This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Limits via relations

Sergei O. Ivanov [email protected], [email protected] Beijing Yanqi Lake Institute of Applied Mathematics (BIMSA) Roman Mikhailov Saint Petersburg University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia  and  Fedor Pavutnitskiy Beijing Yanqi Lake Institute of Applied Mathematics (BIMSA)
Abstract.

In this paper, we study operations on functors in the category of abelian groups simplar to the derivation in the sense of Dold-Puppe. They are defined as derived limits of a functor applied to the relation subgroup over a category of free presentations of the group. The integral homology of the Eilenberg-Maclane space K(,3)K(\mathbb{Z},3) appears as a part of description of these operations applied to symmetric powers.

The work of the second named author was performed at the Saint Petersburg Leonhard Euler International Mathematical Institute and supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075–15–2022–287).

1. Introduction

Theory of limits and colimits in the category of presentations is studied in details in the series of papers. Speaking informally, theory of (derived) (co)limits is a way to design functors and natural transformations in algebraic categories with enough projective objects.

In this paper, we introduce an operation on functors in the category of abelian groups, which looks like the derivation in the sense of Dold-Puppe. In particular, the short exact sequences of functors give rise to a long exact sequence of these new “derived” ones.

For an abelian group A,A, consider the category of free presentations 𝖯𝗋𝖾𝗌(A),{\sf Pres}(A), with object being free groups FF with epimorphisms FA.F\to A. Morphisms are group homomorphisms over AA. For any functor from the category of presentations :𝖯𝗋𝖾𝗌(A)𝖠𝖻\mathcal{F}:{\sf Pres}(A)\to{\sf Ab} to the category of abelian groups, one can consider the derived limits 𝗅𝗂𝗆i,i0.{\sf lim}^{i}\mathcal{F},\ i\geq 0. These limits depend only on A.A. Moreover, if we denote by 𝖯𝗋𝖾𝗌𝖠𝖻{\sf Pres}_{\sf Ab} the category, whose objects are epimorphisms from free abelian groups to abelian groups F\twoheadrightarrowA,F\twoheadrightarrow A, and morphisms (F\twoheadrightarrowA)(F\twoheadrightarrowA)(F\twoheadrightarrow A)\to(F^{\prime}\twoheadrightarrow A^{\prime}) are commutative squares, then any functor :𝖯𝗋𝖾𝗌𝖠𝖻\mathcal{F}:{\sf Pres}\to{\sf Ab} defines a functor 𝖠𝖻𝖠𝖻{\sf Ab}\to{\sf Ab} given by A𝗅𝗂𝗆𝖯𝗋𝖾𝗌(A).A\mapsto\mathsf{lim}_{{\sf Pres}(A)}\mathcal{F}.

Let FF be an endofunctor in the category of abelian groups. Consider an object of 𝖯𝗋𝖾𝗌(A),{\sf Pres}(A), 0RFA0,0\to R\to F\to A\to 0, i.e. denote by RR the kernel of an epimorphism FA.F\to A. Our operation is the following:

F𝗅𝗂𝗆iFRA:=𝗅𝗂𝗆iF(R),i0.F\mapsto{\sf lim}^{i}FR_{A}:={\sf lim}^{i}F(R),\ i\geq 0.

Let’s show how it works on the main examples. Denote by n,𝖲n,Λn,Γn,n0,\otimes^{n},{\sf S}^{n},\Lambda^{n},\Gamma^{n},\ n\geq 0, the tensor, symmetric, exterior and divided powers respectively. There are the following natural isomorphisms

𝗅𝗂𝗆inRA=Lnin(A),\displaystyle{\sf lim}^{i}\otimes^{n}R_{A}=L_{n-i}\otimes^{n}(A),
𝗅𝗂𝗆iΛnRA=Lni𝖲n(A),\displaystyle{\sf lim}^{i}\Lambda^{n}R_{A}=L_{n-i}{\sf S}^{n}(A),
𝗅𝗂𝗆iΓnRA=LniΛn(A),\displaystyle{\sf lim}^{i}\Gamma^{n}R_{A}=L_{n-i}\Lambda^{n}(A),

for i=0,,n.i=0,\dots,n. Here LiL_{i} are derived functors in the sense of Dold-Puppe. The proof follows from the Koszul-type sequences and properties of limits, see [6, Th. 8.1].

The case of functors 𝗅𝗂𝗆i𝖲nRA,{\sf lim}^{i}{\sf S}^{n}R_{A}, is more complicated and is the main subject of this paper. We show that, for a free abelian group A,A, there is the following description

𝗅𝗂𝗆2𝖲2RA=~2(A)\displaystyle\mathsf{lim}^{2}{\sf S}^{2}R_{A}=\tilde{\otimes}^{2}(A)
𝗅𝗂𝗆3𝖲3RA=~3(A)\displaystyle\mathsf{lim}^{3}{\sf S}^{3}R_{A}=\tilde{\otimes}^{3}(A)
𝗅𝗂𝗆2𝖲3RA=A/3.\displaystyle\mathsf{lim}^{2}{\sf S}^{3}R_{A}=A\otimes\mathbb{Z}/3.

with all other limits to be zero for 𝖲2,𝖲3.{\sf S}^{2},{\sf S}^{3}. Here ~2,~3\tilde{\otimes}^{2},\tilde{\otimes}^{3} are anty-symmetric tensor square and cube respectively.

The structure of functors 𝗅𝗂𝗆i𝖲n(R){\sf lim}^{i}{\sf S}^{n}(R) is complicated. We show that, for A=,A=\mathbb{Z}, there is an isomorphism

Hn(K(,3),)d2𝗅𝗂𝗆n2d+1SdR.H_{n}(K(\mathbb{Z},3),\mathbb{Z})\cong\bigoplus_{d\geq 2}\mathsf{lim}^{n-2d+1}S^{d}R_{\mathbb{Z}}.

Here Hn(K(,3),)H_{n}(K(\mathbb{Z},3),\mathbb{Z}) is the nnth integral homology group of the Eilenberg-MacLane space K(,3).K(\mathbb{Z},3). This description follows from the following statement (see Corollary 5.3): for a free finitely generated abelian group AA there are non-natural isomorphisms of abelian groups

𝗅𝗂𝗆i𝖲dRA{Li1Γd(A,1),i<d,Ld1Γd(A,1)LdΓd(A,1),i=d,0,i>d.\mathsf{lim}^{i}{\sf S}^{d}R_{A}\cong\begin{cases}L_{i-1}\Gamma^{d}(A,1),&i<d,\\ L_{d-1}\Gamma^{d}(A,1)\oplus L_{d}\Gamma^{d}(A,1),&i=d,\\ 0,&i>d.\end{cases}

Here LiΓd(A,1)L_{i}\Gamma^{d}(A,1) are derived functors in the sense of Dold-Puppe. The situation is interesting and rare. Usually when we have two complicated graded functors with the property that they are non-naturally isomorphic, there seems to be an either hidden natural isomorphism or a problem of non-splitting sequences raises in some way. However in this case, there is no natural isomorphism. The functorial description of the derived functors LiΓn(A,1)L_{i}\Gamma^{n}(A,1) for free abelian groups AA and well as of the integral homology groups Hi(K(A,3),)H_{i}(K(A,3),\mathbb{Z}) is given in the paper [1]. All functors which appear in that description are known and there are no anty-symmetric powers.

The paper is organized as follows. In Section 2 we recall needed facts on Dold-Kan correspondence and cosimplicial groups. In Section 3, We show that, for a polynomial functor Φ\Phi of degree d1,d\geq 1, 𝗅𝗂𝗆iΦRA=0{\sf lim}^{i}\Phi R_{A}=0 for i>d.i>d. Observe that the derived functors in the sense of Dold-Puppe have the same property. The key point of the proof is based on cosimplicial models constructed for arbitrary functors which give a way to compute derived limits. In Section 4 we recall Kuhn duality for functors and apply it in the context of limits. In particlular, we show how to describe the limits via shifted devided functors of the dual functors (see Corollary 4.2). In Section 5 we prove the mentioned above results on 𝗅𝗂𝗆i𝖲RA.{\sf lim}^{i}{\sf S}R_{A}.

2. Cosimplicial modules

2.1. Reminder on Dold–Kan correspondence

In this subsection we remind some information of the Dold-Kan correspondence that can be found in [8].

Let 𝒱\mathcal{V} be an abelian category. For a simplicial object VV of an abelian category 𝒱\mathcal{V} the non-normalised complex 𝖢V\mathsf{C}_{\bullet}V is a chain complex whose components are 𝖢nV=Vn\mathsf{C}_{n}V=V_{n} and the differential is defined by the alternating sum of face maps. The normalised complex 𝖭V\mathsf{N}_{\bullet}V can be defined in two ways which are equivalent up to natural isomorphism: as a subcomplex of 𝖢V\mathsf{C}_{\bullet}V and as a quotient complex of 𝖢V\mathsf{C}_{\bullet}V [8, Lemma 8.3.8]. For our purposes it is more convenient to define it as a quotient complex, whose components are

(2.1) 𝖭nV=𝖢𝗈𝗄𝖾𝗋((s0,,sn1):Vn1nVn).\mathsf{N}_{n}V={\sf Coker}((s_{0},\dots,s_{n-1}):V_{n-1}^{\oplus n}\to V_{n}).

The map 𝖢V\twoheadrightarrow𝖭V\mathsf{C}_{\bullet}V\twoheadrightarrow\mathsf{N}_{\bullet}V is a chain homotopy equivalence [8, Th.8.3.8]. If we denote by 𝖣V\mathsf{D}V the kernel of the map 𝖢V𝖭V,\mathsf{C}V\to\mathsf{N}V, then there is a natural splitting of the short exact sequence 𝖣V\rightarrowtail𝖢V\twoheadrightarrow𝖭V\mathsf{D}V\rightarrowtail\mathsf{C}V\twoheadrightarrow\mathsf{N}V

(2.2) 𝖢V𝖭V𝖣V,\mathsf{C}V\cong\mathsf{N}V\oplus\mathsf{D}V,

where 𝖣V\mathsf{D}V is a chain contractible complex. The homology of 𝖭V\mathsf{N}V and 𝖢V\mathsf{C}V is called homotopy groups of the simplicial object

(2.3) πV=H(𝖭V)H(𝖢V).\pi_{*}V=H_{*}(\mathsf{N}_{\bullet}V)\cong H_{*}(\mathsf{C}_{\bullet}V).

The construction of the normalised complex defines a equivalence between the category of simplicial objects and the category of non-negatively graded chain complexes, whose inverse functor is denoted by 𝖣𝖪\mathsf{DK}

(2.4) 𝖭:𝒱Δ𝗈𝗉\leftrightarrows𝖢𝗁0(𝒱):𝖣𝖪.\mathsf{N}_{\bullet}:\mathcal{V}^{\Delta^{\sf op}}\leftrightarrows{\sf Ch}_{\geq 0}(\mathcal{V}):{\sf DK}_{\bullet}.

The functor 𝖣𝖪\mathsf{DK}_{\bullet} can be constructed as follows. For a chain complex UU we define a simplicial object 𝖣𝖪U,\mathsf{DK}_{\bullet}U, whose components are

(2.5) 𝖣𝖪nU=σ:[n]\twoheadrightarrow[k]Uk,\mathsf{DK}_{n}U=\bigoplus_{\sigma:[n]\twoheadrightarrow[k]}U_{k},

where the summation is taken by all surjective order-preserving maps σ:[n]\twoheadrightarrow[k],\sigma:[n]\twoheadrightarrow[k], where 0kn0\leq k\leq n. If f:[m][n]f:[m]\to[n] is an order preserving map, then the map f:𝖣𝖪nU𝖣𝖪mUf^{*}:\mathsf{DK}_{n}U\to\mathsf{DK}_{m}U is defined so that its component (f)τ,σ:UkUl(f^{*})_{\tau,\sigma}:U_{k}\to U_{l} from the direct summand indexed by σ:[n]\twoheadrightarrow[k]\sigma:[n]\twoheadrightarrow[k] to the direct summand indexed by τ:[m]\twoheadrightarrow[l]\tau:[m]\twoheadrightarrow[l] has the following form

(2.6) (f)τ,σ={𝗂𝖽Uk,σf=τ,kU,σf=dkτ,0,else.(f^{*})_{\tau,\sigma}=\begin{cases}{\sf id}_{U_{k}},&\sigma f=\tau,\\ \partial^{U}_{k},&\sigma f=d^{k}\tau,\\ 0,&\text{else.}\end{cases}

Note that the construction of 𝖣𝖪\mathsf{DK} commutes with additive functors i.e. for any additive functor between abelian categories Φ:𝒱𝒱\Phi:\mathcal{V}\to\mathcal{V}^{\prime} there is an natural isomorphism

(2.7) 𝖣𝖪(Φ(U))Φ(𝖣𝖪(U)).\mathsf{DK}_{\bullet}(\Phi(U))\cong\Phi(\mathsf{DK}_{\bullet}(U)).

2.2. Dold-Kan correspondence for cosimplicial modules

Since the dual of an abelian category is also abelian, there is a dual version of this picture [8, Cor./Def. 8.4.3]. The non-normalised cochain complex 𝖢V\mathsf{C}^{\bullet}V of a cosimplicial object VV is a cochain complex, whose components are 𝖢nV=Vn,\mathsf{C}^{n}V=V^{n}, and the differential is defined as the alternating sum of coface maps. The normalised cochain complex 𝖭V\mathsf{N}^{\bullet}V is a subcomplex of 𝖢V\mathsf{C}^{\bullet}V whose components are defined as

(2.8) 𝖭nV=𝖪𝖾𝗋((s0,,sn1)T:Vn(Vn1)n+1).\mathsf{N}^{n}V={\sf Ker}((s^{0},\dots,s^{n-1})^{T}:V^{n}\to(V^{n-1})^{\oplus n+1}).

The monomorphiam 𝖭V𝖢V\mathsf{N}^{\bullet}V\to\mathsf{C}^{\bullet}V is a quasiisomorphism and cohomotopy groups of VV are defined as

(2.9) πV=H(𝖭V)H(𝖢V).\pi^{*}V=H^{*}(\mathsf{N}^{\bullet}V)\cong H^{*}(\mathsf{C}^{\bullet}V).

The Dold-Kan correspondence is an equivalence between the category of cosimplicial objects and the category of non-negatively graded cochain complexes

(2.10) 𝖭:𝒱Δ\leftrightarrows𝖢𝗈𝖢𝗁0(𝒱):𝖣𝖪.\mathsf{N}^{\bullet}:\mathcal{V}^{\Delta}\leftrightarrows{\sf CoCh}^{\geq 0}(\mathcal{V}):{\sf DK}^{\bullet}.
Proposition 2.1.

Let VV be a cosimplicial module over a ring 𝕂.\mathbb{K}. Then the components of the normalized cochain complex 𝖭V\mathsf{N}V are intersections of kernels of codegeneracy maps

(2.11) 𝖭nV=i=0n𝖪𝖾𝗋(si:VnVn1),\mathsf{N}^{n}V=\bigcap_{i=0}^{n}{\sf Ker}(s^{i}:V^{n}\to V^{n-1}),

and the differential on 𝖭V\mathsf{N}V is given by the restriction of the alternating sum of cofaces (1)idi.\sum(-1)^{i}d^{i}.

Proof.

It follows from the fact that 𝖭V\mathsf{N}^{\bullet}V is a subcomplex of 𝖢V\mathsf{C}^{\bullet}V and the formula (2.8). ∎

Proposition 2.2.

If we treat a 𝕂\mathbb{K}-homomorphism f:U0U1f:U^{0}\to U^{1} as a cochain complex concentrated in degrees 0 and 1,1, we obtain that the cosimplicial module 𝖣𝖪(f)\mathsf{DK}^{\bullet}(f) has components

(2.12) 𝖣𝖪n(f)=(U1)nU0.\mathsf{DK}^{n}(f)=(U^{1})^{\oplus n}\oplus U^{0}.

Its coface and codegeneracy maps are defined by

(2.13) d𝖣𝖪(f)i(x0,,xn2,y)={(0,x0,,xn2,y),i=0(x0,,xi1,xi1,,xn2,y),1in1(x0,,xn1,f(y),y),i=ns𝖣𝖪(f)i(x0,,xn,y)=(x0,,x^i,,xn,y).\begin{split}d^{i}_{\mathsf{DK}^{\bullet}(f)}(x_{0},\dots,x_{n-2},y)&=\begin{cases}(0,x_{0},\dots,x_{n-2},y),&i=0\\ (x_{0},\dots,x_{i-1},x_{i-1},\dots,x_{n-2},y),&1\leq i\leq n-1\\ (x_{0},\dots,x_{n-1},f(y),y),&i=n\end{cases}\\ s^{i}_{\mathsf{DK}^{\bullet}(f)}(x_{0},\dots,x_{n},y)&=(x_{0},\dots,\hat{x}_{i},\dots,x_{n},y).\end{split}
Proof.

It is easy to check that the described cosimplicial module is well defined and that its normalized complex is U0U1.U^{0}\to U^{1}.

3. Cochain complex of crossed effects computing higher limits

3.1. Cross effects of functors

Let 𝕂\mathbb{K} be a ring and A1,,AnA_{1},\dots,A_{n} is a collection of 𝕂\mathbb{K}-modules. For 1jn1\leq j\leq n we denote by

(3.1) 𝗉𝗋j:i=1nAiijAi,𝖾𝗆j:ijAii=1nAi{\sf pr}^{j}:\bigoplus_{i=1}^{n}A_{i}\longrightarrow\bigoplus_{i\neq j}A_{i},\hskip 28.45274pt{\sf em}^{j}:\bigoplus_{i\neq j}A_{i}\longrightarrow\bigoplus_{i=1}^{n}A_{i}

the canonical projection and the canonical embedding.

Now assume that Φ:𝖬𝗈𝖽(𝕂)𝖬𝗈𝖽(𝕂)\Phi:{\sf Mod}(\mathbb{K})\to{\sf Mod}(\mathbb{K}) is a functor to an abelian category such that Φ(0)=0.\Phi(0)=0. For n0n\geq 0 the nn-th crossed effect of Φ\Phi is a functor 𝖬𝗈𝖽(𝕂)n𝖬𝗈𝖽(𝕂){\sf Mod}(\mathbb{K})^{n}\to\mathcal{\sf Mod}(\mathbb{K}) given by

(3.2) Φ(A1||An)=𝖪𝖾𝗋(Φ(i=1nAi)i=1nΦ(jiAj)),\Phi(A_{1}|\dots|A_{n})=\mathsf{Ker}\left(\Phi\left(\bigoplus_{i=1}^{n}A_{i}\right)\longrightarrow\bigoplus_{i=1}^{n}\Phi\left(\bigoplus_{j\neq i}A_{j}\right)\right),

where the homomorphisms are induced by the canonical projections. Note that if Ai=0A_{i}=0 for some i,i, then the crossed effect vanishes

(3.3) Φ(A1||0||An)=0.\Phi(A_{1}|\dots|0|\dots|A_{n})=0.

The cross effect is a direct summand of Φ(i=1nAi)\Phi(\bigoplus_{i=1}^{n}A_{i}) and there is a decomposition (see [4, p.2], [5, p.1149], [2, p.18])

(3.4) Φ(i=1nAi)=s=0n1j1<<jsnΦ(Aj1||Ajs).\Phi(\bigoplus_{i=1}^{n}A_{i})=\bigoplus_{s=0}^{n}\ \bigoplus_{1\leq j_{1}<\dots<j_{s}\leq n}\Phi(A_{j_{1}}|\dots|A_{j_{s}}).

A functor Φ\Phi is called polynomial (in the sense of Eilenberg-Mac Lane) of degree d\leq d if Φd+1=0.\Phi_{d+1}=0.

Lemma 3.1.

There are equations

(3.5) 𝖪𝖾𝗋(Φ(𝗉𝗋j))=s=1nj{j1<<js}Φ(Aj1||Ajs)𝖨𝗆(Φ(𝖾𝗆j))=s=1nj{j1<<js}Φ(Aj1||Ajs)\begin{split}\mathsf{Ker}(\Phi({\sf pr}^{j}))&=\bigoplus_{s=1}^{n}\ \bigoplus_{j\in\{j_{1}<\dots<j_{s}\}}\Phi(A_{j_{1}}|\dots|A_{j_{s}})\\ \mathsf{Im}(\Phi({\sf em}^{j}))&=\bigoplus_{s=1}^{n}\ \bigoplus_{j\notin\{j_{1}<\dots<j_{s}\}}\Phi(A_{j_{1}}|\dots|A_{j_{s}})\end{split}

Moreover, we have

(3.6) j=1n1𝖪𝖾𝗋(Φ(𝗉𝗋j))=Φ(A1||An1)Φ(A1||An).\bigcap_{j=1}^{n-1}\mathsf{Ker}(\Phi({\sf pr}^{j}))=\Phi(A_{1}|\dots|A_{n-1})\oplus\Phi(A_{1}|\dots|A_{n}).
Proof.

We can think about the sum ijAi\bigoplus_{i\neq j}A_{i} as about the sum i=1nBi,\bigoplus_{i=1}^{n}B_{i}, where Bi=AiB_{i}=A_{i} for iji\neq j and Bj=0.B_{j}=0. Then 𝗉𝗋j{\sf pr}^{j} can be redefined as 𝗉𝗋j=1A1Aj10Ai,01Aj+1An{\sf pr}^{j}=1_{A_{1}\oplus\dots\oplus A_{j-1}}\oplus 0_{A_{i},0}\oplus 1_{A_{j+1}\oplus\dots\oplus A_{n}} and 𝖾𝗆j{\sf em}^{j} can be redefined as 𝖾𝗆j=1A1Aj100,Ai1Aj+1An.{\sf em}^{j}=1_{A_{1}\oplus\dots\oplus A_{j-1}}\oplus 0_{0,A_{i}}\oplus 1_{A_{j+1}\oplus\dots\oplus A_{n}}. Then, using the functoriality of the crossed effect and (3.3), we obtain (3.5). The formula (3.6) follows from (3.5). ∎

3.2. A chain complex of crossed effects associated with a morphism

For a homomorphism φ:BA\varphi:B\to A and 0in0\leq i\leq n we consider the following maps

(3.7) Δφi,n:AnBAn+1B\Delta^{i,n}_{\varphi}:A^{\oplus n}\oplus B\longrightarrow A^{\oplus n+1}\oplus B

defined by

(3.8) Δφi,n(a1,,an,b)={(a1,,ai,ai,,an,b),i<n(a1,,an,φ(b),b),i=n\Delta^{i,n}_{\varphi}(a_{1},\dots,a_{n},b)=\begin{cases}(a_{1},\dots,a_{i},a_{i},\dots,a_{n},b),&i<n\\ (a_{1},\dots,a_{n},\varphi(b),b),&i=n\end{cases}

We also use the following notation for the canonical projections and embeddings

(3.9) 𝗉𝗋φn+1:AnBAn,𝖾𝗆φn+1:AnAnB,{\sf pr}^{n+1}_{\varphi}:A^{\oplus n}\oplus B\longrightarrow A^{\oplus n},\hskip 28.45274pt{\sf em}^{n+1}_{\varphi}:A^{\oplus n}\longrightarrow A^{\oplus n}\oplus B,

and set ΔAi,n:=Δ1Ai,n,\Delta^{i,n}_{A}:=\Delta^{i,n}_{1_{A}}, 𝗉𝗋An:=𝗉𝗋1An,{\sf pr}^{n}_{A}:={\sf pr}^{n}_{1_{A}}, 𝖾𝗆An=𝖾𝗆1An.{\sf em}^{n}_{A}={\sf em}^{n}_{1_{A}}.

Lemma 3.2.

The following equations are satisfied

  1. (1)

    Cosimplicial equations Δφj,n+1Δφi,n=Δφi,n+1Δφj1,n,\Delta^{j,n+1}_{\varphi}\Delta^{i,n}_{\varphi}=\Delta^{i,n+1}_{\varphi}\Delta^{j-1,n}_{\varphi}, where i<j;i<j;

  2. (2)

    𝗉𝗋φn+1Δφi,n=ΔAi,n1𝗉𝗋φn,{\sf pr}^{n+1}_{\varphi}\Delta^{i,n}_{\varphi}=\Delta^{i,n-1}_{A}{\sf pr}^{n}_{\varphi}, for in;i\neq n;

  3. (3)

    𝗉𝗋φn+1Δφn,n=1Anφ.{\sf pr}^{n+1}_{\varphi}\Delta^{n,n}_{\varphi}=1_{A^{\oplus n}}\oplus\varphi.

  4. (4)

    Δφi,n𝖾𝗆φn=𝖾𝗆φn+1ΔAi,n1,\Delta^{i,n}_{\varphi}{\sf em}^{n}_{\varphi}={\sf em}^{n+1}_{\varphi}\Delta^{i,n-1}_{A}, for in;i\neq n;

  5. (5)

    Δφn,n𝖾𝗆φn=𝖾𝗆φn+1𝖾𝗆An\Delta^{n,n}_{\varphi}{\sf em}^{n}_{\varphi}={\sf em}^{n+1}_{\varphi}{\sf em}^{n}_{A}

  6. (6)

    𝗉𝗋φn+1Δφi,n𝖾𝗆φn=ΔAi,n1{\sf pr}^{n+1}_{\varphi}\>\Delta_{\varphi}^{i,n}\>{\sf em}^{n}_{\varphi}=\Delta_{A}^{i,n-1} for in;i\neq n;

  7. (7)

    𝗉𝗋φn+1Δφn,n𝖾𝗆φn=𝖾𝗆An.{\sf pr}^{n+1}_{\varphi}\>\Delta_{\varphi}^{n,n}\>{\sf em}^{n}_{\varphi}={\sf em}^{n}_{A}.

Proof.

Direct computation. ∎

One can say that we obtain a coaugmented semi-co-simplicial module

(3.10) B{B}AB{A\oplus B}A2B{A^{\oplus 2}\oplus B}{\dots}\leftarrow\rightarrow\leftarrow\rightarrow\leftarrow\rightarrow\leftarrow\rightarrow\leftarrow\rightarrow\leftarrow\rightarrow

Further we set

(3.11) Φ[n|1](A,B)=Φ(A||A|B)\Phi_{[n|1]}(A,B)=\Phi(A|\dots|A|B)

and define morphisms hφi:Φ[n|1](A,B)Φ[n+1|1](A,B)h^{i}_{\varphi}:\Phi_{[n|1]}(A,B)\to\Phi_{[n+1|1]}(A,B) as compositions

(3.12) Φ[n|1](A,B){\Phi_{[n|1]}(A,B)}Φ[n+1|1](A,B){\Phi_{[n+1|1]}(A,B)}Φ(AnV){\Phi(A^{\oplus n}\oplus V)}Φ(An+1B){\Phi(A^{n+1}\oplus B)}\leftarrow\rightarrowhφi\scriptstyle{h^{i}_{\varphi}}\leftarrowtail\leftarrowtail\rightarrow\leftarrow\rightarrowΦ(Δφi)\scriptstyle{\Phi(\Delta^{i}_{\varphi})}\leftarrow\twoheadrightarrow\twoheadrightarrow

Cosimplicial identities for Δφi\Delta^{i}_{\varphi} imply cosimplicial identities for hφih^{i}_{\varphi}: hφjhφi=hφihφj1h^{j}_{\varphi}h^{i}_{\varphi}=h^{i}_{\varphi}h^{j-1}_{\varphi} where i<ji<j. So we can consider a cochain complex CΦ(φ),C_{\Phi}(\varphi), whose components are CΦ(φ)n=Φ[n|1](A,B)C_{\Phi}(\varphi)^{n}=\Phi_{[n|1]}(A,B) and the differential is defined as the alternating sum of hih_{i}

(3.13) CΦ(φ):Φ(B)hφ0Φ(A|B)hφ0h1Φ(A|A|B)hφ0hφ1hφ2C_{\Phi}(\varphi):\hskip 14.22636pt\Phi(B)\overset{h^{0}_{\varphi}}{\longrightarrow}\Phi(A|B)\overset{h^{0}_{\varphi}-h^{1}}{\longrightarrow}\Phi(A|A|B)\overset{h^{0}_{\varphi}-h^{1}_{\varphi}-h^{2}_{\varphi}}{\longrightarrow}\dots

We will also use the notation CΦ(A)=CΦ(𝗂𝖽A).C_{\Phi}(A)=C_{\Phi}({\sf id}_{A}).

It is easy to see that the construction of the complex is natural by the morphism φ\varphi is natural by the morphism in the following sense. Any commutative square

(3.14) B{B}A{A}B{B^{\prime}}A.{A^{\prime}.}\leftarrow\rightarrowα\scriptstyle{\alpha}\leftarrow\rightarrowψ\scriptstyle{\psi}\leftarrow\rightarrowβ\scriptstyle{\beta}\leftarrow\rightarrowψ\scriptstyle{\psi}

induces a morphism

(3.15) CΦ(α,β):CΦ(φ)CΦ(ψ).C_{\Phi}(\alpha,\beta):C_{\Phi}(\varphi)\longrightarrow C_{\Phi}(\psi).

3.3. The standard complex for higher limits

For any object cc of any category with pairwise coproducts 𝖢\mathsf{C} (not necessarily with an initial object) we denote by cnc^{\sqcup n} the coproduct i=0n1c\coprod_{i=0}^{n-1}c with embeddings αi:ccn\alpha_{i}:c\to c^{\sqcup n} indexed by 0in1.0\leq i\leq n-1. Any morphism f:cndf:c^{\sqcup n}\to d will be written as f=(f0,,fn1),f=(f_{0},\dots,f_{n-1}), where fi=fαi.f_{i}=f\alpha_{i}. We consider the cosimplicial object cc^{\bullet} whose components are defined by

(3.16) (c)n=cn+1(c^{\bullet})^{n}=c^{\sqcup n+1}

the coface maps di:cncn+1d^{i}:c^{\sqcup n}\to c^{\sqcup n+1} and degeneracy maps si:cn+2cn+1s^{i}:c^{\sqcup n+2}\to c^{\sqcup n+1} are defined by

(3.17) di=(α0,,α^i,,αn),si=(α0,,αi,αi,,αn)d^{i}=(\alpha_{0},\dots,\hat{\alpha}_{i},\dots,\alpha_{n}),\hskip 28.45274pts^{i}=(\alpha_{0},\dots,\alpha_{i},\alpha_{i},\dots,\alpha_{n})

for 0in.0\leq i\leq n.

Theorem 3.3 ([7, Th. 2.12]).

Let 𝖢\mathsf{C} be a strongly connected category with pairwise coproducts, 𝕂\mathbb{K} be a ring and Φ:𝖢𝖬𝗈𝖽(𝕂)\Phi:\mathsf{C}\to{\sf Mod}(\mathbb{K}) be a functor. Then for any object cc of 𝖢\mathsf{C} and any i0i\geq 0 we have an isomorphism

(3.18) 𝗅𝗂𝗆iΦπiΦ(c).\mathsf{lim}^{i}\>\Phi\cong\pi^{i}\Phi(c^{\bullet}).

In particular, the right-hand side of the isomorphism is independent of c.c.

Further we will use the notation for the chain complex

(3.19) 𝖫𝗂𝗆(c)Φ=N(Φ(c)){\sf Lim}_{(c)}\Phi=N^{\bullet}(\Phi(c^{\bullet}))
Remark 3.4.

The Theorem 3.3 was proved in [7, Th. 2.12] only for the case 𝕂=,\mathbb{K}=\mathbb{Z}, but the proof for any 𝕂\mathbb{K} can be done without any changes.

3.4. The relation functor

Further we consider a 𝕂\mathbb{K}-module AA and the category of its presentations 𝖯𝗋𝖾𝗌(A).\mathsf{Pres}(A). It is easy to check that this category is strongly connected and has pairwise coproducts pp:FF\twoheadrightarrowAp\sqcup p^{\prime}:F\oplus F^{\prime}\twoheadrightarrow A. This category is a full subcategory of the comma category 𝖬𝗈𝖽(𝕂)A{\sf Mod}(\mathbb{K})\downarrow A, whose objects are epimorphisms from free modules p:F\twoheadrightarrowA.p:F\twoheadrightarrow A. The functor

(3.20) 𝖱A:𝖯𝗋𝖾𝗌(A)𝖬𝗈𝖽(𝕂),𝖱A(p)=𝖪𝖾𝗋(p){\sf R}_{A}:\mathsf{Pres}(A)\longrightarrow{\sf Mod}(\mathbb{K}),\hskip 28.45274pt{\sf R}_{A}(p)={\sf Ker}(p)

will be called relation functor. For a giver presentation p:F\twoheadrightarrowAp:F\twoheadrightarrow A we will always use the notation R=𝖱A(p).R={\sf R}_{A}(p).

Proposition 3.5.

For any presentation p:F\twoheadrightarrowA,p:F\twoheadrightarrow A, if we denote by φp:RF\varphi_{p}:R\to F the embedding of the kernel, there is a natural isomorphism of cosimplicial modules

(3.21) 𝖱A(p)𝖣𝖪(φp){\sf R}_{A}(p^{\bullet})\cong\mathsf{DK}^{\bullet}(\varphi_{p})

(see Proposition 2.2).

Proof.

The coproduct in the category 𝖯𝗋𝖾𝗌(A)\mathsf{Pres}(A) is defined by pp:FFA.p\sqcup p^{\prime}:F\oplus F^{\prime}\to A. Therefore pn+1:Fn+1A.p^{\sqcup n+1}:F^{\oplus n+1}\to A. The kernel of pn+1p^{\sqcup n+1} consists of tuples (a0,,an)(a_{0},\dots,a_{n}) such that i=0naiR.\sum_{i=0}^{n}a_{i}\in R. Consider a map

(3.22) θn:𝖪𝖾𝗋(pn+1)FnR,\theta_{n}:{\sf Ker}(p^{\sqcup n+1})\longrightarrow F^{\oplus n}\oplus R,
(3.23) θn(a0,,an)=(a0,a0+a1,a0+a1+a2,,i=0nai).\theta_{n}(a_{0},\dots,a_{n})=(a_{0},\ a_{0}+a_{1},\ a_{0}+a_{1}+a_{2},\ \dots,\ \sum_{i=0}^{n}a_{i}).

The homomorphism θn\theta_{n} is an isomorphism with the inverse given by

(3.24) θn1(a0,,an1,r)=(a0,a1a0,,an1an2,ran1).\theta_{n}^{-1}(a_{0},\dots,a_{n-1},r)=(a_{0},\ a_{1}-a_{0},\ \dots,\ a_{n-1}-a_{n-2},\ r-a_{n-1}).

By the definition (3.17) the cofaces and codeneracy maps of 𝖱A(p){\sf R}_{A}(p^{\bullet}) are defined by the formulas

(3.25) d𝖱A(p)i(a0,,an)=(a0,,ai1,0,ai,,an),s𝖱A(p)i(a0,,an)=(a0,,ai+ai+1,,an).\begin{split}d^{i}_{{\sf R}_{A}(p^{\bullet})}(a_{0},\dots,a_{n})&=(a_{0},\dots,a_{i-1},0,a_{i},\dots,a_{n}),\\ s^{i}_{{\sf R}_{A}(p^{\bullet})}(a_{0},\dots,a_{n})&=(a_{0},\dots,a_{i}+a_{i+1},\dots,a_{n}).\end{split}

A direct computation shows that θn\theta_{n} respects the face and degeneracy maps. ∎

3.5. Limits of compositions with the relation functor

Let 𝕂\mathbb{K} be a commutative ring and

(3.26) Φ:𝖬𝗈𝖽(𝕂)𝖬𝗈𝖽(𝕂)\Phi:{\sf Mod}(\mathbb{K})\longrightarrow{\sf Mod}(\mathbb{K})

be a functor. For any 𝕂\mathbb{K}-module AA we are interested in the higher limits of the composition with the relation functor

(3.27) Φ𝖱A:𝖯𝗋𝖾𝗌(A)𝖬𝗈𝖽(𝕂).\Phi{\sf R}_{A}:{\sf Pres}(A)\longrightarrow{\sf Mod}(\mathbb{K}).
Theorem 3.6.

Let Φ:𝖬𝗈𝖽(𝕂)𝖬𝗈𝖽(𝕂)\Phi:{\sf Mod}(\mathbb{K})\to{\sf Mod}(\mathbb{K}) be a functor such that Φ(0)=0\Phi(0)=0 and p:F\twoheadrightarrowAp:F\twoheadrightarrow A be any presentation. Denote by φp:RF\varphi_{p}:R\to F the embedding of the kernel. Then there are natural isomorphisms

(3.28) 𝖫𝗂𝗆(p)Φ𝖱A𝖢𝗈𝗇𝖾(CΦ(1F,φp):CΦ(φ)CΦ(F))[1].\begin{split}{\sf Lim}_{(p)}\Phi{\sf R}_{A}&\cong{\sf Cone}(C_{\Phi}(1_{F},\varphi_{p}):C_{\Phi}(\varphi)\to C_{\Phi}(F))[-1].\end{split}
Proof.

Set N:=𝖫𝗂𝗆(p)Φ𝖱A.N:={\sf Lim}_{(p)}\Phi{\sf R}_{A}. Since 𝖱(p)n=FnR,{\sf R}^{\bullet}(p)^{n}=F^{n}\oplus R, and s𝖱(p)i=𝗉𝗋i:FnRFn1Rs^{i}_{{\sf R}^{\bullet}(p)}={\sf pr}^{i}:F^{n}\oplus R\to F^{n-1}\oplus R are projections, Lemma 3.1 implies that components of the normalised complex can be described as

(3.29) Nn=Φ[n|1](F,R)Φ[n](F).N^{n}=\Phi_{[n|1]}(F,R)\oplus\Phi_{[n]}(F).

So now we need to describe the differentials Nn,\partial^{n}_{N}, which are restrictions of the alternating sum i=0n1(1)idΦ(𝖱(p))i,\sum_{i=0}^{n-1}(-1)^{i}d^{i}_{\Phi({\sf R}^{\bullet}(p))}, and prove that they coincide with the differential for the cone.

Further in this prove we will use the following notations di=d𝖱(p)i;d^{i}=d^{i}_{{\sf R}^{\bullet}(p)}; dΦi=dΦ(𝖱(p))i=Φ(d𝖱(p)i);d^{i}_{\Phi}=d^{i}_{\Phi({\sf R}^{\bullet}(p))}=\Phi(d^{i}_{{\sf R}^{\bullet}(p)});

(3.30) π:Φ(FnR)Φ[n|1](F,R),π:Φ(FnR)Φ[n](F)\pi:\Phi(F^{\oplus n}\oplus R)\to\Phi_{[n|1]}(F,R),\hskip 28.45274pt\pi^{\prime}:\Phi(F^{\oplus n}\oplus R)\to\Phi_{[n]}(F)

are the projections;

(3.31) ρ:Φ[n|1](F,R)Φ(FnR),ρ:Φ[n](F)Φ(FnR)\rho:\Phi_{[n|1]}(F,R)\to\Phi(F^{\oplus n}\oplus R),\hskip 28.45274pt\rho^{\prime}:\Phi_{[n]}(F)\to\Phi(F^{\oplus n}\oplus R)

are the embeddings. Therefore, n\partial^{n} can be described as the alternating sum of matrices

(3.32) Mi\coloneq(πdΦiρπdΦiρπdΦiρπdΦiρ)M_{i}\coloneq\left(\begin{matrix}\pi d^{i}_{\Phi}\rho&\pi d^{i}_{\Phi}\rho^{\prime}\\ \pi^{\prime}d^{i}_{\Phi}\rho&\pi^{\prime}d^{i}_{\Phi}\rho^{\prime}\end{matrix}\right)

for 0in+1.0\leq i\leq n+1. We will also consider the maps

(3.33) π~:Φ(Fn)Φ[n](F),ρ~:Φ[n](F)Φ(Fn).\tilde{\pi}:\Phi(F^{\oplus n})\longrightarrow\Phi_{[n]}(F),\hskip 28.45274pt\tilde{\rho}:\Phi_{[n]}(F)\longrightarrow\Phi(F^{\oplus n}).

and the maps

(3.34) 𝖾𝗆φn:FnFnR,𝗉𝗋φn:FnRFn.{\sf em}^{n}_{\varphi}:F^{\oplus n}\longrightarrow F^{\oplus n}\oplus R,\hskip 28.45274pt{\sf pr}^{n}_{\varphi}:F^{\oplus n}\oplus R\longrightarrow F^{\oplus n}.

Then we have

(3.35) π=π~Φ(𝗉𝗋φn),ρ=Φ(𝖾𝗆φn)ρ~.\pi^{\prime}=\tilde{\pi}\Phi({\sf pr}^{n}_{\varphi}),\hskip 28.45274pt\rho^{\prime}=\Phi({\sf em}^{n}_{\varphi})\tilde{\rho}.

The map d0d^{0} is the embedding FnRFn+1R,F^{n}\oplus R\to F^{n+1}\oplus R, which is trivially mapped to the first summand. Therefore the image of dΦ0d^{0}_{\Phi} is the direct sum of all crossed effects, where the first summand does not appear (Lemma 3.1). Therefore πdΦ0=0\pi d^{0}_{\Phi}=0 and πdΦ0=0,\pi^{\prime}d^{0}_{\Phi}=0, and hence M0=0.M_{0}=0.

Further we will freely use the equations from Lemma 3.2 for the computations. Now assume that 0in.0\leq i\leq n. Then di=Δφi1.d^{i}=\Delta^{i-1}_{\varphi}. So we have

(3.36) πdΦiρ=πΦ(Δφi1)ρ=hφi1,\pi d^{i}_{\Phi}\rho=\pi\Phi(\Delta^{i-1}_{\varphi})\rho=h^{i-1}_{\varphi},

and

(3.37) πdΦiρ=π~Φ(𝗉𝗋φn+1Δφi1)ρ=π~Φ(ΔFi1𝗉𝗋φn)ρ=0\pi^{\prime}d^{i}_{\Phi}\rho=\tilde{\pi}\Phi({\sf pr}^{n+1}_{\varphi}\>\Delta^{i-1}_{\varphi})\rho=\tilde{\pi}\Phi(\Delta^{i-1}_{F}\>{\sf pr}^{n}_{\varphi})\rho=0

because by Lemma 3.1 Φ(𝗉𝗋φn)ρ=0.\Phi({\sf pr}^{n}_{\varphi})\rho=0. Further we have

(3.38) πdΦiρ=πΦ(Δφi1𝖾𝗆φn)ρ~=πΦ(𝖾𝗆φn+1ΔFi1)ρ~=0\pi d^{i}_{\Phi}\rho^{\prime}=\pi\Phi(\Delta_{\varphi}^{i-1}{\sf em}^{n}_{\varphi})\tilde{\rho}=\pi\Phi({\sf em}^{n+1}_{\varphi}\Delta_{F}^{i-1})\tilde{\rho}=0

because by Lemma 3.1 πΦ(𝖾𝗆φn+1)=0\pi\Phi({\sf em}_{\varphi}^{n+1})=0. Finally we have

(3.39) πdΦiρ=π~Φ(𝗉𝗋φn+1Δϕi1𝖾𝗆φn)ρ~=π~Φ(ΔFi1)ρ~=hFi1.\pi^{\prime}d^{i}_{\Phi}\rho^{\prime}=\tilde{\pi}\Phi({\sf pr}^{n+1}_{\varphi}\Delta^{i-1}_{\phi}{\sf em}^{n}_{\varphi})\tilde{\rho}=\tilde{\pi}\Phi(\Delta^{i-1}_{F})\tilde{\rho}=h^{i-1}_{F}.

Therefore for 1in1\leq i\leq n we have

(3.40) Mi=(hφn00hFi1).M_{i}=\left(\begin{matrix}h^{n}_{\varphi}&0\\ 0&h^{i-1}_{F}\end{matrix}\right).

Now assume that i=n+1.i=n+1. Then dn+1=Δφn.d^{n+1}=\Delta^{n}_{\varphi}. Similarly to the previous case we obtain

(3.41) πdΦiρ=hφn.\pi d^{i}_{\Phi}\rho=h^{n}_{\varphi}.

Further we have

(3.42) πdΦn+1ρ=π~Φ(𝗉𝗋φn+1Δφn)ρ=π~Φ(1φ)ρ=Φ[n|1](1,φ),\pi^{\prime}d^{n+1}_{\Phi}\rho=\tilde{\pi}\Phi({\sf pr}^{n+1}_{\varphi}\Delta^{n}_{\varphi})\rho=\tilde{\pi}\Phi(1\oplus\varphi)\rho=\Phi_{[n|1]}(1,\varphi),

and

(3.43) πdΦn+1ρ=πΦ(Δφn𝖾𝗆φn)ρ~=πΦ(𝖾𝗆φn+1𝖾𝗆Fn)ρ~=0,\pi d^{n+1}_{\Phi}\rho^{\prime}=\pi\Phi(\Delta_{\varphi}^{n}{\sf em}^{n}_{\varphi})\tilde{\rho}=\pi\Phi({\sf em}^{n+1}_{\varphi}{\sf em}^{n}_{F})\tilde{\rho}=0,

because πΦ(𝖾𝗆φn+1)=0.\pi\Phi({\sf em}^{n+1}_{\varphi})=0. Finally we have

(3.44) πdΦn+1ρ=π~Φ(𝗉𝗋φn+1Δφn𝖾𝗆φn)ρ~=π~Φ(𝖾𝗆Fn)ρ~=0,\pi^{\prime}d^{n+1}_{\Phi}\rho^{\prime}=\tilde{\pi}\Phi({\sf pr}^{n+1}_{\varphi}\Delta^{n}_{\varphi}{\sf em}^{n}_{\varphi})\tilde{\rho}=\tilde{\pi}\Phi({\sf em}_{F}^{n})\tilde{\rho}=0,

because π~Φ(𝖾𝗆Fn)=0.\tilde{\pi}\Phi({\sf em}_{F}^{n})=0. Therefore

(3.45) Mn+1=(hφn0Φ[n|1](1,φ)0).M_{n+1}=\left(\begin{matrix}h^{n}_{\varphi}&0\\ \Phi_{[n|1]}(1,\varphi)&0\end{matrix}\right).

Therefore the differential will be given by

(3.46) Nn=(i=0n(1)ihφi0(1)n+1Φ[n|1](1,φ)i=0n1(1)ihFi).\partial^{n}_{N}=\left(\begin{matrix}-\sum_{i=0}^{n}(-1)^{i}h^{i}_{\varphi}&0\\ (-1)^{n+1}\Phi_{[n|1]}(1,\varphi)&-\sum_{i=0}^{n-1}(-1)^{i}h^{i}_{F}\end{matrix}\right).

It follows that

(3.47) N[1]n=(CΦ(φ)n+10(1)nΦ[n+1|1](1,φ)CΦ(F)n).\partial^{n}_{N[1]}=\left(\begin{matrix}\partial^{n+1}_{C_{\Phi}(\varphi)}&0\\ (-1)^{n}\Phi_{[n+1|1]}(1,\varphi)&\partial^{n}_{C_{\Phi}(F)}\end{matrix}\right).

Consider an automorphism θn:NnNn\theta^{n}:N^{n}\to N^{n} defined by a matrix ((1)n001)\left(\begin{smallmatrix}(-1)^{n}&0\\ 0&1\end{smallmatrix}\right) Then

(3.48) (θn+1)1N[1]nθn=(CΦ(φ)n+10Φ[n+1|1](1,φ)CΦ(F)n).(\theta^{n+1})^{-1}\partial^{n}_{N[1]}\theta^{n}=\left(\begin{matrix}-\partial^{n+1}_{C_{\Phi}(\varphi)}&0\\ \Phi_{[n+1|1]}(1,\varphi)&\partial^{n}_{C_{\Phi}(F)}\end{matrix}\right).

The right-hand side of the above formula is the formula for the differential of the cone. Therefore, θn\theta^{n} defines an isomorphism between N[1]N[1] and 𝖢𝗈𝗇𝖾(CΦ(1F,φ):CΦ(φ)CΦ(F)).{\sf Cone}(C_{\Phi}(1_{F},\varphi):C_{\Phi}(\varphi)\to C_{\Phi}(F)).

Corollary 3.7.

Under the assumption of Theorem 3.6, if AA is a free 𝕂\mathbb{K}-module, we obtain

(3.49) 𝖫𝗂𝗆(𝗂𝖽)Φ𝖱ACΦ(A)[1]{\sf Lim}_{({\sf id})}\Phi{\sf R}_{A}\cong C_{\Phi}(A)[-1]
Corollary 3.8.

If Φ\Phi is a polynomial functor of degree d,d, then

(3.50) 𝗅𝗂𝗆iΦ𝖱A=0,i>d.\mathsf{lim}^{i}\Phi{\sf R}_{A}=0,\hskip 28.45274pti>d.

4. Kuhn duality and higher limits

In this section we assume that 𝕂\mathbb{K} is a principal ideal domain. In this case, for a finitely generated module AA and a finitely generated presentation R\rightarrowtailF\twoheadrightarrowAR\rightarrowtail F\twoheadrightarrow A the module RR is also free and finitely generated.

For a module AA we set A=𝖧𝗈𝗆𝕂(A,𝕂).A^{\vee}={\sf Hom}_{\mathbb{K}}(A,\mathbb{K}). For a functor Φ:𝖬𝗈𝖽(𝕂)𝖬𝗈𝖽(𝕂)\Phi:{\sf Mod}(\mathbb{K})\to{\sf Mod}(\mathbb{K}) we denote by Φ#:𝖬𝗈𝖽(𝕂)𝖬𝗈𝖽(𝕂)\Phi^{\#}:{\sf Mod}(\mathbb{K})\to{\sf Mod}(\mathbb{K}) the functor defined by the formula

(4.1) Φ#(A):=Φ(A).\Phi^{\#}(A):=\Phi(A^{\vee})^{\vee}.

The functor Φ#\Phi^{\#} is known as Khun dual to the functor Φ.\Phi.

Proposition 4.1.

Let AA be a finitely generated 𝕂\mathbb{K}-module, and p:F\twoheadrightarrowAp:F\twoheadrightarrow A be a finitely generated presentation, then there is an isomorphism

(4.2) (𝖫𝗂𝗆(p)Φ𝖱A)N(Φ#(𝖣𝖪(FR))).({\sf Lim}_{(p)}\Phi{\sf R}_{A})^{\vee}\cong N_{\bullet}(\Phi^{\#}({\sf DK}_{\bullet}(F^{\vee}\to R^{\vee}))).

If we also assume that Φ\Phi takes finitely generated free modules to finitely generated free modules, we obtain

(4.3) 𝖫𝗂𝗆(p)Φ𝖱A(N(Φ#(𝖣𝖪(FR)))).{\sf Lim}_{(p)}\Phi{\sf R}_{A}\cong(N_{\bullet}(\Phi^{\#}({\sf DK}_{\bullet}(F^{\vee}\to R^{\vee}))))^{\vee}.
Proof.

Since 𝖱A(p)𝖣𝖪(R\rightarrowtailF){\sf R}_{A}(p^{\bullet})\cong{\sf DK}^{\bullet}(R\rightarrowtail F) by Proposition 3.5, using (2.7) we obtain 𝖱(p)=𝖣𝖪(FR).{\sf R}^{\bullet}(p)^{\vee}={\sf DK}_{\bullet}(F^{\vee}\to R^{\vee}). Since for a finitely generated module FF we have a natural isomorphism (F)F,(F^{\vee})^{\vee}\cong F, we obtain

(4.4) Φ(𝖱(p))=Φ#(𝖱(p))=Φ#(𝖣𝖪(FR)).\Phi({\sf R}^{\bullet}(p))^{\vee}=\Phi^{\#}({\sf R}^{\bullet}(p)^{\vee})=\Phi^{\#}({\sf DK}_{\bullet}(F^{\vee}\to R^{\vee})).

The first isomorphism of the statement follows from Proposition 3.5. The second isomorphism follows from the fact that, if Φ(Fn)\Phi(F^{\oplus n}) and Φ(FnR)\Phi(F^{\oplus n}\oplus R) are free finitely generated, then the cross effects Φ[n](F),\Phi_{[n]}(F), Φ[n|1](F,R)\Phi_{[n|1]}(F,R) are also free finitely generated modules (because they are direct summands and 𝕂\mathbb{K} is a principal ideal domain), and hence, by Theorem 3.6, components of 𝖫𝗂𝗆(p)Φ𝖱A{\sf Lim}_{(p)}\Phi{\sf R}_{A} are also free finitely generated. ∎

Further we set

(4.5) A=𝖤𝗑𝗍𝕂1(A,𝕂).A^{\diamond}={\sf Ext}^{1}_{\mathbb{K}}(A,\mathbb{K}).
Corollary 4.2.

Assume that AA is a free finitely generated 𝕂\mathbb{K}-module and Φ\Phi takes free finitely generated modules to free finitely generated modules. Then there is an isomorphism of chain complexes

(4.6) 𝖫𝗂𝗆(𝗂𝖽)Φ𝖱A(N(Φ#(K(A,1)))){\sf Lim}_{({\sf id})}\Phi{\sf R}_{A}\cong(N_{\bullet}(\Phi^{\#}(K(A,1))))^{\vee}

and for each ii we have a short exact sequence

(4.7) 0(Li1Φ#(A,1))𝗅𝗂𝗆iΦ𝖱A(LiΦ#(A,1))00\to(L_{i-1}\Phi^{\#}(A^{\vee},1))^{\diamond}\to\mathsf{lim}^{i}\Phi{\sf R}_{A}\to(L_{i}\Phi^{\#}(A^{\vee},1))^{\vee}\to 0
Proof.

It follows from isomorphism (4.3), the fact that 𝖣𝖪(A0)=K(A,1){\sf DK}_{\bullet}(A^{\vee}\to 0)=K(A^{\vee},1) and from the universal coefficient theorem for chain complexes. ∎

Corollary 4.3.

Assume that AA is a torsion finitely generated 𝕂\mathbb{K}-module and Φ\Phi takes free finitely generated modules to free finitely generated modules. Then for each ii there is a short exact sequence

(4.8) 0(Li1Φ#(A,0))𝗅𝗂𝗆iΦ𝖱A(LiΦ#(A,0))00\to(L_{i-1}\Phi^{\#}(A^{\diamond},0))^{\diamond}\to\mathsf{lim}^{i}\Phi{\sf R}_{A}\to(L_{i}\Phi^{\#}(A^{\diamond},0))^{\vee}\to 0
Proof.

Since AA is torsion module, A=0.A^{\vee}=0. Therefore, FRF^{\vee}\to R^{\vee} is a free resolution of A.A^{\diamond}. It follows that 𝖣𝖪(FR){\sf DK}_{\bullet}(F^{\vee}\to R^{\vee}) is a free simplicial resolution of K(A,0),K(A^{\diamond},0), and hence πi(Φ#(𝖣𝖪(FR)))=LiΦ#(A,0).\pi_{i}(\Phi^{\#}({\sf DK}_{\bullet}(F^{\vee}\to R^{\vee})))=L_{i}\Phi^{\#}(A^{\diamond},0). Then the assertion follows from the isomorphism (4.3) and the universal coefficient theorem for chain complexes. ∎

5. Higher limits for symmetric powers

In this section we assume that 𝕂=\mathbb{K}=\mathbb{Z} and study 𝗅𝗂𝗆iSd𝖱A,\mathsf{lim}^{i}S^{d}{\sf R}_{A}, where SdS^{d} is dd-th symmetric power and AA is a free finitely generated abelian group. In this description we will use results of [1] about the description of the non-additive derived functors of the functors of divided powers. Namely we will use that for a finitely generated free abelian group AA we have

(5.1) LiΓd(A,1)={Λd(A),i=d,a finite abelian group,0<i<d,0,i=0 or i>d.L_{i}\Gamma^{d}(A,1)=\begin{cases}\Lambda^{d}(A),&i=d,\\ \text{a finite abelian group},&0<i<d,\\ 0,&i=0\text{ or }i>d.\end{cases}

(see [1, Theorem 6.3], and the beginning of §7 in [1]).

For an abelian group AA we denote by (A)\otimes(A) the tensor algebra. Then the symmetric algebra 𝖲(A){\sf S}(A) is its quotient by the relations ab=baab=ba for a,bA,a,b\in A, and the exterior algebra Λ(A)\Lambda(A) is its quotient by the relations a2=0a^{2}=0 for aA.a\in A. We will also consider the anti-symmetric algebra ~(A)\tilde{\otimes}(A) which is a quotient of (A)\otimes(A) by the relations ab=baab=-ba for a,bA.a,b\in A. Since the relation ab=baab=-ba is satisfied in Λ(A),\Lambda(A), we have a natural epimorphism ~(A)\twoheadrightarrowΛ(A).\tilde{\otimes}(A)\twoheadrightarrow\Lambda(A). Consider the kernel

(5.2) ASK(A):=𝖪𝖾𝗋(~(A)\twoheadrightarrowΛ(A)).ASK(A):={\sf Ker}(\tilde{\otimes}(A)\twoheadrightarrow\Lambda(A)).

The ideal ASK(A)ASK(A) is generated by elements a2a^{2} for aA.a\in A. The graded abelian group ASK(A)ASK(A) is a 22-torsion group, because a2=a2a^{2}=-a^{2} in ~(A).\tilde{\otimes}(A). Since ~(A)\tilde{\otimes}(A) and Λ(A)\Lambda(A) are naturally graded we can consider the homogeneous components Λd(A),~d(A),ASKd(A).\Lambda^{d}(A),\tilde{\otimes}^{d}(A),ASK^{d}(A).

Note that for a finite abelian group TT we have

(5.3) T𝖧𝗈𝗆(T,/)T^{\diamond}\cong{\sf Hom}(T,\mathbb{Q}/\mathbb{Z})

and the functor ()(-)^{\diamond} induces a self-duality on the category of finite abelian groups, as well as the functor ()(-)^{\vee} is a self-duality on the category of free finitely generated abelian groups.

Theorem 5.1.

For a free finitely generated abelian group AA there is a natural isomorphism

(5.4) 𝗅𝗂𝗆iSd𝖱A(Li1Γd(A,1)),for i<d,\mathsf{lim}^{i}S^{d}{\sf R}_{A}\cong(L_{i-1}\Gamma^{d}(A^{\vee},1))^{\diamond},\hskip 28.45274pt\text{for }i<d,

a natural short exact sequence

(5.5) 0(Ld1Γd(A,1))𝗅𝗂𝗆dSd𝖱AΛd(A)00\longrightarrow(L_{d-1}\Gamma^{d}(A^{\vee},1))^{\diamond}\longrightarrow\mathsf{lim}^{d}S^{d}{\sf R}_{A}\longrightarrow\Lambda^{d}(A)\longrightarrow 0

and 𝗅𝗂𝗆iSd𝖱A=0\mathsf{lim}^{i}S^{d}{\sf R}_{A}=0 for i>d.i>d. Moreover, for a free abelian group AA (not necessarily finitely generated) there are natural isomorphisms

(5.6) 𝗅𝗂𝗆dSd𝖱A~d(A),\mathsf{lim}^{d}S^{d}{\sf R}_{A}\cong\tilde{\otimes}^{d}(A),

for d1,d\geq 1, and 𝗅𝗂𝗆1Sd𝖱A=0\mathsf{lim}^{1}S^{d}{\sf R}_{A}=0 for d2.d\geq 2.

Proof.

First we note that for a free finitely generated abelian group AA we have Γd(A)=(Sd)#(A)\Gamma^{d}(A)=(S^{d})^{\#}(A) and Λd(A)=(Λd)#(A)\Lambda^{d}(A)=(\Lambda^{d})^{\#}(A) (see [1, §2.3]). The equation (5.1) implies that

(5.7) LiΓd(A,1)={(Λd)#(A)=Λd(A),i=d,0,id.L_{i}\Gamma^{d}(A^{\vee},1)^{\vee}=\begin{cases}(\Lambda^{d})^{\#}(A)=\Lambda^{d}(A),&i=d,\\ 0,&i\neq d.\end{cases}

Then the isomorphism 5.4 and the short exact sequence 5.5 follow from the short exact sequence (4.7).

Let us prove the isomorphism (5.6). Here we will use Corollary 3.7. Let’s compute cross effects of SdS^{d} and the maps hih_{i} for them. The symmetric algebra is an exponential functor S(AB)=S(A)S(B),S(A\oplus B)=S(A)\otimes S(B), with the isomorphism defined by

(5.8) (a1+b1)(an+bn){i1<<ik}{j1<<jl}={1,,n}(ai1aik)(bj1bjl).(a_{1}+b_{1})\cdot{\dots}\cdot(a_{n}+b_{n})\mapsto\sum_{\{i_{1}<\dots<i_{k}\}\sqcup\{j_{1}<\dots<j_{l}\}=\{1,\dots,n\}}(a_{i_{1}}\dots a_{i_{k}})\otimes(b_{j_{1}}\dots b_{j_{l}}).

If we take A=BA=B and compose it with the diagonal map Δ:AAA,\Delta:A\to A\oplus A, we obtain the map S(A)S(A)S(A)S(A)\to S(A)\otimes S(A) defined by

(5.9) a1an{i1<<ik}{j1<<jl}={1,,n}(ai1aik)(aj1ajl).a_{1}\cdot{\dots}\cdot a_{n}\mapsto\sum_{\{i_{1}<\dots<i_{k}\}\sqcup\{j_{1}<\dots<j_{l}\}=\{1,\dots,n\}}(a_{i_{1}}\dots a_{i_{k}})\otimes(a_{j_{1}}\dots a_{j_{l}}).

We obtain S(A1An)=S(A1)S(An)S(A_{1}\oplus\dots\oplus A_{n})=S(A_{1})\otimes\dots\otimes S(A_{n}) for any sequence of abelian groups A1,,An.A_{1},\dots,A_{n}. Therefore

(5.10) Sd(A1An)=d1++dn=d,d0Sd1(A1)Sdn(An).S^{d}(A_{1}\oplus\dots\oplus A_{n})=\bigoplus_{d_{1}+\dots+d_{n}=d,\ d\geq 0}S^{d_{1}}(A_{1})\otimes\dots\otimes S^{d_{n}}(A_{n}).

It follows that

(5.11) Sd(A1||An)=d1++dn=d,di1Sd1(A1)Sdn(An).S^{d}(A_{1}|\dots|A_{n})=\bigoplus_{d_{1}+\dots+d_{n}=d,\ d_{i}\geq 1}S^{d_{1}}(A_{1})\otimes\dots\otimes S^{d_{n}}(A_{n}).

In particular for n=d1,dn=d-1,d and A=A1==AdA=A_{1}=\dots=A_{d} we obtain

(5.12) S[d]d(A)=Ad.S[d1]d(A)=i=1d1Ai1S2(A)Adi1.\begin{split}S^{d}_{[d]}(A)&=A^{\otimes d}.\\ S^{d}_{[d-1]}(A)&=\bigoplus_{i=1}^{d-1}A^{\otimes i-1}\otimes S^{2}(A)\otimes A^{\otimes d-i-1}.\end{split}

Now we need to compute hi:S[d1]d(A)S[d]d(A).h_{i}:S^{d}_{[d-1]}(A)\to S^{d}_{[d]}(A). Looking on the formula 5.9 we see that hih_{i} is trivial on all the summands Aj1S2(A)Adj1A^{\otimes j-1}\otimes S^{2}(A)\otimes A^{\otimes d-j-1} for jij\neq i and the restriction of of hih_{i} to Ai1S2(A)Adi1A^{\otimes i-1}\otimes S^{2}(A)\otimes A^{\otimes d-i-1} is given by the formula

(5.13) hi(a1aiai+1ad)==a1aiai+1ad+a1ai+1aiad\begin{split}&h_{i}(a_{1}\otimes\dots\otimes a_{i}a_{i+1}\otimes\dots\otimes a_{d})=\\ &=a_{1}\otimes\dots\otimes a_{i}\otimes a_{i+1}\otimes\dots\otimes a_{d}+a_{1}\otimes\dots\otimes a_{i+1}\otimes a_{i}\otimes\dots\otimes a_{d}\end{split}

It follows that the cokernel of the map S[d1]d(A)S[d]d(A)S^{d}_{[d-1]}(A)\to S^{d}_{[d]}(A) is the quotient of the tensor power AdA^{\otimes d} by the relations

(5.14) a1aiai+1ad=a1ai+1aiad,a_{1}\otimes\dots\otimes a_{i}\otimes a_{i+1}\otimes\dots\otimes a_{d}=-a_{1}\otimes\dots\otimes a_{i+1}\otimes a_{i}\otimes\dots\otimes a_{d},

which is equal to ~d(A).\tilde{\otimes}^{d}(A). It follows that 𝗅𝗂𝗆dSd𝖱AHd1(CSd(A))~d(A).\mathsf{lim}^{d}S^{d}{\sf R}_{A}\cong H^{d-1}(C_{S^{d}}(A))\cong\tilde{\otimes}^{d}(A).

For finitely generated free abelian groups AA the isomorphism (5.4) implies 𝗅𝗂𝗆1Sd𝖱AL0Γd(A,1)=0.\mathsf{lim}^{1}S^{d}{\sf R}_{A}\cong L_{0}\Gamma^{d}(A^{\vee},1)^{\diamond}=0. For all free abelian groups the isomorphism 𝗅𝗂𝗆1Sd𝖱A=0\mathsf{lim}^{1}S^{d}{\sf R}_{A}=0 follows from the fact that all the constructions Sd(A),S[d]d(A),CSd(A),H(CSd(A))S^{d}(A),S^{d}_{[d]}(A),C_{S^{d}}(A),H^{*}(C_{S^{d}}(A)) commute with filtered colimits of abelian groups, and that any free abelian group can be presented as a filtered colimits of its finitely generated subgroups, which are also free. ∎

Corollary 5.2.

For a free finitely generated abelian group AA there is a natural isomorphism

(5.15) Ld1Γd(A,1)(ASKd(A)).L_{d-1}\Gamma^{d}(A,1)\cong(ASK^{d}(A^{\vee}))^{\diamond}.
Proof.

The short exact sequence 5.5 implies that the torsion subgroup of 𝗅𝗂𝗆dSd𝖱A\mathsf{lim}^{d}S^{d}{\sf R}_{A} is naturally isomorphic to (Ld1Γd(A,1)).(L_{d-1}\Gamma^{d}(A^{\vee},1))^{\diamond}. The isomorphism 5.6 implies that the torsion group of 𝗅𝗂𝗆dSd𝖱A\mathsf{lim}^{d}S^{d}{\sf R}_{A} is naturally isomorphic to ASKd(A).ASK^{d}(A). Therefore (Ld1Γd(A,1))ASKd(A).(L_{d-1}\Gamma^{d}(A^{\vee},1))^{\diamond}\cong ASK^{d}(A). Using that ()(-)^{\diamond} is a self-duality for finite abelian groups and ()(-)^{\vee} is a self-duality for free finitely generated abelian groups, we obtain the required isomorphism. ∎

Corollary 5.3.

For a free finitely generated abelian group AA there are non-natural isomorphisms of abelian groups

(5.16) 𝗅𝗂𝗆iSd𝖱A{Li1Γd(A,1),i<d,Ld1Γd(A,1)LdΓd(A,1),i=d,0,i>d.\mathsf{lim}^{i}S^{d}{\sf R}_{A}\cong\begin{cases}L_{i-1}\Gamma^{d}(A,1),&i<d,\\ L_{d-1}\Gamma^{d}(A,1)\oplus L_{d}\Gamma^{d}(A,1),&i=d,\\ 0,&i>d.\end{cases}
Proof.

For any finitely generated free abelian group AA we have an non-natural isomorphism AA.A\cong A^{\vee}. For any finite group TT we have a non-natural isomorphism T𝖧𝗈𝗆(T,/)T.T\cong{\sf Hom}(T,\mathbb{Q}/\mathbb{Z})\cong T^{\diamond}. Therefore, using (5.1) for idi\neq d we have a non-natural isomorphism LiΓd(A,1)LiΓd(A,1).L_{i}\Gamma^{d}(A^{\vee},1)^{\diamond}\cong L_{i}\Gamma^{d}(A,1). Using (5.4) we obtain the required isomorphism for i<d.i<d. Since LdΓd(A,1)Λd(A)L_{d}\Gamma^{d}(A,1)\cong\Lambda^{d}(A) is free abelian, we obtain that the short exact sequence (5.5) non-naturally splits. The isomorphism for i=di=d follows. ∎

Example 5.4.

Theorem 5.1 implies that for a free abelian group AA we have 𝗅𝗂𝗆1S2𝖱A=0\mathsf{lim}^{1}S^{2}{\sf R}_{A}=0 and 𝗅𝗂𝗆2S2𝖱A~2(A).\mathsf{lim}^{2}S^{2}{\sf R}_{A}\cong\tilde{\otimes}^{2}(A). For S3S^{3} we similarly have 𝗅𝗂𝗆1S3𝖱A=0\mathsf{lim}^{1}S^{3}{\sf R}_{A}=0 and 𝗅𝗂𝗆3S3𝖱A=~3(A).\mathsf{lim}^{3}S^{3}{\sf R}_{A}=\tilde{\otimes}^{3}(A). We also claim that

(5.17) 𝗅𝗂𝗆2S3𝖱AA/3.\mathsf{lim}^{2}S^{3}{\sf R}_{A}\cong A\otimes\mathbb{Z}/3.

For a finitely generated free abelian group AA it follows from the fact that L1Γ3(A,1)A/3L_{1}\Gamma^{3}(A,1)\cong A\otimes\mathbb{Z}/3 (see [1, (8-20)]) and that (A/3)A/3.(A^{\vee}\otimes\mathbb{Z}/3)^{\diamond}\cong A\otimes\mathbb{Z}/3. In order to prove it for arbitrary free abelian group AA we need to use that all the constructions commute with filtered colimits. A free abelian group AA can be presented as a filtered colimit of its finitely generated subgroups A=𝖼𝗈𝗅𝗂𝗆B𝖿.𝗀.A𝖡,A=\underset{B\subseteq_{\sf f.g.}A}{\sf colim}B, and using the fact that all the constructions that we use here commute with filtered colimits, we obtain 𝗅𝗂𝗆2S3𝖱AH1(CS3(A))\mathsf{lim}^{2}S^{3}{\sf R}_{A}\cong H^{1}(C_{S^{3}}(A))\cong 𝖼𝗈𝗅𝗂𝗆BH1(CS3(B)){\sf colim}_{B}H^{1}(C_{S^{3}}(B)) 𝖼𝗈𝗅𝗂𝗆BB/3A/3.\cong{\sf colim}_{B}B\otimes\mathbb{Z}/3\cong A\otimes\mathbb{Z}/3.

Proposition 5.5.

For n4n\geq 4 we have an isomorphism of abelian groups

(5.18) Hn(K(,3),)d2𝗅𝗂𝗆n2d+1Sd𝖱H_{n}(K(\mathbb{Z},3),\mathbb{Z})\cong\bigoplus_{d\geq 2}\mathsf{lim}^{n-2d+1}S^{d}{\sf R}_{\mathbb{Z}}

(here we assume that 𝗅𝗂𝗆i=0\mathsf{lim}^{i}=0 for i<0i<0).

Proof.

In [1, (B-3)] (see also [3, Satz 4.16]) in is proved that for a free finitely generated abelian group AA and any n0n\geq 0 there is an isomorphism

(5.19) Hn(K(A,3),)dLn2dΓd(A,1).H_{n}(K(A,3),\mathbb{Z})\cong\bigoplus_{d}L_{n-2d}\Gamma^{d}(A,1).

Since LiΓd(A,1)=0L_{i}\Gamma^{d}(A,1)=0 for i>d,i>d, we can assume that the summation is taken over all dd such that n2dd.n-2d\leq d. Equivalently we can rewrite this as dn/3.d\geq n/3. In particular, if n4,n\geq 4, we can assume that the summation is taken over indexes d2.d\geq 2. Since LdΓd(A,1)=Λd(A),L_{d}\Gamma^{d}(A,1)=\Lambda^{d}(A), we see that for A=A=\mathbb{Z} and d2d\geq 2 we have LdΓd(,1)=0.L_{d}\Gamma^{d}(\mathbb{Z},1)=0. Therefore by Corollary 5.3 for d2d\geq 2 we have an isomorphism

(5.20) 𝗅𝗂𝗆iSd𝖱Li1Γd(,1).\mathsf{lim}^{i}S^{d}{\sf R}_{\mathbb{Z}}\cong L_{i-1}\Gamma^{d}(\mathbb{Z},1).

The assertion follows. ∎

References

  • [1] Lawrence Breen, Roman Mikhailov and Antoine Touzé “Derived functors of the divided power functors” In Geometry & Topology 20.1 Mathematical Sciences Publishers, 2016, pp. 257–352
  • [2] Aurélien Djament, Antoine Touzé and Christine Vespa “Décompositions à la Steinberg sur une catégorie additive” In Annales Scientifiques de l’École Normale Supérieure, 2022
  • [3] Albrecht Dold and Dieter Puppe “Homologie nicht-additiver funktoren. anwendungen” In Annales de l’institut Fourier 11, 1961, pp. 201–312
  • [4] Yuriy Drozd “On polynomial functors” In Visnyk L’vivs’kogo Universytetu. Seriya Mekhaniko-Matematychna 61, 2003
  • [5] Yuriy A. Drozd “On cubic functors” In Communications in Algebra 31.3 Taylor & Francis, 2003, pp. 1147–1173
  • [6] Sergei O Ivanov and Roman Mikhailov “A higher limit approach to homology theories” In Journal of Pure and Applied Algebra 219.6 Elsevier, 2015, pp. 1915–1939
  • [7] Sergei O. Ivanov, Roman Mikhailov and F Yu Pavutnitskiy “Limits, standard complexes and fr-codes” In Sbornik: Mathematics 211.11 IOP Publishing, 2020, pp. 1568
  • [8] Charles A Weibel “An introduction to homological algebra” Cambridge university press, 1995