p}}(f_{V}^{\mathbf{p}_{1}}\bar{f}_{V}^{\mathbf{p}_{2}}{f}_{V}^{\mathbf{p}_{3}}+\bar{f}_{V}^{\mathbf{p}_{1}}{f}_{V}^{\mathbf{p}_{2}}\bar{f}_{V}^{\mathbf{p}_{3}})
+\displaystyle+ m(m2+p2p3)[(m2+p1p)nμ1(pn1)(pμ+p1μ)]fA𝐩1(f¯V𝐩f¯V𝐩2fV𝐩3+fV𝐩fV𝐩2f¯V𝐩3)\displaystyle m(m^{2}+p_{2}\cdot p_{3})\left[(m^{2}+p_{1}\cdot p)n_{\mu}^{1}-(p\cdot n^{1})(p_{\mu}+p_{1\mu})\right]f_{A}^{\mathbf{p}_{1}}(\bar{f}_{V}^{\mathbf{p}}\bar{f}_{V}^{\mathbf{p}_{2}}{f}_{V}^{\mathbf{p}_{3}}+{f}_{V}^{\mathbf{p}}{f}_{V}^{\mathbf{p}_{2}}\bar{f}_{V}^{\mathbf{p}_{3}})
+\displaystyle+ m(m2+p1p)nμ[(p2n3)(p3n2)(m2+p2p3)n2n3]fA𝐩fA𝐩2fA𝐩3\displaystyle m(m^{2}+p_{1}\cdot p)n_{\mu}\left[(p_{2}\cdot n^{3})(p_{3}\cdot n^{2})-(m^{2}+{p_{2}\cdot p_{3}})n_{2}\cdot n_{3}\right]{f}_{A}^{\mathbf{p}}{f}_{A}^{\mathbf{p}_{2}}{f}_{A}^{\mathbf{p}_{3}}
\displaystyle- m[(m2+p1p)nμ1(pμ+p1μ)pn1][(p2n3)(p3n2)(m2+p2p3)n2n3]fA𝐩1fA𝐩2fA𝐩3,\displaystyle m\big{[}(m^{2}+p_{1}\cdot p)n^{1}_{\mu}-(p_{\mu}+p_{1\mu})p\cdot n^{1}\big{]}\big{[}(p_{2}\cdot n^{3})(p_{3}\cdot n^{2})-(m^{2}+p_{2}\cdot p_{3})n^{2}\cdot n^{3}\big{]}f_{A}^{\mathbf{p}_{1}}{f}_{A}^{\mathbf{p}_{2}}f_{A}^{\mathbf{p}_{3}},

where we have considered that f¯V+fV=1\bar{f}_{V}+f_{V}=1 and f¯A=fA\bar{f}_{A}=-f_{A}. The vanishing of the collision terms again requires that the classical level of axial charge distribution has trivial solution fAqLE=0f_{Aq}^{\text{LE}}=0. Considering the relations between spin components of the Wigner function in Eq.(II), the above solution leads to a nonzero classical scalar component 𝒮LE(0)0\mathcal{S}^{(0)}_{\text{LE}}\neq 0 and a vanishing tensor component 𝒮LE,μν(0)=0\mathcal{S}_{\text{LE},\mu\nu}^{(0)}=0. The pseudo-scalar at 𝒪()\mathcal{O}(\hbar) is directly shown to be vanished by the constraint equations, 𝒫(0)=0\mathcal{P}^{(0)}=0. Since the axial charge current appears at 𝒪()\mathcal{O}(\hbar) order, it is necessary to analyze the first order transport equation. In an initially unpolarized system, when considering the fermionic 2 by 2 collisions, the spin polarization can be produced as a quantum effect. The equilibrium spin polarization is then derived from the detailed balance of the collision term in the first order transport equation.

III.2 Collision Term at Quantum Level

In a system without background electromagnetic field and vorticity field, one has 𝒜LE,μ(0)=0\mathcal{A}^{(0)}_{\text{LE},\mu}=0, this greatly simplifies the transport equations Eq.(II) and Eq.(II). Besides, one can easily varify that, within the NJL model, the vanishing 𝒜(0)\mathcal{A}^{(0)} leads to vanishing ΣA(0)\Sigma_{A}^{(0)} and ΣP(0)\Sigma_{P}^{(0)}. In the leading order in the 1/Nc1/N_{c} expansion, Σ¯T(0)αβ\bar{\Sigma}_{T}^{(0)\alpha\beta} can also be shown to vanish. With the conditions above, the vector component and axial-vector component are still on-shell at 𝒪()\mathcal{O}(\hbar) order, that (p2m2)𝒱μ(1)=0(p^{2}-m^{2})\mathcal{V}_{\mu}^{(1)}=0 and (p2m2)𝒜μ(1)=0(p^{2}-m^{2})\mathcal{A}_{\mu}^{(1)}=0. The orthogonal relations are unchanged as well that p[μ𝒱ν](1)=0p_{[\mu}\mathcal{V}_{\nu]}^{(1)}=0 and pμ𝒜μ(1)=0p^{\mu}\mathcal{A}_{\mu}^{(1)}=0. The transport equations of 𝒱μ(1)\mathcal{V}^{(1)}_{\mu} to the first order of \hbar (II) can be simplified to give

(p)𝒱μ(1)\displaystyle(p\cdot\nabla)\mathcal{V}^{(1)}_{\mu} =\displaystyle= IV,gain(1)IV,loss(1)=m(ΣS(0)𝒱μ(1)^+ΣS(1)𝒱μ(0)^)+pν(ΣVν(0)𝒱μ(1)^+ΣVν(1)𝒱μ(0)^).\displaystyle I_{V,\text{gain}}^{(1)}-I_{V,\text{loss}}^{(1)}=m\big{(}\widehat{\Sigma_{S}^{(0)}\mathcal{V}_{\mu}^{(1)}}+\widehat{\Sigma_{S}^{(1)}\mathcal{V}_{\mu}^{(0)}}\big{)}+p^{\nu}\big{(}\widehat{\Sigma_{V\nu}^{(0)}\mathcal{V}_{\mu}^{(1)}}+\widehat{\Sigma_{V\nu}^{(1)}\mathcal{V}_{\mu}^{(0)}}\big{)}. (27)

It is obvious that, at 𝒪()\mathcal{O}(\hbar) the transport equation of 𝒱μ(1)\mathcal{V}^{(1)}_{\mu} still contains only diffusion terms. The transport equations of 𝒜μ(1)\mathcal{A}^{(1)}_{\mu} to the first order of \hbar can be simplified to give

(p)𝒜μ(1)\displaystyle(p\cdot\nabla)\mathcal{A}^{(1)}_{\mu} =\displaystyle= IA,gain(1)IA,loss(1)\displaystyle I_{A,\text{gain}}^{(1)}-I_{A,\text{loss}}^{(1)}
=\displaystyle= mΣS(0)𝒜μ(1)^+pνΣV(0)ν𝒜μ(1)^12ϵμνρσ(σΣV(0)ν)𝒱(0)ρ^+pνΣAμ(1)𝒱(0)ν^pμΣAν(1)𝒱(0)ν^+m2ϵρνλμΣT(1)ρν𝒱(0)λ^.\displaystyle m\widehat{{\Sigma}_{S}^{(0)}\mathcal{A}^{(1)}_{\mu}}+p_{\nu}\widehat{{\Sigma}_{V}^{(0)\nu}\mathcal{A}^{(1)}_{\mu}}-\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}(\nabla^{\sigma}\widehat{{\Sigma}_{V}^{(0)\nu})\mathcal{V}^{(0)\rho}}+p_{\nu}\widehat{{\Sigma}_{A\mu}^{(1)}\mathcal{V}^{(0)\nu}}-p_{\mu}\widehat{{\Sigma}_{A\nu}^{(1)}\mathcal{V}^{(0)\nu}}+\frac{m}{2}\epsilon_{\rho\nu\lambda\mu}\widehat{{\Sigma}_{T}^{(1)\rho\nu}\mathcal{V}^{(0)\lambda}}.

The first two terms mΣS(0)𝒜μ(1)^+pνΣV(0)ν𝒜μ(1)^m\widehat{{\Sigma}_{S}^{(0)}\mathcal{A}^{(1)}_{\mu}}+p_{\nu}\widehat{{\Sigma}_{V}^{(0)\nu}\mathcal{A}^{(1)}_{\mu}} can be understood as spin diffusion effect, terms with same structure but of 𝒪(0)\mathcal{O}(\hbar^{0}) also appears in the transport equation of 𝒜μ(0)\mathcal{A}_{\mu}^{(0)}. The third term 12ϵμνρσ(σΣV(0)ν)𝒱(0)ρ^-\frac{1}{2}\epsilon_{\mu\nu\rho\sigma}(\nabla^{\sigma}\widehat{{\Sigma}_{V}^{(0)\nu})\mathcal{V}^{(0)\rho}} contains only the vector components of the Wigner function, indicating that in an initially unpolarized system, non-zero spin polarization 𝒜(1)0\mathcal{A}^{(1)}\neq 0 can be generated through interacting with the matter. Consider the leading order in 1/Nc1/N_{c} expansion, the self-energy ΣLO>\Sigma^{>}_{\text{LO}} is defined by

Σ>(0)(X,p)=\displaystyle{\Sigma}^{>(0)}(X,p)= G2qkS>(0)(X,p+q)Tr[S<(0)(X,k+q)S>(0)(X,k)],\displaystyle G^{2}\int_{qk}~{}{S}^{>(0)}(X,p+q)\text{Tr}\big{[}S^{<(0)}(X,k+q){S}^{>(0)}(X,k)\big{]},
Σ>(1)(X,p)=\displaystyle{\Sigma}^{>(1)}(X,p)= G2qkS>(1)(X,p+q)Tr[S<(0)(X,k+q)S>(0)(X,k)]\displaystyle G^{2}\int_{qk}~{}{S}^{>(1)}(X,p+q)\text{Tr}\big{[}S^{<(0)}(X,k+q){S}^{>(0)}(X,k)\big{]} (29)
+\displaystyle+ G2qkS>(0)(X,p+q)Tr[S<(1)(X,k+q)S>(0)(X,k)]\displaystyle G^{2}\int_{qk}~{}{S}^{>(0)}(X,p+q)\text{Tr}\big{[}S^{<(1)}(X,k+q){S}^{>(0)}(X,k)\big{]}
+\displaystyle+ G2qkS>(0)(X,p+q)Tr[S<(0)(X,k+q)S>(1)(X,k)].\displaystyle G^{2}\int_{qk}~{}{S}^{>(0)}(X,p+q)\text{Tr}\big{[}S^{<(0)}(X,k+q){S}^{>(1)}(X,k)\big{]}.

In the transport equation, the components ΣS(0)\Sigma_{S}^{(0)}, ΣV(0)\Sigma_{V}^{(0)}, ΣS(1)\Sigma_{S}^{(1)}, ΣV(1)\Sigma_{V}^{(1)} and ΣA(1)\Sigma_{A}^{(1)}, ΣT(1)\Sigma_{T}^{(1)} are involved. Under the expansion to 1/Nc1/N_{c} order, taking 𝒮\mathcal{S} and 𝒜μ\mathcal{A}_{\mu} as independent components, and considering the relations between the spin components (II), the self-energy components can be evaluated. We list only ΣT(1)\Sigma_{T}^{(1)} in the following, other components are easier to calculate,

Σ¯Tμν(1)(p)\displaystyle\bar{\Sigma}^{(1)}_{T\mu\nu}(p) =\displaystyle= G2qk(1+(k+q)km2)(p+q)ν2m2𝒮(0)(k+q)𝒮¯(0)(k)μ𝒮¯(0)(p+q)\displaystyle G^{2}\int_{qk}~{}\Big{(}1+\frac{(k+q)\cdot k}{m^{2}}\Big{)}\frac{(p+q)_{\nu}}{2m^{2}}\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\nabla_{\mu}\bar{\mathcal{S}}^{(0)}(p+q) (30)
\displaystyle- G2qk(1+(k+q)km2)(p+q)μ2m2𝒮(0)(k+q)𝒮¯(0)(k)ν𝒮¯(0)(p+q)\displaystyle G^{2}\int_{qk}~{}\Big{(}1+\frac{(k+q)\cdot k}{m^{2}}\Big{)}\frac{(p+q)_{\mu}}{2m^{2}}\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\nabla_{\nu}\bar{\mathcal{S}}^{(0)}(p+q)
\displaystyle- G2qk(1+(k+q)km2)1m𝒮(0)(k+q)𝒮¯(0)(k)ϵρσμν(p+q)ρ𝒜¯(1)σ(p+q).\displaystyle G^{2}\int_{qk}~{}\Big{(}1+\frac{(k+q)\cdot k}{m^{2}}\Big{)}\frac{1}{m}\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\epsilon_{\rho\sigma\mu\nu}(p+q)^{\rho}\bar{\mathcal{A}}^{(1)\sigma}(p+q).

With explicit components of the self-energies, the loss term on the righthand side of Eq.(27) is given by

IV,loss(1)\displaystyle I_{V,\text{loss}}^{(1)} =\displaystyle= G2pμqk(1+(k+q)km2)(m+p(p+q)m)\displaystyle G^{2}p^{\mu}\int_{qk}~{}\Big{(}1+\frac{(k+q)\cdot k}{m^{2}}\Big{)}\Big{(}m+\frac{p\cdot(p+q)}{m}\Big{)} (31)
×{𝒮(0)(k+q)𝒮¯(0)(k)𝒮¯(0)(p+q)𝒮(1)(p)+𝒮(1)(k+q)𝒮¯(0)(k)𝒮¯(0)(p+q)𝒮(0)(p)\displaystyle\times\Big{\{}\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\bar{\mathcal{S}}^{(0)}(p+q){\mathcal{S}}^{(1)}(p)+\mathcal{S}^{(1)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\bar{\mathcal{S}}^{(0)}(p+q){\mathcal{S}}^{(0)}(p)
+𝒮(0)(k+q)𝒮¯(1)(k)𝒮¯(0)(p+q)𝒮(0)(p)+𝒮(0)(k+q)𝒮¯(0)(k)𝒮¯(1)(p+q)𝒮(0)(p)},\displaystyle~{}+\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(1)}(k)\bar{\mathcal{S}}^{(0)}(p+q){\mathcal{S}}^{(0)}(p)+\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\bar{\mathcal{S}}^{(1)}(p+q){\mathcal{S}}^{(0)}(p)\Big{\}},

with fVLE(0)f_{V}^{\text{LE}(0)} taking the Fermi-Dirac distribution function at local equilibrium, 𝒮(1)(p)\mathcal{S}^{(1)}(p) adopts the simple vanishing solution that 𝒮(1)(p)=0\mathcal{S}^{(1)}(p)=0 at local equilibrium.

Likewise, the loss term on the righthand side of Eq.(III.2) is,

IA,loss(1)\displaystyle I_{A,\text{loss}}^{(1)} =\displaystyle= G2qk{(1+(k+q)km2)(m+p(p+q)m)𝒮(0)(k+q)𝒮¯(0)(k)𝒮¯(0)(p+q)𝒜μ(1)(p)\displaystyle G^{2}\int_{qk}\Big{\{}\Big{(}1+\frac{(k+q)\cdot k}{m^{2}}\Big{)}\Big{(}m+\frac{p\cdot(p+q)}{m}\Big{)}\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\bar{\mathcal{S}}^{(0)}(p+q)\mathcal{A}^{(1)}_{\mu}(p) (32)
+(1+(k+q)km2)(m+p(p+q)m)𝒮(0)(k+q)𝒮¯(0)(k)𝒜¯μ(1)(p+q)𝒮(0)(p)\displaystyle\qquad\quad+\Big{(}1+\frac{(k+q)\cdot k}{m^{2}}\Big{)}\Big{(}m+\frac{p\cdot(p+q)}{m}\Big{)}\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\bar{\mathcal{A}}_{\mu}^{(1)}(p+q)\mathcal{S}^{(0)}(p)
(1+(k+q)km2)(2p+q)μpνm𝒮(0)(k+q)𝒮¯(0)(k)𝒮(0)(p)𝒜¯ν(1)(p+q)\displaystyle\qquad\quad-\Big{(}1+\frac{(k+q)\cdot k}{m^{2}}\Big{)}\frac{(2p+q)_{\mu}p^{\nu}}{m}\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\mathcal{S}^{(0)}(p)\bar{\mathcal{A}}^{(1)}_{\nu}(p+q)
+(1+(k+q)km2)ϵμνρσ(p+q)νpρ2m2𝒮(0)(k+q)𝒮¯(0)(k)𝒮¯(0)(p+q)[σ𝒮(0)(p)]\displaystyle\qquad\quad+\Big{(}1+\frac{(k+q)\cdot k}{m^{2}}\Big{)}\epsilon_{\mu\nu\rho\sigma}\frac{(p+q)^{\nu}p^{\rho}}{2m^{2}}\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\bar{\mathcal{S}}^{(0)}(p+q)\big{[}\nabla^{\sigma}\mathcal{S}^{(0)}(p)\big{]}
(1+(k+q)km2)ϵμνρσ(p+q)νpρ2m2𝒮(0)(k+q)𝒮¯(0)(k)𝒮(0)(p)[σ𝒮¯(0)(p+q)]}.\displaystyle\qquad\quad-\Big{(}1+\frac{(k+q)\cdot k}{m^{2}}\Big{)}\epsilon_{\mu\nu\rho\sigma}\frac{(p+q)^{\nu}p^{\rho}}{2m^{2}}\mathcal{S}^{(0)}(k+q)\bar{\mathcal{S}}^{(0)}(k)\mathcal{S}^{(0)}(p)\big{[}\nabla^{\sigma}\bar{\mathcal{S}}^{(0)}(p+q)\big{]}\Big{\}}.

The first order component 𝒜μ(1)\mathcal{A}^{(1)}_{\mu} appears in the first three lines, the last two lines contains only the classical scalar component 𝒮(0)\mathcal{S}^{(0)} and its derivative. The appearance of terms involving purely classical scalar component 𝒮(0)\mathcal{S}^{(0)} indicates that spin polarization 𝒜μ(1)\mathcal{A}^{(1)}_{\mu} can be generated by collisions. Since such terms also involves spatial derivative of 𝒮(0)\mathcal{S}^{(0)}, the spin polarization does not appear in an homogeneous system. When the system achieves local equilibrium, the detailed balance requires that the gain term and loss term cancels out. In the following, we show that terms containing purely scalar components would contribute to the equilibrium expression of 𝒜μ(1)\mathcal{A}^{(1)}_{\mu}, and is related to local vorticity. With the classical expression of 𝒮(0)\mathcal{S}^{(0)} in Eq.(III.1), and considering only the particle part in 𝒮(0)\mathcal{S}^{(0)} and 𝒜μ(1)\mathcal{A}^{(1)}_{\mu}, namely terms with δ(p0Ep)\delta(p^{0}-E_{p}). Using the Schouten identity pλϵμνρσ+pμϵνρσλ+pνϵρσλμ+pρϵσλμν+pσϵλμνρ=0p^{\lambda}\epsilon_{\mu\nu\rho\sigma}+p^{\mu}\epsilon_{\nu\rho\sigma\lambda}+p^{\nu}\epsilon_{\rho\sigma\lambda\mu}+p^{\rho}\epsilon_{\sigma\lambda\mu\nu}+p^{\sigma}\epsilon_{\lambda\mu\nu\rho}=0 to simplify terms with spatial derivatives in (32), for instance,

ϵμνρσ(p+q)νpρ[σfV(X,p)]\displaystyle\epsilon_{\mu\nu\rho\sigma}(p+q)^{\nu}p^{\rho}\big{[}\nabla^{\sigma}f_{V}(X,p)\big{]} =\displaystyle= pμϵνρσλ(p+q)νpρσβλfV(X,p)m2ϵμνσλ(2p+q)νσβλfV(X,p)\displaystyle-p_{\mu}\epsilon_{\nu\rho\sigma\lambda}(p+q)^{\nu}p^{\rho}\nabla^{\sigma}\beta^{\lambda}f^{\prime}_{V}(X,p)-m^{2}\epsilon_{\mu\nu\sigma\lambda}(2p+q)^{\nu}\nabla^{\sigma}\beta^{\lambda}f^{\prime}_{V}(X,p) (33)
(p(p+q)+m2)ϵνσλμpνσβλfV(X,p),\displaystyle-\left(p\cdot(p+q)+m^{2}\right)\epsilon_{\nu\sigma\lambda\mu}p^{\nu}\nabla^{\sigma}\beta^{\lambda}f^{\prime}_{V}(X,p),

where f(p)=dd(βp)ff^{\prime}(p)=\frac{d}{d(\beta\cdot p)}f. And similarly for the other derivative term ϵμνρσ(p+q)νpρ[σf¯V(0)(p+q)]-\epsilon_{\mu\nu\rho\sigma}(p+q)^{\nu}p^{\rho}[\nabla^{\sigma}\bar{f}_{V}^{(0)}(p+q)]. Considering the fact that 𝒜¯μ(1)=𝒜μ(1)\bar{\mathcal{A}}^{(1)}_{\mu}=-{\mathcal{A}}^{(1)}_{\mu} and that f¯V=1fV\bar{f}_{V}=1-f_{V}, the collision term could be rearranged into two parts, and simplified as

IA,gain(1)IA,loss(1)\displaystyle I_{A,\text{gain}}^{(1)}-I_{A,\text{loss}}^{(1)} =\displaystyle= G2qk{F1+F2},\displaystyle G^{2}\int_{qk}\{F_{1}+F_{2}\}, (34)

with F1F_{1} stands for

F1=\displaystyle F_{1}= +\displaystyle+ [m2+(k+q)k][m2+p(p+q)][(2π)3]3Ek+pEkEp+q{fVk+qf¯Vkf¯Vp+q+f¯Vk+qfVkfVp+q}\displaystyle\frac{[m^{2}+{(k+q)\cdot k}][m^{2}+p\cdot(p+q)]}{[(2\pi)^{3}]^{3}E_{k+p}E_{k}E_{p+q}}\Big{\{}f_{V}^{k+q}\bar{f}_{V}^{k}\bar{f}_{V}^{p+q}+\bar{f}_{V}^{k+q}{f}_{V}^{k}{f}_{V}^{p+q}\Big{\}} (35)
×[𝒜μ(1)(p)+1(2π)32EpϵμνσλpνσβλfV(p)]\displaystyle\times\Big{[}\mathcal{A}^{(1)}_{\mu}(p)+\frac{1}{(2\pi)^{3}2E_{p}}\epsilon_{\mu\nu\sigma\lambda}p^{\nu}\nabla^{\sigma}\beta^{\lambda}f^{\prime}_{V}(p)\Big{]}
\displaystyle- [m2+(k+q)k][m2+p(p+q)][(2π)3]3Ek+pEkEp{fVk+qf¯VkfVp+f¯Vk+qfVkf¯Vp}\displaystyle\frac{[m^{2}+{(k+q)\cdot k}][m^{2}+p\cdot(p+q)]}{[(2\pi)^{3}]^{3}E_{k+p}E_{k}E_{p}}\Big{\{}f_{V}^{k+q}\bar{f}_{V}^{k}f_{V}^{p}+\bar{f}_{V}^{k+q}{f}_{V}^{k}\bar{f}_{V}^{p}\Big{\}}
×[𝒜μ(1)(p+q)+1(2π)32Ep+qϵμνσλ(p+q)νσβλfV(p+q)],\displaystyle\times\Big{[}{\mathcal{A}}_{\mu}^{(1)}(p+q)+\frac{1}{(2\pi)^{3}2E_{p+q}}\epsilon_{\mu\nu\sigma\lambda}(p+q)^{\nu}\nabla^{\sigma}\beta^{\lambda}{f}^{\prime}_{V}(p+q)\Big{]},

where fVpf_{V}^{p} is the shorthand notation for fV(0)(X,p)f_{V}^{(0)}(X,p). Notice that the solution 𝒜μ(1)(p)=1(2π)32EpϵμνσλpνσβλfV(p)\mathcal{A}^{(1)}_{\mu}(p)=-\frac{1}{(2\pi)^{3}2E_{p}}\epsilon_{\mu\nu\sigma\lambda}p^{\nu}\nabla^{\sigma}\beta^{\lambda}f^{\prime}_{V}(p) would lead to vanishing F1F_{1}. In the following, we show that this solution of 𝒜μ(1)\mathcal{A}^{(1)}_{\mu} also makes F2F_{2} vanishing, so the collision term vanishes as required by the detailed balance. F2F_{2} in Eq.(34) is given by

F2\displaystyle F_{2} =\displaystyle= [m2+(k+q)k][(2π)3]4Ek+pEkEp+qEp12pμϵνρσλ(p+q)νpρσβλ{fVk+qf¯Vkf¯Vp+q+f¯Vk+qfVkfVp+q}fV(X,p)\displaystyle-\frac{[m^{2}+{(k+q)\cdot k}]}{[(2\pi)^{3}]^{4}E_{k+p}E_{k}E_{p+q}E_{p}}\frac{1}{2}p_{\mu}\epsilon_{\nu\rho\sigma\lambda}(p+q)^{\nu}p^{\rho}\nabla^{\sigma}\beta^{\lambda}\Big{\{}f_{V}^{k+q}\bar{f}_{V}^{k}\bar{f}_{V}^{p+q}+\bar{f}_{V}^{k+q}{f}_{V}^{k}{f}_{V}^{p+q}\Big{\}}f^{\prime}_{V}(X,p) (36)
m2[m2+(k+q)k][(2π)3]4Ek+pEkEp+qEp12ϵμνσλ(2p+q)νσβλ{fVk+qf¯Vkf¯Vp+q+f¯Vk+qfVkfVp+q}fV(X,p)\displaystyle-\frac{m^{2}[m^{2}+(k+q)\cdot k]}{[(2\pi)^{3}]^{4}E_{k+p}E_{k}E_{p+q}E_{p}}\frac{1}{2}\epsilon_{\mu\nu\sigma\lambda}(2p+q)^{\nu}\nabla^{\sigma}\beta^{\lambda}\Big{\{}f_{V}^{k+q}\bar{f}_{V}^{k}\bar{f}_{V}^{p+q}+\bar{f}_{V}^{k+q}{f}_{V}^{k}{f}_{V}^{p+q}\Big{\}}f^{\prime}_{V}(X,p)
[m2+(k+q)k][(2π)3]4Ek+pEkEp+qEp12(p+q)μϵνρσλ(p+q)νpρσβλ{fVk+qf¯VkfVp+f¯Vk+qfVkf¯Vp}fV(X,p+q)\displaystyle-\frac{[m^{2}+{(k+q)\cdot k}]}{[(2\pi)^{3}]^{4}E_{k+p}E_{k}E_{p+q}E_{p}}\frac{1}{2}(p+q)_{\mu}\epsilon_{\nu\rho\sigma\lambda}(p+q)^{\nu}p^{\rho}\nabla^{\sigma}\beta^{\lambda}\Big{\{}f_{V}^{k+q}\bar{f}_{V}^{k}f_{V}^{p}+\bar{f}_{V}^{k+q}{f}_{V}^{k}\bar{f}_{V}^{p}\Big{\}}{f}^{\prime}_{V}(X,p+q)
+m2[m2+(k+q)k][(2π)3]4Ek+pEkEp+qEp12ϵμνσλ(2p+q)νσβλ{fVk+qf¯VkfVp+f¯Vk+qfVkf¯Vp}fV(X,p+q)\displaystyle+\frac{m^{2}[m^{2}+{(k+q)\cdot k}]}{[(2\pi)^{3}]^{4}E_{k+p}E_{k}E_{p+q}E_{p}}\frac{1}{2}\epsilon_{\mu\nu\sigma\lambda}(2p+q)^{\nu}\nabla^{\sigma}\beta^{\lambda}\Big{\{}f_{V}^{k+q}\bar{f}_{V}^{k}f_{V}^{p}+\bar{f}_{V}^{k+q}{f}_{V}^{k}\bar{f}_{V}^{p}\Big{\}}{f}^{\prime}_{V}(X,p+q)
+[m2+(k+q)k][(2π)3]3Ek+pEkEp(2p+q)μpν{fVk+qf¯VkfVp+f¯Vk+qfVkf¯Vp}𝒜ν(1)(p+q).\displaystyle+\frac{[m^{2}+(k+q)\cdot k]}{[(2\pi)^{3}]^{3}E_{k+p}E_{k}E_{p}}(2p+q)_{\mu}p^{\nu}\Big{\{}f_{V}^{k+q}\bar{f}_{V}^{k}f_{V}^{p}+\bar{f}_{V}^{k+q}{f}_{V}^{k}\bar{f}_{V}^{p}\Big{\}}{\mathcal{A}}^{(1)}_{\nu}(p+q).

Substituting the solution of 𝒜μ(1)\mathcal{A}_{\mu}^{(1)}, F2F_{2} can be simplified to

F2\displaystyle F_{2} =\displaystyle= [2m2+qk][(2π)3]4Ek+qEkEp+qEp{m22ϵμνσλ(2p+q)νσβλ+pμ2ϵνρσλqνpρσβλ}\displaystyle-\frac{[2m^{2}+q\cdot k]}{[(2\pi)^{3}]^{4}E_{k+q}E_{k}E_{p+q}E_{p}}\left\{\frac{m^{2}}{2}\epsilon_{\mu\nu\sigma\lambda}(2p+q)^{\nu}\nabla^{\sigma}\beta^{\lambda}+\frac{p_{\mu}}{2}\epsilon_{\nu\rho\sigma\lambda}q^{\nu}p^{\rho}\nabla^{\sigma}\beta^{\lambda}\right\} (37)
×dd(βp){fVk+qf¯Vkf¯Vp+qfVpf¯Vk+qfVkfVp+qf¯Vp}=0.\displaystyle\times\frac{d}{d(\beta\cdot p)}\Big{\{}f_{V}^{k+q}\bar{f}_{V}^{k}\bar{f}_{V}^{p+q}f_{V}^{p}-\bar{f}_{V}^{k+q}{f}_{V}^{k}{f}_{V}^{p+q}\bar{f}_{V}^{p}\Big{\}}=0.

The last term vanishes because of the detailed balance of number distribution function. Thus the detailed balance gives the local-equilibrium distribution of spin distribution function

𝒜μLE(p)=𝒜μLE(0)(p)+𝒜μLE(1)(p)\displaystyle\mathcal{A}_{\mu}^{\text{LE}}(p)=\mathcal{A}^{\text{LE}(0)}_{\mu}(p)+\hbar\mathcal{A}^{\text{LE}(1)}_{\mu}(p) =\displaystyle= (2π)32EpϵμνσλpνσβλfV,LE(X,p).\displaystyle-\frac{\hbar}{(2\pi)^{3}2E_{p}}\epsilon_{\mu\nu\sigma\lambda}p^{\nu}\nabla^{\sigma}\beta^{\lambda}f^{\prime}_{V,\text{LE}}(X,p). (38)

This solution indicates that in an initially unpolarized system, non-zero spin polarization can be generated from the coupling between vector and axial-vector charges. The equilibrium spin polarization is found to be created by a thermal vorticity and is orthogonal to the momentum. This equilibrium solution is self-consistently obtained from the detailed balance and agrees with the results in previous research Becattini:2013fla ; Fang:2016vpj ; Gao:2018jsi .

IV Conclusion

Spin is a quantum effect and is normally neglected in a classical transport theory. In this work, we addressed the problem of spin polarization in the Wigner function formalism of quantum kinetic theory. While non-equilibrium distributions are related to the details of the interaction of the system, namely the collision terms, the corresponding local equilibrium distributions are determined only by the detailed balance between the loss and gain terms, namely the disappearing of the collision terms. We obtained the local equilibrium spin distribution by requiring the detailed balance for the Kadanoff-Baym equations. To be specific, we take the Nambu–Jona-Lasinio interaction as an example to calculate the collision terms in the constraint and transport equations at classical level and to the first order in \hbar. We found that, for an initially non-polarized system without external electromagnetic fields, while the local equilibrium spin distribution is trivial at classical level, the quantum correction internally generated by the inhomogeneous vorticity of the system leads to a non-trivial spin distribution. Our result supports the statement in previous studies.

Acknowledgement: The authors would like to thank Drs. Shi Pu, Shuzhe Shi and Xinli Seng for fruitful discussion. The work is supported by the NSFC Grant Nos. 11890712 and 11905066. ZyW is also supported by the Postdoctoral Innovative Talent Support Program of Tsinghua University.

Appendix A Spin decomposition & Semiclassical expansion

The collision terms in the Kadanoff-Baym equations (II), [Σ<,S>][Σ>,S<][\Sigma^{<},S^{>}]_{\star}-[\Sigma^{>},S^{<}]_{\star} and {Σ<,S>}{Σ>,S<}\{\Sigma^{<},S^{>}\}_{\star}-\{\Sigma^{>},S^{<}\}_{\star}, are 4×44\times 4 matrices which should be docomposed with the Clifford algebra. To the lowest order of \hbar the loss terms can be decomposed as

[Σ>,S<](0)\displaystyle[\Sigma^{>},S^{<}]^{(0)}_{\star} =\displaystyle= +2i(Σ¯Vμ𝒜μΣ¯Aμ𝒱μ)iγ5\displaystyle+2i\Big{(}\bar{\Sigma}_{V\mu}\mathcal{A}^{\mu}-\bar{\Sigma}_{A\mu}\mathcal{V}^{\mu}\Big{)}i\gamma^{5} (39)
+2i(Σ¯P𝒜μ+Σ¯Vν𝒮νμΣ¯Aμ𝒫+Σ¯Tμν𝒱ν)γμ\displaystyle+2i\Big{(}\bar{\Sigma}_{P}\mathcal{A}_{\mu}+\bar{\Sigma}_{V}^{\nu}\mathcal{S}_{\nu\mu}-\bar{\Sigma}_{A\mu}\mathcal{P}+\bar{\Sigma}_{T\mu\nu}\mathcal{V}^{\nu}\Big{)}\gamma^{\mu}
+2i(Σ¯P𝒱μΣ¯Vμ𝒫+Σ¯Aν𝒮νμ+Σ¯Tμν𝒜ν)γ5γμ\displaystyle+2i\Big{(}\bar{\Sigma}_{P}\mathcal{V}_{\mu}-\bar{\Sigma}_{V\mu}\mathcal{P}+\bar{\Sigma}_{A}^{\nu}\mathcal{S}_{\nu\mu}+\bar{\Sigma}_{T\mu\nu}\mathcal{A}^{\nu}\Big{)}\gamma^{5}\gamma^{\mu}
+2i(Σ¯A[μ𝒜ν]Σ¯V[μ𝒱ν]Σ¯Tα[μ𝒮ν]α)σμν2,\displaystyle+2i\Big{(}\bar{\Sigma}_{A[\mu}\mathcal{A}_{\nu]}-\bar{\Sigma}_{V[\mu}\mathcal{V}_{\nu]}-\bar{\Sigma}_{T\alpha[\mu}\mathcal{S}_{~{}\nu]}^{\alpha}\Big{)}\frac{\sigma^{\mu\nu}}{2},

and

{Σ>,S<}(0)\displaystyle\{\Sigma^{>},S^{<}\}^{(0)}_{\star} =\displaystyle= +2(Σ¯S𝒮Σ¯P𝒫+Σ¯Vμ𝒱μΣ¯Aμ𝒜μ+12Σ¯Tμν𝒮μν)\displaystyle+2\Big{(}\bar{\Sigma}_{S}\mathcal{S}-\bar{\Sigma}_{P}\mathcal{P}+\bar{\Sigma}_{V\mu}\mathcal{V}^{\mu}-\bar{\Sigma}_{A\mu}\mathcal{A}^{\mu}+\frac{1}{2}\bar{\Sigma}_{T\mu\nu}\mathcal{S}^{\mu\nu}\Big{)} (40)
+2(Σ¯S𝒫+Σ¯P𝒮+14ϵμναβΣ¯Tμν𝒮αβ)iγ5\displaystyle+2\Big{(}\bar{\Sigma}_{S}\mathcal{P}+\bar{\Sigma}_{P}\mathcal{S}+\frac{1}{4}\epsilon^{\mu\nu\alpha\beta}\bar{\Sigma}_{T\mu\nu}\mathcal{S}_{\alpha\beta}\Big{)}i\gamma^{5}
+2(Σ¯S𝒱μ+Σ¯Vμ𝒮+12ϵσνλμ(Σ¯Aσ𝒮νλ+Σ¯Tσν𝒜λ))γμ\displaystyle+2\Big{(}\bar{\Sigma}_{S}\mathcal{V}_{\mu}+\bar{\Sigma}_{V\mu}\mathcal{S}+\frac{1}{2}\epsilon_{\sigma\nu\lambda\mu}(\bar{\Sigma}_{A}^{\sigma}\mathcal{S}^{\nu\lambda}+\bar{\Sigma}_{T}^{\sigma\nu}\mathcal{A}^{\lambda})\Big{)}\gamma^{\mu}
+2(Σ¯S𝒜μ+Σ¯Aμ𝒮+12ϵσνλμ(Σ¯Vσ𝒮νλ+Σ¯Tσν𝒱λ))γ5γμ\displaystyle+2\Big{(}\bar{\Sigma}_{S}\mathcal{A}_{\mu}+\bar{\Sigma}_{A\mu}\mathcal{S}+\frac{1}{2}\epsilon_{\sigma\nu\lambda\mu}(\bar{\Sigma}_{V}^{\sigma}\mathcal{S}^{\nu\lambda}+\bar{\Sigma}_{T}^{\sigma\nu}\mathcal{V}^{\lambda})\Big{)}\gamma^{5}\gamma^{\mu}
+2(Σ¯S𝒮μν+Σ¯Tμν𝒮+ϵμναβ(Σ¯Aα𝒱βΣ¯Vα𝒜β12Σ¯Tαβ𝒫12Σ¯P𝒮αβ))σμν2.\displaystyle+2\Big{(}\bar{\Sigma}_{S}\mathcal{S}_{\mu\nu}+\bar{\Sigma}_{T\mu\nu}\mathcal{S}+\epsilon_{\mu\nu\alpha\beta}\big{(}\bar{\Sigma}_{A}^{\alpha}\mathcal{V}^{\beta}-\bar{\Sigma}_{V}^{\alpha}\mathcal{A}^{\beta}-\frac{1}{2}\bar{\Sigma}_{T}^{\alpha\beta}\mathcal{P}-\frac{1}{2}\bar{\Sigma}_{P}\mathcal{S}^{\alpha\beta}\big{)}\Big{)}\frac{\sigma^{\mu\nu}}{2}.

To the first order of \hbar there are

[Σ>,S<](1)\displaystyle[\Sigma^{>},S^{<}]^{(1)}_{\star} =\displaystyle= +i2(Σ¯Vμ𝒜μΣ¯Aμ𝒱μ)(1)iγ5\displaystyle+i2\hbar\Big{(}\bar{\Sigma}_{V\mu}\mathcal{A}^{\mu}-\bar{\Sigma}_{A\mu}\mathcal{V}^{\mu}\Big{)}^{(1)}i\gamma^{5} (41)
+i2(Σ¯P𝒜μ+Σ¯Vν𝒮νμΣ¯Aμ𝒫+Σ¯Tμν𝒱ν)(1)γμ\displaystyle+i2\hbar\Big{(}\bar{\Sigma}_{P}\mathcal{A}_{\mu}+\bar{\Sigma}_{V}^{\nu}\mathcal{S}_{\nu\mu}-\bar{\Sigma}_{A\mu}\mathcal{P}+\bar{\Sigma}_{T\mu\nu}\mathcal{V}^{\nu}\Big{)}^{(1)}\gamma^{\mu}
+i2(Σ¯P𝒱μΣ¯Vμ𝒫+Σ¯Aν𝒮νμ+Σ¯Tμν𝒜ν)(1)γ5γμ\displaystyle+i2\hbar\Big{(}\bar{\Sigma}_{P}\mathcal{V}_{\mu}-\bar{\Sigma}_{V\mu}\mathcal{P}+\bar{\Sigma}_{A}^{\nu}\mathcal{S}_{\nu\mu}+\bar{\Sigma}_{T\mu\nu}\mathcal{A}^{\nu}\Big{)}^{(1)}\gamma^{5}\gamma^{\mu}
+i2(Σ¯A[μ𝒜ν]Σ¯V[μ𝒱ν]Σ¯Tα[μ𝒮ν]α)(1)σμν2\displaystyle+i2\hbar\Big{(}\bar{\Sigma}_{A[\mu}\mathcal{A}_{\nu]}-\bar{\Sigma}_{V[\mu}\mathcal{V}_{\nu]}-\bar{\Sigma}_{T\alpha[\mu}\mathcal{S}_{~{}\nu]}^{\alpha}\Big{)}^{(1)}\frac{\sigma^{\mu\nu}}{2}
+i(Σ¯S𝒮Σ¯P𝒫+Σ¯Vμ𝒱μΣ¯Aμ𝒜μ+12Σ¯Tμν𝒮μν)P.B.\displaystyle+i\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{S}-\bar{\Sigma}_{P}\mathcal{P}+\bar{\Sigma}_{V\mu}\mathcal{V}^{\mu}-\bar{\Sigma}_{A\mu}\mathcal{A}^{\mu}+\frac{1}{2}\bar{\Sigma}_{T\mu\nu}\mathcal{S}^{\mu\nu}\Big{)}_{\text{P.B.}}
+i(Σ¯S𝒫+Σ¯P𝒮+14ϵμναβΣ¯Tμν𝒮αβ)P.B.iγ5\displaystyle+i\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{P}+\bar{\Sigma}_{P}\mathcal{S}+\frac{1}{4}\epsilon^{\mu\nu\alpha\beta}\bar{\Sigma}_{T\mu\nu}\mathcal{S}_{\alpha\beta}\Big{)}_{\text{P.B.}}i\gamma^{5}
+i(Σ¯S𝒱μ+Σ¯Vμ𝒮+12ϵσνλμ(Σ¯Aσ𝒮νλ+Σ¯Tσν𝒜λ))P.B.γμ\displaystyle+i\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{V}_{\mu}+\bar{\Sigma}_{V\mu}\mathcal{S}+\frac{1}{2}\epsilon_{\sigma\nu\lambda\mu}(\bar{\Sigma}_{A}^{\sigma}\mathcal{S}^{\nu\lambda}+\bar{\Sigma}_{T}^{\sigma\nu}\mathcal{A}^{\lambda})\Big{)}_{\text{P.B.}}\gamma^{\mu}
+i(Σ¯S𝒜μ+Σ¯Aμ𝒮+12ϵσνλμ(Σ¯Vσ𝒮νλ+Σ¯Tσν𝒱λ))P.B.γ5γμ\displaystyle+i\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{A}_{\mu}+\bar{\Sigma}_{A\mu}\mathcal{S}+\frac{1}{2}\epsilon_{\sigma\nu\lambda\mu}(\bar{\Sigma}_{V}^{\sigma}\mathcal{S}^{\nu\lambda}+\bar{\Sigma}_{T}^{\sigma\nu}\mathcal{V}^{\lambda})\Big{)}_{\text{P.B.}}\gamma^{5}\gamma^{\mu}
+i(Σ¯S𝒮μν+Σ¯Tμν𝒮+ϵμναβ(Σ¯Aα𝒱βΣ¯Vα𝒜β12Σ¯Tαβ𝒫12Σ¯P𝒮αβ))P.B.σμν2,\displaystyle+i\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{S}_{\mu\nu}+\bar{\Sigma}_{T\mu\nu}\mathcal{S}+\epsilon_{\mu\nu\alpha\beta}\big{(}\bar{\Sigma}_{A}^{\alpha}\mathcal{V}^{\beta}-\bar{\Sigma}_{V}^{\alpha}\mathcal{A}^{\beta}-\frac{1}{2}\bar{\Sigma}_{T}^{\alpha\beta}\mathcal{P}-\frac{1}{2}\bar{\Sigma}_{P}\mathcal{S}^{\alpha\beta}\big{)}\Big{)}_{\text{P.B.}}\frac{\sigma^{\mu\nu}}{2},

where (AB)(1)=A(1)B(0)+A(0)B(1)(AB)^{(1)}=A^{(1)}B^{(0)}+A^{(0)}B^{(1)} stands for the 𝒪()\mathcal{O}(\hbar) component of (AB)(AB), and

{Σ>,S<}(1)\displaystyle\{\Sigma^{>},S^{<}\}^{(1)}_{\star} =\displaystyle= (Σ¯Vμ𝒜μΣ¯Aμ𝒱μ)P.B.iγ5\displaystyle-\hbar\Big{(}\bar{\Sigma}_{V\mu}\mathcal{A}^{\mu}-\bar{\Sigma}_{A\mu}\mathcal{V}^{\mu}\Big{)}_{\text{P.B.}}i\gamma^{5} (42)
(Σ¯P𝒜μ+Σ¯Vν𝒮νμΣ¯Aμ𝒫+Σ¯Tμν𝒱ν)P.B.γμ\displaystyle-\hbar\Big{(}\bar{\Sigma}_{P}\mathcal{A}_{\mu}+\bar{\Sigma}_{V}^{\nu}\mathcal{S}_{\nu\mu}-\bar{\Sigma}_{A\mu}\mathcal{P}+\bar{\Sigma}_{T\mu\nu}\mathcal{V}^{\nu}\Big{)}_{\text{P.B.}}\gamma^{\mu}
(Σ¯P𝒱μΣ¯Vμ𝒫+Σ¯Aν𝒮νμ+Σ¯Tμν𝒜ν)P.B.γ5γμ\displaystyle-\hbar\Big{(}\bar{\Sigma}_{P}\mathcal{V}_{\mu}-\bar{\Sigma}_{V\mu}\mathcal{P}+\bar{\Sigma}_{A}^{\nu}\mathcal{S}_{\nu\mu}+\bar{\Sigma}_{T\mu\nu}\mathcal{A}^{\nu}\Big{)}_{\text{P.B.}}\gamma^{5}\gamma^{\mu}
(Σ¯A[μ𝒜ν]Σ¯V[μ𝒱ν]Σ¯Tα[μ𝒮ν]α)P.B.σμν2\displaystyle-\hbar\Big{(}\bar{\Sigma}_{A[\mu}\mathcal{A}_{\nu]}-\bar{\Sigma}_{V[\mu}\mathcal{V}_{\nu]}-\bar{\Sigma}_{T\alpha[\mu}\mathcal{S}_{~{}\nu]}^{\alpha}\Big{)}_{\text{P.B.}}\frac{\sigma^{\mu\nu}}{2}
+2(Σ¯S𝒮Σ¯P𝒫+Σ¯Vμ𝒱μΣ¯Aμ𝒜μ+12Σ¯Tμν𝒮μν)(1)\displaystyle+2\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{S}-\bar{\Sigma}_{P}\mathcal{P}+\bar{\Sigma}_{V\mu}\mathcal{V}^{\mu}-\bar{\Sigma}_{A\mu}\mathcal{A}^{\mu}+\frac{1}{2}\bar{\Sigma}_{T\mu\nu}\mathcal{S}^{\mu\nu}\Big{)}^{(1)}
+2(Σ¯S𝒫+Σ¯P𝒮+14ϵμναβΣ¯Tμν𝒮αβ)(1)iγ5\displaystyle+2\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{P}+\bar{\Sigma}_{P}\mathcal{S}+\frac{1}{4}\epsilon^{\mu\nu\alpha\beta}\bar{\Sigma}_{T\mu\nu}\mathcal{S}_{\alpha\beta}\Big{)}^{(1)}i\gamma^{5}
+2(Σ¯S𝒱μ+Σ¯Vμ𝒮+12ϵσνλμ(Σ¯Aσ𝒮νλ+Σ¯Tσν𝒜λ))(1)γμ\displaystyle+2\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{V}_{\mu}+\bar{\Sigma}_{V\mu}\mathcal{S}+\frac{1}{2}\epsilon_{\sigma\nu\lambda\mu}(\bar{\Sigma}_{A}^{\sigma}\mathcal{S}^{\nu\lambda}+\bar{\Sigma}_{T}^{\sigma\nu}\mathcal{A}^{\lambda})\Big{)}^{(1)}\gamma^{\mu}
+2(Σ¯S𝒜μ+Σ¯Aμ𝒮+12ϵσνλμ(Σ¯Vμ𝒮νλ+Σ¯Tσν𝒱λ))(1)γ5γμ\displaystyle+2\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{A}_{\mu}+\bar{\Sigma}_{A\mu}\mathcal{S}+\frac{1}{2}\epsilon_{\sigma\nu\lambda\mu}(\bar{\Sigma}_{V}^{\mu}\mathcal{S}^{\nu\lambda}+\bar{\Sigma}_{T}^{\sigma\nu}\mathcal{V}^{\lambda})\Big{)}^{(1)}\gamma^{5}\gamma^{\mu}
+2(Σ¯S𝒮μν+Σ¯Tμν𝒮+ϵμναβ(Σ¯Aα𝒱βΣ¯Vα𝒜β12Σ¯Tαβ𝒫12Σ¯P𝒮αβ))(1)σμν2.\displaystyle+2\hbar\Big{(}\bar{\Sigma}_{S}\mathcal{S}_{\mu\nu}+\bar{\Sigma}_{T\mu\nu}\mathcal{S}+\epsilon_{\mu\nu\alpha\beta}\big{(}\bar{\Sigma}_{A}^{\alpha}\mathcal{V}^{\beta}-\bar{\Sigma}_{V}^{\alpha}\mathcal{A}^{\beta}-\frac{1}{2}\bar{\Sigma}_{T}^{\alpha\beta}\mathcal{P}-\frac{1}{2}\bar{\Sigma}_{P}\mathcal{S}^{\alpha\beta}\big{)}\Big{)}^{(1)}\frac{\sigma^{\mu\nu}}{2}.

The spin decomposition of the gain terms can be obtained similarly by taking the exchanges Σ>Σ<\Sigma^{>}\leftrightarrow\Sigma^{<} and S<S>S^{<}\leftrightarrow S^{>}.

References

  • (1) Becattini F, Chandra V, Del Zanna L and Grossi E 2013 Annals Phys. 338 32–49 (Preprint eprint 1303.3431)
  • (2) Fang R h, Pang L g, Wang Q and Wang X n 2016 Phys. Rev. C94 024904 (Preprint eprint 1604.04036)
  • (3) Gao J h, Pang J Y and Wang Q 2019 Phys. Rev. D100 016008 (Preprint eprint 1810.02028)
  • (4) Liang Z T and Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: Phys. Rev. Lett.96,039901(2006)] (Preprint eprint nucl-th/0410079)
  • (5) Voloshin S A 2004 (Preprint eprint nucl-th/0410089)
  • (6) Betz B, Gyulassy M and Torrieri G 2007 Phys. Rev. C76 044901 (Preprint eprint 0708.0035)
  • (7) Becattini F, Piccinini F and Rizzo J 2008 Phys. Rev. C77 024906 (Preprint eprint 0711.1253)
  • (8) Adamczyk L et al. (STAR) 2017 Nature 548 62–65 (Preprint eprint 1701.06657)
  • (9) Adam J et al. (STAR) 2018 Phys. Rev. C98 014910 (Preprint eprint 1805.04400)
  • (10) Acharya S et al. (ALICE) 2020 Phys. Rev. Lett. 125 012301 (Preprint eprint 1910.14408)
  • (11) Becattini F, Csernai L and Wang D J 2013 Phys. Rev. C88 034905 [Erratum: Phys. Rev.C93,no.6,069901(2016)] (Preprint eprint 1304.4427)
  • (12) Becattini F, Inghirami G, Rolando V, Beraudo A, Del Zanna L, De Pace A, Nardi M, Pagliara G and Chandra V 2015 Eur. Phys. J. C75 406 [Erratum: Eur. Phys. J.C78,no.5,354(2018)] (Preprint eprint 1501.04468)
  • (13) Becattini F, Karpenko I, Lisa M, Upsal I and Voloshin S 2017 Phys. Rev. C95 054902 (Preprint eprint 1610.02506)
  • (14) Karpenko I and Becattini F 2017 Eur. Phys. J. C77 213 (Preprint eprint 1610.04717)
  • (15) Pang L G, Petersen H, Wang Q and Wang X N 2016 Phys. Rev. Lett. 117 192301 (Preprint eprint 1605.04024)
  • (16) Xie Y, Wang D and Csernai L P 2017 Phys. Rev. C95 031901 (Preprint eprint 1703.03770)
  • (17) Becattini F, Bucciantini L, Grossi E and Tinti L 2015 Eur. Phys. J. C 75 191 (Preprint eprint 1403.6265)
  • (18) De Groot S 1980 Relativistic Kinetic Theory. Principles and Applications
  • (19) Kharzeev D 2006 Phys. Lett. B 633 260–264 (Preprint eprint hep-ph/0406125)
  • (20) Fukushima K, Kharzeev D E and Warringa H J 2008 Phys. Rev. D 78 074033 (Preprint eprint 0808.3382)
  • (21) Neiman Y and Oz Y 2011 JHEP 03 023 (Preprint eprint 1011.5107)
  • (22) Son D and Spivak B 2013 Phys. Rev. B 88 104412 (Preprint eprint 1206.1627)
  • (23) Son D T and Yamamoto N 2012 Phys. Rev. Lett. 109 181602 (Preprint eprint 1203.2697)
  • (24) Son D T and Yamamoto N 2013 Phys. Rev. D 87 085016 (Preprint eprint 1210.8158)
  • (25) Stephanov M and Yin Y 2012 Phys. Rev. Lett. 109 162001 (Preprint eprint 1207.0747)
  • (26) Pu S, Gao J h and Wang Q 2011 Phys. Rev. D 83 094017 (Preprint eprint 1008.2418)
  • (27) Chen J W, Pu S, Wang Q and Wang X N 2013 Phys. Rev. Lett. 110 262301 (Preprint eprint 1210.8312)
  • (28) Hidaka Y, Pu S and Yang D L 2017 Phys. Rev. D 95 091901 (Preprint eprint 1612.04630)
  • (29) Huang A, Shi S, Jiang Y, Liao J and Zhuang P 2018 Phys. Rev. D 98 036010 (Preprint eprint 1801.03640)
  • (30) Liu Y C, Gao L L, Mameda K and Huang X G 2019 Phys. Rev. D 99 085014 (Preprint eprint 1812.10127)
  • (31) Lin S and Shukla A 2019 JHEP 06 060 (Preprint eprint 1901.01528)
  • (32) Hattori K, Hidaka Y and Yang D L 2019 Phys. Rev. D 100 096011 (Preprint eprint 1903.01653)
  • (33) Wang Z, Guo X, Shi S and Zhuang P 2019 Phys. Rev. D 100 014015 (Preprint eprint 1903.03461)
  • (34) Gao J H and Liang Z T 2019 Phys. Rev. D 100 056021 (Preprint eprint 1902.06510)
  • (35) Weickgenannt N, Sheng X L, Speranza E, Wang Q and Rischke D H 2019 Phys. Rev. D 100 056018 (Preprint eprint 1902.06513)
  • (36) Liu Y C, Mameda K and Huang X G 2020 Chin. Phys. C 44 094101 (Preprint eprint 2002.03753)
  • (37) Yang D L, Hattori K and Hidaka Y 2020 JHEP 20 070 (Preprint eprint 2002.02612)
  • (38) Weickgenannt N, Speranza E, Sheng X l, Wang Q and Rischke D H 2020 (Preprint eprint 2005.01506)
  • (39) Carignano S, Manuel C and Torres-Rincon J M 2020 Phys. Rev. D 102 016003 (Preprint eprint 1908.00561)
  • (40) Li S and Yee H U 2019 Phys. Rev. D 100 056022 (Preprint eprint 1905.10463)
  • (41) Hou D and Lin S 2020 (Preprint eprint 2008.03862)
  • (42) Klevansky S P, Ogura A and Hufner J 1997 Annals Phys. 261 37–73 (Preprint eprint hep-ph/9708263)
  • (43) Blaizot J P and Iancu E 2002 Phys. Rept. 359 355–528 (Preprint eprint hep-ph/0101103)
  • (44) Florkowski W, Kumar A and Ryblewski R 2020 Acta Phys. Polon. B51 945–959 (Preprint eprint 1907.09835)