This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Liouville-type results in two dimensions for stationary points of functionals with linear growth

Michael Bildhauer & Martin Fuchs
Abstract
111AMS Subject Classification: 49J40, 35J50

We consider variational integrals of linear growth satisfying the condition of μ\mu-ellipticity for some exponent μ>1\mu>1 and prove that stationary points uu: 2N\mathbb{R}^{2}\to\mathbb{R}^{N} with the property

lim sup|x||u(x)||x|<\limsup_{|x|\to\infty}\frac{|u(x)|}{|x|}<\infty

must be affine functions. The latter condition can be dropped in the scalar case together with appropriate assumptions on the energy density providing an extension of Bernstein’s theorem.

1 Introduction

In this note we mainly present results of Liouville-type for entire solutions uu: 2N\mathbb{R}^{2}\to\mathbb{R}^{N} of the system

div[F(u)]=0on 2,\operatorname{div}\big{[}\nabla F(\nabla u)\big{]}=0\quad\mbox{on $\mathbb{R}^{2}$}\,, (1.1)

concentrating on the case of energy densities FF: 2N\mathbb{R}^{2N}\to\mathbb{R} with linear growth.

To be precise we assume that FF is of class C2(2N)C^{2}\big{(}\mathbb{R}^{2N}\big{)} satisfying with constants MM, λ\lambda, Λ>0\Lambda>0 and for some exponent μ>1\mu>1

|F(Z)|\displaystyle|\nabla F(Z)| \displaystyle\leq M,\displaystyle M\,, (1.2)
λ(1+|Z|)μ|Y|2\displaystyle\lambda(1+|Z|)^{-\mu}|Y|^{2} \displaystyle\leq D2F(Z)(Y,Y)Λ(1+|Z|)1|Y|2\displaystyle D^{2}F(Z)(Y,Y)\leq\Lambda(1+|Z|)^{-1}|Y|^{2} (1.3)

for all YY, Z2NZ\in\mathbb{R}^{2N}, where the first inequality in (1.3) expresses the fact that FF is a μ\mu-elliptic integrand. Note that (1.2) and (1.3) exactly correspond to the requirements of Assumption 4.1 in [2] and as outlined in Remark 4.2 of this reference, conditions (1.2) and (1.3) imply that FF is of linear growth in the sense that

a|Z|bF(Z)A|Z|+B,Z2N,a|Z|-b\leq F(Z)\leq A|Z|+B\,,\quad Z\in\mathbb{R}^{2N}\,,

holds with constants aa, A>0A>0, BB, bb, 0\geq 0.

Note also that the “minimal surface case” is included by letting F(Z):=(1+|Z|2)1/2F(Z):=(1+|Z|^{2})^{1/2}. In this case we have the validity of (1.3) with the choice μ=3\mu=3, and two families of densities satisfying (1.2) and (1.3) with prescribed exponent μ>1\mu>1 are given by

F(Z):={0|Z|0s(1+r)μdrds0|Z|0s(1+r2)μ/2drds},Z2N.F(Z):=\left\{\begin{array}[]{l}\displaystyle\int_{0}^{|Z|}\int_{0}^{s}(1+r)^{-\mu}\,{\rm d}r\,{\rm d}s\\[17.22217pt] \displaystyle\int_{0}^{|Z|}\int_{0}^{s}(1+r^{2})^{-\mu/2}\,{\rm d}r\,{\rm d}s\end{array}\right\}\,,\quad Z\in\mathbb{R}^{2N}\,.

Our results on the behaviour of global solutions of the Euler equations (1.1) with μ\mu-elliptic densities FF are as follows.

Theorem 1.1.

Let uC2(2,N)u\in C^{2}\big{(}\mathbb{R}^{2},\mathbb{R}^{N}\big{)} denote a solution of (1.1) with density FF such that (1.2) and (1.3) hold.

  1. a)

    Suppose that in addition

    lim|x||u(x)||x|=0.\lim_{|x|\to\infty}\frac{|u(x)|}{|x|}=0\,. (1.4)

    Then uu is a constant function.

  2. b)

    If the function uu has the property

    supx2|u(x)|<,\sup_{x\in\mathbb{R}^{2}}|\nabla u(x)|<\infty\,, (1.5)

    then uu is affine.

  3. c)

    If we have

    lim sup|x||u(x)||x|<,\limsup_{|x|\to\infty}\frac{|u(x)|}{|x|}<\infty\,, (1.6)

    then the conclusion of b)b) holds.

Remark 1.1.
  1. a)

    Clearly (1.4) holds in the case that uu is a bounded solution, and evidently (1.5) implies (1.6).

  2. b)

    We do not know if there are versions of Theorem 1.1 for entire solutions uu: nN\mathbb{R}^{n}\to\mathbb{R}^{N} of (1.1) in the case n3n\geq 3.

  3. c)

    Our discussion of smooth solutions of the system (1.1) includes the vector case N>1N>1 for densities FF of linear growth. The existence of smooth solutions is known provided that μ\mu is not too large and provided that F(Z)=f(|Z|)F(Z)=f(|Z|). It is a challenging question whether the smoothness of solutions remains true (to some extend) if the second hypothesis is dropped.

Before presenting the proof of Theorem 1.1 we wish to mention that there exists a variety of Liouville-type theorems for entire solutions uu: nN\mathbb{R}^{n}\to\mathbb{R}^{N}, n2n\geq 2, N1N\geq 1, of systems of the form (1.1) (and even for nonhomogeneous systems not generated by a density FF) assuming that FF is of superlinear growth. The interested reader should consult the references on this topic quoted for example in the textbooks [12], [13], [14], [16], [22] and [25]. A nice survey is also presented in [6].

Besides this more general discussion the validity of Liouville theorems for harmonic maps between Riemannian manifolds turned out to be a useful tool for the analysis of the geometric properties of the underlying manifolds. Without being complete we refer to [4], [5], [17], [18], [19], [20], [27] and [28].

Liouville theorems are also of interest in the setting of fluid mechanics, where in the stationary case (1.1) is replaced by a nonlinear variant of the Navier-Stokes equation with dissipative potential FF of superlinear growth and the incompressibility condition divu=0\operatorname{div}u=0 for the velocity field uu: nn\mathbb{R}^{n}\to\mathbb{R}^{n} has to be added. The validity of Liouville theorems has been established in the 22-D-case, i.e. for n=2n=2, for instance in the papers [3], [8], [9], [10], [11], [15], [21], [23], [29] and [30]. We like to mention that the case of potentials FF satisfying (1.2) and (1.3) is treated in [10] assuming μ<2\mu<2.

As it stands, the conclusions of Theorem 1.1 b) and c) are in the spirit of Bernstein’s theorem (see [1]) for nonparametric minimal surfaces, where in this particular setting conditions like (1.5) or (1.6) are seen to be superfluous. For completeness we specialize the Bernstein result obtained by Farina, Sciunzi and Valdinoci in Theorem 1.4 of their paper [7] to the case of linear growth integrands.

Theorem 1.2.

Consider a function gC2([0,))g\in C^{2}\big{(}[0,\infty)\big{)} such that with constants a1a_{1}, a3a_{3}, a5>0a_{5}>0, a2a_{2}, a40a_{4}\geq 0 we have for some exponent μ1\mu\geq 1

g(0)=0,g′′(t)>0fort>0,\displaystyle\displaystyle g^{\prime}(0)=0\,,\quad g^{\prime\prime}(t)>0\quad\mbox{for}\quad t>0\,, (1.7)
a1ta2g(t)a3t+a4fort0,\displaystyle\displaystyle a_{1}t-a_{2}\leq g(t)\leq a_{3}t+a_{4}\quad\mbox{for}\quad t\geq 0\,, (1.8)
g′′(t)a5(1+t)μfort0.\displaystyle\displaystyle g^{\prime\prime}(t)\leq a_{5}(1+t)^{-\mu}\quad\mbox{for}\quad t\geq 0\,. (1.9)

Let FF: 2\mathbb{R}^{2}\to\mathbb{R}, F(Z):=g(|Z|)F(Z):=g\big{(}|Z|\big{)}, and consider a solution uu: 2\mathbb{R}^{2}\to\mathbb{R} of (1.1) being of class C2C^{2}. Then uu is an affine function provided that μ3\mu\geq 3.

Remark 1.2.
  1. a)

    Note that the minimal surface case is included with the choices g(t)=1+t2g(t)=\sqrt{1+t^{2}} and μ=3\mu=3, moreover, we can cover the examples stated in front of Theorem 1.1 provided that μ3\mu\geq 3.

  2. b)

    To our knowledge it is an unsolved problem, if Theorem 1.2 remains true for exponents μ(1,3)\mu\in(1,3).

  3. c)

    Roughly speaking it follows from the work [26] of J.C.C. and J. Nitsche that the Bernstein property fails for the equation

    0=div[g(|u|)|u|u],0=\operatorname{div}\Bigg{[}\frac{g^{\prime}\big{(}|\nabla u|\big{)}}{|\nabla u|}\nabla u\Bigg{]}\,,

    if the density of gg is elliptic and of superlinear growth including even the nearly linear case g(t)=tln(1+t)g(t)=t\ln(1+t), i.e. there exist non-affine solutions uu: 2\mathbb{R}^{2}\to\mathbb{R}. However, the Nitsche criterion does not apply to integrands of linear growth as considered in Theorem 1.2 (see Remark 4.1).

  4. d)

    From the identity

    D2F(Z)(X,X)\displaystyle D^{2}F(Z)(X,X) =\displaystyle= 1|Z|g(|Z|)[|X|21|Z|2(XZ)2]\displaystyle\frac{1}{|Z|}g^{\prime}\big{(}|Z|\big{)}\Big{[}|X|^{2}-\frac{1}{|Z|^{2}}(X\cdot Z)^{2}\Big{]}
    +g′′(|Z|)1|Z|2(XZ)2,XZ2,\displaystyle+g^{\prime\prime}\big{(}|Z|\big{)}\frac{1}{|Z|^{2}}(X\cdot Z)^{2}\,,\quad X\,\,Z\in\mathbb{R}^{2}\,,

    it follows that (observing the boundedness of gg^{\prime})

    min{g′′(|Z|),g(|Z|)|Z|}|X|2D2F(Z)(X,X)Λ(1+|Z|)1|X|2,\min\Bigg{\{}g^{\prime\prime}\big{(}|Z|\big{)},\frac{g^{\prime}\big{(}|Z|\big{)}}{|Z|}\Bigg{\}}|X|^{2}\leq D^{2}F(Z)(X,X)\leq\Lambda\big{(}1+|Z|\big{)}^{-1}|X|^{2}\,,

    i.e. the second inequality in (1.3) holds with some constant Λ>0\Lambda>0. For t1t\geq 1 we have the lower bound g(t)/tc/tg^{\prime}(t)/t\geq c/t, which by (1.9) means that in fact g′′(|Z|)g^{\prime\prime}\big{(}|Z|\big{)} measures the degree of ellipticity of D2F(Z)D^{2}F(Z). This shows that the integrand FF in general is not μ\mu-elliptic in the sense of the first inequality from (1.3): according to (1.9) the power tμt^{-\mu} just acts as an upper bound for the values g′′(t)g^{\prime\prime}(t). Thus we have the “Bernstein property” for any density F(Z)=g(|Z|)F(Z)=g\big{(}|Z|\big{)} of linear growth and for which g′′(t)=O(t3)g^{\prime\prime}(t)=O(t^{-3}) as tt\to\infty.

2 Proof of Theorem 1.1, Part a)

In the weak formulation of (1.1), i.e. in the equation

2F(u):φdx=0,φC01(2,N),\int_{\mathbb{R}^{2}}\nabla F(\nabla u):\nabla\varphi\,{\rm d}x=0\,,\quad\varphi\in C^{1}_{0}\big{(}\mathbb{R}^{2},\mathbb{R}^{N}\big{)}\,, (2.1)

the function φ\varphi is replaced by αφ\partial_{\alpha}\varphi (α{1,2}\alpha\in\{1,2\} fixed), where now φC02(2,N)\varphi\in C^{2}_{0}\big{(}\mathbb{R}^{2},\mathbb{R}^{N}) is assumed. With an integration by parts we obtain from (2.1)

rz2D2F(u)(αu,φ)dx=0.\int_{rz^{2}}D^{2}F(\nabla u)\big{(}\partial_{\alpha}\nabla u,\nabla\varphi\big{)}\,{\rm d}x=0\,. (2.2)

Now we choose φ=η2αuC01(2,N)\varphi=\eta^{2}\partial_{\alpha}u\in C^{1}_{0}\big{(}\mathbb{R}^{2},\mathbb{R}^{N}\big{)} in (2.2), where ηC01(2)\eta\in C^{1}_{0}\big{(}\mathbb{R}^{2}\big{)}, sptηB2R(0)\operatorname{spt}\eta\subset B_{2R}(0), η1\eta\equiv 1 on BR(0)B_{R}(0), 0η10\leq\eta\leq 1, |η|cR1|\nabla\eta|\leq cR^{-1}. Then by Cauchy-Schwarz’s and Young’s inequality we have (summation w.r.t. α=1\alpha=1, 22)

B2R(0)η2D2F(u)(αu,αu)dx\displaystyle\int_{B_{2R}(0)}\eta^{2}D^{2}F(\nabla u)\big{(}\partial_{\alpha}\nabla u,\partial_{\alpha}\nabla u\big{)}\,{\rm d}x (2.3)
\displaystyle\leq cB2R(0)D2F(u)(ηαu,ηαu)dx.\displaystyle c\int_{B_{2R}(0)}D^{2}F(\nabla u)\big{(}\nabla\eta\otimes\partial_{\alpha}u,\nabla\eta\otimes\partial_{\alpha}u\big{)}\,{\rm d}x\,.

The hypotheses (1.2) and (1.3) yield

BR(0)(1+|u|)μ|2u|2dx\displaystyle\int_{B_{R}(0)}\big{(}1+|\nabla u|\big{)}^{-\mu}|\nabla^{2}u|^{2}\,{\rm d}x \displaystyle\leq cR2B2R(0)BR(0)|u|21+|u|2dx\displaystyle cR^{-2}\int_{B_{2R}(0)-B_{R}(0)}\frac{|\nabla u|^{2}}{\sqrt{1+|\nabla u|^{2}}}\,{\rm d}x (2.4)
\displaystyle\leq cR2B2R(0)BR(0)|u|dx\displaystyle cR^{-2}\int_{B_{2R}(0)-B_{R}(0)}|\nabla u|\,{\rm d}x

and using the auxiliary inequality (2.9) of Lemma 2.1 given below we obtain for any ε>0\varepsilon>0

BR(0)(1+|u|)μ|2u|2dx\displaystyle\int_{B_{R}(0)}\big{(}1+|\nabla u|\big{)}^{-\mu}|\nabla^{2}u|^{2}\,{\rm d}x (2.5)
\displaystyle\leq cR2B2R(0)BR(0)[ε+c(ε)(F(u)F(0)):u]dx.\displaystyle\frac{c}{R^{2}}\int_{B_{2R}(0)-B_{R}(0)}\Big{[}\varepsilon+c(\varepsilon)\big{(}\nabla F(\nabla u)-\nabla F(0)\big{)}:\nabla u\Big{]}\,{\rm d}x\,.

With (2.1) we also have

2(F(u)F(0)):φdx=0,φC01(2,N),\int_{\mathbb{R}^{2}}\big{(}\nabla F(\nabla u)-\nabla F(0)\big{)}:\nabla\varphi\,{\rm d}x=0\,,\quad\varphi\in C^{1}_{0}\big{(}\mathbb{R}^{2},\mathbb{R}^{N}\big{)}\,, (2.6)

where we now choose φ=η~2u\varphi=\tilde{\eta}^{2}u, η~C01(2)\tilde{\eta}\in C^{1}_{0}\big{(}\mathbb{R}^{2}\big{)}, η~1\tilde{\eta}\equiv 1 on B2R(0)BR(0)B_{2R}(0)-B_{R}(0), sptηB5R/2(0)B¯R/2(0)\operatorname{spt}\eta\subset B_{5R/2}(0)-\overline{B}_{R/2}(0), 0η~10\leq\tilde{\eta}\leq 1, |η~|c/R|\nabla\tilde{\eta}|\leq c/R.

With this choice (2.6) gives

2(F(u)F(0)):uη~2dx\displaystyle\int_{\mathbb{R}^{2}}\big{(}\nabla F(\nabla u)-\nabla F(0)\big{)}:\nabla u\tilde{\eta}^{2}\,{\rm d}x (2.7)
=\displaystyle= 22η~(F(u)F(0)):(η~u)dx\displaystyle-2\int_{\mathbb{R}^{2}}\tilde{\eta}\big{(}\nabla F(\nabla u)-\nabla F(0)\big{)}:(\nabla\tilde{\eta}\otimes u)\,{\rm d}x
\displaystyle\leq cR1B5R/2(0)BR/2(0)|u|dx\displaystyle cR^{-1}\int_{B_{5R/2}(0)-B_{R/2}(0)}|u|\,{\rm d}x
\displaystyle\leq cRsupB5R/2(0)B¯R/2(0)|u|,\displaystyle cR\sup_{B_{5R/2}(0)-\overline{B}_{R/2}(0)}|u|\,,

where our assumption (1.2) is used.

By the definition of η~\tilde{\eta} we obtain using (2.7)

B2R(0)BR(0)(F(u)F(0)):udx\displaystyle\int_{B_{2R}(0)-B_{R}(0)}\big{(}\nabla F(\nabla u)-\nabla F(0)\big{)}:\nabla u\,{\rm d}x (2.8)
\displaystyle\leq 2(F(u)F(0)):uη~2dx\displaystyle\int_{\mathbb{R}^{2}}\big{(}\nabla F(\nabla u)-\nabla F(0)\big{)}:\nabla u\tilde{\eta}^{2}\,{\rm d}x
\displaystyle\leq cRsupB5R/2(0)B¯R/2(0)|u|.\displaystyle cR\sup_{B_{5R/2}(0)-\overline{B}_{R/2}(0)}|u|\,.

If we insert (2.8) into inequality (2.5) and pass to the limit RR\to\infty recalling (1.4), we obtain for any ε>0\varepsilon>0

2(1+|u|)μ|2u|2dxcε,\int_{\mathbb{R}^{2}}\big{(}1+|\nabla u|\big{)}^{-\mu}|\nabla^{2}u|^{2}\,{\rm d}x\leq c\varepsilon\,,

hence 2u0\nabla^{2}u\equiv 0 and therefore we find A2NA\in\mathbb{R}^{2N}, aNa\in\mathbb{R}^{N} such that

u(x)=Ax+a.u(x)=Ax+a\,.

Again we apply of the growth condition (1.4) and obtain A=0A=0, hence the first part of Theorem 1.1 is established.

During the proof we made use of the elementary lemma

Lemma 2.1.

Let FC2(2N)F\in C^{2}\big{(}\mathbb{R}^{2N}\big{)} just satisfy the first inequality of (1.3) and let

θ(r):=λμ1[1(1+r)1μ],r0.\theta(r):=\frac{\lambda}{\mu-1}\big{[}1-(1+r)^{1-\mu}\big{]}\,,\quad r\geq 0\,.

Then it holds for any ε>0\varepsilon>0 and all ZnNZ\in\mathbb{R}^{nN}

|Z|ε+θ1(ε)[F(Z)F(0)]:Z.|Z|\leq\varepsilon+\theta^{-1}(\varepsilon)\big{[}\nabla F(Z)-\nabla F(0)\big{]}:Z\,. (2.9)


Proof of Lemma 2.1. We fix ε>0\varepsilon>0. If |Z|ε|Z|\geq\varepsilon then

|Z|θ(|Z|)|Z|θ(ε),|Z|\theta\big{(}|Z|\big{)}\geq|Z|\theta(\varepsilon)\,,

which implies

|Z|θ1(ε)|Z|θ(|Z|),|Z|\leq\theta^{-1}(\varepsilon)\,|Z|\,\theta\big{(}|Z|\big{)}\,,

and if Z2NZ\in\mathbb{R}^{2N} is arbitrarily given, we have

|Z|ε+θ1(ε)|Z|θ(|Z|).|Z|\leq\varepsilon+\theta^{-1}(\varepsilon)\,|Z|\,\theta\big{(}|Z|\big{)}\,.

Moreover,

θ(|Z|)|Z|[F(Z)F(0)]:Z\theta\big{(}|Z|\big{)}\,|Z|\leq\big{[}\nabla F(Z)-\nabla F(0)\big{]}:Z\ (2.10)

easily follows from the first inequality in (1.3) as outlined in [2], formula (1), p. 98., and (2.10) gives (2.9). \Box

Remark 2.1.

Clearly Lemma 2.1 is not limited to the case n=2n=2 and without condition (1.3) it would be sufficient to assume (2.10) for an increasing non-negative function θ\theta: [0,)[0,\infty)\to\mathbb{R}.

3 Proof of Theorem 1.1, Parts b) and c)

For Part b) we remark, that the idea of applying a Liouville argument to the derivatives of solutions, which are seen to solve an appropriate elliptic equation, has been successfully used by Moser [24], Theorem 6, with the result that entire solutions of the minimal surface equation with bounded gradients in fact must be affine functions in any dimension n2n\geq 2.

In our setting, i.e. for n=2n=2 together with N1N\geq 1, one may just follow the arguments presented in [12], Chapter III, p. 82, for an elementary proof essentially based on the “hole-filling” technique.

In Theorem 1.1, Part b) turns out to be a corollary of Part c), which we now prove following some ideas given in [11].

As in the proof of the first part of Theorem 1.1 we obtain from (2.3) the following variant of inequality (2.4)

BR(0)D2F(u)(αu,αu)dxcR2B2R(0)BR(0)|u|dx\int_{B_{R}(0)}D^{2}F(\nabla u)\big{(}\partial_{\alpha}\nabla u,\partial_{\alpha}\nabla u\big{)}\,{\rm d}x\leq cR^{-2}\int_{B_{2R}(0)-B_{R}(0)}|\nabla u|\,{\rm d}x (3.1)

and, as outlined after (2.4), (3.1) gives for all R>0R>0 and with the choice ε=1\varepsilon=1

BR(0)D2F(u)(αu,αu)dxc[1+R1supB5R/2(0)BR/2(0)|u|].\int_{B_{R}(0)}D^{2}F(\nabla u)\big{(}\partial_{\alpha}\nabla u,\partial_{\alpha}\nabla u\big{)}\,{\rm d}x\leq c\Big{[}1+R^{-1}\sup_{B_{5R/2}(0)-B_{R/2}(0)}|u|\Big{]}\,. (3.2)

Inequality (3.2) shows, using (1.6),

2D2F(u)(αu,αu)dx<.\int_{\mathbb{R}^{2}}D^{2}F(\nabla u)\big{(}\partial_{\alpha}\nabla u,\partial_{\alpha}\nabla u\big{)}\,{\rm d}x<\infty\,. (3.3)

We finally claim that

2D2F(u)(αu,αu)dx=0,\int_{\mathbb{R}^{2}}D^{2}F(\nabla u)\big{(}\partial_{\alpha}\nabla u,\partial_{\alpha}\nabla u\big{)}\,{\rm d}x=0\,, (3.4)

which gives |2u|=0|\nabla^{2}u|=0, hence the proof will be complete.

To prove (3.4) we again consider (2.2) and choose φ\varphi as done after this inequality. We obtain with TR:=B2R(0)B¯R/2(0)T_{R}:=B_{2R}(0)-\overline{B}_{R/2}(0) using the Cauchy-Schwarz inequality

2D2F(u)(αu,αu)η2dx\displaystyle\int_{\mathbb{R}^{2}}D^{2}F(\nabla u)\big{(}\partial_{\alpha}\nabla u,\partial_{\alpha}\nabla u\big{)}\eta^{2}\,{\rm d}x
=\displaystyle= 2TRD2F(u)(ηαu,ηαu)dx\displaystyle-2\int_{T_{R}}D^{2}F(\nabla u)\big{(}\eta\partial_{\alpha}\nabla u,\nabla\eta\otimes\partial_{\alpha}u\big{)}\,{\rm d}x
\displaystyle\leq c[TRη2D2F(u)(αu,αu)dx]12\displaystyle c\Bigg{[}\int_{T_{R}}\eta^{2}D^{2}F(\nabla u)\big{(}\partial_{\alpha}\nabla u,\partial_{\alpha}\nabla u\big{)}\,{\rm d}x\Bigg{]}^{\frac{1}{2}}
[TRD2F(u)(ηαu,ηαu)dx]12\displaystyle\cdot\Bigg{[}\int_{T_{R}}D^{2}F(\nabla u)\big{(}\nabla\eta\otimes\partial_{\alpha}u,\nabla\eta\otimes\partial_{\alpha}u\big{)}\,{\rm d}x\Bigg{]}^{\frac{1}{2}}
=:\displaystyle=: I1(R)I2(R).\displaystyle I_{1}(R)\cdot I_{2}(R)\,.

We recall (3.3) which gives

I1(R)0as R.I_{1}(R)\to 0\quad\mbox{as $R\to\infty$.}

Assumption (1.3) yields the estimate

I2(R)c[R2TR|u|dx]12.I_{2}(R)\leq c\Bigg{[}R^{-2}\int_{T_{R}}|\nabla u|\,{\rm d}x\Bigg{]}^{\frac{1}{2}}\,.

thus we obtain (3.4), if we can prove

BR(0)|u|dxc(1+R2).\int_{B_{R}(0)}|\nabla u|\,{\rm d}x\leq c\big{(}1+R^{2}\big{)}\,. (3.5)

For (3.5) we use (2.9) (recall η1\eta\equiv 1 on BR(0)B_{R}(0)) with the choice ε=1\varepsilon=1, hence (compare the derivation of (2.7))

BR(0)|u|dx\displaystyle\int_{B_{R}(0)}|\nabla u|\,{\rm d}x \displaystyle\leq |BR(0)|+cBR(0)[F(u)F(0)]:udx\displaystyle|B_{R}(0)|+c\int_{B_{R}(0)}\big{[}\nabla F(\nabla u)-\nabla F(0)\big{]}:\nabla u\,{\rm d}x
\displaystyle\leq |BR(0)|+cB2R(0)η2[F(u)F(0)]:udx\displaystyle|B_{R}(0)|+c\int_{B_{2}R(0)}\eta^{2}\big{[}\nabla F(\nabla u)-\nabla F(0)\big{]}:\nabla u\,{\rm d}x
\displaystyle\leq c[R2+RsupTR|u|]\displaystyle c\Big{[}R^{2}+R\sup_{T_{R}}|u|\Big{]}
=\displaystyle= cR2[1+1RsupTR|u|],\displaystyle cR^{2}\Bigg{[}1+\frac{1}{R}\sup_{T_{R}}|u|\Bigg{]}\,,

and our hypothesis (1.6) gives (3.4), hence the proof of Theorem 1.1 is complete. \Box

4 Proof of Theorem 1.2

We follow the lines of [7] by checking the hypotheses of Theorem 1.4 in this reference. We let

a(t):=g(t)t,t>0,a(t):=\frac{g^{\prime}(t)}{t}\,,\quad t>0\,, (4.1)

and observe that on account of (1.7) the function aa continuously extends to t=0t=0 by letting a(0)=g′′(0)a(0)=g^{\prime\prime}(0). Obviously aa satisfies (1.2) from [7] (gg^{\prime} is strictly increasing and thereby positive on (0,)(0,\infty) due to (1.7)), and since for any t>0t>0 it holds (compare (4.1))

λ1(t):=a(t)+ta(t)=g′′(t)\lambda_{1}(t):=a(t)+ta^{\prime}(t)=g^{\prime\prime}(t) (4.2)

we get (1.3) in [7]. At the same time assumption (A2) from [7] is obvious by formula (4.1) and our requirements concerning gg. Moreover, the stability condition (see (1.11) in [7]) follows from

2(A(u)ϕ)ϕdx0\int_{\mathbb{R}^{2}}\big{(}A(\nabla u)\nabla\phi\big{)}\cdot\nabla\phi\,{\rm d}x\geq 0 (4.3)

for any ϕC01(2)\phi\in C^{1}_{0}(\mathbb{R}^{2}) with matrix (Z2{0}Z\in\mathbb{R}^{2}-\{0\})

Aij(Z):=|Z|1a(|Z|)ZiZj+a(|Z|)δijA_{ij}(Z):=|Z|^{-1}a^{\prime}\big{(}|Z|\big{)}Z_{i}Z_{j}+a\big{(}|Z|\big{)}\delta_{ij}

by observing that (recall (4.1), (1.7))

(A(Y)Z)Z\displaystyle\big{(}A(Y)Z\big{)}\cdot Z =\displaystyle= |Y|1[g′′(|Y|)|Y|1g(|Y|)|Y|2](YZ)2\displaystyle|Y|^{-1}\Big{[}g^{\prime\prime}\big{(}|Y|\big{)}|Y|^{-1}-g^{\prime}\big{(}|Y|\big{)}|Y|^{-2}\Big{]}(Y\cdot Z)^{2}
+|Y|1g(|Y|)|Z|2\displaystyle+|Y|^{-1}g^{\prime}\big{(}|Y|\big{)}|Z|^{2}
\displaystyle\geq g(|Y|)[|Y|1|Z|2|Y|3(YZ)2]0\displaystyle g^{\prime}\big{(}|Y|\big{)}\Big{[}|Y|^{-1}|Z|^{2}-|Y|^{-3}(Y\cdot Z)^{2}\Big{]}\geq 0

on account of g(|Y|)>0g^{\prime}\big{(}|Y|\big{)}>0 for Y0Y\not=0.

It remains to check (1.17) and (1.18) in [7]: since gg is convex (see (1.7)) and of linear growth (compare (1.8)) the boundedness of gg^{\prime} follows, hence we get (1.17) and by monotonicity g:=limtg(t)g^{\prime}_{\infty}:=\lim_{t\to\infty}g^{\prime}(t) exists in (0,)(0,\infty). By (4.2) the function λ1\lambda_{1} defined in (4.2) (see (1.5) of [7]) is just g′′g^{\prime\prime} so that (1.18) is a consequence of (1.9) and the aforementioned limit behaviour of gg^{\prime} provided we assume μ3\mu\geq 3. From Theorem 1.4 in [7] it follows that u(x)=u~(ωx)u(x)=\tilde{u}(\omega\cdot x) for some ω2\omega\in\mathbb{R}^{2}, |ω|=1|\omega|=1, and a function u~\tilde{u}: \mathbb{R}\to\mathbb{R}. Assuming ω=(1,0)\omega=(1,0) (w.l.o.g.) we see that (1.1) implies

ddt[1|u~|g(|u~|)u~]=0,\frac{{\rm d}}{\,{\rm d}t}\Bigg{[}\frac{1}{|\tilde{u}^{\prime}|}g^{\prime}\big{(}|\tilde{u}^{\prime}|\big{)}\tilde{u}^{\prime}\Bigg{]}=0\,,

hence

|u~|1g(|u~|)u~c|\tilde{u}^{\prime}|^{-1}g^{\prime}\big{(}|\tilde{u}^{\prime}|\big{)}\tilde{u}^{\prime}\equiv c (4.4)

for some cc\in\mathbb{R}.

Case 1, c=0c=0. Recalling g>0g^{\prime}>0 on (0,)(0,\infty) equation (4.4) yields u~0\tilde{u}^{\prime}\equiv 0 and we are done.

Case 2, c0c\not=0. Then (4.4) shows u~(t)0\tilde{u}^{\prime}(t)\not=0 for any tt\in\mathbb{R}, thus g(|u~|)|c|g^{\prime}\big{(}|\tilde{u}^{\prime}|\big{)}\equiv|c| and in conclusion

u~(t){(g)1(|c|),(g)1(|c|)}\tilde{u}^{\prime}(t)\in\Big{\{}-(g^{\prime})^{-1}\big{(}|c|\big{)},(g^{\prime})^{-1}\big{(}|c|\big{)}\Big{\}}

for any tt\in\mathbb{R}. But this immediately implies the constancy of u~\tilde{u}^{\prime} and our claim follows. ∎

Remark 4.1.

Let us end with a short remark on the failure of the Nitsche criterion (condition (4) in [26]) for densities gg with the properties (1.7) and (1.8) from Theorem 1.2. The boundedness of gg^{\prime} in particular shows that

1g′′(t)dt<,thus11sg′′(s)ds<.\int_{1}^{\infty}g^{\prime\prime}(t)\,{\rm d}t<\infty\,,\quad\mbox{thus}\quad\int_{1}^{\infty}\frac{1}{\sqrt{s}}g^{\prime\prime}(\sqrt{s})\,{\rm d}s<\infty\,. (4.5)

Let us introduce the functions (compare [26])

f(t):=g(t),λ(t):=2f′′(t)f(t).f(t):=g(\sqrt{t})\,,\quad\lambda(t):=\frac{2f^{\prime\prime}(t)}{f^{\prime}(t)}\,.

Elementary calculations show

1+tλ(t)2+tλ(t)1t\displaystyle\frac{1+t\lambda(t)}{2+t\lambda(t)}\cdot\frac{1}{t} =\displaystyle= g′′(t)1tg(t)+g′′(t)1t=1t+tg′′(t)g(t)\displaystyle\frac{g^{\prime\prime}(\sqrt{t})}{\frac{1}{\sqrt{t}}g^{\prime}(\sqrt{t})+g^{\prime\prime}(\sqrt{t})}\cdot\frac{1}{t}=\frac{1}{t+\frac{\sqrt{t}}{g^{\prime\prime}(\sqrt{t})}g^{\prime}(\sqrt{t})}

and for t1t\geq 1 we obtain by the monotonicity of gg^{\prime}

1+tλ(t)2+tλ(t)1t1g(1)g′′(t)t.\frac{1+t\lambda(t)}{2+t\lambda(t)}\frac{1}{t}\leq\frac{1}{g^{\prime}(1)}\frac{g^{\prime\prime}(\sqrt{t})}{\sqrt{t}}\,.

Recalling (4.5) it follows

11+tλ(t)2+tλ(t)dtt<,\int_{1}^{\infty}\frac{1+t\lambda(t)}{2+t\lambda(t)}\frac{\,{\rm d}t}{t}<\infty\,,

which means that the “Satz” on p. 295 of [26] does not apply to the linear growth case.

References

  • [1] Bernstein, S. Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus. Math. Z, 26(1):551–558, 1927.
  • [2] Bildhauer, M. Convex variational problems. Linear, nearly linear and anisotropic growth conditions, volume 1818 of Lecture Notes in Mathematics. Springer, Berlin, 2003.
  • [3] Bildhauer, M.; Fuchs, M.; Zhang, G. Liouville-type theorems for steady flows of degenerate power law fluids in the plane. J. Math. Fluid Mech., 15(3):583–616, 2013.
  • [4] Cheng, S.Y. Liouville theorem for harmonic maps. Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., pages 147–151, 1980.
  • [5] Eells, J.; Lemaire, L.. Another report on harmonic maps. Bull. London Math. Soc., 20(5):385–524, 1988.
  • [6] Farina, A. Liouville-type theorems for elliptic problems. Handbook of differential equations: stationary partial differential equations. Vol. IV, Elsevier/North-Holland, Amsterdam, pages 61–116, 2007.
  • [7] Farina, A.; Sciunzi, B.; Valdinoci, E. Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7(4):741–791, 2008.
  • [8] Fuchs, M. Liouville theorems for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech., 14(3):421–444, 2012.
  • [9] Fuchs, M. Variations on Liouville’s theorem in the setting of stationary flows of generalized Newtonian fluids in the plane. Proceedings of the St. Petersburg Mathematical Society. Vol. XV. Advances in mathematical analysis of partial differential equations, 232, Amer. Math. Soc. Transl. Ser. 2, Providence, RI:79–98, 2014.
  • [10] Fuchs, M.; Müller, J. A Liouville Theorem for Stationary Incompressible Fluids of Von Mises Type. Acta Math. Sci. Ser. B (Engl. Ed.), 39(1):1–10, 2019.
  • [11] Fuchs, M.; Zhang, G. Liouville theorems for entire local minimizers of energies defined on the class LlogL and for entire solutions of the stationary Prandtl-Eyring fluid model. Calc. Var. Partial Differential Equations, 44(1-2):271–295, 2012.
  • [12] Giaquinta, M. Multiple intergals in the calculus of variations and nonlinear ellipitc systems, volume 105 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1983.
  • [13] Giaquinta, M.; Martinazzi, L. An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, volume 11 of Lecture Notes. Scuola Normale Superiore di Pisa (New Series). Edizioni della Normale Superiore di Pisa (Nuova Serie), Pisa, second edition, 2012.
  • [14] Gilbarg, D.; Trudinger, N. Elliptic partial differential equations of second order, volume 224 of Grundlehren der math. Wiss. Springer, Berlin, Revised Third Printing, second edition, 1998.
  • [15] Gilbarg, D.; Weinberger, H.F. Asymptotic properties of steady plane solutions of the Navier-Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5(2):381–404, 1978.
  • [16] Giusti, E. Direct methods in the calculus of variations. World Scientific Publishing Co., River Edge, NJ, 2003.
  • [17] Hildebrandt, S. Liouville theorems for harmonic mappings, and an approach to Bernstein theorems. Ann. of Math. Stud., Seminar on Differential Geometry, Princeton University, Princeton, N.J., 102:107–131, 1982.
  • [18] Hildebrandt, S.; Jost, J.; Widman, K.O. Harmonic mappings and minimal submanifolds. Invent. Math., 62(2):269–298, 1980.
  • [19] Hildebrandt, S.; Kaul, H. Two-dimensional variational problems with obstructions, and Plateau’s problem for H-surfaces in a Riemannian manifold. Comm. Pure Appl. Math., 25:187–223, 1972.
  • [20] Hildebrandt, S.; Kaul, H.; Widman, K.O. An existence theorem for harmonic mappings of Riemannian manifolds . Acta Math., 138(1-2):1–16, 1977.
  • [21] Jin, B.J.; Kang, K. Liouville theorem for the steady-state non-Newtonian Navier-Stokes equations in two dimensions. J. Math. Fluid Mech., 16(2):275–292, 2014.
  • [22] Jost, J. Partial differential equations. Graduate Texts in Mathematics. Springer, New York, 2013.
  • [23] Koch, G.; Nadirashvili, N.; Seregin, G.; Šverák, V. Liouville theorems for the Navier-Stokes equations and applications. Acta Math., 203(1):83–105, 2009.
  • [24] Moser, J. On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math., 14:577–591, 1961.
  • [25] Nečas, J. Introduction to the theory of nonlinear elliptic equations., volume 52 of Teubner-Texte zur Mathematik (Teubner Texts in Mathematics). Teubner Verlagsgesellschaft, Leipzig, 1983.
  • [26] Nitsche Johannes; Nitsche Joachim. Ein Kriterium für die Existenz nicht-linearer ganzer Lösungen elliptischer Differentialgleichungen. Arch. Math., 10:294–297, 1959.
  • [27] Schoen, R. Analytic aspects of the harmonic map problem. Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983). Sci. Res. Inst. Publ., 2, Springer, New York, pages 321–358, 1984.
  • [28] Schoen, R.; Yau, S.T. Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Comment. Math. Helv., pages 333–341, 1976.
  • [29] Zhang, G. A note on Liouville theorem for stationary flows of shear thickening fluids in the plane. J. Math. Fluid Mech., 15(4):771–782, 2013.
  • [30] Zhang, G. Liouville theorems for stationary flows of shear thickening fluids in 2D. Ann. Acad. Sci. Fenn. Math., 40(2):889–905, 2015.
Michael Bildhauer e-mail: [email protected]
Martin Fuchs e-mail: [email protected]
Department of Mathematics
Saarland University
P.O. Box 15 11 50
66041 Saarbrücken
Germany