This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Local Bounded Commuting Projection Operators for Discrete Gradgrad Complexes

Jun Hu LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China. [email protected] Yizhou Liang Institute of Mathematics, University of Augsburg, Universitätsstraße 12A, 86159 Augsburg, Germany [email protected]  and  Ting Lin School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China. [email protected]
Abstract.

This paper discusses the construction of local bounded commuting projections for discrete subcomplexes of the gradgrad complexes in two and three dimensions, which play an important role in the finite element theory of elasticity (2D) and general relativity (3D). The construction first extends the local bounded commuting projections to the discrete de Rham complexes to other discrete complexes. Moreover, the argument also provides a guidance in the design of new discrete gradgrad complexes.

2010 Mathematics Subject Classification:
65N30
The first author was supported by the National Natural Science Foundation of China grants NSFC 12288101. The second author was supported by Humbodlt Research Fellowship for Postdocs.

1. Introduction

This paper focuses on the construction of local bounded commuting projections for discrete subcomplexes of the gradgrad complexes in two and three dimensions. The gradgrad complexes play an important role in the finite element exterior calculus, as it provides a systematic understanding to the linearized Einstein–Bianchi equation[18]. For two dimensions, it can be regarded as a rotation of the elasticity complex. The continuous gradgrad complex in two dimension reads as [6]:

P1H2(Ω)gradgradH(rot,Ω;𝕊)rotL2(Ω;2)0,P_{1}\xrightarrow{\subset}H^{2}(\Omega)\xrightarrow[]{\operatorname{grad}\operatorname{grad}}H(\operatorname{rot},\Omega;\mathbb{S})\xrightarrow[]{\operatorname{rot}}L^{2}(\Omega;\mathbb{R}^{2})\xrightarrow{}0,

and in three dimensions[17] reads as:

P1H2(Ω)gradgradH(curl,Ω;𝕊)curlH(div,Ω;𝕋)divL2(3)0.P_{1}\xrightarrow{\subset}H^{2}(\Omega)\xrightarrow[]{\operatorname{grad}\operatorname{grad}}H(\operatorname{curl},\Omega;\mathbb{S})\xrightarrow[]{\operatorname{curl}}H(\operatorname{div},\Omega;\mathbb{T})\xrightarrow[]{\operatorname{div}}L^{2}(\mathbb{R}^{3})\xrightarrow{}0.

Here 𝕊\mathbb{S} denotes the spaces of symmetric matrices in two and three dimensions, and 𝕋\mathbb{T} denotes the traceless matrices in three dimensions, the operators rot\operatorname{rot}, div\operatorname{div} and curl\operatorname{curl} are applied by row. The exactness of these complexes is ensured when the domain Ω\Omega is contractible and Lipschitz [6, 17]. Recently, the first finite element sub-complex of the gradgrad complex in three dimensions was constructed [12], and the two-dimensional case was proposed using the Bernstein–Gelfand–Gelfand construction [7].

Bounded commuting projections from the Hilbert variant of the de Rham complex to a finite dimensional subcomplex have been a primary instrument in the finite element exterior calculus[4, 5, 3]. See [10, 2] for the standard finite element de Rham complexes, and [13] for the nonstandard ones. However, the construction of local bounded commuting projections of other complexes, e.g., the gradgrad complex, the divdiv complex and the elasticity complex, is still a challenging problem.

In this paper, we extend the framework introduced in [13] to construct local bounded commuting projections for the gradgrad complexes in D(D=2,3)\mathbb{R}^{D}(D=2,3). Specifically, we construct these projections from the gradgrad complex to the finite element gradgrad complexes introduced in [12, 7]. We also introduce another example of a finite element complex on Clough–Tocher split, cf. [8]. Our approach involves two parts: the first part is related to the skeletal complexes, inspired by the techniques of Arnold and Guzmán [2]; the second part is based on the harmonic inner product with bubble function complexes on edges and faces, as in [13]. Notably, there exist two different bubble function complexes on edges and faces in two and three dimensions, respectively. In summary, this paper extends the scope of these projections to non-standard complexes and provides new insights into their construction for the gradgrad complexes in D(D=2,3)\mathbb{R}^{D}(D=2,3).

The rest of the paper is organized as follows. We first introduce the finite element gradgrad complexes in two and three dimensions, and propose the main result in Section 2. Then we prove the main result in three dimensions (i.e., Theorem 2.2) in Section 3. Finally, we show in Section 4 that the argument can be also extended to two dimensions, with another example of a discrete gradgrad complex in the Clough–Tocher split.

2. Finite Element Gradgrad Complexes in 2D and 3D

Given any domain ω\omega in 2\mathbb{R}^{2} or 3\mathbb{R}^{3}, denote by (u,v)ω(u,v)_{\omega} the standard inner product ωuv\int_{\omega}u\cdot v for scalar, vector-valued or matrix-valued functions u,vL2(ω)u,v\in L^{2}(\omega). Suppose XL2(ω)X\subset L^{2}(\omega), uL2(ω)u\in L^{2}(\omega), the notation uXu\perp X means (u,v)ω=0,vX(u,v)_{\omega}=0,\forall v\in X. Additionally, uu\perp\mathbb{R} means (u,1)ω=0(u,1)_{\omega}=0. For A,BL2(ω)A,B\subset L^{2}(\omega), the quotient space A/BA/B is specified as A/B:={uA:(u,v)ω=0,vB}.A/B:=\{u\in A:(u,v)_{\omega}=0,\,\,\forall v\in B\}.

2.1. Finite element gradgrad complex in two dimensions

For two dimensions, suppose that a contractible polygonal domain Ω\Omega and a simplicial triangulation 𝒯\mathcal{T} are given. Denote by 𝖵\mathsf{V} the set of vertices, 𝖤\mathsf{E} the set of edges, 𝖥\mathsf{F} the set of faces, and 𝖲=𝖵𝖤𝖥\mathsf{S}=\mathsf{V}\cup\mathsf{E}\cup\mathsf{F} the set of all simplices. The notations 𝒙\bm{x}, 𝒆\bm{e}, 𝒇\bm{f} are used to represent any vertex, edge, and face of the mesh 𝒯\mathcal{T}, respectively. Given a subsimplex σ\sigma (vertex, edge and face) of 𝒯\mathcal{T}, define the local patch ωσ:={𝒇:σ𝒇¯}\omega_{\sigma}:=\cup\{\bm{f}:\sigma\subset\overline{\bm{f}}\}, and the extended local patches sequentially:

ωσ[m]:=𝒇{𝒇:𝒇¯ωσ[m1]¯}, with ωσ[0]=ωσ.\omega_{\sigma}^{[m]}:=\cup_{\bm{f}}\{\bm{f}:\overline{\bm{f}}\cap\overline{\omega_{\sigma}^{[m-1]}}\neq\emptyset\},\text{ with }\omega_{\sigma}^{[0]}=\omega_{\sigma}.

Here ω¯\overline{\omega} is the closure of the domain ω\omega, see Figure 2.1 for an illustration. Moreover, define the extended patch ωσh:={ω𝒙:𝒙 is a vertex of σ}\omega_{\sigma}^{h}:=\cup\{\omega_{\bm{x}}:\bm{x}\text{ is a vertex of }\sigma\}. Then it holds that ωσωσhωσ[1].\omega_{\sigma}\subseteq\omega_{\sigma}^{h}\subseteq\omega_{\sigma}^{[1]}.

xx
Figure 2.1. The (extended) local patch, ω𝒙[1]\omega_{\bm{x}}^{[1]}, ω𝒆[1]\omega_{\bm{e}}^{[1]} and ω𝒇[1]\omega_{\bm{f}}^{[1]}. The colored regions represent ω𝒙\omega_{\bm{x}}, ω𝒆\omega_{\bm{e}} and ω𝒇\omega_{\bm{f}} respectively.

Let 𝐱=[x1,x2]T\mathbf{x}=[x_{1},x_{2}]^{T}, 𝐞1=[1,0]T\mathbf{e}_{1}=[1,0]^{T} and 𝐞2=[0,1]T\mathbf{e}_{2}=[0,1]^{T} be vectors in two dimensions. Let Pk(𝒇)P_{k}(\bm{f}) be the space of polynomials with degree not greater than k0k\geq 0, let RT=RT(𝒇):={𝜶+β𝐱:𝜶2,β}RT=RT(\bm{f}):=\{\bm{\alpha}+\beta\mathbf{x}:\bm{\alpha}\in\mathbb{R}^{2},\beta\in\mathbb{R}\} be the lowest order Raviart–Thomas shape function space; for a given edge 𝒆𝖤\bm{e}\in\mathsf{E}, let 𝒏\bm{n} be its unit normal vector, 𝒕\bm{t} be its unit tangential vector, λ0,λ1\lambda_{0},\lambda_{1} be its barycenter coordinates. For a given face 𝒇𝖥\bm{f}\in\mathsf{F}, let λ0,λ1,λ2\lambda_{0},\lambda_{1},\lambda_{2} be its barycenter coordinates.

The two-dimensional discrete gradgrad complex, starting with the Argyris H2H^{2} conforming element space, will be introduced below (cf. [7]),

(2.1) P1Uh2𝚺hrot𝑸h0,P_{1}\xrightarrow{\subset}U_{h}\xrightarrow[]{\operatorname{\nabla^{2}}}\bm{\Sigma}_{h}\xrightarrow[]{\operatorname{rot}}\bm{Q}_{h}\xrightarrow{}0,

which is a discretization of the following continuous gradgrad complex,

(2.2) P1H2(Ω)2H(rot,Ω;𝕊)rotL2(Ω;2)0.P_{1}\xrightarrow{\subset}H^{2}(\Omega)\xrightarrow[]{\operatorname{\nabla^{2}}}H(\operatorname{rot},\Omega;\mathbb{S})\xrightarrow[]{\operatorname{rot}}L^{2}(\Omega;\mathbb{R}^{2})\xrightarrow{}0.

Here 𝕊\mathbb{S} represents the space of (2×22\times 2) symmetric matrices, and the space H(rot,Ω;𝕊):={𝝈L2(Ω;𝕊):rot𝝈L2(Ω;2)}H(\operatorname{rot},\Omega;\mathbb{S}):=\{\bm{\sigma}\in L^{2}(\Omega;\mathbb{S}):\operatorname{rot}\bm{\sigma}\in L^{2}(\Omega;\mathbb{R}^{2})\} contains symmetric matrix-valued functions 𝝈\bm{\sigma}, such that 𝝈\bm{\sigma} and rot𝝈\operatorname{rot}\bm{\sigma} are square integrable, where the rot\operatorname{rot} operator acts rowwise on 𝝈\bm{\sigma}.

Remark 2.1.

In two dimensions, the gradgrad complex can be regarded as a rotated elasticity complex. The continuous elasticity complex reads as (cf. [6])

(2.3) P1H2(Ω)AiryH(div,Ω;𝕊)divL2(Ω;2)0,P_{1}\xrightarrow{\subset}H^{2}(\Omega)\xrightarrow[]{\operatorname{Airy}}H(\operatorname{div},\Omega;\mathbb{S})\xrightarrow[]{\operatorname{div}}L^{2}(\Omega;\mathbb{R}^{2})\xrightarrow{}0,

whose finite element discretization has been studied in [6, 7]. Here the Airy function is defined as [2y2u2uxy2uxy2x2u]\displaystyle\begin{bmatrix}\frac{\partial^{2}}{\partial y^{2}}u&-\frac{\partial^{2}u}{\partial x\partial y}\\ -\frac{\partial^{2}u}{\partial x\partial y}&\frac{\partial^{2}}{\partial x^{2}}u\end{bmatrix} for a scalar function uH2(Ω)u\in H^{2}(\Omega).

For a given integer k3k\geq 3, the finite element spaces UhU_{h}, 𝚺h\bm{\Sigma}_{h} and 𝑸h\bm{Q}_{h} are defined as follows. For convenience, the degrees of freedom are listed in a special way. Note that in what follows, the first sets (1a), (2a) and (3a) of degrees of freedom play an important role in the analysis of this paper.

H2H^{2} conforming finite element space

For the H2H^{2} conforming finite element space UhU_{h}, the shape function space is taken as Pk+2(𝒇)P_{k+2}(\bm{f}). For uPk+2(𝒇)u\in P_{k+2}(\bm{f}), the degrees of freedom are defined as follows:

  1. (1a).

    the function value and first order derivatives u(𝒙)u(\bm{x}), xu(𝒙)\frac{\partial}{\partial x}u(\bm{x}) and yu(𝒙)\frac{\partial}{\partial y}u(\bm{x}) at each vertex 𝒙\bm{x} of 𝒇\bm{f};

  2. (1b).

    the second order derivatives 2u(𝒙)\nabla^{2}u(\bm{x}) at each vertex 𝒙\bm{x} of 𝒇\bm{f};

  3. (1c).

    the moments of the second order tangential derivate (2𝒕2u,2𝒕2p)𝒆(\frac{\partial^{2}}{\partial\bm{t}^{2}}u,\frac{\partial^{2}}{\partial\bm{t}^{2}}p)_{\bm{e}}, for pB𝒆,k42:=(λ0λ1)3Pk4(𝒆)p\in B_{\bm{e},k-4}^{2}:=(\lambda_{0}\lambda_{1})^{3}P_{k-4}(\bm{e}) on each edge 𝒆\bm{e} of 𝒇\bm{f};

  4. (1d).

    the moments of the tangential-normal derivative (2𝒏𝒕u,𝒕p)𝒆(\frac{\partial^{2}}{\partial\bm{n}\partial\bm{t}}u,\frac{\partial}{\partial\bm{t}}p)_{\bm{e}}, for pB𝒆,k31:=(λ0λ1)2Pk3(𝒆)p\in B_{\bm{e},k-3}^{1}:=(\lambda_{0}\lambda_{1})^{2}P_{k-3}(\bm{e}) on each edge 𝒆\bm{e} of 𝒇\bm{f};

  5. (1e).

    the moments of the Hessian (2u,2p)𝒇(\nabla^{2}u,\nabla^{2}p)_{\bm{f}}, where pB𝒇,k41:=(λ0λ1λ2)2Pk4(𝒇)p\in B^{1}_{\bm{f},k-4}:=(\lambda_{0}\lambda_{1}\lambda_{2})^{2}P_{k-4}(\bm{f}) inside 𝒇\bm{f}.

The above degrees of freedom are unisolvent, and the resulting finite element space is the Argyris finite element space [1]:

Uh={uC1(Ω):u|𝒇Pk+2(𝒇),𝒇𝒯;u is C2 at each vertex of 𝒯}.U_{h}=\{u\in C^{1}(\Omega):u|_{\bm{f}}\in P_{k+2}(\bm{f}),\forall\bm{f}\in\mathcal{T};u\text{ is }C^{2}\text{ at each vertex of }\mathcal{T}\}.

H(rot;𝕊)H(\operatorname{rot};\mathbb{S}) conforming finite element space

For the H(rot;𝕊)H(\operatorname{rot};\mathbb{S}) conforming space 𝚺h\bm{\Sigma}_{h}, the shape function space is taken as Pk(𝒇;𝕊)P_{k}(\bm{f};\mathbb{S}), containing the symmetric matrix-valued polynomials of degree not greater than kk. For 𝝈Pk(𝒇;𝕊)\bm{\sigma}\in P_{k}(\bm{f};\mathbb{S}), the degrees of freedom are as follows:

  1. (2a).

    the moments of the tangential component (𝝈𝒕,𝒘)𝒆(\bm{\sigma}\bm{t},\bm{w})_{\bm{e}}, for 𝒘RT(𝒇)\bm{w}\in RT(\bm{f});

  2. (2b).

    the function value 𝝈(𝒙)\bm{\sigma}(\bm{x}) at each vertex 𝒙\bm{x} of 𝒇\bm{f};

  3. (2c).

    the moments of the tangential-tangential component,(𝒕T𝝈𝒕,p)𝒆(\bm{t}^{T}\bm{\sigma}\bm{t},p)_{\bm{e}}, for pB𝒆,k2/P1(𝒆):=(λ0λ1)Pk2(𝒆)/P1(𝒆)p\in B_{\bm{e},k-2}/P_{1}(\bm{e}):=(\lambda_{0}\lambda_{1})P_{k-2}(\bm{e})/P_{1}(\bm{e}) on each edge 𝒆\bm{e} of 𝒇\bm{f};

  4. (2d).

    the moments of the tangential-normal component (𝒏T𝝈𝒕,p)𝒆(\bm{n}^{T}\bm{\sigma}\bm{t},p)_{\bm{e}}, for pB𝒆,k2/P0(𝒆)p\in B_{\bm{e},k-2}/P_{0}(\bm{e}) on each edge 𝒆\bm{e} of 𝒇\bm{f};

  5. (2e).

    the moments inside 𝒇\bm{f} under the following inner product

    (2.4) (𝒫2B𝒇,k41𝝈,𝒫2B𝒇,k41𝜼)𝒇+(rot𝝈,rot𝜼)𝒇 for 𝜼B𝒇,krot;𝕊,(\mathcal{P}_{\nabla^{2}B^{1}_{\bm{f},k-4}}\bm{\sigma},\mathcal{P}_{\nabla^{2}B^{1}_{\bm{f},k-4}}\bm{\eta})_{\bm{f}}+(\operatorname{rot}\bm{\sigma},\operatorname{rot}\bm{\eta})_{\bm{f}}\text{ for }\bm{\eta}\in B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}},

    where

    B𝒇,krot;𝕊:={𝝈Pk(𝒇;𝕊):𝝈𝒕=0 on 𝒇},B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}}:=\{\bm{\sigma}\in P_{k}(\bm{f};\mathbb{S}):\bm{\sigma}\bm{t}=0\text{ on }\partial\bm{f}\},

    and 𝒫2B𝒇,k41\mathcal{P}_{\nabla^{2}B^{1}_{\bm{f},k-4}} is the L2L^{2} orthogonal projection to the space 2B𝒇,k41\nabla^{2}B^{1}_{\bm{f},k-4}.

To show (2.4) is an inner product on B𝒇,krot;𝕊B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}}, it suffices to prove that for 𝜼B𝒇,krot;𝕊\bm{\eta}\in B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}} with rot𝜼=0\operatorname{rot}\bm{\eta}=0, then there exists a function uB𝒇,k41u\in B_{\bm{f},k-4}^{1} such that 𝜼=2u\bm{\eta}=\nabla^{2}u. This will be proved in Lemma 4.1.

Remark 2.2.

Note that the space RTRT restricted on edge 𝒆\bm{e} of 𝒇\bm{f} is the space {an𝒏+at𝒕:anP0(𝒆),atP1(𝒆)}\{a_{n}\bm{n}+a_{t}\bm{t}:a_{n}\in P_{0}(\bm{e}),a_{t}\in P_{1}(\bm{e})\}, the degrees of freedom (2a), (2c) and (2d) are indeed the moments (𝝈𝒕,𝒑)𝒆(\bm{\sigma}\bm{t},\bm{p})_{\bm{e}} for 𝒑[(λ0λ1)Pk2(𝒆)]2\bm{p}\in[(\lambda_{0}\lambda_{1})P_{k-2}(\bm{e})]^{2}.

The above degrees of freedom are unisolvent, and the resulting finite element space is a rotation of the Hu–Zhang H(div;𝕊)H(\operatorname{div};\mathbb{S}) conforming finite element space [14],

Σh:={𝝈H(rot;𝕊):𝝈Pk(𝒇;𝕊),𝒇𝒯;𝝈 is C0 at each vertex of 𝒯}.\Sigma_{h}:=\{\bm{\sigma}\in H(\operatorname{rot};\mathbb{S}):\bm{\sigma}\in P_{k}(\bm{f};\mathbb{S}),\,\forall\bm{f}\in\mathcal{T};\bm{\sigma}\text{ is }C^{0}\text{ at each vertex of }\mathcal{T}\}.

In particular, the face bubble B𝒇,krot;𝕊B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}} is characterized as

(2.5) B𝒇,krot;𝕊={p0λ0λ1𝒏2𝒏2T+p1λ1λ2𝒏0𝒏0T+p2λ2λ0𝒏1𝒏1T:p0,p1,p2Pk2(𝒇)},B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}}=\{p_{0}\lambda_{0}\lambda_{1}\bm{n}_{2}\bm{n}_{2}^{T}+p_{1}\lambda_{1}\lambda_{2}\bm{n}_{0}\bm{n}_{0}^{T}+p_{2}\lambda_{2}\lambda_{0}\bm{n}_{1}\bm{n}_{1}^{T}:p_{0},p_{1},p_{2}\in P_{k-2}(\bm{f})\},

where 𝒏i\bm{n}_{i}, i=0,1,2i=0,1,2, are the unit normal vector with respect to edge 𝒆i\bm{e}_{i}, and λi\lambda_{i}, i=0,1,2i=0,1,2, are the barycenter coordinates with respect to edge 𝒆i\bm{e}_{i}. See [14] for more details.

For completeness, the proof of the unisolvency is provided here.

Proposition 2.1.

The above degrees of freedom, namely, (2a)–(2e) are unisolvent, provided that the bilinear form (2.4) is an inner product on B𝐟,krot;𝕊B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}}.

Proof.

By Remark 2.2 and (2.5), the total number of the degrees of freedom is

3×3+3×2(k1)+3×12(k1)k=32(k+1)(k+2),3\times 3+3\times 2(k-1)+3\times\frac{1}{2}(k-1)k=\frac{3}{2}(k+1)(k+2),

which is equal to the dimension of Pk(𝒇;𝕊)P_{k}(\bm{f};\mathbb{S}). It then suffices to show that for 𝝈Pk(𝒇;𝕊)\bm{\sigma}\in P_{k}(\bm{f};\mathbb{S}), if 𝝈\bm{\sigma} vanishes at all the degrees of freedom (2a)-(2e), then 𝝈=0\bm{\sigma}=0.

Since 𝝈\bm{\sigma} vanishes at (2b), it holds that 𝝈|𝒆=(λ0λ1)Pk2(𝒆)\bm{\sigma}|_{\bm{e}}=(\lambda_{0}\lambda_{1})P_{k-2}(\bm{e}). It then follows from (2a), (2c) and (2d) that (𝝈𝒕)𝒆=0(\bm{\sigma}\bm{t})_{\bm{e}}=0 for each edge 𝒆\bm{e} of 𝒇\bm{f}, implying that 𝝈B𝒇,krot;𝕊\bm{\sigma}\in B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}}. Finally, the fact that (2.4) is an inner product on the space B𝒇,krot;𝕊B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}} completes the proof. ∎

L2(2)L^{2}(\mathbb{R}^{2}) finite element space

For the L2(2)L^{2}(\mathbb{R}^{2}) finite element space 𝑸h\bm{Q}_{h}, the shape function space is taken as Pk1(𝒇;2)P_{k-1}(\bm{f};\mathbb{R}^{2}). For 𝒒Pk1(𝒇;2)\bm{q}\in P_{k-1}(\bm{f};\mathbb{R}^{2}), the local degrees of freedom are as follows:

  1. (3a).

    the moments (𝒒,𝒘)𝒇(\bm{q},\bm{w})_{\bm{f}} for 𝒘RT(𝒇);\bm{w}\in RT(\bm{f});

  2. (3b).

    the moments (𝒒,𝒘)𝒇(\bm{q},\bm{w})_{\bm{f}} for 𝒘Pk1(𝒇;2)/RT(𝒇)\bm{w}\in P_{k-1}(\bm{f};\mathbb{R}^{2})/{RT(\bm{f})}.

The lowest order (k=3k=3) of the complex (2.1), which starts from the quintic Argyris element, is illustrated as follows, where dimUh=6|𝖵|+|𝖤|\dim U_{h}=6|\mathsf{V}|+|\mathsf{E}|, dim𝚺h=3|𝖵|+4|𝖤|+9|𝖥|\dim\bm{\Sigma}_{h}=3|\mathsf{V}|+4|\mathsf{E}|+9|\mathsf{F}| and dim𝑽h=12|𝖥|.\dim\bm{V}_{h}=12|\mathsf{F}|.

2\xrightarrow[]{\nabla^{2}}44444499rot\xrightarrow[]{\operatorname{rot}}1212

The main result in two dimension is shown as follows, and the proof is in Section 4.2.

Theorem 2.1.

There exist operators πl\pi^{l}, l=0,1,2l=0,1,2, such that π0:H2(Ω)Uh\pi^{0}:H^{2}(\Omega)\to U_{h}, π1:H(rot,Ω;𝕊)Σh\pi^{1}:H(\operatorname{rot},\Omega;\mathbb{S})\to\Sigma_{h} and π2:L2(Ω;2)𝐐h\pi^{2}:L^{2}(\Omega;\mathbb{R}^{2})\to\bm{Q}_{h} are all projection operators, and the following diagram commutes.

(2.6) P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H2(Ω)\textstyle{H^{2}(\Omega)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π0\scriptstyle{\pi^{0}}2\scriptstyle{\nabla^{2}}H(rot,Ω;𝕊)\textstyle{H(\operatorname{rot},\Omega;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1\scriptstyle{\pi^{1}}rot\scriptstyle{\operatorname{rot}}L2(Ω;2)\textstyle{L^{2}(\Omega;\mathbb{R}^{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π2\scriptstyle{\pi^{2}}0\textstyle{0}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Uh\textstyle{U_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}2\scriptstyle{\nabla^{2}}𝚺h\textstyle{\bm{\Sigma}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}rot\scriptstyle{\operatorname{rot}}𝑸h\textstyle{\bm{Q}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

Namely, 2π0=π12\nabla^{2}\pi^{0}=\pi^{1}\nabla^{2}, π2curl=curlπ1\pi^{2}\operatorname{curl}=\operatorname{curl}\pi^{1}, and these operators πl\pi^{l}, l=0,1,2,l=0,1,2, are locally determined. For example, the value of π0u\pi^{0}u on 𝐟\bm{f} is determined by the value of uu on ω𝐟[1]\omega_{\bm{f}}^{[1]}.

If moreover, 𝒯\mathcal{T} is shape-regular, then the projection operators are locally bounded, i.e.,

(2.7) π0uH2(𝒇)CuH2(ω𝒇[1]),π1𝝈H(rot,f;𝕊)C𝝈H(rot,ω𝒇[2];𝕊),π2𝒗L2(𝒇)C𝒗L2(ω𝒇[2]).\|\pi^{0}u\|_{H^{2}(\bm{f})}\leq C\|u\|_{H^{2}(\omega_{\bm{f}}^{[1]})},\|\pi^{1}\bm{\sigma}\|_{H(\operatorname{rot},f;\mathbb{S})}\leq C\|\bm{\sigma}\|_{H(\operatorname{rot},\omega^{[2]}_{\bm{f}};\mathbb{S})},\|\pi^{2}\bm{v}\|_{L^{2}(\bm{f})}\leq C\|\bm{v}\|_{L^{2}(\omega^{[2]}_{\bm{f}})}.

Here the constant CC only depends on the shape regularity constant and the polynomial degree. As a consequence, all the operators are globally bounded, i.e., π0\pi^{0} is H2H^{2} bounded, π1\pi^{1} is H(rot;𝕊)H(\operatorname{rot};\mathbb{S}) bounded and π2\pi^{2} is L2L^{2} bounded.

Remark 2.3.

The above theorem also implies the existence of the local bounded commuting projection operators πl,l=0,1,2,\pi^{l},l=0,1,2, from the continuous elasticity complex in two dimensions to the finite element one,

(2.8) P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H2(Ω)\textstyle{H^{2}(\Omega)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π0\scriptstyle{\pi^{0}}Airy\scriptstyle{\operatorname{Airy}}H(div,Ω;𝕊)\textstyle{H(\operatorname{div},\Omega;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1\scriptstyle{\pi^{1}}div\scriptstyle{\operatorname{div}}L2(Ω;2)\textstyle{L^{2}(\Omega;\mathbb{R}^{2})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π2\scriptstyle{\pi^{2}}0\textstyle{0}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐀𝐫k+2\textstyle{\mathbf{Ar}_{k+2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Airy\scriptstyle{\operatorname{Airy}}𝐇𝐙k\textstyle{\mathbf{HZ}_{k}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}div\scriptstyle{\operatorname{div}}𝐏k1\textstyle{\mathbf{P}_{k-1}^{-}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0,\textstyle{0,}

where 𝐀𝐫k+2\mathbf{Ar}_{k+2} is the Argyris finite element space [1], 𝐇𝐙k\mathbf{HZ}_{k} is the Hu–Zhang H(div;𝕊)H(\operatorname{div};\mathbb{S}) finite element space [14], and 𝐏k1\mathbf{P}_{k-1}^{-} is the DG space.

2.2. Finite element gradgrad complex in three dimensions

For three dimensions, suppose that a contractible polyhedral domain Ω\Omega and a triangulation 𝒯\mathcal{T} are given. Denote by 𝖵\mathsf{V} the set of vertices, 𝖤\mathsf{E} the set of edges, 𝖥\mathsf{F} the set of faces, 𝖪\mathsf{K} the set of cells, and 𝖲=𝖵𝖤𝖥𝖪\mathsf{S}=\mathsf{V}\cup\mathsf{E}\cup\mathsf{F}\cup\mathsf{K} the set of all simplices. The notations 𝒙\bm{x}, 𝒆\bm{e}, 𝒇\bm{f}, 𝑲\bm{K} are used to represent any vertex, edge, face and element of the mesh 𝒯\mathcal{T}, respectively.

With slight abuse of notations, let 𝐱=[x1,x2,x3]T\mathbf{x}=[x_{1},x_{2},x_{3}]^{T}, 𝐞1=[1,0,0]T\mathbf{e}_{1}=[1,0,0]^{T}, 𝐞2=[0,1,0]T\mathbf{e}_{2}=[0,1,0]^{T} and 𝐞3=[0,0,1]T\mathbf{e}_{3}=[0,0,1]^{T} be vectors in three dimensions. Let ωσ[m]\omega_{\sigma}^{[m]} and ωσh\omega_{\sigma}^{h} be defined similarly as those in two dimensions. Let Pk(𝑲)P_{k}(\bm{K}) be the space of polynomials of degree not greater than kk, let RT=RT(𝑲):={𝒂+b𝐱:𝒂3,b}RT=RT(\bm{K}):=\{\bm{a}+b\mathbf{x}:\bm{a}\in\mathbb{R}^{3},b\in\mathbb{R}\} be the lowest order Raviart–Thomas space in three dimensions. Note that in the subsequent construction, the two-dimensional Raviart–Thomas space RT(𝒇)RT(\bm{f}) will also appear.

For a face 𝒇\bm{f} of the element 𝑲\bm{K}, let 𝒏\bm{n} be its unit normal vector, 𝒕i,i=1,2,\bm{t}_{i},i=1,2, be its two linearly independent unit tangential vectors, such that 𝒕1𝒕2\bm{t}_{1}\perp\bm{t}_{2}. For each edge of the element, let 𝒕\bm{t} be its unit tangential vector, 𝒏i,i=1,2\bm{n}_{i},i=1,2, be its two linearly independent unit normal vectors, such that 𝒏1𝒏2\bm{n}_{1}\perp\bm{n}_{2}. Define the operator E𝒇:32E_{\bm{f}}:\mathbb{R}^{3}\to\mathbb{R}^{2} such that E𝒇𝒗=[𝒗𝒕1,𝒗𝒕2]TE_{\bm{f}}\bm{v}=[\bm{v}\cdot\bm{t}_{1},\bm{v}\cdot\bm{t}_{2}]^{T} for 𝒗3\bm{v}\in\mathbb{R}^{3}. Define the operator 𝔼𝒇\mathbb{E}_{\bm{f}} the tangential-tangential component of 𝝈\bm{\sigma} such that 𝔼𝒇𝝈=[𝒕1T𝝈𝒕1𝒕1T𝝈𝒕2𝒕2T𝝈𝒕1𝒕2T𝝈𝒕2].\displaystyle\mathbb{E}_{\bm{f}}\bm{\sigma}=\begin{bmatrix}\bm{t}_{1}^{T}\bm{\sigma}\bm{t}_{1}&\bm{t}_{1}^{T}\bm{\sigma}\bm{t}_{2}\\ \bm{t}_{2}^{T}\bm{\sigma}\bm{t}_{1}&\bm{t}_{2}^{T}\bm{\sigma}\bm{t}_{2}\end{bmatrix}. Let 𝒇\nabla_{\bm{f}} be the gradient operator with respect to 𝒕1\bm{t}_{1} and 𝒕2\bm{t}_{2}, such that 𝒇u=[𝒕1u,𝒕2u]T,\nabla_{\bm{f}}u=[\bm{t}_{1}\cdot\nabla u,\bm{t}_{2}\cdot\nabla u]^{T}, and rot𝒇𝒗=v2𝒕1+v1𝒕2\operatorname{rot}_{\bm{f}}\bm{v}=-\frac{\partial v_{2}}{\partial\bm{t}_{1}}+\frac{\partial v_{1}}{\partial\bm{t}_{2}} are defined for a scalar function uu and an 2\mathbb{R}^{2} valued-function 𝒗\bm{v}, respectively.

Recall the finite element gradgrad complex in three dimensions [12],

(2.9) P1Uh2𝚺hcurl𝚵hdiv𝑸h0,P_{1}\xrightarrow{\subset}U_{h}\xrightarrow[]{\operatorname{\nabla^{2}}}\bm{\Sigma}_{h}\xrightarrow[]{\operatorname{curl}}\bm{\Xi}_{h}\xrightarrow[]{\operatorname{div}}\bm{Q}_{h}\xrightarrow{}0,

which is a discretization of the following continuous Hessian complex,

(2.10) P1H2(Ω)2H(curl,Ω;𝕊)curlH(div,Ω;𝕋)divL2(3)0,P_{1}\xrightarrow{\subset}H^{2}(\Omega)\xrightarrow[]{\operatorname{\nabla^{2}}}H(\operatorname{curl},\Omega;\mathbb{S})\xrightarrow[]{\operatorname{curl}}H(\operatorname{div},\Omega;\mathbb{T})\xrightarrow[]{\operatorname{div}}L^{2}(\mathbb{R}^{3})\xrightarrow{}0,

Here 𝕊\mathbb{S} and 𝕋\mathbb{T} represent the spaces of (3×3)(3\times 3) symmetric matrices and traceless matrices, respectively, the space

H(curl,Ω;𝕊):={𝝈L2(Ω;𝕊):curl𝝈L2(Ω;𝕋)}H(\operatorname{curl},\Omega;\mathbb{S}):=\{\bm{\sigma}\in L^{2}(\Omega;\mathbb{S}):\operatorname{curl}\bm{\sigma}\in L^{2}(\Omega;\mathbb{T})\}

contains symmetric matrix-valued functions 𝝈\bm{\sigma} such that 𝝈\bm{\sigma} and curl𝝈\operatorname{curl}\bm{\sigma} are square integrable, and the space

H(div,Ω;𝕋):={𝒗L2(Ω;𝕋):div𝒗L2(Ω;3)}H(\operatorname{div},\Omega;\mathbb{T}):=\{\bm{v}\in L^{2}(\Omega;\mathbb{T}):\operatorname{div}\bm{v}\in L^{2}(\Omega;\mathbb{R}^{3})\}

contains traceless matrix-valued functions 𝒗\bm{v} such that 𝒗\bm{v} and div𝒗\operatorname{div}\bm{v} are square integrable. Note that the operators curl\operatorname{curl} and div\operatorname{div} act rowwise. Here the degrees of freedom of the finite element spaces Uh,𝚺h,𝑽hU_{h},\bm{\Sigma}_{h},\bm{V}_{h} and 𝑸h\bm{Q}_{h} are proposed for a given integer k7k\geq 7, with a slight modification from those of [12]. However, the finite element spaces are the same, since only the inner products on each sub-simplex are replaced by the corresponding harmonic inner products, cf. [13].

H2H^{2} conforming finite element space

For the H2H^{2} conforming element space UhU_{h}, the shape function space is defined as Pk+2(𝑲)P_{k+2}(\bm{K}). For uPk+2(𝑲)u\in P_{k+2}(\bm{K}), the local degrees of freedom are as follows:

  1. (4a).

    the function value and first order derivatives u(𝒙)u(\bm{x}), u(𝒙)\nabla u(\bm{x}) at each vertex 𝒙\bm{x};

  2. (4b).

    the second to fourth order derivatives Dαu(𝒙)D^{\alpha}u(\bm{x}) at each vertex 𝒙\bm{x}, for 2|α|42\leq|\alpha|\leq 4;

  3. (4c).

    the moments of the second order tangential derivative (2𝒕2u,2𝒕2p)𝒆(\frac{\partial^{2}}{\partial\bm{t}^{2}}u,\frac{\partial^{2}}{\partial\bm{t}^{2}}p)_{\bm{e}}, for p(λ0λ1)5Pk8(𝒆)p\in(\lambda_{0}\lambda_{1})^{5}P_{k-8}(\bm{e}) on each edge 𝒆\bm{e} of 𝑲\bm{K};

  4. (4d).

    the moments of the tangential-normal derivatives (2𝒏j𝒕u,𝒕p)𝒆(\frac{\partial^{2}}{\partial\bm{n}_{j}\partial\bm{t}}u,\frac{\partial}{\partial\bm{t}}p)_{\bm{e}}, for p(λ0λ1)4Pk7(𝒆)p\in(\lambda_{0}\lambda_{1})^{4}P_{k-7}(\bm{e}) and j=1,2j=1,2 on each edge 𝒆\bm{e} of 𝑲\bm{K};

  5. (4e).

    the moments of the second order normal derivatives (2𝒏j𝒏ju,p)𝒆(\frac{\partial^{2}}{\partial\bm{n}_{j}\partial\bm{n}_{j^{\prime}}}u,p)_{\bm{e}} for p(λ0λ1)3Pk6(𝒆)p\in(\lambda_{0}\lambda_{1})^{3}P_{k-6}(\bm{e}) and j,j=1,2j,j^{\prime}=1,2 on each edge 𝒆\bm{e} of 𝑲\bm{K};

  6. (4f).

    the moments of the face Hessian (𝒇2u,𝒇2p)𝒇(\nabla_{\bm{f}}^{2}u,\nabla_{\bm{f}}^{2}p)_{\bm{f}}, for pB𝒇,k72:=(λ0λ1λ2)3Pk7(𝒇)p\in B_{\bm{f},k-7}^{2}:=(\lambda_{0}\lambda_{1}\lambda_{2})^{3}P_{k-7}(\bm{f}), on each face 𝒇\bm{f} of 𝑲\bm{K};

  7. (4g).

    the moments of the face gradient of 𝒏u\frac{\partial}{\partial\bm{n}}u, namely, (𝒇(𝒏u),𝒇p)𝒇(\nabla_{\bm{f}}(\frac{\partial}{\partial\bm{n}}u),\nabla_{\bm{f}}p)_{\bm{f}}, for pB𝒇,k51:=(λ0λ1λ2)2Pk5(𝒇),p\in B_{\bm{f},k-5}^{1}:=(\lambda_{0}\lambda_{1}\lambda_{2})^{2}P_{k-5}(\bm{f}), on each face 𝒇\bm{f} of 𝑲\bm{K};

  8. (4h).

    the moments of the Hessian insides 𝑲\bm{K}, namely, (2u,2p)𝑲(\nabla^{2}u,\nabla^{2}p)_{\bm{K}}, for pB𝑲,k61:=(λ0λ1λ2λ3)2Pk6(𝑲)p\in B_{\bm{K},k-6}^{1}:=(\lambda_{0}\lambda_{1}\lambda_{2}\lambda_{3})^{2}P_{k-6}(\bm{K}).

The above degrees of freedom are unisolvent, and the resulting finite element space [19] is

Uh:={uC1(Ω);u|𝑲Pk+2(𝑲),𝑲𝒯;u is C4 at each vertex of 𝒯,C2 on each edge of 𝒯}.U_{h}:=\{u\in C^{1}(\Omega);u|_{\bm{K}}\in P_{k+2}(\bm{K}),\forall\bm{K}\in\mathcal{T};u\text{ is }C^{4}\text{ at each vertex of }\mathcal{T},C^{2}\text{ on each edge of }\mathcal{T}\}.

H(curl;𝕊)H(\operatorname{curl};\mathbb{S}) conforming finite element space

For the H(curl;𝕊)H(\operatorname{curl};\mathbb{S}) conforming finite element space 𝚺h\bm{\Sigma}_{h}, the shape function space is defined as Pk(𝑲;𝕊)P_{k}(\bm{K};\mathbb{S}). For 𝝈Pk(𝑲;𝕊)\bm{\sigma}\in P_{k}(\bm{K};\mathbb{S}), the local degrees of freedom are as follows:

  1. (5a).

    the moments (𝝈𝒕,𝒘)𝒆(\bm{\sigma}\bm{t},\bm{w})_{\bm{e}} of the tangential component, for 𝒘RT(𝑲)\bm{w}\in RT(\bm{K}), on each edge 𝒆\bm{e} of 𝑲\bm{K};

  2. (5b).

    the function values and first and second order derivatives at each vertex Dα𝝈(𝒙)D^{\alpha}\bm{\sigma}(\bm{x}), 0|α|20\leq|\alpha|\leq 2;

  3. (5c).

    the moments of the tangential-tangential component (𝒕T𝝈𝒕,p)𝒆(\bm{t}^{T}\bm{\sigma}\bm{t},p)_{\bm{e}}, for p(λ0λ1)3Pk6(𝒆)/P1(𝒆)p\in(\lambda_{0}\lambda_{1})^{3}P_{k-6}(\bm{e})/P_{1}(\bm{e}), on each edge 𝒆\bm{e} of 𝑲\bm{K};

  4. (5d).

    the moments of the normal-tangential components (𝒏jT𝝈𝒕,p)𝒆(\bm{n}_{j}^{T}\bm{\sigma}\bm{t},p)_{\bm{e}}, for p(λ0λ1)3Pk6(𝒆)/P0(𝒆)p\in(\lambda_{0}\lambda_{1})^{3}P_{k-6}(\bm{e})/P_{0}(\bm{e}) and j=1,2j=1,2 on each edge 𝒆\bm{e} of 𝑲\bm{K};

  5. (5e).

    the moments of the normal-normal components (𝒏jT𝝈𝒏j,p)𝒆(\bm{n}_{j}^{T}\bm{\sigma}\bm{n}_{j^{\prime}},p)_{\bm{e}}, for p(λ0λ1)3Pk6(𝒆)p\in(\lambda_{0}\lambda_{1})^{3}P_{k-6}(\bm{e}) and j,j=1,2j,j^{\prime}=1,2, on each edge 𝒆\bm{e} of 𝑲\bm{K};

  6. (5f).

    the moments of the face tangential-tangential components under the inner product

    (2.11) (𝒫𝒇2B𝒇,k72𝔼𝒇𝝈,𝒫𝒇2B𝒇,k72𝜼)𝒇+(rot𝒇𝔼𝒇𝝈,rot𝒇𝜼)𝒇(\mathcal{P}_{\nabla^{2}_{\bm{f}}B_{\bm{f},k-7}^{2}}\mathbb{E}_{\bm{f}}\bm{\sigma},\mathcal{P}_{\nabla^{2}_{\bm{f}}B_{\bm{f},k-7}^{2}}\bm{\eta})_{\bm{f}}+(\operatorname{rot}_{\bm{f}}\mathbb{E}_{\bm{f}}\bm{\sigma},\operatorname{rot}_{\bm{f}}\bm{\eta})_{\bm{f}}

    for 𝜼(λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2)\bm{\eta}\in(\lambda_{0}\lambda_{1}\lambda_{2})P^{(0)}_{k-3}(\bm{f};\mathbb{S}_{2\times 2}) on each face 𝒇\bm{f} of 𝑲\bm{K}, where

    Pk3(0)(𝒇):={λ0λ1λ2p:pPk3(𝒇),p vanishes at all vertices of 𝒇};P_{k-3}^{(0)}(\bm{f}):=\{\lambda_{0}\lambda_{1}\lambda_{2}p:p\in P_{k-3}(\bm{f}),p\text{ vanishes at all vertices of }\bm{f}\};
  7. (5g).

    the moments of the face normal-tangential components under the inner product

    (2.12) (𝒫grad𝒇B𝒇,k51E𝒇(𝝈𝒏),𝒫grad𝒇B𝒇,k51𝒘)𝒇+(rot𝒇E𝒇(𝝈𝒏),rot𝒇𝒘)𝒇(\mathcal{P}_{\operatorname{grad}_{\bm{f}}B_{\bm{f},k-5}^{1}}{E}_{\bm{f}}(\bm{\sigma}\bm{n}),\mathcal{P}_{\operatorname{grad}_{\bm{f}}B_{\bm{f},k-5}^{1}}\bm{w})_{\bm{f}}+(\operatorname{rot}_{\bm{f}}{E}_{\bm{f}}(\bm{\sigma}\bm{n}),\operatorname{rot}_{\bm{f}}\bm{w})_{\bm{f}}

    for 𝒘(λ0λ1λ2)Pk3(0)(𝒇;2),\bm{w}\in(\lambda_{0}\lambda_{1}\lambda_{2})P^{(0)}_{k-3}(\bm{f};\mathbb{R}^{2}), on each face 𝒇\bm{f} of 𝑲\bm{K};

  8. (5h).

    the moments inside 𝑲\bm{K}

    (2.13) (𝒫2B𝑲,k61𝝈,𝒫2B𝑲,k61𝜼)𝑲+(curl𝝈,curl𝜼)𝑲(\mathcal{P}_{\nabla^{2}B_{\bm{K},k-6}^{1}}\bm{\sigma},\mathcal{P}_{\nabla^{2}B_{\bm{K},k-6}^{1}}\bm{\eta})_{\bm{K}}+(\operatorname{curl}\bm{\sigma},\operatorname{curl}\bm{\eta})_{\bm{K}}

    for 𝜼B𝑲,kcurl;𝕊\bm{\eta}\in B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}. Here

    (2.14) B𝑲,kcurl;𝕊:={i=03λjλlλmPk3(0)(𝑲)𝒏i𝒏iT}+(λ0λ1λ2λ3)Pk4(𝑲)B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}:=\{\sum_{i=0}^{3}\lambda_{j}\lambda_{l}\lambda_{m}P_{k-3}^{(0)}(\bm{K})\bm{n}_{i}\bm{n}_{i}^{T}\}+(\lambda_{0}\lambda_{1}\lambda_{2}\lambda_{3})P_{k-4}(\bm{K})

    with {i,j,l,m}\{i,j,l,m\} is a permutation of {0,1,2,3}\{0,1,2,3\}, and

    (2.15) Pk3(0)(𝑲):={pPk3(𝑲):p vanishes at all vertices of 𝑲}.P_{k-3}^{(0)}(\bm{K}):=\{p\in P_{k-3}(\bm{K}):p\text{ vanishes at all vertices of }\bm{K}\}.
Remark 2.4.

To show that (2.11) is an inner product on the space (λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2)(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2}), it suffices to check that if rot𝒇𝝈\operatorname{rot}_{\bm{f}}\bm{\sigma} = 0 for some 𝝈(λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2)\bm{\sigma}\in(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2}), then there exists uB𝒇,k72u\in B_{\bm{f},k-7}^{2} such that 𝝈=𝒇2u\bm{\sigma}=\nabla^{2}_{\bm{f}}u, which is proved in Lemma 3.4. Similarly, Lemma 3.3 implies that (2.12) is an inner product on the space (λ0λ1λ2)Pk3(0)(𝒇;2)(\lambda_{0}\lambda_{1}\lambda_{2})P^{(0)}_{k-3}(\bm{f};\mathbb{R}^{2}), and Lemma 3.5 implies that (2.13) is an inner product on the space B𝑲,kcurl;𝕊B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}.

Remark 2.5.

The degrees of freedom (5a), (5c) and (5d) are indeed the moments (𝝈𝒕,𝒘)𝒆(\bm{\sigma}\bm{t},\bm{w})_{\bm{e}} for 𝒘[(λ0λ1)3Pk6(𝒆)]2\bm{w}\in[(\lambda_{0}\lambda_{1})^{3}P_{k-6}(\bm{e})]^{2}.

The above degrees of freedom are unisolvent, and the resulting finite element space [12] is

𝚺h={𝝈:H(curl,Ω;𝕊):𝝈|𝑲Pk(𝑲;𝕊),𝑲𝒯;𝝈 is C2 at each vertex, C0 on each edge}.\bm{\Sigma}_{h}=\{\bm{\sigma}:H(\operatorname{curl},\Omega;\mathbb{S}):\bm{\sigma}|_{\bm{K}}\in P_{k}(\bm{K};\mathbb{S}),\forall\bm{K}\in\mathcal{T};\bm{\sigma}\text{ is }C^{2}\text{ at each vertex, }C^{0}\text{ on each edge}\}.

The unisolvency is proved in what follows.

Proposition 2.2.

The above degrees of freedom, namely, (5a)–(5h) are unisolvent, provided that (2.11), (2.12), and (2.13) are inner products on the space (λ0λ1λ2)Pk3(0)(𝐟;𝕊2×2)(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2}), (λ0λ1λ2)Pk3(0)(𝐟;2)(\lambda_{0}\lambda_{1}\lambda_{2})P^{(0)}_{k-3}(\bm{f};\mathbb{R}^{2}), and B𝐊,kcurl;𝕊B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}, respectively.

Proof.

First, note that

dim(λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2)=3(12(k2)(k1)3),\dim(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2})=3(\frac{1}{2}(k-2)(k-1)-3),

and

dim(λ0λ1λ2)Pk3(0)(𝒇;2)=2(12(k2)(k1)3).\dim(\lambda_{0}\lambda_{1}\lambda_{2})P^{(0)}_{k-3}(\bm{f};\mathbb{R}^{2})=2(\frac{1}{2}(k-2)(k-1)-3).

Recall from [12, Section 3.2] that the dimension of B𝑲,kcurl;𝕊B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}} is k34k2+5k14k^{3}-4k^{2}+5k-14. Therefore, the total number of the degrees of freedom are

4×60+6×6(k5)+4×5(12(k2)(k1)3)+(k34k2+5k14)=(k+1)(k+2)(k+3),\begin{split}&4\times 60+6\times 6(k-5)+4\times 5(\frac{1}{2}(k-2)(k-1)-3)+(k^{3}-4k^{2}+5k-14)\\ =&(k+1)(k+2)(k+3),\end{split}

which is equal to the dimension of Pk(𝑲;𝕊)P_{k}(\bm{K};\mathbb{S}).

It suffices to show that for 𝝈Pk(𝑲;𝕊)\bm{\sigma}\in P_{k}(\bm{K};\mathbb{S}), if 𝝈\bm{\sigma} vanishes at all the degrees of freedom, then 𝝈=0\bm{\sigma}=0. If follows from (5a)-(5e) such that 𝝈=0\bm{\sigma}=0 on each edge 𝒆\bm{e} of 𝑲\bm{K}. On each face 𝒇\bm{f} of 𝑲\bm{K}, the set of degrees of freedom (5b) indicates that

𝔼𝒇𝝈(λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2).\mathbb{E}_{\bm{f}}\bm{\sigma}\in(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2}).

As a result, it follows from (5e) that 𝔼𝒇𝝈=0\mathbb{E}_{\bm{f}}\bm{\sigma}=0. Similarly, it holds that E𝒇(𝝈𝒏)=0E_{\bm{f}}(\bm{\sigma}\bm{n})=0. Therefore, this yields 𝝈×𝒏=0\bm{\sigma}\times\bm{n}=0, which implies that 𝝈B𝑲,kcurl;𝕊\bm{\sigma}\in B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}, according to [12, Theorem 3.2]. Finally, the last set of degrees of freedom (5h) shows that 𝝈=0\bm{\sigma}=0, which completes the proof. ∎

H(div;𝕋)H(\operatorname{div};\mathbb{T}) conforming finite element space

For the H(div;𝕋)H(\operatorname{div};\mathbb{T}) conforming finite element space 𝑽h\bm{V}_{h}, the shape function space is taken as Pk1(𝑲;𝕋)P_{k-1}(\bm{K};\mathbb{T}). For 𝒗Pk1(𝑲;𝕋)\bm{v}\in P_{k-1}(\bm{K};\mathbb{T}), the local degrees of freedom are as follows:

  1. (6a).

    the moments of its normal component (𝒗𝒏,𝒘)𝒇(\bm{v}\bm{n},\bm{w})_{\bm{f}}, for 𝒘RT(𝑲)\bm{w}\in RT(\bm{K}), on each face 𝒇\bm{f} of 𝑲\bm{K};

  2. (6b).

    the function values and first order derivatives at each vertex: Dα𝒗(𝒙),0|α|1D^{\alpha}\bm{v}(\bm{x}),0\leq|\alpha|\leq 1;

  3. (6c).

    the moments of its normal-tangential component (E𝒇(𝒗𝒏),𝒘)𝒇(E_{\bm{f}}(\bm{v}\bm{n}),\bm{w})_{\bm{f}}, for 𝒘Pk1(1)(𝒇;2)/RT(𝒇)\bm{w}\in P_{k-1}^{(1)}(\bm{f};\mathbb{R}^{2})/RT(\bm{f}) on each face 𝒇\bm{f} of 𝑲\bm{K}, where

    (2.16) Pk1(1)(𝒇):={pPk1(𝒇):p and p vanishes at vertices};P_{k-1}^{(1)}(\bm{f}):=\{p\in P_{k-1}(\bm{f}):p\text{ and }\nabla p\text{ vanishes at vertices}\};
  4. (6d).

    the moments of its normal-normal component (𝒏T𝒗𝒏,p)𝒇(\bm{n}^{T}\bm{v}\bm{n},p)_{\bm{f}}, for pPk1(1)(𝒇)/p\in P_{k-1}^{(1)}(\bm{f})/\mathbb{R}, on each face 𝒇\bm{f} of 𝑲\bm{K};

  5. (6e).

    the moments inside 𝑲\bm{K},

    (2.17) (𝒫curlB𝑲,kcurl;𝕊𝒗,𝒫curlB𝑲,kcurl;𝕊𝜼)𝑲+(div𝒗,div𝜼)𝑲(\mathcal{P}_{\operatorname{curl}B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}}\bm{v},\mathcal{P}_{\operatorname{curl}B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}}\bm{\eta})_{\bm{K}}+(\operatorname{div}\bm{v},\operatorname{div}\bm{\eta})_{\bm{K}}

    for 𝜼B𝑲,k1div;𝕋\bm{\eta}\in B_{\bm{K},k-1}^{\operatorname{div};\mathbb{T}}. Here

    (2.18) B𝑲,k1div;𝕋:=i=030j<l3j,liλjλlPk3j,l,0(𝑲)𝒏i𝒕j,lTB_{\bm{K},k-1}^{\operatorname{div};\mathbb{T}}:=\sum_{i=0}^{3}\sum_{\begin{subarray}{c}0\leq j<l\leq 3\\ j,l\neq i\end{subarray}}\lambda_{j}\lambda_{l}P_{k-3}^{j,l,0}(\bm{K})\bm{n}_{i}\bm{t}_{j,l}^{T}

    with Pk3j,l,0(𝑲):={uPk3(𝑲):u vanishes at vertices 𝒙j,𝒙l}P_{k-3}^{j,l,0}(\bm{K}):=\{u\in P_{k-3}(\bm{K}):u\text{ vanishes at vertices }\bm{x}_{j},\bm{x}_{l}\}, and 𝒕j,l\bm{t}_{j,l} is the tangential vector of the edge connecting 𝒙j\bm{x}_{j} and 𝒙l\bm{x}_{l}.

The above degrees of freedom are unisolvent, and the resulting finite element space is

𝑽h={𝒗H(div,Ω;𝕋):𝒗|𝑲Pk1(𝑲;𝕋),𝑲𝒯;𝒗 is C1 at each vertex of 𝒯}.\bm{V}_{h}=\{\bm{v}\in H(\operatorname{div},\Omega;\mathbb{T}):\bm{v}|_{\bm{K}}\in P_{k-1}(\bm{K};\mathbb{T}),\forall\bm{K}\in\mathcal{T};\bm{v}\text{ is }C^{1}\text{ at each vertex of }\mathcal{T}\}.

The unisolvency of the H(div;𝕋)H(\operatorname{div};\mathbb{T}) conforming finite element 𝑽h\bm{V}_{h} can be proved similarly.

L2(3)L^{2}(\mathbb{R}^{3}) finite element space

For the L2L^{2} finite element space 𝑸h\bm{Q}_{h}, the shape function is taken as Pk2(K;3)P_{k-2}(K;\mathbb{R}^{3}). For 𝒗Pk2(K;3)\bm{v}\in P_{k-2}(K;\mathbb{R}^{3}), the local degrees of freedom are as follows:

  1. (7a).

    the moments in 𝑲\bm{K}, namely, (𝒒,𝒘)𝑲(\bm{q},\bm{w})_{\bm{K}} for 𝒘RT(𝑲)\bm{w}\in RT(\bm{K});

  2. (7b).

    the function value 𝒒(𝒙)\bm{q}(\bm{x}) at each vertex 𝒙\bm{x} of 𝑲\bm{K};

  3. (7c).

    the moments inside 𝑲\bm{K}, namely, (𝒒,𝒘)𝑲(\bm{q},\bm{w})_{\bm{K}} for 𝒘Pk2(0)(𝑲;3)/RT(𝑲)\bm{w}\in P_{k-2}^{(0)}(\bm{K};\mathbb{R}^{3})/RT(\bm{K}).

The above degrees of freedom are unisolvent, and the resulting finite element space is

𝑸h={𝒒L2(Ω;3):𝒒|𝑲Pk2(𝑲;3),𝑲𝒯;𝒒 is C0 at each vertex of 𝒯}.\bm{Q}_{h}=\{\bm{q}\in L^{2}(\Omega;\mathbb{R}^{3}):\bm{q}|_{\bm{K}}\in P_{k-2}(\bm{K};\mathbb{R}^{3}),\forall\bm{K}\in\mathcal{T};\bm{q}\text{ is }C^{0}\text{ at each vertex of }\mathcal{T}\}.

The main result in three dimensions is stated as follows, and the proof is in Section 3.

Theorem 2.2.

There exist operators πl\pi^{l}, l=0,1,2,3l=0,1,2,3, such that π0:H2(Ω)Uh\pi^{0}:H^{2}(\Omega)\to U_{h}, π1:H(curl,Ω;𝕊)𝚺h\pi^{1}:H(\operatorname{curl},\Omega;\mathbb{S})\to\bm{\Sigma}_{h}, π2:H(div,Ω;𝕋)𝐕h\pi^{2}:H(\operatorname{div},\Omega;\mathbb{T})\to\bm{V}_{h} and π3:L2(Ω;3)𝐐h\pi^{3}:L^{2}(\Omega;\mathbb{R}^{3})\to\bm{Q}_{h} are all projection operators, and the following diagram commutes.

(2.19) P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H2(Ω)\textstyle{H^{2}(\Omega)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π0\scriptstyle{\pi^{0}}2\scriptstyle{\nabla^{2}}H(curl,Ω;𝕊)\textstyle{H(\operatorname{curl},\Omega;\mathbb{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π1\scriptstyle{\pi^{1}}curl\scriptstyle{\operatorname{curl}}H(div;Ω;𝕋)\textstyle{H(\operatorname{div};\Omega;\mathbb{T})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}div\scriptstyle{\operatorname{div}}π2\scriptstyle{\pi^{2}}L2(Ω;3)\textstyle{L^{2}(\Omega;\mathbb{R}^{3})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π3\scriptstyle{\pi^{3}}0\textstyle{0}P1\textstyle{P_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Uh\textstyle{U_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}2\scriptstyle{\nabla^{2}}𝚺h\textstyle{\bm{\Sigma}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}curl\scriptstyle{\operatorname{curl}}𝑽h\textstyle{\bm{V}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}div\scriptstyle{\operatorname{div}}𝑸h\textstyle{\bm{Q}_{h}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0\textstyle{0}

Namely, 2π0=π12\nabla^{2}\pi^{0}=\pi^{1}\nabla^{2}, π2curl=curlπ1\pi^{2}\operatorname{curl}=\operatorname{curl}\pi^{1}, divπ2=π3div\operatorname{div}\pi^{2}=\pi^{3}\operatorname{div}, and these operators πl\pi^{l}, l=0,1,2,3,l=0,1,2,3, are locally determined. For example, the value of π0u\pi^{0}u on 𝐊\bm{K} is determined by the value of uu on ωK[1]\omega_{K}^{[1]}.

If moreover, 𝒯\mathcal{T} is shape-regular, then the projection operator is locally bounded, i.e.,

(2.20) π0uH2(𝑲)CuH2(ω𝑲[1]),π1𝝈H(curl,𝑲;𝕊)C𝝈H(curl,ω𝑲[2];𝕊),\|\pi^{0}u\|_{H^{2}(\bm{K})}\leq C\|u\|_{H^{2}(\omega_{\bm{K}}^{[1]})},\|\pi^{1}\bm{\sigma}\|_{H(\operatorname{curl},\bm{K};\mathbb{S})}\leq C\|\bm{\sigma}\|_{H(\operatorname{curl},\omega^{[2]}_{\bm{K}};\mathbb{S})},
π2𝒗H(div,𝑲;𝕋)C𝒗H(div,ω𝑲[3];𝕋),π3𝒑L2(𝑲;3)C𝒑L2(ω𝑲[3];3).\|\pi^{2}\bm{v}\|_{H(\operatorname{div},\bm{K};\mathbb{T})}\leq C\|\bm{v}\|_{H(\operatorname{div},\omega_{\bm{K}}^{[3]};\mathbb{T})},\|\pi^{3}\bm{p}\|_{L^{2}(\bm{K};\mathbb{R}^{3})}\leq C\|\bm{p}\|_{L^{2}(\omega_{\bm{K}}^{[3]};\mathbb{R}^{3})}.

Here the constant CC only depends on the shape regularity and the reference finite element. As a consequence, all the operators are globally bounded, i.e., π0\pi^{0} is H2H^{2} bounded, π1\pi^{1} is H(curl;𝕊)H(\operatorname{curl};\mathbb{S}) bounded, π2\pi^{2} is H(div;𝕋)H(\operatorname{div};\mathbb{T}) bounded, and π3\pi^{3} is L2(3)L^{2}(\mathbb{R}^{3}) bounded.

3. Proof of Theorem 2.2

This section is devoted to the proof of Theorem 2.2, which will be accomplished in several steps. The two-dimensional results are similar and will be briefly discussed in Section 4. We provide a sketch of the proof in Section 3.1, and the following sections give the detailed proof.

3.1. Sketch of the proof

Suppose that the basis functions with respect to the degrees of freedom (4a), (5a), (6a) and (7a) are

φ~𝒙,j,𝒙𝖵,φ𝒆,j,𝒆𝖤,φ𝒇,j,𝒇𝖥,φ𝑲,j,𝑲𝖪,\tilde{\varphi}_{\bm{x},j},\forall\bm{x}\in\mathsf{V},\,\,\varphi_{\bm{e},j},\forall\bm{e}\in\mathsf{E},\,\,\varphi_{\bm{f},j},\forall\bm{f}\in\mathsf{F},\,\,\varphi_{\bm{K},j},\forall\bm{K}\in\mathsf{K},

respectively. We first show that the following sequence is a complex.

Proposition 3.1.

The discrete sequence

(3.1) P1span{φ~𝒙,j,𝒙𝖵,j=0,1,2,3}2span{φ𝒆,j,𝒆𝖤,j=0,1,2,3}curlspan{φ𝒇,j,𝒇𝖥,j=0,1,2,3}divspan{φ𝑲,j,𝑲𝖪,j=0,1,2,3}0\begin{split}P_{1}\xrightarrow[]{\subset}\operatorname{span}&\{\tilde{\varphi}_{\bm{x},j^{\prime}},\bm{x}\in\mathsf{V},j^{\prime}=0,1,2,3\}\xrightarrow[]{\nabla^{2}}\operatorname{span}\{\varphi_{\bm{e},j^{\prime}},\bm{e}\in\mathsf{E},j^{\prime}=0,1,2,3\}\xrightarrow[]{\operatorname{curl}}\\ &\operatorname{span}\{\varphi_{\bm{f},j^{\prime}},\bm{f}\in\mathsf{F},j^{\prime}=0,1,2,3\}\xrightarrow[]{\operatorname{div}}\operatorname{span}\{\varphi_{\bm{K},j^{\prime}},\bm{K}\in\mathsf{K},j^{\prime}=0,1,2,3\}\xrightarrow[]{}0\end{split}

is a complex.

This will be proved in Section 3.2 below. For convenience, assume that φ𝒆,j\varphi_{\bm{e},j} is the basis function with respect to the degrees of freedom (𝝈𝐱,𝒕)𝒆(\bm{\sigma}\mathbf{x},\bm{t})_{\bm{e}} for j=0j=0, and (𝝈𝐞j,𝒕)𝒆(\bm{\sigma}\mathbf{e}_{j},\bm{t})_{\bm{e}} for j=1,2,3j=1,2,3. The basis functions φ𝒇,j\varphi_{\bm{f},j} and φ𝑲,j\varphi_{\bm{K},j} are defined similarly. By integration by parts, for 𝜶3\bm{\alpha}\in\mathbb{R}^{3}, β\beta\in\mathbb{R}, 𝒂,𝒃𝖵\bm{a},\bm{b}\in\mathsf{V} and 𝒆=[𝒂,𝒃]𝖤\bm{e}=[\bm{a},\bm{b}]\in\mathsf{E}, it holds that

(3.2) 𝒆𝒕T2u(𝜶+β𝐱)=𝒆(u)𝒕(𝜶+β𝐱)=(u(𝜶+β𝐱))|𝒂𝒃𝒆u(𝜶+β𝐱)𝒕=(u(𝒂+b𝐱))|𝒂𝒃𝒆u𝒕(𝜶+β𝐱)𝒕𝒕i=12𝒆u𝒏i(𝜶+β𝐱)𝒏i𝒕=(u(𝜶+β𝐱))|𝒂𝒃𝒆u𝒕β=(u(𝜶+β𝐱))(𝒃)(u(𝜶+β𝐱))(𝒂)+βu(𝒂)βu(𝒃).\begin{split}\int_{\bm{e}}\bm{t}^{T}\nabla^{2}u(\bm{\alpha}+\beta\mathbf{x})=&\int_{\bm{e}}\frac{\partial(\nabla u)}{\partial\bm{t}}\cdot(\bm{\alpha}+\beta\mathbf{x})\\ =&(\nabla u\cdot(\bm{\alpha}+\beta\mathbf{x}))|_{\bm{a}}^{\bm{b}}-\int_{\bm{e}}\nabla u\cdot\frac{\partial(\bm{\alpha}+\beta\mathbf{x})}{\partial\bm{t}}\\ =&(\nabla u\cdot(\bm{a}+b\mathbf{x}))|_{\bm{a}}^{\bm{b}}-\int_{\bm{e}}\frac{\partial u}{\partial\bm{t}}\frac{\partial(\bm{\alpha}+\beta\mathbf{x})\cdot\bm{t}}{\partial\bm{t}}-\sum_{i=1}^{2}\int_{\bm{e}}\frac{\partial u}{\partial\bm{n}_{i}}\frac{\partial(\bm{\alpha}+\beta\mathbf{x})\cdot\bm{n}_{i}}{\partial\bm{t}}\\ =&(\nabla u\cdot(\bm{\alpha}+\beta\mathbf{x}))|_{\bm{a}}^{\bm{b}}-\int_{\bm{e}}\frac{\partial u}{\partial\bm{t}}\beta\\ =&(\nabla u\cdot(\bm{\alpha}+\beta\mathbf{x}))(\bm{b})-(\nabla u\cdot(\bm{\alpha}+\beta\mathbf{x}))(\bm{a})+\beta u(\bm{a})-\beta u(\bm{b}).\end{split}

This motivates to define the degrees of freedom: 𝐱u(𝒙)u(𝒙)\mathbf{x}\cdot\nabla u(\bm{x})-u(\bm{x}), 𝐞1u(𝒙)\mathbf{e}_{1}\cdot\nabla u(\bm{x}), 𝐞2u(𝒙)\mathbf{e}_{2}\cdot\nabla u(\bm{x}) and 𝐞3u(𝒙)\mathbf{e}_{3}\cdot\nabla u(\bm{x}) for the space span{φ~𝒙,j:j=0,1,2,3}\operatorname{span}\{\tilde{\varphi}_{\bm{x},j}:j=0,1,2,3\}. The corresponding basis functions are then denoted as φ𝒙,0,φ𝒙,1,φ𝒙,2,φ𝒙,3\varphi_{\bm{x},0},\varphi_{\bm{x},1},\varphi_{\bm{x},2},\varphi_{\bm{x},3}, respectively. The benefit of these degrees of freedom is shown by the following lemma, indicating that the resulting basis functions are decoupled mutually.

Lemma 3.1.

For j=0,1,2,3j=0,1,2,3, the following sequence

(3.3) P1span{φ𝒙,j:𝒙𝖵}2span{φ𝒆,j:𝒆𝖤}curlspan{φ𝒇,j:𝒇𝖥}divspan{φ𝑲,j:𝑲𝖪}0\begin{split}P_{1}\xrightarrow[]{\subset}\operatorname{span}\{\varphi_{\bm{x},j}:\bm{x}\in\mathsf{V}\}\xrightarrow[]{\nabla^{2}}&\operatorname{span}\{\varphi_{\bm{e},j}:\bm{e}\in\mathsf{E}\}\xrightarrow[]{\operatorname{curl}}\\ &\operatorname{span}\{\varphi_{\bm{f},j}:\bm{f}\in\mathsf{F}\}\xrightarrow[]{\operatorname{div}}\operatorname{span}\{\varphi_{\bm{K},j}:\bm{K}\in\mathsf{K}\}\xrightarrow[]{}0\end{split}

is a complex.

Proof.

It follows from (3.2) that the Hessian of the space span{φ𝒙,j:𝒙𝖵}\operatorname{span}\{\varphi_{\bm{x},j}:\bm{x}\in\mathsf{V}\} is a subspace of the space span{φ𝒆,j:𝒆𝖤}\operatorname{span}\{\varphi_{\bm{e},j}:\bm{e}\in\mathsf{E}\}. The identities

(curlφ𝒆,j𝒏,𝐱)𝒇=(rot𝒇𝔼𝒇φ𝒆,j,E𝒇𝐱)𝒇=(φ𝒆,j𝒕,𝐱)𝒇(\operatorname{curl}\varphi_{\bm{e},j}\bm{n},\mathbf{x})_{\bm{f}}=(\operatorname{rot}_{\bm{f}}\mathbb{E}_{\bm{f}}\varphi_{\bm{e},j},E_{\bm{f}}\mathbf{x})_{\bm{f}}=(\varphi_{\bm{e},j}\bm{t},\mathbf{x})_{\partial\bm{f}}

for j=0j=0 and

(curlφ𝒆,j𝒏,𝐞j)𝒇=(rot𝒇E𝒇φ𝒆,j,𝐞j)𝒇=(φ𝒆,j𝒕,𝐞j)𝒇(\operatorname{curl}\varphi_{\bm{e},j}\bm{n},\mathbf{e}_{j})_{\bm{f}}=(\operatorname{rot}_{\bm{f}}{E}_{\bm{f}}\varphi_{\bm{e},j},\mathbf{e}_{j})_{\bm{f}}=(\varphi_{\bm{e},j}\bm{t},\mathbf{e}_{j})_{\partial\bm{f}}

for j=1,2,3j=1,2,3, together with Proposition 3.1, yield that curlφ𝒆,jspan{φ𝒇,j:𝒇𝖥}\operatorname{curl}\varphi_{\bm{e},j}\in\operatorname{span}\{\varphi_{\bm{f},j}:\bm{f}\in\mathsf{F}\}. The identities

(divφ𝒆,j,𝐱)𝑲=(φ𝒆,j,dev𝐱)𝑲+(φ𝒆,j𝒏,𝐱)𝑲=(φ𝒆,j𝒏,𝐱)𝑲(\operatorname{div}\varphi_{\bm{e},j},\mathbf{x})_{\bm{K}}=-(\varphi_{\bm{e},j},\operatorname{dev}\operatorname{\nabla}\mathbf{x})_{\bm{K}}+(\varphi_{\bm{e},j}\bm{n},\mathbf{x})_{\partial\bm{K}}=(\varphi_{\bm{e},j}\bm{n},\mathbf{x})_{\partial\bm{K}}

for k=0k=0 and

(divφ𝒆,j,𝐞j)𝑲=(φ𝒆,j,dev𝐞j)𝑲+(φ𝒆,j𝒏,𝐞j)𝑲=(φ𝒆,j𝒏,𝐞j)𝑲(\operatorname{div}\varphi_{\bm{e},j},\mathbf{e}_{j})_{\bm{K}}=-(\varphi_{\bm{e},j},\operatorname{dev}\operatorname{\nabla}\mathbf{e}_{j})_{\bm{K}}+(\varphi_{\bm{e},j}\bm{n},\mathbf{e}_{j})_{\partial\bm{K}}=(\varphi_{\bm{e},j}\bm{n},\mathbf{e}_{j})_{\partial\bm{K}}

for j=1,2,3j=1,2,3, together with Proposition 3.1, yield that divφ𝒇,jspan{φ𝑲,j:𝒇𝖥}\operatorname{div}\varphi_{\bm{f},j}\in\operatorname{span}\{\varphi_{\bm{K},j}:\bm{f}\in\mathsf{F}\}. Here dev𝝃:=𝝃13tr(𝝃)I\operatorname{dev}\bm{\xi}:=\bm{\xi}-\frac{1}{3}\operatorname{tr}(\bm{\xi})I takes the traceless part for a matrix-valued function 𝝃\bm{\xi}. A summary of the above arguments completes the proof. ∎

The motivation for extracting the skeletal complex is to treat the local bounded commuting projection to each component separately. To prove the following proposition, we rely heavily on the structure of the gradgrad complex, as discussed in Section 3.3 below.

Proposition 3.2.

There exist weights z𝐱,jL2(ω𝐱)z_{\bm{x},j}\in L^{2}(\omega_{\bm{x}}) for 𝐱𝖵\bm{x}\in\mathsf{V}, z𝐞,jL2(ω𝐞h;𝕊)z_{\bm{e},j}\in L^{2}(\omega_{\bm{e}}^{h};\mathbb{S}) for 𝐞𝖤\bm{e}\in\mathsf{E}, z𝐟,jL2(ω𝐟h;𝕋)z_{\bm{f},j}\in L^{2}(\omega_{\bm{f}}^{h};\mathbb{T}) for 𝐟𝖥\bm{f}\in\mathsf{F}, and z𝐊,jL2(ω𝐊h;3)z_{\bm{K},j}\in L^{2}(\omega_{\bm{K}}^{h};\mathbb{R}^{3}) for 𝐊𝖪\bm{K}\in\mathsf{K}, for j=0,1,2,3j=0,1,2,3, such that:

  1. (1)

    For uUh(ω𝒙)u\in U_{h}(\omega_{\bm{x}}), it holds that

    (u,z𝒙,0)ω𝒙=(𝐱u)(𝒙)u(𝒙),(u,z𝒙,1)ω𝒙=xu(𝒙),(u,z_{\bm{x},0})_{\omega_{\bm{x}}}=(\mathbf{x}\cdot\nabla u)(\bm{x})-u(\bm{x}),(u,z_{\bm{x},1})_{\omega_{\bm{x}}}=\frac{\partial}{\partial x}u(\bm{x}),
    (u,z𝒙,2)ω𝒙=yu(𝒙), and (u,z𝒙,3)ω𝒙=zu(𝒙).(u,z_{\bm{x},2})_{\omega_{\bm{x}}}=\frac{\partial}{\partial y}u(\bm{x}),\text{ and }(u,z_{\bm{x},3})_{\omega_{\bm{x}}}=\frac{\partial}{\partial z}u(\bm{x}).
  2. (2)

    For each jj, let

    j0u=𝒙(u,z𝒙,j)ω𝒙φ𝒙,j,j1𝝈=𝒙(𝝈,z𝒆,j)ωehφ𝒆,j,\mathcal{M}^{0}_{j}u=\sum_{\bm{x}}(u,z_{\bm{x},j})_{\omega_{\bm{x}}}\varphi_{\bm{x},j},\mathcal{M}^{1}_{j}\bm{\sigma}=\sum_{\bm{x}}(\bm{\sigma},z_{\bm{e},j})_{\omega_{e}^{h}}\varphi_{\bm{e},j},
    j2𝒗=𝒇(𝒗,z𝒇,j)ω𝒇hφ𝒇,j, and j3𝒒=𝑲(𝒒,z𝑲,j)ω𝑲hφ𝑲,j\mathcal{M}^{2}_{j}\bm{v}=\sum_{\bm{f}}(\bm{v},z_{\bm{f},j})_{\omega_{\bm{f}}^{h}}\varphi_{\bm{f},j},\text{ and }\mathcal{M}^{3}_{j}\bm{q}=\sum_{\bm{K}}(\bm{q},z_{\bm{K},j})_{\omega_{\bm{K}}^{h}}\varphi_{\bm{K},j}

    for uL2(Ω),𝝈L2(Ω;𝕊),𝒗L2(Ω;𝕋),𝒒L2(Ω;3)u\in L^{2}(\Omega),\bm{\sigma}\in L^{2}(\Omega;\mathbb{S}),\bm{v}\in L^{2}(\Omega;\mathbb{T}),\bm{q}\in L^{2}(\Omega;\mathbb{R}^{3}), respectively, then for uH2(Ω),𝝈H(curl,Ω;𝕊),𝒗H(div,Ω;𝕋)u\in H^{2}(\Omega),\bm{\sigma}\in H(\operatorname{curl},\Omega;\mathbb{S}),\bm{v}\in H(\operatorname{div},\Omega;\mathbb{T}), it holds that

    j12u=2j0u,j2curl𝝈=curlj1𝝈,j3div𝒗=divj2𝒗\mathcal{M}^{1}_{j}\nabla^{2}u=\nabla^{2}\mathcal{M}^{0}_{j}u,\mathcal{M}^{2}_{j}\operatorname{curl}\bm{\sigma}=\operatorname{curl}\mathcal{M}^{1}_{j}\bm{\sigma},\mathcal{M}^{3}_{j}\operatorname{div}\bm{v}=\operatorname{div}\mathcal{M}^{2}_{j}\bm{v}

    for j=0,1,2,3j=0,1,2,3.

As a result, define l=j=03jl\mathcal{M}^{l}=\sum_{j=0}^{3}\mathcal{M}^{l}_{j}, l=0,1,2,3l=0,1,2,3. Then it holds that 12u=20u\mathcal{M}^{1}\nabla^{2}u=\nabla^{2}\mathcal{M}^{0}u, 2rot𝛔=rot1𝛔\mathcal{M}^{2}\operatorname{rot}\bm{\sigma}=\operatorname{rot}\mathcal{M}^{1}\bm{\sigma} and 3div𝐯=div2𝐯.\mathcal{M}^{3}\operatorname{div}\bm{v}=\operatorname{div}\mathcal{M}^{2}\bm{v}. Moreover, 0\mathcal{M}^{0} is a projection operator from L2(Ω)L^{2}(\Omega) to span{φ𝐱,j,𝐱𝖵,j=0,1,2,3}\operatorname{span}\{\varphi_{\bm{x},j^{\prime}},\bm{x}\in\mathsf{V},j^{\prime}=0,1,2,3\}.

The proof will be presented in Section 3.3.

Remark 3.1.

Here 𝒙,𝒆,𝒇\sum_{\bm{x}},\sum_{\bm{e}},\sum_{\bm{f}} and 𝑲\sum_{\bm{K}} are the abbreviations of 𝒙𝖵\sum_{\bm{x}\in\mathsf{V}}, 𝒆𝖤\sum_{\bm{e}\in\mathsf{E}}, 𝒇𝖥\sum_{\bm{f}\in\mathsf{F}}, 𝑲𝖪\sum_{\bm{K}\in\mathsf{K}}, respectively.

On the other hand, once the projection operators for the skeletal complex are constructed, then the other imposed degrees of freedom can be treated in a rather systematic approach, which only requires the exactness of the finite element gradgrad complex. The complete proof is displayed in Section 3.4.

3.2. Proof of Proposition 3.1

This subsection proves Proposition 3.1. To this end, consider the following bubble complexes on subsimplices: on edge 𝒆\bm{e}, the bubble complex is

(3.4) 0(λ0λ1)5Pk8(𝒆)d2/d𝒕2(λ0λ1)3Pk6(𝒆)/P1(𝒆)0,0\xrightarrow{}(\lambda_{0}\lambda_{1})^{5}P_{k-8}(\bm{e})\xrightarrow[]{d^{2}/d\bm{t}^{2}}(\lambda_{0}\lambda_{1})^{3}P_{k-6}(\bm{e})/P_{1}(\bm{e})\xrightarrow{}0,

and

(3.5) 0(λ0λ1)4Pk7(𝒆)d/d𝒕(λ0λ1)3Pk6(e)/P0(e)0;0\xrightarrow{}(\lambda_{0}\lambda_{1})^{4}P_{k-7}(\bm{e})\xrightarrow[]{d/d\bm{t}}(\lambda_{0}\lambda_{1})^{3}P_{k-6}({e})/P_{0}({e})\xrightarrow{}0;

on face 𝒇\bm{f}, the bubble complex is

(3.6) 0(λ0λ1λ2)3Pk7(𝒇)𝒇2(λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2)rot𝒇Pk1(1)(𝒇;2)/RT(𝒇)0,0\xrightarrow{}(\lambda_{0}\lambda_{1}\lambda_{2})^{3}P_{k-7}(\bm{f})\xrightarrow[]{\nabla^{2}_{\bm{f}}}(\lambda_{0}\lambda_{1}\lambda_{2})P^{(0)}_{k-3}(\bm{f};\mathbb{S}_{2\times 2})\xrightarrow[]{\operatorname{rot}_{\bm{f}}}P_{k-1}^{(1)}(\bm{f};\mathbb{R}^{2})/RT(\bm{f})\xrightarrow{}0,

and

(3.7) 0(λ0λ1λ2)2Pk5(𝒇)𝒇(λ0λ1λ2)Pk3(0)(𝒇;2)rot𝒇Pk1(1)(𝒇)/0;0\xrightarrow{}(\lambda_{0}\lambda_{1}\lambda_{2})^{2}P_{k-5}(\bm{f})\xrightarrow[]{\nabla_{\bm{f}}}(\lambda_{0}\lambda_{1}\lambda_{2})P^{(0)}_{k-3}(\bm{f};\mathbb{R}^{2})\xrightarrow[]{\operatorname{rot}_{\bm{f}}}P_{k-1}^{(1)}(\bm{f})/\mathbb{R}\xrightarrow{}0;

in element 𝑲\bm{K}, the bubble complex is

(3.8) 0(λ0λ1λ2λ3)2Pk6(𝑲)2B𝑲,kcurl;𝕊curlB𝑲,k1div;𝕋divPk2(0)(𝑲;3)/RT(𝑲)0.0\xrightarrow{}(\lambda_{0}\lambda_{1}\lambda_{2}\lambda_{3})^{2}P_{k-6}(\bm{K})\xrightarrow[]{\nabla^{2}}B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}\xrightarrow[]{\operatorname{curl}}B_{\bm{K},k-1}^{\operatorname{div};\mathbb{T}}\xrightarrow[]{\operatorname{div}}P_{k-2}^{(0)}(\bm{K};\mathbb{R}^{3})/RT(\bm{K})\xrightarrow{}0.

Here the space Pk3(0)P^{(0)}_{k-3} is defined in (2.15), the space Pk1(1)P_{k-1}^{(1)} is defined in (2.16), the space B𝑲,kcurl;𝕊B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}} is defined in (2.14) and the space B𝑲,k1div;𝕋B_{\bm{K},k-1}^{\operatorname{div};\mathbb{T}} is defined in (2.18), respectively. In what follows, the exactness of the above bubble complexes will be proved.

Lemma 3.2.

The polynomial sequences (3.4) and (3.5) are exact complexes.

Proof.

Suppose that u(λ0λ1)5Pk8(𝒆)u\in(\lambda_{0}\lambda_{1})^{5}P_{k-8}(\bm{e}), clearly u′′:=2u/𝒕2(λ0λ1)3Pk6(𝒆)u^{\prime\prime}:=\partial^{2}u/\partial\bm{t}^{2}\in(\lambda_{0}\lambda_{1})^{3}P_{k-6}(\bm{e}), it then suffices to show that eu′′q=0\int_{e}u^{\prime\prime}q=0 for all qP1(𝒆)q\in P_{1}(\bm{e}). A simple calculation yields that eu′′q=uq′′=0.\int_{e}u^{\prime\prime}q=\int uq^{\prime\prime}=0. Since dimPk8(𝒆)=dimPk6(𝒆)dimP1(𝒆)\dim P_{k-8}(\bm{e})=\dim P_{k-6}(\bm{e})-\dim P_{1}(\bm{e}), it then follows that (3.4) is exact. Similarly, it is not difficult to show that (3.5) is also exact. ∎

As for the face bubble complex, first show that (3.7) is an exact complex.

Lemma 3.3.

Suppose that k7k\geq 7, then (3.7) is an exact complex.

Proof.

Suppose that u=(λ0λ1λ2)2u1u=(\lambda_{0}\lambda_{1}\lambda_{2})^{2}u_{1} for some u1Pk5(𝒇)u_{1}\in P_{k-5}(\bm{f}). Then

𝒇u=(λ0λ1λ2)(iλi+1λi+2u1𝒇λi+λ0λ1λ2𝒇u1),\nabla_{\bm{f}}u=(\lambda_{0}\lambda_{1}\lambda_{2})(\sum_{i}\lambda_{i+1}\lambda_{i+2}u_{1}\nabla_{\bm{f}}\lambda_{i}+\lambda_{0}\lambda_{1}\lambda_{2}\nabla_{\bm{f}}u_{1}),

clearly, (iλi+1λi+2u1𝒇λi+λ0λ1λ2𝒇u1)Pk3(0)(𝒇;2).(\sum_{i}\lambda_{i+1}\lambda_{i+2}u_{1}\nabla_{\bm{f}}\lambda_{i}+\lambda_{0}\lambda_{1}\lambda_{2}\nabla_{\bm{f}}u_{1})\in P_{k-3}^{(0)}(\bm{f};\mathbb{R}^{2}).

Now suppose that 𝒘=(λ0λ1λ2)𝒘1\bm{w}=(\lambda_{0}\lambda_{1}\lambda_{2})\bm{w}_{1} with 𝒘1Pk3(0)(𝒇;2)\bm{w}_{1}\in P_{k-3}^{(0)}(\bm{f};\mathbb{R}^{2}). Then

rot𝒇𝒘=curl𝒇(λ0λ1λ2)𝒘1+(λ0λ1λ2)rot𝒇𝒘1.\operatorname{rot}_{\bm{f}}\bm{w}=\operatorname{curl}_{\bm{f}}(\lambda_{0}\lambda_{1}\lambda_{2})\cdot\bm{w}_{1}+(\lambda_{0}\lambda_{1}\lambda_{2})\operatorname{rot}_{\bm{f}}\bm{w}_{1}.

To prove that rot𝒇𝒘Pk1(1)(𝒇)\operatorname{rot}_{\bm{f}}\bm{w}\in P_{k-1}^{(1)}(\bm{f}), it suffices to show curl𝒇(λ0λ1λ2)𝒘1Pk1(1)(𝒇)\operatorname{curl}_{\bm{f}}(\lambda_{0}\lambda_{1}\lambda_{2})\cdot\bm{w}_{1}\in P_{k-1}^{(1)}(\bm{f}) since (λ0λ1λ2)(\lambda_{0}\lambda_{1}\lambda_{2}) is already in Pk1(1)(𝒇)P_{k-1}^{(1)}(\bm{f}). Indeed, this comes from the fact that curl𝒇(λ0λ1λ2)P2(0)(𝒇;2)\operatorname{curl}_{\bm{f}}(\lambda_{0}\lambda_{1}\lambda_{2})\in P_{2}^{(0)}(\bm{f};\mathbb{R}^{2}), and 𝒘1Pk3(0)(𝒇)\bm{w}_{1}\in P_{k-3}^{(0)}(\bm{f}) that their product is in Pk1(1)(𝒇)P_{k-1}^{(1)}(\bm{f}). Moreover, frot𝒇𝒘=f𝒘𝒕=0\int_{f}\operatorname{rot}_{\bm{f}}\bm{w}=\int_{\partial f}\bm{w}\cdot\bm{t}=0. Consequently, (3.7) is a complex.

Since

dimPk5(𝒇)+dimPk1(1)(𝒇)1=12(k4)(k3)+12(k)(k+1)91=k23k4=(k2)(k1)2×3=2dimPk3(0)(𝒇),\begin{split}\dim P_{k-5}(\bm{f})+\dim P_{k-1}^{(1)}(\bm{f})-1=&\frac{1}{2}(k-4)(k-3)+\frac{1}{2}(k)(k+1)-9-1\\ =&k^{2}-3k-4=(k-2)(k-1)-2\times 3\\ =&2\dim P_{k-3}^{(0)}(\bm{f}),\end{split}

it remains to show that if 𝝃(λ0λ1λ2)Pk3(0)(𝒇;2)\bm{\xi}\in(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{R}^{2}) such that rot𝒇𝝃=0\operatorname{rot}_{\bm{f}}\bm{\xi}=0, then there exists u(λ0λ1λ2)2Pk5(𝒇)u\in(\lambda_{0}\lambda_{1}\lambda_{2})^{2}P_{k-5}(\bm{f}) such that 𝝃=𝒇u\bm{\xi}=\operatorname{\nabla}_{\bm{f}}u. By the exactness of the polynomial complex, there exists uPk1(𝒇)u\in P_{k-1}(\bm{f}) such that 𝝃=𝒇u\bm{\xi}=\operatorname{\nabla}_{\bm{f}}u. Assume that u(𝒙)=0u(\bm{x})=0 for some vertex 𝒙\bm{x} of 𝒇\bm{f}. Since 𝒇u=𝝃\operatorname{\nabla}_{\bm{f}}u=\bm{\xi} vanishes on the boundary, it then indicates that uu vanishes on the boundary. Therefore, it holds that u(λ0λ1λ2)2Pk5(𝒇)u\in(\lambda_{0}\lambda_{1}\lambda_{2})^{2}P_{k-5}(\bm{f}), which completes the proof. ∎

Lemma 3.4.

Suppose that k7k\geq 7, then (3.6) is an exact complex.

Proof.

Suppose that u=(λ0λ1λ2)3u1u=(\lambda_{0}\lambda_{1}\lambda_{2})^{3}u_{1} with u1Pk7(𝒇)u_{1}\in P_{k-7}(\bm{f}). Then

𝒇2u=b𝒇{6𝒇b𝒇(𝒇b𝒇)Tu1+3b𝒇𝒇2b𝒇u1+3b𝒇[(𝒇b𝒇)(𝒇u)T+(𝒇u)(𝒇b𝒇)T]+b𝒇2𝒇2u},\nabla^{2}_{\bm{f}}u=b_{\bm{f}}\big{\{}6\operatorname{\nabla}_{\bm{f}}b_{\bm{f}}(\operatorname{\nabla}_{\bm{f}}b_{\bm{f}})^{T}u_{1}+3b_{\bm{f}}\nabla^{2}_{\bm{f}}b_{\bm{f}}u_{1}+3b_{\bm{f}}[(\operatorname{\nabla}_{\bm{f}}b_{\bm{f}})(\operatorname{\nabla}_{\bm{f}}u)^{T}+(\operatorname{\nabla}_{\bm{f}}u)(\operatorname{\nabla}_{\bm{f}}b_{\bm{f}})^{T}]+b_{\bm{f}}^{2}\nabla^{2}_{\bm{f}}u\big{\}},

where b𝒇=λ0λ1λ2b_{\bm{f}}=\lambda_{0}\lambda_{1}\lambda_{2}. Clearly it holds that 𝒇2u(λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2)\nabla^{2}_{\bm{f}}u\in(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2}).

Suppose that 𝝈=(λ0λ1λ2)𝝈1\bm{\sigma}=(\lambda_{0}\lambda_{1}\lambda_{2})\bm{\sigma}_{1}, where 𝝈1Pk3(0)(𝒇;𝕊2×2),\bm{\sigma}_{1}\in P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2}), then

rot𝒇𝝈=𝝈1curl(λ0λ1λ2)+(λ0λ1λ2)rot𝒇𝝈1.\operatorname{rot}_{\bm{f}}\bm{\sigma}=\bm{\sigma}_{1}\cdot\operatorname{curl}(\lambda_{0}\lambda_{1}\lambda_{2})+(\lambda_{0}\lambda_{1}\lambda_{2})\operatorname{rot}_{\bm{f}}\bm{\sigma}_{1}.

A similar argument shows that 𝝈1Pk3(0)(𝒇;𝕊2×2)\bm{\sigma}_{1}\in P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2}) implies rot𝒇𝝈Pk1(1)(𝒇;2)\operatorname{rot}_{\bm{f}}\bm{\sigma}\in P_{k-1}^{(1)}(\bm{f};\mathbb{R}^{2}). For 𝝃RT(𝒇)\bm{\xi}\in{RT}(\bm{f}), it follows from symcurl𝒇𝝃=0\operatorname{sym}\operatorname{curl}_{\bm{f}}\bm{\xi}=0 that frot𝒇𝝈𝝃=f𝝈symcurl𝒇𝝃=0\int_{f}\operatorname{rot}_{\bm{f}}\bm{\sigma}\cdot\bm{\xi}=\int_{f}\bm{\sigma}\cdot\operatorname{sym}\operatorname{curl}_{\bm{f}}\bm{\xi}=0.

Since

(3.9) dimPk7(𝒇)+2(dimPk1(1)(𝒇))3=12(k6)(k5)+22k(k+1)21=12(3k29k12)=3(12(k2)(k1)3)=3dimPk3(0)(𝒇),\begin{split}\dim P_{k-7}(\bm{f})+2(\dim P_{k-1}^{(1)}(\bm{f}))-3=&\frac{1}{2}(k-6)(k-5)+\frac{2}{2}k(k+1)-21\\ =&\frac{1}{2}(3k^{2}-9k-12)=3(\frac{1}{2}(k-2)(k-1)-3)\\ =&3\dim P_{k-3}^{(0)}(\bm{f}),\end{split}

it remains to show that if 𝝈(λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2)\bm{\sigma}\in(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2}), such that rot𝒇𝝈=0\operatorname{rot}_{\bm{f}}\bm{\sigma}=0, then there exists u(λ0λ1λ2)3Pk7(𝒇)u\in(\lambda_{0}\lambda_{1}\lambda_{2})^{3}P_{k-7}(\bm{f}) with 𝝈=𝒇2u\bm{\sigma}=\nabla^{2}_{\bm{f}}u. By the exactness of the polynomial complex, such that uu can be found in Pk+2(𝒇)P_{k+2}(\bm{f}). Moreover, assume that u(𝒙)=0u(\bm{x})=0 and 𝒇u(𝒙)=0\operatorname{\nabla}_{\bm{f}}u(\bm{x})=0 at some vertex 𝒙\bm{x} of 𝒇\bm{f}. Since 𝒇2u\nabla_{\bm{f}}^{2}u vanishes on 𝒇\partial\bm{f}, it then implies that 𝒇u\operatorname{\nabla}_{\bm{f}}u and uu vanish on 𝒇\partial\bm{f}. It then concludes that (3.6) is an exact sequence. ∎

Lastly, we prove the exactness of the sequence in (3.8).

Lemma 3.5.

Suppose that k7k\geq 7, then the sequence in (3.8) is an exact complex.

Proof.

First, it follows from [12, Theorem 4.8], the operator

div:B𝑲,k1div;𝕋Pk2(0)(𝑲;3)/RT(𝑲)\operatorname{div}:B_{\bm{K},k-1}^{\operatorname{div};\mathbb{T}}\rightarrow P_{k-2}^{(0)}(\bm{K};\mathbb{R}^{3})/RT(\bm{K})

is surjective. For any 𝝈B𝑲,kcurl;𝕊\bm{\sigma}\in B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}} with curl𝝈=0\operatorname{curl}\bm{\sigma}=0, by the exactness of the polynomial complex, there exists a uPk+2(𝑲)u\in P_{k+2}(\bm{K}) such that 2u=𝝈\nabla^{2}u=\bm{\sigma}. Moreover, assume that u(𝒙)u(\bm{x}) and u(𝒙)\nabla u(\bm{x}) vanish at the given vertex 𝒙\bm{x} of 𝑲\bm{K}. Then since 2u×𝒏=𝝈×𝒏\nabla^{2}u\times\bm{n}=\bm{\sigma}\times\bm{n} vanishes on all faces of 𝑲\bm{K}, it follows that uu and u\nabla u vanish on all the faces of 𝑲\bm{K}, which implies u(λ0λ1λ2λ3)2Pk6(𝑲)u\in(\lambda_{0}\lambda_{1}\lambda_{2}\lambda_{3})^{2}P_{k-6}(\bm{K}).

Finally, it suffices to check the dimensions. Note that

dim(λ0λ1λ2λ3)2Pk6(𝑲)=16(k5)(k4)(k3),\dim(\lambda_{0}\lambda_{1}\lambda_{2}\lambda_{3})^{2}P_{k-6}(\bm{K})=\frac{1}{6}(k-5)(k-4)(k-3),

and

dimPk2(0)(𝑲;3)/RT(𝑲)=3(16(k1)k(k+1)4)4.\dim P_{k-2}^{(0)}(\bm{K};\mathbb{R}^{3})/{RT}(\bm{K})=3(\frac{1}{6}(k-1)k(k+1)-4)-4.

It follows from [12, Section 3.2] that

dimB𝑲,kcurl;𝕊=k34k2+5k14,\dim B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}=k^{3}-4k^{2}+5k-14,

and from [12, Section 4.2] that

dimB𝑲,k1div;𝕋=(4k36k210k60)/3.\dim B_{\bm{K},k-1}^{\operatorname{div};\mathbb{T}}=(4k^{3}-6k^{2}-10k-60)/3.

By a direct calculation, it holds that

dim(λ0λ1λ2λ3)2Pk6(𝑲)dimB𝑲,kcurl,𝕊+dimB𝑲,k1div;𝕋dimPk2(0)(𝑲;3)/RT(𝑲)=0.\operatorname{dim}(\lambda_{0}\lambda_{1}\lambda_{2}\lambda_{3})^{2}P_{k-6}(\bm{K})-\operatorname{dim}B_{\bm{K},k}^{\operatorname{curl},\mathbb{S}}+\operatorname{dim}B_{\bm{K},k-1}^{\operatorname{div};\mathbb{T}}-\operatorname{dim}P_{k-2}^{(0)}(\bm{K};\mathbb{R}^{3})/{RT}(\bm{K})=0.

Hence, the bubble complex (3.8) is exact. ∎

Now, it is ready to prove Proposition 3.1.

Proof of Proposition 3.1.

The proof is separated into three parts.

Step 1.

Suppose that uUhu\in U_{h} vanishes at all but the first set of degrees of freedom (4a) of the H2H^{2} conforming finite element space UhU_{h}, set 𝝈=2u\bm{\sigma}=\nabla^{2}u. Clearly, 𝝈\bm{\sigma} vanishes at the second and the fifth sets of the degrees of freedom for the H(curl;𝕊)H(\operatorname{curl};\mathbb{S}) conforming finite element space Σh\Sigma_{h}, namely, (5b) and (5e). To show that 𝝈\bm{\sigma} vanishes at the third set of degrees of freedom (5c), it suffices to notice that from the exactness of (3.4), for p(λ0λ1)3Pk6(𝒆)/P1(𝒆)p\in(\lambda_{0}\lambda_{1})^{3}P_{k-6}(\bm{e})/P_{1}(\bm{e}), there exists b(λ0λ1)5Pk8(𝒆)b\in(\lambda_{0}\lambda_{1})^{5}P_{k-8}(\bm{e}) such that b=pb^{\prime\prime}=p. Then the third set of degrees of freedom of the H2H^{2} conforming finite element space, namely, (4c) implies that 𝝈\bm{\sigma} vanishes at (5c). Similarly, the exactness of (3.5) and the fact that uu vanishes at (4d) indicate that 𝝈\bm{\sigma} vanishes at (5d).

It remains to show that 𝝈\bm{\sigma} vanishes at (5f), (5g) and (5h), whose arguments are similar to each other. Take (5f) as an example. From the exactness of the face bubble complex (3.6), it holds that for 𝜼(λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2)\bm{\eta}\in(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2}), there exists

pB𝒇,k72 such that 2𝒇p=𝒫2𝒇B𝒇,k72𝜼.p\in B_{\bm{f},k-7}^{2}\text{ such that }\nabla^{2}_{\bm{f}}p=\mathcal{P}_{\nabla^{2}_{\bm{f}}B_{\bm{f},k-7}^{2}}\bm{\eta}.

Since 𝔼𝒇𝝈=2𝒇u\mathbb{E}_{\bm{f}}\bm{\sigma}=\nabla^{2}_{\bm{f}}u, the inner product (2.11) now becomes (2𝒇u,2𝒇p)𝒇=0(\nabla^{2}_{\bm{f}}u,\nabla^{2}_{\bm{f}}p)_{\bm{f}}=0. Similarly, it can be shown that 𝝈\bm{\sigma} vanishes at (5g) and (5h). In summary, 𝝈\bm{\sigma} vanishes at all degrees of freedom of the H(curl;𝕊)H(\operatorname{curl};\mathbb{S}) conforming finite element space 𝚺h\bm{\Sigma}_{h} but (5a).

Step 2.

Suppose that 𝝈𝚺h\bm{\sigma}\in\bm{\Sigma}_{h} vanishes at all but the first set of degrees of freedom (5a) of 𝚺h\bm{\Sigma}_{h}. Set 𝒗=curl𝝈\bm{v}=\operatorname{curl}\bm{\sigma}, and clearly 𝒗\bm{v} vanishes at (6b). The rest of verification is based on the vector identities

E𝒇(curl𝝈𝒏)=rot𝒇𝔼𝒇𝝈, and 𝒏Tcurl𝝈𝒏=rot𝒇E𝒇(𝝈𝒏),E_{\bm{f}}(\operatorname{curl}\bm{\sigma}\bm{n})=\operatorname{rot}_{\bm{f}}\mathbb{E}_{\bm{f}}\bm{\sigma},\text{ and }\bm{n}^{T}\operatorname{curl}\bm{\sigma}\bm{n}=\operatorname{rot}_{\bm{f}}E_{\bm{f}}(\bm{\sigma}\bm{n}),

and the exactness of (3.6) and (3.7). To show that 𝒗\bm{v} vanishes at (6c), it suffices to notice that by the exactness of (3.6), for 𝒘Pk1(1)(𝒇;2)/RT(𝒇)\bm{w}\in P_{k-1}^{(1)}(\bm{f};\mathbb{R}^{2})/RT(\bm{f}) there exists a function

𝜼(λ0λ1λ2)Pk3(0)(𝒇;𝕊2×2)/2𝒇B𝒇,k72 such that rot𝒇𝜼=𝒘.\bm{\eta}\in(\lambda_{0}\lambda_{1}\lambda_{2})P_{k-3}^{(0)}(\bm{f};\mathbb{S}_{2\times 2})/\nabla^{2}_{\bm{f}}B_{\bm{f},k-7}^{2}\text{ such that }\operatorname{rot}_{\bm{f}}\bm{\eta}=\bm{w}.

As a result,

(E𝒇(𝒗𝒏),𝒘)𝒇=(rot𝒇𝔼𝒇𝝈,rot𝒇𝜼)=(rot𝒇𝔼𝒇𝝈,rot𝒇𝜼)+(𝒫2𝒇B𝒇,k72𝔼𝒇𝝈,𝒫2𝒇B𝒇,k72𝜼)𝒇.(E_{\bm{f}}(\bm{v}\bm{n}),\bm{w})_{\bm{f}}=(\operatorname{rot}_{\bm{f}}\mathbb{E}_{\bm{f}}\bm{\sigma},\operatorname{rot}_{\bm{f}}\bm{\eta})=(\operatorname{rot}_{\bm{f}}\mathbb{E}_{\bm{f}}\bm{\sigma},\operatorname{rot}_{\bm{f}}\bm{\eta})+(\mathcal{P}_{\nabla^{2}_{\bm{f}}B_{\bm{f},k-7}^{2}}\mathbb{E}_{\bm{f}}\bm{\sigma},\mathcal{P}_{\nabla^{2}_{\bm{f}}B_{\bm{f},k-7}^{2}}\bm{\eta})_{\bm{f}}.

Then it follows from (5f) that 𝒗\bm{v} vanishes at (6c). A similar argument can show that 𝒗\bm{v} vanishes at (6d) and (6e).

Step 3.

Finally, suppose that 𝒗𝑽h\bm{v}\in\bm{V}_{h} vanishes at all but the first set of degrees of freedom (6a) of 𝑽h\bm{V}_{h}, set 𝒒=div𝒗\bm{q}=\operatorname{div}\bm{v}. Clearly, 𝒒\bm{q} vanishes at (7b). To show it also vanishes at (7c), note that the exactness of (3.8) indicates that for 𝒑Pk2(0)(𝑲;3)/RT(𝑲)\bm{p}\in P_{k-2}^{(0)}(\bm{K};\mathbb{R}^{3})/RT(\bm{K}) there exists 𝝃B𝑲,k1div;𝕋/curlB𝑲,k1curl,𝕊\bm{\xi}\in B_{\bm{K},k-1}^{\operatorname{div};\mathbb{T}}/\operatorname{curl}B_{\bm{K},k-1}^{\operatorname{curl},\mathbb{S}} such that div𝝃=𝒑\operatorname{div}\bm{\xi}=\bm{p}. Consequently,

(𝒒,𝒑)𝑲=(div𝒗,div𝝃)𝑲=(div𝒗,div𝝃)𝑲+(𝒫curlB𝑲,kcurl;𝕊𝒗,𝒫curlB𝑲,kcurl;𝕊𝝃)𝑲.(\bm{q},\bm{p})_{\bm{K}}=(\operatorname{div}\bm{v},\operatorname{div}\bm{\xi})_{\bm{K}}=(\operatorname{div}\bm{v},\operatorname{div}\bm{\xi})_{\bm{K}}+(\mathcal{P}_{\operatorname{curl}B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}}\bm{v},\mathcal{P}_{\operatorname{curl}B_{\bm{K},k}^{\operatorname{curl};\mathbb{S}}}\bm{\xi})_{\bm{K}}.

Therefore, (6e) implies that 𝒒\bm{q} vanishes at (7c), which completes the proof. ∎

3.3. Proof of Proposition 3.2

This subsection is the most technical part of this paper. Several constructions of such weight functions like zσ,jz_{\sigma,j} herein of the de Rham case were proposed in the literature. For example, Falk and Winther [11] used the double complex structure on their construction. This is later extended to the more general cases including other discrete de Rham subcomplexes, see [13]. However, the approach therein is not suitable for the following construction, since it requires a special finite element dual complex (in our context, div-div complex) with homogeneous boundary conditions. Here we extend the construction of Arnold and Guzmán [2] to the finite element gradgrad complex.

Recall the following lemma from [16, Theorem 3.1], which asserts the existence of the Bogovskii-like operators for the divdiv complex.

Lemma 3.6.

The following results hold for a contractible Lipschitz domain ω\omega and a positive integer ss.

  1. (1)

    Suppose that pH0s(ω)p\in H_{0}^{s}(\omega) such that pP1(ω)p\perp P_{1}(\omega), then there exists 𝝈H0s+2(ω;𝕊)\bm{\sigma}\in H_{0}^{s+2}(\omega;\mathbb{S}) such that divdiv𝝈=p\operatorname{div}\operatorname{div}\bm{\sigma}=p.

  2. (2)

    Suppose that 𝝈H0s(ω;𝕊)\bm{\sigma}\in H_{0}^{s}(\omega;\mathbb{S}) such that divdiv𝝈=0\operatorname{div}\operatorname{div}\bm{\sigma}=0, then there exists 𝒗H0s+1(ω;𝕋)\bm{v}\in H_{0}^{s+1}(\omega;\mathbb{T}) such that symcurl𝒗=𝝈\operatorname{sym}\operatorname{curl}\bm{v}=\bm{\sigma}.

  3. (3)

    Suppose that 𝒗H0s(ω;𝕋)\bm{v}\in H_{0}^{s}(\omega;\mathbb{T}) such that symcurl𝒗=0\operatorname{sym}\operatorname{curl}\bm{v}=0, then there exists 𝒖H0s+1(ω;3)\bm{u}\in H_{0}^{s+1}(\omega;\mathbb{R}^{3}) such that 𝒗=dev𝒖.\bm{v}=\operatorname{dev}\operatorname{\nabla}\bm{u}.

Here, the required higher regularity is a must in the sense that the trace of these Sobolev spaces can be defined locally, which is crucial in the following construction, see Remark 3.2.

The operators jl\mathcal{M}_{j}^{l}, j,l=0,1,2,3j,l=0,1,2,3, are constructed sequentially.

Construction of j0\mathcal{M}_{j}^{0}

The first step of the construction is to construct the weight functions z𝒙,jz_{\bm{x},j} for j=0,1,2,3j=0,1,2,3, and 𝒙𝖵\bm{x}\in\mathsf{V}. Let W𝒙,jH05(ω𝒙),j=0,1,2,3W_{\bm{x},j}\in H_{0}^{5}(\omega_{\bm{x}}),j=0,1,2,3, be the function such that

(W𝒙,0,p)ω𝒙=(𝐱p)(𝒙)p(𝒙),pP1(ω𝒙),(W_{\bm{x},0},p)_{\omega_{\bm{x}}}=(\mathbf{x}\cdot\nabla p)(\bm{x})-p(\bm{x}),\quad\forall p\in P_{1}(\omega_{\bm{x}}),

and

(W𝒙,j,p)ω𝒙=𝐞jp(𝒙),pP1(ω𝒙), for j=1,2,3.(W_{\bm{x},j},p)_{\omega_{\bm{x}}}=\mathbf{e}_{j}\cdot\nabla p(\bm{x}),\quad\forall p\in P_{1}(\omega_{\bm{x}}),\text{ for }j=1,2,3.

Indeed, define bH01(ω𝒙)b\in H_{0}^{1}(\omega_{\bm{x}}) as b|𝑲=λ0λ1λ2λ3b|_{\bm{K}}=\lambda_{0}\lambda_{1}\lambda_{2}\lambda_{3} for all 𝑲\bm{K} of ω𝒙\omega_{\bm{x}}, then in the space b5P1(ω𝒙)b^{5}P_{1}(\omega_{\bm{x}}), there are unique functions W𝒙,jW_{\bm{x},j}, j=0,1,2,3,j=0,1,2,3, solves the above systems, respectively.

Let Z^𝒙,jUh(ω𝒙)/P1(ω𝒙)\hat{Z}_{\bm{x},j}\in U_{h}(\omega_{\bm{x}})/P_{1}(\omega_{\bm{x}}), j=0,1,2,3j=0,1,2,3, solve the following systems

(b52Z^𝒙,0,2uh)ω𝒙=(uh,W𝒙,0)ω𝒙+𝐱uh(𝒙)uh(𝒙),uhUh(ω𝒙)P1(ω𝒙),\quad(b^{5}\nabla^{2}\hat{Z}_{\bm{x},0},\nabla^{2}u_{h})_{\omega_{\bm{x}}}=-(u_{h},W_{\bm{x},0})_{\omega_{\bm{x}}}+\mathbf{x}\cdot\nabla u_{h}(\bm{x})-u_{h}(\bm{x}),\quad\forall u_{h}\in U_{h}(\omega_{\bm{x}})\perp P_{1}(\omega_{\bm{x}}),

and

(b52Z^𝒙,j,2uh)ω𝒙=(uh,W𝒙,j)ω𝒙+𝐞juh(𝒙),uhUh(ω𝒙)P1(ω𝒙),\quad(b^{5}\nabla^{2}\hat{Z}_{\bm{x},j},\nabla^{2}u_{h})_{\omega_{\bm{x}}}=-(u_{h},W_{\bm{x},j})_{\omega_{\bm{x}}}+\mathbf{e}_{j}\cdot\nabla u_{h}(\bm{x}),\quad\forall u_{h}\in U_{h}(\omega_{\bm{x}})\perp P_{1}(\omega_{\bm{x}}),

for j=1,2,3j=1,2,3.

Set z𝒙,j=W𝒙,j+divdiv(b52Z^𝒙,j)H03(ω𝒙)z_{\bm{x},j}=W_{\bm{x},j}+\operatorname{div}\operatorname{div}(b^{5}\nabla^{2}\hat{Z}_{\bm{x},j})\in H_{0}^{3}(\omega_{\bm{x}}). For a given uH2(Ω)u\in H^{2}(\Omega), set 0ju=x(u,z𝒙,j)ω𝒙φ𝒙,j\mathcal{M}^{0}_{j}u=\sum_{x}(u,z_{\bm{x},j})_{\omega_{\bm{x}}}\varphi_{\bm{x},j}. For a given edge 𝒆\bm{e}, a direct calculation like (3.2) indicates that

((2φ𝒙,0)𝒕,𝐱)𝒆={1, if 𝒆=[𝒚,𝒙],1, if 𝒆=[𝒙,𝒚].((\nabla^{2}\varphi_{\bm{x},0})\bm{t},\mathbf{x})_{\bm{e}}=\begin{cases}1,&\text{ if }\bm{e}=[\bm{y},\bm{x}],\\ -1,&\text{ if }\bm{e}=[\bm{x},\bm{y}].\end{cases}

Therefore,

200u=𝒙(u,z𝒙,0)ω𝒙2φ𝒙,0=𝒙𝒆(u,z𝒙,0)ω𝒙(2φ𝒙,0𝒕,𝐱)𝒆φ𝒆,0=𝒆((u,z𝒃,0)ω𝒃(u,z𝒂,0)ω𝒂)φ𝒆,0=𝒆(u,z𝒃,0\vmathbb1ω𝒃z𝒂,0\vmathbb1ω𝒂)ω𝒆hφ𝒆,0.\begin{split}\nabla^{2}\mathcal{M}^{0}_{0}u&=\sum_{\bm{x}}(u,z_{\bm{x},0})_{\omega_{\bm{x}}}\nabla^{2}\varphi_{\bm{x},0}\\ &=\sum_{\bm{x}}\sum_{\bm{e}}(u,z_{\bm{x},0})_{\omega_{\bm{x}}}(\nabla^{2}\varphi_{\bm{x},0}\bm{t},\mathbf{x})_{\bm{e}}\varphi_{\bm{e},0}\\ &=\sum_{\bm{e}}((u,z_{\bm{b},0})_{\omega_{\bm{b}}}-(u,z_{\bm{a},0})_{\omega_{\bm{a}}})\varphi_{\bm{e},0}\\ &=\sum_{\bm{e}}(u,z_{\bm{b},0}\vmathbb 1_{\omega_{\bm{b}}}-z_{\bm{a},0}\vmathbb 1_{\omega_{\bm{a}}})_{\omega_{\bm{e}}^{h}}\varphi_{\bm{e},0}.\end{split}

Here 𝒆=[𝒂,𝒃]\bm{e}=[\bm{a},\bm{b}]. A similar calculation shows that for j=0,1,2,3j=0,1,2,3, it holds that

(3.10) 20ju=𝒆(u,z𝒃,j\vmathbb1ω𝒃z𝒂,j\vmathbb1ω𝒂)ω𝒆hφ𝒆,j.\nabla^{2}\mathcal{M}^{0}_{j}u=\sum_{\bm{e}}(u,z_{\bm{b},j}\vmathbb 1_{\omega_{\bm{b}}}-z_{\bm{a},j}\vmathbb 1_{\omega_{\bm{a}}})_{\omega_{\bm{e}}^{h}}\varphi_{\bm{e},j}.

Construction of j1\mathcal{M}_{j}^{1}

An integration by parts leads to (divdiv(b52Z^𝒙,j),p)ω𝒙=0(\operatorname{div}\operatorname{div}(b^{5}\nabla^{2}\hat{Z}_{\bm{x},j}),p)_{\omega_{\bm{x}}}=0 for all linear function pp. As a result,

(3.11) (z𝒃,j\vmathbb1ω𝒃z𝒂,j\vmathbb1ω𝒂,p)ωeh=(W𝒃,j,p)ω𝒃(W𝒂,j,p)ω𝒂={(𝐱p)(𝒃)p(𝒃)(𝐱p)(𝒂)+p(𝒂),j=0;𝐞jp(𝒃)𝐞jp(𝒂),j=1,2,3;=0,\begin{split}(z_{\bm{b},j}\vmathbb 1_{\omega_{\bm{b}}}-z_{\bm{a},j}\vmathbb 1_{\omega_{\bm{a}}},p)_{\omega_{e}^{h}}&=(W_{\bm{b},j},p)_{\omega_{\bm{b}}}-(W_{\bm{a},j},p)_{\omega_{\bm{a}}}\\ &=\left\{\begin{aligned} (\mathbf{x}\cdot\nabla p)(\bm{b})-p(\bm{b})-(\mathbf{x}\cdot\nabla p)(\bm{a})+p(\bm{a}),&\,\,\,j=0;\\ \mathbf{e}_{j}\cdot\nabla p(\bm{b})-\mathbf{e}_{j}\cdot\nabla p(\bm{a}),&\,\,\,j=1,2,3;\end{aligned}\right.\\ &=0,\end{split}

where the last line comes from the fact that pp is linear.

Consequently, by Lemma 3.6 there exists z𝒆,jH05(ω𝒆h;𝕊)z_{\bm{e},j}\in H_{0}^{5}(\omega_{\bm{e}}^{h};\mathbb{S}) such that

divdivz𝒆,j=z𝒃,j\vmathbb1ω𝒃z𝒂,j\vmathbb1ω𝒂.\operatorname{div}\operatorname{div}z_{\bm{e},j}=z_{\bm{b},j}\vmathbb 1_{\omega_{\bm{b}}}-z_{\bm{a},j}\vmathbb 1_{\omega_{\bm{a}}}.

Therefore, (3.10) indicates that

20ju=𝒆(u,divdivz𝒆,j)ω𝒆hφ𝒆,j=𝒆(2u,z𝒆,j)ω𝒆hφ𝒆,j.\nabla^{2}\mathcal{M}^{0}_{j}u=\sum_{\bm{e}}(u,\operatorname{div}\operatorname{div}z_{\bm{e},j})_{\omega_{\bm{e}}^{h}}\varphi_{\bm{e},j}=\sum_{\bm{e}}(\nabla^{2}u,z_{\bm{e},j})_{\omega_{\bm{e}}^{h}}\varphi_{\bm{e},j}.

Thus define

1j𝝈=𝒆(𝝈,z𝒆,j)ω𝒆hφ𝒆,j for 𝝈L2(Ω;𝕊).\mathcal{M}^{1}_{j}\bm{\sigma}=\sum_{\bm{e}}(\bm{\sigma},z_{\bm{e},j})_{\omega_{\bm{e}}^{h}}\varphi_{\bm{e},j}\text{ for }\bm{\sigma}\in L^{2}(\Omega;\mathbb{S}).

Construction of j2\mathcal{M}_{j}^{2}

For a given face 𝒇\bm{f}, since

(curlφ[𝒂,𝒃],0𝒏,𝐱)𝒇=(rot𝒇𝔼𝒇φ[𝒂,𝒃],0,E𝒇𝐱)𝒇=(φ[𝒂,𝒃],0𝒕,𝐱)𝒇,\begin{split}(\operatorname{curl}\varphi_{[\bm{a},\bm{b}],0}\bm{n},\mathbf{x})_{\bm{f}}=(\operatorname{rot}_{\bm{f}}\mathbb{E}_{\bm{f}}\varphi_{[\bm{a},\bm{b}],0},E_{\bm{f}}\mathbf{x})_{\bm{f}}=(\varphi_{[\bm{a},\bm{b}],0}\bm{t},\mathbf{x})_{\partial\bm{f}},\end{split}

a direct calculation indicates that

(curlφ[𝒂,𝒃],0𝒏,𝐱)𝒇={1 if 𝒇=[𝒂,𝒃,𝒄] for some 𝒄,1 if 𝒇=[𝒂,𝒄,𝒃] for some 𝒄,0 otherwise.(\operatorname{curl}\varphi_{[\bm{a},\bm{b}],0}\bm{n},\mathbf{x})_{\bm{f}}=\begin{cases}-1&\text{ if }\bm{f}=[\bm{a},\bm{b},\bm{c}]\text{ for some }\bm{c},\\ 1&\text{ if }\bm{f}=[\bm{a},\bm{c},\bm{b}]\text{ for some }\bm{c},\\ 0&\text{ otherwise.}\end{cases}

Therefore,

curl10𝝈=𝒆(𝝈,z𝒆,0)ω𝒆curlφ𝒆,0=𝒆𝒇(𝝈,z𝒙,0)ω𝒙(curlφ𝒆,0𝒏,𝐱)𝒇φ𝒇,0=𝒇(𝝈,z[𝒂,𝒃],0\vmathbb1ω[𝒂,𝒃]h+z[𝒃,𝒄],0\vmathbb1ω[𝒃,𝒄]h+z[𝒄,𝒂],0\vmathbb1ω[𝒄,𝒂]h)ω𝒇hφ𝒇,0,\begin{split}\operatorname{curl}\mathcal{M}^{1}_{0}\bm{\sigma}&=\sum_{\bm{e}}(\bm{\sigma},z_{\bm{e},0})_{\omega_{\bm{e}}}\operatorname{curl}\varphi_{\bm{e},0}\\ &=\sum_{\bm{e}}\sum_{\bm{f}}(\bm{\sigma},z_{\bm{x},0})_{\omega_{\bm{x}}}(\operatorname{curl}\varphi_{\bm{e},0}\bm{n},\mathbf{x})_{\bm{f}}\varphi_{\bm{f},0}\\ &=-\sum_{\bm{f}}(\bm{\sigma},z_{[\bm{a},\bm{b}],0}\vmathbb 1_{\omega_{[\bm{a},\bm{b}]}^{h}}+z_{[\bm{b},\bm{c}],0}\vmathbb 1_{\omega_{[\bm{b},\bm{c}]}^{h}}+z_{[\bm{c},\bm{a}],0}\vmathbb 1_{\omega_{[\bm{c},\bm{a}]}^{h}})_{\omega_{\bm{f}}^{h}}\varphi_{\bm{f},0},\end{split}

here 𝒇=[𝒂,𝒃,𝒄]\bm{f}=[\bm{a},\bm{b},\bm{c}]. Since

(3.12) divdiv(z[𝒂,𝒃],0\vmathbb1ω[𝒂,𝒃]h+z[𝒃,𝒄],0\vmathbb1ω[𝒃,𝒄]h+z[𝒄,𝒂],0\vmathbb1ω[𝒄,𝒂]h)=(z𝒃,0\vmathbb1ω𝒃z𝒂,0\vmathbb1ω𝒂)+(z𝒄,0\vmathbb1ω𝒄z𝒃,0\vmathbb1ω𝒃)+(z𝒂,0\vmathbb1ω𝒂z𝒄,0\vmathbb1ω𝒄)=0,\begin{split}&\operatorname{div}\operatorname{div}\left(z_{[\bm{a},\bm{b}],0}\vmathbb 1_{\omega_{[\bm{a},\bm{b}]}^{h}}+z_{[\bm{b},\bm{c}],0}\vmathbb 1_{\omega_{[\bm{b},\bm{c}]}^{h}}+z_{[\bm{c},\bm{a}],0}\vmathbb 1_{\omega_{[\bm{c},\bm{a}]}^{h}}\right)\\ &=(z_{\bm{b},0}\vmathbb 1_{\omega_{\bm{b}}}-z_{\bm{a},0}\vmathbb 1_{\omega_{\bm{a}}})+(z_{\bm{c},0}\vmathbb 1_{\omega_{\bm{c}}}-z_{\bm{b},0}\vmathbb 1_{\omega_{\bm{b}}})+(z_{\bm{a},0}\vmathbb 1_{\omega_{\bm{a}}}-z_{\bm{c},0}\vmathbb 1_{\omega_{\bm{c}}})\\ &=0,\end{split}

it follows from Lemma 3.6 that there exists z𝒇,0H06(ω𝒇h;𝕋)z_{\bm{f},0}\in H_{0}^{6}(\omega_{\bm{f}}^{h};\mathbb{T}) such that

symcurlz𝒇,0=z[𝒂,𝒃],0\vmathbb1ω[𝒂,𝒃]h+z[𝒃,𝒄],0\vmathbb1ω[𝒃,𝒄]h+z[𝒄,𝒂],0\vmathbb1ω[𝒄,𝒂]h.-\operatorname{sym}\operatorname{curl}z_{\bm{f},0}=z_{[\bm{a},\bm{b}],0}\vmathbb 1_{\omega_{[\bm{a},\bm{b}]}^{h}}+z_{[\bm{b},\bm{c}],0}\vmathbb 1_{\omega_{[\bm{b},\bm{c}]}^{h}}+z_{[\bm{c},\bm{a}],0}\vmathbb 1_{\omega_{[\bm{c},\bm{a}]}^{h}}.

As a result, it holds that

curl10𝝈=𝒇(𝝈,symcurlz𝒇,0)ω𝒇hφ𝒇,0=𝒇(curl𝝈,z𝒇,0)ω𝒇hφ𝒇,0.\operatorname{curl}\mathcal{M}^{1}_{0}\bm{\sigma}=\sum_{\bm{f}}(\bm{\sigma},\operatorname{sym}\operatorname{curl}z_{\bm{f},0})_{\omega_{\bm{f}}^{h}}\varphi_{\bm{f},0}=\sum_{\bm{f}}(\operatorname{curl}\bm{\sigma},z_{\bm{f},0})_{\omega_{\bm{f}}^{h}}\varphi_{\bm{f},0}.

A similar argument shows the existence of z𝒇,jz_{\bm{f},j} for j=1,2,3j=1,2,3. Thus define

2j𝒗=𝒇(𝒗,z𝒇,j)ω𝒇hφ𝒇,j for 𝒗L2(Ω;𝕋).\mathcal{M}^{2}_{j}\bm{v}=\sum_{\bm{f}}(\bm{v},z_{\bm{f},j})_{\omega_{\bm{f}}^{h}}\varphi_{\bm{f},j}\text{ for }\bm{v}\in L^{2}(\Omega;\mathbb{T}).

It then follows that curl1j𝝈=2jcurl𝝈\operatorname{curl}\mathcal{M}^{1}_{j}\bm{\sigma}=\mathcal{M}^{2}_{j}\operatorname{curl}\bm{\sigma} for 𝝈H(curl,Ω;𝕊)\bm{\sigma}\in H(\operatorname{curl},\Omega;\mathbb{S}).

Construction of j3\mathcal{M}_{j}^{3}

For a given face 𝒇\bm{f} of element 𝑲\bm{K}, it holds that

(divφ𝒇,0,𝐱)𝑲=(φ𝒇,0,𝐱)𝑲+(φ𝒇,0𝒏,𝐱)𝑲=(φ𝒇,0𝒏,𝐱)𝑲,(\operatorname{div}\varphi_{\bm{f},0},\mathbf{x})_{\bm{K}}=-(\varphi_{\bm{f},0},\operatorname{\nabla}\mathbf{x})_{\bm{K}}+(\varphi_{\bm{f},0}\bm{n},\mathbf{x})_{\partial\bm{K}}=(\varphi_{\bm{f},0}\bm{n},\mathbf{x})_{\partial\bm{K}},

where the first term vanishes since φ𝒇,0\varphi_{\bm{f},0} is traceless. As a consequence,

div20𝒗=𝑲(𝒗,z[𝒂,𝒃,𝒄],0\vmathbb1ω[𝒂,𝒃,𝒄]h+z[𝒃,𝒄,𝒅],0\vmathbb1ω[𝒃,𝒄,𝒅]h+z[𝒄,𝒅,𝒂],0\vmathbb1ω[𝒄,𝒅,𝒂]h+z[𝒅,𝒂,𝒃],0\vmathbb1ω[𝒅,𝒂,𝒃]h)ω𝑲hφ𝑲,0.\operatorname{div}\mathcal{M}^{2}_{0}\bm{v}=\sum_{\bm{K}}(\bm{v},z_{[\bm{a},\bm{b},\bm{c}],0}\vmathbb 1_{\omega_{[\bm{a},\bm{b},\bm{c}]}^{h}}+z_{[\bm{b},\bm{c},\bm{d}],0}\vmathbb 1_{\omega_{[\bm{b},\bm{c},\bm{d}]}^{h}}+z_{[\bm{c},\bm{d},\bm{a}],0}\vmathbb 1_{\omega_{[\bm{c},\bm{d},\bm{a}]}^{h}}+z_{[\bm{d},\bm{a},\bm{b}],0}\vmathbb 1_{\omega_{[\bm{d},\bm{a},\bm{b}]}^{h}})_{\omega_{\bm{K}}^{h}}\varphi_{\bm{K},0}.

Similar to (3.12), a direct calculation yields that

symcurl(z[𝒂,𝒃,𝒄],0\vmathbb1ω[𝒂,𝒃,𝒄]h+z[𝒃,𝒄,𝒅],0\vmathbb1ω[𝒃,𝒄,𝒅]h+z[𝒄,𝒅,𝒂],0\vmathbb1ω[𝒄,𝒅,𝒂]h+z[𝒅,𝒂,𝒃],0\vmathbb1ω[𝒅,𝒂,𝒃]h)=0,\operatorname{sym}\operatorname{curl}(z_{[\bm{a},\bm{b},\bm{c}],0}\vmathbb 1_{\omega_{[\bm{a},\bm{b},\bm{c}]}^{h}}+z_{[\bm{b},\bm{c},\bm{d}],0}\vmathbb 1_{\omega_{[\bm{b},\bm{c},\bm{d}]}^{h}}+z_{[\bm{c},\bm{d},\bm{a}],0}\vmathbb 1_{\omega_{[\bm{c},\bm{d},\bm{a}]}^{h}}+z_{[\bm{d},\bm{a},\bm{b}],0}\vmathbb 1_{\omega_{[\bm{d},\bm{a},\bm{b}]}^{h}})=0,

it follows from Lemma 3.6 that there exists z𝑲,0H07(ω𝑲h;3)z_{\bm{K},0}\in H_{0}^{7}(\omega_{\bm{K}}^{h};\mathbb{R}^{3}) such that

devz𝑲,0=z[𝒂,𝒃,𝒄],0\vmathbb1ω[𝒂,𝒃,𝒄]h+z[𝒃,𝒄,𝒅],0\vmathbb1ω[𝒃,𝒄,𝒅]h+z[𝒄,𝒅,𝒂],0\vmathbb1ω[𝒄,𝒅,𝒂]h+z[𝒅,𝒂,𝒃],0\vmathbb1ω[𝒅,𝒂,𝒃]h.\operatorname{dev}\operatorname{\nabla}z_{\bm{K},0}=z_{[\bm{a},\bm{b},\bm{c}],0}\vmathbb 1_{\omega_{[\bm{a},\bm{b},\bm{c}]}^{h}}+z_{[\bm{b},\bm{c},\bm{d}],0}\vmathbb 1_{\omega_{[\bm{b},\bm{c},\bm{d}]}^{h}}+z_{[\bm{c},\bm{d},\bm{a}],0}\vmathbb 1_{\omega_{[\bm{c},\bm{d},\bm{a}]}^{h}}+z_{[\bm{d},\bm{a},\bm{b}],0}\vmathbb 1_{\omega_{[\bm{d},\bm{a},\bm{b}]}^{h}}.

As a result, it holds that

div20𝒗=𝒇(𝒗,devz𝑲,0)ω𝑲hφ𝑲,0=𝒇(div𝒗,z𝒇,0)ω𝑲hφ𝑲,0.\operatorname{div}\mathcal{M}^{2}_{0}\bm{v}=\sum_{\bm{f}}(\bm{v},\operatorname{dev}\operatorname{\nabla}z_{\bm{K},0})_{\omega_{\bm{K}}^{h}}\varphi_{\bm{K},0}=\sum_{\bm{f}}(\operatorname{div}\bm{v},z_{\bm{f},0})_{\omega_{\bm{K}}^{h}}\varphi_{\bm{K},0}.

A similar argument shows the existence of z𝒇,jz_{\bm{f},j} for j=1,2,3j=1,2,3. Thus define

3j𝒒=𝑲(𝒒,z𝑲,j)ω𝑲hφ𝑲,j for 𝒖L2(Ω;3).\mathcal{M}^{3}_{j}\bm{q}=\sum_{\bm{K}}(\bm{q},z_{\bm{K},j})_{\omega_{\bm{K}}^{h}}\varphi_{\bm{K},j}\text{ for }\bm{u}\in L^{2}(\Omega;\mathbb{R}^{3}).
Remark 3.2.

The higher regularity (rather than H(divdiv)H(\operatorname{div}\operatorname{div})) is necessary to derive (3.12), since the trace of functions in H(divdiv,Ω;𝕊)H(\operatorname{div}\operatorname{div},\Omega;\mathbb{S}) might be not globally well-defined.

3.4. The proof of Theorem 2.2

The proof is similar to those in [13], with the help of harmonic inner products.

Define the following operators ωl\mathcal{R}_{\omega}^{l} for l=0,1,2,3l=0,1,2,3:

  • -

    For uH2(ω)u\in H^{2}(\omega), define ω0u\mathcal{R}_{\omega}^{0}u as the L2(ω)L^{2}(\omega) projection to the space P1(ω)P_{1}(\omega).

  • -

    For 𝝈H(curl,ω;𝕊)\bm{\sigma}\in H(\operatorname{curl},\omega;\mathbb{S}), define 1ω𝝈Uh(ω)/P1(ω)\mathcal{R}^{1}_{\omega}\bm{\sigma}\in U_{h}(\omega)/P_{1}(\omega) via the following Galerkin projection:

    (3.13) (2ω1𝝈,2vh)ω=(𝝈,2vh)ω,vhUh(ω).(\nabla^{2}\mathcal{R}_{\omega}^{1}\bm{\sigma},\nabla^{2}v_{h})_{\omega}=(\bm{\sigma},\nabla^{2}v_{h})_{\omega},\quad\forall v_{h}\in U_{h}(\omega).
  • -

    For 𝒗H(div,ω;𝕋)\bm{v}\in H(\operatorname{div},\omega;\mathbb{T}), define ω2𝒗𝚺h(ω)\mathcal{R}_{\omega}^{2}\bm{v}\in\bm{\Sigma}_{h}(\omega), such that ω2𝒗2Uh(ω)\mathcal{R}_{\omega}^{2}\bm{v}\perp\nabla^{2}U_{h}(\omega) and

    (3.14) (curlω2𝒗,curl𝝈h)ω=(𝒗,curl𝝈h)ω,σh𝚺h(ω).(\operatorname{curl}\mathcal{R}_{\omega}^{2}\bm{v},\operatorname{curl}\bm{\sigma}_{h})_{\omega}=(\bm{v},\operatorname{curl}\bm{\sigma}_{h})_{\omega},\,\,\forall\sigma_{h}\in\bm{\Sigma}_{h}(\omega).
  • -

    For 𝒒L2(ω;3)\bm{q}\in L^{2}(\omega;\mathbb{R}^{3}), define ω3𝒒𝑽h(ω)\mathcal{R}_{\omega}^{3}\bm{q}\in\bm{V}_{h}(\omega) such that ω3𝒒curl𝚺h(ω)\mathcal{R}_{\omega}^{3}\bm{q}\perp\operatorname{curl}\bm{\Sigma}_{h}(\omega), and

    (3.15) (divω3𝒑,div𝒗h)ω=(𝒒,div𝒗h)ω,vh𝑽h(ω).(\operatorname{div}\mathcal{R}_{\omega}^{3}\bm{p},\operatorname{div}\bm{v}_{h})_{\omega}=(\bm{q},\operatorname{div}\bm{v}_{h})_{\omega},\,\,\forall v_{h}\in\bm{V}_{h}(\omega).

It follows from the exactness of the discrete gradgrad complex on patch ω\omega that the operators ωl,l=0,1,2,3\mathcal{R}_{\omega}^{l},l=0,1,2,3, are well-defined. As a result, the projection operators 𝒬ωl,l=0,1,2\mathcal{Q}_{\omega}^{l},l=0,1,2, can be determined.

  • -

    For uH2(ω)u\in H^{2}(\omega), define 𝒬0ωu=ω0u+1ω2u\mathcal{Q}^{0}_{\omega}u=\mathcal{R}_{\omega}^{0}u+\mathcal{R}^{1}_{\omega}\nabla^{2}u, then it follows from the definition of ω1\mathcal{R}_{\omega}^{1} that 𝒬ω0u\mathcal{Q}_{\omega}^{0}u is a projection on ω\omega.

  • -

    For 𝝈H(curl,ω;𝕊)\bm{\sigma}\in H(\operatorname{curl},\omega;\mathbb{S}), define 𝒬1ω𝝈=2ω1𝝈+ω2curl𝝈.\mathcal{Q}^{1}_{\omega}\bm{\sigma}=\nabla^{2}\mathcal{R}_{\omega}^{1}\bm{\sigma}+\mathcal{R}_{\omega}^{2}\operatorname{curl}\bm{\sigma}.

  • -

    For 𝒗H(div,ω;𝕋)\bm{v}\in H(\operatorname{div},\omega;\mathbb{T}), define 𝒬2ω𝒗=curlω2𝒗+ω3div𝒗.\mathcal{Q}^{2}_{\omega}\bm{v}=\operatorname{curl}\mathcal{R}_{\omega}^{2}\bm{v}+\mathcal{R}_{\omega}^{3}\operatorname{div}\bm{v}.

Note that 𝒬1ω𝝈\mathcal{Q}^{1}_{\omega}\bm{\sigma} is a projection onto 𝚺h(ω)\bm{\Sigma}_{h}(\omega), 𝒬2ω𝒗\mathcal{Q}^{2}_{\omega}\bm{v} is a projection on 𝑽h(ω)\bm{V}_{h}(\omega). For convenience, given a simplex σ\sigma and l0l\geq 0, let 𝒬σl:=𝒬ωσl\mathcal{Q}_{\sigma}^{l}:=\mathcal{Q}_{\omega_{\sigma}}^{l} and σl:=ωσl\mathcal{R}_{\sigma}^{l}:=\mathcal{R}_{\omega_{\sigma}}^{l}; given m>0m>0, let 𝒬σ,[m]l:=𝒬ωσ[m]l\mathcal{Q}_{\sigma,[m]}^{l}:=\mathcal{Q}_{\omega_{\sigma}^{[m]}}^{l}, σ,[m]l:=ωσ[m]l\mathcal{R}_{\sigma,[m]}^{l}:=\mathcal{R}_{\omega_{\sigma}^{[m]}}^{l}.

Let Lσ0L_{\sigma}^{0} (Lσ1,Lσ2L_{\sigma}^{1},L_{\sigma}^{2}, resp.) be the canonical interpolation operator defined by the degrees of freedom on the simplex (i.e., vertex, edge, face, element) σ\sigma for the finite element space UhU_{h} (𝚺h\bm{\Sigma}_{h}, 𝑽h\bm{V}_{h}, resp.), except the first sets of degrees of freedoms of each finite element space, namely, (4a), (5a), and (6a). In what follows, we construct the projection operators sequentially. Note that the linear function uP1u\in P_{1} vanishes at Lσ0L_{\sigma}^{0}. The value of LσlηL_{\sigma}^{l}\eta is only depends on the value of η\eta on ωσ\omega_{\sigma}, and the supports of LσlηL_{\sigma}^{l}\eta are a subset of ωσ\omega_{\sigma}.

Construction of π0\pi^{0}

It follows from the definition of Lσ0L_{\sigma}^{0} and Proposition 3.2 that for uUhu\in U_{h},

u=σLσ0u+𝒙j=03(u,z𝒙,j)ω𝒙φ𝒙,j=σLσ0u+k=030ju=σLσ0u+0u.u=\sum_{\sigma}L_{\sigma}^{0}u+\sum_{\bm{x}}\sum_{j=0}^{3}(u,z_{\bm{x},j})_{\omega_{\bm{x}}}\varphi_{\bm{x},j}=\sum_{\sigma}L_{\sigma}^{0}u+\sum_{k=0}^{3}\mathcal{M}^{0}_{j}u=\sum_{\sigma}L_{\sigma}^{0}u+\mathcal{M}^{0}u.

This motivates to define

(3.16) π0u=σLσ0𝒬σ0u+0u.\pi^{0}u=\sum_{\sigma}L_{\sigma}^{0}\mathcal{Q}_{\sigma}^{0}u+\mathcal{M}^{0}u.

For uUhu\in U_{h}, it holds that π0u=u\pi^{0}u=u, and the value of π0u\pi^{0}u on ωσ\omega_{\sigma} depends only on the value of uu on ωσ[1].\omega_{\sigma}^{[1]}.

Construction of π1\pi^{1}

Since π0u=σLσ0σ12u+0u,\pi^{0}u=\sum_{\sigma}L_{\sigma}^{0}\mathcal{R}_{\sigma}^{1}\nabla^{2}u+\mathcal{M}^{0}u, this motivates, for 𝝈H(curl,Ω;𝕊)\bm{\sigma}\in H(\operatorname{curl},\Omega;\mathbb{S}), to define

(3.17) π^1𝝈=σ2Lσ0σ1𝝈+1𝝈.\hat{\pi}^{1}\bm{\sigma}=\sum_{\sigma}\nabla^{2}L_{\sigma}^{0}\mathcal{R}_{\sigma}^{1}\bm{\sigma}+\mathcal{M}^{1}\bm{\sigma}.

Then it follows from Proposition 3.2 that for uH2(Ω)u\in H^{2}(\Omega), it holds that π^12u=2π0u.\hat{\pi}^{1}\nabla^{2}u=\nabla^{2}\pi^{0}u. Note that π^1\hat{\pi}^{1} can be regarded as an operator from H(curl,ωσ[1];𝕊)H(\operatorname{curl},\omega_{\sigma}^{[1]};\mathbb{S}) to 𝚺h(ωσ[1])\bm{\Sigma}_{h}(\omega_{\sigma}^{[1]}), when only the value of π^1𝝈\hat{\pi}^{1}\bm{\sigma} on ωσ\omega_{\sigma} is considered.

For convenience, denote by 𝐞0=𝐱\mathbf{e}_{0}=\mathbf{x}. To get a projection operator, define the following modified interpolation

(3.18) π1𝝈=π^1𝝈+σLσ1(idπ^1)𝒬σ,[1]1𝝈+𝒆j=03([(idπ^1)𝒬𝒆,[1]1𝝈]𝒕,𝐞j)𝒆φ𝒆,j.\pi^{1}\bm{\sigma}=\hat{\pi}^{1}\bm{\sigma}+\sum_{\sigma}L_{\sigma}^{1}({\rm{id}}-\hat{\pi}^{1})\mathcal{Q}_{\sigma,[1]}^{1}\bm{\sigma}+\sum_{\bm{e}}\sum_{j=0}^{3}\Big{(}\big{[}({\rm{id}}-\hat{\pi}^{1})\mathcal{Q}_{\bm{e},[1]}^{1}\bm{\sigma}\big{]}\bm{t},\mathbf{e}_{j}\Big{)}_{\bm{e}}\varphi_{\bm{e},j}.

Since for 𝝈𝚺h\bm{\sigma}\in\bm{\Sigma}_{h}, it holds that 𝒬1σ,[1]𝝈=𝝈\mathcal{Q}^{1}_{\sigma,[1]}\bm{\sigma}=\bm{\sigma} on ωσ[1]\omega_{\sigma}^{[1]}, this leads to

π1𝝈=π^1𝝈+(idπ^1)𝝈=𝝈,\pi^{1}\bm{\sigma}=\hat{\pi}^{1}\bm{\sigma}+({\rm{id}}-\hat{\pi}^{1})\bm{\sigma}=\bm{\sigma},

which implies that π1\pi^{1} is a projection operator.

It follows from the definition of 𝒬ω1\mathcal{Q}_{\omega}^{1} that

(3.19) (idπ^1)𝒬σ,[1]1𝝈=(idπ^1)2σ,[1]1𝝈+(idπ^1)σ,[1]2curl𝝈=2(idπ0)σ,[1]1𝝈+(idπ^1)σ,[1]2curl𝝈=(idπ^1)σ,[1]2curl𝝈.\begin{split}({\rm{id}}-\hat{\pi}^{1})\mathcal{Q}_{\sigma,[1]}^{1}\bm{\sigma}=&({\rm{id}}-\hat{\pi}^{1})\nabla^{2}\mathcal{R}_{\sigma,[1]}^{1}\bm{\sigma}+({\rm{id}}-\hat{\pi}^{1})\mathcal{R}_{\sigma,[1]}^{2}\operatorname{curl}\bm{\sigma}\\ =&\operatorname{\nabla}^{2}({\rm{id}}-\pi^{0})\mathcal{R}_{\sigma,[1]}^{1}\bm{\sigma}+({\rm{id}}-\hat{\pi}^{1})\mathcal{R}_{\sigma,[1]}^{2}\operatorname{curl}\bm{\sigma}\\ =&({\rm{id}}-\hat{\pi}^{1})\mathcal{R}_{\sigma,[1]}^{2}\operatorname{curl}\bm{\sigma}.\end{split}

The above two formulations show that π1\pi^{1} is a projection operator and that it holds the commuting property π12u=2π0u\pi^{1}\nabla^{2}u=\nabla^{2}\pi^{0}u for all uH2(Ω).u\in H^{2}(\Omega).

Construction of π2\pi^{2}

Consider the construction of π2\pi^{2}.

Taking curl\operatorname{curl} on (3.18) yields that

(3.20) curlπ1𝝈=curl1𝝈+σcurlLσ1(idπ^1)𝒬σ,[1]1𝝈+𝒆j=03([(idπ^1)𝒬𝒆,[1]1𝝈]𝒕,𝐞j)𝒆curlφ𝒆,j=2curl𝝈+σcurlLσ1(idπ^1)σ,[1]2curl𝝈+𝒆j=03([(idπ^1)𝒆,[1]2curl𝝈]𝒕,𝐞j)𝒆curlφ𝒆,j.\begin{split}\operatorname{curl}\pi^{1}\bm{\sigma}=&\operatorname{curl}\mathcal{M}^{1}\bm{\sigma}+\sum_{\sigma}\operatorname{curl}L_{\sigma}^{1}({\rm{id}}-\hat{\pi}^{1})\mathcal{Q}_{\sigma,[1]}^{1}\bm{\sigma}+\sum_{\bm{e}}\sum_{j=0}^{3}\Big{(}\big{[}({\rm{id}}-\hat{\pi}^{1})\mathcal{Q}_{\bm{e},[1]}^{1}\bm{\sigma}\big{]}\bm{t},\mathbf{e}_{j}\Big{)}_{\bm{e}}\operatorname{curl}\varphi_{\bm{e},j}\\ =&\mathcal{M}^{2}\operatorname{curl}\bm{\sigma}+\sum_{\sigma}\operatorname{curl}L_{\sigma}^{1}({\rm{id}}-\hat{\pi}^{1})\mathcal{R}_{\sigma,[1]}^{2}\operatorname{curl}\bm{\sigma}+\sum_{\bm{e}}\sum_{j=0}^{3}\Big{(}\big{[}({\rm{id}}-\hat{\pi}^{1})\mathcal{R}_{\bm{e},[1]}^{2}\operatorname{curl}\bm{\sigma}\big{]}\bm{t},\mathbf{e}_{j}\Big{)}_{\bm{e}}\operatorname{curl}\varphi_{\bm{e},j}.\end{split}

Inspired by the above identity, for 𝒗H(div,Ω;𝕋)\bm{v}\in H(\operatorname{div},\Omega;\mathbb{T}), define the following interpolation

(3.21) π^2𝒗=2𝒗+σcurlLσ1(idπ^1)σ,[1]2𝒗+𝒆j=03([(idπ^1)𝒆,[1]2𝒗]𝒕,𝐞j)𝒆curlφ𝒆,j.\hat{\pi}^{2}\bm{v}=\mathcal{M}^{2}\bm{v}+\sum_{\sigma}\operatorname{curl}L_{\sigma}^{1}({\rm{id}}-\hat{\pi}^{1})\mathcal{R}_{\sigma,[1]}^{2}\bm{v}+\sum_{\bm{e}}\sum_{j=0}^{3}\Big{(}\big{[}({\rm{id}}-\hat{\pi}^{1})\mathcal{R}_{\bm{e},[1]}^{2}\bm{v}\big{]}\bm{t},\mathbf{e}_{j}\Big{)}_{\bm{e}}\operatorname{curl}\varphi_{\bm{e},j}.

Then it holds that π^2curl𝝈=curlπ1𝝈\hat{\pi}^{2}\operatorname{curl}\bm{\sigma}=\operatorname{curl}\pi^{1}\bm{\sigma} for all 𝝈H(curl,Ω;𝕊)\bm{\sigma}\in H(\operatorname{curl},\Omega;\mathbb{S}). Similar to π^1\hat{\pi}^{1}, π^2\hat{\pi}^{2} can be regarded as an operator from H(div,ωσ[2];𝕋)H(\operatorname{div},\omega_{\sigma}^{[2]};\mathbb{T}) to 𝑽h(ωσ[2])\bm{V}_{h}(\omega_{\sigma}^{[2]}), when only the value of π^2𝝈\hat{\pi}^{2}\bm{\sigma} on ωσ\omega_{\sigma} is considered. Similarly, this interpolation can be modified as follows,

(3.22) π2𝒗=π^2𝒗+σLσ2(idπ^2)𝒬σ,[2]2𝒗+𝒇k=03([(idπ^2)𝒬σ,[2]2𝒗]𝒏,𝐞j)𝒇φ𝒇,j.\pi^{2}\bm{v}=\hat{\pi}^{2}\bm{v}+\sum_{\sigma}L_{\sigma}^{2}({\rm{id}}-\hat{\pi}^{2})\mathcal{Q}_{\sigma,[2]}^{2}\bm{v}+\sum_{\bm{f}}\sum_{k=0}^{3}\Big{(}\big{[}({\rm{id}}-\hat{\pi}^{2})\mathcal{Q}_{\sigma,[2]}^{2}\bm{v}\big{]}\bm{n},\mathbf{e}_{j}\Big{)}_{\bm{f}}\varphi_{\bm{f},j}.

Since for 𝒗𝑽h\bm{v}\in\bm{V}_{h}, it holds that 𝒬σ,[2]2𝒗=𝒗\mathcal{Q}_{\sigma,[2]}^{2}\bm{v}=\bm{v} on ωσ[2]\omega_{\sigma}^{[2]},it leads to

π2𝒗=π^2𝒗+(idπ^2)𝒗=𝒗,\pi^{2}\bm{v}=\hat{\pi}^{2}\bm{v}+({\rm{id}}-\hat{\pi}^{2})\bm{v}=\bm{v},

which indicates that π2\pi^{2} is a projection operator.

It follows from

(3.23) (idπ^2)𝒬σ,[2]2𝒗=(idπ^2)curlσ,[2]2𝒗+(idπ^2)σ,[2]3div𝒗=curl(idπ1)σ,[2]2𝒗+(idπ^2)σ,[2]3div𝝈=(idπ^2)σ,[2]3div𝝈\begin{split}({\rm{id}}-\hat{\pi}^{2})\mathcal{Q}_{\sigma,[2]}^{2}\bm{v}=&({\rm{id}}-\hat{\pi}^{2})\operatorname{curl}\mathcal{R}_{\sigma,[2]}^{2}\bm{v}+({\rm{id}}-\hat{\pi}^{2})\mathcal{R}_{\sigma,[2]}^{3}\operatorname{div}\bm{v}\\ =&\operatorname{curl}({\rm{id}}-\pi^{1})\mathcal{R}_{\sigma,[2]}^{2}\bm{v}+({\rm{id}}-\hat{\pi}^{2})\mathcal{R}_{\sigma,[2]}^{3}\operatorname{div}\bm{\sigma}\\ =&({\rm{id}}-\hat{\pi}^{2})\mathcal{R}_{\sigma,[2]}^{3}\operatorname{div}\bm{\sigma}\end{split}

that π2\pi^{2} satisfies the commuting property, namely, π2curl𝝈=π^2curl𝝈=curlπ1𝝈\pi^{2}\operatorname{curl}\bm{\sigma}=\hat{\pi}^{2}\operatorname{curl}\bm{\sigma}=\operatorname{curl}\pi^{1}\bm{\sigma} for 𝝈H(curl,Ω;𝕊)\bm{\sigma}\in H(\operatorname{curl},\Omega;\mathbb{S}).

Construction of π3\pi^{3}

Finally, it follows from divπ^2𝒗=div2v\operatorname{div}\hat{\pi}^{2}\bm{v}=\operatorname{div}\mathcal{M}^{2}v and Proposition 3.2 that

(3.24) divπ2𝒗=divπ^2𝒗+σdivLσ2(idπ^2)𝒬σ,[2]2𝒗+𝒇j=03([(idπ^2)𝒬σ,[2]2𝒗]𝒏,𝐞j)𝒇divφ𝒇,j=3div𝒗+σdivLσ2(idπ^2)σ,[2]3div𝒗+𝒇j=03([(idπ^2)σ,[2]3div𝒗]𝒏,𝐞j)𝒇divφ𝒇,j.\begin{split}\operatorname{div}\pi^{2}\bm{v}&=\operatorname{div}\hat{\pi}^{2}\bm{v}+\sum_{\sigma}\operatorname{div}L_{\sigma}^{2}({\rm{id}}-\hat{\pi}^{2})\mathcal{Q}_{\sigma,[2]}^{2}\bm{v}+\sum_{\bm{f}}\sum_{j=0}^{3}\Big{(}\big{[}({\rm{id}}-\hat{\pi}^{2})\mathcal{Q}_{\sigma,[2]}^{2}\bm{v}\big{]}\bm{n},\mathbf{e}_{j}\Big{)}_{\bm{f}}\operatorname{div}\varphi_{\bm{f},j}\\ &=\mathcal{M}^{3}\operatorname{div}\bm{v}+\sum_{\sigma}\operatorname{div}L_{\sigma}^{2}({\rm{id}}-\hat{\pi}^{2})\mathcal{R}_{\sigma,[2]}^{3}\operatorname{div}\bm{v}+\sum_{\bm{f}}\sum_{j=0}^{3}\Big{(}\big{[}({\rm{id}}-\hat{\pi}^{2})\mathcal{R}_{\sigma,[2]}^{3}\operatorname{div}\bm{v}\big{]}\bm{n},\mathbf{e}_{j}\Big{)}_{\bm{f}}\operatorname{div}\varphi_{\bm{f},j}.\end{split}

Thus, for 𝒒L2(Ω;3)\bm{q}\in L^{2}(\Omega;\mathbb{R}^{3}), define

π3𝒒=3𝒒+σdivLσ2(idπ^2)σ,[2]3𝒒+𝒇j=03([(idπ^2)σ,[2]3𝒒]𝒏,𝐞j)𝒇divφ𝒇,j.\pi^{3}\bm{q}=\mathcal{M}^{3}\bm{q}+\sum_{\sigma}\operatorname{div}L_{\sigma}^{2}({\rm{id}}-\hat{\pi}^{2})\mathcal{R}_{\sigma,[2]}^{3}\bm{q}+\sum_{\bm{f}}\sum_{j=0}^{3}\Big{(}\big{[}({\rm{id}}-\hat{\pi}^{2})\mathcal{R}_{\sigma,[2]}^{3}\bm{q}\big{]}\bm{n},\mathbf{e}_{j}\Big{)}_{\bm{f}}\operatorname{div}\varphi_{\bm{f},j}.

Clearly it holds that π3div𝒗=divπ2𝒗\pi^{3}\operatorname{div}\bm{v}=\operatorname{div}\pi^{2}\bm{v} for 𝒗H(div,Ω;𝕋)\bm{v}\in H(\operatorname{div},\Omega;\mathbb{T}). Since div:𝑽h𝑸h\operatorname{div}:\bm{V}_{h}\to\bm{Q}_{h} is surjective, for any 𝒒𝑸h\bm{q}\in\bm{Q}_{h}, there exists 𝒗𝑽h\bm{v}\in\bm{V}_{h} such that div𝒗=𝒒\operatorname{div}\bm{v}=\bm{q}. Therefore, π3𝒒=π3div𝒗=divπ2𝒗=div𝒗=𝒒\pi^{3}\bm{q}=\pi^{3}\operatorname{div}\bm{v}=\operatorname{div}\pi^{2}\bm{v}=\operatorname{div}\bm{v}=\bm{q}, which completes the proof. The estimation of the local bounds is similar to that in [13].

3.5. Remark: An abstract framework

In fact, the above argument can be generalized to the more general case. Here we present an abstract framework without a further proof.

For the finite element space UhU_{h}, the (global) degrees of freedom consist of 𝐱(𝒙)u(𝒙)\mathbf{x}\cdot\nabla(\bm{x})-u(\bm{x}), u(𝒙)\nabla u(\bm{x}) for x𝖵x\in\mathsf{V}, and fσ,i0,i=1,2,,Nσ0,σ𝖲f_{\sigma,i}^{0},i=1,2,\ldots,N_{\sigma}^{0},\sigma\in\mathsf{S}. Here Nσ0N_{\sigma}^{0} is the number the degrees of freedom (except u(𝒙),u(𝒙)u(\bm{x}),\nabla u(\bm{x}) if σ=𝒙\sigma=\bm{x}) attached to the sub-simplex σ\sigma of the space UhU_{h}. The corresponding basis functions are then denoted as φ𝒙,0,φ𝒙,1,φ𝒙,2{\varphi}_{\bm{x},0},{\varphi}_{\bm{x},1},{\varphi}_{\bm{x},2}, φ𝒙,3\varphi_{\bm{x},3} and ϕσ,i0\phi_{\sigma,i}^{0}, respectively. Define Lσ0=i=1Nσ0fσ,i0()ϕσ,i0L_{\sigma}^{0}=\sum_{i=1}^{N_{\sigma}^{0}}f_{\sigma,i}^{0}(\cdot)\phi_{\sigma,i}^{0}, then by the definition of the basis functions and degrees of freedom, it holds that for uUhu\in U_{h},

(3.25) u=σLσ0u+𝒙[(𝐱u(𝒙)u(𝒙))φ𝒙,0+xu(𝒙)φ𝒙,1+yu(𝒙)φ𝒙,2+zu(𝒙)φ𝒙,3].u=\sum_{\sigma}L_{\sigma}^{0}u+\sum_{\bm{x}}\big{[}(\mathbf{x}\cdot\nabla u(\bm{x})-u(\bm{x}))\varphi_{\bm{x},0}+\frac{\partial}{\partial x}u(\bm{x})\varphi_{\bm{x},1}+\frac{\partial}{\partial y}u(\bm{x})\varphi_{\bm{x},2}+\frac{\partial}{\partial z}u(\bm{x})\varphi_{\bm{x},3}\big{]}.

For the finite element space 𝚺h\bm{\Sigma}_{h}, the (global) degrees of freedom consist of (𝝈𝒕,𝒑)𝒆(\bm{\sigma}\bm{t},\bm{p})_{\bm{e}} for 𝒑RT\bm{p}\in RT for 𝒆𝖤\bm{e}\in\mathsf{E}, and fσ,i1,i=1,2,,Nσ1,σ𝖲f_{\sigma,i}^{1},i=1,2,\cdots,N_{\sigma}^{1},\sigma\in\mathsf{S}. The corresponding basis functions are then denoted as φ𝒆,j\varphi_{\bm{e},j}, j=0,1,2,3j=0,1,2,3, and ϕσ,i1\phi_{\sigma,i}^{1}. Define Lσ1=i=1Nσ1fσ,i1()ϕσ,i1L_{\sigma}^{1}=\sum_{i=1}^{N_{\sigma}^{1}}f_{\sigma,i}^{1}(\cdot)\phi_{\sigma,i}^{1} similarly. Then by definition of the basis functions and degrees of freedom, it holds that for 𝝈𝚺h\bm{\sigma}\in\bm{\Sigma}_{h},

(3.26) 𝝈=σLσ1𝝈+𝒆[(𝝈𝒕,𝐱)𝒆φ𝒆,0+(𝝈𝒕,𝐞1)𝒆φ𝒆,1+(𝝈𝒕,𝐞2)𝒆φ𝒆,2+(𝝈𝒕,𝐞3)𝒆φ𝒆,3].\bm{\sigma}=\sum_{\sigma}L_{\sigma}^{1}\bm{\sigma}+\sum_{\bm{e}}\big{[}(\bm{\sigma}\bm{t},\mathbf{x})_{\bm{e}}\varphi_{\bm{e},0}+(\bm{\sigma}\bm{t},\mathbf{e}_{1})_{\bm{e}}\varphi_{\bm{e},1}+(\bm{\sigma}\bm{t},\mathbf{e}_{2})_{\bm{e}}\varphi_{\bm{e},2}+(\bm{\sigma}\bm{t},\mathbf{e}_{3})_{\bm{e}}\varphi_{\bm{e},3}\big{]}.

For the finite element space 𝑽h\bm{V}_{h}, the (global) degrees of freedom consist of (𝒗𝒏,𝒑)𝒇(\bm{v}\bm{n},\bm{p})_{\bm{f}} for 𝒑RT\bm{p}\in RT for 𝒇𝖥\bm{f}\in\mathsf{F}, and fσ,i2,i=1,2,,Nσ1,σ𝖲f_{\sigma,i}^{2},i=1,2,\cdots,N_{\sigma}^{1},\sigma\in\mathsf{S}. The corresponding basis functions are then denoted as φ𝒇,j\varphi_{\bm{f},j}, j=0,1,2,3j=0,1,2,3, and ϕσ,i2\phi_{\sigma,i}^{2}. Define Lσ2=i=1Nσ2fσ,i2()ϕσ,i2L_{\sigma}^{2}=\sum_{i=1}^{N_{\sigma}^{2}}f_{\sigma,i}^{2}(\cdot)\phi_{\sigma,i}^{2} similarly. Then by definition of the basis functions and degrees of freedom, it holds that for 𝒗𝑽h\bm{v}\in\bm{V}_{h},

(3.27) 𝒗=σLσ2𝒗+𝒇[(𝒗𝒏,𝐱)𝒇φ𝒇,0+(𝒗𝒏,𝐞1)𝒇φ𝒇,1+(𝒗𝒏,𝐞2)𝒇φ𝒇,2+(𝒗𝒏,𝐞3)𝒇φ𝒇,3].\bm{v}=\sum_{\sigma}L_{\sigma}^{2}\bm{v}+\sum_{\bm{f}}\big{[}(\bm{v}\bm{n},\mathbf{x})_{\bm{f}}\varphi_{\bm{f},0}+(\bm{v}\bm{n},\mathbf{e}_{1})_{\bm{f}}\varphi_{\bm{f},1}+(\bm{v}\bm{n},\mathbf{e}_{2})_{\bm{f}}\varphi_{\bm{f},2}+(\bm{v}\bm{n},\mathbf{e}_{3})_{\bm{f}}\varphi_{\bm{f},3}\big{]}.

For the finite element space 𝑸h\bm{Q}_{h}, the global degrees of freedom consist of (𝒒,𝒑)𝑲(\bm{q},\bm{p})_{\bm{K}} for 𝒑RT\bm{p}\in RT, and fσ,i3(𝒒)f_{\sigma,i}^{3}(\bm{q}), p=1,2,,Nσ3,σ𝖲p=1,2,\cdots,N_{\sigma}^{3},\sigma\in\mathsf{S}. The corresponding basis functions and degrees of freedom are then denoted by φ𝑲,j\varphi_{\bm{K},j}, j=0,1,2,3j=0,1,2,3, and ϕσ,i3\phi_{\sigma,i}^{3}, Define Lσ3=i=1Nσ3fσ,i3()ϕσ,i3.L_{\sigma}^{3}=\sum_{i=1}^{N_{\sigma}^{3}}f_{\sigma,i}^{3}(\cdot)\phi_{\sigma,i}^{3}. It holds that for 𝒒𝑸h\bm{q}\in\bm{Q}_{h},

(3.28) 𝒒=σLσ3𝒒+𝑲[(𝒒,𝐱)𝑲φ𝑲,0+(𝒒,𝐞1)𝑲φ𝑲,1+(𝒒,𝐞2)𝑲φ𝑲,2+(𝒒,𝐞3)𝑲φ𝑲,3].\bm{q}=\sum_{\sigma}L_{\sigma}^{3}\bm{q}+\sum_{\bm{K}}\big{[}(\bm{q},\mathbf{x})_{\bm{K}}\varphi_{\bm{K},0}+(\bm{q},\mathbf{e}_{1})_{\bm{K}}\varphi_{\bm{K},1}+(\bm{q},\mathbf{e}_{2})_{\bm{K}}\varphi_{\bm{K},2}+(\bm{q},\mathbf{e}_{3})_{\bm{K}}\varphi_{\bm{K},3}\big{]}.

Now we can generalize our theorem to the finite element spaces UhH2(Ω)U_{h}\subseteq H^{2}(\Omega), 𝚺hH(curl,Ω;𝕊)\bm{\Sigma}_{h}\subseteq H(\operatorname{curl},\Omega;\mathbb{S}), 𝑽hH(div,Ω;𝕋)\bm{V}_{h}\subseteq H(\operatorname{div},\Omega;\mathbb{T}) and 𝑸hL2(Ω;3)\bm{Q}_{h}\subseteq L^{2}(\Omega;\mathbb{R}^{3}), which satisfy the following Assumptions (A1)-(A4).

  • (A1)

    The finite element sequence

    (3.29) P1Uh2𝚺hcurl𝑽hdiv𝑸h0P_{1}\xrightarrow{\subset}U_{h}\xrightarrow[]{\nabla^{2}}\bm{\Sigma}_{h}\xrightarrow[]{\operatorname{curl}}\bm{V}_{h}\xrightarrow[]{\operatorname{div}}\bm{Q}_{h}\xrightarrow{}0

    is an exact complex. The exactness also holds when restricted on any (extended) patch ω=ωσh\omega=\omega_{\sigma}^{h} or ωσ[m]\omega_{\sigma}^{[m]} for non-negative mm and σ𝖲\sigma\in\mathsf{S}, namely, the sequence

    (3.30) P1Uh(ω)2𝚺h(ω)curl𝑽h(ω)div𝑸h(ω)0,P_{1}\xrightarrow{\subset}U_{h}(\omega)\xrightarrow[]{\nabla^{2}}\bm{\Sigma}_{h}(\omega)\xrightarrow[]{\operatorname{curl}}\bm{V}_{h}(\omega)\xrightarrow[]{\operatorname{div}}\bm{Q}_{h}(\omega)\xrightarrow{}0,

    is exact, where Uh(ω),𝚺h(ω),𝑽h(ω),𝑸h(ω)U_{h}(\omega),\bm{\Sigma}_{h}(\omega),\bm{V}_{h}(\omega),\bm{Q}_{h}(\omega) are the restrictions of Uh,𝚺h,𝑽h,𝑸hU_{h},\bm{\Sigma}_{h},\bm{V}_{h},\bm{Q}_{h} on ω\omega, respectively.

  • (A2)

    It holds that 2φ𝒙,jspan{φ𝒆,j:𝒆𝖤:j=0,1,2,3},\nabla^{2}\varphi_{\bm{x},j}\in\operatorname{span}\{\varphi_{\bm{e},j^{\prime}}:\bm{e}\in\mathsf{E}:j^{\prime}=0,1,2,3\}, curlφ𝒆,jspan{φ𝒇,j:𝒇𝖥:j=0,1,2,3}\operatorname{curl}\varphi_{\bm{e},j}\in\operatorname{span}\{\varphi_{\bm{f},j^{\prime}}:\bm{f}\in\mathsf{F}:j^{\prime}=0,1,2,3\}, and divφ𝒇,jspan{φ𝑲,j:j=0,1,2,3}\operatorname{div}\varphi_{\bm{f},j}\in\operatorname{span}\{\varphi_{\bm{K},j^{\prime}}:j^{\prime}=0,1,2,3\} for j=0,1,2,3j=0,1,2,3.

  • (A3)

    The collection Lσ0L_{\sigma}^{0} of the degrees of freedom vanishes for the linear functions, namely, Lσ0(u)=0L_{\sigma}^{0}(u)=0 for uP1u\in P_{1} and σ𝖲\sigma\in\mathsf{S}.

  • (A4)

    For l=0,1,2,3l=0,1,2,3, the mapping LσlL_{\sigma}^{l} is locally defined and locally supported: for l=0l=0 the value of Lσ0uL_{\sigma}^{0}u on σ\sigma only depends on the value of uH2(Ω)u\in H^{2}(\Omega) on ωσ\omega_{\sigma}, and the support of Lσ0uL_{\sigma}^{0}u and φ𝒙,j\varphi_{\bm{x},j} are a subset of ωσ\omega_{\sigma}, for j=0,1,2,3j=0,1,2,3. Similar conditions hold for 𝚺h(l=1)\bm{\Sigma}_{h}(l=1) and 𝑽h(l=2)\bm{V}_{h}(l=2), and 𝑸h(l=3)\bm{Q}_{h}(l=3).

4. Two-dimensional case

4.1. The framework for two dimensions

Instead of proving Theorem 2.1 directly, Proposition 4.1 is proposed in the following, including more general cases of the finite element gradgrad complexes (and therefore elasticity complexes in two dimensions).

Simiar to those in three dimensions, suppose that

  • -

    for the H2H^{2} conforming finite element space UhU_{h}, the (global) degrees of freedom contain u(𝒙)u(\bm{x}), u(𝒙)\nabla u(\bm{x}) for x𝖵x\in\mathsf{V}, with corresponding basis functions denoted as φ~𝒙,0,φ~𝒙,1,φ~𝒙,2\tilde{\varphi}_{\bm{x},0},\tilde{\varphi}_{\bm{x},1},\tilde{\varphi}_{\bm{x},2};

  • -

    for the H(rot;𝕊)H(\operatorname{rot};\mathbb{S}) conforming finite element space 𝚺h\bm{\Sigma}_{h}, the (global) degrees of freedom contain (𝝈𝒕,𝒘)𝒆(\bm{\sigma}\bm{t},\bm{w})_{\bm{e}} for 𝒘RT(𝒇)\bm{w}\in RT(\bm{f}) for 𝒆𝖤\bm{e}\in\mathsf{E}, with corresponding basis functions denoted as φ𝒆,0,φ𝒆,1,φ𝒆,2\varphi_{\bm{e},0},\varphi_{\bm{e},1},\varphi_{\bm{e},2};

  • -

    for the L2L^{2} finite element space 𝑸h\bm{Q}_{h}, the global degrees of freedom consist of (𝒒,𝒘)𝒆(\bm{q},\bm{w})_{\bm{e}} for 𝒘RT(𝒇)\bm{w}\in RT(\bm{f}), with corresponding basis functions denoted as φ𝒇,0,φ𝒇,1,φ𝒇,2\varphi_{\bm{f},0},\varphi_{\bm{f},1},\varphi_{\bm{f},2}.

Similar to those notations in Section 3.5, define Lσ0L_{\sigma}^{0}, Lσ1L_{\sigma}^{1}, Lσ2L_{\sigma}^{2} accordingly, then it holds that for uUhu\in U_{h},

(4.1) u=σLσ0u+𝒙[u(𝒙)φ~𝒙,0+xu(𝒙)φ~𝒙,1+yu(𝒙)φ~𝒙,2];u=\sum_{\sigma}L_{\sigma}^{0}u+\sum_{\bm{x}}\big{[}u(\bm{x})\tilde{\varphi}_{\bm{x},0}+\frac{\partial}{\partial x}u(\bm{x})\tilde{\varphi}_{\bm{x},1}+\frac{\partial}{\partial y}u(\bm{x})\tilde{\varphi}_{\bm{x},2}\big{]};

for 𝝈𝚺h\bm{\sigma}\in\bm{\Sigma}_{h},

(4.2) 𝝈=σLσ1𝝈+𝒆[(𝝈𝒕,𝐱)𝒆φ𝒆,0+(𝝈𝒕,𝐞1)𝒆φ𝒆,1+(𝝈𝒕,𝐞2)𝒆φ𝒆,2];\bm{\sigma}=\sum_{\sigma}L_{\sigma}^{1}\bm{\sigma}+\sum_{\bm{e}}\big{[}(\bm{\sigma}\bm{t},\mathbf{x})_{\bm{e}}\varphi_{\bm{e},0}+(\bm{\sigma}\bm{t},\mathbf{e}_{1})_{\bm{e}}\varphi_{\bm{e},1}+(\bm{\sigma}\bm{t},\mathbf{e}_{2})_{\bm{e}}\varphi_{\bm{e},2}\big{]};

for 𝒗𝑸h\bm{v}\in\bm{Q}_{h},

(4.3) 𝒗=σLσ2𝒗+𝒇[(𝒗,𝐱)𝒇φ𝒇,0+(𝒗,𝐞1)𝒇φ𝒇,1+(𝒗,𝐞2)𝒇φ𝒇,2].\bm{v}=\sum_{\sigma}L_{\sigma}^{2}\bm{v}+\sum_{\bm{f}}\big{[}(\bm{v},\mathbf{x})_{\bm{f}}\varphi_{\bm{f},0}+(\bm{v},\mathbf{e}_{1})_{\bm{f}}\varphi_{\bm{f},1}+(\bm{v},\mathbf{e}_{2})_{\bm{f}}\varphi_{\bm{f},2}\big{]}.

Here are the assumptions of Proposition 4.1.

  • (B1)

    The finite element sequence

    (4.4) P1Uh2𝚺hrot𝑸h0P_{1}\xrightarrow{\subset}U_{h}\xrightarrow[]{\nabla^{2}}\bm{\Sigma}_{h}\xrightarrow[]{\operatorname{rot}}\bm{Q}_{h}\xrightarrow{}0

    is an exact complex. The exactness also holds when restricted on any (extended) patch ω=ωσh\omega=\omega_{\sigma}^{h} or ωσ[m]\omega_{\sigma}^{[m]} for non-negative mm and σ𝖲\sigma\in\mathsf{S}, namely, the sequence

    (4.5) P1Uh(ω)2𝚺h(ω)rot𝑸h(ω)0P_{1}\xrightarrow{\subset}U_{h}(\omega)\xrightarrow[]{\nabla^{2}}\bm{\Sigma}_{h}(\omega)\xrightarrow[]{\operatorname{rot}}\bm{Q}_{h}(\omega)\xrightarrow{}0

    is exact, where Uh(ω),𝚺h(ω),𝑸h(ω)U_{h}(\omega),\bm{\Sigma}_{h}(\omega),\bm{Q}_{h}(\omega) are the restrictions of Uh,𝚺h,𝑸hU_{h},\bm{\Sigma}_{h},\bm{Q}_{h} on ω\omega, respectively.

  • (B2)

    For j=0,1,2j=0,1,2, it holds that 2φ~𝒙,jspan{φ𝒆,j;𝒆𝖤,j=0,1,2},\nabla^{2}\tilde{\varphi}_{\bm{x},j}\in\operatorname{span}\{\varphi_{\bm{e},j^{\prime}};\bm{e}\in\mathsf{E},j^{\prime}=0,1,2\}, and rotφ~𝒆,jspan{φ𝒇,j;𝒇𝖥,j=0,1,2}.\operatorname{rot}\tilde{\varphi}_{\bm{e},j}\in\operatorname{span}\{\varphi_{\bm{f},j^{\prime}};\bm{f}\in\mathsf{F},j^{\prime}=0,1,2\}.

  • (B3)

    The collection Lσ0L_{\sigma}^{0} of the degrees of freedom vanishes for the linear functions, namely, Lσ0(u)=0L_{\sigma}^{0}(u)=0 for uP1u\in P_{1} and σ𝖲\sigma\in\mathsf{S}.

  • (B4)

    For l=0,1,2l=0,1,2, the mapping LσlL_{\sigma}^{l} is locally defined and locally supported: for l=0l=0 the value of Lσ0uL_{\sigma}^{0}u on σ\sigma only depends on the value of uUhu\in U_{h} on ωσ\omega_{\sigma}, and the support of Lσ0uL_{\sigma}^{0}u and φ𝒙,j\varphi_{\bm{x},j} are a subset of ωσ\omega_{\sigma}, for j=0,1,2j=0,1,2. Similar conditions hold for 𝚺h(l=1)\bm{\Sigma}_{h}(l=1) and 𝑸h(l=2)\bm{Q}_{h}(l=2).

Proposition 4.1.

Under Assumptions (B1)-(B4), there exist operators πl\pi^{l}, l=0,1,2l=0,1,2, such that π0:H2(Ω)Uh\pi^{0}:H^{2}(\Omega)\to U_{h}, π1:H(rot,Ω;𝕊)𝚺h\pi^{1}:H(\operatorname{rot},\Omega;\mathbb{S})\to\bm{\Sigma}_{h} and π2:L2(Ω;2)𝐐h\pi^{2}:L^{2}(\Omega;\mathbb{R}^{2})\to\bm{Q}_{h} are projection operators, and the diagram (2.6) commutes.

If moreover, 𝒯\mathcal{T} is shape-regular, and the shape function space and degrees of freedom in each element are affine-interpolant equivalent to each other, then the projection operators are locally bounded, i.e., (2.7) holds. As a result, all the operators are globally bounded, i.e., π0\pi^{0} is H2H^{2} bounded, π1\pi^{1} is H(rot;𝕊)H(\operatorname{rot};\mathbb{S}) bounded, and π2\pi^{2} is L2L^{2} bounded.

The proof of Proposition 4.1 is similar to the argument in Section 3.

4.2. Proof of Theorem 2.1

This subsection verifies that the finite element spaces UhU_{h}, 𝚺h\bm{\Sigma}_{h} and 𝑸h\bm{Q}_{h}, introduced in Section 2.1, satisfy Assumptions (B1)–(B4). To this end, consider the following two edge bubble complexes:

(4.6) 0(λ0λ1)3Pk4(𝒆)2/𝒕2(λ0λ1)Pk2(𝒆)/P1(𝒆)0,0\xrightarrow{}(\lambda_{0}\lambda_{1})^{3}P_{k-4}(\bm{e})\xrightarrow{\partial^{2}/\partial\bm{t}^{2}}(\lambda_{0}\lambda_{1})P_{k-2}(\bm{e})/P_{1}(\bm{e})\xrightarrow{}0,

and

(4.7) 0(λ0λ1)2Pk3(𝒆)/𝒕(λ0λ1)Pk2(𝒆)/P0(𝒆)0,0\xrightarrow{}(\lambda_{0}\lambda_{1})^{2}P_{k-3}(\bm{e})\xrightarrow{\partial/\partial\bm{t}}(\lambda_{0}\lambda_{1})P_{k-2}(\bm{e})/P_{0}(\bm{e})\xrightarrow{}0,

and the face bubble complex,

(4.8) 0(λ0λ1λ2)2Pk4(𝒇)2B𝒇,krot;𝕊rotPk1(𝒇;2)/RT(𝒇)0.0\xrightarrow{}(\lambda_{0}\lambda_{1}\lambda_{2})^{2}P_{k-4}(\bm{f})\xrightarrow[]{\operatorname{\nabla^{2}}}B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}}\xrightarrow[]{\operatorname{rot}}P_{k-1}(\bm{f};\mathbb{R}^{2})/RT(\bm{f})\xrightarrow{}0.

The exactness of the edge bubble complexes (4.6) and (4.7) can be easily verified. The following lemma shows the exactness of (4.8).

Lemma 4.1.

Suppose that k5k\geq 5, then the polynomial sequence (4.8) is an exact complex.

Proof.

First, recall the polynomial Hessian complex in two dimensions from [6],

(4.9) P1Pk+2(𝒇)2Pk(𝒇;𝕊)rotPk1(𝒇;2)0.P_{1}\xrightarrow{\subset}P_{k+2}(\bm{f})\xrightarrow[]{\operatorname{\nabla^{2}}}P_{k}(\bm{f};\mathbb{S})\xrightarrow[]{\operatorname{rot}}P_{k-1}(\bm{f};\mathbb{R}^{2})\xrightarrow{}0.

Since

dimPk4+2dimPk1dimRT=12(k3)(k2)+k(k+1)3=32(k2k)=dimB𝒇,krot;𝕊,\dim P_{k-4}+2\dim P_{k-1}-\dim{RT}=\frac{1}{2}(k-3)(k-2)+k(k+1)-3=\frac{3}{2}(k^{2}-k)=\dim B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}},

it suffices to show that if 𝝈B𝒇,krot;𝕊\bm{\sigma}\in B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}} satisfies rot𝝈=0\operatorname{rot}\bm{\sigma}=0, then there exists u(λ0λ1λ2)2Pk4u\in(\lambda_{0}\lambda_{1}\lambda_{2})^{2}P_{k-4}, such that 𝝈=2u\bm{\sigma}=\nabla^{2}u.

From (4.9), there exists uPk+2(𝒇)u\in P_{k+2}(\bm{f}) such that 2u=𝝈\nabla^{2}u=\bm{\sigma}. Moreover, assume that u(𝒙)=u(𝒙)=0u(\bm{x})=\nabla u(\bm{x})=0 for some vertex 𝒙\bm{x} of 𝒇\bm{f}. Since 𝒕u=(2u)𝒕=0\frac{\partial}{\partial\bm{t}}\operatorname{\nabla}u=(\nabla^{2}u)\bm{t}=0 on the boundary 𝒇\partial\bm{f}, it then holds that u=0\nabla u=0 on 𝒇\partial\bm{f}, and therefore u=0u=0 on 𝒇\partial\bm{f}. Consequently, u(λ0λ1λ2)2Pk4(𝒇).u\in(\lambda_{0}\lambda_{1}\lambda_{2})^{2}P_{k-4}(\bm{f}).

Remark 4.1.

Another approach is to show the discrete rot operator :𝚺h𝑸h:\bm{\Sigma}_{h}\to\bm{Q}_{h} is surjective, which was proved in [14, Lemma 3.2].

Proof of Theorem 2.1.

The degrees of freedom imply that Assumptions (B3) and (B4) hold. For Assumption (B1), the exactness can be found in [7]. It suffices to check (B2).

Suppose that φUh\varphi\in U_{h} vanishes at all but the first set of the degrees of freedom (1a) of UhU_{h}, set 𝝈=2φ\bm{\sigma}=\nabla^{2}\varphi. Clearly, it holds that

𝝈(𝒙)=2φ(𝒙)=0 at each vertex x𝖵,\bm{\sigma}(\bm{x})=\nabla^{2}\varphi(\bm{x})=0\text{ at each vertex }x\in\mathsf{V},

hence 𝝈\bm{\sigma} vanishes at (2b). On edge 𝒆𝖤\bm{e}\in\mathsf{E}, since for a given p[λ0λ1Pk2(𝒆)]/P1(𝒆)p\in[\lambda_{0}\lambda_{1}P_{k-2}(\bm{e})]/P_{1}(\bm{e}), it follows from the exactness of (4.6) that there exists b(λ0λ1)3Pk4(𝒆)b\in(\lambda_{0}\lambda_{1})^{3}P_{k-4}(\bm{e}) such that 2𝒕2b=p\frac{\partial^{2}}{\partial\bm{t}^{2}}b=p. Hence,

(𝒕T𝝈𝒕,p)𝒆=(2𝒕2u,2𝒕2b)𝒆=0,(\bm{t}^{T}\bm{\sigma}\bm{t},p)_{\bm{e}}=(\frac{\partial^{2}}{\partial\bm{t}^{2}}u,\frac{\partial^{2}}{\partial\bm{t}^{2}}b)_{\bm{e}}=0,

indicating that 𝝈\bm{\sigma} vanishes at (2c). Similarly, the exactness of (4.7) implies that (𝒏T𝝈𝒕,p)𝒆=0(\bm{n}^{T}\bm{\sigma}\bm{t},p)_{\bm{e}}=0 for p(λ0λ1)Pk2(𝒆)/P0(𝒆)p\in(\lambda_{0}\lambda_{1})P_{k-2}(\bm{e})/P_{0}(\bm{e}), indicating that 𝝈\bm{\sigma} vanishes at (2d).

Inside 𝒇\bm{f}, since 𝝈\bm{\sigma} is rot free, it suffices to show that for all 𝜼B𝒇,krot;𝕊\bm{\eta}\in B_{\bm{f},k}^{\operatorname{rot};\mathbb{S}}, it holds (𝒫2B1𝒇,k4𝝈,𝒫2B1𝒇,k4𝜼)𝒇=0(\mathcal{P}_{\nabla^{2}B^{1}_{\bm{f},k-4}}\bm{\sigma},\mathcal{P}_{\nabla^{2}B^{1}_{\bm{f},k-4}}\bm{\eta})_{\bm{f}}=0. It follows from the exactness of (4.8) that

𝒫2B1𝒇,k4𝜼=2ψ for some ψB1𝒇,k4,\mathcal{P}_{\nabla^{2}B^{1}_{\bm{f},k-4}}\bm{\eta}=\nabla^{2}\psi\text{ for some }\psi\in B^{1}_{\bm{f},k-4},

and therefore

(𝒫2B1𝒇,k4𝝈,𝒫2B1𝒇,k4𝜼)𝒇=(2φ,2ψ)𝒇=0.(\mathcal{P}_{\nabla^{2}B^{1}_{\bm{f},k-4}}\bm{\sigma},\mathcal{P}_{\nabla^{2}B^{1}_{\bm{f},k-4}}\bm{\eta})_{\bm{f}}=(\nabla^{2}\varphi,\nabla^{2}\psi)_{\bm{f}}=0.

This shows that 𝝈\bm{\sigma} vanishes at (2e). In summary, it holds that 𝝈\bm{\sigma} vanishes at all but the first set of the degrees of freedom (2a).

Suppose that 𝝈𝚺h\bm{\sigma}\in\bm{\Sigma}_{h} vanishes at all but the first set of the degrees of freedom (2a) of 𝚺h\bm{\Sigma}_{h}, denote by 𝒒=rot𝝈.\bm{q}=\operatorname{rot}\bm{\sigma}. It follows from the exactness of (4.8) that there for any 𝒘Pk1(𝒇;2)/RT(𝒇)\bm{w}\in P_{k-1}(\bm{f};\mathbb{R}^{2})/RT(\bm{f}) there exists 𝜼\bm{\eta} such that

rot𝜼=𝒘 and 𝜼2[(λ0λ1λ2)2Pk4(𝒇)].\operatorname{rot}\bm{\eta}=\bm{w}\text{ and }\bm{\eta}\perp\nabla^{2}[(\lambda_{0}\lambda_{1}\lambda_{2})^{2}P_{k-4}(\bm{f})].

As a result, it follows from (2e) that (𝒒,𝒘)𝒇=0(\bm{q},\bm{w})_{\bm{f}}=0, which completes the proof. ∎

4.3. Applications to a finite element complex on the Clough–Tocher split

Besides the finite element complex introduced in Section 2.1, another example of the finite element gradgrad complex starts from the Hsieh–Clough–Tocher element will be discussed in this subsection, whose rotated version was also discussed in [8].

P1UhCT2𝚺hCTrot𝑸hCT0,P_{1}\xrightarrow{\subset}U_{h}^{\mathrm{CT}}\xrightarrow[]{\nabla^{2}}\bm{\Sigma}_{h}^{\mathrm{CT}}\xrightarrow[]{\operatorname{rot}}\bm{Q}_{h}^{\mathrm{CT}}\xrightarrow{}0,

where UhCTU_{h}^{\mathrm{CT}},𝚺hCT\bm{\Sigma}_{h}^{\mathrm{CT}} and 𝑸hCT\bm{Q}_{h}^{\mathrm{CT}} will be defined later in (4.10), (4.11) and (4.12), respectively. In this subsection, the face 𝒇\bm{f} is split into three triangles 𝒇i\bm{f}_{i}, the sub-triangle with respect to vertex 𝒙i\bm{x}_{i}, i=0,1,2i=0,1,2.

The finite element complex is illustrated as follows.

2\xrightarrow[]{\nabla^{2}}44444499rot\xrightarrow[]{\operatorname{rot}}1212

H2H^{2} conforming finite element space

The shape function UCT(𝒇)U^{\mathrm{CT}}(\bm{f}) is chosen as

UCT(𝒇):={uC1(𝒇):u|𝒇iP3(𝒇i)},U^{\mathrm{CT}}(\bm{f}):=\{u\in C^{1}(\bm{f})~{}:~{}u|_{\bm{f}_{i}}\in P_{3}(\bm{f}_{i})\},

whose dimension is 12. For uUCT(𝒇)u\in U^{\mathrm{CT}}(\bm{f}), define the degrees of freedom as:

  1. (8a).

    the function value and first order derivatives u(𝒙)u(\bm{x}), xu(𝒙)\frac{\partial}{\partial x}u(\bm{x}) and yu(𝒙)\frac{\partial}{\partial y}u(\bm{x}) at each vertex 𝒙\bm{x} of 𝒇\bm{f};

  2. (8b).

    the moment of the normal-tangential derivative (2𝒏𝒕u,𝒕(λ0λ1))𝒆,(\frac{\partial^{2}}{\partial\bm{n}\partial\bm{t}}u,\frac{\partial}{\partial\bm{t}}(\lambda_{0}\lambda_{1}))_{\bm{e}}, where λ0\lambda_{0} and λ1\lambda_{1} are the barycenter coordinates of 𝒆\bm{e}.

The above degrees of freedom are unisolvent, and the resulting finite element space is the HCT element [9],

(4.10) UhCT:={uC1(Ω):u|𝒇UCT(𝒇),𝒇𝒯;u is C1 at each vertex}.U_{h}^{\mathrm{CT}}:=\{u\in C^{1}(\Omega):u|_{\bm{f}}\in U^{\mathrm{CT}}(\bm{f}),\forall\bm{f}\in\mathcal{T};u\text{ is }C^{1}\text{ at each vertex}\}.

H(rot;𝕊)H(\operatorname{rot};\mathbb{S}) conforming finite element space

The shape function space of the H(rot;𝕊)H(\operatorname{rot};\mathbb{S}) conforming space is chosen as

𝚺CT(𝒇):={𝝈H(rot,𝒇;𝕊):𝝈|𝒇iP1(𝒇i;𝕊)},\bm{\Sigma}^{\mathrm{CT}}(\bm{f}):=\{\bm{\sigma}\in H(\operatorname{rot},\bm{f};\mathbb{S})~{}:~{}\bm{\sigma}|_{\bm{f}_{i}}\in P_{1}(\bm{f}_{i};\mathbb{S})\},

whose dimension is 15. For 𝝈𝚺CT(𝒇)\bm{\sigma}\in\bm{\Sigma}^{\mathrm{CT}}(\bm{f}), the degrees of freedom as defined as:

  1. (9a).

    the moments (𝝈𝒕,𝒑)𝒆(\bm{\sigma}\bm{t},\bm{p})_{\bm{e}} of its tangential component, for 𝒑RT(𝒆)\bm{p}\in RT(\bm{e}), on each edge 𝒆\bm{e} of 𝑲\bm{K};

  2. (9b).

    the moment of the normal-tangential component, (𝒏T𝝈𝒕,𝒕(λ0λ1))𝒆;(\bm{n}^{T}\bm{\sigma}\bm{t},\frac{\partial}{\partial\bm{t}}(\lambda_{0}\lambda_{1}))_{\bm{e}};

  3. (9c).

    the moments inside 𝒇\bm{f}, (rot𝝈,rot𝒑)𝒇(\operatorname{rot}\bm{\sigma},\operatorname{rot}\bm{p})_{\bm{f}} for 𝒑B𝒇,CT\bm{p}\in B_{\bm{f},\mathrm{CT}}. Here, the face bubble space

    B𝒇,CT:={𝝈𝚺CT(𝒇):𝝈𝒕=0 on edge 𝒆 of 𝒇},B_{\bm{f},\mathrm{CT}}:=\{\bm{\sigma}\in\bm{\Sigma}^{\mathrm{CT}}(\bm{f}):\bm{\sigma}\bm{t}=0\text{ on edge }\bm{e}\text{ of }\bm{f}\},

    whose dimension is 3.

The above degrees of freedom are unisolvent, and the resulting finite element space is a rotation of the Johnson–Mercier element [15],

(4.11) 𝚺hCT:={𝚺H(rot,Ω;𝕊):u|𝒇𝚺CT(𝒇),𝒇𝒯}.\bm{\Sigma}_{h}^{\mathrm{CT}}:=\{\bm{\Sigma}\in H(\operatorname{rot},\Omega;\mathbb{S}):u|_{\bm{f}}\in\bm{\Sigma}^{\mathrm{CT}}(\bm{f}),\forall\bm{f}\in\mathcal{T}\}.

L2(2)L^{2}(\mathbb{R}^{2}) finite element space

The shape function of the L2(2)L^{2}(\mathbb{R}^{2}) finite element space is taken as

𝑸CT(𝒇):={𝒒L2(𝒇):𝒒|𝒇iP0(𝒇)},\bm{Q}^{\mathrm{CT}}(\bm{f}):=\{\bm{q}\in L^{2}(\bm{f})~{}:~{}\bm{q}|_{\bm{f}_{i}}\in P_{0}(\bm{f})\},

whose dimension is 6. For 𝒒𝑸CT(𝒇),\bm{q}\in\bm{Q}^{\mathrm{CT}}(\bm{f}), the degrees of freedom are defined as :

  1. (10a).

    the moments (𝒗,𝒘)𝒇(\bm{v},\bm{w})_{\bm{f}} for 𝒘RT(𝒇)\bm{w}\in RT(\bm{f});

  2. (10b).

    the moments (𝒗,𝒛)𝒇(\bm{v},\bm{z})_{\bm{f}} for 𝒛𝑸CT(𝒇)/RT(𝒇)\bm{z}\in\bm{Q}^{\mathrm{CT}}(\bm{f})/{RT(\bm{f})}.

The global space is defined as

(4.12) QhCT:={𝒒L2(Ω;2):𝒒|𝒇𝑸CT(𝒇),𝒇𝒯}.Q_{h}^{\textrm{CT}}:=\{\bm{q}\in L^{2}(\Omega;\mathbb{R}^{2})~{}:~{}\bm{q}|_{\bm{f}}\in\bm{Q}^{\mathrm{CT}}(\bm{f}),\forall\bm{f}\in\mathcal{T}\}.

For this complex, Assumptions (B1)–(B4) can be similarly verified.

References

  • [1] John H Argyris, Isaac Fried, and Dieter W Scharpf. The TUBA family of plate elements for the matrix displacement method. The Aeronautical Journal, 72(692):701–709, 1968.
  • [2] Douglas Arnold and Johnny Guzmán. Local L2L^{2}-bounded commuting projections in FEEC. ESAIM Math. Model. Numer. Anal., 55(5):2169–2184, 2021.
  • [3] Douglas N. Arnold. Finite element exterior calculus, volume 93 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2018.
  • [4] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus, homological techniques, and applications. Acta Numer., 15:1–155, 2006.
  • [5] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.), 47(2):281–354, 2010.
  • [6] Douglas N. Arnold and Ragnar Winther. Mixed finite elements for elasticity. Numer. Math., 92(3):401–419, 2002.
  • [7] Snorre H. Christiansen, Jun Hu, and Kaibo Hu. Nodal finite element de Rham complexes. Numer. Math., 139(2):411–446, 2018.
  • [8] Snorre H Christiansen and Kaibo Hu. Finite element systems for vector bundles: elasticity and curvature. Foundations of Computational Mathematics, pages 1–52, 2022.
  • [9] RW Clough and JL Tocher. Finite element stiffness matricesfor analysis of plates in bending. In Proc. Conf. on Matrix Methodsin Structural Mechanics, Wright-Patterson AFB, Ohio, 1965.
  • [10] Richard S. Falk and Ragnar Winther. Local bounded cochain projections. Math. Comp., 83(290):2631–2656, 2014.
  • [11] Richard S. Falk and Ragnar Winther. Double complexes and local cochain projections. Numer. Methods Partial Differential Equations, 31(2):541–551, 2015.
  • [12] Jun Hu and Yizhou Liang. Conforming discrete gradgrad-complexes in three dimensions. Mathematics of Computation, 90(330):1637–1662, 2021.
  • [13] Jun Hu, Yizhou Liang, and Ting Lin. Local bounded commuting projection operator for discrete de Rham complexes. arXiv preprint arXiv:2303.09359, 2023.
  • [14] Jun Hu and Shangyou Zhang. A family of conforming mixed finite elements for linear elasticity on triangular grids. arXiv preprint arXiv:1406.7457, 2014.
  • [15] Claes Johnson and Bertrand Mercier. Some equilibrium finite element methods for two-dimensional elasticity problems. Numerische Mathematik, 30:103–116, 1978.
  • [16] Dirk Pauly and Michael Schomburg. Hilbert complexes with mixed boundary conditions–part 3: Biharmonic complexes. arXiv preprint arXiv:2207.11778, 2022.
  • [17] Dirk Pauly and Walter Zulehner. The divDiv-complex and applications to biharmonic equations. Appl. Anal., 99(9):1579–1630, 2020.
  • [18] Vincent Quenneville-Belair. A New Approach to Finite Element Simulations of General Relativity. ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)–University of Minnesota.
  • [19] Shangyou Zhang. A family of 3d continuously differentiable finite elements on tetrahedral grids. Applied Numerical Mathematics, 59(1):219–233, 2009.