This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: N. Boussaid 22institutetext: Laboratoire Mathématiques, Université Bourgogne Franche-Comté, 25030 Besançon CEDEX, France
22email: [email protected]
33institutetext: A. Comech 44institutetext: Texas A&M University, College Station, Texas, USA; Laboratory 4, IITP, Moscow, Russia
44email: [email protected]

Limiting absorption principle and virtual levels of operators in Banach spaces

Nabile Boussaid    Andrew Comech
(7 October 2021)
Abstract

We review the concept of the limiting absorption principle and its connection to virtual levels of operators in Banach spaces.

Résumé. Nous passons en revue le principe d’absorption limite et sa relation avec les niveaux virtuels pour des opérateurs dans les espaces de Banach.

Keywords:
limiting absorption principle nonselfadjoint operators threshold resonances virtual levels virtual states
pacs:
02.30.Tb 02.30.Jr
MSC:
35P05 47Axx 47B01
journal: Annales mathématiques du Québec

To Alexander Shnirelman on the occasion of his 75th birthday

1 Limiting absorption principle

The idea of introducing a small absorption into the wave equation for selecting particular solutions goes back to Ignatowsky Ign (05) and is closely related to the Sommerfeld radiation condition Som (12). We start with the Helmholtz equation

Δuzu=f(x)L2(R3),u=u(x),xR3.\displaystyle-\Delta u-zu=f(x)\in L^{2}(\mathbb{R}^{3}),\qquad u=u(x),\quad x\in\mathbb{R}^{3}. (1.1)

For zCR+¯z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}}, equation (1.1) has a unique L2L^{2}-solution (ΔzI)1f(-\Delta-zI)^{-1}f, with (ΔzI)1(-\Delta-zI)^{-1} represented by the convolution with e|x|z/(4π|x|){e^{-|x|\sqrt{-z}}}/{(4\pi|x|)}, Rez>0\mathop{\rm{R\hskip-1.0pte}}\nolimits\sqrt{-z}>0. For z0z\geq 0, there may be no L2L^{2}-solution; moreover, when z>0z>0, there are different solutions of similar norm, and one faces the question of choosing an appropriate one. The way to select a unique solution is known as the radiation principle. V.I. Smirnov, in his widely renowned “Course of higher mathematics” Smi (41), credits the radiation principle to V.S. Ignatowsky Ign (05) and to A. Sommerfeld Som (12); the work of Ignatowsky was also publicized by A.N. Tikhonov, both in his lectures at mechmat at Moscow State University and in the textbook written jointly with A.A. Samarskii TS (51) (and even in their ’1950 Russian translation of A. Sommerfeld’s textbook Som (48)). In Ign (05), Ignatowsky considered the electromagnetic field scattered by a wire using the expression Z(t,x)=Aei(ωtϰx)Z(t,x)=Ae^{\mathrm{i}(\omega t-\varkappa x)} for the electric field, with ω\omega and ϰ\varkappa certain parameters. The absorption in the medium corresponded to ϰ\varkappa having nonzero imaginary part; its sign was taken into account when choosing an appropriate solution to the Helmholtz equation. Following this idea, A.G. Sveshnikov, a student of Tikhonov, specifies in Sve (50) a solution to (1.1) by

u(x)=limε0+(Δ(z+iε)I)1f,k>0,\displaystyle u(x)=\lim_{\varepsilon\to 0+}\big{(}-\Delta-(z+\mathrm{i}\varepsilon)I\big{)}^{-1}f,\qquad k>0, (1.2)

calling this approach the limiting absorption principle (LAP) and attributing it to Ignatowsky.111We suppose that in the twenties and thirties, between Ign (05) and Smi (41), the idea of the limiting absorption principle was being refined when V.S. Ignatowsky worked at St. Petersburg University, where in particular he taught mathematical theory of diffraction and likely was in contact with V.I. Smirnov. Let us mention that, besides his work on diffraction, Ignatowsky is known for his contributions to the theory of relativity (see VG (87)) and for developing optical devices while heading the theoretical division at GOMZ, the State Association for Optics and Mechanics (which later became known as “LOMO”). On 6 November 1941, during the blockade of St. Petersburg, Ignatowsky was arrested by NKVD (an earlier name of KGB), as a part of the “process of scientists”, and shot on 30 January 1942. (During this process, V.I. Smirnov was “credited” by NKVD the role of a Prime Minister in the government after the purportedly planned coup; Smirnov avoided the arrest because he was evacuated from St. Petersburg in August 1941, shortly before the blockade began.) As a result, Ignatowsky’s name has been unknown to many: the reference to his article disappeared from Smirnov’s “Course of higher mathematics” until post-1953 editions (see e.g. the English translation (Smi, 64, §230)).   Russians are used to such rewrites of the history, joking about the “History of the history of the Communist Party”, a reference to a mandatory and ever-changing Soviet-era ideological course in the first year of college. As the matter of fact, the very “Course of higher mathematics” mentioned above was started by V.I. Smirnov together with J.D. Tamarkin, with the first two volumes (published in 1924 and 1926) bearing both names, but after Tamarkin’s persecution by GPU (another earlier name of KGB) and his escape from the Soviet Union with smugglers over frozen lake Chudskoe in December 1924 Hil (47), Tamarkin’s authorship eventually had to disappear. His coauthor Smirnov spent the next year pleading with the authorities (and succeeding!) for Tamarkin’s wife Helene Weichardt – who tried to follow her husband’s route with the smugglers over the icy lake but was intercepted at the border and jailed – to be released from prison and allowed to leave the Soviet Union to join her husband AN (18). We note that (1.2) leads to

u(x)rlimε+0eirz+iε=eikr,k=z1/2>0,r=|x|,\displaystyle u(x)\mathop{\sim}\limits_{r\to\infty}\ \lim_{\varepsilon\to+0}e^{\mathrm{i}r\sqrt{z+\mathrm{i}\varepsilon}}=e^{\mathrm{i}kr},\qquad k=z^{1/2}>0,\qquad r=|x|, (1.3)

where the choice of the branch of the square root in the exponent is dictated by the need to avoid the exponential growth at infinity. Sveshnikov points out that Ignatowsky’s approach does not depend on the geometry of the domain and hence is of more universal nature than that of A. Sommerfeld Som (12), which is the selection of the solution to (1.1) satisfying the Sommerfeld radiation condition

limrr(uriku)=0,\displaystyle\lim_{r\to\infty}r\Big{(}\frac{\partial u}{\partial r}-\mathrm{i}ku\Big{)}=0, (1.4)

in agreement with (1.3).

Let us also mention the limiting amplitude principle TS (48) (the terminology also introduced in Sve (50)) which specifies a solution to (1.1) by u(x)=limt+ψ(x,t)eiktu(x)=\!\!\lim\limits_{t\to+\infty}\!\!\psi(x,t)e^{\mathrm{i}kt}, where ψ(x,t)\psi(x,t) is a solution to the wave equation

t2ψΔψ=f(x)eikt,t>0;ψ and t=0=0,tψ and t=0=0.\displaystyle\partial_{t}^{2}\psi-\Delta\psi=f(x)e^{-\mathrm{i}kt},\qquad t>0;\qquad\psi\and{t=0}=0,\qquad\partial_{t}\psi\and{t=0}=0. (1.5)

Thus, uu is the limiting amplitude of the periodic vibration building up under the action of a periodic force for a long time. This corresponds to using the retarded Green function, represented by the convolution with Gret(x,t)=δ(t|x|)4π|x|G_{\mathrm{ret}}(x,t)=\frac{\delta(t-|x|)}{4\pi|x|}, yielding the solution to (1.5) in the form

ψ(x,t)=Gret(f(x)eikt)=|xy|<tf(y)eik(t|xy|)4π|xy|𝑑yeik|x|ikt,\psi(x,t)=G_{\mathrm{ret}}\ast(f(x)e^{-\mathrm{i}kt})=\iiint_{|x-y|<t}\frac{f(y)e^{-\mathrm{i}k(t-|x-y|)}}{4\pi|x-y|}\,dy\sim e^{\mathrm{i}k|x|-\mathrm{i}kt},

in agreement both with the limiting absorption principle (1.2) (cf. (1.3)) and with the Sommerfeld radiation condition (1.4).

Presently, a common meaning of the LAP is the existence of a limit of the resolvent at a given point of the essential spectrum. While the resolvent of A:𝐗𝐗A:\,\mathbf{X}\to\mathbf{X} cannot have a limit at the essential spectrum as an operator in 𝐗\mathbf{X}, it can have a limit as a mapping

(AzI)1:𝐄𝐅,(A-zI)^{-1}:\,\mathbf{E}\to\mathbf{F},

where 𝐄\mathbf{E} and 𝐅\mathbf{F} are some Banach spaces such that the embeddings 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F} are dense and continuous. Historically, this idea could be traced back to eigenfunction expansions Wey (10); Car (34); Tit (46) and Krein’s method of directing functionals Kre (46, 48) (see (AG, 81, Appendix II.7)). This was developed in Pov (50, 53); GK (55); Ber (57); Bir (61) (see also rigged spaces in (GV, 61, I§4), also known as equipped spaces and related to Gelfand’s triples from GK (55)). Gradually the theory takes the form of estimates on the limit of the resolvent at the essential spectrum in certain spaces; this further development becomes clearer in Eid (62); Vai (66); Eid (69) (the convergence of the resolvent is in the sense of distributions), then in (Rej, 69, Lemma 6.1) (where certain spaces are introduced), and finally in (Agm, 70, Theorem 2.2), (Yam, 73, Theorem 4.1) (for Dirac operators), and (Agm, 75, Appendix A), where the convergence of the resolvent is specified with respect to weighted L2L^{2} spaces. See also Kur (78) and BAD (87). Let us also mention that in Agm (98) this same approach – to consider the resolvent as a mapping from 𝐄\mathbf{E} to 𝐅\mathbf{F}, with the embeddings 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F} being dense and continuous – is used to define resonances of an operator as poles of the analytic continuation of its resolvent.

Remark 1.0  

Such an approach is not universal since such a definition of resonances depends on the choice of regularizing spaces 𝐄\mathbf{E}, 𝐅\mathbf{F}. By (Agm, 98, Proposition 4.1), the set of resonances is the same if 𝐄i\mathbf{E}_{i} and 𝐅j\mathbf{F}_{j}, i=1, 2,i=1,\,2, satisfy the following additional assumptions:

  • (I)

    The set 𝐄1𝐄2\mathbf{E}_{1}\cap\mathbf{E}_{2} (identified with a subset of 𝐗\mathbf{X}) is dense in both 𝐄1\mathbf{E}_{1} and 𝐄2\mathbf{E}_{2};

  • (II)

    There exists a Banach space 𝐅\mathbf{F} containing both 𝐅1\mathbf{F}_{1} and 𝐅2\mathbf{F}_{2} as linear subsets with embeddings which are continuous.

See Example 1.0 and Theorem 3.0 below.

Perhaps the simplest example of LAP is covered by S. Agmon in (Agm, 75, Lemma A.1): by that lemma, the operator (xzI)1(\partial_{x}-zI)^{-1}, zCz\in\mathbb{C}, Rez0\mathop{\rm{R\hskip-1.0pte}}\nolimits z\neq 0, is uniformly bounded as an operator from Ls2(R)L^{2}_{s}(\mathbb{R}) to Ls2(R)L^{2}_{-s}(\mathbb{R}), s>1/2s>1/2, and has a limit (in the uniform operator topology) as Rez±0\mathop{\rm{R\hskip-1.0pte}}\nolimits z\to\pm 0. For example, for Rez<0\mathop{\rm{R\hskip-1.0pte}}\nolimits z<0, the solution to the equation (xz)u=f(\partial_{x}-z)u=f is given by the operator fu(x)=xez(xy)f(y)𝑑yf\mapsto u(x)=\int_{-\infty}^{x}e^{z(x-y)}f(y)\,dy, which is bounded from L1(R)L^{1}(\mathbb{R}) to L(R)L^{\infty}(\mathbb{R}) and hence from Ls2(R)L^{2}_{s}(\mathbb{R}) to Ls2(R)L^{2}_{-s}(\mathbb{R}), s>1/2s>1/2, uniformly in zCz\in\mathbb{C}, Rez<0\mathop{\rm{R\hskip-1.0pte}}\nolimits z<0. Here we use the standard notation

Lsp(Rd)={uLlocp(Rd);suLp(Rd),uLsp=suLp},\displaystyle L^{p}_{s}(\mathbb{R}^{d})=\{u\in L^{p}_{\mathrm{loc}}(\mathbb{R}^{d});\,\langle\cdot\rangle^{s}u\in L^{p}(\mathbb{R}^{d}),\,\|u\|_{L^{p}_{s}}=\|\langle\cdot\rangle^{s}u\|_{L^{p}}\}, (1.6)

for any p[1,+]p\in[1,+\infty], sRs\in\mathbb{R}, dNd\in\mathbb{N}, with x=(1+x2)1/2\langle x\rangle=(1+x^{2})^{1/2}. Agmon then shows that the LAP is available for the Laplacian when the spectral parameter approaches the bulk of the essential spectrum: by (Agm, 75, Theorem 4.1), for s,s>1/2s,\,s^{\prime}>1/2, the resolvent

R0(d)(z)=(ΔzI)1:Ls2(Rd)Ls2(Rd),zCR+¯,d1,\displaystyle R_{0}^{(d)}(z)=(-\Delta-zI)^{-1}:\;L^{2}_{s}(\mathbb{R}^{d})\to L^{2}_{-s^{\prime}}(\mathbb{R}^{d}),\quad z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}},\quad d\geq 1,\quad (1.7)

is bounded uniformly for zΩR+¯z\in\varOmega\setminus\overline{\mathbb{R}_{+}}, for any open neighborhood ΩC\varOmega\subset\mathbb{C} such that Ω¯∌{0}\overline{\varOmega}\not\ni\{0\}, and has limits as zz0±i0z\to z_{0}\pm\mathrm{i}0, z0>0z_{0}>0. For the sharp version (the 𝐁𝐁\mathbf{B}\to\mathbf{B}^{*} continuity of the resolvent in the Agmon–Hörmander spaces), see (Yaf, 10, Proposition 6.3.6).

While the mapping (1.7) has a limit as zz0±i0z\to z_{0}\pm\mathrm{i}0 with z0>0z_{0}>0, for any d1d\geq 1, the behaviour at z0=0z_{0}=0 depends on dd. For example, in three dimensions, as long as s,s>1/2s,\,s^{\prime}>1/2 and s+s2s+s^{\prime}\geq 2, the mapping (1.7), represented by the convolution with (4π|x|)1e|x|z(4\pi|x|)^{-1}e^{-|x|\sqrt{-z}}, zCR+¯\ z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}}, Rez>0\ \mathop{\rm{R\hskip-1.0pte}}\nolimits\sqrt{-z}>0, remains uniformly bounded and has a limit as zz0=0z\to z_{0}=0. A similar boundedness of the resolvent in an open neighborhood of the threshold z0=0z_{0}=0 persists in higher dimensions, but breaks down in dimensions d2d\leq 2. In particular, for d=1d=1, the resolvent is represented by the convolution with e|x|z/(2z)e^{-|x|\sqrt{-z}}/(2\sqrt{-z}), zCR+¯z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}}, Rez>0\mathop{\rm{R\hskip-1.0pte}}\nolimits\sqrt{-z}>0, and cannot have a limit as z0z\to 0 as a mapping 𝐄𝐅\mathbf{E}\to\mathbf{F} as long as 𝐄,𝐅\mathbf{E},\,\mathbf{F} are weighted Lebesgue spaces (at the same time, see Example 1.0 below). There is a similar situation in two dimensions. We say that the threshold z0=0z_{0}=0 is a regular point of the essential spectrum for d3d\geq 3 and that it is a virtual level if d2d\leq 2.

Example 1.0  

While the limit of the resolvent (x2zI)1(-\partial_{x}^{2}-zI)^{-1}, zz0=0z\to z_{0}=0, does not exist in the weak operator topology of mappings Ls2(R)Ls2(R)L^{2}_{s}(\mathbb{R})\to L^{2}_{-s}(\mathbb{R}) with arbitrarily large s>1s>1, this limit exists in the weak operator topology of mappings 𝐄𝐅\mathbf{E}\to\mathbf{F} if one takes

𝐄={uLs2(R):u^(ξ) vanishes of order τ>1 at ξ=0},𝐅=Ls2(R),s>1,\mathbf{E}=\big{\{}u\in L^{2}_{s}(\mathbb{R})\,{\rm:}\;\mbox{$\hat{u}(\xi)$ vanishes of order $\tau>1$ at $\xi=0$}\big{\}},\ \ \mathbf{F}=L^{2}_{-s}(\mathbb{R}),\ \ s>1,

with u𝐄:=uLs2+limsupξ0|ξ|τ|u^(ξ)|\|u\|_{\mathbf{E}}:=\|u\|_{L^{2}_{s}}+\mathop{\lim\sup}_{\xi\to 0}|\xi|^{-\tau}|\hat{u}(\xi)|. Both Ls2(R)L^{2}_{s}(\mathbb{R}) and 𝐄\mathbf{E} are densely and continuously embedded into 𝐗=L2(R)\mathbf{X}=L^{2}(\mathbb{R}), while 𝐄Ls2(R)=𝐄\mathbf{E}\cap L^{2}_{s}(\mathbb{R})=\mathbf{E} is not dense in Ls2(R)L^{2}_{s}(\mathbb{R}) (cf. Remark 1.0): for a fixed vLs2(Rd)v\in L^{2}_{s}(\mathbb{R}^{d}) with v^(0)0\hat{v}(0)\neq 0 and for any u𝐄u\in\mathbf{E}, one has

uvLs2=u^v^Hs(Rd)cs|u^(0)v^(0)|=cs|v^(0)|,\|u-v\|_{L^{2}_{s}}=\|\hat{u}-\hat{v}\|_{H^{s}(\mathbb{R}^{d})}\geq c_{s}|\hat{u}(0)-\hat{v}(0)|=c_{s}|\hat{v}(0)|,

where cs>0c_{s}>0 depends only on s>d/2s>d/2; thus the left-hand side cannot approach zero.

2 Virtual levels

History of virtual levels.  Virtual levels appeared first in the nuclear physics, in the study of neutron scattering on protons by E. Wigner Wig (33). While a proton and a neutron with parallel spins form a spin-one deuteron (Deuterium’s nucleus), which is stable, with the binding energy around 2.22.2 MeV, when the spins of the particles are antiparallel, their binding energy is near zero. It was not clear for some time whether the corresponding spin-zero state is real or virtual, that is, whether the binding energy was positive or negative; see, for instance, Fer (35), where the word “virtual” appears first. It turned out that this state was virtual indeed AF (36), with a small negative binding energy, around 67-67 KeV. The resulting increase in the total cross-section of the neutron scattering on protons is interpreted as a resonance of the incoming wave with this “virtual state” corresponding to the energy E0E\approx 0.

Mathematically, virtual levels correspond to particular singularities of the resolvent at the essential spectrum. This idea goes back to J. Schwinger Sch60b and was further addressed by M. Birman Bir (61), L. Faddeev Fad (63), B. Simon Sim (73, 76), B. Vainberg Vai (68, 75), D. Yafaev Yaf (74, 75), J. Rauch Rau (78), and A. Jensen and T. Kato JK (79), with the focus on Schrödinger operators in three dimensions. Higher dimensions were considered in Jen (80); Yaf (83); Jen (84). An approach to more general symmetric differential operators was developed in Wei (99). The virtual levels of nonselfadjoint Schrödinger operators in three dimensions appeared in CP (05). Dimensions d2d\leq 2 require special attention since the free Laplace operator has a virtual level at zero (see Sim (76)). The one-dimensional case is covered in BGW (85); BGK (87). The approach from the latter article was further developed in BGD (88) to two dimensions (if R2V(x)𝑑x0\int_{\mathbb{R}^{2}}V(x)\,dx\neq 0) and then in JN (01) (with this condition dropped) who give a general approach in all dimensions, with the regularity of the resolvent formulated via the weights which are square roots of the potential (and consequently not optimal). There is an interest in the subject due to dependence of dispersive estimates on the presence of virtual levels at the threshold point, see e.g. JK (79); Yaf (83); ES (04); Yaj (05) in the context of Schrödinger operators; the Dirac operators are treated in Bou (06, 08); EG (17); EGT (19). Let us mention the dichotomy between a virtual level and an eigenvalue manifested in the large-time behavior of the heat kernel and the behavior of the Green function near criticality; see Pin (92, 04). We also mention recent articles BBV (20) on properties of virtual states of selfadjoint Schrödinger operators and GN (20) proving the absence of genuine (non-L2L^{2}) virtual states of selfadjoint Schrödinger operators and massive and massless Dirac operators, as well as giving classification of virtual levels and deriving properties of eigenstates and virtual states.

Equivalent characterizations of virtual levels.  The definition of virtual levels has been somewhat empirical; one would say that there were a virtual level at the threshold of the Schrödinger operator if a certain arbitrarily small perturbation could produce a (negative) eigenvalue. To develop a general approach for nonselfadjoint operators, we notice that the following properties of the threshold z0=0z_{0}=0 of the Schrödinger operator H=Δ+V(x)H=-\Delta+V(x), xRdx\in\mathbb{R}^{d}, d1d\geq 1, VCcomp(Rd,C)V\in C_{\mathrm{comp}}(\mathbb{R}^{d},\mathbb{C}), are related:

(P1)  There is a nonzero solution to Hψ=z0ψH\psi=z_{0}\psi from L2L^{2} or a certain larger space;

(P2)  R(z)=(HzI)1R(z)=(H-zI)^{-1} has no limit in weighted spaces as zz0z\to z_{0};

(P3)  Under an arbitrarily small perturbation, an eigenvalue can bifurcate from z0z_{0}.

For example, properties (P1) – (P3) are satisfied for H=x2H=-\partial_{x}^{2} in L2(R)L^{2}(\mathbb{R}) considered with domain 𝔇(H)=H2(R)\mathfrak{D}(H)=H^{2}(\mathbb{R}). Indeed, the equation x2ψ=0-\partial_{x}^{2}\psi=0 has a bounded solution ψ(x)=1\psi(x)=1; while non-L2L^{2}, it is “not as bad as a generic solution” to (x2+V(x))ψ=0(-\partial_{x}^{2}+V(x))\psi=0 with VCcomp(R)V\in C_{\mathrm{comp}}(\mathbb{R}), which may grow linearly at infinity. The integral kernel of the resolvent R0(1)(z)=(x2zI)1R_{0}^{(1)}(z)=(-\partial_{x}^{2}-zI)^{-1}, zCR+¯z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}}, contains a singularity at z=0z=0:

R0(1)(x,y;z)=e|xy|z2z,x,yR,zCR+¯,Rez>0,\displaystyle R_{0}^{(1)}(x,y;z)=\frac{e^{-|x-y|\sqrt{-z}}}{2\sqrt{-z}},\quad x,\,y\in\mathbb{R},\quad z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}},\quad\mathop{\rm{R\hskip-1.0pte}}\nolimits\sqrt{-z}>0, (2.1)

and has no limit as z0z\to 0 even in weighted spaces. Under a small perturbation, an eigenvalue may bifurcate from the threshold (see e.g. Sim (76)). Indeed, for the perturbed operator Hg=x2g1[1,1]H_{\mathrm{g}}=-\partial_{x}^{2}-\mathrm{g}\textrm{{1}}_{[-1,1]}, 0<g10<\mathrm{g}\ll 1, there is a relation

(x2g1[1,1])ψ(x)=κ2ψ(x),ψ(x)={c1eκ|x|,|x|>1,c2cos(xgκ2),|x|1,(-\partial_{x}^{2}-\mathrm{g}\textrm{{1}}_{[-1,1]})\psi(x)=-\kappa^{2}\psi(x),\quad\psi(x)=\begin{cases}c_{1}e^{-\kappa|x|},&|x|>1,\\ c_{2}\cos\big{(}\,x\sqrt{\mathrm{g}-\kappa^{2}}\,\big{)},&|x|\leq 1,\end{cases}

where we assume that κ(0,g1/2)\kappa\in(0,\mathrm{g}^{1/2}). The eigenvalue Eg:=κ2E_{\mathrm{g}}:=-\kappa^{2} is obtained from the continuity of xψ/ψ-\partial_{x}\psi/\psi at x=1±0x=1\pm 0:

κ=gκ2tangκ2=gκ2+O((gκ2)2),\kappa=\sqrt{\mathrm{g}-\kappa^{2}}\tan\sqrt{\mathrm{g}-\kappa^{2}}=\mathrm{g}-\kappa^{2}+O((\mathrm{g}-\kappa^{2})^{2}),

hence κ=g+O(g2)\kappa=\mathrm{g}+O(\mathrm{g}^{2}), leading to Eg=κ2=g2+O(g3)E_{\mathrm{g}}=-\kappa^{2}=-\mathrm{g}^{2}+O(\mathrm{g}^{3}). In this case, when properties (P1) – (P3) are satisfied, one says that z0=0z_{0}=0 is a virtual level; the corresponding nontrivial bounded solution ψ(x)=1\psi(x)=1 of x2ψ=0-\partial_{x}^{2}\psi=0 is a virtual state.

On the contrary, properties (P1) – (P3) are not satisfied for H=ΔH=-\Delta in L2(R3)L^{2}(\mathbb{R}^{3}), with 𝔇(H)=H2(R3)\mathfrak{D}(H)=H^{2}(\mathbb{R}^{3}). Regarding (P1), we notice that nonzero solutions to (Δ+V)ψ=0(-\Delta+V)\psi=0 (with certain compactly supported potentials) can behave like the Green function, |x|1\sim|x|^{-1} as |x||x|\to\infty, and one expects that this is what virtual states should look like, while nonzero solutions to Δψ=0\Delta\psi=0 cannot have uniform decay as |x||x|\to\infty, so should not qualify as virtual states; the integral kernel of R0(3)(z)=(ΔzI)1R_{0}^{(3)}(z)=(-\Delta-zI)^{-1},

R0(3)(x,y;z)=ez|xy|4π|xy|,x,yR3,zCR+¯,Rez>0,\displaystyle R_{0}^{(3)}(x,y;z)=\frac{e^{-\sqrt{-z}|x-y|}}{4\pi|x-y|},\quad x,\,y\in\mathbb{R}^{3},\quad z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}},\quad\mathop{\rm{R\hskip-1.0pte}}\nolimits\sqrt{-z}>0,\quad (2.2)

remains pointwise bounded as z0z\to 0 and has a limit in the space of mappings Ls2(R3)Ls2(R3)L^{2}_{s}(\mathbb{R}^{3})\to L^{2}_{-s^{\prime}}(\mathbb{R}^{3}), s,s>1/2s,\,s^{\prime}>1/2, s+s>2s+s^{\prime}>2 (see e.g. JK (79)), failing (P2); finally, small perturbations cannot produce negative eigenvalues (this follows from the Hardy inequality), so (P3) also fails. In this case, we say that z0=0z_{0}=0 is a regular point of the essential spectrum.

We claim that the properties (P1) – (P3) are essentially equivalent, even in the context of the general theory BC (21). These properties are satisfied when z0z_{0} is either an eigenvalue of HH or, more generally, a virtual level. To motivate the general theory, we can start from the Laplace operator in one dimension, considering the problem

(x2z)u(x)=f(x),u(x)C,xR.\displaystyle(-\partial_{x}^{2}-z)u(x)=f(x),\qquad u(x)\in\mathbb{C},\quad x\in\mathbb{R}. (2.3)

For any fCcomp(R)f\in C_{\mathrm{comp}}(\mathbb{R}), there is a C2C^{2}-solution to (2.3). If we consider zCR+¯z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}}, then the natural choice of a solution is

u(x)=(R0(1)(z)f)(x):=RR0(1)(x,y;z)f(y)𝑑y,u(x)=(R_{0}^{(1)}(z)f)(x):=\int_{\mathbb{R}}R_{0}^{(1)}(x,y;z)f(y)\,dy,

where the resolvent R0(1)(z)=(ΔzI)1R_{0}^{(1)}(z)=(-\Delta-zI)^{-1} has the integral kernel R0(1)(x,y;z)R_{0}^{(1)}(x,y;z) from (2.1). This integral kernel is built of solutions e±xze^{\pm x\sqrt{-z}}; the choice of such a combination is dictated by the desire to avoid solutions exponentially growing at infinity. For z0z\neq 0, since R0(1)(x,y;z)R_{0}^{(1)}(x,y;z) is bounded, the mapping fR0(1)ff\mapsto R_{0}^{(1)}f defines a bounded mapping L1(R)L(R)L^{1}(\mathbb{R})\to L^{\infty}(\mathbb{R}). This breaks down at z=0z=0, since e±xze^{\pm x\sqrt{-z}} are linearly dependent when z=0z=0. To solve (2.3) at z=0z=0, one can use the convolution with the fundamental solution G(x)=|x|/2+xCG(x)=|x|/2+xC, with any CCC\in\mathbb{C}. While such fundamental solutions provide a solution u=Gfu=G\ast f to (2.3), this solution may no longer be from LL^{\infty}; any of the above choices of GG would no longer be bounded as a mapping L1LL^{1}\to L^{\infty}. This problem is resolved if a potential VCcomp(R,C)V\in C_{\mathrm{comp}}(\mathbb{R},\mathbb{C}) is introduced into (2.3),

(x2+Vz0)u=f,xR,\displaystyle(-\partial_{x}^{2}+V-z_{0})u=f,\qquad x\in\mathbb{R}, (2.4)

so that the Jost solution θ(x)\theta_{-}(x) to (x2+V)u=0(-\partial_{x}^{2}+V)u=0 with limxθ(x)=1\lim_{x\to-\infty}\theta_{-}(x)=1, tends to infinity as x+x\to+\infty and is linearly independent with the Jost solution θ+(x)\theta_{+}(x), limx+θ+(x)=1\lim_{x\to+\infty}\theta_{+}(x)=1. To construct a fundamental solution to (2.4) at z0=0z_{0}=0, we set

G(x,y;z0)=1W[θ+,θ](y){θ(y)θ+(x),x>y,θ(x)θ+(y),x<y,\displaystyle G(x,y;z_{0})=\frac{1}{W[\theta_{+},\theta_{-}](y)}\begin{cases}\theta_{-}(y)\theta_{+}(x),&x>y,\\ \theta_{-}(x)\theta_{+}(y),&x<y,\end{cases} (2.5)

with W[θ+,θ](y)=θ+(y)θ(y)θ+(y)θ(y)W[\theta_{+},\theta_{-}](y)=\theta_{+}(y)\theta_{-}^{\prime}(y)-\theta_{+}^{\prime}(y)\theta_{-}(y), the Wronskian. This will work if |θ(x)||\theta_{-}(x)| grows as x+x\to+\infty (and similarly if |θ+(x)||\theta_{+}(x)| grows as xx\to-\infty); if, on the other hand, θ±\theta_{\pm} remain bounded, then, as the matter of fact, these functions are linearly dependent, their Wronskian is zero, and (2.5) is not defined. In this construction the space LL^{\infty} appears twice: it contains the range of G(z0) and Ls2(R)G(z_{0})\and{L^{2}_{s}(\mathbb{R})}, s>3/2s>3/2, when θ±\theta_{\pm} are linearly independent (see BC (21)), and it is the space where θ±\theta_{\pm} live when they are linearly dependent. This is not a coincidence: from u′′=fCcomp(R)-u^{\prime\prime}=f\in C^{\infty}_{\mathrm{comp}}(\mathbb{R}), we can write u′′+Vu=f+Vu-u^{\prime\prime}+Vu=f+Vu, and then u=(x2+Vz0I)1(f+Vu)u=(-\partial_{x}^{2}+V-z_{0}I)^{-1}(f+Vu) is in the range of (x2+Vz0I)1(Ccomp(R))L(R)(-\partial_{x}^{2}+V-z_{0}I)^{-1}\big{(}C_{\mathrm{comp}}(\mathbb{R})\big{)}\subset L^{\infty}(\mathbb{R}).

We point out that in the case of general exterior elliptic problems the above dichotomy – either boundedness of the truncated resolvent or existence of a nontrivial solution to a homogeneous problem with appropriate radiation conditions – was studied by B. Vainberg Vai (75).

Example 2.0  

Here is an example of virtual levels at z0=0z_{0}=0 of a Schrödinger operator in R3\mathbb{R}^{3} from Yaf (75). Let uu be a solution to Δu+Vu=0-\Delta u+Vu=0 in R3\mathbb{R}^{3}. Taking the Fourier transform, we arrive at u^(ξ)=Vu^(ξ)/ξ2\hat{u}(\xi)=-\widehat{Vu}(\xi)/\xi^{2}. The right-hand side is not in Lloc2(R3)L^{2}_{\mathrm{loc}}(\mathbb{R}^{3}) if Vu^(ξ)\widehat{Vu}(\xi) does not vanish at ξ=0\xi=0; this situation corresponds to zero being a virtual level, with the corresponding virtual state u(x)|x|1u(x)\sim|x|^{-1}, |x|1|x|\gg 1. One can see that in the case of the Schrödinger operator in R3\mathbb{R}^{3} the space of virtual levels is at most one-dimensional. A similar approach in two dimensions gives

u^(ξ)=Vu^(ξ)ξ2=c0+c1ξ1+c2ξ2+O(ξ2)ξ2,ξB12,\hat{u}(\xi)=-\frac{\widehat{Vu}(\xi)}{\xi^{2}}=-\frac{c_{0}+c_{1}\xi_{1}+c_{2}\xi_{2}+O(\xi^{2})}{\xi^{2}},\qquad\xi\in\mathbb{B}^{2}_{1},

indicating that the space of virtual states at z0=0z_{0}=0 of the Schrödinger operator in R2\mathbb{R}^{2} could consist of up to one “ss-state” approaching a constant value as |x||x|\to\infty and up to two “pp-states” behaving like (c1x1+c2x2)/|x|2\sim(c_{1}x_{1}+c_{2}x_{2})/|x|^{2} for |x|1|x|\gg 1.

Relation to critical Schrödinger operators.  In the context of positive-definite symmetric operators, a dichotomy similar to having or not properties (P1) – (P3) – namely, either having a particular Hardy-type inequality or existence of a null state – is obtained by T. Weidl Wei (99), at that time a PhD. student of M. Birman and E. Laptev, as a generalization of Birman’s approach (Bir, 61, §1.7) which was based on closures of the space with respect to quadratic forms corresponding to symmetric positive-definite operators (in the spirit of the Krein–Vishik–Birman extension theory Kre (47); Vis (52); Bir (56)). This approach is directly related to the research on subcritical and critical Schrödinger operators Sim (81); Mur (86); Pin (88, 90); GZ (91); PT (06, 07); TT (08); Dev (14); LP (18, 20). Let us present the following result from PT (06), which we write in the particular case of Ω=Rd\Omega=\mathbb{R}^{d} and VCcomp(Rd,R)V\in C_{\mathrm{comp}}(\mathbb{R}^{d},\mathbb{R}):

  • Let H=Δ+VH=-\Delta+V with VCcomp(Rd,R)V\in C_{\mathrm{comp}}(\mathbb{R}^{d},\mathbb{R}) be a Schrödinger operator in L2(Rd)L^{2}(\mathbb{R}^{d}), and assume that the associated quadratic form

    𝐚[u]:=Rd(|u|2+V|u|2)𝑑x\mathbf{a}[u]:=\int_{\mathbb{R}^{d}}(|\nabla u|^{2}+V|u|^{2})\,dx

    is nonnegative on Ccomp(Rd)C^{\infty}_{\mathrm{comp}}(\mathbb{R}^{d}). Then either there is a continuous function w(x)>0w(x)>0 such that Rdw|u|2𝑑x𝐚[u]\int_{\mathbb{R}^{d}}w|u|^{2}\,dx\leq\mathbf{a}[u] for any uCcomp(Rd)u\in C^{\infty}_{\mathrm{comp}}(\mathbb{R}^{d}) (one says that 𝐚[]\mathbf{a}[\cdot] has a weighted spectral gap), or there is a sequence φjCcomp(Rd)\varphi_{j}\in C^{\infty}_{\mathrm{comp}}(\mathbb{R}^{d}) such that 𝐚[φj]0\mathbf{a}[\varphi_{j}]\to 0, φjφ>0\varphi_{j}\to\varphi>0 locally uniformly on Rd\mathbb{R}^{d} (then one says that 𝐚[]\mathbf{a}[\cdot] has a null state φ\varphi).

Let us mention that in the former case, when 𝐚[]\mathbf{a}[\cdot] has a weighted spectral gap, the operator HH is subcritical (that is, it admits a positive Green’s function), and that in the latter case, when 𝐚[]\mathbf{a}[\cdot] has a null state, HH is critical. This null state coincides with Agmon’s ground state, which can be characterized as a state with minimal growth at infinity from (Agm, 82, Definitions 4.1, 5.1). See Pin (88, 90); PT (06) for more details.

A null state, or Agmon’s ground state, corresponds to a virtual level at the bottom of the spectrum, in the following sense:

Lemma 2.0  

A nonnegative Schrödinger operator H=Δ+VH=-\Delta+V in L2(Rd)L^{2}(\mathbb{R}^{d}), with VCcomp(Rd,R)V\in C_{\mathrm{comp}}(\mathbb{R}^{d},\mathbb{R}), has a null state φ\varphi if any compactly supported negative perturbation HWH-W of HH, with WCcomp(Rd)W\in C_{\mathrm{comp}}(\mathbb{R}^{d}), W0W\geq 0, W0W\neq 0, produces a negative eigenvalue.

For the converse, we impose a stronger requirement that VCcompm(Rd,R)V\in C^{m}_{\mathrm{comp}}(\mathbb{R}^{d},\mathbb{R}), mmax(0,[n/2]1)m\geq\max(0,[n/2]-1), suppVKRd\mathop{\rm supp}V\subset K\Subset\mathbb{R}^{d}. If an arbitrary negative perturbation HWH-W of HH, with WCcompm(Rd,R)W\in C^{m}_{\mathrm{comp}}(\mathbb{R}^{d},\mathbb{R}), suppWK\mathop{\rm supp}W\subset K, W0W\geq 0, W0W\neq 0, produces a negative eigenvalue, then HH has a null state.

Proof.

Let φ>0\varphi>0 be a null state of HH and let φj\varphi_{j} be a sequence such that φjφ\varphi_{j}\to\varphi locally uniformly on Rd\mathbb{R}^{d} and such that 𝐚[φj]0\mathbf{a}[\varphi_{j}]\to 0 as jj\to\infty. Let WCcomp(Rd)W\in C_{\mathrm{comp}}(\mathbb{R}^{d}), W0W\geq 0, W0W\not\equiv 0. Then

limjφj,(HW)φj=limj(𝐚[φj]φj,Wφj)=φ,Wφ<0\lim_{j\to\infty}\langle\varphi_{j},(H-W)\varphi_{j}\rangle=\lim_{j\to\infty}\big{(}\mathbf{a}[\varphi_{j}]-\langle\varphi_{j},W\varphi_{j}\rangle\big{)}=-\langle\varphi,W\varphi\rangle<0

(we took into account the convergence φjφ\varphi_{j}\to\varphi, locally uniformly on Rd\mathbb{R}^{d}), hence φj,(HW)φj<0\langle\varphi_{j},(H-W)\varphi_{j}\rangle<0 for some jNj\in\mathbb{N}, and so the Rayleigh quotient for HWH-W is strictly negative, leading to σ(HW)R\sigma(H-W)\cap\mathbb{R}_{-}\neq\emptyset.

Let us prove the converse statement. Let suppVKRd\mathop{\rm supp}V\subset K\Subset\mathbb{R}^{d} and let there be perturbations WjCcompm(Rd,R)W_{j}\in C^{m}_{\mathrm{comp}}(\mathbb{R}^{d},\mathbb{R}), jNj\in\mathbb{N}, with suppWjK\mathop{\rm supp}W_{j}\subset K, Wj0W_{j}\geq 0, Wj0W_{j}\neq 0 for all jj, and with supxRd|xβWj(x)|0\sup_{x\in\mathbb{R}^{d}}|\partial_{x}^{\beta}W_{j}(x)|\to 0 as jj\to\infty for all multiindices βN0d\beta\in\mathbb{N}_{0}^{d} with |β|m|\beta|\leq m. By the assumption of the Lemma, λj:=infσ(H+Wj)<0\lambda_{j}:=\inf\sigma(H+W_{j})<0 (thus λj0\lambda_{j}\to 0- as jj\to\infty). Let ψjL2(Rd,C)\psi_{j}\in L^{2}(\mathbb{R}^{d},\mathbb{C}) be the corresponding eigenfunctions, which can be shown to be from Hm+2(Rd)Cα(Rd)H^{m+2}(\mathbb{R}^{d})\subset C^{\alpha}(\mathbb{R}^{d}), α<1/2\forall\alpha<1/2 (having the uniform bound in Hm+2(BRd,C)H^{m+2}(\mathbb{B}^{d}_{R},\mathbb{C}) for each R1R\geq 1). By (GT, 83, Theorem 8.38), we can assume that ψj\psi_{j} are strictly positive. Without loss of generality, we assume that supxRdψ(x)=1\sup_{x\in\mathbb{R}^{d}}\psi(x)=1. By the maximum principle, the functions ψj\psi_{j} reach these maxima at some point xjKx_{j}\in K. We may pass to a subsequence so that xjx0Kx_{j}\to x_{0}\in K as jj\to\infty. Then, by the Ascoli–Arzelà theorem, we may pass to a subsequence so that the functions ψj\psi_{j} converge, uniformly on compacts. The limit function φC(Rd,C)\varphi\in C(\mathbb{R}^{d},\mathbb{C}) is nonnegative and nonzero (since φ(x0)=limjφj(xj)=1\varphi(x_{0})=\lim_{j\to\infty}\varphi_{j}(x_{j})=1), and satisfies Hφ=0H\varphi=0 (in the sense of distributions). Since

𝐚[ψj]+ψj,Wjψj=ψj,(H+Wj)ψj=λjψj,ψj<0jN,\mathbf{a}[\psi_{j}]+\langle\psi_{j},W_{j}\psi_{j}\rangle=\langle\psi_{j},(H+W_{j})\psi_{j}\rangle=\lambda_{j}\langle\psi_{j},\psi_{j}\rangle<0\qquad\forall j\in\mathbb{N},

where ψj,Wjψj0\langle\psi_{j},W_{j}\psi_{j}\rangle\to 0 (due to the convergence ψjφ\psi_{j}\to\varphi, suppWjK\mathop{\rm supp}W_{j}\subset K, and due to WjL0\|W_{j}\|_{L^{\infty}}\to 0 as jj\to\infty) while 𝐚[ψj]0\mathbf{a}[\psi_{j}]\geq 0, one can see that 𝐚[ψj]0\mathbf{a}[\psi_{j}]\to 0. Moreover, due to Harnack’s inequality for Schrödinger operators (CFG, 86, Theorem 2.5), since φ(x0)=1\varphi(x_{0})=1, one has φ(x)0\varphi(x)\neq 0 for all xRdx\in\mathbb{R}^{d}. (In CFG (86), the proof is given for d3d\geq 3 but is shown to apply to d=2d=2 as well; the statement for d=1d=1 is trivial by the ODE uniqueness theory.) Thus the limit function φ\varphi is a null state. ∎

3 General theory of virtual levels in Banach spaces

We now sketch our approach to virtual levels from BC (21). Let 𝐗\mathbf{X} be an infinite-dimensional complex Banach space and let A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}) be a closed operator with dense domain 𝔇(A)𝐗\mathfrak{D}(A)\subset\mathbf{X}. We assume that there are some complex Banach spaces 𝐄\mathbf{E}, 𝐅\mathbf{F} with embeddings 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F}. We will assume that the operator AA and the “regularizing” spaces 𝐄\mathbf{E} and 𝐅\mathbf{F} satisfy the following assumption.

Assumption 3.0  
  1. 1.

    The embeddings

    𝐄⸦⟶ı𝐗⸦⟶ȷ𝐅\mathbf{E}\mathop{\lhook\joinrel\longrightarrow}\limits^{\imath}\mathbf{X}\mathop{\lhook\joinrel\longrightarrow}\limits^{\jmath}\mathbf{F}

    are dense and continuous.

  2. 2.

    The operator A:𝐗𝐗A:\,\mathbf{X}\to\mathbf{X}, considered as a mapping 𝐅𝐅\mathbf{F}\to\mathbf{F},

    A𝐅  )𝐅:𝐅𝐅,𝔇(A𝐅  )𝐅)=ȷ(𝔇(A)),A𝐅  )𝐅:yȷ(Ax)ify=ȷ(x),A_{\mathbf{F}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}}:\,\mathbf{F}\to\mathbf{F},\quad\mathfrak{D}(A_{\mathbf{F}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}})=\jmath(\mathfrak{D}(A)),\quad A_{\mathbf{F}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}}:\,y\mapsto\jmath(Ax)\;\;\mbox{if}\;\;y=\jmath(x),

    is closable in 𝐅\mathbf{F}, with closure A^𝒞(𝐅)\hat{A}\in\mathscr{C}(\mathbf{F}) and domain 𝔇(A^)ȷ(𝔇(A))\mathfrak{D}(\hat{A})\supset\jmath\big{(}\mathfrak{D}(A)\big{)}.

  3. 3.

    Denote

    𝔇(A𝐄  )𝐄)={ϕ𝐄:ı(ϕ)𝔇(A),Aı(ϕ)ı(𝐄)}\mathfrak{D}(A_{\mathbf{E}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{E}})=\{\phi\in\mathbf{E}\,{\rm:}\;\,\imath(\phi)\in\mathfrak{D}(A),\,A\imath(\phi)\in\imath(\mathbf{E})\}

    and

    𝔇(A^𝐄  )𝐄)={ϕ𝐄:ȷı(ϕ)𝔇(A^),A^ȷı(ϕ)ȷı(𝐄)}.\mathfrak{D}(\hat{A}_{\mathbf{E}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{E}})=\{\phi\in\mathbf{E}\,{\rm:}\;\,\jmath\circ\imath(\phi)\in\mathfrak{D}(\hat{A}),\,\hat{A}\jmath\circ\imath(\phi)\in\jmath\circ\imath(\mathbf{E})\}.

    The space ȷı(𝔇(A𝐄  )𝐄))\jmath\circ\imath(\mathfrak{D}(A_{\mathbf{E}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{E}})) is dense in ȷı(𝔇(A^𝐄  )𝐄))\jmath\circ\imath(\mathfrak{D}(\hat{A}_{\mathbf{E}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{E}})) in the topology induced by the graph norm of A^\hat{A}, defined by

    ψA^=ψ𝐅+A^ψ𝐅,ψ𝔇(A^)𝐅.\|\psi\|_{\hat{A}}=\|\psi\|_{\mathbf{F}}+\|\hat{A}\psi\|_{\mathbf{F}},\qquad\psi\in\mathfrak{D}(\hat{A})\subset\mathbf{F}.

We note that Assumption 3.0 is readily satisfied in the usual examples of differential operators. For convenience, from now on, we will assume that 𝐄𝐗𝐅\mathbf{E}\subset\mathbf{X}\subset\mathbf{F} (as vector spaces) and will omit ı\imath and ȷ\jmath in numerous relations.

Definition 3.0 (Virtual levels)  

Let A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}) and 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F} satisfy Assumption 3.0. Let

ΩCσ(A)\varOmega\subset\mathbb{C}\setminus\sigma(A)

be a connected open set such that σess(A)Ω\sigma_{\mathrm{ess}}(A)\cap\partial\varOmega is nonempty. We say that a point z0σess(A)Ωz_{0}\in\sigma_{\mathrm{ess}}(A)\cap\partial\varOmega is a point of the essential spectrum of AA of rank rN0r\in\mathbb{N}_{0} relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}) if it is the smallest value for which there is B00(𝐅,𝐄)B\in\mathscr{B}_{00}(\mathbf{F},\mathbf{E}) (with 00\mathscr{B}_{00} denoting bounded operators of finite rank) of rank rr such that

Ωσ(A+B)Dδ(z0)=\displaystyle\varOmega\cap\sigma(A+B)\cap\mathbb{D}_{\delta}(z_{0})=\emptyset (3.1)

for some δ>0\delta>0, and there exists the following limit in the weak operator topology of mappings 𝐄𝐅\mathbf{E}\to\mathbf{F}:

(A+Bz0I)Ω,𝐄,𝐅1:=w-limzz0,zΩ(A+BzI)1:𝐄𝐅.\displaystyle(A+B-z_{0}I)_{\varOmega,\mathbf{E},\mathbf{F}}^{-1}:=\mathop{\mbox{\rm w-lim}}_{z\to z_{0},\,z\in\varOmega}(A+B-zI)^{-1}:\;\mathbf{E}\to\mathbf{F}. (3.2)

Points of rank r=0r=0 relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}) (so that there is a limit (3.2) with B=0B=0) are called regular points of the essential spectrum relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}).

If z0z_{0} is of rank r1r\geq 1 relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}), we call it an exceptional point of rank rr relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}), or a virtual level of rank rr relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}). The corresponding virtual states are defined as elements of the space

𝔐Ω,𝐄,𝐅(Az0I):={Ψ((A+Bz0I)Ω,𝐄,𝐅1):(A𝐅  )𝐅z0I)Ψ=0},\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I):=\big{\{}\Psi\in\mathfrak{R}\big{(}(A+B-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}\big{)}\,{\rm:}\;(A_{\mathbf{F}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}}-z_{0}I)\Psi=0\big{\}},

with any B00(𝐅,𝐄)B\in\mathscr{B}_{00}(\mathbf{F},\mathbf{E}) such that the limit (3.2) is defined (this space is of dimension rr and does not depend on the choice of BB; see Theorem 3.0 below).

Above, σess(A)\sigma_{\mathrm{ess}}(A) is F.  Browder’s essential spectrum (Bro, 61, Definition 11). It can be characterized as σ(A)σd(A)\sigma(A)\setminus\sigma_{\mathrm{d}}(A), with the discrete spectrum σd(A)\sigma_{\mathrm{d}}(A) being the set of isolated points of σ(A)\sigma(A) with corresponding Riesz projectors having finite rank (see e.g. (BC, 19, Lemma III.125)). Let us emphasize that the existence of the limit (3.2) implicitly implies that there is δ>0\delta>0 such that Ωσ(A+B)Dδ(z0)=\varOmega\cap\sigma(A+B)\cap\mathbb{D}_{\delta}(z_{0})=\emptyset.

Remark 3.0  

Definition 3.0 allows one to treat generalized eigenfunctions corresponding to “threshold resonances” of a Schrödinger operator AA (not necessarily selfadjoint) and solutions to (Az0I)u=0(A-z_{0}I)u=0 with z0z_{0} from the bulk of σess(A)\sigma_{\mathrm{ess}}(A) which satisfy the Sommerfeld radiation condition as the same concept of virtual states Ψ𝔐Ω,𝐄,𝐅(Az0I)\Psi\in\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I) (with appropriate choice of Ω\varOmega).

Remark 3.0  

In case when z0z_{0} is a virtual level but not an eigenvalue, it seems reasonable to call it an (embedded) resonance. Note that the name threshold resonance seems misleading, since in the nonselfadjoint case a virtual level could be located at any point of contact of the essential spectrum with the resolvent set, not necessarily at a threshold. (According to How (74), thresholds could be defined as (i) a branch point of an appropriate function, (ii) a point where the absolutely continuous part changes multiplicity, or (sometimes) (iii) an end point of the spectrum.)

Remark 3.0  

The dimension of the null space of a square matrix MM can be similarly characterized as dim𝐤𝐞𝐫(M)=min{rankN:det(M+N)0}.\dim\mathop{\mathbf{ker}}(M)=\min\big{\{}\mathop{\rm rank}N\,{\rm:}\;\det(M+N)\neq 0\big{\}}. For example, for M=[010001000]M=\footnotesize\tiny\begin{bmatrix}0&1&0\\ 0&0&1\\ 0&0&0\end{bmatrix}, we can take N=[000000100]N=\footnotesize\tiny\begin{bmatrix}0&0&0\\ 0&0&0\\ 1&0&0\end{bmatrix}, in agreement with dim𝐤𝐞𝐫(M)=1\dim\mathop{\mathbf{ker}}(M)=1.

Example 3.0  

Let A=ΔA=-\Delta in L2(R3)L^{2}(\mathbb{R}^{3}), 𝔇(A)=H2(R3)\mathfrak{D}(A)=H^{2}(\mathbb{R}^{3}). By (Agm, 75, Appendix A), for any s,s>1/2s,\,s^{\prime}>1/2 and z0>0z_{0}>0, the resolvent (ΔzI)1(-\Delta-zI)^{-1} converges as zz0±0iz\to z_{0}\pm 0\mathrm{i} in the uniform operator topology of continuous mappings Ls2(R3)Ls2(R3)L^{2}_{s}(\mathbb{R}^{3})\to L^{2}_{-s^{\prime}}(\mathbb{R}^{3}). The two limits differ; the integral kernels of the limiting operators (Δz0I)C±1(-\Delta-z_{0}I)_{\mathbb{C}_{\pm}}^{-1} are given by e±i|xy|z0/(4π|xy|)e^{\pm\mathrm{i}|x-y|\sqrt{z_{0}}}/(4\pi|x-y|), x,yR3x,\,y\in\mathbb{R}^{3}. It follows that z0>0z_{0}>0 is a regular point of the essential spectrum of Δ-\Delta relative to Ω=C±\varOmega=\mathbb{C}_{\pm}. Moreover, according to JK (79), there is a limit of the resolvent as zz0=0z\to z_{0}=0, zCR+¯z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}}, in the uniform operator topology of continuous mappings Ls2(R3)Ls2(R3)L^{2}_{s}(\mathbb{R}^{3})\to L^{2}_{-s^{\prime}}(\mathbb{R}^{3}), s,s>1/2s,\,s^{\prime}>1/2, s+s>2s+s^{\prime}>2, hence z0=0z_{0}=0 is also a regular point of the essential spectrum (relative to Ω=CR+¯\varOmega=\mathbb{C}\setminus\overline{\mathbb{R}_{+}}).

Example 3.0  

Consider the differential operator A=ix+V:L2(R)L2(R)A=-\mathrm{i}\partial_{x}+V:\,L^{2}(\mathbb{R})\to L^{2}(\mathbb{R}), 𝔇(A)=H1(R)\mathfrak{D}(A)=H^{1}(\mathbb{R}), with VV the operator of multiplication by VL1(R)V\in L^{1}(\mathbb{R}). The solution to (ix+VzI)u=fL1(R)(-\mathrm{i}\partial_{x}+V-zI)u=f\in L^{1}(\mathbb{R}), zC+z\in\mathbb{C}_{+}, is given by

u(x)=ixeiz(xy)iW(x)+iW(y)f(y)𝑑y,W(x):=xV(y)𝑑y,WL(R).u(x)=\mathrm{i}\!\int\limits^{x}_{-\infty}\!e^{\mathrm{i}z(x-y)-\mathrm{i}W(x)+\mathrm{i}W(y)}f(y)\,dy,\quad W(x):=\!\int\limits^{x}_{-\infty}\!V(y)\,dy,\;W\in L^{\infty}(\mathbb{R}).

For each zC+z\in\mathbb{C}_{+}, the mapping (AzI)1:fu(A-zI)^{-1}:\,f\mapsto u is continuous from L1(R)L^{1}(\mathbb{R}) to L(R)L^{\infty}(\mathbb{R}), with the bound uniform in zC+z\in\mathbb{C}_{+}. Moreover, one can see that for each z0Rz_{0}\in\mathbb{R} there exists a limit (Az0I)C+,L1,L1=limzz0,zC+(AzI)1(A-z_{0}I)^{-1}_{\mathbb{C}_{+},L^{1},L^{\infty}}=\lim\limits_{z\to z_{0},\ z\in\mathbb{C}_{+}}(A-zI)^{-1} in the strong operator topology of mappings L1LL^{1}\to L^{\infty}; thus, any z0Rz_{0}\in\mathbb{R} is a regular point of the essential spectrum relative to (C+,Ls2(R),Ls2(R))(\mathbb{C}_{+},\,L^{2}_{s}(\mathbb{R}),\,L^{2}_{-s^{\prime}}(\mathbb{R})) (and similarly relative to (C,Ls2(R),Ls2(R))(\mathbb{C}_{-},\,L^{2}_{s}(\mathbb{R}),\,L^{2}_{-s^{\prime}}(\mathbb{R}))).

Example 3.0  

Consider the left shift L:2(N)2(N)L:\,\ell^{2}(\mathbb{N})\to\ell^{2}(\mathbb{N}), (x1,x2,x3,)(x2,x3,x4,)(x_{1},x_{2},x_{3},\dots)\mapsto(x_{2},x_{3},x_{4},\dots), with σ(L)=σess(L)=D1¯\sigma(L)=\sigma_{\mathrm{ess}}(L)=\overline{\mathbb{D}_{1}}. The matrix representations of LzIL-zI and (LzI)1(L-zI)^{-1}, |z|>1|z|>1, are given by

LzI=[z100z100z],zC;(LzI)1=[z1z2z30z1z200z1],zCD1¯.L-zI={\footnotesize\tiny\begin{bmatrix}-z&1&0&\cdots\\[1.0pt] 0&-z&1&\cdots\\[1.0pt] 0&0&-z&\cdots\\[1.0pt] \cdots&\cdots&\cdots&\cdots\end{bmatrix}},\ z\in\mathbb{C};\quad(L-zI)^{-1}=-{\footnotesize\tiny\begin{bmatrix}z^{-1}&z^{-2}&z^{-3}&\cdots\\ 0&z^{-1}&z^{-2}&\cdots\\ 0&0&z^{-1}&\cdots\\ \cdots&\cdots&\cdots&\cdots\end{bmatrix}},\ z\in\mathbb{C}\setminus\overline{\mathbb{D}_{1}}.

From the above representation, one has |((LzI)1x)i||z1xi|+|z2xi+1|+x1|((L-zI)^{-1}x)_{i}|\leq|z^{-1}x_{i}|+|z^{-2}x_{i+1}|+\dots\leq\|x\|_{\ell^{1}}, and moreover limi((LzI)1x)i=0\lim_{i\to\infty}((L-zI)^{-1}x)_{i}=0, for any x1(N)2(N)x\in\ell^{1}(\mathbb{N})\subset\ell^{2}(\mathbb{N}) and any zCz\in\mathbb{C}, |z|>1|z|>1, hence (LzI)1(L-zI)^{-1} defines a continuous linear mapping 1(N)c0(N)\ell^{1}(\mathbb{N})\to c_{0}(\mathbb{N}), with the norm bounded (by one) uniformly in zCz\in\mathbb{C}, |z|>1|z|>1. For any |z0|=1|z_{0}|=1, the mappings (LzI)1:1(N)c0(N)(L-zI)^{-1}:\,\ell^{1}(\mathbb{N})\to c_{0}(\mathbb{N}) have a limit as zz0z\to z_{0}, |z|>1|z|>1, in the weak operator topology (also in the strong operator topology). It follows that any of the boundary points of the spectrum of LL (i.e., any z0Cz_{0}\in\mathbb{C} with |z0|=1|z_{0}|=1) is a regular point of the essential spectrum relative to (CD1¯,1(N),c0(N))\big{(}\mathbb{C}\setminus\overline{\mathbb{D}_{1}},\,\ell^{1}(\mathbb{N}),\,c_{0}(\mathbb{N})\big{)}.

Let us construct an operator with a virtual level at z0Cz_{0}\in\mathbb{C}, |z0|=1|z_{0}|=1. Assume that K00((N),1(N))K\in\mathscr{B}_{00}\big{(}\ell^{\infty}(\mathbb{N}),\ell^{1}(\mathbb{N})\big{)} has eigenvalue 1σ(K and 1)1\in\sigma\big{(}K\and{\ell^{1}}\big{)}, with the corresponding eigenfunction ϕ1(N)\phi\in\ell^{1}(\mathbb{N}). Then the operator A=LK(Lz0I)A=L-K(L-z_{0}I), 𝔇(A)=2(N)\mathfrak{D}(A)=\ell^{2}(\mathbb{N}), has a virtual level at z0z_{0} since z0z_{0} is a regular point of A+BA+B, with B=K(Lz0I):c0(N)1(N)B=K(L-z_{0}I):\,c_{0}(\mathbb{N})\to\ell^{1}(\mathbb{N}) of finite rank (we note that LL has a bounded extension onto c0(N)c_{0}(\mathbb{N})). The function Ψ=(Lz0I)Ω,1,c01ϕc0(N)\Psi=(L-z_{0}I)^{-1}_{\varOmega,\ell^{1},c_{0}}\phi\in c_{0}(\mathbb{N}) is a virtual state of A=LK(Lz0I)A=L-K(L-z_{0}I) corresponding to z0z_{0}, relative to (CD1¯,1(N),c0(N))\big{(}\mathbb{C}\setminus\overline{\mathbb{D}_{1}},\,\ell^{1}(\mathbb{N}),\,c_{0}(\mathbb{N})\big{)}, satisfying (A^z0I)Ψ=0(\hat{A}-z_{0}I)\Psi=0, with A^\hat{A} a closed extension of AA onto c0(N)c_{0}(\mathbb{N}).

Example 3.0  

Let 𝐗\mathbf{X} be an infinite-dimensional Banach space and let Z:𝐗𝐗Z:\,\mathbf{X}\to\mathbf{X}, ψ0\psi\mapsto 0, ψ𝐗\forall\psi\in\mathbf{X}, be the zero operator with σ(Z)=σess(Z)={0}\sigma(Z)=\sigma_{\mathrm{ess}}(Z)=\{0\}. Assume that 𝐄,𝐅\mathbf{E},\,\mathbf{F} are Banach spaces with dense continuous embeddings 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F}. Let B00(𝐅,𝐄)B\in\mathscr{B}_{00}(\mathbf{F},\mathbf{E}). Let ϵ>0\epsilon>0 be smaller than the absolute value of the smallest nonzero eigenvalue of BB (there are finitely many nonzero eigenvalues since BB is of finite rank), and define

P0=12πi|ζ|=ϵ(BζI)1𝑑ζ:𝐗𝐗P_{0}=-\frac{1}{2\pi\mathrm{i}}\ointctrclockwise_{|\zeta|=\epsilon}(B-\zeta I)^{-1}\,d\zeta:\;\mathbf{X}\to\mathbf{X}

to be a projection onto the eigenspace of BB corresponding to eigenvalue λ=0\lambda=0. Then, for zC{0}z\in\mathbb{C}\setminus\{0\},

(Z+BzI)1P0=(BzI)1P0=z1P0:𝐗𝐗,(Z+B-zI)^{-1}P_{0}=(B-zI)^{-1}P_{0}=-z^{-1}P_{0}:\,\mathbf{X}\to\mathbf{X},

hence

(Z+BzI)1P0=z1P0:𝐄𝐅,zC{0},(Z+B-zI)^{-1}P_{0}=-z^{-1}P_{0}:\,\mathbf{E}\to\mathbf{F},\quad z\in\mathbb{C}\setminus\{0\},

with the norm unbounded as z0z\to 0, z0z\neq 0. Thus, z0=0z_{0}=0 is an exceptional point of the essential spectrum of ZZ of infinite rank relative to C{0}\mathbb{C}\setminus\{0\} and arbitrary 𝐄,𝐅\mathbf{E},\,\mathbf{F}.

Remark 3.0  

Let us contrast virtual levels to spectral singularities Nai (54); Sch60a ; Pav (66); Lja (67); Gus (09); KLV (19) (for a more general setting, see Nag (86)). We note that selfadjoint operators have no spectral singularities, although they could have virtual levels at threshold points; this shows that these two concepts differ.

Remark 3.0  

There is no direct relation of virtual levels to pseudospectrum Lan (75). For A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}), one defines the ε\varepsilon-pseudospectrum by

σε(A)=σ(A){zCσ(A):(AzI)1ε1}.\sigma_{\varepsilon}(A)=\sigma(A)\cup\{z\in\mathbb{C}\setminus\sigma(A)\,{\rm:}\;\|(A-zI)^{-1}\|\geq\varepsilon^{-1}\}.

Since σε(Δ and L2(Rd))={zC;dist(z,R+¯)ε}\sigma_{\varepsilon}\big{(}-\Delta\and{L^{2}(\mathbb{R}^{d})}\big{)}=\{z\in\mathbb{C};\,\mathop{\rm dist}\nolimits\big{(}z,\overline{\mathbb{R}_{+}}\big{)}\leq\varepsilon\} does not depend on the dimension d1d\geq 1, the behaviour of pseudospectrum near the threshold z0=0z_{0}=0 does not distinguish the presence of a virtual level at z0z_{0} for d2d\leq 2 and its absence for d3d\geq 3.

The following key lemma is essentially an abstract version of (JK, 79, Lemma 2.4).

Lemma 3.0 (Limit of the resolvent as the left and right inverse)  

Let A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}) and 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F} satisfy Assumption 3.0. Let ΩCσ(A)\varOmega\subset\mathbb{C}\setminus\sigma(A). Assume that z0σess(A)Ωz_{0}\in\sigma_{\mathrm{ess}}(A)\cap\partial\varOmega is a regular point of the essential spectrum relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}), so that there exists a limit

(Az0I)Ω,𝐄,𝐅1:=w-limzz0,zΩ(AzI)1:𝐄𝐅.(A-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}:=\mathop{\mbox{\rm w-lim}}_{z\to z_{0},\,z\in\varOmega}(A-zI)^{-1}:\;\mathbf{E}\to\mathbf{F}.

This limit is both the left and the right inverse of A^z0I:((Az0I)Ω,𝐄,𝐅1)𝐄\hat{A}-z_{0}I:\mathfrak{R}\big{(}(A-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}\big{)}\to\mathbf{E}.

In applications one needs to consider not only finite rank perturbations but also relatively compact perturbations, allowing in place of BB in (3.2) operators which are A^\hat{A}-compact, in the following sense.

Definition 3.0  

Let A^:𝐅𝐅\hat{A}:\,\mathbf{F}\to\mathbf{F} and B:𝐅𝐄B:\,\mathbf{F}\to\mathbf{E} be linear, with 𝔇(B)𝔇(A^)\mathfrak{D}(B)\supset\mathfrak{D}(\hat{A}). We say that BB is A^\hat{A}-compact if (B|{x𝔇(A^);x𝐅2+A^x𝐅21})𝐄\mathfrak{R}\big{(}B\big{|}_{\{x\in\mathfrak{D}(\hat{A});\,\|x\|_{\mathbf{F}}^{2}+\|\hat{A}x\|_{\mathbf{F}}^{2}\leq 1\}}\big{)}\subset\mathbf{E} is precompact.

We denote the set of A^\hat{A}-compact operators for which the limit (3.2) exists by

𝒬Ω,𝐄,𝐅(Az0I)={B is A^-compact; δ>0,Ωσ(A+B)Dδ(z0)=,w-limzz0,zΩ(A+BzI)1:𝐄𝐅}.\mathscr{Q}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I)=\big{\{}\mbox{$B$ is $\hat{A}$-compact;\ }\,\exists\delta>0,\varOmega\cap\sigma(A+B)\cap\mathbb{D}_{\delta}(z_{0})=\emptyset,\\ \exists\!\mathop{\mbox{\rm w-lim}}_{z\to z_{0},\,z\in\varOmega}(A+B-zI)^{-1}:\,\mathbf{E}\to\mathbf{F}\big{\}}.
Theorem 3.0 (Independence from the regularizing operator)  

Let A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}) and 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F} satisfy Assumption 3.0. Let ΩCσ(A)\varOmega\subset\mathbb{C}\setminus\sigma(A). Assume that z0σess(A)Ωz_{0}\in\sigma_{\mathrm{ess}}(A)\cap\partial\varOmega is a regular point of the essential spectrum relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}), so that there is a limit (Az0I)Ω,𝐄,𝐅1:=w-limzz0,zΩ(AzI)1:𝐄𝐅.(A-z_{0}I)_{\varOmega,\mathbf{E},\mathbf{F}}^{-1}:=\mathop{\mbox{\rm w-lim}}_{z\to z_{0},\,z\in\varOmega}(A-zI)^{-1}:\,\mathbf{E}\to\mathbf{F}. Assume that B𝒞(𝐅,𝐄)B\in\mathscr{C}(\mathbf{F},\mathbf{E}) is A^\hat{A}-compact. Then:

  1. 1.

    For each B𝒞(𝐅,𝐄)B\in\mathscr{C}(\mathbf{F},\mathbf{E}) which is A^\hat{A}-compact and such that there exists δ>0\delta>0 which satisfies Ωσ(A+B)Dδ(z0)=\varOmega\cap\sigma(A+B)\cap\mathbb{D}_{\delta}(z_{0})=\emptyset, the following statements are equivalent:

    1. (a)

      There is no nonzero solution to (A^+Bz0I)Ψ=0(\hat{A}+B-z_{0}I)\Psi=0, Ψ((Az0I)Ω,𝐄,𝐅1)\Psi\in\mathfrak{R}\big{(}(A-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}\big{)};

    2. (b)

      There exists a limit

      (A+Bz0I)Ω,𝐄,𝐅1:=w-limzz0,zΩDδ(z0)(A+BzI)1:𝐄𝐅.(A+B-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}:=\mathop{\mbox{\rm w-lim}}_{z\to z_{0},\,z\in\varOmega\cap\mathbb{D}_{\delta}(z_{0})}(A+B-zI)^{-1}:\;\mathbf{E}\to\mathbf{F}.

      (That is, there is the inclusion B𝒬Ω,𝐄,𝐅(Az0I)B\in\mathscr{Q}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I).)

  2. 2.

    If any (and hence both) of the statements from Part 1 is satisfied, then:

    1. (a)

      ((Az0I)Ω,𝐄,𝐅1)=((A+Bz0I)Ω,𝐄,𝐅1);\mathfrak{R}\big{(}(A-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}\big{)}=\mathfrak{R}\big{(}(A+B-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}\big{)};

    2. (b)

      If the operators (AzI)1(A-zI)^{-1} converge as zz0z\to z_{0}, zΩz\in\varOmega, in the strong or uniform operator topology of mappings 𝐄𝐅\mathbf{E}\to\mathbf{F}, then (A+BzI)1(A+B-zI)^{-1} converge as zz0z\to z_{0}, zΩz\in\varOmega, in the same topology;

    3. (c)

      If there are Banach spaces 𝐄0\mathbf{E}_{0} and 𝐅0\mathbf{F}_{0} with dense continuous embeddings 𝐄𝐄0𝐗𝐅0𝐅\mathbf{E}\hookrightarrow\mathbf{E}_{0}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F}_{0}\hookrightarrow\mathbf{F}, such that the operator (Az0I)Ω,𝐄,𝐅1(A-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}} extends to a bounded mapping (Az0I)Ω,𝐄,𝐅1:𝐄0𝐅0(A-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}:\;\mathbf{E}_{0}\to\mathbf{F}_{0}, then (A+Bz0I)Ω,𝐄,𝐅1(A+B-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}} also extends to a bounded mapping 𝐄0𝐅0\mathbf{E}_{0}\to\mathbf{F}_{0}.

Remark 3.0  

Regarding Theorem 3.0 (2c), it is possible that (A+Bz0I)Ω,𝐄,𝐅1(A+B-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}} extends to a bounded map 𝐄0𝐅0\mathbf{E}_{0}\to\mathbf{F}_{0}, yet there is no convergence (A+BzI)1(A+Bz0I)Ω,𝐄,𝐅1(A+B-zI)^{-1}\to(A+B-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}} in the weak operator topology of mappings 𝐄0𝐅0\mathbf{E}_{0}\to\mathbf{F}_{0}. For example, the resolvent of the Laplacian in Rd\mathbb{R}^{d}, d5d\geq 5, converges in the weak operator topology of continuous linear mappings Ls2(Rd)Ls2(Rd)L^{2}_{s}(\mathbb{R}^{d})\to L^{2}_{-s^{\prime}}(\mathbb{R}^{d}), s+s>2s+s^{\prime}>2, as zz0=0z\to z_{0}=0, zCR+¯z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}}, only as long as s,s>1/2s,\,s^{\prime}>1/2, while the limit (Δz0I)Ω1(-\Delta-z_{0}I)_{\varOmega}^{-1} extends to continuous mappings L22(Rd)L2(Rd)L^{2}_{2}(\mathbb{R}^{d})\to L^{2}(\mathbb{R}^{d}), L2(Rd)L22(Rd)L^{2}(\mathbb{R}^{d})\to L^{2}_{-2}(\mathbb{R}^{d}).

Now we introduce the space of virtual states 𝔐\mathfrak{M}. This space appears in JK (79) in the context of Schrödinger operators in R3\mathbb{R}^{3} (see also (Bir, 61, §1.7)).

Theorem 3.0 (LAP vs. existence of virtual states)  

Let A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}) and 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F} satisfy Assumption 3.0. Let ΩCσ(A)\varOmega\subset\mathbb{C}\setminus\sigma(A). Let z0σess(A)Ωz_{0}\in\sigma_{\mathrm{ess}}(A)\cap\partial\varOmega be of rank rN0r\in\mathbb{N}_{0} relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}). For B𝒬Ω,𝐄,𝐅(Az0I)B\in\mathscr{Q}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I) (which is nonempty), define the space of virtual states by

𝔐Ω,𝐄,𝐅(Az0I):={Ψ((A+Bz0I)Ω,𝐄,𝐅1):(A^z0I)Ψ=0}𝐅,\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I):=\big{\{}\Psi\in\mathfrak{R}\big{(}(A+B-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}\big{)}\,{\rm:}\;(\hat{A}-z_{0}I)\Psi=0\big{\}}\subset\mathbf{F},

where (A+Bz0I)Ω,𝐄,𝐅1:𝐄𝐅(A+B-z_{0}I)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}:\,\mathbf{E}\to\mathbf{F}. Then:

  1. 1.

    𝔐Ω,𝐄,𝐅(Az0I)\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I) does not depend on the choice of B𝒬Ω,𝐄,𝐅(Az0I)B\in\mathscr{Q}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I);

  2. 2.

    There is the inclusion 𝐄𝐤𝐞𝐫(Az0I)𝔐Ω,𝐄,𝐅(Az0I)\mathbf{E}\cap\mathop{\mathbf{ker}}(A-z_{0}I)\subset\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I);

  3. 3.

    dim𝔐Ω,𝐄,𝐅(Az0I)=r.\dim\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I)=r.

Example 3.0  

Let A=x2A=-\partial_{x}^{2} in L2(R)L^{2}(\mathbb{R}), with 𝔇(A)=H2(R)\mathfrak{D}(A)=H^{2}(\mathbb{R}). We note that its resolvent R0(1)(z)=(AzI)1R_{0}^{(1)}(z)=(A-zI)^{-1}, zCR+¯z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}}, with the integral kernel R0(1)(x,y;z)=ez|xy|/(2z)R_{0}^{(1)}(x,y;z)={e^{-\sqrt{-z}|x-y|}}/{(2\sqrt{-z})}, Rez>0\mathop{\rm{R\hskip-1.0pte}}\nolimits\sqrt{-z}>0, does not extend to a linear mapping Ls2(R)Ls2(R)L^{2}_{s}(\mathbb{R})\to L^{2}_{-s^{\prime}}(\mathbb{R}), for some particular s,s0s,\,s^{\prime}\geq 0, which would be bounded uniformly for zDδR+¯z\in\mathbb{D}_{\delta}\setminus\overline{\mathbb{R}_{+}} with some δ>0\delta>0. At the same time, if VCcomp([a,a],C)V\in C_{\mathrm{comp}}([-a,a],\mathbb{C}) is any potential such that the solution θ+(x)\theta_{+}(x) to (x2+V)θ=0(-\partial_{x}^{2}+V)\theta=0, θ and xa=1\theta\and{x\geq a}=1, remains unbounded for x0x\leq 0 (one can take V0V\geq 0 not identically zero), so that it is linearly independent with θ(x)\theta_{-}(x) (solution which equals one for x<ax<-a), then for any s,s>1/2s,\,s^{\prime}>1/2, s+s2s+s^{\prime}\geq 2, the resolvent RV(z)=(A+VzI)1R_{V}(z)=(A+V-zI)^{-1} extends to a bounded linear mapping Ls2(R)Ls2(R)L^{2}_{s}(\mathbb{R})\to L^{2}_{-s^{\prime}}(\mathbb{R}) for all zDδR+¯z\in\mathbb{D}_{\delta}\setminus\overline{\mathbb{R}_{+}} with some δ>0\delta>0 and has a limit in the strong operator topology as zz0=0z\to z_{0}=0, zR+¯z\not\in\overline{\mathbb{R}_{+}}; thus, z0=0z_{0}=0 is a regular point of A+VA+V relative to CR+¯\mathbb{C}\setminus\overline{\mathbb{R}_{+}}. Since the operator of multiplication by V(x)V(x) is AA-compact, z0=0z_{0}=0 is a virtual level of A=x2A=-\partial_{x}^{2} in L2(R)L^{2}(\mathbb{R}) (relative to CR+¯\mathbb{C}\setminus\overline{\mathbb{R}_{+}}).

Definition 3.0 (Genuine virtual levels)  

If 𝔐Ω,𝐄,𝐅(Az0I)𝐗\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I)\not\subset\mathbf{X}, then we say that z0z_{0} is a genuine virtual level of AA relative to Ω\varOmega, and call any Ψ𝔐Ω,𝐄,𝐅(Az0I)𝐗\Psi\in\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I)\setminus\mathbf{X} a virtual state of AA corresponding to z0z_{0} relative to Ω\varOmega. A virtual level can be both an eigenvalue and a genuine virtual level, with a corresponding eigenfunction ψ𝐗\psi\in\mathbf{X} and a virtual state Ψ𝔐Ω,𝐄,𝐅(Az0I)𝐗\Psi\in\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I)\setminus\mathbf{X}.

Theorem 3.0 (LAP vs. bifurcations)  

Let A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}) and 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F} satisfy Assumption 3.0. Let ΩCσ(A)\varOmega\subset\mathbb{C}\setminus\sigma(A). Assume that z0σess(A)Ωz_{0}\in\sigma_{\mathrm{ess}}(A)\cap\partial\varOmega.

  1. 1.

    If there is a sequence of perturbations Vj(𝐅,𝐄)V_{j}\in\mathscr{B}(\mathbf{F},\mathbf{E}), limjVj𝐅𝐄=0\lim_{j\to\infty}\|V_{j}\|_{\mathbf{F}\to\mathbf{E}}=0, and a sequence of eigenvalues zjσd(A+Vj)Ωz_{j}\in\sigma_{\mathrm{d}}(A+V_{j})\cap\varOmega, zjz0z_{j}\to z_{0}, then there is no limit w-limzz0,zΩ(AzI)1\mathop{\mbox{\rm w-lim}}\limits_{z\to z_{0},\,z\in\varOmega}(A-zI)^{-1} in the weak operator topology of mappings 𝐄𝐅\mathbf{E}\to\mathbf{F}.

  2. 2.

    Assume that z0z_{0} is a virtual level of AA of finite rank relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}), and moreover assume that there is δ>0\delta>0 and B00(𝐅,𝐄)B\in\mathscr{B}_{00}(\mathbf{F},\mathbf{E}) such that there is a limit

    (A+BzI)Ω,𝐄,𝐅1:=s-limzz0,zΩDδ(z0)(A+BzI)1(A+B-zI)^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}:=\mathop{\mbox{\rm s-lim}}\limits_{z\to z_{0},\,z\in\varOmega\cap\mathbb{D}_{\delta}(z_{0})}(A+B-zI)^{-1}

    in the strong operator topology of mappings 𝐄𝐅\mathbf{E}\to\mathbf{F}. There is δ1(0,δ)\delta_{1}\in(0,\delta) such that for any sequence zjΩDδ1(z0)z_{j}\in\varOmega\cap\mathbb{D}_{\delta_{1}}(z_{0}), zjz0z_{j}\to z_{0}, there is a sequence

    Vj00(𝐅,𝐄),Vj𝐅𝐄0,zjσd(A+Vj),jN.V_{j}\in\mathscr{B}_{00}(\mathbf{F},\mathbf{E}),\qquad\|V_{j}\|_{\mathbf{F}\to\mathbf{E}}\to 0,\qquad z_{j}\in\sigma_{\mathrm{d}}(A+V_{j}),\quad j\in\mathbb{N}.
Example 3.0 (Virtual levels of Δ+V-\Delta+V at z00z_{0}\geq 0)  

For xR3x\in\mathbb{R}^{3} and ζC+¯\zeta\in\overline{\mathbb{C}_{+}}, define

ψ(x,ζ)={eiζ|x|/|x|,|x|1,((3|x|2)/2)eiζ(1+|x|2)/2,0|x|<1,ψ(,ζ)C2(R3),\psi(x,\zeta)=\begin{cases}{e^{\mathrm{i}\zeta|x|}}/{|x|},&|x|\geq 1,\\ ({(3-|x|^{2})}/{2})e^{\mathrm{i}\zeta(1+|x|^{2})/2},&0\leq|x|<1,\end{cases}\quad\psi(\cdot,\zeta)\in C^{2}(\mathbb{R}^{3}),

so that Δψ=ζ2ψ-\Delta\psi=\zeta^{2}\psi for xR3B13x\in\mathbb{R}^{3}\setminus\mathbb{B}^{3}_{1}. Since ψ(x,ζ)0\psi(x,\zeta)\neq 0 for all xR3x\in\mathbb{R}^{3} and ζC+¯\zeta\in\overline{\mathbb{C}_{+}}, we may define the potential V(x,ζ)V(x,\zeta) by the relation Δψ+Vψ=ζ2ψ-\Delta\psi+V\psi=\zeta^{2}\psi. Then, for each ζC+¯\zeta\in\overline{\mathbb{C}_{+}}, V(,ζ)L(R3)V(\cdot,\zeta)\in L^{\infty}(\mathbb{R}^{3}) is piecewise smooth, with suppVB13\mathop{\rm supp}V\subset\mathbb{B}^{3}_{1}. For ζC+\zeta\in\mathbb{C}_{+}, one has z=ζ2σp(Δ+V(ζ))z=\zeta^{2}\in\sigma_{\mathrm{p}}(-\Delta+V(\zeta)), so for each ζ00\zeta_{0}\geq 0 there is an eigenvalue family bifurcating from z0=ζ02σess(Δ+V(,ζ0))=R+¯z_{0}=\zeta_{0}^{2}\in\sigma_{\mathrm{ess}}(-\Delta+V(\cdot,\zeta_{0}))=\overline{\mathbb{R}_{+}} into C+\mathbb{C}_{+}. By Theorem 3.0 (1), z0=ζ02z_{0}=\zeta_{0}^{2} is a virtual level of Δ+V(x,ζ0)-\Delta+V(x,\zeta_{0}).

Lemma 3.0 (The Fredholm alternative)  

Let A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}) and 𝐄𝐗𝐅\mathbf{E}\hookrightarrow\mathbf{X}\hookrightarrow\mathbf{F} satisfy Assumption 3.0. Let ΩCσ(A)\varOmega\subset\mathbb{C}\setminus\sigma(A). Assume that z0σess(A)Ωz_{0}\in\sigma_{\mathrm{ess}}(A)\cap\partial\varOmega is of rank rN0r\in\mathbb{N}_{0} relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}). Then there is a projector PEnd(𝐄)P\in\,{\rm End}\,(\mathbf{E}), with rankP=r\mathop{\rm rank}P=r, such that for any B𝒬Ω,𝐄,𝐅(Az0I)B\in\mathscr{Q}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I) the problem

(A^z0I)u=f,f𝐄,u((A+Bz0)Ω,𝐄,𝐅1)𝐅,(\hat{A}-z_{0}I)u=f,\qquad f\in\mathbf{E},\qquad u\in\mathfrak{R}\big{(}(A+B-z_{0})^{-1}_{\varOmega,\mathbf{E},\mathbf{F}}\big{)}\subset\mathbf{F},

has a solution if and only if Pf=0Pf=0. This solution is unique under an additional requirement Qu=0Qu=0, with QEnd(𝐅)Q\in\,{\rm End}\,(\mathbf{F}) a projection onto 𝔐Ω,𝐄,𝐅(Az0I)𝐅\mathfrak{M}_{\varOmega,\mathbf{E},\mathbf{F}}(A-z_{0}I)\subset\mathbf{F}.

The next result is related to (Agm, 98, Proposition 4.1) (see Remark 1.0).

Theorem 3.0 (Independence from regularizing spaces)  

Let A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}). Let 𝐄i\mathbf{E}_{i} and 𝐅i\mathbf{F}_{i}, i=1, 2i=1,\,2, be Banach spaces with dense continuous embeddings

𝐄i⸦⟶ıi𝐗⸦⟶ȷi𝐅i,i=1, 2.\mathbf{E}_{i}\mathop{\lhook\joinrel\longrightarrow}\limits^{\imath_{i}}\mathbf{X}\mathop{\lhook\joinrel\longrightarrow}\limits^{\jmath_{i}}\mathbf{F}_{i},\qquad i=1,\,2.

Assume that 𝐄1\mathbf{E}_{1} and 𝐄2\mathbf{E}_{2} are mutually dense, in the sense that ıi1(ı1(𝐄1)ı2(𝐄2))\imath_{i}^{-1}\big{(}\imath_{1}(\mathbf{E}_{1})\cap\imath_{2}(\mathbf{E}_{2})\big{)} are dense in 𝐄i\mathbf{E}_{i}, i=1, 2i=1,\,2, that 𝐅1,𝐅2\mathbf{F}_{1},\,\mathbf{F}_{2} are continuously embedded into a Hausdorff vector space 𝐆\mathbf{G}, with ȷ1(x)=ȷ2(x)\jmath_{1}(x)=\jmath_{2}(x) (as an element of 𝐆\mathbf{G}) for each x𝐗x\in\mathbf{X}, and that there is an extension A^𝒞(𝐅1+𝐅2)\hat{A}\in\mathscr{C}\big{(}\mathbf{F}_{1}+\mathbf{F}_{2}\big{)} of AA with dense domain 𝔇(A^)𝐅1+𝐅2\mathfrak{D}(\hat{A})\subset\mathbf{F}_{1}+\mathbf{F}_{2}. Let

𝔇(A𝐄i  )𝐄i)={ϕ𝐄i:ıi(ϕ)𝔇(A),Aıi(ϕ)ıi(𝐄i)},i=1, 2\mathfrak{D}(A_{\mathbf{E}_{i}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{E}_{i}})=\{\phi\in\mathbf{E}_{i}\,{\rm:}\;\,\imath_{i}(\phi)\in\mathfrak{D}(A),\,A\imath_{i}(\phi)\in\imath_{i}(\mathbf{E}_{i})\},\quad i=1,\,2

and

𝔇(A^𝐄i  )𝐄i)={ϕ𝐄i:ȷiıi(ϕ)𝔇(A^),A^ȷiıi(ϕ)ȷiıi(𝐄i)},i=1, 2,\mathfrak{D}(\hat{A}_{\mathbf{E}_{i}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{E}_{i}})=\{\phi\in\mathbf{E}_{i}\,{\rm:}\;\,\jmath_{i}\circ\imath_{i}(\phi)\in\mathfrak{D}(\hat{A}),\,\hat{A}\jmath_{i}\circ\imath_{i}(\phi)\in\jmath_{i}\circ\imath_{i}(\mathbf{E}_{i})\},\quad i=1,\,2,

and assume that for i=1, 2i=1,\,2 the space ȷiıi(𝔇(A𝐄i  )𝐄i))\jmath_{i}\circ\imath_{i}(\mathfrak{D}(A_{\mathbf{E}_{i}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{E}_{i}})) is dense in the space ȷiıi(𝔇(A^𝐄i  )𝐄i))\jmath_{i}\circ\imath_{i}(\mathfrak{D}(\hat{A}_{\mathbf{E}_{i}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{E}_{i}})) in the topology induced by the graph norm of A^\hat{A} (it follows that both triples A,𝐄1,𝐅1A,\,\mathbf{E}_{1},\,\mathbf{F}_{1} and A,𝐄2,𝐅2A,\,\mathbf{E}_{2},\,\mathbf{F}_{2} satisfy Assumption 3.0 (3)).

Let ΩCσ(A)\varOmega\subset\mathbb{C}\setminus\sigma(A) and assume that z0σess(A)Ωz_{0}\in\sigma_{\mathrm{ess}}(A)\cap\partial\varOmega and that 𝒬Ω,𝐄i,𝐅i(Az0I)\mathscr{Q}_{\varOmega,\mathbf{E}_{i},\mathbf{F}_{i}}(A-z_{0}I)\neq\emptyset, i=1, 2i=1,\,2. Then z0z_{0} is of the same rank relative to (Ω,𝐄1,𝐅1)(\varOmega,\mathbf{E}_{1},\mathbf{F}_{1}) and relative to (Ω,𝐄2,𝐅2)(\varOmega,\mathbf{E}_{2},\mathbf{F}_{2}), and moreover

𝔐Ω,𝐄1,𝐅1(Az0I)=𝔐Ω,𝐄2,𝐅2(Az0I).\mathfrak{M}_{\varOmega,\mathbf{E}_{1},\mathbf{F}_{1}}(A-z_{0}I)=\mathfrak{M}_{\varOmega,\mathbf{E}_{2},\mathbf{F}_{2}}(A-z_{0}I).

Above, 𝐄1𝐄2={ϕ𝐗:(ϕ1,ϕ2)𝐄1×𝐄2,ı1(ϕ1)=ı2(ϕ2)=ϕ},\mathbf{E}_{1}\cap\mathbf{E}_{2}=\{\phi\in\mathbf{X}\,{\rm:}\;\exists(\phi_{1},\phi_{2})\in\mathbf{E}_{1}\times\mathbf{E}_{2},\ \imath_{1}(\phi_{1})=\imath_{2}(\phi_{2})=\phi\}, with

ϕ𝐄1𝐄2=ϕ1𝐄1+ϕ2𝐄2,\|\phi\|_{\mathbf{E}_{1}\cap\mathbf{E}_{2}}=\|\phi_{1}\|_{\mathbf{E}_{1}}+\|\phi_{2}\|_{\mathbf{E}_{2}},

and 𝐅1+𝐅2={ψ1+ψ2𝐆:(ψ1,ψ2)𝐅1×𝐅2},\mathbf{F}_{1}+\mathbf{F}_{2}=\{\psi_{1}+\psi_{2}\in\mathbf{G}\,{\rm:}\;(\psi_{1},\psi_{2})\in\mathbf{F}_{1}\times\mathbf{F}_{2}\}, with the norm

ψ𝐅1+𝐅2=infψ=ψ1+ψ2,(ψ1,ψ2)𝐅1×𝐅2(ψ1𝐅1+ψ2𝐅2).\|\psi\|_{\mathbf{F}_{1}+\mathbf{F}_{2}}=\inf\limits_{\psi=\psi_{1}+\psi_{2},\ (\psi_{1},\psi_{2})\in\mathbf{F}_{1}\times\mathbf{F}_{2}}\big{(}\|\psi_{1}\|_{\mathbf{F}_{1}}+\|\psi_{2}\|_{\mathbf{F}_{2}}\big{)}.

We point out that if 𝐄1\mathbf{E}_{1} and 𝐄2\mathbf{E}_{2} are not mutually dense (or similarly if 𝐅1\mathbf{F}_{1} and 𝐅2\mathbf{F}_{2} are not inside a common vector space 𝐆\mathbf{G}), then there is a nontrivial dependence of the rank of z0σess(A)z_{0}\in\sigma_{\mathrm{ess}}(A) from the choice of regularizing subspaces; see Example 1.0.

Lemma 3.0 (Virtual levels of the adjoint)  

Let A𝒞(𝐗)A\in\mathscr{C}(\mathbf{X}) and 𝐄⸦⟶ı𝐗⸦⟶ȷ𝐅\mathbf{E}\mathop{\lhook\joinrel\longrightarrow}\limits^{\imath}\mathbf{X}\mathop{\lhook\joinrel\longrightarrow}\limits^{\jmath}\mathbf{F} satisfy Assumption 3.0. Moreover, assume that 𝐄\mathbf{E} be reflexive and let A:𝐗𝐗A^{*}:\,\mathbf{X}^{*}\to\mathbf{X}^{*} have a closable extension to a mapping A^:𝐄𝐄\widehat{A^{*}}:\mathbf{E}^{*}\to\mathbf{E}^{*} with domain 𝔇(A^)𝐄\mathfrak{D}\big{(}\widehat{A^{*}}\big{)}\subset\mathbf{E}^{*}. Let

[​[AC\blacktriangleright\!\!\blacktriangleright: 𝔇(A𝐅  )𝐅)={ϕ𝔇(A)ȷ(𝐅),Aϕȷ(𝐅)}\mathfrak{D}(A^{*}_{\mathbf{F}^{*}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}^{*}})=\{\phi\in\mathfrak{D}(A^{*})\cap\jmath^{*}(\mathbf{F}^{*}),\,A^{*}\phi\in\jmath^{*}(\mathbf{F}^{*})\}]​]
𝔇(A𝐅  )𝐅)={θ𝐅:ȷ(θ)𝔇(A),Aȷ(θ)ȷ(𝐅)}\mathfrak{D}(A^{*}_{\mathbf{F}^{*}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}^{*}})=\{\theta\in\mathbf{F}^{*}\,{\rm:}\;\jmath^{*}(\theta)\in\mathfrak{D}(A^{*}),\,A^{*}\jmath^{*}(\theta)\in\jmath^{*}(\mathbf{F}^{*})\}

and

[​[AC\blacktriangleright\!\!\blacktriangleright: 𝔇(A^𝐅  )𝐅)={ϕ𝔇(A^)ıȷ(𝐅),A^ϕıȷ(𝐅)}\mathfrak{D}\big{(}\widehat{A^{*}}_{\mathbf{F}^{*}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}^{*}}\big{)}=\{\phi\in\mathfrak{D}(\widehat{A^{*}})\cap\imath^{*}\circ\jmath^{*}(\mathbf{F}^{*}),\,\widehat{A^{*}}\phi\in\imath^{*}\circ\jmath^{*}(\mathbf{F}^{*})\}]​]
𝔇(A^𝐅  )𝐅)={θ𝐅:ıȷ(θ)𝔇(A^),A^ıȷ(θ)ıȷ(𝐅)}\mathfrak{D}\big{(}\widehat{A^{*}}_{\mathbf{F}^{*}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}^{*}}\big{)}=\{\theta\in\mathbf{F}^{*}\,{\rm:}\;\,\imath^{*}\circ\jmath^{*}(\theta)\in\mathfrak{D}(\widehat{A^{*}}),\,\widehat{A^{*}}\,\imath^{*}\circ\jmath^{*}(\theta)\in\imath^{*}\circ\jmath^{*}(\mathbf{F}^{*})\}

and assume that [​[AC\blacktriangleright\!\!\blacktriangleright: ȷ(𝔇(A𝐅  )𝐅))\jmath^{*}\big{(}\mathfrak{D}\big{(}A^{*}_{\mathbf{F}^{*}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}^{*}}\big{)}\big{)} is dense in 𝔇(A^𝐅  )𝐅)\mathfrak{D}\big{(}\widehat{A^{*}}_{\mathbf{F}^{*}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}^{*}}\big{)} ]​] ıȷ(𝔇(A𝐅  )𝐅))\imath^{*}\circ\jmath^{*}\big{(}\mathfrak{D}\big{(}A^{*}_{\mathbf{F}^{*}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}^{*}}\big{)}\big{)} is dense in ıȷ(𝔇(A^𝐅  )𝐅))\imath^{*}\circ\jmath^{*}\big{(}\mathfrak{D}\big{(}\widehat{A^{*}}_{\mathbf{F}^{*}\mathrel{\hbox{\hskip 1.0pt\rule[-0.2pt]{3.0pt}{0.4pt}}\mkern-6.0mu\hbox{\char 41\relax}}\mathbf{F}^{*}}\big{)}\big{)} in the topology induced by the graph norm of A^\widehat{A^{*}} (that is, AA^{*} and 𝐅⸦⟶ȷ𝐗⸦⟶ı𝐄\mathbf{F}^{*}\mathop{\lhook\joinrel\longrightarrow}\limits^{\jmath^{*}}\mathbf{X}^{*}\mathop{\lhook\joinrel\longrightarrow}\limits^{\imath^{*}}\mathbf{E}^{*} satisfy Assumption 3.0).

Let ΩCσ(A)\varOmega\subset\mathbb{C}\setminus\sigma(A). Assume that z0σess(A)Ωz_{0}\in\sigma_{\mathrm{ess}}(A)\cap\partial\varOmega is an exceptional point of the essential spectrum of AA of rank rN0{}r\in\mathbb{N}_{0}\sqcup\{\infty\} relative to (Ω,𝐄,𝐅)(\varOmega,\mathbf{E},\mathbf{F}). Then z¯0σess(A)\bar{z}_{0}\in\sigma_{\mathrm{ess}}(A^{*}) is an exceptional point of the essential spectrum of AA^{*} of rank rr relative to (Ω,𝐅,𝐄)(\varOmega^{*},\,\mathbf{F}^{*},\,\mathbf{E}^{*}), with Ω:={ζC:ζ¯Ω}\varOmega^{*}:=\big{\{}\zeta\in\mathbb{C}\,{\rm:}\;\bar{\zeta}\in\varOmega\big{\}}.

Above, the assumption that 𝐄\mathbf{E} is reflexive is needed so that the existence of a limit of the resolvent (AzI)1(A-zI)^{-1}, zz0z\to z_{0}, zΩz\in\varOmega, in the weak operator topology of mappings 𝐄𝐅\mathbf{E}\to\mathbf{F} also provides the existence of a limit of (AζI)1(A^{*}-\zeta I)^{-1}, ζz¯0\zeta\to\bar{z}_{0}, ζ¯Ω\bar{\zeta}\in\varOmega, in the weak operator topology of mappings 𝐅𝐄\mathbf{F}^{*}\to\mathbf{E}^{*}.

4 Application to the Schrödinger operators

Let us illustrate how our approach from Section 3 can be applied to the study of properties of virtual states and LAP estimates of Schrödinger operators with nonselfadjoint potentials. According to the developed theory, it suffices to derive the estimates for model operators. If d3d\geq 3, one derives optimal LAP estimates for the Laplacian (see (GM, 74, Proposition 2.4) and (BC, 21, §3.3)); for d=2d=2, one considers the regularization Δ+g1B12-\Delta+\mathrm{g}\textrm{{1}}_{\mathbb{B}^{2}_{1}}, 0<g10<\mathrm{g}\ll 1, destroying the virtual level at z0=0z_{0}=0 (BC, 21, §3.2). For d=1d=1, one could proceed in the same way as for d=2d=2, although the estimates can be derived directly for any VL11(R,C)V\in L^{1}_{1}(\mathbb{R},\mathbb{C}) (BC, 21, §3.1). The resulting estimates will be valid for all complex-valued potentials when there are no virtual levels. When there are virtual levels, then the corresponding virtual states can be characterized as functions in the range of the regularized resolvent (Theorem 3.0).

Theorem 4.0  

Assume that VLρ(Rd,C)V\in L^{\infty}_{\rho}(\mathbb{R}^{d},\mathbb{C}), ρ>2\rho>2; if d=1d=1, it suffices to have VL11(R1,C)V\in L^{1}_{1}(\mathbb{R}^{1},\mathbb{C}) (see (1.6)). Let A=Δ+VA=-\Delta+V in L2(Rd)L^{2}(\mathbb{R}^{d}), 𝔇(A)=H2(Rd)\mathfrak{D}(A)=H^{2}(\mathbb{R}^{d}), d1d\geq 1.

  • \bullet

    If z0=0z_{0}=0 is not a virtual level of AA relative to Ω=CR+¯\varOmega=\mathbb{C}\setminus\overline{\mathbb{R}_{+}}, 𝐄=Ls2(Rd)\mathbf{E}=L^{2}_{s}(\mathbb{R}^{d}), 𝐅=Ls2(Rd)\mathbf{F}=L^{2}_{-s^{\prime}}(\mathbb{R}^{d}), with s,s>0s,\,s^{\prime}>0 sufficiently large, then the following mappings are continuous:

    (Az0I)Ω1:Ls2(Rd)Ls2(Rd),{s+s2,s,s>1/2,d=1;s,s>2d/2,s,s0,d2.(A-z_{0}I)^{-1}_{\varOmega}:\>L^{2}_{s}(\mathbb{R}^{d})\to L^{2}_{-s^{\prime}}(\mathbb{R}^{d}),\qquad\begin{cases}s+s^{\prime}\geq 2,\ s,\,s^{\prime}>{1}/{2},&d=1;\\ s,\,s^{\prime}>2-{d}/{2},\ s,\,s^{\prime}\geq 0,&d\geq 2.\end{cases}

    Moreover, for 1d31\leq d\leq 3,

    (Az0I)Ω1:L1(Rd)Ls2(Rd),Ls2(Rd)L(Rd),s>2d/2.(A-z_{0}I)^{-1}_{\varOmega}:\>L^{1}(\mathbb{R}^{d})\to L^{2}_{-s}(\mathbb{R}^{d}),\quad L^{2}_{s}(\mathbb{R}^{d})\to L^{\infty}(\mathbb{R}^{d}),\quad\forall s>2-d/2.
  • \bullet

    If z0=0z_{0}=0 is a virtual level of AA, then there is a nonzero solution to the following problem:

    (Az0I)Ψ=0,Ψ{L(Rd),d2;L(Rd)L1/202(Rd),d=3;L02(Rd),d=4;L2(Rd),d5.(A-z_{0}I)\Psi=0,\qquad\Psi\in\begin{cases}L^{\infty}(\mathbb{R}^{d}),&d\leq 2;\\ L^{\infty}(\mathbb{R}^{d})\cap L^{2}_{-1/2-0}(\mathbb{R}^{d}),&d=3;\\ L^{2}_{-0}(\mathbb{R}^{d}),&d=4;\\ L^{2}(\mathbb{R}^{d}),&d\geq 5.\end{cases}

For more details and references, see BC (21). Related results on properties of eigenstates and virtual states are in GN (20) (Schrödinger and massive Dirac operators in dimension d3d\geq 3 and massless Dirac operators in d2d\geq 2) and in (BBV, 20, Theorem 2.3) (Schrödinger operators in d2d\leq 2). Let us note that, prior to BC (21), the nonselfadjoint case has not been considered (although some results appeared in CP (05)). Moreover, as far as we know, even in the selfadjoint case, the LAP in dimension d=2d=2 at the threshold when it is a regular point of the essential spectrum was not available. Although the L1Ls2L^{1}\to L^{2}_{-s} and Ls2LL^{2}_{s}\to L^{\infty} estimates stated above are straightforward in dimension d=1d=1 and d=3d=3, we also do not have a reference.

Remark 4.0  

According to Theorem 3.0, the absence of uniform estimates of the form (ΔzI)1:Lp(Rd)Lq(Rd)(-\Delta-zI)^{-1}:\,L^{p}(\mathbb{R}^{d})\to L^{q}(\mathbb{R}^{d}) for zCR+¯z\in\mathbb{C}\setminus\overline{\mathbb{R}_{+}} for d2d\leq 2 KL (20) is directly related to the fact that there is a virtual level of Δ-\Delta at z0=0z_{0}=0 in dimensions d2d\leq 2 relative to (CR+¯,Ls2(Rd)\big{(}\mathbb{C}\setminus\overline{\mathbb{R}_{+}},\,L^{2}_{s}(\mathbb{R}^{d}), Ls2(Rd))L^{2}_{-s^{\prime}}(\mathbb{R}^{d})\big{)}, with arbitrarily large s,s0s,\,s^{\prime}\geq 0.

Example 4.0  

Since Ψ1\Psi\equiv 1 is an LL^{\infty}-solution to x2u=0\partial_{x}^{2}u=0, by Theorem 4.0, z0=0z_{0}=0 is not a regular point of the essential spectrum of the Laplacian in R\mathbb{R} relative to (CR+¯,Ls2(R),Ls2(R))\big{(}\mathbb{C}\setminus\overline{\mathbb{R}_{+}},\,L^{2}_{s}(\mathbb{R}),\,L^{2}_{-s^{\prime}}(\mathbb{R})\big{)}, with s,s>1/2s,\,s^{\prime}>1/2, s+s2s+s^{\prime}\geq 2.

Now let us show that z0=0z_{0}=0 is a virtual level of rank r=1r=1 (relative to the same triple (CR+¯,Ls2(R),Ls2(R))\big{(}\mathbb{C}\setminus\overline{\mathbb{R}_{+}},\,L^{2}_{s}(\mathbb{R}),\,L^{2}_{-s^{\prime}}(\mathbb{R})\big{)}). Consider a rank one perturbation of the Laplacian,

A=x2+1[1,1]1[1,1],,A𝒞(L2(R)),𝔇(A)=H2(R),A=-\partial_{x}^{2}+\textrm{{1}}_{[-1,1]}\otimes\langle\textrm{{1}}_{[-1,1]},\cdot\rangle,\qquad A\in\mathscr{C}(L^{2}(\mathbb{R})),\qquad\mathfrak{D}(A)=H^{2}(\mathbb{R}),

with 1[1,1]\textrm{{1}}_{[-1,1]} the characteristic function of the interval [1,1][-1,1]. We claim that z0=0z_{0}=0 is a regular point of σess(A)\sigma_{\mathrm{ess}}(A). Indeed, the relation Au=0Au=0 takes the form

u′′(x)=c1[1,1](x),xR,c:=11u(y)𝑑y.\displaystyle u^{\prime\prime}(x)=c\textrm{{1}}_{[-1,1]}(x),\qquad x\in\mathbb{R},\qquad c:=\int_{-1}^{1}u(y)\,dy. (4.1)

The requirement uL(R)u\in L^{\infty}(\mathbb{R}) implies that u(x)=au(x)=a_{-} for x<1x<-1 and u(x)=a+u(x)=a_{+} for x>1x>-1, with some a±Ca_{\pm}\in\mathbb{C}; for 1<x<1-1<x<1, one has u=a+bx+cx2/2u=a+bx+cx^{2}/2, with some a,bCa,\,b\in\mathbb{C}. The continuity of the first derivative at x=±1x=\pm 1 leads to bc=0b-c=0 and b+c=0b+c=0, hence b=c=0b=c=0; at the same time, the relation 0=c=11a𝑑x0=c=\int_{-1}^{1}a\,dx implies that a=0a=0 and thus u(x)u(x) is identically zero. Hence, there is no nontrivial LL^{\infty}-solution to (4.1). By Theorem 4.0, z0=0z_{0}=0 is a regular point of σess(A)\sigma_{\mathrm{ess}}(A), hence it is a virtual level of rank one of x2-\partial_{x}^{2}.

Acknowledgements.
The authors are most grateful to Gregory Berkolaiko, Kirill Cherednichenko, Fritz Gesztesy, Bill Johnson, Alexander V. Kiselev, Mark Malamud, Alexander Nazarov, Yehuda Pinchover, Roman Romanov, Thomas Schlumprecht, Vladimir Sloushch, Tatiana Suslina, Cyril Tintarev, Boris Vainberg, and Dmitrii Yafaev for their attention and advice. The authors are indebted to the anonymous referee for bringing to their attention several important references.

Conflict of interest.  The authors declare that they have no conflict of interest.

References