This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Limitations of Quantum Measurements and Operations of Scattering Type under the Energy Conservation Law

Ryota Katsube 111I have been involved in the research for this paper since I was in graduate school of Science, Tohoku University. Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan    Masanao Ozawa Center for Mathematical Science and Artificial Intelligence, Academy of Emerging Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan    Masahiro Hotta Department of Physics, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 10617, Taiwan (R.O.C)
Abstract

It is important to improve the accuracy of quantum measurements and operations both in engineering and fundamental physics. It is known, however, that the achievable accuracy of measurements and unitary operations are generally limited by conservation laws according to the Wigner–Araki–Yanase theorem (WAY theorem) and its generalizations. Although many researches have extended the WAY theorem quantitatively, most of them, as well as the original WAY theorem, concern only additive conservation laws like the angular momentum conservation law. In this paper, we explore the limitation incurred by the energy conservation law, which is universal but is one of the non-additive conservation laws. We present a lower bound for the error of a quantum measurement using a scattering process satisfying the energy conservation law. We obtain conditions that a control system Hamiltonian must fulfill in order to implement a controlled unitary gate with zero error when a scattering process is considered. We also show the quantitative relationship between the upper bound of the gate fidelity of a controlled unitary gate and the energy fluctuation of systems when a target system and a control system are both one qubit.

I Introduction

It is essential to improve the accuracy of quantum measurements and quantum gate operations in quantum information processing. Quantum computing attracts industrial attention, since Shor [1, 2] found an efficient quantum algorithm for prime factorization, the hardness of which is assumed in some protocols for public key cryptography. However, it is demanding to reduce the error in gate operations and measurements below the rate given by the threshold theorem for successful error correction to realize fault-torelant quantum computation [3, 4, 5, 6, 7]. Quantum key distribution [8], which aims to realize an information-theoretically secure cryptosystem, also demands to reduce the error to perform the protocol effectively, since any error, even not caused by eavesdroppers, reduces the key rate by error reconciliation. Other examples that require high accuracy of measurements in fundamental physics are the observation of the polarization of photons in the cosmic background radiation, which is thought to carry information about the early universe [9, 10], and the observation of gravitational waves, which has recently been used as a tool to elucidate the origin of elements and the early universe [11].

On the other hand, it is known that a conservation law limits the accuracy of measurements and unitary operations. Wigner [12] first showed in 1952 that the projective measurement of the spin xx-component of a particle with spin 12\frac{1}{2} cannot be realized under the conservation of angular momentum along the zz-axis. Later, Araki and Yanase [13] showed the no-go theorem which states that, in general, an additive conservation law limits the accuracy of projective measurement of the quantity not commuting with the conserved quantity. This theorem is called the Wigner–Araki–Yanase theorem (WAY theorem).

Ozawa [14, 15, 16] obtained quantitative generalizations of the WAY theorem by introducing a systematic method of manipulating the noise commutation relations, the commutation relations between the noise operator, previously introduced by von Neumann [17, p. 404], and the conserved quantity, and established the tradeoff between the measurement error and the fluctuation of the conserved quantity in the apparatus for arbitrary measurements, originally suggested by Yanase [18] for spin measurements. Ozawa [19] also derived a universally valid reformulation of Heisenberg’s error-disturbance relation and in [20] showed that the quantitative generalization [16] of the WAY theorem is a consequence of the conservation law and Heisenberg’s error-disturbance relation in its revised form.

The noise commutation relations were also used to evaluate the accuracy of gate implementations under conservation laws for the CNOT gate[21], followed by quantitative evaluations of the gate fidelity for the Hadamard gate and the NOT gate [20, 22], showing that to be the smaller the error, it is necessary to make the greater the fluctuation of the conserved quantity in the controller, or the size of the controller. The above approach was compared with Gea-Banacloche’s [23, 24, 25, 26] model dependent approach to the error in quantum logic gates caused by the quantum nature of controlling systems [27, 28]. Karasawa and his collaborators [22, 29] proved the implementation error bound for the NOT gate and later for arbitrary one-qubit gates. Afterwards, Tajima et al. [30, 31] provided a tighter lower bound for the error of quantum measurement, and implementations of quantum gates under conservation laws by expressing the fluctuation of the conserved quantity in terms of the quantum Fisher information.

The WAY theorem tells us that when we want to apply operations that break the symmetry, we must compensate the system’s conserved quantity fluctuations, i.e., the coherence with respect to conserved quantities, as a resource. This point of view has been systematized as the quantum resource theory of asymmetry, and the operations that are feasible in the presence of symmetry have been investigated [32, 33, 34, 35, 36, 37, 38, 39, 40]. The WAY theorem has also been applied to the black hole information loss problem [41, 42, 43] to investigate to which degree of completeness the scrambled information can be recovered in the presence of symmetry [44, 45].

Although most of the work on the WAY theorem has been done on additive conservation laws that do not include interaction terms, such as momentum and angular momentum conservation laws, some researchers extended the WAY theorem to multiplicative conservation laws [46] and non-additive conservation laws such as energy conservation laws because it contains interaction terms [47, 48, 49]. Navascués et al proved relations between the difference between a desired POVM measurement we want to implement and an actual measurement we are able to implement under the energy conservation and the energy distribution[47]. Miyadera et al. showed an inequality between the fidelity of information distribution and the norm of the interaction term of Hamiltonian[48]. Tukiainen proved a WAY-type no-go theorem beyond conservation laws in the assumption of the weak Yanase condition[49]. We are able to obtain an upper bound of gate fidelity by the WAY theorem in general, it is also known that there is a lower bound of gate fidelity under the energy conservation law using methods in the resource theory [50].

In this paper, we prove that the relation between a measurement error, non-commutativity of the measured quantity and the conserved quantity, and the variance of the conserved quantity under an additive conservation [16] is able to be extended to measurements in scattering processes under energy conservation and we have a similar lower bound of the measurement error. We also show an upper bound of the gate fidelity of SWAP gate as an application of the theorem. Furthermore, we prove necessary conditions for the perfect implementation of a controlled unitary gate in a scattering process under energy conservation. In addition, we also show an inequality between the gate fidelity and energy variances for two-qubits controlled unitary gate, which is the extension of Ozawa’s result [21].

One of the possible applications of our results for fundamental science is a design of gravitational wave detectors. Recently some analysis of the dynamics of the gravitational wave as a quantum field are known [51, 52, 53]. In the observation of a gravitational wave using a laser interferometer, the information of the gravitational wave is transfered to the laser interferometer via the gravitational interaction. Then we are able to know the state of the gravitational wave by measuring the state of the laser interferometer. However the energy conservation gives the constraints for measurement, we have to design detectors to lower the measurement error.

Section 2 presents a lower bound for the measurement error of quantum measurements in scattering processes, which are important in particle physics experiments, under the requirement of energy conservation. In section 3, we show the conditions that the free Hamiltonian of the control system must satisfy in order to obtain a vanishing implementation error of the control unitary gates in the case of energy conservation. We also give an inequality between the energy fluctuation and the gate fidelity of two-qubit controlled unitary gates under energy conservation in section 3. Finally, we summarize the results in section 4.

II Fundumental error bound of scattering quantum measurements under energy conservation law

In this section, we present an error limit of quantum measurements of scattering type under the energy conservation law.

Firstly, we review Ozawa’s inequality [19] and the quantification of the WAY theorem using it [16, 20] for our later discussion. Let’s consider that we want to measure an observable ASA_{S} of a system SS indirectly using a meter observable MDM_{D} of a detector system DD, in other words, we measure ASA_{S} at the initial time t=0t=0 by measuring the meter observable MDM_{D} at t=τt=\tau. In the Heisenberg picture, we indirectly measure AS(0)A_{S}(0) by measuring MD(τ)=UMDUM_{D}(\tau)=U^{\dagger}M_{D}U, where UU is a unitary time evolution operator from time t=0t=0 to t=τt=\tau that describes the process in which SS and DD become correlated. The output probability distribution of this indirect measurement is described by a POVM as follows. Let us denote a spectral decomposition of MDM_{D} by MD=mmPm,DM_{D}=\sum_{m}mP_{m,D}, where Pm,DP_{m,D} is a projection operator associated with an eigenvalue mm of MDM_{D}. Let us suppose that SS and DD are not correlated in the initial time and the initial state of the composite system SS+DD is given by ρSσD\rho_{S}\otimes\sigma_{D}. The probability that the measured value of MDM_{D} is mm, represented as Pr(MD=m||ρS){\rm Pr}(M_{D}=m||\rho_{S}) , is given by Pr(MD=m||ρS)=TrSD[(ISPm,D)U(ρSσD)U]{\rm Pr}(M_{D}=m||\rho_{S})={\rm Tr}_{SD}[(I_{S}\otimes P_{m,D})U(\rho_{S}\otimes\sigma_{D})U^{\dagger}]. Defining a POVM element EmE_{m} by Em=TrD[(ISσD)U(ISPm,D)U]E_{m}={\rm Tr}_{D}[(I_{S}\otimes\sigma_{D})U^{\dagger}(I_{S}\otimes P_{m,D})U], Pr(MD=m||ρS)=TrS[ρSEm]{\rm Pr}(M_{D}=m||\rho_{S})={\rm Tr}_{S}[\rho_{S}E_{m}] holds.

We define the error operator 𝐄{\bf E} for the measurement of ASA_{S} and the disturbance operator 𝐃{\bf D} for an observable BSB_{S} as follows:

𝐄\displaystyle{\bf E} =\displaystyle= U(ISMD)UASID,\displaystyle U^{\dagger}(I_{S}\otimes M_{D})U-A_{S}\otimes I_{D}, (1)
𝐃\displaystyle{\bf D} =\displaystyle= U(BSID)UBSID.\displaystyle U^{\dagger}(B_{S}\otimes I_{D})U-B_{S}\otimes I_{D}. (2)

In the indirect measurement, we indirectly measure AS(0)=ASIDA_{S}(0)=A_{S}\otimes I_{D} by measuring MD(τ)M_{D}(\tau) =U(ISMD)U=U^{\dagger}(I_{S}\otimes M_{D})U, we defined the error operator by the difference between AS(0)A_{S}(0) and MD(τ)M_{D}(\tau). Similarly, we defined the disturbance operator by the difference between BSB_{S} at t=0t=0 and BSB_{S} at t=τt=\tau. We define the measurement error ε(AS)\varepsilon(A_{S}) and the disturbance η(BS)\eta(B_{S}) by ε(AS)=Tr[𝐄2(ρSσD)]\varepsilon(A_{S})=\sqrt{{\rm Tr}[{\bf E}^{2}(\rho_{S}\otimes\sigma_{D})]} and η(BS)=Tr[𝐃2(ρSσD)]\eta(B_{S})=\sqrt{{\rm Tr}[{\bf D}^{2}(\rho_{S}\otimes\sigma_{D})]}. Then the following Ozawa’s inequality

ε(AS)η(BS)+ε(AS)σ(BS)+σ(AS)η(BS)12|Tr([AS,BS]ρS)|\displaystyle\varepsilon(A_{S})\eta(B_{S})+\varepsilon(A_{S})\sigma(B_{S})+\sigma(A_{S})\eta(B_{S})\geq\frac{1}{2}\left|{\rm Tr}\left([A_{S},B_{S}]\rho_{S}\right)\right| (3)

holds[19], where σ(AS)\sigma(A_{S}) and σ(BS)\sigma(B_{S}) represent standard deviations of ASA_{S} and BSB_{S} in the state ρS\rho_{S}, respectively.

Next, we review the lower bound of the measurement error ε(AS)\varepsilon(A_{S}) when there is an additive conserved quantity [16]. We suppose that L=LSID+ISLDL=L_{S}\otimes I_{D}+I_{S}\otimes L_{D} is an additive conserved observable for the measurement process. For example, the angular momentum and the momentum are additive conserved observables. When we have an additive conserved quantity LL, the time evolution operator UU which characterizes the measurement process must satisfy the following condition:

[U,L]=0.\displaystyle[U,L]=0. (4)

We further assume that the commutativity of the meter observable MDM_{D} and the detector’s conserved quantity LDL_{D}, which is called Yanase’s condition, i.e., [MD,LD]=0[M_{D},L_{D}]=0. Then it is known that

ε(AS)2|Tr([AS,LS]ρ)|24σ(LS)2+4σ(LD)2\displaystyle\varepsilon(A_{S})^{2}\geq\frac{\left|{\rm Tr}\left([A_{S},L_{S}]\rho\right)\right|^{2}}{4\sigma(L_{S})^{2}+4\sigma(L_{D})^{2}} (5)

holds [16]. In [20] it is shown that Eq. (5) is a consequence of Ozawa’s inequality [19]. This enables us to evaluate the lower bound of the measurement error quantitatively when there is an additive conserved observable.

In the following, we show that Eq. (5) is able to be extended to measurements in scattering processes under energy conservation and we have a similar lower bound of the measurement error. In the following, we consider two spin 12\frac{1}{2} particles I and II. Each of them has one degree of freedom in position space (the orbital degree) and the spin degree of freedom. We represent by OIO_{\rm I} and OIIO_{\rm II} the orbital degrees of freedom of I and II, respectively. We denote by SS and DD the spin degrees of freedom of I and II, respectively. The observable ASA_{S} is assumed to be an operator on the spin state space of I. Let I and II are initially spatially separated and having not interacted before. Then, as I approaches II, they start to interact, creating a correlation between I and II. Then, as I moves away from II, after a certain time the interaction stops. We can indirectly measure the system SS by measuring the system DD, after it is correlated with the system SS.

Let HI+IIH_{{\rm I+II}} be the time-independent Hamiltonian of the composite system I + II, given by

HI+II=HIIII+IIHII+Hint,H_{{\rm I+II}}=H_{\rm I}\otimes I_{\rm II}+I_{\rm I}\otimes H_{\rm II}+H_{int}, (6)

where HIH_{\rm I} is the Hamiltonian of I, HIIH_{\rm II} is the Hamiltonian of II{\rm II} and HintH_{int} is the interaction term between I{\rm I} and II{\rm II}. We consider particular initial states in which the interaction term is not effective in the time period (0,τ)(0,\tau). The time evolution operator of the scattering process UI+IIU_{{\rm I}+{\rm II}} is defined by

UI+II=eiτHI+II,U_{{\rm I}+{\rm II}}=e^{-i\tau H_{{\rm I}+{\rm II}}}, (7)

where we employed natural units, =1\hbar=1.

Let us suppose that the initial state of I{\rm I} is |ψ|χ\ket{\psi}\ket{\chi} and that of II{\rm II} is |ϕ|ξ\ket{\phi}\ket{\xi}, where |ψ\ket{\psi} and |ϕ\ket{\phi} are wavefunctions of the orbital degrees of I{\rm I} and II{\rm II}, respectively, and moreover |χ\ket{\chi} and |ξ\ket{\xi} are state vectors of SS and DD, respectively. The final state of the composite system I{\rm I}+II{\rm II} at t=τt=\tau is UI+II(|ψ|χ|ϕ|ξ)U_{{\rm I+II}}(\ket{\psi}\ket{\chi}\otimes\ket{\phi}\ket{\xi}). We assume that particles I{\rm I} and II{\rm II} are spatially localized and separated at t=0t=0, and the interaction HintH_{int} is a short range interaction. Formally, we assume the following condition on the initial states and HI+IIH_{\rm I+II}:

Hint(|ψ|χ|ϕ|ξ)=HintUI+II(|ψ|χ|ϕ|ξ)=0.H_{int}(\ket{\psi}\ket{\chi}\otimes\ket{\phi}\ket{\xi})=H_{int}U_{{\rm I}+{\rm II}}(\ket{\psi}\ket{\chi}\otimes\ket{\phi}\ket{\xi})=0. (8)

Note that we consider some specific initial orbital states |ψ\ket{\psi} and |ϕ\ket{\phi} which satisfy Eq. (8). We do not impose Eq. (8) for all orbital states of I{\rm I} and II{\rm II}. On the other hand, we consider arbitrary spin states |χ\ket{\chi} for SS and an arbitrary but fixed state |ξ\ket{\xi} for DD in Eq. (8).

We consider a lower bound of measurement errors when we indirectly measure an observable ASA_{S} of SS by measuring a meter observable MDM_{D} of DD under the energy conservation law,

[UI+II,HI+II]=0.\displaystyle[U_{{\rm I}+{\rm II}},H_{{\rm I}+{\rm II}}]=0. (9)

We assume that the meter observable satisfies the Yanase condition:

[HII,MD]=0.\displaystyle[H_{\rm II},M_{D}]=0. (10)

This means that we can read off the value of the meter observable with zero error under the energy conservation. We define the error of an indirect measurement of ASA_{S}, ε(AS)\varepsilon(A_{S}) by

ε(AS)={UI+IIMD~UI+IIAS~}(|ψ|χ|ϕ|ξ),\varepsilon(A_{S})=\|\{U_{{\rm I+II}}^{\dagger}\tilde{M_{D}}U_{{\rm I+II}}-\tilde{A_{S}}\}(\ket{\psi}\ket{\chi}\otimes\ket{\phi}\ket{\xi})\|, (11)

where AS~=IOIASIOIIID\tilde{A_{S}}=I_{O_{\rm I}}\otimes A_{S}\otimes I_{O_{\rm II}}\otimes I_{D} and MD~=IOIISIOIIMD\tilde{M_{D}}=I_{O_{\rm I}}\otimes I_{S}\otimes I_{O_{\rm II}}\otimes M_{D}. Under the above assumptions, for orbital states |ψ\ket{\psi} and |ϕ\ket{\phi} which satisfy Eq. (8) and for arbitrary spin states |χ\ket{\chi} and for an arbitrary but fixed state |ξ\ket{\xi}, the following inequality for ε(AS)\varepsilon(A_{S}) holds under the energy conservation:

ε(AS)2|[IoIAS,HI]|24σ2(HI)+4σ2(HII),\varepsilon(A_{S})^{2}\geq\frac{|\braket{[I_{o_{\rm I}}\otimes A_{S},H_{\rm I}]}|^{2}}{4\sigma^{2}(H_{I})+4\sigma^{2}(H_{\rm II})}, (12)

where σ(HI)\sigma(H_{\rm I}) and σ(HII)\sigma(H_{\rm II}) are standard deviations of HIH_{\rm I} and HIIH_{\rm II} on the initial state, respectively, and [IoIAS,HI]\braket{[I_{o_{\rm I}}\otimes A_{S},H_{\rm I}]} represents the expectation value of the commutator [IoIAS,HI][I_{o_{\rm I}}\otimes A_{S},H_{\rm I}] on |ψ|χ\ket{\psi}\ket{\chi}. From Eq. (12), we can find that the lower bound of ε(AS)\varepsilon(A_{S}) depends on the non-commutativity of HIH_{\rm I} and IoIASI_{o_{\rm I}}\otimes A_{S}, and variances of Hamiltonians HIH_{\rm I} and HIIH_{\rm II} on the initial state. Therefore we can decrease the bound of the measurement error by increasing the energy variance on the initial state. The proof of Eq. (12) is given in appendix A.

Let us consider whether we are able to implement a SWAP gate using nuclear spins of heavy atoms at rest and photons as an application of Eq. (12). We take this example because it is important from the point of view of engineering to transfer information from a nuclear spin to a photon when we want to transmit the results of quantum computation which are encoded in states of nuclear spins by quantum communication using light. We consider SS as a nuclear spin degree and DD as a photon spin degree. Let us suppose that we apply a magnetic field in the xx direction to the nuclear spin, and the photon moves along with the xx-axis. There are four degrees of freedom. The first is the orbital degree of freedom of the nuclear spin. The second is the spin degree of freedom of the nuclear spin. The third is the photon’s orbital degree of freedom in the xx direction. The forth is the spin of the photon. We would like to swap the state of SS and the state of DD. We consider the following Hamiltonian,

HI\displaystyle H_{\rm I} =\displaystyle= bσx,SIDIoIIoII,\displaystyle b\sigma_{x,S}\otimes I_{D}\otimes I_{o_{\rm I}}\otimes I_{o_{\rm II}}, (13)
HII\displaystyle H_{\rm II} =\displaystyle= ISIDIoIpx,\displaystyle I_{S}\otimes I_{D}\otimes I_{o_{\rm I}}\otimes p_{x}, (14)
Hint\displaystyle H_{int} =\displaystyle= g(σx,Sσx,D+σy,Sσy,D+σz,Sσz,DISID)IoIw(x),\displaystyle g\left(\sigma_{x,S}\otimes\sigma_{x,D}+\sigma_{y,S}\otimes\sigma_{y,D}+\sigma_{z,S}\otimes\sigma_{z,D}-I_{S}\otimes I_{D}\right)\otimes I_{o_{\rm I}}\otimes w(x), (15)

where bb is a constant that represents the strength of the magnetic field, and gg is the coupling constant between the nuclear spin and the photon. In special relativity, the energy of the photon with momentum p\vec{p} is given by c|p|c|\vec{p}|, and we employed natural units, c=1c=1. w(x)w(x) is a function of the position operator xx of the photon, and it takes non-zero values only for regions where the interaction between the nuclear spin and the photon exists. This type of Hamiltonian is known as Coleman-Hepp model [54]. Here, we consider the dipole- dipole interaction between S and D. This interaction has three-dimensional rotational symmetry, and the strength of the interaction w(x)w(x) is able to be arbitrarily set. We consider that Eq. (15) is an effective Hamiltonian model which is applicable to experiments. Fig. 1 is the conceptual figure of the setting. The gray area in the figure represents the region where w(x)0w(x)\neq 0. At first, the nuclear spin and the photon are spatially separated, and there is no interaction. When the photon approaches the nuclear spin, they begin to interact with each other. After the scattering, the photon propagates infinity, and the interaction vanishes. When gg is very large, HIH_{\rm I} and HIIH_{\rm II} are negligible compared to HintH_{int} in the region where the interaction exists. In the region where w(x)w(x) is able to be approximated by a constant function, we are able to make eiHintte^{-iH_{int}t} be same as SWAP gate which acts on the spin state spaces of SS and DD by adjusting gw(x)gw(x).

Refer to caption
Figure 1: Conceptual figure of a setting of the swapping operation. The red arrow represents the spin of the photon. The blue arrow represents the nuclear spin of the atom. The photon propagates in xx direction with the momentum pxp_{x}. After the scattering, swapping between the spins is achieved.

We regard the implementation of SWAP gate as the measurement of a nuclear spin σz\sigma_{z} where a meter observable is a photon spin σz\sigma_{z} and use Eq. (12), then we find that

ε(σz)2b2|σy|2b2σ(σx)2+σ(px)2\displaystyle\varepsilon(\sigma_{z})^{2}\geq\frac{b^{2}|\braket{\sigma_{y}}|^{2}}{b^{2}\sigma(\sigma_{x})^{2}+\sigma(p_{x})^{2}} (16)

holds. Note that because σz,D\sigma_{z,D} and pxp_{x} are operators acting on different Hilbert spaces, the Yanase condition is satisfied. On the other hand, when we succeed in implementing SWAP gate USWAPU_{SWAP} perfectly,

ε(σz)2=[σz,SIDUSWAP(ISσz,D)USWAP]2=0\displaystyle\varepsilon(\sigma_{z})^{2}=\braket{[\sigma_{z,S}\otimes I_{D}-U_{SWAP}^{\dagger}(I_{S}\otimes\sigma_{z,D})U_{SWAP}]^{2}}=0 (17)

must be satisfied. Therefore, we are not able to implement SWAP gate perfectly when the fluctuation of momentum of the photon in the initial state is finite.

We are able to quantify it by deriving an inequality between the gate fidelity of SWAP gate FSWAPF_{SWAP} and the energy variance. Before showing the inequality of FSWAPF_{SWAP}, we give the definition of the gate fidelity and the worst error probability of the physical realization. We consider that we would like to implement a unitary gate UidealU_{ideal} which acts on two systems SS and DD. We represent the initial state of the composite system SS+DD by ρ\rho. We also consider an external system EE and suppose that its initial state is |ξ\ket{\xi}. Considering the purification, we are able to assume that the initial state of the external system is a pure state. We define a unitary time evolution operator which acts on the composite system of SS+DD+EE by UU. The state of SS+DD after UU is applied, which we represent by (ρ)\mathcal{E}(\rho), is

(ρ)=TrE[U(ρ|ξξ|)U].\displaystyle\mathcal{E}(\rho)={\rm Tr}_{E}[U(\rho\otimes\ket{\xi}\bra{\xi})U^{\dagger}]. (18)

On the other hand, if we succeed in implementing UidealU_{ideal} perfectly, the final state of SS+DD is UidealρUidealU_{ideal}\rho U_{ideal}^{\dagger}. Therefore, we define the worst error probability of the physical realization of UidealU_{ideal} by the completely bounded distance (CB distance) [55, 56] as follows:

DCB(,Uideal)=supρS+D+ED(S+DIE(ρS+D+E),(UidealIE)ρS+D+E(UidealIE)),\displaystyle D_{CB}(\mathcal{E},U_{ideal})=\sup_{\rho_{S+D+E^{\prime}}}D\left(\mathcal{E}_{S+D}\otimes I_{E^{\prime}}(\rho_{S+D+E^{\prime}}),(U_{ideal}\otimes I_{E^{\prime}})\rho_{S+D+E^{\prime}}(U_{ideal}^{\dagger}\otimes I_{E^{\prime}})\right), (19)

where EE^{\prime} is another external system and D(ρ1,ρ2)D(\rho_{1},\rho_{2}) is the trace distance given by

D(ρ1,ρ2)=12Tr[|ρ1ρ2|].\displaystyle D(\rho_{1},\rho_{2})=\frac{1}{2}{\rm Tr}\left[|\rho_{1}-\rho_{2}|\right]. (20)

The gate trace distance between UidealU_{ideal} and the physical implementation \mathcal{E}, D(,Uideal)D(\mathcal{E},U_{ideal}) is defined by

D(,Uideal)=supρS+DD((ρS+D),UidealρS+DUideal).\displaystyle D(\mathcal{E},U_{ideal})=\sup_{\rho_{S+D}}D(\mathcal{E}(\rho_{S+D}),U_{ideal}\,\rho_{S+D}U^{\dagger}_{ideal}). (21)

From the definition of the CB distance,

DCB(,Uideal)D(,Uideal)\displaystyle D_{CB}(\mathcal{E},U_{ideal})\geq D(\mathcal{E},U_{ideal}) (22)

holds. By minimizing over all physical implementation (U,|ξ)(U,\ket{\xi}),

DCB(,Uideal)inf(U,|ξ)D(,Uideal)\displaystyle D_{CB}(\mathcal{E},U_{ideal})\geq\inf_{(U,\ket{\xi})}D(\mathcal{E},U_{ideal}) (23)

can be found. Because of the joint convexity of the trace distance, we are able to assume that ρS+D\rho_{S+D} is a pure state. The gate fidelity between UidealU_{ideal} and \mathcal{E}, which is denoted by F(,Uideal)F(\mathcal{E},U_{ideal}), is give by

F(,Uideal)inf|ψF(|ψ),\displaystyle F(\mathcal{E},U_{ideal})\coloneqq\inf_{\ket{\psi}}F(\ket{\psi}), (24)

where |ψ\ket{\psi} is a spin wavefunction of S+DS+D and

F(|ψ)=ψ|Uideal(|ψψ|)Uideal|ψ12.\displaystyle F(\ket{\psi})=\braket{\psi}{U_{ideal}^{\dagger}\mathcal{E}(\ket{\psi}\bra{\psi})U_{ideal}}{\psi}^{\frac{1}{2}}. (25)

The following relation between the trace distance and fielity holds:

D(,Uideal)1F(,Uideal)2.\displaystyle D(\mathcal{E},U_{ideal})\geq 1-F(\mathcal{E},U_{ideal})^{2}. (26)

Therefore,

DCB(,Uideal)D(,Uideal)1F(,Uideal)2\displaystyle D_{CB}(\mathcal{E},U_{ideal})\geq D(\mathcal{E},U_{ideal})\geq 1-F(\mathcal{E},U_{ideal})^{2} (27)

is verified. If DCB(,Uideal)>0D_{CB}(\mathcal{E},U_{ideal})>0, we are not able to implement UidealU_{ideal} perfectly.

When the Hamiltonian is given by Eq. (15) , for position states which satisfy Eq.(8),

FSWAP21b24b2+4σ(px)2\displaystyle F_{SWAP}^{2}\leq 1-\frac{b^{2}}{4b^{2}+4\sigma(p_{x})^{2}} (28)

holds. The derivation of this inequality is given in Appendix B.

Furthermore, we are able to extend the bound for the Hadamard gate under an additive conservation law in Ref. [20] to that under the energy conservation law. For example, let us consider we would like to implement the Hadamard gate using the composite system SS+DD where the Hamiltonian of the composite system is

H=sx,S+Lx,D+Hint,\displaystyle H=s_{x,S}+L_{x,D}+H_{int}, (29)

where sx,Ss_{x,S} and Lx,DL_{x,D} are the xx component of the angular momentum of each system. When the interaction term satisfies Eq. (8) , from Eq. (12) and similar calculations as in Ref. [20], we are able to show the following bound:

1FH2ε(sz,S)214+16σ(Lx,D)2,\displaystyle 1-F_{H}^{2}\geq\varepsilon(s_{z,S})^{2}\geq\frac{1}{4+16\sigma(L_{x,D})^{2}}, (30)

where FHF_{H} is the gate fidelity of the Hadamard gate.

In this section, we show the relation Eq. (12) between the measurement error in scattering processes and the energy conservation. We also prove that SWAP gate is not able to be implemented perfectly as an application of Eq. (12). Furthermore, the bound of the gate fidelity of the Hadamard gate proved in Ref. [20] under an additive conservation law is able to be expanded under the energy conservation in scattering processes.

III Conditions which Hamiltonian of a controlled system must satisfy for implementing controlled unitary gates perfectly under energy conservation

In this section, we show necessary conditions that the Hamiltonian of a control system must satisfy for implementing controlled unitary gates with zero error in scattering processes under energy conservation. We also give an upper bound of the gate fidelity of two-qubit controlled gates.

Let us represent a control system and a target system as CC and TT, respectively. We consider two orthogonal states of CC, |ϕ0C\ket{\phi_{0}}_{C} and |ϕ1C\ket{\phi_{1}}_{C}. Note that {|ϕ0C,|ϕ1C}\{\ket{\phi_{0}}_{C},\ket{\phi_{1}}_{C}\} is not necessarily a complete set. We deal with a controlled gate UCUU_{CU} such that when the state of CC is |ϕ0C\ket{\phi_{0}}_{C}, there is no effect on TT, and when it is |ϕ1C\ket{\phi_{1}}_{C}, a unitary operator VTV_{T} is acting in TT. The action of UCUU_{CU} is written as

UCU|ϕ0C|ψT\displaystyle U_{CU}\ket{\phi_{0}}_{C}\ket{\psi}_{T} =\displaystyle= |ϕ0C|ψT,\displaystyle\ket{\phi_{0}^{\prime}}_{C}\ket{\psi}_{T},
UCU|ϕ1C|ψT\displaystyle U_{CU}\ket{\phi_{1}}_{C}\ket{\psi}_{T} =\displaystyle= |ϕ1C(VT|ψT),\displaystyle\ket{\phi_{1}^{\prime}}_{C}\left(V_{T}\ket{\psi}_{T}\right), (31)

for an arbitrary state |ψT\ket{\psi}_{T} of T. Note that final states of CC, |ϕ0C\ket{\phi_{0}^{\prime}}_{C} and |ϕ1C\ket{\phi_{1}^{\prime}}_{C} are independent of the initial state of TT, |ψT\ket{\psi}_{T}. We consider a non-trivial gate such that VTITV_{T}\neq I_{T}.

Let HCH_{C}, HTH_{T}, and HintH_{int} denote the Hamiltonian of CC, that of TT, and an interaction Hamiltonian between CC and TT. The total Hamiltonian of the composite system CC and TT, represented as HC+TH_{C+T}, is given by

HC+T=HCIT+ICHT+Hint.\displaystyle H_{C+T}=H_{C}\otimes I_{T}+I_{C}\otimes H_{T}+H_{int}. (32)

Similar to the previous section, we examine a scattering process in which C and T are initially spatially separated, and the interaction occurs as C approaches T. After some time, C and T become spatially separated once again. We define τ\tau as the time interval during which the interaction is non-zero. The time evolution operator describing the scattering process UCTU_{CT} is written as

UCT=exp(iτHC+T).U_{CT}=\exp(-i\tau H_{C+T}). (33)

We assume that

ϕ|Cψ|THint|ϕC|ψT=ϕ|Cψ|TUCTHintUCT|ϕC|ψT=0,\bra{\phi}_{C}\bra{\psi}_{T}H_{int}\ket{\phi}_{C}\ket{\psi}_{T}=\bra{\phi}_{C}\bra{\psi}_{T}U_{CT}^{\dagger}H_{int}U_{CT}\ket{\phi}_{C}\ket{\psi}_{T}=0, (34)

for an arbitrary superposition state of CC, |ϕC=c0|ϕ0C+c1|ϕ1C\ket{\phi}_{C}=c_{0}\ket{\phi_{0}}_{C}+c_{1}\ket{\phi_{1}}_{C} where |c0|2+|c1|2=1|c_{0}|^{2}+|c_{1}|^{2}=1, and an arbitrary state of TT, |ψT\ket{\psi}_{T}.

When implementing the controlled unitary gate, UCUU_{CU} using this scattering process, we adjust the interaction HintH_{int} and the interaction time τ\tau to satisfy the following relations:

UCT|ϕ0C|ψT\displaystyle U_{CT}\ket{\phi_{0}}_{C}\ket{\psi}_{T} =\displaystyle= |ϕ0C|ψT,\displaystyle\ket{\phi^{\prime}_{0}}_{C}\ket{\psi}_{T},
UCT|ϕ1C|ψT\displaystyle U_{CT}\ket{\phi_{1}}_{C}\ket{\psi}_{T} =\displaystyle= |ϕ1C(VT|ψT),\displaystyle\ket{\phi^{\prime}_{1}}_{C}(V_{T}\ket{\psi}_{T}), (35)

for arbitrary initial state |ψT\ket{\psi}_{T} of TT. However when the energy conservation law

[HC+T,UCT]=0,\displaystyle[H_{C+T},U_{CT}]=0, (36)

holds, HCH_{C} must satisfy the following initial condition,

ϕ0|HC|ϕ1C=0\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}=0 (37)

to implement the gate UCUU_{CU} with zero-error.

If HintH_{int} satisfies the conditions below similar to conditions Eq. (8):

Hint|ϕ0C|ψT\displaystyle H_{int}\ket{\phi_{0}}_{C}\ket{\psi}_{T} =\displaystyle= 0,\displaystyle 0,
Hint|ϕ1C|ψT\displaystyle H_{int}\ket{\phi_{1}}_{C}\ket{\psi}_{T} =\displaystyle= 0,\displaystyle 0,
Hint|ϕ0C|ψT\displaystyle H_{int}\ket{\phi^{\prime}_{0}}_{C}\ket{\psi}_{T} =\displaystyle= 0,\displaystyle 0,
Hint|ϕ1C|ψT\displaystyle H_{int}\ket{\phi^{\prime}_{1}}_{C}\ket{\psi}_{T} =\displaystyle= 0,\displaystyle 0, (38)

for an arbitrary state |ψT\ket{\psi}_{T}, the additional condition,

ϕ0|HC2|ϕ1=0,\displaystyle\braket{\phi_{0}}{H_{C}^{2}}{\phi_{1}}=0, (39)

is requested to implement UCUU_{CU} perfectly under energy conservation. Note that if Eq. (38) holds, Eq. (34) is also satisfied. The converse is not true. Thus Eq. (38) is the stronger condition than Eq. (34). When we assume Eq. (38) , we are able to show a more stringent condition Eq.(39) in addition to Eq. (37) . We give the proofs of Eq. (37) and Eq. (39) in appendix C.

Furthermore, if CC and TT are one-qubit systems, UCUU_{CU} becomes a two-qubit controlled gate, and VTV_{T} becomes a one-qubit gate. The gate VTV_{T} can be represented as

VT(θ)=eiϕ(cosθ2IT+isinθ2uσ),V_{T}(\theta)=e^{i\phi}\left(\cos\frac{\theta}{2}I_{T}+i\sin\frac{\theta}{2}\vec{u}\cdot\vec{\sigma}\right), (40)

where u\vec{u} is a three-dimensional real vector and σ\vec{\sigma} is the vector defined by σ(σx,σy,σz)\vec{\sigma}\coloneqq(\sigma_{x},\sigma_{y},\sigma_{z}), where σx\sigma_{x}, σy\sigma_{y} and σz\sigma_{z} are the Pauli matrices which act on the Hilbert space of TT. The domain of θ\theta and ϕ\phi are 0ϕ<2π0\leq\phi<2\pi and 0θπ0\leq\theta\leq\pi, respectively.

When implementing a two-qubit controlled unitary gate UCUU_{CU} using a scattering process under energy conservation, we have the following inequality regarding the CB distance between UCUU_{CU} and the physical implementation α\mathcal{E}_{\alpha}:

DCB(α,UCU)2sin2θ2[σ(l)C,HC]216(2γ+HA)2D_{CB}(\mathcal{E}_{\alpha},U_{CU})^{2}\geq\frac{\sin^{2}\frac{\theta}{2}\left\|\left[\sigma(\vec{l})_{C},H_{C}\right]\right\|^{2}}{16(2\gamma+\|H_{A}\|)^{2}} (41)

where σ(l)|ϕ0ϕ0||ϕ1ϕ1|\sigma(\vec{l})\coloneqq\ket{\phi_{0}}\bra{\phi_{0}}-\ket{\phi_{1}}\bra{\phi_{1}}, γmax{HC,HT}\gamma\coloneqq\max\{\|H_{C}\|,\|H_{T}\|\} and HAH_{A} is the free Hamiltonian of the ancillary system AA. If ϕ0|HC|ϕ1=0\braket{\phi_{0}}{H_{C}}{\phi_{1}}=0 holds, the Hamiltonian HCH_{C} commutes with σ(l)\sigma(\vec{l}) and the upper bound of gate fidelity is 1, that is to say, we can implement UCUU_{CU} perfectly. We also find that the bound dependence of the angle θ\theta is sin2θ2\sin^{2}\frac{\theta}{2}. The derivation of Eq. (41) is provided in appendix D.

In this section, we show that HCH_{C} must satisfy Eq. (37) and Eq. (39) to implement a non-trivial controlled gate whose action is given by Eq.(31) with zero-error using scattering process under energy conservation law. We also obtain the upper bound of gate fidelity Eq. (41) for a two-qubit controlled gate.

IV Summary

We showed a lower bound of the measurement error Eq. (12) for scattering-type measurements which satisfy Eq. (8) under the energy conservation in section 2. In section 2 we also presented that the SWAP gate is not able to be implemented perfectly as an application of Eq. (12). Futhermore, the bound of the gate fidelity of the Hadamard gate proved in Ref. [20] under an additive conservation law is able to be expanded under the energy conservation in scattering processes. In section 3, we gived the necessary condition Eq. (37) which must be fulfilled to implement a controlled unitary gate described by Eq. (31) without error in a scattering process under energy conservation. We also proved that when the interaction term satisfies Eq. (38), the additional necessary condition for HCH_{C}, Eq. (39) must also be fulfilled to implement a controlled unitary gate perfectly. Moreover, when CC and TT are one-qubit systems, the quantitative relation Eq. (41) between the gate fidelity and the non-diagonal entry of HCH_{C} is shown. This result extends Ozawa’s result which evaluates the upper bound of the gate fidelity of CNOT gates [21].

Acknowledgements.
This research was partially supported by JSPS KAKENHI Grants No. JP24H01566 (M.O.), No. JP22K03424 (M.O.), No. JP21K11764 (M.O.), No. JP19H04066 (M.O.), No. JP19K03838 (M.H.), No. JP21H0518 (M.H.), No. JP21H05188 (M.H.), JST CREST Grant Number JPMJCR23P4 (M.O.), Japan, Foundational Questions Institute (M.H.), Silicon Valley Community Foundation (M.H.), JST SPRING, Grant No. JPMJSP2114 (R.K.), a Scholarship of Tohoku University, Division for Interdisciplinary Advanced Research and Education (R.K.), and the WISE Program for AI Electronics, Tohoku University (R.K.).

Appendix A Proof of bound of error of scattering-type measurement under energy conservation

In this section, we derive the inequality of the measurement error in a scattering process under energy conservation Eq. (12) from Ozawa’s inequality [19] by extending the argument given in [20]. As described in the main text, we assume that I{\rm I} and II{\rm II} are spin 12\frac{1}{2} particles,Each of them has one degree of freedom in position space (the orbital degree) and the spin degree of freedom. We represent by OIO_{\rm I} and OIIO_{\rm II} the orbital degrees of freedom of I and II, respectively. We denote by SS and DD the spin degrees of freedom of I and II, respectively. Measuring an observable MDM_{D} of the system DD, we indirectly measure an observable of system SS denoted by ASA_{S}. The observable ASA_{S} is assumed to be an operator on the spin state space of I.

To proof the the lower bound Eq. (12), we introduce another measurement particle III{\rm III}. The particle III has the orbital degree denoted by OIIIO_{\rm III}. Let the position and the momentum of particle III{\rm III} be QIIIQ_{\rm III} and PIIIP_{\rm III}, respectively.

For the time region (0,τ)(0,\tau), the time-independent Hamiltonian of the composite system I + II+III, HI+II+IIIH_{{\rm I+II+III}} is given by

HI+II+III=HIIIIIIII+IIHIIIIII+IIIIIHIII+HintIIII,H_{{\rm I+II+III}}=H_{\rm I}\otimes I_{\rm II}\otimes I_{\rm III}+I_{\rm I}\otimes H_{\rm II}\otimes I_{\rm III}+I_{\rm I}\otimes I_{\rm II}\otimes H_{\rm III}+H_{int}\otimes I_{\rm III}, (42)

where HIH_{\rm I} is the Hamiltonian of I , HIIH_{\rm II} is the Hamiltonian of II{\rm II}, HIIIH_{\rm III} is the Hamiltonian of III{\rm III} and HintH_{int} is the interaction term between I{\rm I} and II{\rm II}.

For the time region (τ,τ)(\tau,\tau^{\prime}), the Hamiltonian of the composite system is given by

HI+II+III=HIIIIIIII+IIHIIIIII+IIIIIHIII+IIHint,H_{{\rm I+II+III}}^{\prime}=H_{\rm I}\otimes I_{\rm II}\otimes I_{\rm III}+I_{\rm I}\otimes H_{\rm II}\otimes I_{\rm III}+I_{\rm I}\otimes I_{\rm II}\otimes H_{\rm III}+I_{\rm I}\otimes H_{int}^{\prime}, (43)

where HintH^{\prime}_{int} is the interaction between II{\rm II}and III{\rm III} which is given by

Hint=kIOIIMDPIII,H^{\prime}_{int}=kI_{O_{\rm II}}\otimes M_{D}\otimes P_{\rm III}, (44)

where k1ττk\coloneqq\frac{1}{\tau^{\prime}-\tau}.

The time evolution operator for the time region (0,τ)(0,\tau) is defined by

UI+II+III=UI+IIUIII,\displaystyle U_{{\rm I}+{\rm II}+{\rm III}}=U_{{\rm I}+{\rm II}}\otimes U_{\rm III}, (45)
UI+II=eiτ(HI+HII+Hint),\displaystyle U_{{\rm I}+{\rm II}}=e^{-i\tau(H_{{\rm I}}+H_{\rm II}+H_{int})}, (46)
UIII=eiτHIII.\displaystyle U_{\rm III}=e^{-i\tau H_{\rm III}}. (47)

The time evolution operator for the time region (τ,τ)(\tau,\tau^{\prime}) is defined by

UI+II+III=ei(ττ)HI+II+III.\displaystyle U_{{\rm I}+{\rm II}+{\rm III}}^{\prime}=e^{-i(\tau^{\prime}-\tau)H_{\rm I+II+III}^{\prime}}. (48)

Let us suppose that the initial state of I{\rm I} is |ψ|χ\ket{\psi}\ket{\chi} and that of II{\rm II} is |ϕ|ξ\ket{\phi}\ket{\xi}, where |ψ\ket{\psi} and |ϕ\ket{\phi} are wavefunctions of the orbital degrees of I{\rm I} and II{\rm II}, respectively, and moreover |χ\ket{\chi} and |ξ\ket{\xi} are state vectors of SS and DD, respectively. We denote the initial state of III{\rm III} by |ζ\ket{\zeta}.

In the following, we consider the indirect measurement model =(OIII,|ζ,UI+II+IIIUI+II+III,QIII)\mathcal{M}=(\mathcal{H}_{O_{\rm III}},\ket{\zeta},U_{\rm I+II+III}^{\prime}U_{\rm I+II+III},Q_{\rm III}) for measuring the observable A~S\tilde{A}_{S} on the Hilbert space :=OISOIID,\mathcal{H}:=\mathcal{H}_{O_{\rm I}}\otimes\mathcal{H}_{S}\otimes\mathcal{H}_{O_{\rm II}}\otimes\mathcal{H}_{D}, which is the Hilbert space associated with OI+S+OII+DO_{\rm I}+S+O_{\rm II}+D.

In the above model, we measure A~S\tilde{A}_{S} at t=0t=0 by measuring QIIIQ_{\rm III} at t=τt=\tau^{\prime}. We assume that the period when the interaction HintH_{int}^{\prime} exists, ττ\tau^{\prime}-\tau, is very short. In this assumption, HintH_{int}^{\prime} is very large compared to the Hamiltonian of I+II+III{\rm I+II+III}, so HintH_{int}^{\prime} can be regarded as the total Hamiltonian in the time window from τ\tau to τ\tau^{\prime}. In this assumption,

UI+II+III=ei(ττ)(MD~PIII).U^{\prime}_{{\rm I+II+III}}=e^{-i(\tau^{\prime}-\tau)(\tilde{M_{D}}\otimes P_{\rm III})}. (49)

Next, we define the quantum root mean square error α\alpha of measuring MD~\tilde{M_{D}} at t=τt=\tau by measuring QIIIQ_{\rm III} at t=τt=\tau^{\prime} and we define the quantum root mean square error β\beta of measuring AS~\tilde{A_{S}} at t=0t=0 by measuring QIIIQ_{\rm III} at t=τt=\tau^{\prime}, i.e. the measurement error for measuring A~S\tilde{A}_{S} by the indirect measurment model \mathcal{M} as follows:

α\displaystyle\alpha =\displaystyle= [UI+II+III(I~QIII)UI+II+III(MD~IIII)](UI+II|ψ|χ|ϕ|ξ)UIII|ζ,\displaystyle\left\|[U^{\prime\dagger}_{{\rm I+II+III}}(\tilde{I}\otimes Q_{\rm III})U^{\prime}_{{\rm I}+{\rm II}+{\rm III}}-(\tilde{M_{D}}\otimes I_{\rm III})]\left(U_{\rm I+II}\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\right)\otimes U_{\rm III}\ket{\zeta}\right\|, (50)
β\displaystyle\beta =\displaystyle= [UI+II+IIIUI+II+III(I~QIII)UI+II+IIIUI+II+III(A~SIIII)]|ψ|χ|ϕ|ξ|ζ,\displaystyle\left\|[U^{\dagger}_{{\rm I}+{\rm II}+{\rm III}}U^{\prime\dagger}_{{\rm I}+{\rm II}+{\rm III}}(\tilde{I}\otimes Q_{\rm III})U_{{\rm I}+{\rm II}+{\rm III}}^{\prime}U_{{\rm I}+{\rm II}+{\rm III}}-(\tilde{A}_{S}\otimes I_{\rm III})]\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\ket{\zeta}\right\|, (51)

where I~=IIIII\tilde{I}=I_{\rm I}\otimes I_{\rm II} .

To evaluate ε(AS)\varepsilon(A_{S}) given in Eq. (11), we first consider the Ozawa inequality for the indirect measurement model \mathcal{M}:

βη(H~0)+βσ(H~0)+σ(AS~)η(H~0)12|[AS~,H~0]|,\beta\eta(\tilde{H}_{0})+\beta\sigma(\tilde{H}_{0})+\sigma(\tilde{A_{S}})\eta(\tilde{H}_{0})\geq\frac{1}{2}\left|\Braket{[\tilde{A_{S}},\tilde{H}_{0}]}\right|, (52)

where H~0HIIII+IIHII\tilde{H}_{0}\coloneqq H_{\rm I}\otimes I_{\rm II}+I_{\rm I}\otimes H_{\rm II} is the Hamiltonian of the composite system I+II{\rm I+II} and η(H~0)\eta(\tilde{H}_{0}) is the disturbance of H~0\tilde{H}_{0} for the measurement model \mathcal{M}, which is given by

η(H~0)=[UI+II+IIIUI+II+III(H~0IIII)UI+II+IIIUI+II+III(H~0IIII)]|ψ|χ|ϕ|ξ|ζ.\displaystyle\eta(\tilde{H}_{0})=\left\|[U_{{\rm I}+{\rm II}+{\rm III}}^{\dagger}U_{{\rm I}+{\rm II}+{\rm III}}^{\prime\dagger}(\tilde{H}_{0}\otimes I_{\rm III})U_{{\rm I}+{\rm II}+{\rm III}}^{\prime}U_{{\rm I}+{\rm II}+{\rm III}}-(\tilde{H}_{0}\otimes I_{\rm III})]\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\ket{\zeta}\right\|. (53)

For an observable OO, σ(O)\sigma(O) represents the standard deviation of OO in the initial state.

From the Baker-Campbell-Hausdorff formula,

UI+II+III(I~QIII)UI+II+III=I~QIII+MD~IIIIU^{\prime\dagger}_{{\rm I}+{\rm II}+{\rm III}}(\tilde{I}\otimes Q_{\rm III})U^{\prime}_{{\rm I}+{\rm II}+{\rm III}}=\tilde{I}\otimes Q_{\rm III}+\tilde{M_{D}}\otimes I_{\rm III} (54)

holds. Then we can calculate α\alpha as

α\displaystyle\alpha =\displaystyle= QIIIUIII|ζ.\displaystyle\left\|Q_{\rm III}U_{\rm III}\ket{\zeta}\right\|. (55)

Looking at Eq. (55), we find that the error of measuring M~D\tilde{M}_{D} at t=τt=\tau by QIIIQ_{\rm III} at t=τt=\tau^{\prime} is given by the square root of the expectation value of QIII2Q_{\rm III}^{2} on the state of III{\rm III} at t=τt=\tau. Therefore, for any ε>0\varepsilon>0, we assume α<ε\alpha<\varepsilon by choosing |ζ\ket{\zeta} appropriately. From Eq. (49) and the Yanase condition, Eq. (10), [UI+II+IIIUI+II+III,MD~IIII]=0[U^{\prime}_{{\rm I}+{\rm II}+{\rm III}}U_{{\rm I}+{\rm II}+{\rm III}},\tilde{M_{D}}\otimes I_{\rm III}]=0 holds. We also find the following relation:

α\displaystyle\alpha =\displaystyle= [UI+II+IIIUI+II+III(I~QIII)UI+II+IIIUI+II+III\displaystyle\left\|[U_{{\rm I}+{\rm II}+{\rm III}}^{\dagger}U^{\prime\dagger}_{{\rm I}+{\rm II}+{\rm III}}(\tilde{I}\otimes Q_{\rm III})U_{{\rm I}+{\rm II}+{\rm III}}^{\prime}U_{{\rm I}+{\rm II}+{\rm III}}\right. (56)
UI+II+IIIUI+II+III(MD~IIII)UI+II+IIIUI+II+III]|ψ|χ|ϕ|ξ|ζ.\displaystyle\left.\quad\quad-U_{{\rm I}+{\rm II}+{\rm III}}^{\dagger}U^{\prime\dagger}_{{\rm I}+{\rm II}+{\rm III}}(\tilde{M_{D}}\otimes I_{\rm III})U_{{\rm I}+{\rm II}+{\rm III}}^{\prime}U_{{\rm I}+{\rm II}+{\rm III}}]\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\ket{\zeta}\right\|.

Next, we shall derive a relation between α\alpha, β\beta and ε(AS)\varepsilon(A_{S}). From Eq. (45) and Eq. (11), we find that

ε(AS)\displaystyle\varepsilon(A_{S}) =\displaystyle= [UI+II+IIIUI+II+III(MD~IIII)UI+II+IIIUI+II+III(AS~IIII)]|ψ|χ|ϕ|ξ|ζ\displaystyle\left\|[U^{\dagger}_{{\rm I}+{\rm II}+{\rm III}}U_{{\rm I}+{\rm II}+{\rm III}}^{\prime\dagger}(\tilde{M_{D}}\otimes I_{\rm III})U_{{\rm I}+{\rm II}+{\rm III}}^{\prime}U_{{\rm I}+{\rm II}+{\rm III}}-(\tilde{A_{S}}\otimes I_{\rm III})]\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\ket{\zeta}\right\| (57)

holds, where we used [MD~IIII,UI+II+III]=0[\tilde{M_{D}}\otimes I_{\rm III},U^{\prime}_{{\rm I}+{\rm II}+{\rm III}}]=0. From Eq. (56), Eq. (57) and the triangle inequality, we obtain the following relation:

β\displaystyle\beta \displaystyle\leq α+ε(AS).\displaystyle\alpha+\varepsilon(A_{S}). (58)

Next, we evaluate the disturbance η(H~0)\eta(\tilde{H}_{0}). From the Yanase condition [HII,MD]=0[H_{\rm II},M_{D}]=0, we have [UI+II+III,H~0IIII]=0[U^{\prime}_{{\rm I}+{\rm II}+{\rm III}},\tilde{H}_{0}\otimes I_{\rm III}]=0, which means that H~0\tilde{H}_{0} is unchanged from τ\tau to τ\tau^{\prime}. Then we obtain

η(H~0)\displaystyle\eta(\tilde{H}_{0}) =\displaystyle= [UI+II+IIIUI+II+III(H~0IIII)UI+II+IIIUI+II+III(H~0IIII)]|ψ|χ|ϕ|ξ|ζ\displaystyle\left\|[U_{{\rm I}+{\rm II}+{\rm III}}^{\dagger}U_{{\rm I}+{\rm II}+{\rm III}}^{\prime\dagger}(\tilde{H}_{0}\otimes I_{\rm III})U_{{\rm I}+{\rm II}+{\rm III}}^{\prime}U_{{\rm I}+{\rm II}+{\rm III}}-(\tilde{H}_{0}\otimes I_{\rm III})]\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\ket{\zeta}\right\| (59)
=\displaystyle= [UI+II+III(H~0IIII)UI+II+III(H~0IIII)]|ψ|χ|ϕ|ξ|ζ\displaystyle\left\|[U_{{\rm I}+{\rm II}+{\rm III}}^{\dagger}(\tilde{H}_{0}\otimes I_{\rm III})U_{{\rm I}+{\rm II}+{\rm III}}-(\tilde{H}_{0}\otimes I_{\rm III})]\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\ket{\zeta}\right\|
=\displaystyle= [UI+IIH~0UI+IIH~0]|ψ|χ|ϕ|ξ\displaystyle\left\|[U_{{\rm I}+{\rm II}}^{\dagger}\tilde{H}_{0}U_{{\rm I}+{\rm II}}-\tilde{H}_{0}]\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\right\|
=\displaystyle= 0.\displaystyle 0.

In the second line, we used that [UI+II+III,H~0IIII]=0[U^{\prime}_{{\rm I}+{\rm II}+{\rm III}},\tilde{H}_{0}\otimes I_{\rm III}]=0. Eq. (45) is utilized in the third line. In the final line, the assumption Eq. (8) is considered. From Eq. (52), Eq. (58) and Eq. (59),

(α+ε(AS))σ(H~0)12|[AS~,H~0]|(\alpha+\varepsilon(A_{S}))\sigma(\tilde{H}_{0})\geq\frac{1}{2}\left|\Braket{[\tilde{A_{S}},\tilde{H}_{0}]}\right| (60)

is shown. Because α\alpha can be arbitrarily small by choosing |ζ\ket{\zeta} appropriately,

ε(AS)σ(H~0)12|[AS~,H0~]|\varepsilon(A_{S})\sigma(\tilde{H}_{0})\geq\frac{1}{2}\left|\Braket{[\tilde{A_{S}},\tilde{H_{0}}]}\right| (61)

holds. Taking [A~S,H~0]=[IoIAS,HI]III[\tilde{A}_{S},\tilde{H}_{0}]=[I_{o_{\rm I}}\otimes A_{S},H_{\rm I}]\otimes I_{\rm II} and σ(H~0)2=σ(HI)2+σ(HII)2\sigma(\tilde{H}_{0})^{2}=\sigma(H_{\rm I})^{2}+\sigma(H_{\rm II})^{2} into account, we get

ε(AS)2|[IoIAS,HI]|24σ(HI)2+4σ(HII)2,\varepsilon(A_{S})^{2}\geq\frac{\left|\Braket{[I_{o_{\rm I}}\otimes A_{S},H_{\rm I}]}\right|^{2}}{4\sigma(H_{\rm I})^{2}+4\sigma(H_{\rm II})^{2}}, (62)

and Eq. (12) is proved.

Before closing this section, we comment on a bound of the measurement error when we assume the weak Yanase condition [UI+IIM~DUI+II,HI+II]=0[U^{\dagger}_{\rm I+II}\tilde{M}_{D}U_{\rm I+II},H_{\rm I+II}]=0 instead of the Yanase condition [HII,MD]=0[H_{\rm II},M_{D}]=0. Tukiainen proved that if [UI+IIM~DUI+II,HI+II]=0[U^{\dagger}_{\rm I+II}\tilde{M}_{D}U_{\rm I+II},H_{\rm I+II}]=0 is satisfied in an accurate measurement of ASA_{S}, then [IoIAS,ξ|ϕ|HI+II|ϕ|ξ]=0[I_{o_{\rm I}}\otimes A_{S},\bra{\xi}\braket{\phi}{H_{\rm I+II}}{\phi}\ket{\xi}]=0 holds [49]. We are able to quantify it by the similar proof of Eq. (12). We consider the following Ozawa inequality instead of Eq. (52):

βη(HI+II)+βσ(HI+II)+σ(A~S)η(HI+II)12|[A~S,HI+II]|=12|ψ|χ|[IOIAS,ξ|ϕ|HI+II|ϕ|ξ]|χ|ψ|.\displaystyle\beta\eta(H_{\rm I+II})+\beta\sigma(H_{\rm I+II})+\sigma(\tilde{A}_{S})\eta(H_{\rm I+II})\geq\frac{1}{2}\left|\Braket{[\tilde{A}_{S},H_{\rm I+II}]}\right|=\frac{1}{2}\left|\bra{\psi}\bra{\chi}[I_{O_{\rm I}}\otimes A_{S},\bra{\xi}\bra{\phi}H_{\rm I+II}\ket{\phi}\ket{\xi}]\ket{\chi}\ket{\psi}\right|.

When the weak Yanase condition is satisfied, we are able to show that η(HI+II)=0\eta(H_{\rm I+II})=0 as follows:

η(HI+II)\displaystyle\eta(H_{\rm I+II}) =\displaystyle= [UI+II+IIIUI+II+IIIHI+IIUI+II+IIIUI+II+IIIHI+II]|ψ|χ|ϕ|ξ|ζ\displaystyle\left\|[U_{{\rm I}+{\rm II}+{\rm III}}^{\dagger}U_{{\rm I}+{\rm II}+{\rm III}}^{\prime\dagger}H_{\rm I+II}U_{{\rm I}+{\rm II}+{\rm III}}^{\prime}U_{{\rm I}+{\rm II}+{\rm III}}-H_{\rm I+II}]\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\ket{\zeta}\right\| (64)
=\displaystyle= [UI+IIHI+IIUI+IIHI+II]|ψ|χ|ϕ|ξ\displaystyle\left\|[U_{\rm I+II}^{\dagger}H_{\rm I+II}U_{\rm I+II}-H_{\rm I+II}]\ket{\psi}\ket{\chi}\ket{\phi}\ket{\xi}\right\| (65)
=\displaystyle= 0,\displaystyle 0, (66)

where in the second line, we used [M~D,HI+II]=0[\tilde{M}_{D},H_{\rm I+II}]=0 which is obtained from the weak Yanase condition and the energy conservation law because [UI+IIM~DUI+II,HI+II]=UI+II[M~D,HI+II]UI+II=0[U^{\dagger}_{\rm I+II}\tilde{M}_{D}U_{\rm I+II},H_{\rm I+II}]=U^{\dagger}_{\rm I+II}[\tilde{M}_{D},H_{\rm I+II}]U_{\rm I+II}=0 holds. In the third line, the energy conservation law is considered. From Eq. (58), Eq. (A) and η(HI+II)=0\eta(H_{\rm I+II})=0 and setting α\alpha to be arbitrarily small, we find that

ε(AS)2|ψ|χ|[IoIAS,ξ|ϕ|HI+II|ϕ|ξ]|χ|ψ|24σ(HI+II)2\displaystyle\varepsilon(A_{S})^{2}\geq\frac{\left|\bra{\psi}\bra{\chi}[I_{o_{\rm I}}\otimes A_{S},\bra{\xi}\bra{\phi}H_{\rm I+II}\ket{\phi}\ket{\xi}]\ket{\chi}\ket{\psi}\right|^{2}}{4\sigma(H_{\rm I+II})^{2}} (67)

holds.

In this section, we considered the scattering-type measurements in which the interaction vanishes when the detector and system are spatially separated under energy conservation. We derived the lower bound of measurement error Eq. (12) for this type of measurement.

Appendix B Upper bound of the gate fidelity of SWAP gate

In this section, we derive the inequality (28) between the gate fidelity of SWAP gate FSWAPF_{SWAP} and the energy variance. We first give a relation between the measurement error ε(σz)\varepsilon(\sigma_{z}) and FSWAPF_{SWAP}. Then we prove an upper bound of FSWAPF_{SWAP} using it and Eq. (16).

Firstly, we write the act of UU in Eq. (18) as

U|aS|bD|ξE=j,k=01|jS|kD|Ej,ka,bE.\displaystyle U\ket{a}_{S}\ket{b}_{D}\ket{\xi}_{E}=\sum_{j,k=0}^{1}\ket{j}_{S}\ket{k}_{D}\ket{E_{j,k}^{a,b}}_{E}. (68)

aa and bb take 0 or 1. {|0,|1}\{\ket{0},\ket{1}\} represents the computational basis states. From the orthonormality of the initial state,

δacδbd\displaystyle\delta_{ac}\delta_{bd} =\displaystyle= a,b|c,d=a,b,ξ|UU|c,d,ξ=j,k=01Ej,ka,b|Ej,kc,d\displaystyle\braket{a,b}{c,d}=\braket{a,b,\xi}{U^{\dagger}U}{c,d,\xi}=\sum_{j,k=0}^{1}\braket{E_{j,k}^{a,b}}{E_{j,k}^{c,d}} (69)

holds. When the initial state of SS+DD is |α,β(α,β=0,1)\ket{\alpha,\beta}\,(\alpha,\beta=0,1), the state after the time evolution described by UU is given by

(|α,βα,β|)\displaystyle\mathcal{E}(\ket{\alpha,\beta}\bra{\alpha,\beta}) =\displaystyle= j,k,l,m|j,kl,m|El,mα,β|Ej,kα,β.\displaystyle\sum_{j,k,l,m}\ket{j,k}\bra{l,m}\braket{E_{l,m}^{\alpha,\beta}}{E_{j,k}^{\alpha,\beta}}. (70)

Therefore, the squared of F(|α,β)F(\ket{\alpha,\beta}) for SWAP gate is written as follows:

F(|α,β)2\displaystyle F(\ket{\alpha,\beta})^{2} =\displaystyle= Eβ,αα,β|Eβ,αα,β.\displaystyle\braket{E_{\beta,\alpha}^{\alpha,\beta}}{E_{\beta,\alpha}^{\alpha,\beta}}. (71)

Next, let us represent the measurement error ε(σz)\varepsilon(\sigma_{z}) using |Ec,da,b\ket{E^{a,b}_{c,d}}. We suppose that the initial state of SS+DD is |ψ=α,β=01cα,β|α,β\ket{\psi}=\sum_{\alpha,\beta=0}^{1}c_{\alpha,\beta}\ket{\alpha,\beta}. We find that

ε(σz)2\displaystyle\varepsilon(\sigma_{z})^{2} =\displaystyle= [(ISσz,DIE)UU(σz,SIDIE)]|ψS+D|ξE2\displaystyle\|\left[(I_{S}\otimes\sigma_{z,D}\otimes I_{E})U-U(\sigma_{z,S}\otimes I_{D}\otimes I_{E})\right]\ket{\psi}_{S+D}\ket{\xi}_{E}\|^{2} (72)
=\displaystyle= 4βc1,β|E0,01,β2+4βc1,β|E1,01,β2+4βc0,β|E0,10,β2+4βc0,β|E1,10,β2\displaystyle 4\left\|\sum_{\beta}c_{1,\beta}\ket{E_{0,0}^{1,\beta}}\right\|^{2}+4\left\|\sum_{\beta}c_{1,\beta}\ket{E_{1,0}^{1,\beta}}\right\|^{2}+4\left\|\sum_{\beta}c_{0,\beta}\ket{E_{0,1}^{0,\beta}}\right\|^{2}+4\left\|\sum_{\beta}c_{0,\beta}\ket{E_{1,1}^{0,\beta}}\right\|^{2} (73)

holds. We rewrite it by the gate fidelity. In the following, we represent F(,USWAP)F(\mathcal{E},U_{SWAP}) by FSWAPF_{SWAP}. The following relations hold:

ε(σz)2\displaystyle\varepsilon(\sigma_{z})^{2} =\displaystyle= 4{|c1,0|2(1|E0,11,02|E1,11,02)+|c0,0|2(1|E0,00,02|E1,00,02)\displaystyle 4\left\{|c_{1,0}|^{2}\left(1-\left\|\ket{E_{0,1}^{1,0}}\right\|^{2}-\left\|\ket{E_{1,1}^{1,0}}\right\|^{2}\right)+|c_{0,0}|^{2}\left(1-\left\|\ket{E_{0,0}^{0,0}}\right\|^{2}-\left\|\ket{E_{1,0}^{0,0}}\right\|^{2}\right)\right. (77)
+2Re[c1,0c1,1(E0,01,1|E0,01,0+E1,01,1|E1,01,0)+c0,0c0,1(E0,10,1|E0,10,0+E1,10,1|E1,10,0)]\displaystyle+2{\rm Re}\left[c_{1,0}c_{1,1}^{*}\left(\braket{E_{0,0}^{1,1}}{E_{0,0}^{1,0}}+\braket{E_{1,0}^{1,1}}{E_{1,0}^{1,0}}\right)+c_{0,0}c_{0,1}^{*}\left(\braket{E_{0,1}^{0,1}}{E_{0,1}^{0,0}}+\braket{E_{1,1}^{0,1}}{E_{1,1}^{0,0}}\right)\right]
+|c1,1|2(1|E0,11,12|E1,11,12)+|c0,1|2(1|E0,00,12|E1,00,12)}\displaystyle+\left.|c_{1,1}|^{2}\left(1-\left\|\ket{E_{0,1}^{1,1}}\right\|^{2}-\left\|\ket{E_{1,1}^{1,1}}\right\|^{2}\right)+|c_{0,1}|^{2}\left(1-\left\|\ket{E_{0,0}^{0,1}}\right\|^{2}-\left\|\ket{E_{1,0}^{0,1}}\right\|^{2}\right)\right\}
\displaystyle\leq 4{|c1,0|2(1F(|1,0)2)+|c0,0|2(1F(|0,0)2)\displaystyle 4\left\{|c_{1,0}|^{2}\left(1-F(\ket{1,0})^{2}\right)+|c_{0,0}|^{2}\left(1-F(\ket{0,0})^{2}\right)\right.
+2|c1,0c1,1(E0,01,1|E0,01,0+E1,01,1|E1,01,0)+c0,0c0,1(E0,10,1|E0,10,0+E1,10,1|E1,10,0)|\displaystyle+2\left|c_{1,0}c_{1,1}^{*}\left(\braket{E_{0,0}^{1,1}}{E_{0,0}^{1,0}}+\braket{E_{1,0}^{1,1}}{E_{1,0}^{1,0}}\right)+c_{0,0}c_{0,1}^{*}\left(\braket{E_{0,1}^{0,1}}{E_{0,1}^{0,0}}+\braket{E_{1,1}^{0,1}}{E_{1,1}^{0,0}}\right)\right|
+|c1,1|2(1F(|1,1)2)+|c0,1|2(1F(|0,1)2)}\displaystyle+\left.|c_{1,1}|^{2}\left(1-F(\ket{1,1})^{2}\right)+|c_{0,1}|^{2}\left(1-F(\ket{0,1})^{2}\right)\right\}
\displaystyle\leq 4{1FSWAP2+2|c1,0||c1,1|(|E0,01,1|E0,01,0+|E1,01,1|E1,01,0)\displaystyle 4\left\{1-F_{SWAP}^{2}+2|c_{1,0}||c_{1,1}|\left(\left\|\ket{E_{0,0}^{1,1}}\right\|\left\|\ket{E_{0,0}^{1,0}}\right\|+\left\|\ket{E_{1,0}^{1,1}}\right\|\left\|\ket{E_{1,0}^{1,0}}\right\|\right)\right.
+2|c0,0||c0,1|(|E0,10,1|E0,10,0+|E1,10,1|E1,10,0)}\displaystyle\left.+2|c_{0,0}||c_{0,1}|\left(\left\|\ket{E_{0,1}^{0,1}}\right\|\left\|\ket{E_{0,1}^{0,0}}\right\|+\left\|\ket{E_{1,1}^{0,1}}\right\|\left\|\ket{E_{1,1}^{0,0}}\right\|\right)\right\}
\displaystyle\leq 4{1FSWAP2+|c1,0||c1,1|(|E0,01,12+|E0,01,02+|E1,01,12+|E1,01,02)\displaystyle 4\left\{1-F_{SWAP}^{2}+|c_{1,0}||c_{1,1}|\left(\left\|\ket{E_{0,0}^{1,1}}\right\|^{2}+\left\|\ket{E_{0,0}^{1,0}}\right\|^{2}+\left\|\ket{E_{1,0}^{1,1}}\right\|^{2}+\left\|\ket{E_{1,0}^{1,0}}\right\|^{2}\right)\right.
+|c0,0||c0,1|(|E0,10,12+|E0,10,02+|E1,10,12+|E1,10,02)}\displaystyle\left.+|c_{0,0}||c_{0,1}|\left(\left\|\ket{E_{0,1}^{0,1}}\right\|^{2}+\left\|\ket{E_{0,1}^{0,0}}\right\|^{2}+\left\|\ket{E_{1,1}^{0,1}}\right\|^{2}+\left\|\ket{E_{1,1}^{0,0}}\right\|^{2}\right)\right\}
\displaystyle\leq 4(1FSWAP2)[1+2(|c1,0||c1,1|+|c0,0||c0,1|)].\displaystyle 4(1-F_{SWAP}^{2})\left[1+2(|c_{1,0}||c_{1,1}|+|c_{0,0}||c_{0,1}|)\right]. (78)

In the first line, Eq. (69) is used. In second line, we considered Eq. (71). In the third line, the triangle inequality and the Cauchy-Schwarz inequality are applied. In the fourth line, the relation between the mean square and the geometric mean is taken into consideration. In the seventh line, we used Eq. (69) and Eq. (71).

When the Hamiltonian is given by as Eq.(15), Eq. (16) holds and

4(1FSWAP2)[1+2(|c1,0||c1,1|+|c0,0||c0,1|)]b2|σy,S|2b2σ(σx,S)2+σ(px)2\displaystyle 4(1-F_{SWAP}^{2})\left[1+2(|c_{1,0}||c_{1,1}|+|c_{0,0}||c_{0,1}|)\right]\geq\frac{b^{2}|\braket{\sigma_{y,S}}|^{2}}{b^{2}\sigma(\sigma_{x,S})^{2}+\sigma(p_{x})^{2}} (79)

can be proved. Let us maximize the right-hand side over states of SS+DD. Because the right-hand side is independent of states of DD, we consider maximizing over the system’s pure state. It is denoted by d0|0+d1|1d_{0}\ket{0}+d_{1}\ket{1}. Then we find that

b2|σy,S|2b2σ(σx,S)2+σ(px)2\displaystyle\frac{b^{2}|\braket{\sigma_{y,S}}|^{2}}{b^{2}\sigma(\sigma_{x,S})^{2}+\sigma(p_{x})^{2}} =\displaystyle= 4b2|Im(d0d1)|2b2(14|Re(d0d1)|2)+σ(px)2.\displaystyle\frac{4b^{2}|{\rm Im}(d_{0}d_{1}^{*})|^{2}}{b^{2}(1-4|{\rm Re}(d_{0}d_{1}^{*})|^{2})+\sigma(p_{x})^{2}}. (80)

Because

|Re(d0d1)|2+|Im(d0d1)|2=|d0d1|2(|d0|2+|d1|22)2=14\displaystyle|{\rm Re}(d_{0}d_{1}^{*})|^{2}+|{\rm Im}(d_{0}d_{1}^{*})|^{2}=|d_{0}d_{1}^{*}|^{2}\leq\left(\frac{|d_{0}|^{2}+|d_{1}|^{2}}{2}\right)^{2}=\frac{1}{4} (81)

holds, we make the change of variales |Re(d0d1)|=rcosθ|{\rm Re}(d_{0}d_{1}^{*})|=r\cos\theta, |Im(d0d1)|=rsinθ|{\rm Im}(d_{0}d_{1}^{*})|=r\sin\theta, where 0r120\leq r\leq\frac{1}{2},0θ<2π0\leq\theta<2\pi. We introduce a function G(r,θ)G(r,\theta) as follows:

G(r,θ)=b2|σy,S|2b2σ(σx,S)2+σ(px)2\displaystyle G(r,\theta)=\frac{b^{2}|\braket{\sigma_{y,S}}|^{2}}{b^{2}\sigma(\sigma_{x,S})^{2}+\sigma(p_{x})^{2}} =\displaystyle= 4b2r2sin2θb2(14r2cos2θ)+σ(px)2.\displaystyle\frac{4b^{2}r^{2}\sin^{2}\theta}{b^{2}(1-4r^{2}\cos^{2}\theta)+\sigma(p_{x})^{2}}. (82)

The derivative of it is

G(r,θ)θ=4b2r2sin2θ[b2(14r2)+σ(px)2][b2(14r2cos2θ)+σ(px)2]2.\displaystyle\frac{\partial G(r,\theta)}{\partial\theta}=\frac{4b^{2}r^{2}\sin 2\theta\left[b^{2}(1-4r^{2})+\sigma(p_{x})^{2}\right]}{\left[b^{2}(1-4r^{2}\cos^{2}\theta)+\sigma(p_{x})^{2}\right]^{2}}. (83)

Since [b2(14r2)+σ(px)2]0\left[b^{2}(1-4r^{2})+\sigma(p_{x})^{2}\right]\geq 0 holds, G(r,θ)G(r,\theta) takes the maximum value at θ=π2\theta=\frac{\pi}{2} and 3π2\frac{3\pi}{2} for a fixed rr. Because G(r,π2)=G(r,3π2)=4b2r2b2+σ(px)2G\left(r,\frac{\pi}{2}\right)=G\left(r,\frac{3\pi}{2}\right)=\frac{4b^{2}r^{2}}{b^{2}+\sigma(p_{x})^{2}}, the maximum value of G(r,θ)G(r,\theta) is b2b2+σ(px)2\frac{b^{2}}{b^{2}+\sigma(p_{x})^{2}}, which is attained at (r,θ)=(12,π2)=(12,3π2)(r,\theta)=\left(\frac{1}{2},\frac{\pi}{2}\right)=\left(\frac{1}{2},\frac{3\pi}{2}\right). The eigenstates of σy,S\sigma_{y,S} correspond to this case.

On the other hand, the coefficient of the left-hand side of Eq. (79), 1+2(|c1,0||c1,1|+|c0,0||c0,1|)1+2(|c_{1,0}||c_{1,1}|+|c_{0,0}||c_{0,1}|), takes the minimum value 1 when SS’s state is the eigenstate of σy,S\sigma_{y,S} and DD’s state is |0\ket{0}. Hence, Eq. (28) is derived. On the other hand, because pxp_{x} is an unbounded operator, the CB distance is 0. However if the variance of pxp_{x} on the initial state is finite, from Eq. (28), we find that the implementation error occurs.

In this section, we proved the inequality Eq. (28) between the gate fidelity of SWAP gate and the energy variance as an application of Eq. (12).

Appendix C Proof of conditions which have to be fulfilled for implementing a controlled unitary gate perfectly

In this section, we prove the necessary condition Eq. (37) and Eq. (39) to implement a controlled gate described in Eq. (31) without error under energy conservation law.

Firstly, note that final states of CC, |ϕ0C\ket{\phi_{0}^{\prime}}_{C} and |ϕ1C\ket{\phi_{1}^{\prime}}_{C}, are independent of the initial state of TT, |ψT\ket{\psi}_{T} in Eq. (31), and two final states of CC are orthogonal to each other when we succeed in implementing UCUU_{CU} without error. The calculation to prove it is the same as in [57] in which Nielsen and Chuang proved the no-programming theorem. Next we prove that

ϕ0|Cψ|THint|ϕ1C|ψT=0.\bra{\phi_{0}}_{C}\bra{\psi}_{T}H_{int}\ket{\phi_{1}}_{C}\ket{\psi}_{T}=0. (84)

is valid under the assumption Eq. (34). Substituting |ϕC=c0|ϕ0C+c1|ϕ1C\ket{\phi}_{C}=c_{0}\ket{\phi_{0}}_{C}+c_{1}\ket{\phi_{1}}_{C} into Eq. (34),

2Re[c0c1ϕ0|Cψ|THint|ϕ1C|ψT]=0\displaystyle 2{\rm Re}\left[c_{0}^{*}c_{1}\bra{\phi_{0}}_{C}\bra{\psi}_{T}H_{int}\ket{\phi_{1}}_{C}\ket{\psi}_{T}\right]=0 (85)

is obtained. Since Eq. (85) holds for arbitrary complex numbers c0c_{0} and c1c_{1} such that |c0|2+|c1|2=1|c_{0}|^{2}+|c_{1}|^{2}=1, we get Eq. (84).

Similarly, from the assumption of the final state in Eq. (34),

0\displaystyle 0 =\displaystyle= ϕ0|Cψ|TUCUHintUCU|ϕ1C|ψT\displaystyle\bra{\phi_{0}}_{C}\bra{\psi}_{T}U_{CU}^{\dagger}H_{int}U_{CU}\ket{\phi_{1}}_{C}\ket{\psi}_{T} (86)

can be shown.

Based on the above facts, we derive Eq. (37). From the orthogonality of |ϕ0\ket{\phi_{0}} and |ϕ1\ket{\phi_{1}},

ϕ0|HC|ϕ1C=ϕ0|Cψ|T(HT+HC)|ϕ1C|ψT\displaystyle\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}=\bra{\phi_{0}}_{C}\bra{\psi}_{T}(H_{T}+H_{C})\ket{\phi_{1}}_{C}\ket{\psi}_{T} (87)

is obtained. By combining Eq. (87) with Eq. (84), we get

ϕ0|HC|ϕ1C=ϕ0|Cψ|T(HT+HC+Hint)|ϕ1C|ψT.\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}=\bra{\phi_{0}}_{C}\bra{\psi}_{T}(H_{T}+H_{C}+H_{int})\ket{\phi_{1}}_{C}\ket{\psi}_{T}. (88)

Using Eq. (88) and the energy conservation law

[HC+T,UCU]=0,\displaystyle[H_{C+T},U_{CU}]=0, (89)

we find that

ϕ0|HC|ϕ1C\displaystyle\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C} =\displaystyle= ϕ0|Cψ|TUCU(HT+HC+Hint)UCU|ϕ1C|ψT\displaystyle\bra{\phi_{0}}_{C}\bra{\psi}_{T}U_{CU}^{\dagger}(H_{T}+H_{C}+H_{int})U_{CU}\ket{\phi_{1}}_{C}\ket{\psi}_{T} (90)
=\displaystyle= ϕ0|Cψ|T(HT+HC+Hint)|ϕ1C(VT|ψT)\displaystyle\bra{\phi_{0}^{\prime}}_{C}\bra{\psi}_{T}(H_{T}+H_{C}+H_{int})\ket{\phi_{1}^{\prime}}_{C}(V_{T}\ket{\psi}_{T})

holds. In addition to this, from ϕ0|ϕ1=0\braket{\phi_{0}^{\prime}}{\phi_{1}^{\prime}}=0 and Eq. (86),

ϕ0|HC|ϕ1C=ϕ0|HC|ϕ1Cψ|VT|ψT\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}=\braket{\phi^{\prime}_{0}}{H_{C}}{\phi^{\prime}_{1}}_{C}\braket{\psi}{V_{T}}{\psi}_{T} (91)

is able to be proved for any |ψT\ket{\psi}_{T}.

If ϕ0|HC|ϕ1C0\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}\neq 0 holds, ϕ0|HC|ϕ1C0\braket{\phi^{\prime}_{0}}{H_{C}}{\phi^{\prime}_{1}}_{C}\neq 0 is obtained because VT0V_{T}\neq 0. Therefore, from Eq. (91), we can calculate as follows:

ψ|VT|ψT=ϕ0|HC|ϕ1Cϕ0|HC|ϕ1C.\braket{\psi}{V_{T}}{\psi}_{T}=\frac{\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}}{\braket{\phi^{\prime}_{0}}{H_{C}}{\phi^{\prime}_{1}}_{C}}. (92)

Let the spectrum decomposition of VTV_{T} be

VT=iαi|ii|,\displaystyle V_{T}=\sum_{i}\alpha_{i}\ket{i}\bra{i}, (93)

where αi\alpha_{i} is the ii-th eigenvalue and |i\ket{i} is the corresponding eigenvector.

By substituting |ψ=|i\ket{\psi}=\ket{i} into Eq. (92), we find that

i|VT|iT=αi=ϕ0|HC|ϕ1Cϕ0|HC|ϕ1C\braket{i}{V_{T}}{i}_{T}=\alpha_{i}=\frac{\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}}{\braket{\phi^{\prime}_{0}}{H_{C}}{\phi^{\prime}_{1}}_{C}} (94)

holds for any ii. Hence,

VT\displaystyle V_{T} =\displaystyle= ϕ0|HC|ϕ1Cϕ0|HC|ϕ1CIT\displaystyle\frac{\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}}{\braket{\phi^{\prime}_{0}}{H_{C}}{\phi^{\prime}_{1}}_{C}}I_{T} (95)

is obtained. Since VTV_{T} is a unitary operator, the following relation is valid:

ϕ0|HC|ϕ1C=ϕ0|HC|ϕ1Ceiδ,\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}=\braket{\phi^{\prime}_{0}}{H_{C}}{\phi^{\prime}_{1}}_{C}e^{i\delta}, (96)

where δ\delta is a real number. When ϕ0|HC|ϕ1C0\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}\neq 0, by taking Eq. (95) and Eq. (96) into account,

VT=eiδITV_{T}=e^{i\delta}I_{T} (97)

must hold. Therefore, when we want to implement a non-trivial controlled unitary gate like a CNOT gate without error under energy conservation, we proved that Eq. (37) has to be satisfied.

Next, we derive Eq. (39) under the assumption Eq. (38). A calculation similar to the derivation of Eq. (91) shows that

ϕ0|HC2|ϕ1C\displaystyle\braket{\phi_{0}}{H_{C}^{2}}{\phi_{1}}_{C} =\displaystyle= ϕ0|Cψ|T(HC2+HT2)|ϕ1C|ψT\displaystyle\bra{\phi_{0}}_{C}\bra{\psi}_{T}(H_{C}^{2}+H_{T}^{2})\ket{\phi_{1}}_{C}\ket{\psi}_{T} (98)
=\displaystyle= ϕ0|Cψ|T[(HC+HT+Hint)22HCHT]|ϕ1C|ψT\displaystyle\bra{\phi_{0}}_{C}\bra{\psi}_{T}[(H_{C}+H_{T}+H_{int})^{2}-2H_{C}\otimes H_{T}]\ket{\phi_{1}}_{C}\ket{\psi}_{T}
=\displaystyle= ϕ0|Cψ|T[UCU(HC+HT+Hint)2UCU2HCHT]|ϕ1C|ψT\displaystyle\bra{\phi_{0}}_{C}\bra{\psi}_{T}[U_{CU}^{\dagger}(H_{C}+H_{T}+H_{int})^{2}U_{CU}-2H_{C}\otimes H_{T}]\ket{\phi_{1}}_{C}\ket{\psi}_{T}
=\displaystyle= ϕ0|Cψ|T(HC+HT)2|ϕ1C(VT|ψT)2ϕ0|HC|ϕ1Cψ|HT|ψT\displaystyle\bra{\phi^{\prime}_{0}}_{C}\bra{\psi}_{T}(H_{C}+H_{T})^{2}\ket{\phi^{\prime}_{1}}_{C}(V_{T}\ket{\psi}_{T})-2\braket{\phi_{0}}{H_{C}}{\phi_{1}}_{C}\braket{\psi}{H_{T}}{\psi}_{T}
=\displaystyle= ϕ0|HC2|ϕ1Cψ|VT|ψT\displaystyle\braket{\phi^{\prime}_{0}}{H_{C}^{2}}{\phi^{\prime}_{1}}_{C}\braket{\psi}{V_{T}}{\psi}_{T}

is valid for any |ψT\ket{\psi}_{T}. In the first line, we used ϕ0|ϕ1=0\braket{\phi_{0}}{\phi_{1}}=0. We applied Eq. (38) to the second line. In the third line, the energy conservation is considered. In the fourth line, Eq. (38) and Eq. (31) are utilized. The final line is derived by combining ϕ0|ϕ1=0\braket{\phi_{0}^{\prime}}{\phi_{1}^{\prime}}=0 and Eq. (37) with Eq. (91).

If ϕ0|HC2|ϕ10\braket{\phi_{0}}{H_{C}^{2}}{\phi_{1}}\neq 0 works, we are able to prove that VTV_{T} must be proportional to ITI_{T} by a calculation similar to the derivation of Eq. (97). Thus, we find that if the assumption Eq. (38) holds, Eq. (39) has to be fulfilled in addition to Eq. (37) to implement a non-trivial controlled unitary gate perfectly under energy conservation.

Appendix D Proof of upper bound of the gate fidelity of two qubits controlled unitary gate

In this section, we prove the upper bound of the gate fidelity of a two-qubits controlled unitary gate Eq. (41). In the following, we denote a three-dimensional real vector which is orthogonal to u\vec{u}, where u\vec{u} is given in Eq. (40), by v\vec{v}. There are two vectors orthogonal to u\vec{u}, we set v\vec{v} to the vector which faces the zz-axis positive when we rotate u\vec{u} so that it faces the xx-axis positive. We define σ(v)\sigma(\vec{v}) by σ(v)vσ\sigma(\vec{v})\coloneqq\vec{v}\cdot\vec{\sigma}. Let us denote the eigenvector with eigenvalue 1 and the eigenvector with eigenvalue -1 by |χ0\ket{\chi_{0}} and |χ1\ket{\chi_{1}}, respectively. We also define σ(l)\sigma(\vec{l}) and σ(l)\sigma(\vec{l^{\prime}}) by σ(l)|ϕ0ϕ0||ϕ1ϕ1|\sigma(\vec{l})\coloneqq\ket{\phi_{0}}\bra{\phi_{0}}-\ket{\phi_{1}}\bra{\phi_{1}} and σ(l)|ϕ0ϕ0||ϕ1ϕ1|\sigma(\vec{l^{\prime}})\coloneqq\ket{\phi_{0}^{\prime}}\bra{\phi_{0}^{\prime}}-\ket{\phi_{1}^{\prime}}\bra{\phi_{1}^{\prime}}. We represent the operation of UU as

U|ϕaC|χbT|ξA=c,d=01|ϕcC|χdT|Ec,da,bA(a,b=0,1).U\ket{\phi_{a}}_{C}\ket{\chi_{b}}_{T}\ket{\xi}_{A}=\sum_{c,d=0}^{1}\ket{\phi_{c}^{\prime}}_{C}\ket{\chi_{d}}_{T}\ket{E_{c,d}^{a,b}}_{A}\quad(a,b=0,1). (99)

From the orthogonality and normalization conditions, we find that

δa,cδb,d=ϕa|Cχb|Tξ|AUU|ϕcC|χdT|ξA=j,kEj,ka,b|Ej,kc,d\displaystyle\delta_{a,c}\delta_{b,d}=\bra{\phi_{a}}_{C}\bra{\chi_{b}}_{T}\bra{\xi}_{A}U^{\dagger}U\ket{\phi_{c}}_{C}\ket{\chi_{d}}_{T}\ket{\xi}_{A}=\sum_{j,k}\braket{E_{j,k}^{a,b}}{E_{j,k}^{c,d}} (100)

holds. The state of CC+TT after the time evolution described by UU is

α(|ϕaC|χbTϕa|Cχb|T)=i,j,k,l|ϕiC|χjTEk,la,b|Ei,ja,bϕk|Cχl|T(a,b=0,1).\mathcal{E}_{\alpha}(\ket{\phi_{a}}_{C}\ket{\chi_{b}}_{T}\bra{\phi_{a}}_{C}\bra{\chi_{b}}_{T})=\sum_{i,j,k,l}\ket{\phi_{i}^{\prime}}_{C}\ket{\chi_{j}}_{T}\braket{E_{k,l}^{a,b}}{E_{i,j}^{a,b}}\bra{\phi_{k}^{\prime}}_{C}\bra{\chi_{l}}_{T}\quad(a,b=0,1). (101)

In the following, |ϕaC|χbT\ket{\phi_{a}}_{C}\ket{\chi_{b}}_{T} and |ϕcC|χdT\ket{\phi_{c}^{\prime}}_{C}\ket{\chi_{d}}_{T} are abbreviated as |a,b\ket{a,b} and |c,d\ket{c^{\prime},d}, respectively. We distinguish the basis of CC with and without the prime symbol.

Since u\vec{u} and v\vec{v} are orthogonal each other, we get

(uσ)T|χ0T=|χ1T,(uσ)T|χ1T=|χ0T.(\vec{u}\cdot\vec{\sigma})_{T}\ket{\chi_{0}}_{T}=\ket{\chi_{1}}_{T},\quad(\vec{u}\cdot\vec{\sigma})_{T}\ket{\chi_{1}}_{T}=\ket{\chi_{0}}_{T}. (102)

Therefore,

UCU|a,b\displaystyle U_{CU}\ket{a,b} =\displaystyle= |0,bδa,0+eiϕ(cosθ2|1,b+isinθ2|1,1b)δa,1\displaystyle\ket{0^{\prime},b}\delta_{a,0}+e^{i\phi}\left(\cos\frac{\theta}{2}\ket{1^{\prime},b}+i\sin\frac{\theta}{2}\ket{1^{\prime},1\oplus b}\right)\delta_{a,1} (103)

can be shown. When the initial state is |a,b\ket{a,b}, the gate fidelity squared is calculated as

F(|a,b)2\displaystyle F(\ket{a,b})^{2} =\displaystyle= [0,b|δa,0+eiϕ(cosθ21,b|isinθ21,1b|)δa,1][i,j,k,l|i,jEk,la,b|Ei,ja,bk,l|]\displaystyle\left[\bra{0^{\prime},b}\delta_{a,0}+e^{-i\phi}\left(\cos\frac{\theta}{2}\bra{1^{\prime},b}-i\sin\frac{\theta}{2}\bra{1^{\prime},1\oplus b}\right)\delta_{a,1}\right]\left[\sum_{i,j,k,l}\ket{i^{\prime},j}\braket{E_{k,l}^{a,b}}{E_{i,j}^{a,b}}\bra{k^{\prime},l}\right] (104)
[|0,bδa,0+eiϕ(cosθ2|1,b+isinθ2|1,1b)δa,1].\displaystyle\quad\cdot\left[\ket{0^{\prime},b}\delta_{a,0}+e^{i\phi}\left(\cos\frac{\theta}{2}\ket{1^{\prime},b}+i\sin\frac{\theta}{2}\ket{1^{\prime},1\oplus b}\right)\delta_{a,1}\right].

When a=0a=0, it is rewritten as

F(|0,b)2=E0,b0,b|E0,b0,b,\displaystyle F(\ket{0,b})^{2}=\braket{E_{0,b}^{0,b}}{E_{0,b}^{0,b}}, (105)

and when a=1a=1,

F(|1,b)2\displaystyle F(\ket{1,b})^{2} =\displaystyle= [cosθ2E1,b1,b|+isinθ2E1,b+11,b|][cosθ2|E1,b1,bisinθ2|E1,b+11,b]\displaystyle\left[\cos\frac{\theta}{2}\bra{E_{1,b}^{1,b}}+i\sin\frac{\theta}{2}\bra{E_{1,b+1}^{1,b}}\right]\left[\cos\frac{\theta}{2}\ket{E_{1,b}^{1,b}}-i\sin\frac{\theta}{2}\ket{E_{1,b+1}^{1,b}}\right] (106)

is derived. For later convenience, we calculate the gate fidelity of U~CU=|00|CVT(π+θ)+|11|CVT(π)\tilde{U}_{CU}=\ket{0}\bra{0}_{C}\otimes V_{T}(\pi+\theta)+\ket{1}\bra{1}_{C}\otimes V_{T}(\pi). Since the gate fidelity is invariant under the unitary transformation VT(π+θ)V_{T}(\pi+\theta) on initial states, the gate fidelity of U~CU\tilde{U}_{CU} is same as that of UCUU_{CU} where the gate operated to the target bit is VT(θ)V_{T}(-\theta) when CC is on-state. When the initial state is |a,b\ket{a,b}, the operation of U~CU\tilde{U}_{CU} is given by

U~CU|a,b\displaystyle\tilde{U}_{CU}\ket{a,b} =\displaystyle= eiϕ(sinθ2|0,b+icosθ2|0,b1)δa,0+ieiϕ|1,b1δa,1.\displaystyle e^{i\phi}\left(-\sin\frac{\theta}{2}\ket{0,b}+i\cos\frac{\theta}{2}\ket{0^{\prime},b\oplus 1}\right)\delta_{a,0}+ie^{i\phi}\ket{1^{\prime},b\oplus 1}\delta_{a,1}. (107)

When the initial state is |a,b\ket{a,b}, we denote the gate fidelity of U~CU\tilde{U}_{CU} by f(|a,b)f(\ket{a,b}). f(|a,b)2f(\ket{a,b})^{2} is obtained as follows:

f(|a,b)2\displaystyle f(\ket{a,b})^{2} =\displaystyle= [(sinθ20,b|icosθ20,b1|)δa,0i1,b1|δa,1][i,j,k,l|i,jEk,la,b|Ei,ja,bk,l|]\displaystyle\left[\left(-\sin\frac{\theta}{2}\bra{0,b}-i\cos\frac{\theta}{2}\bra{0^{\prime},b\oplus 1}\right)\delta_{a,0}-i\bra{1^{\prime},b\oplus 1}\delta_{a,1}\right]\left[\sum_{i,j,k,l}\ket{i^{\prime},j}\braket{E_{k,l}^{a,b}}{E_{i,j}^{a,b}}\bra{k^{\prime},l}\right] (108)
[(sinθ2|0,b+icosθ2|0,b1)δa,0+i|1,b1δa,1].\displaystyle\cdot\left[\left(-\sin\frac{\theta}{2}\ket{0,b}+i\cos\frac{\theta}{2}\ket{0^{\prime},b\oplus 1}\right)\delta_{a,0}+i\ket{1^{\prime},b\oplus 1}\delta_{a,1}\right].

When a=0a=0, it becomes

f(|0,b)2\displaystyle f(\ket{0,b})^{2} =\displaystyle= [sinθ2E0,b0,b|icosθ2E0,b+10,b|][sinθ2|E0,b0,b+icosθ2|E0,b+10,b],\displaystyle\left[\sin\frac{\theta}{2}\bra{E_{0,b}^{0,b}}-i\cos\frac{\theta}{2}\bra{E_{0,b+1}^{0,b}}\right]\left[\sin\frac{\theta}{2}\ket{E_{0,b}^{0,b}}+i\cos\frac{\theta}{2}\ket{E_{0,b+1}^{0,b}}\right], (109)

and when a=1a=1, we get

f(|1,b)2\displaystyle f(\ket{1,b})^{2} =\displaystyle= E1,b+11,b|E1,b+11,b.\displaystyle\Braket{E_{1,b+1}^{1,b}}{E_{1,b+1}^{1,b}}. (110)

Next, we define the error operator DCCD_{CC} and DCTD_{CT} by

DCC\displaystyle D_{CC} \displaystyle\coloneqq sinθ2σ(l)Csinθ2σ(l)C,\displaystyle\sin\frac{\theta}{2}\sigma(\vec{l^{\prime}})_{C}-\sin\frac{\theta}{2}\sigma(\vec{l})_{C}, (111)
DTC\displaystyle D_{TC} \displaystyle\coloneqq [sinθ2σ(v)Tcosθ2σ(v×u)T]sinθ2σ(l)C,\displaystyle\left[\sin\frac{\theta}{2}\sigma(\vec{v})_{T}-\cos\frac{\theta}{2}\sigma(\vec{v}\times\vec{u})_{T}\right]^{\prime}-\sin\frac{\theta}{2}\sigma(\vec{l})_{C}, (112)

where for an operator OO, we defined OUOUO^{\prime}\coloneqq U^{\dagger}OU. We also denote mean errors on |ψC|0T|ξA\ket{\psi}_{C}\ket{0}_{T}\ket{\xi}_{A} by δiC(i=C,T)\delta_{iC}\,(i=C,T). They are given by

δiC(|ψ)=DiC212(i=C,T).\delta_{iC}(\ket{\psi})=\braket{D_{iC}^{2}}^{\frac{1}{2}}\quad(i=C,T). (113)

We first look into properties of error operators when we succeed in implementing UCUU_{CU} perfectly, that is to say, U=UCUIAU=U_{CU}\otimes I_{A}. Since

UCUσ(l)CUCU=σ(l)CIT\displaystyle U_{CU}^{\dagger}\sigma(\vec{l^{\prime}})_{C}U_{CU}=\sigma(\vec{l})_{C}\otimes I_{T} (114)

holds, δCC2(|ψ)=0\delta_{CC}^{2}(\ket{\psi})=0 is obtained for an arbitrary |ψC\ket{\psi}_{C} when the ideal time evolution is realized. We also find the following equation:

UCU[sinθ2σ(v)Tcosθ2σ(v×u)T]UCU\displaystyle U_{CU}^{\dagger}\left[\sin\frac{\theta}{2}\sigma(\vec{v})_{T}-\cos\frac{\theta}{2}\sigma(\vec{v}\times\vec{u})_{T}\right]U_{CU} =\displaystyle= |00|C[sinθ2σ(v)Tcosθ2σ(v×u)T]\displaystyle\ket{0}\bra{0}_{C}\otimes\left[\sin\frac{\theta}{2}\sigma(\vec{v})_{T}-\cos\frac{\theta}{2}\sigma(\vec{v}\times\vec{u})_{T}\right]
+|11|C[sinθ2σ(v)Tcosθ2σ(v×u)T].\displaystyle\quad+\ket{1}\bra{1}_{C}\otimes\left[-\sin\frac{\theta}{2}\sigma(\vec{v})_{T}-\cos\frac{\theta}{2}\sigma(\vec{v}\times\vec{u})_{T}\right].

When the target state is |0T\ket{0}_{T} and U=UCUIAU=U_{CU}\otimes I_{A}, the expectation value of DTCD_{TC} is calculated as

ψ|C0|TDTC|ψC|0T=0,\displaystyle\bra{\psi}_{C}\bra{0}_{T}D_{TC}\ket{\psi}_{C}\ket{0}_{T}=0, (116)

for any |ψC\ket{\psi}_{C}. Thus, when we implement UCUU_{CU} without error, the expectation value of error operators on |ψC|0T\ket{\psi}_{C}\ket{0}_{T} are 0. Calculating the mean square of DTCD_{TC} on |ψC|0T\ket{\psi}_{C}\ket{0}_{T} for the case where U=UCUIAU=U_{CU}\otimes I_{A}, we obtain

ψ|C0|TDTC2|ψC|0T=cos2θ2.\displaystyle\bra{\psi}_{C}\bra{0}_{T}D_{TC}^{2}\ket{\psi}_{C}\ket{0}_{T}=\cos^{2}\frac{\theta}{2}. (117)

This expression becomes 0 for θ=π\theta=\pi.

Next we associate δCC2(|ψ)\delta_{CC}^{2}(\ket{\psi}) and δTC2(|ψ)\delta_{TC}^{2}(\ket{\psi}) with the uncertainty relation. The energy conservation law is represented as

[U,HT+HC+HA+Hint]=0,[U,H_{T}+H_{C}+H_{A}+H_{int}]=0, (118)

where HTH_{T}, HCH_{C} and HAH_{A} are the Hamiltonian of TT, CC and AA, respectively, and HintH_{int} is the interaction term. From the energy conservation and the triangle inequality,

|[sinθ2σ(l)C,HC]||[sinθ2σ(l)C,HC]|+|[sinθ2σ(l)C,HT]|+|[sinθ2σ(l)C,HA]|\displaystyle\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{C}]}\right|\leq\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{C}^{\prime}]}\right|+\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{T}^{\prime}]}\right|+\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{A}^{\prime}]}\right| (119)

is proved for any |ψC|ϕT\ket{\psi}_{C}\ket{\phi}_{T}. We used the assumption of the interaction term. From the definition of error operators, we also find that

|[sinθ2σ(l)C,HC]|\displaystyle\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{C}^{\prime}]}\right| =\displaystyle= |[HC,DTC]|,\displaystyle\left|\Braket{[H_{C}^{\prime},D_{TC}]}\right|,
|[sinθ2σ(l)C,HT]|\displaystyle\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{T}^{\prime}]}\right| =\displaystyle= |[HT,DCC]|,\displaystyle\left|\Braket{[H_{T}^{\prime},D_{CC}]}\right|,
|[sinθ2σ(l)C,HA]|\displaystyle\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{A}^{\prime}]}\right| =\displaystyle= |[HA,DTC]|=|[HA,DCC]|\displaystyle\left|\Braket{[H_{A}^{\prime},D_{TC}]}\right|=\left|\Braket{[H_{A}^{\prime},D_{CC}]}\right| (120)

hold. From Eq. (119) and Eq. (120), we can show that

|[sinθ2σ(l)C,HC]||[HC,DTC]|+|[HT,DCC]|+|[HA,DTC]|.\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{C}]}\right|\leq\left|\Braket{[H_{C}^{\prime},D_{TC}]}\right|+\left|\Braket{[H_{T}^{\prime},D_{CC}]}\right|+\left|\Braket{[H_{A}^{\prime},D_{TC}]}\right|. (121)

Using Robertson’s uncertainty relation and Δ(DiC)2δiC2\Delta(D_{iC})^{2}\leq\delta_{iC}^{2}, where Δ(A)\Delta(A) is the standard deviation of AA, we obtain

|[sinθ2σ(l)C,HC]|2δTC(|ψ)Δ(HC)+2δCC(|ψ)Δ(HT)+2δTC(|ψ)Δ(HA).\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{C}]}\right|\leq 2\delta_{TC}(\ket{\psi})\Delta(H_{C}^{\prime})+2\delta_{CC}(\ket{\psi})\Delta(H_{T}^{\prime})+2\delta_{TC}(\ket{\psi})\Delta(H_{A}^{\prime}). (122)

Similarly,

|[sinθ2σ(l)C,HC]|2δTC(|ψ)Δ(HC)+2δCC(|ψ)Δ(HT)+2δCC(|ψ)Δ(HA)\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{C}]}\right|\leq 2\delta_{TC}(\ket{\psi})\Delta(H_{C}^{\prime})+2\delta_{CC}(\ket{\psi})\Delta(H_{T}^{\prime})+2\delta_{CC}(\ket{\psi})\Delta(H_{A}^{\prime}) (123)

can be proved. Adding Eq. (122) to Eq. (123),

|[sinθ2σ(l)C,HC]|[δTC(|ψ)+δCC(|ψ)](2γ+Δ(HA))\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{C}]}\right|\leq[\delta_{TC}(\ket{\psi})+\delta_{CC}(\ket{\psi})](2\gamma+\Delta(H_{A}^{\prime})) (124)

is derived, where γmax{HC,HT}\gamma\coloneqq\max\left\{\|H_{C}\|,\|H_{T}\|\right\}. Moreover, using the relation (x+y)22x2+y2\frac{(x+y)^{2}}{2}\leq x^{2}+y^{2}, we get

|[sinθ2σ(l)C,HC]|22(2γ+Δ(HA))2δTC2(|ψ)+δCC2(|ψ).\frac{\left|\Braket{[\sin\frac{\theta}{2}\sigma(\vec{l})_{C},H_{C}]}\right|^{2}}{2(2\gamma+\Delta(H_{A}^{\prime}))^{2}}\leq\delta_{TC}^{2}(\ket{\psi})+\delta_{CC}^{2}(\ket{\psi}). (125)

Next, we associate the mean squared on the right-hand side with the gate fidelity. In the following calculation, we represent |ψ\ket{\psi} as |ψC=c0|0C+c1|1C\ket{\psi}_{C}=c_{0}\ket{0}_{C}+c_{1}\ket{1}_{C}. Because

1=σ(l)C2=σ(l)C2=a,b[|c0|2||Eab00|2+|c1|2||Eab10|2],\displaystyle 1=\Braket{\sigma(\vec{l^{\prime}})^{\prime 2}_{C}}=\Braket{\sigma(\vec{l})_{C}^{2}}=\sum_{a,b}\left[|c_{0}|^{2}|\ket{E_{ab}^{00}}|^{2}+|c_{1}|^{2}|\ket{E_{ab}^{10}}|^{2}\right], (126)
σ(l)Cσ(l)C=a,b(1)a[c0Eab00|c1Eab10|][c0|Eab00+c1|Eab10],\displaystyle\Braket{\sigma(\vec{l})_{C}\sigma(\vec{l^{\prime}})_{C}^{\prime}}=\sum_{a,b}(-1)^{a}\left[c_{0}^{*}\Bra{E_{ab}^{00}}-c_{1}^{*}\Bra{E_{ab}^{10}}\right]\left[c_{0}\Ket{E_{ab}^{00}}+c_{1}\Ket{E_{ab}^{10}}\right], (127)

holds, we obtain

δCC2(|ψ)\displaystyle\delta_{CC}^{2}(\ket{\psi}) =\displaystyle= 4sin2θ2[|c0|2(|E10002+|E11002)+|c1|2(|E00102+|E01102)].\displaystyle 4\sin^{2}\frac{\theta}{2}\left[|c_{0}|^{2}\left(\|\ket{E_{10}^{00}}\|^{2}+\|\ket{E_{11}^{00}}\|^{2}\right)+|c_{1}|^{2}\left(\|\ket{E_{00}^{10}}\|^{2}+\|\ket{E_{01}^{10}}\|^{2}\right)\right]. (128)

Similarly, we associate δTC2(|ψ)\delta_{TC}^{2}(\ket{\psi}) with norms of external system states.

σ(l)Cσ(v)T=a,b(1)b[c0Eab00|c1Eab10|][c0|Eab00+c1|Eab10],\displaystyle\Braket{\sigma(\vec{l})_{C}\sigma(\vec{v})_{T}^{\prime}}=\sum_{a,b}(-1)^{b}\left[c_{0}^{*}\Bra{E_{ab}^{00}}-c_{1}^{*}\Bra{E_{ab}^{10}}\right]\left[c_{0}\Ket{E_{ab}^{00}}+c_{1}\Ket{E_{ab}^{10}}\right], (129)
σ(l)Cσ(v×u)T=ia,b(1)b+1[c0Ea,b00|c1Ea,b10|][c0|Ea,b+100+c1|Ea,b+110],\displaystyle\Braket{\sigma(\vec{l})_{C}\sigma(\vec{v}\times\vec{u})^{\prime}_{T}}=i\sum_{a,b}(-1)^{b+1}\left[c_{0}^{*}\Bra{E_{a,b}^{00}}-c_{1}^{*}\Bra{E_{a,b}^{10}}\right]\left[c_{0}\Ket{E_{a,b+1}^{00}}+c_{1}\Ket{E_{a,b+1}^{10}}\right], (130)
σ(v×u)Tσ(v)T=ia,b[c0Eab00|+c1Eab10|][c0|Ea,b+100+c1|Ea,b+110],\displaystyle\Braket{\sigma(\vec{v}\times\vec{u})_{T}^{\prime}\sigma(\vec{v})_{T}^{\prime}}=i\sum_{a,b}\left[c_{0}^{*}\Bra{E_{ab}^{00}}+c_{1}^{*}\Bra{E_{ab}^{10}}\right]\left[c_{0}\Ket{E_{a,b+1}^{00}}+c_{1}\Ket{E_{a,b+1}^{10}}\right], (131)

are able to be shown. Therefore,

δTC2(|ψ)\displaystyle\delta_{TC}^{2}(\ket{\psi}) (133)
=\displaystyle= cos2θ2+4sin2θ2[|c0|2(|E01002+|E11002)+|c1|2(|E00102+|E10102)]\displaystyle\cos^{2}\frac{\theta}{2}+4\sin^{2}\frac{\theta}{2}\left[|c_{0}|^{2}\left(\|\ket{E_{01}^{00}}\|^{2}+\|\ket{E_{11}^{00}}\|^{2}\right)+|c_{1}|^{2}\left(\|\ket{E_{00}^{10}}\|^{2}+\|\ket{E_{10}^{10}}\|^{2}\right)\right]
2isinθ2cosθ2a[|c0|2Ea000|Ea,100|c1|2Ea,010|Ea,110]\displaystyle\quad-2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}\sum_{a}\left[|c_{0}|^{2}\Braket{E_{a0}^{00}}{E_{a,1}^{00}}-|c_{1}|^{2}\Braket{E_{a,0}^{10}}{E_{a,1}^{10}}\right]
+2isinθ2cosθ2a[|c0|2Ea100|Ea,000|c1|2Ea,110|Ea,010]\displaystyle+2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}\sum_{a}\left[|c_{0}|^{2}\Braket{E_{a1}^{00}}{E_{a,0}^{00}}-|c_{1}|^{2}\Braket{E_{a,1}^{10}}{E_{a,0}^{10}}\right]
\displaystyle\leq 2|c0|2[cosθ2E0000|+isinθ2E0100|][cosθ2|E0000isinθ2|E0100]\displaystyle 2|c_{0}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{00}^{00}}+i\sin\frac{\theta}{2}\Bra{E_{01}^{00}}\right]\left[\cos\frac{\theta}{2}\ket{E_{00}^{00}}-i\sin\frac{\theta}{2}\ket{E_{01}^{00}}\right]
+2|c0|2[cosθ2E1000|+isinθ2E1100|][cosθ2|E1000isinθ2|E1100]\displaystyle+2|c_{0}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{10}^{00}}+i\sin\frac{\theta}{2}\Bra{E_{11}^{00}}\right]\left[\cos\frac{\theta}{2}\ket{E_{10}^{00}}-i\sin\frac{\theta}{2}\ket{E_{11}^{00}}\right]
+2|c1|2[cosθ2E0110|+isinθ2E0010|][cosθ2|E0110isinθ2|E0010]\displaystyle+2|c_{1}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{01}^{10}}+i\sin\frac{\theta}{2}\Bra{E_{00}^{10}}\right]\left[\cos\frac{\theta}{2}\ket{E_{01}^{10}}-i\sin\frac{\theta}{2}\ket{E_{00}^{10}}\right]
+2|c1|2[cosθ2E1110|+isinθ2E1010|][cosθ2|E1110isinθ2|E1010]\displaystyle+2|c_{1}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{11}^{10}}+i\sin\frac{\theta}{2}\Bra{E_{10}^{10}}\right]\left[\cos\frac{\theta}{2}\ket{E_{11}^{10}}-i\sin\frac{\theta}{2}\ket{E_{10}^{10}}\right]
+2[|c0|2(|E01002+|E11002)+|c1|2(|E00102+|E10102)]\displaystyle+2\left[|c_{0}|^{2}\left(\|\Ket{E_{01}^{00}}\|^{2}+\|\Ket{E_{11}^{00}}\|^{2}\right)+|c_{1}|^{2}\left(\|\Ket{E_{00}^{10}}\|^{2}+\|\Ket{E_{10}^{10}}\|^{2}\right)\right]

holds. We can derive the following equation:

δCC2(|ψ)+δTC2(|ψ)\displaystyle\delta_{CC}^{2}(\ket{\psi})+\delta_{TC}^{2}(\ket{\psi})
\displaystyle\leq 4sin2θ2[|c0|2(|E10002+|E11002)+|c1|2(|E00102+|E01102)]\displaystyle 4\sin^{2}\frac{\theta}{2}\left[|c_{0}|^{2}\left(\|\ket{E_{10}^{00}}\|^{2}+\|\ket{E_{11}^{00}}\|^{2}\right)+|c_{1}|^{2}\left(\|\ket{E_{00}^{10}}\|^{2}+\|\ket{E_{01}^{10}}\|^{2}\right)\right]
+2|c0|2[cosθ2E0000|+isinθ2E0100|][cosθ2|E0000isinθ2|E0100]\displaystyle+2|c_{0}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{00}^{00}}+i\sin\frac{\theta}{2}\Bra{E_{01}^{00}}\right]\left[\cos\frac{\theta}{2}\ket{E_{00}^{00}}-i\sin\frac{\theta}{2}\ket{E_{01}^{00}}\right]
+2|c0|2[cosθ2E1000|+isinθ2E1100|][cosθ2|E1000isinθ2|E1100]\displaystyle+2|c_{0}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{10}^{00}}+i\sin\frac{\theta}{2}\Bra{E_{11}^{00}}\right]\left[\cos\frac{\theta}{2}\ket{E_{10}^{00}}-i\sin\frac{\theta}{2}\ket{E_{11}^{00}}\right]
+2|c1|2[cosθ2E0110|+isinθ2E0010|][cosθ2|E0110isinθ2|E0010]\displaystyle+2|c_{1}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{01}^{10}}+i\sin\frac{\theta}{2}\Bra{E_{00}^{10}}\right]\left[\cos\frac{\theta}{2}\ket{E_{01}^{10}}-i\sin\frac{\theta}{2}\ket{E_{00}^{10}}\right]
+2|c1|2[cosθ2E1110|+isinθ2E1010|][cosθ2|E1110isinθ2|E1010]\displaystyle+2|c_{1}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{11}^{10}}+i\sin\frac{\theta}{2}\Bra{E_{10}^{10}}\right]\left[\cos\frac{\theta}{2}\ket{E_{11}^{10}}-i\sin\frac{\theta}{2}\ket{E_{10}^{10}}\right]
+2[|c0|2(|E01002+|E11002)+|c1|2(|E00102+|E10102)]\displaystyle+2\left[|c_{0}|^{2}\left(\|\Ket{E_{01}^{00}}\|^{2}+\|\Ket{E_{11}^{00}}\|^{2}\right)+|c_{1}|^{2}\left(\|\Ket{E_{00}^{10}}\|^{2}+\|\Ket{E_{10}^{10}}\|^{2}\right)\right]
\displaystyle\leq 4[|c0|2(|E10002+|E11002)+|c1|2(|E00102+|E01102)]\displaystyle 4\left[|c_{0}|^{2}\left(\|\ket{E_{10}^{00}}\|^{2}+\|\ket{E_{11}^{00}}\|^{2}\right)+|c_{1}|^{2}\left(\|\ket{E_{00}^{10}}\|^{2}+\|\ket{E_{01}^{10}}\|^{2}\right)\right]
2|c0|2[sinθ2E0000|icosθ2E0100|][sinθ2|E0000+icosθ2|E0100]\displaystyle-2|c_{0}|^{2}\left[\sin\frac{\theta}{2}\Bra{E_{00}^{00}}-i\cos\frac{\theta}{2}\Bra{E_{01}^{00}}\right]\left[\sin\frac{\theta}{2}\ket{E_{00}^{00}}+i\cos\frac{\theta}{2}\ket{E_{01}^{00}}\right]
+2|c0|2(|E00002+|E01002)+2|c0|2[cosθ2E1000|+isinθ2E1100|][cosθ2|E1000isinθ2|E1100]\displaystyle+2|c_{0}|^{2}\left(\|\ket{E_{00}^{00}}\|^{2}+\|\ket{E_{01}^{00}}\|^{2}\right)+2|c_{0}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{10}^{00}}+i\sin\frac{\theta}{2}\Bra{E_{11}^{00}}\right]\left[\cos\frac{\theta}{2}\ket{E_{10}^{00}}-i\sin\frac{\theta}{2}\ket{E_{11}^{00}}\right]
+2|c1|2[cosθ2E0110|+isinθ2E0010|][cosθ2|E0110isinθ2|E0010]+2|c1|2(|E11102+|E10102)\displaystyle+2|c_{1}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{01}^{10}}+i\sin\frac{\theta}{2}\Bra{E_{00}^{10}}\right]\left[\cos\frac{\theta}{2}\ket{E_{01}^{10}}-i\sin\frac{\theta}{2}\ket{E_{00}^{10}}\right]+2|c_{1}|^{2}\left(\|\ket{E_{11}^{10}}\|^{2}+\|\ket{E_{10}^{10}}\|^{2}\right)
2|c1|2[sinθ2E1110|icosθ2E1010|][sinθ2|E1110+icosθ2|E1010]\displaystyle-2|c_{1}|^{2}\left[\sin\frac{\theta}{2}\Bra{E_{11}^{10}}-i\cos\frac{\theta}{2}\Bra{E_{10}^{10}}\right]\left[\sin\frac{\theta}{2}\ket{E_{11}^{10}}+i\cos\frac{\theta}{2}\ket{E_{10}^{10}}\right]
+2[|c0|2(|E01002+|E11002)+|c1|2(|E00102+|E10102)]\displaystyle+2\left[|c_{0}|^{2}\left(\|\Ket{E_{01}^{00}}\|^{2}+\|\Ket{E_{11}^{00}}\|^{2}\right)+|c_{1}|^{2}\left(\|\Ket{E_{00}^{10}}\|^{2}+\|\Ket{E_{10}^{10}}\|^{2}\right)\right]
=\displaystyle= 2|c0|22|c0|2[sinθ2E0000|icosθ2E0100|][sinθ2|E0000+icosθ2|E0100]\displaystyle 2|c_{0}|^{2}-2|c_{0}|^{2}\left[\sin\frac{\theta}{2}\Bra{E_{00}^{00}}-i\cos\frac{\theta}{2}\Bra{E_{01}^{00}}\right]\left[\sin\frac{\theta}{2}\ket{E_{00}^{00}}+i\cos\frac{\theta}{2}\ket{E_{01}^{00}}\right]
+2|c0|2[cosθ2E1000|+isinθ2E1100|][cosθ2|E1000isinθ2|E1100]+2|c0|2(1|E00002+|E11002)\displaystyle+2|c_{0}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{10}^{00}}+i\sin\frac{\theta}{2}\Bra{E_{11}^{00}}\right]\left[\cos\frac{\theta}{2}\ket{E_{10}^{00}}-i\sin\frac{\theta}{2}\ket{E_{11}^{00}}\right]+2|c_{0}|^{2}\left(1-\|\ket{E_{00}^{00}}\|^{2}+\|\ket{E_{11}^{00}}\|^{2}\right)
+2|c1|2+2|c1|2[cosθ2E0110|+isinθ2E0010|][cosθ2|E0110isinθ2|E0010]\displaystyle+2|c_{1}|^{2}+2|c_{1}|^{2}\left[\cos\frac{\theta}{2}\Bra{E_{01}^{10}}+i\sin\frac{\theta}{2}\Bra{E_{00}^{10}}\right]\left[\cos\frac{\theta}{2}\ket{E_{01}^{10}}-i\sin\frac{\theta}{2}\ket{E_{00}^{10}}\right]
2|c1|2[sinθ2E1110|icosθ2E1010|][sinθ2|E1110+icosθ2|E1010]+2|c1|2(1|E11102+|E00102)\displaystyle-2|c_{1}|^{2}\left[\sin\frac{\theta}{2}\Bra{E_{11}^{10}}-i\cos\frac{\theta}{2}\Bra{E_{10}^{10}}\right]\left[\sin\frac{\theta}{2}\ket{E_{11}^{10}}+i\cos\frac{\theta}{2}\ket{E_{10}^{10}}\right]+2|c_{1}|^{2}\left(1-\|\ket{E_{11}^{10}}\|^{2}+\|\ket{E_{00}^{10}}\|^{2}\right)
\displaystyle\leq 4|c0|2[1f(|0,0)2]+4|c1|2[1F(|1,0)2]+4|c0|2[1F(|0,0)2]+4|c1|2[1f(|1,0)2]\displaystyle 4|c_{0}|^{2}[1-f(\ket{0,0})^{2}]+4|c_{1}|^{2}[1-F(\ket{1,0})^{2}]+4|c_{0}|^{2}[1-F(\ket{0,0})^{2}]+4|c_{1}|^{2}[1-f(\ket{1,0})^{2}] (137)
\displaystyle\leq 4[1F(α,UCU)2]+4[1f(α,UCU)2].\displaystyle 4[1-F(\mathcal{E}_{\alpha},U_{CU})^{2}]+4[1-f(\mathcal{E}_{\alpha},U_{CU})^{2}]. (138)

Imposing the symmetry that the gate fidelity when the target gate is VT(θ)V_{T}(\theta) is equal to the gate fidelity when the target gate is VT(θ)V_{T}(-\theta) , F(α,UCU)=f(α,UCU)F(\mathcal{E}_{\alpha},U_{CU})=f(\mathcal{E}_{\alpha},U_{CU}),

sin2θ2|[σ(l)C,HC]|22(2γ+Δ(HA))28[1F(α,UCU)2]\sin^{2}\frac{\theta}{2}\cdot\frac{\left|\Braket{\left[\sigma(\vec{l})_{C},H_{C}\right]}\right|^{2}}{2(2\gamma+\Delta(H^{\prime}_{A}))^{2}}\leq 8[1-F(\mathcal{E}_{\alpha},U_{CU})^{2}] (139)

can be proved. Finally, by maximizing over states of CC+TT and minimizing over states of AA, Eq. (41) is derived.

References

  • Shor [1994] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE, Los Alamitos, CA, 1994) pp. 124–134.
  • Shor [1997] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26, 1484 (1997).
  • Knill et al. [1998] E. Knill, R. Laflamme, and W. H. Zurek, Resilient quantum computation, Science 279, 342 (1998).
  • Kitaev [1997] A. Y. Kitaev, Quantum computations: algorithms and error correction, Russ. Math. Surv. 52, 1191 (1997).
  • Aharonov and Ben-Or [2008] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error rate, SIAM J. Comput. 38, 1207 (2008).
  • Fukui et al. [2018] K. Fukui, A. Tomita, A. Okamoto, and K. Fujii, High-threshold fault-tolerant quantum computation with analog quantum error correction, Phys. Rev. X 8, 021054 (2018).
  • Schotte et al. [2022] A. Schotte, G. Zhu, L. Burgelman, and F. Verstraete, Quantum error correction thresholds for the universal fibonacci turaev-viro code, Phys. Rev. X 12, 021012 (2022).
  • Bennett and Brassard [1984] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of the International Conference on Computers, Systems & Signal Processing, Bangalore, India, Dec. 9–12, 1984 (IEEE, Indian Institute of Science, 1984) pp. 175–179.
  • Hazumi et al. [2012] M. Hazumi et al., LiteBIRD: a small satellite for the study of B-mode polarization and inflation from cosmic background radiation detection, in Proc. SPIE 8442, Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave (SPIE, 2012) pp. 844219-1–844219-9.
  • Akrami et al. [2020] Y. Akrami et al., Planck 2018 results – IV. Diffuse component separation, A&A 641, A4 (2020).
  • Abbott et al. [2016] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Binary black hole mergers in the first advanced LIGO observing run, Phys. Rev. X 6, 041015 (2016).
  • Wigner [1952] E. P. Wigner, Die Messung quntenmechanischer Operatoren, Z. Phys. 133, 101 (1952).
  • Araki and Yanase [1960] H. Araki and M. M. Yanase, Measurement of quantum mechanical operators, Phys. Rev. 120, 622 (1960).
  • Ozawa [1991] M. Ozawa, Does a conservation law limit position measurements?, Phys. Rev. Lett. 67, 1956 (1991).
  • Ozawa [1993] M. Ozawa, Wigner–Araki–Yanase theorem for continuous observables, in Classical and Quantum Systems: Foundations and Symmetries, Proceedings of the II International Wigner Symposium, edited by H. D. Doebner, W. Scherer, and F. Schroeck, Jr (World Scientific, Singapore, 1993) pp. 224–228.
  • Ozawa [2002a] M. Ozawa, Conservation laws, uncertainty relations, and quantum limits of measurements, Phys. Rev. Lett. 88, 050402 (2002a).
  • von Neumann [1955] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton UP, Princeton, NJ, 1955) [Originally published: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)].
  • Yanase [1961] M. M. Yanase, Optimal measuring apparatus, Phys. Rev. 123, 666 (1961).
  • Ozawa [2003a] M. Ozawa, Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement, Phys. Rev. A 67, 042105 (2003a).
  • Ozawa [2003b] M. Ozawa, Uncertainty principle for quantum instruments and computing, Int. J. Quantum. Inform. 1, 569 (2003b).
  • Ozawa [2002b] M. Ozawa, Conservative quantum computing, Phys. Rev. Lett. 89, 057902 (2002b).
  • Karasawa and Ozawa [2007] T. Karasawa and M. Ozawa, Conservation-law-induced quantum limits for physical realizations of the quantum NOT gate, Phys. Rev. A 75, 032324 (2007).
  • Gea-Banacloche [2002a] J. Gea-Banacloche, Some implications of the quantum mature of laser fields for quatum computations, Phys. Rev. A 65, 022308 (2002a).
  • Gea-Banacloche [2002b] J. Gea-Banacloche, Minimum energy requirements for quantum computation, Phys. Rev. Lett. 89, 217901 (2002b).
  • Gea-Banacloche and Kish [2003] J. Gea-Banacloche and L. B. Kish, Comparison of energy requirements for classical and quantum information processing, Fluct. Noise Lett. 3, C3 (2003).
  • Gea-Banacloche and Kish [2005] J. Gea-Banacloche and L. B. Kish, Future directions in electronic computing and information processing, Proc. IEEE 93, 1858 (2005).
  • Gea-Banacloche and Ozawa [2005] J. Gea-Banacloche and M. Ozawa, Constraints for quantum logic arising from conservation laws and field fluctuations, J. Opt. B: Quantum Semiclass. Opt. 7, S326 (2005).
  • Gea-Banacloche and Ozawa [2006] J. Gea-Banacloche and M. Ozawa, Minimum-energy pulses for quantum logic cannot be shared, Phys. Rev. A 74, 060301(R) (2006).
  • Karasawa et al. [2009] T. Karasawa, J. Gea-Banacloche, and M. Ozawa, Gate fidelity of arbitrary single-qubit gates constrained by conservation laws, J. Phys. A: Math. Theor. 42, 225303 (2009).
  • Tajima and Nagaoka [2019] H. Tajima and H. Nagaoka, Coherence-variance uncertainty relation and coherence cost for quantum measurement under conservation laws, arXiv:1909.02904 [quant-ph]  (2019).
  • Tajima et al. [2020] H. Tajima, N. Shiraishi, and K. Saito, Coherence cost for violating conservation laws, Phys. Rev. Research 2, 043374 (2020).
  • Bartlett et al. [2007] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Reference frames, superselection rules, and quantum information, Rev. Mod. Phys. 79, 555 (2007).
  • Marvian and Spekkens [2012] I. Marvian and R. W. Spekkens, An information-theoretic account of the Wigner–Araki–Yanase theorem, arXiv:1212.3378 [quant-ph]  (2012).
  • Ahmadi et al. [2013] M. Ahmadi, D. Jennings, and T. Rudolph, The Wigner–Araki–Yanase theorem and the quantum resource theory of asymmetry, New J. Phys. 15, 013057 (2013).
  • Marvian and Spekkens [2013] I. Marvian and R. W. Spekkens, The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations, New J. Phys. 15, 033001 (2013).
  • Åberg [2014] J. Åberg, Catalytic coherence, Phys. Rev. Lett. 113, 150402 (2014).
  • Marvian and Spekkens [2019] I. Marvian and R. W. Spekkens, No-broadcasting theorem for quantum asymmetry and coherence and a trade-off relation for approximate broadcasting, Phys. Rev. Lett. 123, 020404 (2019).
  • Lostaglio and Müller [2019] M. Lostaglio and M. P. Müller, Coherence and asymmetry cannot be broadcast, Phys. Rev. Lett. 123, 020403 (2019).
  • Miyadera and Loveridge [2020] T. Miyadera and L. Loveridge, A quantum reference frame size-accuracy trade-off for quantum channels, J. Phys.: Conf. Ser. 1638, 012008 (2020).
  • Takagi and Tajima [2020] R. Takagi and H. Tajima, Universal limitations on implementing resourceful unitary evolutions, Phys. Rev. A 101, 022315 (2020).
  • Hawking [1975] S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975).
  • Page [1993] D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71, 1291 (1993).
  • Hayden and Preskill [2007] P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, J. High Energy Phys. 2007 (09), 120.
  • Nakata et al. [2020] Y. Nakata, E. Wakakuwa, and M. Koashi, Black holes as clouded mirrors: the Hayden-Preskill protocol with symmetry, arXiv:2007.00895 [quant-ph]  (2020).
  • Tajima and Saito [2021] H. Tajima and K. Saito, Universal limitation of quantum information recovery: symmetry versus coherence, arXiv:2103.01876 [quant-ph]  (2021).
  • Kimura et al. [2008] G. Kimura, B. K. Meister, and M. Ozawa, Quantum limits of measurements induced by multiplicative conservation laws: Extension of the Wigner-Araki-Yanase theorem, Phys. Rev. A 78, 032106 (2008).
  • Navascués and Popescu [2014] M. Navascués and S. Popescu, How energy conservation limits our measurements, Phys. Rev. Lett. 112, 140502 (2014).
  • Miyadera and Imai [2006] T. Miyadera and H. Imai, Strength of interaction for information distribution, Phys. Rev. A 74, 064302 (2006).
  • Tukiainen [2017] M. Tukiainen, Wigner-araki-yanase theorem beyond conservation laws, Phys. Rev. A 95, 012127 (2017).
  • Chiribella et al. [2021] G. Chiribella, Y. Yang, and R. Renner, Fundamental energy requirement of reversible quantum operations, Phys. Rev. X 11, 021014 (2021).
  • Parikh et al. [2021a] M. Parikh, F. Wilczek, and G. Zahariade, Signatures of the quantization of gravity at gravitational wave detectors, Phys. Rev. D 104, 046021 (2021a).
  • Parikh et al. [2021b] M. Parikh, F. Wilczek, and G. Zahariade, Quantum mechanics of gravitational waves, Phys. Rev. Lett. 127, 081602 (2021b).
  • Kanno et al. [2021] S. Kanno, J. Soda, and J. Tokuda, Indirect detection of gravitons through quantum entanglement, Phys. Rev. D 104, 083516 (2021).
  • Hepp [1972] K. Hepp, Quantum theory of measurement and macroscopic observables, Helv. Phys. Acta. 45, 237 (1972).
  • Paulsen [1986] V. I. Paulsen, Completely Bounded Maps and Dilations, Pitman Research Notes in Mathematics, Vol. 146 (Longman, New York, 1986).
  • Belavkin et al. [2005] V. P. Belavkin, G. M. D’Ariano, and M. Raginsky, J. Math. Phys. 46, 062106 (2005).
  • Nielsen and Chuang [1997] M. A. Nielsen and I. L. Chuang, Programmable quantum gate arrays, Phys. Rev. Lett. 79, 321 (1997).