This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Local coefficients and Gelfand-Graev representations for non-split covers on SL(2)(2)

Yeongseong Jo Department of Mathematics Education, Ewha Womans University, Seoul 03760, Republic of Korea [email protected];[email protected]
Abstract.

A purely local approach has been developed by Krishnamurthy and Kutzko to compute Langlands-Shahidi local coefficient for SL(2){\rm SL}(2) via types and covers à la Bushnell-Kutzko. In this paper, we extend their method to the non-split case and complete their project. We also study the algebraic structure of Gelfand-Graev representations, which generalizes the results of Chan-Savin and Mishra-Pattanayak to SL(2){\rm SL}(2) over non-archimidean local fields without any restriction on the characteristic.

Key words and phrases:
Bushnell–Kutzko’s types and covers, Gelfand-Graev representations, Langlands-Shahidi local coefficients
2020 Mathematics Subject Classification:
Primary 11F70; Secondary 22E50

1. Introduction

Throughout this paper FF will denote a non-arhimedean local field and we let G=SL2(F)G={\rm SL}_{2}(F). The purpose of this paper is to illustrate an algebraic method of achieving an explicit formula for the Langlands–Shahidi local coefficients and computing the isotypic subspace of Gelfand–Graev representations of GG by means of types and non-split covers à la Bushnell–Kutzko. At a first glance, the results seem to be rather tangential to each other, but two topics are commonly concerned with what is known as Whittaker models, which play an important role in the automorphic forms and representation theory of linear reductive groups due to the nature of its relation to LL-functions, notably in the Langlands–Shahidi method and Rankin–Selberg integrals as well. Specifically, local coefficient by definition is a constant of proportionality arising from the uniqueness of Whittaker models [Rod72], whereas the Gelfand–Graev representation is given by the dual of the Whittaker space. In the meantime, the theory of types and covers provides a systematic way of analyzing the structure of smooth representations of linear reductive pp-adic groups via the representation theory of compact open subgroups (cf. Section 2.1).

This paper consists of two parts. Our first main result of this paper is a complete expression of local coefficients via types and covers, restricting to the case of F×F^{\times} as a Levi subgroup of GG. Specifically, the character of F×F^{\times} is quadratic and ramified (“non-split”). As a matter of fact, this case is more challenging than others. We resolve the only remaining case of non-split cover, which is addressed in the work by Krishnamurthy and Kutzko [KK, §3.4 Remark 2]. The reader should consult §2.1 and §3.1 for details about the unexplained notations in the statement below.

Theorem A (Theorem 3.1).

Let ψ\psi be a fixed additive character of level 0. Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times} of level nηn_{\eta} with η=η~𝔬F×\eta=\widetilde{\eta}\restriction_{\mathfrak{o}^{\times}_{F}}. Then we have

Cψ(s,η~,w0)=η~(ϖFnη)τ(η,ψ,ϖFnη)qnη(s1).C_{\psi}(s,\widetilde{\eta},{\rm w}_{0})=\widetilde{\eta}(-\varpi_{F}^{n_{\eta}})\tau(\eta,\psi,\varpi_{F}^{-n_{\eta}})q^{-n_{\eta}(s-1)}.

The local coefficient has a great influence on the development of contemporary number theory, and is closed related to the theory of local factors à la the Langlands-Shahidi method [Sha78, Sha81, Sha84]. Shahidi subsequently defined the so-called Langlands–Shahidi γ\gamma-factors inductively so that the local coefficient factorizes as a product of such γ\gamma-factors. Another briefly aforementioned method for constructing local exterior square factors via the theory of integral representations is developed by Bump and Friedberg in late 1980’s [BF89]. By definition, it is a proportionality factor between an integral and its dual integral related to each other through the theory of either Fourier transforms or intertwining operators [Mat15]. On the perspective of the local Langlands correspondence, the resulting local factors ought to be the same, probably up to some normalizations of certain Haar measures. In practice, this flavor of comparisons is surely non-trivial to answer, and is known for only a handful amount of cases; for example, we refer the reader to [Kap15, Sha84] for Rankin–Selberg local factors, and [AKMSS21, BP21] for Asai local factors. In this regard, Bump and Friedberg [BF89, Conjecture 4] predicted that the equality should be valid in the context of local exterior square factors attached to irreducible admissible representation of GLn(F){\rm GL}_{n}(F). Our A confirms that the equality between local factors [BF89, Conjecture 4] obtains from the Langlands–Shahidi method and those obtained via Bump–Friedberg integrals holds unconditionally at least for GL1(F)F×{\rm GL}_{1}(F)\cong F^{\times}.

Our strategy to tackle the problem of computing local coefficient on F×F^{\times} inside GG is going back to at least the pioneering work of Casselman [Cas80], where local coefficients in the context of unramified principal series representations are explicitly computed. The computation there relies on finding the effect of the intertwining operator on the subspace of vectors fixed by the Iwahori subgroup. The role played by the trivial representation of the Iwahori subgroup in Casselman’s trick can be regarded as an extreme incident of the theory of types and covers. Previously, types and covers are adapted by Krishnamurthy and Kutzko [KK] for split covers of GG, or in other words, the case where the character is not an unramified twist of a quadratic character. Afterwords, the author and Krishnamurthy [JK21] dealt with local coefficients associated to covers of a homogeneous pair of irreducible supercuspidal representations (π1,π2)(\pi_{1},\pi_{2}) of the Levi subgroup GLn(F)×GLn(F){\rm GL}_{n}(F)\times{\rm GL}_{n}(F) embedded in GL2n(F){\rm GL}_{2n}(F).

Our next aim of this paper is to express the principal series block of the Gelfand–Graev representation as a cyclic module over the Iwahori–Hecke algebra. As before, the reader is advised to refer to Section 2.1 for Hecke algebras, and undefined terminology and to Section 3.2 for Gelfand–Graev representations in the following statement.

Theorem B (Theorem 3.6).

Let ψ\psi be a fixed additive character of level 0. Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times} of level nηn_{\eta} with η=η~𝔬F×\eta=\widetilde{\eta}\restriction_{\mathfrak{o}^{\times}_{F}}. As (G,λη)\mathcal{H}(G,\lambda_{\eta})-modules, we obtain isomorphisms

(c-indUGψ)λη(G,λη)(K,λη)1.({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}}\cong\mathcal{H}(G,\lambda_{\eta})\otimes_{{\mathcal{H}(K,\lambda_{\eta})}}\mathbb{C}_{-1}.

The structure of Gelfand–Graev representation was originally treated by Chan and Savin for unramified principal series blocks of split reductive groups [CS18], and was further refined by Mishra and Pattanaya for principal series blocks for connected reductive groups over FF whose residue characteristic is large enough [MP21]. Shortly after, Gao, Gurevich, and Karasiewicz extended Chan and Savin’s result for linear groups [CS18] to the Iwahori fixed vectors in the Gelfand-Graev representation of covering groups as a module over the Iwahori-Hecke algebra [GGK22].

A part of reasons why Mishra and Pattanaya [MP21] primarily considered limited characteristics of FF is that they made a reduction to depth-zero cases and then to finite group cases. In doing so, they were able to determine the generator of isotypical space for the cover of Gelfand-Graev representations over finite fields, which in turn admits the 11-dimensional sign representation. On the other hand, our proof takes elements from Chan and Savin’s [CS18] unconditional and direct argument. Similarly to Chan and Savin, we laboriously compute the outcome of Hecke operators on test functions from which we find the generator possessing the 11-dimensional sign representation (cf. Proposition 3.5).

In principle, all the computations boil down to understanding the behavior of the intertwining or Hecke operators on certain test functions (cf. Proposition 2.4, Proposition 3.5). We expect that those test functions that naturally occur in the theory of types and cover open a new chapter for other situation, and consider the present paper a groundwork for that direction. Benefiting from [JK21], it is also our belief that the structure of the isotypic component of the space of compactly supported Whittaker functions as modules over Iwahori-Hecke algebra, is responsible for computing exterior square local coefficients in more general settings, remarkably, Siegel Levi subgroups isomorphic to GLn(F){\rm GL}_{n}(F) lying inside Sp2n(F){\rm Sp}_{2n}(F). It will be therefore very interesting to see if our robust arguement can be carried out to parabolically induced representations of symplectic groups in 2n2n-variables. The author plans to investigate them in a future study.

2. Non-split Covers and Intertwining Operators

2.1. Types and Covers

Let FF be a non-archimedean local field with its residual finite field 𝔽q\mathbb{F}_{q} and denote by pp the characteristic of 𝔽q\mathbb{F}_{q}. The base field FF is a finite extension of p\mathbb{Q}_{p} or 𝔽p((t))\mathbb{F}_{p}((t)), called a pp-adic field in characteristic 0, or a local function field in characteristic p>0p>0. Let 𝔬F\mathfrak{o}_{F} be its ring of integers, 𝔭F\mathfrak{p}_{F} its maximal ideal. We fix a generator ϖF\varpi_{F} of 𝔭F\mathfrak{p}_{F} and normalize the absolute value |||\cdot| of FF so that |ϖF|=qF1=q1|\varpi_{F}|=q_{F}^{-1}=q^{-1}. When there is no possibility of confusion, we sometimes drop the subscripts, while working over a fixed FF. We let G=SL2(F)G={\rm SL}_{2}(F). Let BB be the subgroup of FF-points of the Borel subgroup of upper triangular matrices. Then B=TUB=TU, where

T={(a00a1)|aF×};U={u(x):=(1x01)|xF}.T=\left\{\begin{pmatrix}a&0\\ 0&a^{-1}\end{pmatrix}\,\middle|\,a\in F^{\times}\right\};\quad U=\left\{u(x):=\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\,\middle|\,x\in F\right\}.

To be specific, we identify TT with F×F^{\times} when no confusion can arise. Let B¯=TU¯\overline{B}=T\overline{U} denote the opposite Borel subgroup of lower triangular matrices, where

U¯={u¯(x):=(10x1)|xF}.\overline{U}=\left\{\overline{u}(x):=\begin{pmatrix}1&0\\ x&1\end{pmatrix}\,\middle|\,x\in F\right\}.

Let K=G(𝔬F)K=G(\mathfrak{o}_{F}) be a maximal compact subgroup and let 𝐖={I2,w0}{\rm\bf W}=\{{\rm I}_{2},{\rm w}_{0}\}, where

I2=(1001)andw0=(0110){\rm I}_{2}=\begin{pmatrix}1&0\\ 0&1\end{pmatrix}\quad\text{and}\quad{\rm w}_{0}=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}

are two fixed distinct representatives of cosets in NG(T)/TN_{G}(T)/T. We let \ell denotes the length function on 𝐖{\rm\bf W} defined by (I2)=0\ell({\rm I}_{2})=0 and (w2)=1\ell({\rm w}_{2})=1. The character νs\nu_{s} is given by the formula

νs((a00a1))=|a|s.\nu_{s}\left(\begin{pmatrix}a&0\\ 0&a^{-1}\end{pmatrix}\right)=|a|^{s}.

We may view it as a character of BB by extending νs\nu_{s} trivially to UU. Let δ\delta denote the modulus character of BB; explicitly,

δ((1x01)(a00a1))=|a|2.\delta\left(\begin{pmatrix}1&x\\ 0&1\end{pmatrix}\begin{pmatrix}a&0\\ 0&a^{-1}\end{pmatrix}\right)=|a|^{2}.

For a subgroup HH of GG and gGg\in G, let HgH^{g} denote g1Hgg^{-1}Hg. If τ\tau is a representation of HH, let τg\tau^{g} be a representation of HgH^{g} such that τg(h)=τ(ghg1)\tau^{g}(h)=\tau(ghg^{-1}), hHgh\in H^{g}. Let 1H{\textbf{1}}_{H} denote a trivial character on HH.

For any topological group HH, we write H^\widehat{H} to denote the group of continuous homomorphism from HH to ×\mathbb{C}^{\times}. Particularly, we are interested in the character group 𝔬^F×\widehat{\mathfrak{o}}_{F}^{\times}. Let T(𝔬F):=TKT(\mathfrak{o}_{F}):=T\cap K. Specifically, T(𝔬F)𝔬F×T(\mathfrak{o}_{F})\cong\mathfrak{o}_{F}^{\times}. Then T/T(𝔬F)T/T(\mathfrak{o}_{F}) is a free abelian group of rank 11. Let X(T)X(T) denote the group of continuous homomorphisms of TT into ×\mathbb{C}^{\times} which are trivial on T(𝔬F)T(\mathfrak{o}_{F}) – called the group of unramified characters of TT. Moreover X(T)X(T) is equipped with the structure of a complex variety whose ring of regular functions is [T/T(𝔬F)][t,t1]\mathbb{C}[T/T(\mathfrak{o}_{F})]\cong\mathbb{C}[t,t^{-1}].

By a a cuspidal pair in GG, we mean a pair (M,σ)(M,\sigma) in GG, where MM is either TT or GG, and σ\sigma is a supercuspidal representation of MM. Two such pairs (Mi,σi)(M_{i},\sigma_{i}), i=1,2i=1,2, are said to be inertially equivalent if there exist gGg\in G and an unramified character μ\mu of GG such that M2=M1g=g1M1gM_{2}=M_{1}^{g}=g^{-1}M_{1}g, and σ2\sigma_{2} is equivalent to the representation σ1gμ:xσ1(gxg1)μ(x)\sigma_{1}^{g}\otimes\mu:x\mapsto\sigma_{1}(gxg^{-1})\mu(x) of M2M_{2}. We denote by [(M,σ)]G[(M,\sigma)]_{G} the GG-inertial equivalence class of a cuspidal pair (M,σ)(M,\sigma) in GG. Let 𝔅(G)\mathfrak{B}(G) denote the set of inertial equivalence classes of cuspidal pairs in GG. In particular, we let η~\widetilde{\eta} be a character of F×F^{\times} and we put η=η~𝔬F×\eta=\widetilde{\eta}\restriction_{\mathfrak{o}^{\times}_{F}}. Let η~i\widetilde{\eta}_{i}, i=1,2i=1,2, be characters of TT. Then η~2\widetilde{\eta}_{2} is GG-inertially equivalent to η~1\widetilde{\eta}_{1} if and only if there exists ss\in\mathbb{C} such that η~2=η~1±1νs\widetilde{\eta}_{2}=\widetilde{\eta}_{1}^{\pm 1}\nu_{s}.

It is a fundamental result of Bernstein (cf. [Kut04, §1.4]) that (G)\mathfrak{R}(G) of smooth complex representations of GG decomposes into a product of full subcategories

(G)𝔰𝔅(G)𝔰(G).\mathfrak{R}(G)\cong\prod_{\mathfrak{s}\in\mathfrak{B}(G)}\mathfrak{R}^{\mathfrak{s}}(G).

We divide the equivalence classes into so-called

  1. (i)(\mathrm{i})

    supercuspidal blocks;

  2. (ii)(\mathrm{ii})

    principal series blocks.

(i)(\mathrm{i}) For each irreducible supercuspidal representation σ\sigma of GG, we write 𝔰(σ)\mathfrak{s}(\sigma) for the equivalence class of σ\sigma in (G)\mathfrak{R}(G). We let 𝔰(σ)(G)\mathfrak{R}^{\mathfrak{s}(\sigma)}(G) be the full subcategory of (G)\mathfrak{R}(G) whose objects are isomorphic to sums of copies of σ\sigma. (ii)(\mathrm{ii}) Let χ\chi be a character of BB, and ιBG\iota^{G}_{B} the functor of normalized parabolic induction. We let B(χ)\mathcal{F}_{B}(\chi) denote the space of ιBG(χ)\iota^{G}_{B}(\chi). To be precise, B(χ)\mathcal{F}_{B}(\chi) is the space of smooth functions f:Gf:G\rightarrow\mathbb{C} that satisfy

f(utg)=δ1/2(t)χ(t)f(g)f(utg)=\delta^{1/2}(t)\chi(t)f(g)

for any uUu\in U, tTt\in T, and gGg\in G, and the action of ρ\rho on B(χ)\mathcal{F}_{B}(\chi) is by right translation, namely (ρ(h)f)(g):=f(gh)(\rho(h)\cdot f)(g):=f(gh). We denote GG-intertially equivalent class by 𝔰η\mathfrak{s}_{\eta}. We let 𝔰η(G)\mathfrak{R}^{\mathfrak{s}_{\eta}}(G) be the full subcategory of (G)\mathfrak{R}(G) whose irreducible objects are exactly those that occur as a subquotient of some Q(η~νs)\mathcal{F}_{Q}(\widetilde{\eta}\otimes\nu_{s}), where QQ is either BB or B¯\overline{B} [KK, §3.2, P.228].

With η~i\widetilde{\eta}_{i}, i=1,2i=1,2, as above, η~1\widetilde{\eta}_{1} is TT-inertially equivalent to η~2\widetilde{\eta}_{2} if and only if there exists ss\in\mathbb{C} such that η~2=η~1νs\widetilde{\eta}_{2}=\widetilde{\eta}_{1}\nu_{s}. Let 𝔱η\mathfrak{t}_{\eta} be the corresponding TT-inertially equivalent class. Let 𝔱η(T)\mathfrak{R}^{\mathfrak{t}_{\eta}}(T) be the full subcategory of (T)\mathfrak{R}(T) whose object (π,V)(\pi,V) has the property that π(x)v=η(x)v\pi(x)v=\eta(x)v for all xT(𝔬F)x\in T(\mathfrak{o}_{F}) and vVv\in V. Then the category (T)\mathfrak{R}(T) similarly decomposes as a product of its subcategories 𝔱η(T)\mathfrak{R}^{\mathfrak{t}_{\eta}}(T):

(T)η𝔬^F×𝔱η(T).\mathfrak{R}(T)\cong\prod_{\eta\in\widehat{\mathfrak{o}}_{F}^{\times}}\mathfrak{R}^{\mathfrak{t}_{\eta}}(T).

Let JJ be a compact open subgroup of GG, let (λ,W)(\lambda,W) be a smooth irreducible representation of JJ, and write (λˇ,Wˇ)(\check{\lambda},\check{W}) for the contragredient representation. Then (G,λ)\mathcal{H}(G,\lambda) is the space of compactly supported function f:GEnd(Wˇ)f:G\rightarrow\mathrm{End}_{\mathbb{C}}(\check{W}) that satisfy

f(hxk)=λˇ(h)f(x)λˇ(k),xG,h,kJ.f(hxk)=\check{\lambda}(h)f(x)\check{\lambda}(k),\quad x\in G,\;\;h,k\in J.

It is a unital (associative) algebra with respect to the standard convolution operation

f1f2(y)=Gf1(x)f2(x1y)𝑑x,f1,f2(G,λ),yG,f_{1}\star f_{2}(y)=\int_{G}f_{1}(x)f_{2}(x^{-1}y)\,dx,\quad f_{1},f_{2}\in\mathcal{H}(G,\lambda),\;\;y\in G,

where we normalized the Haar measure on GG such that vol(J)=1{\rm vol}(J)=1.

An element xGx\in G is called intertwine if there is a non-zero Jx1JxJ\cap x^{-1}Jx-homomorphism between λ\lambda and the conjugate representation λx\lambda^{x}. It is equivalent to saying that the double coset JxJJxJ supports a non-zero function in (G,λ)\mathcal{H}(G,\lambda) [Kut04, §2.2]. Specifically, when λ\lambda is 11-dimensional, λ(xkx1)=λ(k)\lambda(xkx^{-1})=\lambda(k) for any kJx1Jxk\in J\cap x^{-1}Jx. We denote by G(λ)\mathcal{I}_{G}(\lambda) the set of elements in GG which intertwine λ\lambda.

A pair (J,λ)(J,\lambda) is said to be a type for 𝔰𝔅(G)\mathfrak{s}\in\mathfrak{B}(G), or simply a 𝔰\mathfrak{s}-type if for every irreducible object (π,V)(G)(\pi,V)\in\mathfrak{R}(G), we have (π,V)𝔰(G)(\pi,V)\in\mathfrak{R}^{\mathfrak{s}}(G) if and only if π\pi contains λ\lambda, that is to say, the space of λ\lambda-covariants Vλ:=HomJ(W,V)V_{\lambda}:=\mathrm{Hom}_{J}(W,V) is non-trivial. For aEnd(Wˇ)a\in\mathrm{End}_{\mathbb{C}}(\check{W}), aa^{\vee} denote the transpose of aa with respect to the canonical pairing between WW and Wˇ\check{W}. We similarly define the Hecke algebra (G,λˇ)\mathcal{H}(G,\check{\lambda}). There is a canonical anti-isomorphism ffˇf\mapsto\check{f} from (G,λ)(G,λˇ)\mathcal{H}(G,\lambda)\rightarrow\mathcal{H}(G,\check{\lambda}) given by fˇ(g)=(f(g1))\check{f}(g)=(f(g^{-1}))^{\vee}. There is a natural left (G,λ)Mod\mathcal{H}(G,\lambda)-{\rm Mod} structure (also denoted as π\pi) given by

(fϕ)(w):=(π(f)ϕ)(w)=Gπ(g)ϕ(f(g)w)𝑑g(f\star\phi)(w):=(\pi(f)\phi)(w)=\int_{G}\pi(g)\phi(f(g)^{\vee}w)\,dg

for ϕVλ\phi\in V_{\lambda}, wWw\in W, and f(G,λ)f\in\mathcal{H}(G,\lambda). For 𝔰\mathfrak{s}-type (J,λ)(J,\lambda), the map VVλV\mapsto V_{\lambda} induces an equivalence of categories 𝔰(G)(G,λ)Mod\mathfrak{R}^{\mathfrak{s}}(G)\cong\mathcal{H}(G,\lambda)-{\rm Mod}.

Given η\eta and η~\widetilde{\eta} as above, set nη=1n_{\eta}=1 if 1+𝔭Fkerη1+\mathfrak{p}_{F}\subseteq\ker\eta. We let nηn_{\eta} to be the smallest number nn so that 1+𝔭Fnkerη1+\mathfrak{p}_{F}^{n}\subset\ker\eta; otherwise it is defined to be the smallest positive integer nn so that 1+𝔭Fnkerη1+\mathfrak{p}_{F}^{n}\subseteq\ker\eta. In particular, if η~\widetilde{\eta} is unramified, nη=1n_{\eta}=1. The compact open subgroup is given by

Jη={(c11c12c21c22)G|c11,c22𝔬F×,c12𝔬F,c21𝔭Fnη},J_{\eta}=\left\{\begin{pmatrix}c_{11}&c_{12}\\ c_{21}&c_{22}\end{pmatrix}\in G\,\middle|\,c_{11},c_{22}\in\mathfrak{o}_{F}^{\times},c_{12}\in\mathfrak{o}_{F},c_{21}\in\mathfrak{p}_{F}^{n_{\eta}}\right\},

and λη\lambda_{\eta} is a function on JηJ_{\eta} given by

λη((c11c12c21c22))=η(c11).\lambda_{\eta}\left(\begin{pmatrix}c_{11}&c_{12}\\ c_{21}&c_{22}\end{pmatrix}\right)=\eta(c_{11}).

It follows from [Kut04] that the pair (Jη,λη)(J_{\eta},\lambda_{\eta}) is a GG-cover for (T(𝔬F),η)(T(\mathfrak{o}_{F}),\eta). We recall certain crucial properties of a GG-cover (Jη,λη)(J_{\eta},\lambda_{\eta}):

  1. (a)(\mathrm{a})

    (Iwahori Factorization) Jη=(JηU¯)T(𝔬F)(JηU)J_{\eta}=(J_{\eta}\cap\overline{U})T(\mathfrak{o}_{F})(J_{\eta}\cap U).

  2. (b)(\mathrm{b})

    The representation λη\lambda_{\eta} is trivial on JηU¯J_{\eta}\cap\overline{U} and JηUJ_{\eta}\cap U, while ληT(𝔬F)=η\lambda_{\eta}\restriction_{T(\mathfrak{o}_{F})}=\eta. The pair (Jη,λη)(J_{\eta},\lambda_{\eta}) is a type for 𝔰η\mathfrak{s}_{\eta}.

  3. (c)(\mathrm{c})

    There is a support preserving injective algebra map tQ:(T,η)(G,λη)t_{Q}:\mathcal{H}(T,\eta)\rightarrow\mathcal{H}(G,\lambda_{\eta}) that realizes the parabolic induction functor ιQG\iota_{Q}^{G} at the level of Hecke algebras. It means that the following diagram commutes:

    𝔱η(T)\textstyle{\mathfrak{R}^{\mathfrak{t}_{\eta}}(T)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ιQG\scriptstyle{\iota_{Q}^{G}}\scriptstyle{\cong}(T,η)Mod\textstyle{{\mathcal{H}}(T,\eta){\rm-Mod}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(tQ)\scriptstyle{(t_{Q})_{\ast}}𝔰η(G)\textstyle{\mathfrak{R}^{\mathfrak{s}_{\eta}}(G)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\cong}(G,λη)Mod\textstyle{{\mathcal{H}}(G,\lambda_{\eta}){\rm-Mod}}

    where (tQ)(t_{Q})_{\ast} is a right adjoint of the restriction functor tQ:(G,λη)Mod(T,η)Modt_{Q}^{\ast}:{\mathcal{H}}(G,\lambda_{\eta}){\rm-Mod}\rightarrow{\mathcal{H}}(T,\eta){\rm-Mod}.

We oftentimes identify (T,η){\mathcal{H}}(T,\eta) as a sub-algebra of (G,λη)\mathcal{H}(G,\lambda_{\eta}) using the embedding tQt_{Q}. The cover (Jη,λη)(J_{\eta},\lambda_{\eta}) is said to be a split cover, when η21\eta^{2}\neq 1, and (Jη,λη)(J_{\eta},\lambda_{\eta}) is called a non-split cover, otherwise. Among non-split covers, local coefficients and Gelfand–Graev representations in the frame work of unramified characters η~\widetilde{\eta} is well understood since the seminal work of Casselman [Cas80]. For this reason, we fix a non-trivial ramified quadratic character η~\widetilde{\eta} of F×F^{\times} with η=η~𝔬F×\eta=\widetilde{\eta}\restriction_{\mathfrak{o}^{\times}_{F}} so that η~2=1\widetilde{\eta}^{2}=1, and only focus on these types of characters in the rest of this paper.

2.2. Intertwining Operators

We write (s,χ)\mathcal{F}(s,\chi) to denote the induced space B(χνs)\mathcal{F}_{B}(\chi\otimes\nu_{s}). We define λη\mathbb{C}_{\lambda_{\eta}} to be the space of complex numbers for which JηJ_{\eta} acts on λη\mathbb{C}_{\lambda_{\eta}} by jw=λη(j)wj\cdot w=\lambda_{\eta}(j)w. Throughout the rest of the paper, we put W=ληW=\mathbb{C}_{\lambda_{\eta}}. Let VληV^{\lambda_{\eta}} be the λη\lambda_{\eta}-isotypic subspace of VV. As λη\lambda_{\eta} is one-dimensional, it is straightforward from [BK98, (2.13)] that there is a natural isomorphism VληVληWVληV_{\lambda_{\eta}}\cong V_{\lambda_{\eta}}\otimes_{\mathbb{C}}W\cong V^{\lambda_{\eta}} given by ϕwϕ(w)\phi\otimes w\mapsto\phi(w). The functions fI2,η~f_{{\rm I}_{2},\widetilde{\eta}} and fw0,η~f_{{\rm w}_{0},\widetilde{\eta}} in (s,η~)λη\mathcal{F}(s,\widetilde{\eta})^{\lambda_{\eta}} are given by

fI2,η~(g)={η~νsδ1/2(b)λη(j)ifg=bjBJη0otherwise,f_{{\rm I}_{2},\widetilde{\eta}}(g)=\begin{cases}\widetilde{\eta}\nu_{s}\delta^{1/2}(b)\lambda_{\eta}(j)&\text{if}\quad g=bj\in BJ_{\eta}\\ 0&\text{otherwise,}\end{cases}

and

fw0,η~(g)={η~νsδ1/2(b)λη(j)ifg=bw0jBw0Jη0otherwise.f_{{\rm w}_{0},\widetilde{\eta}}(g)=\begin{cases}\widetilde{\eta}\nu_{s}\delta^{1/2}(b)\lambda_{\eta}(j)&\text{if}\quad g=b{\rm w}_{0}j\in B{\rm w}_{0}J_{\eta}\\ 0&\text{otherwise.}\end{cases}

For w𝐖{\rm w}\in{\rm\bf W}, let Tw(G,λη)T_{\rm w}\in\mathcal{H}(G,\lambda_{\eta}) denote the function supported on the double coset JηwJηJ_{\eta}{\rm w}J_{\eta} and given by the formula Tw(hwk)=λˇ(h)λˇ(k)T_{\rm w}(h{\rm w}k)=\check{\lambda}(h)\check{\lambda}(k), h,kJηh,k\in J_{\eta}. Let (K,λη)\mathcal{H}(K,\lambda_{\eta}) be the sub-algebra in (G,λη)\mathcal{H}(G,\lambda_{\eta}) spanned by the function TwT_{\rm w} for w𝐖{\rm w}\in{\rm\bf W}. Just as in [Kut04, §3.3], we let TwT^{\ast}_{\rm w} be the normalized Hecke operator so that

Tw=ϵ(w)/2vol(JηwJη)1/2Tw,w𝐖.T^{\ast}_{\rm w}=\epsilon^{\ell({\rm w})/2}{\rm vol}(J_{\eta}{\rm w}J_{\eta})^{-1/2}T_{\rm w},\quad{\rm w}\in{\rm\bf W}.

The sub-algebra (K,λη)\mathcal{H}(K,\lambda_{\eta}) inherits a left action on (K,λˇη)\mathcal{H}(K,\check{\lambda}_{\eta}) given by CD:=DCˇC\bullet D:=D\star\check{C} for C(K,λη)C\in\mathcal{H}(K,\lambda_{\eta}) and D(K,λˇη)D\in\mathcal{H}(K,\check{\lambda}_{\eta}). We summarize the properties of (K,λη)\mathcal{H}(K,\lambda_{\eta}) from [BK98, §11.5 and §11.6].

Lemma 2.1.

The set {TI2,Tw0}\{T_{{\rm I}_{2}},T_{{\rm w}_{0}}\} is a \mathbb{C}-basis of (K,λη)\mathcal{H}(K,\lambda_{\eta}). Specifically, dim((K,λη))=2\dim_{\mathbb{C}}(\mathcal{H}(K,\lambda_{\eta}))=2.

Since any element w{\rm w} in 𝐖{\rm\bf W} certainly intertwines the representation λη\lambda_{\eta}, [Kut04, Lemma 2.3] (cf. [BK98, (11.6)]) implies that K(λη)=JηJηw0Jη\mathcal{I}_{K}(\lambda_{\eta})=J_{\eta}\cup J_{\eta}{\rm w}_{0}J_{\eta}. In addition, we observe from [Kim16, Lemma 3.2.4] that

{gG|There is f(s,η~)λη with f(g)0}={gG|HomBJg(η~1U,η~g)0}\{g\in G\,|\,\text{There is $f\in\mathcal{F}(s,\widetilde{\eta})^{\lambda_{\eta}}$ with $f(g)\neq 0$}\}=\{g\in G\,|\,{\rm Hom}_{B\cap J^{g}}(\widetilde{\eta}\otimes{\textbf{1}}_{U},\widetilde{\eta}^{g})\neq 0\}

is a subset of BK(λη)B\mathcal{I}_{K}(\lambda_{\eta}), because G=BKG=BK. Hence, any f(s,η~)ληf\in\mathcal{F}(s,\widetilde{\eta})^{\lambda_{\eta}} is determined by its restriction to K(λη)\mathcal{I}_{K}(\lambda_{\eta}). In this regard, we define

(2.1) ι:HomJη(W,(s,η~))(K,λˇη)\iota:{\rm Hom}_{J_{\eta}}(W,\mathcal{F}(s,\widetilde{\eta}))\rightarrow\mathcal{H}(K,\check{\lambda}_{\eta})

by ι(ϕ)(k)(w)=ϕ(w)(k)\iota(\phi)(k)(w)=\phi(w)(k) for ϕHomJη(W,(s,η~)),kJηKJη\phi\in{\rm Hom}_{J_{\eta}}(W,\mathcal{F}(s,\widetilde{\eta})),k\in J_{\eta}KJ_{\eta}, and wWw\in W.

Lemma 2.2.

((Cf. [Kim16, Lemma 3.2.6])) The map ι\iota is well defined and is a homomorphism of left (K,λη)\mathcal{H}(K,\lambda_{\eta})-modules.

Proof.

Let j,jJηj,j^{\prime}\in J_{\eta} and w𝐖{\rm w}\in{\rm\bf W}. Thanks to (a)(\mathrm{a}), we decompose j=jUjTjU¯j=j_{U}j_{T}j_{\overline{U}} with jUJηUj_{U}\in J_{\eta}\cap U, jTJηTj_{T}\in J_{\eta}\cap T, and jU¯JηU¯j_{\overline{U}}\in J_{\eta}\cap\overline{U}. We see that elements w1jU¯wj{\rm w}^{-1}j_{\overline{U}}{\rm w}j^{\prime} intertwine the character λη\lambda_{\eta}. With these in hand, we have

ι(ϕ)(jwj)(w)=λη(jT)ϕ(w)(jU¯wj)=λη(jT)(ρ(w1jU¯wj)ϕ)(w)(w)=λη(jT)ϕ(λη(w1jU¯wj)w)(w).\iota(\phi)(j{\rm w}j^{\prime})(w)=\lambda_{\eta}(j_{T})\phi(w)(j_{\overline{U}}{\rm w}j^{\prime})=\lambda_{\eta}(j_{T})(\rho({\rm w}^{-1}j_{\overline{U}}{\rm w}j^{\prime})\phi)(w)({\rm w})\\ =\lambda_{\eta}(j_{T})\phi(\lambda_{\eta}({\rm w}^{-1}j_{\overline{U}}{\rm w}j^{\prime})w)({\rm w}).

Appealing to (b)(\mathrm{b}), λη(w1jU¯w)\lambda_{\eta}({\rm w}^{-1}j_{\overline{U}}{\rm w}) is trivial, and it becomes

ι(ϕ)(w)(jwj)=λη(jT)ϕ(λη(j)w)(w)=λη(jT)ι(ϕ)(w)λη(j)(w)=λη(j)ι(ϕ)(w)λη(j)(w)\iota(\phi)(w)(j{\rm w}j^{\prime})=\lambda_{\eta}(j_{T})\phi(\lambda_{\eta}(j^{\prime})w)({\rm w})=\lambda_{\eta}(j_{T})\iota(\phi)({\rm w})\lambda_{\eta}(j^{\prime})(w)=\lambda_{\eta}(j)\iota(\phi)({\rm w})\lambda_{\eta}(j^{\prime})(w)

having used the fact that λη(jT)=λη(j)\lambda_{\eta}(j_{T})=\lambda_{\eta}(j). We confirm that ι\iota is well defined, that is to say, ι(ϕ)\iota(\phi) belongs to (K,λˇη)\mathcal{H}(K,\check{\lambda}_{\eta}).

It remains to show that ι\iota is a homomorphism of left (K,λη)\mathcal{H}(K,\lambda_{\eta})-modules. Upon making the change of variables gk1gg\mapsto k^{-1}g, for f(K,λη)f\in\mathcal{H}(K,\lambda_{\eta}), ι(π(f)ϕ)(k)(w)\iota(\pi(f)\phi)(k)(w) equals to

(π(f)ϕ)(w)(k)=Gρ(g)ϕ(f(g)w)(k)𝑑g=Gϕ(f(g)w)(kg)𝑑g=Gϕ(fˇ(g1)w)(kg)𝑑g=Gι(ϕ)(kg)(fˇ(g1)w)𝑑g=Gι(ϕ)(g)(fˇ(g1k)w)𝑑g=(ι(ϕ)fˇ)(k)(w)=(fι(ϕ))(k)(w)(\pi(f)\phi)(w)(k)=\int_{G}\rho(g)\phi(f(g)^{\vee}w)(k)\,dg=\int_{G}\phi(f(g)^{\vee}w)(kg)\,dg=\int_{G}\phi(\check{f}(g^{-1})w)(kg)\,dg\\ =\int_{G}\iota(\phi)(kg)(\check{f}(g^{-1})w)\,dg=\int_{G}\iota(\phi)(g)(\check{f}(g^{-1}k)w)\,dg=(\iota(\phi)\star\check{f})(k)(w)=(f\bullet\iota(\phi))(k)(w)

from which the desired conclusion follows. It is noteworthy that the support of all these integrals above is actually in KK. ∎

The following proposition can be thought of as the SL2(F){\rm SL}_{2}(F)-analogue of [JK21, Proposition 5.9] and [Kim16, Lemma 3.2.9].

Proposition 2.3.

As left (K,λη)\mathcal{H}(K,\lambda_{\eta})-modules, (K,λη)\mathcal{H}(K,\lambda_{\eta}) is isomorphic to (s,η~)λη\mathcal{F}(s,\widetilde{\eta})_{\lambda_{\eta}}. Consequently, the λη\lambda_{\eta}-isotypic subspace (s,η~)λη\mathcal{F}(s,\widetilde{\eta})^{\lambda_{\eta}} is two dimensional with a \mathbb{C}-basis {fI2,η~,fw0,η~}\{f_{{\rm I}_{2},\widetilde{\eta}},f_{{\rm w}_{0},\widetilde{\eta}}\}.

Proof.

To verify that (2.1) is an isomorphism, it is sufficient to check that it takes a basis of (K,λη)\mathcal{H}(K,\lambda_{\eta}) to a basis of (s,η~)λη\mathcal{F}(s,\widetilde{\eta})_{\lambda_{\eta}}. The algebra (K,λˇη)\mathcal{H}(K,\check{\lambda}_{\eta}) is isomorphic to the left regular representation of (K,λη)\mathcal{H}(K,\lambda_{\eta}) via an isomorphism ι:(K,λˇη)(K,λη)\iota^{\prime}:\mathcal{H}(K,\check{\lambda}_{\eta})\rightarrow\mathcal{H}(K,\lambda_{\eta}) given by ι(D)=Dˇ\iota^{\prime}(D)=\check{D} for D(K,λˇη)D\in\mathcal{H}(K,\check{\lambda}_{\eta}). This is then immediate from Lemma 2.1, since ι(fw,η~)=Tˇw\iota(f_{{\rm w},\widetilde{\eta}})=\check{T}_{\rm w} for w𝐖\rm w\in{\rm\bf W}. ∎

Since U,U¯FU,\overline{U}\cong F, we may identify the measure on UU and U¯\overline{U} with the additive measure dxdx on FF, and we take d×xd^{\times}x to be dx/|x|dx/|x| on F×F^{\times}. The Haar measure dxdx is normalized so that JηU𝔬FJ_{\eta}\cap U\cong\mathfrak{o}_{F} has volume one. We define a standard GG-intertwining operator A(s,χ):(s,χ)(s,χ1)A(s,\chi):\mathcal{F}(s,\chi)\rightarrow\mathcal{F}(-s,\chi^{-1}) by

(2.2) A(s,χ,w0)(f)(g)=Uf(w0ug)𝑑u,A(s,\chi,{\rm w}_{0})(f)(g)=\int_{U}f({\rm w}_{0}ug)\,du,

for all f(s,χ)f\in\mathcal{F}(s,\chi). The integral converges absolutely for Re(s)0{\rm Re}(s)\gg 0 and defines a rational function on a non-empty Zariski open subset of the complex torus X(T)X(T). The character χ\chi is said to be regular if χχ1\chi\neq\chi^{-1}. If ιBG(χνs)\iota_{B}^{G}(\chi\otimes\nu_{s}) is irreducible almost everywhere in ss, every GG-morphism from (s,χ)\mathcal{F}(s,\chi) to (s,χ1)\mathcal{F}(-s,\chi^{-1}) is a scalar multiple of A(s,χ,w0)A(s,\chi,{\rm w}_{0}). We set ϵ=η~(1)\epsilon=\widetilde{\eta}(-1). Our calculation is inspired from the idea in [JK21].

Proposition 2.4.

Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times} and assume that νs\nu_{s} is regular. Then we have

A(s,η~,w0)(fI2,η~)=ϵvol(U¯Jη)fw0,η~1=ϵqnηfw0,η~1A(s,\widetilde{\eta},{\rm w}_{0})(f_{{\rm I}_{2},\widetilde{\eta}})=\epsilon\cdot{\rm vol}(\overline{U}\cap J_{\eta})f_{{\rm w}_{0},\widetilde{\eta}^{-1}}=\epsilon q^{-n_{\eta}}f_{{\rm w}_{0},\widetilde{\eta}^{-1}}

and

A(s,η~,w01)(fw0,η~)=ϵvol(UJη)fI2,η~1=ϵfI2,η~1.A(s,\widetilde{\eta},{\rm w}^{-1}_{0})(f_{{\rm w}_{0},\widetilde{\eta}})=\epsilon\cdot{\rm vol}(U\cap J_{\eta})f_{{\rm I}_{2},\widetilde{\eta}^{-1}}=\epsilon f_{{\rm I}_{2},\widetilde{\eta}^{-1}}.
Proof.

Since 𝔰η(G)\mathfrak{R}^{\mathfrak{s}_{\eta}}(G) is equivalent to (G,λη)\mathcal{H}(G,\lambda_{\eta})-Mod, we have

HomG((s,η~),(s,η~1))Hom(G,λη)((s,η~)λη,(s,η~1)λη).{\rm Hom}_{G}(\mathcal{F}(s,\widetilde{\eta}),\mathcal{F}(-s,\widetilde{\eta}^{-1}))\cong{\rm Hom}_{\mathcal{H}(G,\lambda_{\eta})}(\mathcal{F}(s,\widetilde{\eta})_{\lambda_{\eta}},\mathcal{F}(-s,\widetilde{\eta}^{-1})_{\lambda_{\eta}}).

Therefore, A(s,η~,w0)A(s,\widetilde{\eta},{\rm w}_{0}) induces an intertwining map (s,η~)λη(s,η~1)λη\mathcal{F}(s,\widetilde{\eta})_{\lambda_{\eta}}\rightarrow\mathcal{F}(-s,\widetilde{\eta}^{-1})_{\lambda_{\eta}}, which we by abuse of notation we will again denote by A(s,η~,w0)A(s,\widetilde{\eta},{\rm w}_{0}). We prove equalities when the integral in (2.2) converges absolutely, that is to say, the real part of ss is sufficiently large, and then extend meromorphically to the entire complex plane.

Now it follows from Proposition 2.3 that A(s,η~,w0)(fI2,η~)=aI2fI2,η~1+aw0fw0,η~1A(s,\widetilde{\eta},{\rm w}_{0})(f_{{\rm I}_{2},\widetilde{\eta}})=a_{{\rm I}_{2}}f_{{\rm I}_{2},\widetilde{\eta}^{-1}}+a_{{\rm w_{0}}}f_{{\rm w_{0}},\widetilde{\eta}^{-1}}. We may evaluate both sides of this equation at w0{\rm w}_{0} to establish

aw0=UfI2,η~(w0uw0)𝑑u=η~(1)U¯fI2,η~(u¯)𝑑u¯=ϵvol(U¯Jη).a_{{\rm w}_{0}}=\int_{U}f_{{\rm I}_{2},\widetilde{\eta}}({\rm w}_{0}u{\rm w}_{0})\,du=\widetilde{\eta}(-1)\int_{\overline{U}}f_{{\rm I}_{2},\widetilde{\eta}}(\overline{u})\,d\overline{u}=\epsilon\cdot{\rm vol}(\overline{U}\cap J_{\eta}).

For x0x\neq 0, we have the Iwasawa decomposition:

(2.3) w0u(x)=(x100x)(1x01)(10x11).{\rm w}_{0}u(x)=\begin{pmatrix}x^{-1}&0\\ 0&x\end{pmatrix}\begin{pmatrix}1&-x\\ 0&1\end{pmatrix}\begin{pmatrix}1&0\\ x^{-1}&1\end{pmatrix}.

In particular, for x1𝔭Fnηx^{-1}\in\mathfrak{p}_{F}^{n_{\eta}}, we have fI2,η~(w0u(x))=η~νsδ1/2(x1)f_{{\rm I}_{2},\widetilde{\eta}}({\rm w}_{0}u(x))=\widetilde{\eta}\nu_{s}\delta^{1/2}(x^{-1}). We may rewrite xF×x\in F^{\times} as x=ϖFkyx=\varpi_{F}^{k}y with kk\in\mathbb{Z} and y𝔬F×y\in\mathfrak{o}_{F}^{\times}, and then use the relation of additive Haar measure d(cx)=|c|dxd(cx)=|c|dx for cF×c\in F^{\times} to determine aI2a_{{\rm I}_{2}}:

(2.4) aI2=UfI2,η~(w0u)𝑑u={x|x0,x1𝔭Fnη}η~(x1)|x|s1𝑑x=|x|qnηη~(x1)|x|s1𝑑x=n=nηη(ϖFn)|ϖFn|s𝔬F×η~(x)d×x.a_{{\rm I}_{2}}=\int_{U}f_{{\rm I}_{2},\widetilde{\eta}}({\rm w}_{0}u)\,du=\int_{\{x\,|\,x\neq 0,\;x^{-1}\in\mathfrak{p}_{F}^{n_{\eta}}\}}\widetilde{\eta}(x^{-1})|x|^{-s-1}\,dx\\ =\int_{|x|\geq q^{n_{\eta}}}\widetilde{\eta}(x^{-1})|x|^{-s-1}\,dx=\sum_{n=-\infty}^{-n_{\eta}}\eta(\varpi_{F}^{-n})|\varpi_{F}^{-n}|^{-s}\int_{\mathfrak{o}_{F}^{\times}}\widetilde{\eta}(x)\,d^{\times}x.

But η~\widetilde{\eta} being ramified implies that the series of equality of above integrals is zero. In other words, aI2=0a_{{\rm I}_{2}}=0.

Let us turn our attention to A(s,η~,w01)(fw0,η~)A(s,\widetilde{\eta},{\rm w}^{-1}_{0})(f_{{\rm w}_{0},\widetilde{\eta}}). Owing to Proposition 2.3, we know that

A(s,η~,w01)(fw0,η~)=bI2fI2,η~1+bw0fw0,η~1.A(s,\widetilde{\eta},{\rm w}^{-1}_{0})(f_{{\rm w}_{0},\widetilde{\eta}})=b_{{\rm I}_{2}}f_{{\rm I}_{2},\widetilde{\eta}^{-1}}+b_{{\rm w_{0}}}f_{{\rm w_{0}},\widetilde{\eta}^{-1}}.

Our aim is to determine unknown coefficients bI2b_{{\rm I}_{2}} and bw0b_{{\rm w}_{0}} precisely. To this end, we evaluate both sides of the above equation at I2{\rm I}_{2}. The test function fw0,η~f_{{\rm w}_{0},\widetilde{\eta}} is supported on Bw0JηB{\rm w}_{0}J_{\eta} so that

bI2=Ufw0,η~(w01u)𝑑u=η~(1)Ufw0,η~(w0u)=ϵvol(UJη),b_{{\rm I}_{2}}=\int_{U}f_{{\rm w}_{0},\widetilde{\eta}}({\rm w}^{-1}_{0}u)\,du=\widetilde{\eta}(-1)\int_{U}f_{{\rm w}_{0},\widetilde{\eta}}({\rm w}_{0}u)=\epsilon\cdot{\rm vol}(U\cap J_{\eta}),

thereby providing bI2=η~(1)b_{{\rm I}_{2}}=\widetilde{\eta}(-1). Just as in (2.4), we use the Iwasawa decomposition (2.3) (cf. (3.5)) to arrive at

bw0=UfI2,η~(w01uw0)𝑑u={x|x0,x1𝔬F}η~(x1)|x|s1𝑑x=n0η(ϖFn)|ϖFn|s𝔬F×η~(x)d×x.b_{{\rm w}_{0}}=\int_{U}f_{{\rm I}_{2},\widetilde{\eta}}({\rm w}_{0}^{-1}u{\rm w}_{0})\,du=\int_{\{x\,|\,x\neq 0,\;x^{-1}\in\mathfrak{o}_{F}\}}\widetilde{\eta}(x^{-1})|x|^{-s-1}\,dx\\ =\sum_{n\leq 0}\eta(\varpi_{F}^{-n})|\varpi_{F}^{-n}|^{-s}\int_{\mathfrak{o}_{F}^{\times}}\widetilde{\eta}(x)\,d^{\times}x.

Once again, η~\widetilde{\eta} being ramified forces that the innermost integral over 𝔬F×\mathfrak{o}_{F}^{\times} is equal to zero, which yields bw0=0b_{{\rm w}_{0}}=0, as requested. ∎

The Plancherel constant is a scalar valued function μ(s,η~)\mu(s,\widetilde{\eta})\in\mathbb{C} attached to η~\widetilde{\eta} is by the defining relation [Sha84, §6]

A(s,η~1,w01)A(s,η~,w0)=μ(s,η~)1id(s,η~)A(-s,\widetilde{\eta}^{-1},{\rm w}^{-1}_{0})\circ A(s,\widetilde{\eta},{\rm w}_{0})=\mu(s,\widetilde{\eta})^{-1}\cdot id_{\mathcal{F}(s,\widetilde{\eta})}

on a Zariski open dense subset of \mathbb{C}. It is a rational function in qsq^{-s} and clearly depends on the measure defining intertwining operators.

Theorem 2.5 (The Plancherel Constant I).

Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times} of level nηn_{\eta} with η=η~𝔬F×\eta=\widetilde{\eta}\restriction_{\mathfrak{o}^{\times}_{F}}. Then we have

μ(s,η~)=vol(U¯Jη)1vol(UJη)1=qnη.\mu(s,\widetilde{\eta})={\rm vol}(\overline{U}\cap J_{\eta})^{-1}{\rm vol}(U\cap J_{\eta})^{-1}=q^{n_{\eta}}.
Proof.

We apply Proposition 2.4 twice. ∎

The Plancherel constant in Theorem 2.5 coincides with that in split cases [KK, §3.3] on the common Zariski open dense subset of \mathbb{C} (Refer to [KM09, Theorem 4.5] for the precise description), and this recovers the work by Kutzko and Morris [KM09, Theorem 4.5.(2)-(ii)].

3. Local Coefficients and Gelfand-Graev Representations

3.1. The Local Coefficient

Let ψ\psi be a non-trivial additive character of FF trivial on 𝔬F\mathfrak{o}_{F} but not on 𝔭F1\mathfrak{p}_{F}^{-1}, and χ\chi a character of F×F^{\times}. It is a theorem of Rodier [Rod72] that the dimension of the space of ψ\psi-Whittaker functionals on (s,χ)\mathcal{F}(s,\chi) is one. We may define a basis vector Ωs\Omega_{s} for the ψ\psi-Whittaker functionals on (s,χ)\mathcal{F}(s,\chi) by the formula

Ωs(f)=Uf(w0u)ψ1(u)𝑑u.\Omega_{s}(f)=\int_{U}f({\rm w}_{0}u)\psi^{-1}(u)\,du.

This integral may not converge for all ff but can be extended to the whole space as a principal value integral. We also have the following convenient reinterpretation for Ωs\Omega_{s} as a principal value integral; Given a compact open subgroup KK_{\ast} of GG, there exists a suitably large compact open subgroup UUU_{\ast}\subset U such that

Ωs(f)=Uf(w0u)ψ1(u)𝑑u\Omega_{s}(f)=\int_{U_{\ast}}f({\rm w}_{0}u)\psi^{-1}(u)\,du

for all ss and for all f(s,χ)Kf\in\mathcal{F}(s,\chi)^{K_{\ast}}. We similarly define Ωs\Omega^{\prime}_{s} on (s,χ1)\mathcal{F}(-s,\chi^{-1}) via

Ωs(f)=Uf(w0u)ψ1(u)𝑑u\Omega^{\prime}_{s}(f)=\int_{U}f({\rm w}_{0}u)\psi^{-1}(u)\,du

as a principal value integral in the above sense. Appealing to the aforementioned result of Rodier [Rod72], there exists a non-zero constant Cψ(s,χ)C_{\psi}(s,\chi) called the Langlnads-Shahidi local coefficient satisfying

(3.1) Cψ(s,χ)(ΩsA(s,χ,w0))=Ωs.C_{\psi}(s,\chi)(\Omega^{\prime}_{s}\circ A(s,\chi,{\rm w}_{0}))=\Omega_{s}.

For cFc\in F, the Gauss sum attached to χ\chi is defined by

τ(χ,ψ,c)=𝔬F×χ(x1)ψ(cx)¯𝑑x.\tau(\chi,\psi,c)=\int_{\mathfrak{o}_{F}^{\times}}\chi(x^{-1})\overline{\psi(cx)}\,dx.
Theorem 3.1 (The Local Coefficient).

Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times} of level nηn_{\eta} with η=η~𝔬F×\eta=\widetilde{\eta}\restriction_{\mathfrak{o}^{\times}_{F}}. Then we have

Cψ(s,η~)=η~(ϖFnη)τ(η,ψ,ϖFnη)qnη(s1).C_{\psi}(s,\widetilde{\eta})=\widetilde{\eta}(-\varpi_{F}^{n_{\eta}})\tau(\eta,\psi,\varpi_{F}^{-n_{\eta}})q^{-n_{\eta}(s-1)}.
Proof.

Since Cψ(s,η~)C_{\psi}(s,\widetilde{\eta}) is a rational function in (qs)\mathbb{C}(q^{-s}), it suffices to prove the assertion on a Zariski open dense subset of X(T)X(T). In particular, we impose the assumption that (s,η~)\mathcal{F}(s,\widetilde{\eta}) and (s,η~1)\mathcal{F}(-s,\widetilde{\eta}^{-1}) are all irreducible. Our argument is rather close in spirit to the work by Krishnamurthy and Kutzko [KK, Proposition 3.1]. Evaluating one side of (3.1) at fI2,η~f_{{\rm I}_{2},\widetilde{\eta}} is straightforward, since the function fw0,η~f_{{\rm w}_{0},\widetilde{\eta}} is supported on Bw0JηB{\rm w}_{0}J_{\eta}. Indeed we see that

w0UBw0Jη=w0Uw0B¯Jη=w0(UB¯Jη)=w0(UJη){\rm w}_{0}U\cup B{\rm w}_{0}J_{\eta}={\rm w}_{0}U\cup{\rm w}_{0}\overline{B}J_{\eta}={\rm w}_{0}(U\cap\overline{B}J_{\eta})={\rm w}_{0}(U\cap J_{\eta})

from which it follows that

(ΩsA(s,η~,w0))(fI2,η~)=η~(1)vol(U¯Jη)Ωs(fw0,η~1)=η~(1)vol(U¯Jη)JηUfw0,η~1(w0u)ψ1(u)𝑑u=η~(1)vol(U¯Jη)JηUψ1(u)𝑑u.(\Omega^{\prime}_{s}\circ A(s,\widetilde{\eta},{\rm w}_{0}))(f_{{\rm I}_{2},\widetilde{\eta}})=\widetilde{\eta}(-1){\rm vol}(\overline{U}\cap J_{\eta})\Omega^{\prime}_{s}(f_{{\rm w}_{0},\widetilde{\eta}^{-1}})\\ =\widetilde{\eta}(-1){\rm vol}(\overline{U}\cap J_{\eta})\int_{J_{\eta}\cap U}f_{{\rm w}_{0},\widetilde{\eta}^{-1}}({\rm w}_{0}u)\psi^{-1}(u)\,du=\widetilde{\eta}(-1){\rm vol}(\overline{U}\cap J_{\eta})\int_{J_{\eta}\cap U}\psi^{-1}(u)\,du.

We know that ψ\psi is trivial on JηUJ_{\eta}\cap U, and consequently,

(3.2) (ΩsA(s,η~,w0))(fI2,η~)=η~(1)vol(U¯Jη)vol(UJη)=η~(1)qnη.(\Omega^{\prime}_{s}\circ A(s,\widetilde{\eta},{\rm w}_{0}))(f_{{\rm I}_{2},\widetilde{\eta}})=\widetilde{\eta}(-1){\rm vol}(\overline{U}\cap J_{\eta}){\rm vol}(U\cap J_{\eta})=\widetilde{\eta}(-1)q^{-n_{\eta}}.

This brings us to the central issue of computing the other side Ωs(fI2,η~)\Omega_{s}(f_{{\rm I}_{2},\widetilde{\eta}}). In contrast to fw0,η~f_{{\rm w}_{0},\widetilde{\eta}}, this is not immediate, because fI2,η~f_{{\rm I}_{2},\widetilde{\eta}} is supported near the identity element. To this end, we deduce from (2.3) that fI2,η~(w0u(x))f_{{\rm I}_{2},\widetilde{\eta}}({\rm w}_{0}u(x)) is η~νsδ1/2(x1)\widetilde{\eta}\nu_{s}\delta^{1/2}(x^{-1}), if x1𝔭Fnηx^{-1}\in\mathfrak{p}_{F}^{n_{\eta}}, and 0, otherwise. Then Ωs(fI2,η~)\Omega_{s}(f_{{\rm I}_{2},\widetilde{\eta}}) equals to

{𝔭Fm{0}}{x|x1𝔭Fnη}η~(x1)|x|s1ψ1(x)𝑑x\int_{\{\mathfrak{p}_{F}^{-m}-\{0\}\}\cap\{x\,|\,x^{-1}\in\mathfrak{p}_{F}^{n_{\eta}}\}}\widetilde{\eta}(x^{-1})|x|^{-s-1}\psi^{-1}(x)\,dx

for some large positive integer m0m\gg 0. For convenience, let 𝒟\mathcal{D} denote

{𝔭Fm{0}}{x|x1𝔭Fnη}.\{\mathfrak{p}_{F}^{-m}-\{0\}\}\cap\{x\,|\,x^{-1}\in\mathfrak{p}_{F}^{n_{\eta}}\}.

For any integer rr, let 𝒟r\mathcal{D}_{r} denote the shell, {xϖFr𝔬F×|x1𝔭Fnη}\{x\in\varpi_{F}^{r}\mathfrak{o}_{F}^{\times}\,|\,x^{-1}\in\mathfrak{p}_{F}^{n_{\eta}}\}. Then our domain of the integration can be decomposed as shells 𝒟=mrnη𝒟r\mathcal{D}=\cup_{-m\leq r\leq-n_{\eta}}\mathcal{D}_{r}. The crux of the proof of [KK, Proposition 3.1] is that only the last shell 𝒟nη=ϖFnη𝔬F×\mathcal{D}_{-n_{\eta}}=\varpi_{F}^{-n_{\eta}}\mathfrak{o}_{F}^{\times} contributes to Ωs(fI2,η~)\Omega_{s}(f_{{\rm I}_{2},\widetilde{\eta}}). Assembling all of this information, we achieve

(3.3) Ωs(fI2,η~)=ϖFnη𝔬F×η~(x1)|x|sψ1(x)d×x=η~(ϖFnη)qnηs𝔬F×η(x1)ψ1(ϖFnηx)d×x=η~(ϖFnη)qnηsτ(η,ψ,ϖFnη).\Omega_{s}(f_{{\rm I}_{2},\widetilde{\eta}})=\int_{\varpi_{F}^{-n_{\eta}}\mathfrak{o}_{F}^{\times}}\widetilde{\eta}(x^{-1})|x|^{-s}\psi^{-1}(x)\,d^{\times}x=\widetilde{\eta}(\varpi_{F}^{-n_{\eta}})q^{-n_{\eta}s}\int_{\mathfrak{o}_{F}^{\times}}\eta(x^{-1})\psi^{-1}(\varpi_{F}^{-n_{\eta}}x)d^{\times}x\\ =\widetilde{\eta}(\varpi_{F}^{-n_{\eta}})q^{-n_{\eta}s}\tau(\eta,\psi,\varpi_{F}^{-n_{\eta}}).

We can draw the conclusion from (3.2) combined with (3.3). ∎

This result should be compared with the work of Shahidi [Sha78, Lemma 4.4]. In addition, the local coefficient coincides with the corresponding Hecke–Tate local γ\gamma-factor [Tat77], which can be viewed as Bump and Friedberg exterior square local factors for GL1(F)F×{\rm GL}_{1}(F)\cong F^{\times} (cf. [Mat15, Proof of Theorem 5.4]). Indeed, Theorem 3.1 confirms Conjecture 4 in [BF89].

Let P(X)[X]P(X)\in\mathbb{C}[X] be the unique polynomial satisfying P(0)=1P(0)=1 such that P(qs)P(q^{-s}) is the numerator of Cψ(s,χ)C_{\psi}(s,\chi). Whenever χ\chi is unitary, the local LL-factor is defined by

L(s,χ):=1P(qs).L(s,\chi):=\frac{1}{P(q^{-s})}.

The local ε\varepsilon-factor is defined to satisfy the relation:

Cψ(s,χ)=ε(s,χ,ψ)L(1s,χ1)L(s,χ).C_{\psi}(s,\chi)=\varepsilon(s,\chi,\psi)\frac{L(1-s,\chi^{-1})}{L(s,\chi)}.
Corollary 3.2 (Local Factors).

Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times}. Then we have

ε(s,η~,ψ)=Cψ(s,η~)andL(s,η~)=1.\varepsilon(s,\widetilde{\eta},\psi)=C_{\psi}(s,\widetilde{\eta})\quad\text{and}\quad L(s,\widetilde{\eta})=1.

Corollaries 3.3 and 3.4 match with the corresponding formulæ [Sha81, Proposition 3.1.1] and [Sha84, §Introduction].

Corollary 3.3 (The Functional Equation).

Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times}. Then we have

Cψ(s,η~)Cψ(1s,η~1)=ϵ.C_{\psi}(s,\widetilde{\eta})C_{\psi}(1-s,\widetilde{\eta}^{-1})=\epsilon.
Proof.

The functional equation for the local constant ε(s,η~,ψ)\varepsilon(s,\widetilde{\eta},\psi) (cf. [BH06, Corollary 23.4.2]) produces

Cψ(s,η~)Cψ(1s,η~1)=ε(1/2,η~,ψ)ε(1/2,η~1,ψ)=η~(1).C_{\psi}(s,\widetilde{\eta})C_{\psi}(1-s,\widetilde{\eta}^{-1})=\varepsilon(1/2,\widetilde{\eta},\psi)\varepsilon(1/2,\widetilde{\eta}^{-1},\psi)=\widetilde{\eta}(-1).\qed

The local coefficient is related to the Plancherel constant which is more or less saying that “the square root of the local coefficient equals the associated Plancherel constant” as given in Corollary 3.4.

Corollary 3.4 (The Plancherel Constant II).

Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times}. Then we have

μ(s,η~)=Cψ(s,η~)Cψ1(s,η~1)=|Cψ(s,η~)|2.\mu(s,\widetilde{\eta})=C_{\psi}(s,\widetilde{\eta})C_{\psi^{-1}}(-s,\widetilde{\eta}^{-1})=|C_{\psi}(s,\widetilde{\eta})|^{2}.
Proof.

We observe from [BH06, (23.6.3)] that

τ(η,ψ,ϖFnη)τ(η1,ψ1,ϖFnη)=|τ(η,ψ,ϖFnη)|2=qnη.\tau(\eta,\psi,\varpi_{F}^{-n_{\eta}})\tau(\eta^{-1},\psi^{-1},\varpi_{F}^{-n_{\eta}})=|\tau(\eta,\psi,\varpi_{F}^{-n_{\eta}})|^{2}=q^{-n_{\eta}}.\qed

3.2. The Gelfand-Graev Representation

We take this occasion to explore the structure of the Gelfand-Graev space, which extends the results of [CS18] and [MP21]. The Gelfand-Graev representation c-indUGψ{\text{\rm c-ind}}_{U}^{G}{\psi} [CS18, §4.1] is provided by the space of smooth functions f:Gf:G\rightarrow\mathbb{C} which are compactly supported modulo UU. They also satisfy

(3.4) f(ug)=ψ(u)f(g)for all uU and gG.f(ug)=\psi(u)f(g)\quad\text{for all $u\in U$ and $g\in G$.}

Let IndUGψ{\text{\rm Ind}}_{U}^{G}{\psi} denote the full space of smooth functions f:Gf:G\rightarrow\mathbb{C} which satisfy (3.4). As a potential application (cf. [JK21, §5.3.2 (5.25)]), the contragredient (c-indUGψ¯)IndUGψ({\text{\rm c-ind}}_{U}^{G}\,{\overline{\psi}})^{\vee}\cong{\text{\rm Ind}}_{U}^{G}{\psi} of c-indUGψ¯{\text{\rm c-ind}}_{U}^{G}\,{\overline{\psi}} appears in the target space of the Whittaker map ωs:(s,η~)IndUGψ\omega_{s}:\mathcal{F}(s,\widetilde{\eta})\rightarrow{\text{\rm Ind}}_{U}^{G}{\psi} corresponding to Ωs\Omega_{s} via Frobenius reciprocity. For wWw\in W, we define the functions φI2,ηψ\varphi^{\psi}_{{\rm I}_{2},\eta} and φw0,ηψ:G\varphi^{\psi}_{{\rm w}_{0},\eta}:G\rightarrow\mathbb{C} in the λη\lambda_{\eta}-co-invariant Gelfand-Graev space (c-indUGψ)λη({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}} given by

φI2,ηψ(w)(g)={ψ(u)λη(j),ifg=ujUJη0,otherwise,\varphi^{\psi}_{{\rm I}_{2},\eta}(w)(g)=\begin{cases}\psi(u)\lambda_{\eta}(j),\ &\text{if}\quad g=uj\in UJ_{\eta}\\ 0,&\text{otherwise,}\end{cases}

and

φw0,ηψ(w)(g)={ψ(u)λη(j),ifg=uw0jUw0Jη0,otherwise.\varphi^{\psi}_{{\rm w}_{0},\eta}(w)(g)=\begin{cases}\psi(u)\lambda_{\eta}(j),&\text{if}\quad g=u{\rm w}_{0}j\in U{\rm w}_{0}J_{\eta}\\ 0,&\text{otherwise.}\end{cases}

Given a smooth (complex) representation (π,V)(\pi,V) of GG, let VU¯V_{\overline{U}} be the maximal quotient of VV on which U¯\overline{U} acts trivially. According to \citelist[Bor76]*Lemma 4.7 [CS18]*Proposition 4.2 (cf. [BK98, Lemma 10.3]) accompanied by [BH03, Lemma 2.3], the usual projection from c-indUGψ{\text{\rm c-ind}}_{U}^{G}{\psi} onto c-ind1TCc(T){\text{\rm c-ind}}_{1}^{T}{\mathbb{C}}\cong C_{c}^{\infty}(T) defined by

𝒫δ:ffU¯(t)=δ1/2(t)U¯f(tu¯)du¯,tT\mathcal{P}_{\delta}:f\mapsto f_{\overline{U}}(t)=\delta^{1/2}(t)\int_{\overline{U}}f(t\overline{u})\,d\overline{u},\quad t\in T

descends to an isomorphism 𝒮δ:(c-indUGψ)U¯Cc(T)\mathcal{S}_{\delta}:({\text{\rm c-ind}}_{U}^{G}{\psi})_{\overline{U}}\rightarrow C_{c}^{\infty}(T) as Cc(T)C_{c}^{\infty}(T)-modules. Let chT(𝔬F)η(Cc(T))η{\rm ch}^{\eta}_{T(\mathfrak{o}_{F})}\in(C_{c}^{\infty}(T))^{\eta} be a test function supported on T(𝔬F)T(\mathfrak{o}_{F}) such that chT(𝔬F)η(t)=vol(U¯Jη)η(t){\rm ch}^{\eta}_{T(\mathfrak{o}_{F})}(t)=\mathrm{vol}(\overline{U}\cap J_{\eta})\eta(t) for all tT(𝔬F)t\in T(\mathfrak{o}_{F}). Owing to [MP21, Theorem 1] (cf. [CS18, The discussion preceding Lemma 4.3]), 𝒫δ\mathcal{P}_{\delta} in turn endows the isomorphism as (T,η){\mathcal{H}}(T,\eta)-modules of (c-indUGψ)λη({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}} with (Cc(T))η(T,η)(C_{c}^{\infty}(T))^{\eta}\cong{\mathcal{H}}(T,\eta), where chT(𝔬F)η{\rm ch}^{\eta}_{T(\mathfrak{o}_{F})} is a generator.

Proposition 3.5.

Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times} with η=η~𝔬F×\eta=\widetilde{\eta}\restriction_{\mathfrak{o}^{\times}_{F}}. Then we have

  1. (1)(\mathrm{1})

    𝒮δ(φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)=chT(𝔬F)η\mathcal{S}_{\delta}(\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})={\rm ch}^{\eta}_{T(\mathfrak{o}_{F})}.

  2. (2)(\mathrm{2})

    Tw(φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)=(1)((w)(φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)T^{\ast}_{\rm w}\star(\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})=(-1)^{\ell(({\rm w})}(\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}) for w𝐖{\rm w}\in{\rm\bf W}.

Proof.

The first assertion (1)(\mathrm{1}) is immediate from Claim located in the halfway of the proof of [CS18, Lemma 4.1].

As for (2)(\mathrm{2}), we take wWw\in W and the function Tw(φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)(w)(g)T^{\ast}_{\rm w}\star(\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})(w)(g) is equal to

G(φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)(Tw(x)w)(gx)𝑑x=G(φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)(Tˇw(x1)w)(gx)𝑑x.\int_{G}(\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})(T^{\ast}_{\rm w}(x)^{\vee}w)(gx)\,dx\\ =\int_{G}(\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})(\check{T}^{\ast}_{\rm w}(x^{-1})w)(gx)\,dx.

The support of the function φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta} is contained in UJηUw0JηgxUJ_{\eta}\cup U{\rm w}_{0}J_{\eta}\ni gx. Upon using the support of Tˇw\check{T}^{\ast}_{\rm w}, we find that the convolution Tw(φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)T^{\ast}_{\rm w}\star(\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}) is supported on

UJηUw0JηU((JηwJηw0JηwJη)K(λη))(UJηUw0Jη)x1g.UJ_{\eta}\cup U{\rm w}_{0}J_{\eta}\supseteq U((J_{\eta}{\rm w}J_{\eta}\cup{\rm w}_{0}J_{\eta}{\rm w}J_{\eta})\cap\mathcal{I}_{K}(\lambda_{\eta}))\supseteq(UJ_{\eta}\cup U{\rm w}_{0}J_{\eta})x^{-1}\ni g.

This permits us to simplify the computation into specializing the values at I2{\rm I}_{2} and w0{\rm w}_{0}.

We consider the case that w=I2{\rm w}={\rm I}_{2}. We know that (c-indUGψ)λη({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}} is a (G,η){\mathcal{H}}(G,\eta)-algebra, while TI2T^{\ast}_{{\rm I}_{2}} is the identity in this Hecke algebra (G,η){\mathcal{H}}(G,\eta) so must surely act as the identity on itself (c-indUGψ)λη({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}}. Henceforth we conclude that

TI2(φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)=φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ.T^{\ast}_{{\rm I}_{2}}\star(\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})=\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}.

We bring our attention to the effect of intertwiners Tw0T^{\ast}_{{\rm w}_{0}} on the generator. We treat the term Tw0φI2,ηψT^{\ast}_{{\rm w}_{0}}\star\varphi^{\psi}_{{\rm I}_{2},\eta} first. The value (Tw0φI2,ηψ)(I2)(T^{\ast}_{{\rm w}_{0}}\star\varphi^{\psi}_{{\rm I}_{2},\eta})({\rm I}_{2}) is 0, as supports Jηw0JηJ_{\eta}{\rm w}_{0}J_{\eta} and UJηUJ_{\eta} of Tw0T^{\ast}_{{\rm w}_{0}} and φI2,ηψ\varphi^{\psi}_{{\rm I}_{2},\eta}, respectively, are disjoint. Now thanks to the Iwahori factorization of JηJ_{\eta}, we may identify

Jη/(Jηw0Jηw01)=(1𝔬F/𝔭Fnη1)J_{\eta}/(J_{\eta}\cap{\rm w}_{0}J_{\eta}{\rm w}^{-1}_{0})=\begin{pmatrix}1&\mathfrak{o}_{F}/\mathfrak{p}_{F}^{n_{\eta}}\\ &1\end{pmatrix}

from which we deduce that (π(Tw0)φI2,ηψ)(w)(w0)(\pi(T^{\ast}_{{\rm w}_{0}})\varphi^{\psi}_{{\rm I}_{2},\eta})(w)({\rm w}_{0}) is equal to

Jηw0JηφI2,ηψ(Tˇw0(x1)w)(w0x)𝑑x=jJη/(Jηw0Jηw01)JηφI2,ηψ(Tˇw0(j1w01j1)w)(w0jw0j)𝑑j=η~(1)jJη/(Jηw0Jηw01)φI2,ηψ(Tˇw0(w01j1)w)(w0jw01).\int_{J_{\eta}{\rm w}_{0}J_{\eta}}\varphi^{\psi}_{{\rm I}_{2},\eta}(\check{T}^{\ast}_{{\rm w}_{0}}(x^{-1})w)({\rm w}_{0}x)\,dx=\sum_{j\in J_{\eta}/(J_{\eta}\cap{\rm w}_{0}J_{\eta}{\rm w}_{0}^{-1})}\int_{J_{\eta}}\varphi^{\psi}_{{\rm I}_{2},\eta}(\check{T}^{\ast}_{{\rm w}_{0}}({j^{\prime}}^{-1}{\rm w}^{-1}_{0}j^{-1})w)({\rm w}_{0}j{\rm w}_{0}j^{\prime})dj^{\prime}\\ =\widetilde{\eta}(-1)\sum_{j\in J_{\eta}/(J_{\eta}\cap{\rm w}_{0}J_{\eta}{\rm w}^{-1}_{0})}\varphi^{\psi}_{{\rm I}_{2},\eta}(\check{T}^{\ast}_{{\rm w}_{0}}({\rm w}^{-1}_{0}j^{-1})w)({\rm w}_{0}j{\rm w}^{-1}_{0}).

In this circumstance, we have employed the relation w02=1{\rm w}_{0}^{2}=-1 and it is worthwhile to notice that the sign change occurs. Upon writing j=u(x)j=u(x), φI2,ηψ(Tˇw0(w01j1)w)(w0jw01)0\varphi^{\psi}_{{\rm I}_{2},\eta}(\check{T}^{\ast}_{{\rm w}_{0}}({\rm w}^{-1}_{0}j^{-1})w)({\rm w}_{0}j{\rm w}^{-1}_{0})\neq 0 if and only if x𝔭Fnηx\in\mathfrak{p}_{F}^{n_{\eta}}. As a result, we end up at

(π(Tw0)φI2,ηψ)(w)(w0)=ϵ3/2vol(Jηw0Jη)1/2φI2,ηψ(w)(I2)=ϵ3/2vol(Jηw0Jη)1/2.(\pi(T^{\ast}_{{\rm w}_{0}})\varphi^{\psi}_{{\rm I}_{2},\eta})(w)({\rm w}_{0})=\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm I}_{2},\eta}(w)({\rm I}_{2})=\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}.

Let us focus our attention to the term Tw0ϵ3/2vol(Jηw0Jη)1/2φw0,ηψT^{\ast}_{{\rm w}_{0}}\star\epsilon^{3/2}{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}. Then the support of φw0,ηψ\varphi^{\psi}_{{\rm w}_{0},\eta} tells us that

(π(Tw0)ϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)(w)(I2)=ϵ3/2vol(Jηw0Jη)1/2Jηw0Jηφw0,ηψ(Tˇw0(x1)w)(x)𝑑x=ϵ3/2vol(Jηw0Jη)1/2jJη/(Jηw0Jηw01)Jηφw0,ηψ(Tˇw0(j1w01j1)w)(jw0j)𝑑j.(\pi(T^{\ast}_{{\rm w}_{0}})\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})(w)({\rm I}_{2})=\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\int_{J_{\eta}{\rm w}_{0}J_{\eta}}\varphi^{\psi}_{{\rm w}_{0},\eta}(\check{T}^{\ast}_{{\rm w}_{0}}(x^{-1})w)(x)\,dx\\ =\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\sum_{j\in J_{\eta}/(J_{\eta}\cap{\rm w}_{0}J_{\eta}{\rm w}_{0}^{-1})}\int_{J_{\eta}}\varphi^{\psi}_{{\rm w}_{0},\eta}(\check{T}^{\ast}_{{\rm w}_{0}}({j^{\prime}}^{-1}{\rm w}^{-1}_{0}j^{-1})w)(j{\rm w}_{0}j^{\prime})\,dj^{\prime}.

In light of [Jη:Jηw0Jηw01]=[Jηw0Jη:Jη][J_{\eta}:J_{\eta}\cap{\rm w}_{0}J_{\eta}{\rm w}_{0}^{-1}]=[J_{\eta}{\rm w}_{0}J_{\eta}:J_{\eta}], we are led to

(π(Tw0)ϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)(w)(I2)=ϵ3/2vol(Jηw0Jη)1/2jJη/(Jηw0Jηw01)φw0,ηψ(Tˇw0(w01j1)w)(jw0)=vol(Jηw0Jη)1[Jη:Jηw0Jηw01]φw0,ηψ(w)(w0)=1.(\pi(T^{\ast}_{{\rm w}_{0}})\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})(w)({\rm I}_{2})\\ =\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\sum_{j\in J_{\eta}/(J_{\eta}\cap{\rm w}_{0}J_{\eta}{\rm w}_{0}^{-1})}\varphi^{\psi}_{{\rm w}_{0},\eta}(\check{T}^{\ast}_{{\rm w}_{0}}({\rm w}^{-1}_{0}j^{-1})w)(j{\rm w}_{0})\\ ={\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1}[J_{\eta}:J_{\eta}\cap{\rm w}_{0}J_{\eta}{\rm w}_{0}^{-1}]\varphi^{\psi}_{{\rm w}_{0},\eta}(w)({\rm w}_{0})=1.

Concerning the value (π(Tw0)ϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)(w)()(\pi(T^{\ast}_{{\rm w}_{0}})\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})(w)(\cdot) at w0{\rm w}_{0}, we use the fact that the integrand below is supported on Jηw0JηJ_{\eta}{\rm w}_{0}J_{\eta} and is right invariant under JηJ_{\eta} coupled with the fact that the map jjw0j\mapsto j{\rm w}_{0} induces a bijection Jη/(Jηw0Jηw01)Jηw0Jη/JηJ_{\eta}/(J_{\eta}\cap{\rm w}_{0}J_{\eta}{\rm w}_{0}^{-1})\rightarrow J_{\eta}{\rm w}_{0}J_{\eta}/J_{\eta} (cf. [Kut04, Lemma 3.2] to see that

(π(Tw0)ϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)(w)(w0)=ϵ3/2vol(Jηw0Jη)1/2Gφw0,ηψ(Tˇw0(x1)w)(w0x)𝑑x=ϵ3/2vol(Jηw0Jη)1/2[Jηw0Jη:Jη]Jηφw0,ηψ(Tˇw0(w01j1)w)(w0jw0)dj.(\pi(T^{\ast}_{{\rm w}_{0}})\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})(w)({\rm w}_{0})=\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\int_{G}\varphi^{\psi}_{{\rm w}_{0},\eta}(\check{T}^{\ast}_{{\rm w}_{0}}(x^{-1})w)({\rm w}_{0}x)\,dx\\ =\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}[J_{\eta}{\rm w}_{0}J_{\eta}:J_{\eta}]\int_{J_{\eta}}\varphi^{\psi}_{{\rm w}_{0},\eta}(\check{T}^{\ast}_{{\rm w}_{0}}({\rm w}_{0}^{-1}j^{-1})w)({\rm w}_{0}j{\rm w}_{0})\,dj.

The integrand of the last integral is right invariant under JηB¯J_{\eta}\cap\overline{B}. In this way, we find that

(π(Tw0)ϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)(w)(w0)=vol(Jη)vol(JηU)JηUφw0,ηψ(w)(w0uw0)𝑑u.(\pi(T^{\ast}_{{\rm w}_{0}})\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})(w)({\rm w}_{0})=\frac{{\rm vol}(J_{\eta})}{{\rm vol}(J_{\eta}\cap U)}\int_{J_{\eta}\cap U}\varphi^{\psi}_{{\rm w}_{0},\eta}(w)({\rm w}_{0}u{\rm w}_{0})\,du.

The integrand is 0, unless x𝔬F×x\notin\mathfrak{o}_{F}^{\times}. Then for x𝔬F×x\in\mathfrak{o}_{F}^{\times}, we apply the Bruhat decomposition (cf. [Kut04, P. 606]);

(3.5) (10x1)=(x100x)(1x01)w0(1x101),\begin{pmatrix}1&0\\ x&1\end{pmatrix}=-\begin{pmatrix}x^{-1}&0\\ 0&x\end{pmatrix}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}{\rm w}_{0}\begin{pmatrix}1&x^{-1}\\ 0&1\end{pmatrix},

whence φw0,ηψ(w0(1x01)w0)=η(x1)ψ(x)\varphi^{\psi}_{{\rm w}_{0},\eta}\left({\rm w}_{0}\begin{pmatrix}1&x\\ 0&1\end{pmatrix}{\rm w}_{0}\right)=\eta(x^{-1})\psi(-x). Therefore it can be expressed in terms of Gauss sums attached to the ramified character η~\widetilde{\eta} and then eventually this term vanishes

(π(Tw0)ϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)(w)(w0)=𝔬F×η(x1)ψ(x)φw0,ηψ(w)(w0)𝑑x=0,(\pi(T^{\ast}_{{\rm w}_{0}})\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})(w)({\rm w}_{0})=\int_{\mathfrak{o}_{F}^{\times}}\eta(x^{-1})\psi(x)\varphi^{\psi}_{{\rm w}_{0},\eta}(w)({\rm w}_{0})dx=0,

as was to be shown. In short, we accomplish that

Tw0φI2,ηψ=ϵ3/2vol(Jηw0Jη)1/2φw0,ηψandTw0ϵ3/2vol(Jηw0Jη)1/2φw0,ηψ=φI2,ηψ.T^{\ast}_{{\rm w}_{0}}\star\varphi^{\psi}_{{\rm I}_{2},\eta}=\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}\quad\text{and}\quad T^{\ast}_{{\rm w}_{0}}\star\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}=\varphi^{\psi}_{{\rm I}_{2},\eta}.

and the outcome we seek for follows from this. ∎

It is noteworthy that by applying Proposition 3.5-(2)(\mathrm{2}) repeatedly, we get

Tw02(φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ)=φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψT^{\ast 2}_{{\rm w}_{0}}\star(\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta})=\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}

which is consistent with the consequence from Tw02=TI2T^{\ast 2}_{{\rm w}_{0}}=T^{\ast}_{{\rm I}_{2}} [Kut04, Proposition 3.3]. We denote by 1\mathbb{C}_{-1} the one-dimensional (K,λη)\mathcal{H}(K,\lambda_{\eta})-module on which TwT^{\ast}_{\rm w} acts as (1)(w)(-1)^{\ell({\rm w})}, for w𝐖{\rm w}\in{\rm\bf W}. We are now in a position to state our main theorem.

Theorem 3.6.

Let η~\widetilde{\eta} be a non-trivial ramified quadratic character of F×F^{\times} with η=η~𝔬F×\eta=\widetilde{\eta}\restriction_{\mathfrak{o}^{\times}_{F}}. As (G,λη)\mathcal{H}(G,\lambda_{\eta})-modules, we have isomorphisms

(c-indUGψ)λη(G,λη)(K,λη)1.({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}}\cong\mathcal{H}(G,\lambda_{\eta})\otimes_{{\mathcal{H}(K,\lambda_{\eta})}}\mathbb{C}_{-1}.
Proof.

In virtue of Proposition 3.5-(2)(\mathrm{2}), we construct an element in Hom(K,λη)(1,(c-indUGψ)λη){\rm Hom}_{{\mathcal{H}(K,\lambda_{\eta})}}(\mathbb{C}_{-1},({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}}) given by 1φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ1\mapsto\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}. We attain the following Frobenius reciprocity

Hom(K,λη)(1,(c-indUGψ)λη)Hom(G,λη)((G,λη)(K,λη)1,(c-indUGψ)λη),{\rm Hom}_{{\mathcal{H}(K,\lambda_{\eta})}}(\mathbb{C}_{-1},({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}})\cong{\rm Hom}_{{\mathcal{H}(G,\lambda_{\eta})}}(\mathcal{H}(G,\lambda_{\eta})\otimes_{{\mathcal{H}(K,\lambda_{\eta})}}\mathbb{C}_{-1},({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}}),

where the element 1φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ1\mapsto\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta} corresponds to the element TI21φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψT^{\ast}_{{\rm I}_{2}}\otimes 1\mapsto\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}. In summary, we form a non-zero map

ϑ:(G,λη)(K,λη)1(c-indUGψ)λη\vartheta:\mathcal{H}(G,\lambda_{\eta})\otimes_{{\mathcal{H}(K,\lambda_{\eta})}}\mathbb{C}_{-1}\rightarrow({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}}

of (G,λη)\mathcal{H}(G,\lambda_{\eta})-modules, which assigns TI21T^{\ast}_{{\rm I}_{2}}\otimes 1 to φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}.

It suffices to show that ϑ\vartheta is an isomorphism of (T,η)\mathcal{H}(T,\eta)-modules. To verify it, Proposition 3.5-(1)(\mathrm{1}) ensures that we find an isomorphism (T,η)(c-indUGψ)λη{\mathcal{H}}(T,\eta)\rightarrow({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}} of (T,η){\mathcal{H}}(T,\eta)-modules provided by chT(𝔬F)η{\rm ch}^{\eta}_{T(\mathfrak{o}_{F})} mapping to φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta}. Upon invoking the isomorphism (T,η)(K,λη)(G,λη)\mathcal{H}(T,\eta)\otimes_{\mathbb{C}}\mathcal{H}(K,\lambda_{\eta})\cong\mathcal{H}(G,\lambda_{\eta}) attributed to [Kut04, Proposition 3.1], we end up with a series of isomorphisms as left (T,η)\mathcal{H}(T,\eta)-modules

(T,η)(T,η)1(T,η)(K,λη)(K,λη)1(G,λη)(K,λη)1,{\mathcal{H}(T,\eta)}\cong{\mathcal{H}(T,\eta)}\otimes_{\mathbb{C}}\mathbb{C}_{-1}\cong{\mathcal{H}(T,\eta)}\otimes_{\mathbb{C}}{\mathcal{H}(K,\lambda_{\eta})}\otimes_{{\mathcal{H}(K,\lambda_{\eta})}}\mathbb{C}_{-1}\cong\mathcal{H}(G,\lambda_{\eta})\otimes_{{\mathcal{H}(K,\lambda_{\eta})}}\mathbb{C}_{-1},

which sends chT(𝔬F)η{\rm ch}^{\eta}_{T(\mathfrak{o}_{F})} to TI21T^{\ast}_{{\rm I}_{2}}\otimes 1. Gathering all information, the conclusion thereby follows, because ϑ\vartheta is indeed (T,η)\mathcal{H}(T,\eta)-modules. In other words, (G,λη)(K,λη)1\mathcal{H}(G,\lambda_{\eta})\otimes_{{\mathcal{H}(K,\lambda_{\eta})}}\mathbb{C}_{-1} and (c-indUGψ)λη({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}} are free (T,η)\mathcal{H}(T,\eta)-modules generated by TI21T^{\ast}_{{\rm I}_{2}}\otimes 1 and φI2,ηψϵ3/2vol(Jηw0Jη)1/2φw0,ηψ\varphi^{\psi}_{{\rm I}_{2},\eta}-\epsilon^{3/2}\cdot{\rm vol}(J_{\eta}{\rm w}_{0}J_{\eta})^{-1/2}\varphi^{\psi}_{{\rm w}_{0},\eta} respectively. ∎

When the characteristic of the field is 0 and that of the residual field is greater than 33, the above theorem has been settled in the work by Mishra and Pattanayak [MP21, Theorem 3]. To the best of our knowledge, Theorem 3.6 is new when FF has positive characteristics, and also when it has residual characteristic 22 or 33.

Remark 3.7.

If (Jη,λη)(J_{\eta},\lambda_{\eta}) is a split cover, then the injection tQt_{Q} in (c)(\mathrm{c}) of §2.1 becomes an isomorphism [Kut04, Corollary 3.1]. Then Proposition 3.5-(2)(\mathrm{2}) seems to be superfluous, because the map tQt_{Q} already gives rise to a series of (T,η)(G,λη){\mathcal{H}}(T,\eta)\cong\mathcal{H}(G,\lambda_{\eta})-module isomorphism

(c-indUGψ)λη(G,λη)(K,λη)1(T,η)(K,λη)1(T,η)(Cc(T))η.({\text{\rm c-ind}}_{U}^{G}{\psi})^{\lambda_{\eta}}\cong\mathcal{H}(G,\lambda_{\eta})\otimes_{{\mathcal{H}(K,\lambda_{\eta})}}\mathbb{C}_{-1}\cong{\mathcal{H}}(T,\eta)\otimes_{{\mathcal{H}(K,\lambda_{\eta})}}\mathbb{C}_{-1}\cong{\mathcal{H}}(T,\eta)\cong(C_{c}^{\infty}(T))^{\eta}.
Acknowledgments.

I am deeply indebted to Muthu Krishnamurthy for introducing his unfinished project [KK] to me. Without his suggestion and countless encouragement, this paper never has come into existence. I also want to take this opportunity to thank to Jack Buttcane, Brandon Hanson, and Andrew Knightly for fruitful mathematical conversation and their feedbacks on some aspects of this manuscript. I am grateful to the Department of Mathematics and Statistics at University of Maine for their warm hospitality, while the paper was written. The author would like to convey our appreciation to anonymous referees for thoughtfully reading our paper and correcting many inaccuracies which significantly improved the exposition of this manuscript. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. RS-2023-00209992).

Conflicts of interest.

The author states that there is no conflict of interest.

Data availability.

This manuscript has no associated data.

References