This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lie-Rinehart algebras \simeq Acyclic Lie \infty-algebroids

Camille Laurent-Gengoux  and  Ruben Louis Institut Élie Cartan de Lorraine
UMR 7502 du CNRS
Université de Lorraine
Metz, France
(Date: June 2021)
Abstract.

We show that there is an equivalence of categories between Lie-Rinehart algebras over a commutative algebra 𝒪\mathcal{O} and homotopy equivalence classes of negatively graded Lie \infty-algebroids over their resolutions (=acyclic Lie \infty-algebroids). This extends to a purely algebraic setting the construction of the universal QQ-manifold of a locally real analytic singular foliation of [28, 30]. In particular, it makes sense for the universal Lie \infty-algebroid of every singular foliation, without any additional assumption, and for Androulidakis-Zambon singular Lie algebroids. Also, to any ideal 𝒪\mathcal{I}\subset\mathcal{O} preserved by the anchor map of a Lie-Rinehart algebra 𝒜\mathcal{A}, we associate a homotopy equivalence class of negatively graded Lie \infty-algebroids over complexes computing Tor𝒪(𝒜,𝒪/){\mathrm{Tor}}_{\mathcal{O}}(\mathcal{A},\mathcal{O}/\mathcal{I}). Several explicit examples are given.

Both authors acknowledge support of the CNRS Project Miti 80Prime Granum.

Introduction

The recent surge of studies about Lie \infty-algebras or Lie \infty-groups, their morphisms and their -oids equivalent (i.e. Lie \infty-algebroids [6, 38, 39] and “higher groupoids” [40]) is usually justified by their use in various fields of theoretical physics and mathematics. Lie \infty-algebras or -oids appear often where, at first look, they do not seem to be part of the story, but end up to be needed to answer natural questions, in particular questions where no higher-structure concept seems a priori involved. Among examples of such a situation, let us cite deformation quantization of Poisson manifolds [25] and many recent developments of BV operator theory, e.g. [5], deformations of coisotropic submanifolds [7], integration problems of Lie algebroids by stacky-groupoids [34], complex submanifolds and Atiyah classes [20, 10, 29]. The list could continue.

For instance, in [28]-[30], it is proven that “behind” most singular foliations \mathcal{F} there is a natural homotopy class of Lie \infty-algebroids, called universal Lie \infty-algebroid of \mathcal{F}, and that the latter answers natural basic questions about the existence of “good” generators and relations for a singular foliation. The present article is mainly an algebraization of [28], algebraization that allows to enlarge widely the classes of examples. More precisely, our Theorems 2.1 and 2.4 are similar to the main theorems Theorem 2.8. and Theorem 2.9 in [28]:

  1. (1)

    Theorem 2.1 equips any free 𝒪\mathcal{O}-resolution of a Lie-Rinehart algebra 𝒜\mathcal{A} with a Lie \infty-algebroid structure (Theorem 2.8. in [28] was a statement for geometric resolutions of locally real analytic singular foliation on an open subset with compact closure). This is a sort of homotopy transfer theorem, except that no existing homotopy transfer theorem applies in the context of generic 𝒪\mathcal{O}-modules (for instance, [6] deals only with projective 𝒪\mathcal{O}-modules). The difficulty is that we cannot apply the explicit transfer formulas that appear in the homological perturbation lemma because there is in general no 𝒪\mathcal{O}-linear section of 𝒜\mathcal{A} to its projective resolutions.

  2. (2)

    Theorem 2.4 states that any Lie \infty-algebroid structure that terminates in 𝒜\mathcal{A} comes equipped with a unique up to homotopy Lie \infty-algebroid morphism to any structure as in the first item (Theorem 2.8. in [28] was a similar statement for Lie \infty-algebroids whose anchor takes values in a given singular foliation).

As in [28], an immediate corollary of the result is that any two Lie \infty-algebroids as in the first item are homotopy equivalent, defining therefore a class canonically associated to the Lie-Rinehart algebra, that deserve in view of the second item to be called “universal”.

However:

  1. (1)

    While [28] dealt with Lie \infty-algebroids over projective resolutions of finite length and finite dimension, we work here with Lie \infty-algebroids over any free resolution -even those of infinite length and of infinite dimension in every degree.

  2. (2)

    In particular, since we will work in a context where taking twice the dual does not bring back the initial space, we can not work with QQ-manifolds (those being the “dual” of Lie \infty-algebroids): it is much complicated to deal with morphisms and homotopies.

By doing so, several limitations of [28] are overcome. While [28] only applied to singular foliations which were algebraic or locally real analytic on a relatively compact open subset, the present article associates a natural homotopy class of Lie \infty-algebroids to any Lie-Rinehart algebra, and in particular

  1. a)

    to any singular foliation on a smooth manifold, (finitely generated or not). This construction still works with singular foliations in the sense of Stefan-Sussmann for instance,

  2. b)

    to any affine variety, to which we associate its Lie-Rinehart algebra of vector fields), and more generally to derivations of any commutative algebra,

  3. c)

    to singular Lie algebroids in the sense of Androulidakis and Zambon [3],

  4. d)

    to unexpected various contexts, e.g. Poisson vector fields of a Poisson manifold, seen as a Lie-Rinehart algebra over Casimir functions, or symmetries of a singular foliation, seen as a Lie-Rinehart algebra over functions constant on the leaves.

These Lie \infty-algebroids are constructed on 𝒪\mathcal{O}-free resolutions of the initial Lie-Rinehart algebra over 𝒪\mathcal{O}. They are acyclic universal in some sense, and they also are in particular unique up to homotopy equivalence. Hence the title.

A similar algebraization of the main results of [28], using semi-models category, appeared recently in Yaël Frégier and Rigel A. Juarez-Ojeda [14]. There are strong similarities between our results and theirs, but morphisms and homotopies in [14] do not match ours. It is highly possible, however, that Theorem 2.1 could be recovered using their results. Luca Vitagliano [36] also constructed Lie \infty-algebra structures out of regular foliations, which are of course a particular case of Lie-Rinehart algebra. These constructions do not have the same purposes. For regular foliations, our Lie \infty-algebroid structure is trivial in the sense that it is a Lie algebroid, while his structures become trivial when a good transverse submanifold exists. Lars Kjeseth [23, 22] also has a notion of resolutions of Lie-Rinehart algebras. But his construction is more in the spirit of Koszul-Tate resolution: Definition 1. in [23] defines Lie-Rinehart algebras resolutions as resolutions of their Chevalley-Eilenberg coalgebra, not of the Lie-Rinehart algebra itself as a module. It answers a different category of questions, related to BRST and the search of cohomological model for Lie-Rinehart algebra cohomology. For instance, the construction in [22] for an affine variety and its normal bundle does not match the constructions of Section 3.3 and, in our opinion, are of independent interest.

Our construction admits an important consequence. For any ideal 𝒪\mathcal{I}\subset\mathcal{O}, and any 𝒪\mathcal{O}-free resolution \mathcal{E}_{\bullet} of a Lie-Rinehart algebra 𝒜\mathcal{A} over 𝒪\mathcal{O}, the tensor product 𝒪𝒪/\mathcal{E}_{\bullet}\otimes_{\mathcal{O}}\mathcal{O}/\mathcal{I} computes Tor𝒪(𝒜,𝒪/){\mathrm{Tor}}_{\mathcal{O}}(\mathcal{A},\mathcal{O}/\mathcal{I}). It is easy to check that if \mathcal{I} is a Lie-Rinehart ideal (i.e. if ρ(𝒜)[]\rho(\mathcal{A})[\mathcal{I}]\subset\mathcal{I}), then the universal Lie \infty-algebroid structure that we constructed goes to the quotient to 𝒪𝒪/\mathcal{E}_{\bullet}\otimes_{\mathcal{O}}\mathcal{O}/\mathcal{I} (which is a complex computing Tor𝒪(𝒜,𝒪/){\mathrm{Tor}}_{\mathcal{O}}(\mathcal{A},\mathcal{O}/\mathcal{I})). Also, two different universal Lie \infty-algebroid structures on two different resolutions being homotopy equivalent, they lead to homotopy equivalent Lie \infty-algebroid structures on two complexes computing Tor𝒪(𝒜,𝒪/){\mathrm{Tor}}_{\mathcal{O}}(\mathcal{A},\mathcal{O}/\mathcal{I}). To a Lie-Rinehart ideal \mathcal{I} is therefore associated a homotopy equivalence class of Lie \infty-algebroids on such complexes.

This article is organized as follows: In Section 1, we fix notations and review definitions, examples, and give main properties of Lie-Rinehart algebras. Afterwards, we present the concept of Lie \infty-algebroids, their morphisms, and homotopies of those. In Section 2, we state and prove the main results of this paper, i.e. the equivalence of categories between Lie-Rinehart algebras and homotopy classes of free acyclic Lie \infty-algebroids, which justifies the name universal Lie \infty-algebroid of a Lie-Rinehart algebra. Section 3 is devoted to a precise description of the universal Lie \infty-algebroids of several Lie-Rinehart algebras. The complexity reached by the higher brackets in these examples should convince the reader that it is not a trivial structure, even for relatively simple Lie-Rinehart algebras.

Acknowledgements

We would like to thank the CNRS MITI 80Prime project GRANUM, and the Institut Henri Poincaré for hosting us in november 2021. We thank the referee for pointing relevant references and a careful reading. We acknowledge discussion with S. Lavau at early stages of the project. We would like to thank C. Ospel, P. Vanhaecke and V. Salnikov for giving the possibility to present our results at the “Rencontre Poisson à La Rochelle, 21-22 October 2021”. Last, R. Louis would like to express sincere gratitude to Université d’État d’Haïti and more precisely the department of mathematics of École Normale Supérieure (ENS), for giving a golden opportunity to meet mathematics. He also would like to acknowledge the full financial support for this Phd from Région Grand Est.

Convention.

Throughout this article, 𝒪\mathcal{O} is a commutative unital algebra over a field 𝕂\mathbb{K} of characteristic zero, and Der(𝒪){\mathrm{Der}}(\mathcal{O}) stands for its Lie algebra of 𝕂\mathbb{K}-linear derivations. Also, δ[f]\delta[f] stands for the derivation δDer(𝒪)\delta\in{\mathrm{Der}}(\mathcal{O}) applied to f𝒪f\in\mathcal{O}.

An other important convention is that for 𝒪\mathcal{O} an algebra over 𝕂\mathbb{K}, and \mathcal{E} an 𝒪\mathcal{O}-module, we will denote by S𝕂S_{\mathbb{K}}\mathcal{E} the symmetric powers over the domain 𝕂\mathbb{K} and \bigodot\mathcal{E} its symmetric powers over 𝒪\mathcal{O}.

1. Lie-Rinehart algebras and Lie \infty-algebroids

Except for Remark 1.3, this section is essentially a review of the literature on the subject, see, e.g. [18, 19].

1.1. Lie-Rinehart algebras and their morphisms

1.1.1. Definition of Lie-Rinehart algebras

Definition 1.1.

A Lie-Rinehart algebra over 𝒪\mathcal{O} is a a triple (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A},[\cdot,\cdot]_{\mathcal{A}},\rho_{\mathcal{A}}) with 𝒜\mathcal{A} an 𝒪\mathcal{O}-module, [,]𝒜[\cdot,\cdot]_{\mathcal{A}} a Lie 𝕂\mathbb{K}-algebra bracket on 𝒜\mathcal{A}, and ρ𝒜:𝒜Der(𝒪)\rho_{\mathcal{A}}\colon\mathcal{A}\longrightarrow{\mathrm{Der}}(\mathcal{O}) a 𝒪\mathcal{O}-linear Lie algebra morphism called anchor map, satisfying the the so-called Leibniz identity:

[a,fb]𝒜=ρ𝒜(a)[f]b+f[a,b]𝒜 for all a,b𝒜,f𝒪.[a,fb]_{\mathcal{A}}=\rho_{\mathcal{A}}(a)[f]\,b+f[a,b]_{\mathcal{A}}\hbox{ for all $a,b\in\mathcal{A},f\in\mathcal{O}$}.

A Lie-Rinehart algebra is said to be a Lie algebroid if 𝒜\mathcal{A} is a projective 𝒪\mathcal{O}-module.

Definition 1.2.

Given Lie-Rinehart algebras (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A},[\cdot,\cdot]_{\mathcal{A}},\rho_{\mathcal{A}}) and (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A}^{\prime},[\cdot,\cdot]_{\mathcal{A}}^{\prime},\rho_{\mathcal{A}^{\prime}}) over algebras 𝒪\mathcal{O} and 𝒪\mathcal{O}^{\prime} respectively. A Lie-Rinehart algebra morphism over an algebra morphism η:𝒪𝒪\eta\colon\mathcal{O}\longrightarrow\mathcal{O}^{\prime} is a Lie algebra morphism Φ:𝒜𝒜\Phi\colon\mathcal{A}\longrightarrow\mathcal{A}^{\prime} such that for every a𝒜a\in\mathcal{A} and f𝒪f\in\mathcal{O}:

  1. (1)

    Φ(fa)=η(f)Φ(a)\Phi(fa)=\eta(f)\Phi(a)

  2. (2)

    η(ρ𝒜(a)[f])=ρ𝒜(Φ(a)[η(f)]\eta(\rho_{\mathcal{A}}(a)[f])=\rho_{\mathcal{A}^{\prime}}(\Phi(a)[\eta(f)].

When 𝒪=𝒪\mathcal{O}=\mathcal{O}^{\prime} and η=id\eta=\text{id}, we say that Φ\Phi is a Lie-Rinehart algebra morphism over 𝒪\mathcal{O}.

Remark 1.3.

Let us recall some basic constructions for Lie-Rinehart algebras.

  1. (1)

    Restriction. Consider a Lie-Rinehart algebra (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A},[\cdot,\cdot]_{\mathcal{A}},\rho_{\mathcal{A}}) over 𝒪\mathcal{O}. For every Lie-Rinehart ideal 𝒪\mathcal{I}\subset\mathcal{O}, i.e. any ideal such that

    ρ𝒜(𝒜)[]\rho_{\mathcal{A}}(\mathcal{A})[\mathcal{I}]\subset\mathcal{I}

    the quotient space 𝒜/𝒜\mathcal{A}/\mathcal{I}\mathcal{A} inherits a natural Lie-Rinehart algebra structure over 𝒪/\mathcal{O}/\mathcal{I}. We call this Lie-Rinehart algebra the restriction w.r.t the Lie-Rinehart ideal \mathcal{I}. In the context of affine varieties, when \mathcal{I} is the ideal of functions vanishing on an affine subvariety WW, we shall denote 𝒜𝒜\frac{\mathcal{A}}{\mathcal{I}\mathcal{A}} by 𝔦W𝒜\mathfrak{i}_{W}^{*}\mathcal{A}.

  2. (2)

    Localization. Assume that 𝒪\mathcal{O} is unital. Let S𝒪S\subset\mathcal{O} be a multiplicative subset with no zero divisor which contains the unit element. The localization module S1𝒜=𝒜𝒪S1𝒪S^{-1}\mathcal{A}=\mathcal{A}\otimes_{\mathcal{O}}S^{-1}\mathcal{O} comes equipped with a natural structure of Lie-Rinehart algebra over the localization algebra S1𝒪S^{-1}\mathcal{O}. The localization map 𝒜S1𝒜\mathcal{A}\hookrightarrow S^{-1}\mathcal{A} is a Lie-Rinehart algebra morphism over the localization map 𝒪S1𝒪\mathcal{O}\hookrightarrow S^{-1}\mathcal{O}. Since localization exists, the notion of sheaf of Lie-Rinehart algebras [35] over a projective variety, or a scheme, makes sense.

  3. (3)

    Algebra extension. Assume that the algebra 𝒪\mathcal{O} is unital and has no zero divisor, and let 𝕆\mathbb{O} be its field of fraction. For any subalgebra 𝒪~\tilde{\mathcal{O}} with 𝒪𝒪~𝕆\mathcal{O}\subset\tilde{\mathcal{O}}\subset\mathbb{O} such that ρ(a)\rho(a) is for any a𝒜a\in\mathcal{A} valued in derivations of 𝕆{\mathbb{O}} that preserves 𝒪~\tilde{\mathcal{O}}, there is natural Lie-Rinehart algebra structure over 𝒪~\tilde{\mathcal{O}} on the space 𝒪~𝒪𝒜\tilde{\mathcal{O}}\otimes_{\mathcal{O}}\mathcal{A}.

  4. (4)

    Blow-up at the origin. Let us consider a particular case of the previous construction, when 𝒪\mathcal{O} is the algebra [x1,,xN]\mathbb{C}[x_{1},\dots,x_{N}]. If the anchor map of a Lie-Rinehart algebra 𝒜\mathcal{A} over 𝒪\mathcal{O} takes values in vector fields on N\mathbb{C}^{N} vanishing at the origin, then for all i=1,,Ni=1,\dots,N, the polynomial algebra 𝒪Ui{\mathcal{O}}_{U_{i}} generated by x1xi,,xi1xi,\frac{x_{1}}{x_{i}},\dots,\frac{x_{i-1}}{x_{i}}, xi,xi+1xi,,xNxix_{i},\frac{x_{i+1}}{x_{i}},\dots,\frac{x_{N}}{x_{i}} satisfies the previous condition, and 𝒪Ui𝒪𝒜{\mathcal{O}}_{U_{i}}\otimes_{\mathcal{O}}\mathcal{A} comes equipped with a Lie-Rinehart algebra. Geometrically, this operation corresponds to taking the blow-up of N\mathbb{C}^{N} at the origin, then looking at the ii-th natural chart UiU_{i} on this blow-up: 𝒪Ui\mathcal{O}_{U_{i}} are the polynomial functions on UiU_{i}. The family 𝒪Ui𝒪𝒜{\mathcal{O}}_{U_{i}}\otimes_{\mathcal{O}}\mathcal{A} (for i=1,,Ni=1,\dots,N) is therefore an atlas for a sheaf of Lie-Rinehart algebras (in the sense of [35]) on the blow-up of N\mathbb{C}^{N} at the origin, referred to as the blow-up of 𝒜\mathcal{A} at the origin.

1.1.2. Geometric and Algebraic Examples

Below is an ordered list of examples to which we intend to apply our results: Vector fields vanishing on subsets of a vector space (Example 1.5), Lie algebroids (Example 1.6), cohomology in degree of 1-1 a Lie \infty-algebroid (Example 1.7), singular foliations, or non-finitely generated generalizations of those (Example 1.8) are Lie-Rinehart algebras over the algebra of functions on a manifold MM. We also give an example of a Lie-Rinehart algebra over Casimir functions (Example 1.11).

Example 1.4.

For every commutative 𝕂\mathbb{K}-algebra 𝒪\mathcal{O}, the Lie algebra 𝒜=Der(𝒪)\mathcal{A}={\mathrm{D}er}({\mathcal{O}}) of derivations of a commutative algebra 𝒪\mathcal{O} is a Lie-Rinehart algebra over 𝒪\mathcal{O}, with the identity as an anchor map. Vector fields on a smooth or Stein manifold or an affine variety are therefore instances of Lie-Rinehart algebras over their respective natural algebras of functions.

Example 1.5.

Let (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A},\left[\cdot\,,\cdot\right]_{\mathcal{A}},\rho_{\mathcal{A}}) a Lie-Rinehart algebra over an algebra 𝒪\mathcal{O} and 𝒪\mathcal{I}\subset\mathcal{O} be an ideal. The sub-module 𝒜\mathcal{I}\mathcal{A} is a sub-Lie-Rinehart algebra of 𝒜\mathcal{A} and its anchor is given by the restriction of ρ𝒜\rho_{\mathcal{A}} over 𝒜𝒜\mathcal{I}\mathcal{A}\subset\mathcal{A}. It follows easily from

[fa,gb]𝒜=fg[a,b]𝒜+fρ𝒜(a)[g]bgρ𝒜(b)[f]a for all a,b𝒜,f,g.[fa,gb]_{\mathcal{A}}=fg[a,b]_{\mathcal{A}}+f\rho_{\mathcal{A}}(a)[g]\,b-g\rho_{\mathcal{A}}(b)[f]\,a\hbox{ for all $a,b\in\mathcal{A},f,g\in\mathcal{I}$}.
Example 1.6.

Let MM be a smooth manifold. By Serre-Swan Theorem, Lie algebroids (in the sense of [31]) over MM are precisely Lie-Rinehart algebras over C(M)C^{\infty}(M) of the form (Γ(A),[,],ρ)(\Gamma(A),[\cdot,\cdot],\rho) where AA is a vector bundle over MM and ρ:ATM\rho:A\rightarrow TM is a vector bundle morphism.

Example 1.7.

(see section 1.2.2) For every Lie \infty-algebroid (,(k)k1,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}}) over an algebra 𝒪\mathcal{O}, the quotient space 11(2)\frac{\mathcal{E}_{-1}}{\ell_{1}(\mathcal{E}_{-2})} comes equipped with a natural Lie-Rinehart algebra over 𝒪\mathcal{O}, that we call the basic Lie-Rinehart algebra of (,(k)k1,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}}).

Example 1.8.

There are several manner to define singular foliations on a manifold MM. All these definitions have in common to define sub-Lie-Rinehart algebras \mathcal{F} of the Lie-Rinehart algebra 𝔛(M)\mathfrak{X}(M) of vector fields on MM (or 𝔛c(M)\mathfrak{X}_{c}(M), i.e. compactly supported vector fields on MM). With this generality, unfortunately, there are no good definition of leaves: as a consequence, several assumptions are generally made on \mathcal{F}, and singular foliations are usually defined as sub-Lie-Rinehart algebras \mathcal{F} of 𝔛(M)\mathfrak{X}(M) (or 𝔛c(M)\mathfrak{X}_{c}(M)) satisfying one of the conditions below:

  1. (1)

    “singular foliation admitting leaves”: there exists a partition of MM into submanifolds called leaves such that for all mMm\in M, the image of the evaluation map TmM\mathcal{F}\to T_{m}M is the tangent space of the leaf through mm (when \mathcal{F} coincides with the space of vector fields tangent to all leaves at all points, we shall speak of a “Stefan-Sussman singular foliation”)

  2. (2)

    “self-preserving singular foliations”: the flow of vector fields in \mathcal{F}, whenever defined, preserves \mathcal{F},

  3. (3)

    “locally finitely generated singular foliations”: 𝔛c(M)\mathcal{F}\subset\mathfrak{X}_{c}(M) is locally finitely generated over C(M)C^{\infty}(M) and closed under Lie bracket, see e.g. [8, 11, 12, 2]),

  4. (4)

    “finitely generated singular foliations”: when 𝔛(M)\mathcal{F}\subset\mathfrak{X}(M) is finitely generated over C(M)C^{\infty}(M) and closed under Lie bracket.

It is known that Condition n+1n+1 above implies Condition nn, for n=1,2,3n=1,2,3. The converse implications are not true in general. See [30] for an overview of the matter.

Example 1.9.

Singular subalgebroids of a Lie algebroid (A,[,],ρ)(A,[\cdot,\cdot],\rho), i.e. submodules of Γ(A)\Gamma(A) stable under Lie bracket, are examples of Lie-Rinehart algebras: their anchors and brackets are the restrictions of the anchors and brackets of Γ(A)\Gamma(A). Locally finitely generated ones are studied in [42, 3, 41]. In particular, sections of a Lie algebroid valued in the kernel of the anchor map form a Lie-Rinehart algebra Ker(ρ){\mathrm{Ker}}(\rho) for which the anchor map is zero.

Example 1.10.

For a singular foliation \mathcal{F} (in any one of the four senses explained Example 1.8) on a manifold MM, consider 𝒮:={X𝔛(M)[X,]}\mathcal{S}:=\left\{X\in\mathfrak{X}(M)\mid[X,\mathcal{F}]\subseteq\mathcal{F}\right\} (i.e. infinitesimal symmetries of \mathcal{F}) and

𝒞:={f𝒞(M)Y[f]=0,for allY}\mathcal{C}:=\left\{f\in\mathcal{C}^{\infty}(M)\mid Y[f]=0,\;\text{for all}\;Y\in\mathcal{F}\right\}

(that can be thought of as functions constant along the leaves of \mathcal{F}). The quotient 𝒮\frac{\mathcal{S}}{\mathcal{F}} is Lie-Rinehart algebra over 𝒞\mathcal{C}.

Example 1.11.

Let (M,π)(M,\pi) be a Poisson manifold. We define 𝒜:=Hπ1(M)\mathcal{A}:=\text{H}_{\pi}^{1}(M) to be the first Poisson cohomology of π\pi and Hπ0(M)=Cas(π)\text{H}_{\pi}^{0}(M)=\text{Cas}(\pi) to be the algebra of Casimir functions. The bracket of vector fields makes 𝒜\mathcal{A} a Lie-Rinehart algebra over Cas(π)\text{Cas}(\pi).

1.2. Lie \infty-algebroids and their morphisms

Lie \infty-algebras are well-known to be coderivations of degree 1-1 squaring to 0 of the graded symmetric algebra S(E)S(E). For Lie \infty-algebroids, the situation is more involved, because the 22-ary bracket is not 𝒪\mathcal{O}-linear. In the finite dimensional case [38], rather than seeing it as a coderivation of the symmetric algebra, it is usual to see it as a derivation of the symmetric algebra of the dual, i.e. as a QQ-manifold. The duality “finite rank Lie \infty-algebroids” \simeq “Q-manifolds” is especially efficient to deal with morphisms. In the lines above, we present a co-derivation version of Lie \infty-algebroids, which is subtle, but gives a decent description of morphisms and their homotopies as co-algebra morphisms.

1.2.1. Graded symmetric algebras

Let us fix the sign conventions and recall the definition of (negatively-graded) Lie \infty-algebroids. For \mathcal{E} is a graded-𝒪\mathcal{O} module, we denote by |x|\lvert x\rvert\in\mathbb{Z} the degree of a homogeneous element xx\in\mathcal{E}.

  1. (1)

    We denote by \bigodot^{\bullet}\mathcal{E} and call graded symmetric algebra of \mathcal{E} over 𝒪\mathcal{O} the quotient of the tensor algebra over 𝒪\mathcal{O} of \mathcal{E}, i.e.

    T𝒪:=k=1𝒪𝒪k timesT^{\bullet}_{\mathcal{O}}\mathcal{E}:=\oplus_{k=1}^{\infty}\underbrace{\mathcal{E}\otimes_{\mathcal{O}}\cdots\otimes_{\mathcal{O}}\mathcal{E}}_{\hbox{\small{$k$ times}}}

    by the ideal generated by x𝒪y(1)|x||y|y𝒪xx\otimes_{\mathcal{O}}y-(-1)^{\lvert x\rvert\lvert y\rvert}y\otimes_{\mathcal{O}}x, with x,yx,y arbitrary homogeneous elements of \mathcal{E}. We denote by \odot the product in \bigodot^{\bullet}\mathcal{E}.

  2. (2)

    Similarly, we denote by S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) and call graded symmetric algebra of \mathcal{E} over the field 𝕂\mathbb{K} the quotient of the tensor algebra (over 𝕂\mathbb{K}) of \mathcal{E}, i.e.

    T𝕂:=k=1𝕂𝕂k timesT^{\bullet}_{\mathbb{K}}\mathcal{E}:=\oplus_{k=1}^{\infty}\underbrace{\mathcal{E}\otimes_{\mathbb{K}}\cdots\otimes_{\mathbb{K}}\mathcal{E}}_{\hbox{\small{$k$ times}}}

    by the ideal generated by x𝕂y(1)|x||y|y𝕂xx\otimes_{\mathbb{K}}y-(-1)^{\lvert x\rvert\lvert y\rvert}y\otimes_{\mathbb{K}}x, with x,yx,y arbitrary homogeneous elements of \mathcal{E}. We denote by 𝕂\otimes_{\mathbb{K}} or \cdot the product in S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}).

The algebras \bigodot^{\bullet}\mathcal{E} and S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) come equipped with two different “degrees”  that must not be confused.

  1. (1)

    We define the degree of x=x1xnnx=x_{1}\odot\cdots\odot x_{n}\in\bigodot^{n}\mathcal{E} or x=x1xnS𝕂n()x=x_{1}\cdot\cdots\cdot x_{n}\in S^{n}_{\mathbb{K}}(\mathcal{E}) by

    |x1xn|=|x1xn|=|x1|++|xn||x_{1}\cdot\cdots\cdot x_{n}|=|x_{1}\odot\cdots\odot x_{n}|=|x_{1}|+\cdots+|x_{n}|

    for any homogeneous x1,,xnx_{1},\dots,x_{n}\in\mathcal{E}. With respect to this degree, \bigodot^{\bullet}\mathcal{E} and S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) are graded commutative algebras.

  2. (2)

    The arity of x1xnnx_{1}\odot\cdots\odot x_{n}\in\bigodot^{n}\mathcal{E} or x1xnS𝕂n()x_{1}\cdot\cdots\cdot x_{n}\in S^{n}_{\mathbb{K}}(\mathcal{E}) is defined to be nn. We have =k1k\bigodot^{\bullet}\mathcal{E}=\oplus_{k\geq 1}\bigodot^{k}\mathcal{E} and S𝕂()=k1S𝕂k()S^{\bullet}_{\mathbb{K}}(\mathcal{E})=\oplus_{k\geq 1}S^{k}_{\mathbb{K}}(\mathcal{E}) where k\bigodot^{k}\mathcal{E} and S𝕂k()S^{k}_{\mathbb{K}}(\mathcal{E}) stand for the 𝒪\mathcal{O}-module of elements of arity kk and the 𝕂\mathbb{K}-vector space of elements of arity kk, respectively.

Convention 1.12.

For \mathcal{E} a graded 𝒪\mathcal{O}-module, elements of arity kk and degree dd in \bigodot^{\bullet}\mathcal{E} (resp. S𝕂k()S^{k}_{\mathbb{K}}(\mathcal{E})) shall be denoted by k|d\bigodot^{k}\mathcal{E}_{|_{d}} (resp. S𝕂k()|dS^{k}_{\mathbb{K}}(\mathcal{E})_{|_{d}}).

For any homogeneous elements x1,,xkx_{1},\ldots,x_{k}\in\mathcal{E} and σ𝔖k\sigma\in\mathfrak{S}_{k} a permutation of {1,,k}\{1,\ldots,k\}, the Koszul sign ϵ(σ;x1,,xk)\epsilon(\sigma;x_{1},\ldots,x_{k}) is defined by:

xσ(1)xσ(k)=ϵ(σ;x1,,xk)x1xk.x_{\sigma(1)}\odot\cdots\odot x_{\sigma(k)}=\epsilon(\sigma;x_{1},\ldots,x_{k})\,x_{1}\odot\cdots\odot x_{k}.

We often write ϵ(σ)\epsilon(\sigma) for ϵ(σ;x1,,xk)\epsilon(\sigma;x_{1},\ldots,x_{k}).

For i,ji,j\in\mathbb{N}, a (i,j)(i,j)-shuffle is a permutation σ𝔖i+j\sigma\in\mathfrak{S}_{i+j} such that σ(1)<<σ(i)\sigma(1)<\ldots<\sigma(i) and σ(i+1)<<σ(i+j)\sigma(i+1)<\ldots<\sigma(i+j), and the set of all (i,j)(i,j)-shuffles is denoted by 𝔖i,j\mathfrak{S}_{i,j}. Moreover, for Φ:\Phi\colon\mathcal{E}\rightarrow\mathcal{E}^{\prime} and Ψ:′′′′′\Psi\colon\mathcal{E}^{\prime\prime}\rightarrow\mathcal{E}^{\prime\prime\prime} two homogeneous morphisms of \mathbb{Z}-graded 𝒪\mathcal{O}-modules, then ΦΨ:′′′′′\Phi\otimes\Psi:\mathcal{E}\otimes\mathcal{E}^{\prime\prime}\rightarrow\mathcal{E}^{\prime}\otimes\mathcal{E}^{\prime\prime\prime} stands for the following morphism:

(ΦΨ)(xy)=(1)|Ψ||x|Φ(x)Ψ(y),for all homogeneousx,y′′.(\Phi\otimes\Psi)(x\otimes y)=(-1)^{\lvert\Psi\rvert\lvert x\rvert}\Phi(x)\otimes\Psi(y),\;\text{for all homogeneous}\;x\in\mathcal{E},y\in\mathcal{E}^{\prime\prime}.
Lemma 1.13.

Both \bigodot^{\bullet}\mathcal{E} and S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) admit natural co-commutative co-unital co-algebra structures with respect to the deconcatenation Δ\Delta defined by:

Δ(x1xn)=i=1n1ϵ(σ)σ𝔖i,nixσ(1)xσ(i)xσ(i+1)xσ(n){\Delta(x_{1}\odot\cdots\odot x_{n})=\sum_{i=1}^{n-1}\epsilon(\sigma)\sum_{\sigma\in\mathfrak{S}_{i,n-i}}x_{\sigma(1)}\odot\cdots\odot x_{\sigma(i)}\otimes x_{\sigma(i+1)}\odot\cdots\odot x_{\sigma(n)}}

for every x1,,xnx_{1},\ldots,x_{n}\in\mathcal{E}.

1.2.2. Lie \infty-algebroids as co-derivations of graded symmetric algebras

Lie \infty-algebroids over manifolds were introduced (explicitly or implicitly) by various authors, e.g. [33], [39], and [43]. We refer to Giuseppe Bonavolontà and Norbert Poncin for a complete overview of the matter [4]. Also, [23, 37] extend theses notions to the Lie-Rinehart algebra setting.

Definition 1.14.

A negatively graded Lie \infty-algebroid over 𝒪\mathcal{O} is a collection =(i)i1\mathcal{E}=(\mathcal{E}_{i})_{i\leq-1} of projective 𝒪\mathcal{O}-modules, equipped with:

  1. (1)

    a collection of 𝕂\mathbb{K}-linear maps i:i\ell_{i}:\bigodot^{i}\mathcal{E}\longrightarrow\mathcal{E} of degree +1+1 called ii-ary brackets

  2. (2)

    a 𝒪\mathcal{O}-linear map 1Der(𝒪)\mathcal{E}_{-1}\longrightarrow{\mathrm{Der}}(\mathcal{O}) called anchor map

satisfying the following axioms :

  1. (i)(i)

    the higher Jacobi identity:

    i=1nσ𝔖i,niϵ(σ)ni+1(i(xσ(1),,xσ(i)),xσ(i+1),,xσ(n))=0,\sum_{i=1}^{n}\sum_{\sigma\in\mathfrak{S}_{i,n-i}}{{\epsilon(\sigma)}}\,\,\ell_{n-i+1}(\ell_{i}(x_{\sigma(1)},\ldots,x_{\sigma(i)}),x_{\sigma(i+1)},\ldots,x_{\sigma(n)})=0, (1)

    for all n1n\geq 1 and homogeneous elements x1,,xnx_{1},\ldots,x_{n}\in\mathcal{E};

  2. (ii)(ii)

    for i2i\neq 2, the bracket i\ell_{i} is 𝒪\mathcal{O}-linear, while for i=2i=2,

    2(x,fy)=ρ(x)[f]y+f2(x,y) for all x,y,f𝒪 ,\ell_{2}(x,fy)=\rho_{\mathcal{E}}(x)[f]\,y+f\ell_{2}(x,y)\hbox{ for all $x,y\in\mathcal{E},f\in\mathcal{O}$ },

    where, by convention, ρ\rho_{\mathcal{E}} is extended by zero on i\mathcal{E}_{-i} for all i2i\geq 2.

  3. (iv)(iv)

    ρ1=0\rho_{\mathcal{E}}\circ\ell_{1}=0 on 2\mathcal{E}_{-2}.

  4. (v)(v)

    ρ\rho_{\mathcal{E}} is a morphism of brackets, i.e., ρ(2(x,y))=[ρ(x),ρ(y)]\rho_{\mathcal{E}}(\ell_{2}(x,y))=[\rho_{\mathcal{E}}(x),\rho_{\mathcal{E}}(y)] for all x,y1x,y\in\mathcal{E}_{-1}.

Remark 1.15.

The third and the fourth axiom are consequences of item (i)(i) and (ii)(ii) if 1\mathcal{E}_{-1} has no zero divisors.

Convention 1.16.

From now on, we will simply say “Lie \infty-algebroid” for “negatively graded Lie \infty-algebroid”.

It follows from Definition 1.14 that

131211\cdots\stackrel{{\scriptstyle\ell_{1}}}{{\longrightarrow}}\mathcal{E}_{-3}\stackrel{{\scriptstyle\ell_{1}}}{{\longrightarrow}}\mathcal{E}_{-2}\stackrel{{\scriptstyle\ell_{1}}}{{\longrightarrow}}\mathcal{E}_{-1}

is a complex of projective 𝒪\mathcal{O}-modules. A Lie \infty-algebroid is said to be acyclic if this complex has no cohomology in degree 2\leq-2.

There is an equivalent way to define Lie \infty-algebroids in term of co-derivations. We will use such a definition to deal with morphisms of Lie \infty-algebroids.

Remark 1.17.

[21] Recall that a co-derivation QQ_{\mathcal{E}} of the symmetric algebra S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) is entirely determined by the collection indexed by k0k\in\mathbb{N}_{0} of maps called its kk-th Taylor coefficients:

Q(k):S𝕂k+1()QS𝕂()pr,Q_{\mathcal{E}}^{(k)}\colon S^{k+1}_{\mathbb{K}}(\mathcal{E})\stackrel{{\scriptstyle Q_{\mathcal{E}}}}{{\longrightarrow}}S^{\bullet}_{\mathbb{K}}(\mathcal{E})\stackrel{{\scriptstyle\text{pr}}}{{\longrightarrow}}\mathcal{E}, (2)

with pr being the projection onto the term of arity 11, i.e. pr:S𝕂()S𝕂1()\text{pr}\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E})\rightarrow S^{1}_{\mathbb{K}}(\mathcal{E})\simeq\mathcal{E}.

Definition 1.18.

A co-algebra morphism Φ:S𝕂()S𝕂()\Phi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) or a co-derivation QQ_{\mathcal{E}} of the symmetric algebra S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) are said to be of arity k0k\in\mathbb{N}_{0}, if Φ(n)=0\Phi^{(n)}=0, for nkn\neq k or Q(n)=0Q_{\mathcal{E}}^{(n)}=0, for nkn\neq k.

1.2.3. Lie \infty-algebroids and Richardon-Nijenhuis brackets

The space of 𝕂\mathbb{K}-multilinear maps from \mathcal{E} to \mathcal{E} admits two gradings, the degree and the arity. Elements of arity kk and degree jj shall be, by definition, the space

Hom𝕂j(S𝕂k+1,):=mHom𝕂(S𝕂k+1|mj,m)\text{Hom}_{\mathbb{K}}^{j}\left(S^{k+1}_{\mathbb{K}}\mathcal{E}\,,\mathcal{E}\right):=\oplus_{m\in\mathbb{Z}}\text{Hom}_{\mathbb{K}}\left(S^{k+1}_{\mathbb{K}}\mathcal{E}\,_{|_{m-j}},\mathcal{E}_{m}\right)

The Richardon-Nihenhuis bracket [24]-[26]

[Hom𝕂i(S𝕂k+1,),Hom𝕂j(S𝕂l+1,)]RNHom𝕂i+j(S𝕂l+k+1,)\left[\text{Hom}_{\mathbb{K}}^{i}\left(S^{k+1}_{\mathbb{K}}\mathcal{E},\mathcal{E}\right),\text{Hom}_{\mathbb{K}}^{j}\left(S^{l+1}_{\mathbb{K}}\mathcal{E},\mathcal{E}\right)\right]_{\hbox{\tiny{RN}}}\subset\text{Hom}_{\mathbb{K}}^{i+j}\left(S^{l+k+1}_{\mathbb{K}}\mathcal{E},\mathcal{E}\right)

is defined on homogeneous elements A,BHom𝕂(S𝕂,)A,B\in\text{Hom}_{\mathbb{K}}^{\bullet}\left(S^{\bullet}_{\mathbb{K}}\mathcal{E}\,,\mathcal{E}\right) by

[A,B]RN=ιAB(1)|A||B|ιBA.[A,B]_{\hbox{\tiny{RN}}}=\iota_{A}B-(-1)^{|A||B|}\iota_{B}A. (3)

Here ιAB\iota_{A}B (also denoted by ABA\circ B) is the interior product defined by

(ιAB)(x1,,xp+q)=σ𝔖p,qϵ(σ)A(B(xσ(1),,xσ(p)),xσ(p+1),,xσ(p+q)).(\iota_{A}B)(x_{1},\ldots,x_{p+q})=\sum_{\sigma\in\mathfrak{S}_{p,q}}\epsilon(\sigma)A(B(x_{\sigma(1)},\ldots,x_{\sigma(p)}),x_{\sigma(p+1)},\ldots,x_{\sigma(p+q)}). (4)

The bracket is extended by bilinearity. It is classical that this bracket is a graded Lie algebra bracket.

Let us relate the bracket with co-derivations. For a given ii\in\mathbb{Z}, and a given A=k0A(k)A=\sum_{k\geq 0}A^{(k)} with A(k)Hom𝕂i(S𝕂k+1(),)A^{(k)}\in{\mathrm{Hom}}^{i}_{\mathbb{K}}\left(S^{k+1}_{\mathbb{K}}(\mathcal{E}),\mathcal{E}\right), we denote by δA\delta_{A} the unique co-derivation with Taylor coefficients (A(k))k0(A^{(k)})_{k\in\mathbb{N}_{0}}. This co-derivation has degree ii, and the following Lemma is easily checked:

Lemma 1.19.

[21] For every A,BA,B of degrees i,ji,j as above, we have

δAδB(1)ijδBδA=δ[A,B]RN.\delta_{A}\circ\delta_{B}-(-1)^{ij}\delta_{B}\circ\delta_{A}=\delta_{[A,B]_{\hbox{\tiny{RN}}}}.

We can now give an alternative description of Lie \infty-algebroids in terms of co-derivation (extending the usual [38] correspondence between Lie \infty-algebroids and QQ-manifolds in the finite rank case). For a good understanding of the next Proposition, see notations of Taylor coefficients in Equation (2).

Proposition 1.20.

For a collection =(k)k1\mathcal{E}=(\mathcal{E}_{k})_{k\leq-1} of projective 𝒪\mathcal{O}-modules, there is a one-to-one correspondence between Lie \infty-algebroid structures on \mathcal{E} and pairs made of co-derivations Q:S𝕂()S𝕂()Q_{\mathcal{E}}\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E})\rightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) of degree +1+1 which satisfies Q2=0Q_{\mathcal{E}}^{2}=0, and a 𝒪\mathcal{O}-linear morphism, ρ:1Der(𝒪)\rho_{\mathcal{E}}\colon\mathcal{E}_{-1}\rightarrow\emph{Der}(\mathcal{O}) called the anchor, such that

  1. (1)

    for k1k\neq 1 the kk-th Taylor coefficient Q(k):S𝕂k+1()Q_{\mathcal{E}}^{(k)}\colon S_{\mathbb{K}}^{k+1}(\mathcal{E}^{\prime})\longrightarrow\mathcal{E} of QQ_{\mathcal{E}} is 𝒪\mathcal{O}-multilinear,

  2. (2)

    for all x,yx,y\in\mathcal{E} and f𝒪f\in\mathcal{O}, we have, Q(1)(xfy)=fQ(1)(xy)+ρ(x)[f]yQ_{\mathcal{E}}^{(1)}(x\cdot fy)=fQ_{\mathcal{E}}^{(1)}(x\cdot y)+\rho_{\mathcal{E}}(x)[f]\,y,

  3. (3)

    ρQ(0)=0\rho_{\mathcal{E}}\circ Q_{\mathcal{E}}^{(0)}=0 on 2\mathcal{E}_{-2},

  4. (4)

    ρQ(1)(x.y)=[ρ(x),ρ(y)]\rho_{\mathcal{E}}\circ Q^{(1)}_{\mathcal{E}}(x.y)=[\rho_{\mathcal{E}}(x),\rho_{\mathcal{E}}(y)], for all x,y1x,y\in\mathcal{E}_{-1}.

The correspondence consists in assigning to a Lie \infty-algebroid (,(k)k1,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}}) the co-derivation QQ_{\mathcal{E}} whose kk-th Taylor coefficient is the kk-ary bracket k\ell_{k} for all k0k\in\mathbb{N}_{0}.

Proof.

The higher Jacobi identity is equivalent to

i=1,,i=n[i,n+1i]RN=0.\sum_{i=1,\dots,i=n}[\ell_{i},\ell_{n+1-i}]_{\hbox{\tiny{RN}}}=0.

For all positive integer nn. The statement is then an immediate consequence of Lemma 1.19. ∎

Convention 1.21.

From now, when relevant, we will sometime denote an underlying structure of Lie \infty-algebroid (,(k)k1,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}}) on \mathcal{E} by (,Q)(\mathcal{E},Q_{\mathcal{E}}) instead.

Remark 1.22.

Notice that Q:S𝕂()S𝕂()Q_{\mathcal{E}}\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) does not induce a co-derivation on \bigodot^{\bullet}\mathcal{E} unless ρ=0\rho_{\mathcal{E}}=0.

1.2.4. Universal Lie \infty-algebroids of Lie-Rinehart algebras

Definition 1.23.

We say that a Lie \infty-algebroid (,(k)k1,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}}) terminates at a Lie-Rinehart algebra (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A},[\cdot,\cdot]_{\mathcal{A}},\rho_{\mathcal{A}}) when it is equipped with a 𝒪\mathcal{O}-linear map π:1𝒜\pi:\mathcal{E}_{-1}\longrightarrow\mathcal{A}, called hook, such that

ρAπ=ρ and [π(x),π(y)]𝒜=π(2(x,y)),for allx,y1.\rho_{A}\circ\pi=\rho_{\mathcal{E}}\hbox{ and }[\pi(x),\pi(y)]_{\mathcal{A}}=\pi(\ell_{2}(x,y)),\;\text{for all}\;x,y\in\mathcal{E}_{-1}.
Example 1.24.

Every Lie \infty-algebroid (,(k)k1,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}}) terminates at the basic Lie-Rinehart algebra 1/1(2)\mathcal{E}_{-1}/\ell_{1}(\mathcal{E}_{-2}) of Example 1.7, the projection π:11/1(2)\pi\colon\mathcal{E}_{-1}\longrightarrow\mathcal{E}_{-1}/\ell_{1}(\mathcal{E}_{-2}) being the hook.

Definition 1.25.

Let (𝒜,[,],ρ𝒜)(\mathcal{A},[\cdot,\cdot],\rho_{\mathcal{A}}) be a Lie-Rinehart algebra. A Lie \infty-algebroid (,(k)k1,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}}) that terminates at 𝒜\mathcal{A} through an hook π\pi is said to be universal for 𝒜\mathcal{A} if

121211π𝒜0.\cdots\stackrel{{\scriptstyle\ell_{1}}}{{\longrightarrow}}\mathcal{E}_{-2}\stackrel{{\scriptstyle\ell_{1}}}{{\longrightarrow}}\mathcal{E}_{-2}\stackrel{{\scriptstyle\ell_{1}}}{{\longrightarrow}}\mathcal{E}_{-1}\stackrel{{\scriptstyle\pi}}{{\longrightarrow}}\mathcal{A}\longrightarrow 0.

is a projective resolution of 𝒜\mathcal{A} in the category of 𝒪\mathcal{O}-modules.

In other words, a universal Lie \infty-algebroid of a Lie-Rinehart algebra (𝒜,[,],ρ)(\mathcal{A},[\cdot,\cdot],\rho) is a Lie \infty-algebroid built on a projective resolution of 𝒜\mathcal{A} as an 𝒪\mathcal{O}-module, whose Lie-Rinehart algebra is (𝒜,[,],ρ)(\mathcal{A},[\cdot,\cdot],\rho).

1.2.5. Morphisms of Lie \infty-algebroids and their homotopies

This section extends Section 3.4 of [28] to the infinite dimensional setting. Let \mathcal{E} and \mathcal{E}^{\prime} be graded 𝒪\mathcal{O}-modules. A co-algebra morphism Φ:S𝕂()S𝕂()\Phi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) is completely determined by the collection indexed by k0k\in\mathbb{N}_{0} of maps called its kk-th Taylor coefficients:

Φ(k):S𝕂k+1()ΦS𝕂()pr,\Phi^{(k)}\colon S^{k+1}_{\mathbb{K}}(\mathcal{E}^{\prime})\stackrel{{\scriptstyle\Phi}}{{\longrightarrow}}S^{\bullet}_{\mathbb{K}}(\mathcal{E})\stackrel{{\scriptstyle\text{pr}}}{{\longrightarrow}}\mathcal{E},

with pr being the projection onto the term of arity 11, i.e. pr:S𝕂()S𝕂1()\text{pr}\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E})\rightarrow S^{1}_{\mathbb{K}}(\mathcal{E})\simeq\mathcal{E}.

The following Lemma is straightforward:

Lemma 1.26.

Let Φ:S𝕂()S𝕂()\Phi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) be a co-algebra morphism. The following conditions are equivalent:

  1. (i)

    For every n0n\geq 0, the nn-th Taylor coefficient Φ(n):S𝕂n+1()\Phi^{(n)}\colon S^{n+1}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow\mathcal{E} of Φ\Phi is 𝒪\mathcal{O}-multilinear

  2. (ii)

    There exists an induced co-algebra morphism Φ𝒪:\Phi^{\mathcal{O}}\colon\bigodot^{\bullet}\mathcal{E}^{\prime}\longrightarrow\bigodot^{\bullet}\mathcal{E} making the following diagram commutative :

    S𝕂()\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ\scriptstyle{\Phi}S𝕂()\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces S^{\bullet}_{\mathbb{K}}(\mathcal{E})}\textstyle{\bigodot^{\bullet}\mathcal{E}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ𝒪\scriptstyle{\Phi^{\mathcal{O}}}\textstyle{\bigodot^{\bullet}\mathcal{E}}

We say that a co-algebra morphism Φ:S𝕂()S𝕂()\Phi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) is 𝒪\mathcal{O}-multilinear when one of the equivalent conditions above is satisfied.

Now, let (,ρ,(k)k1)(\mathcal{E},\rho_{\mathcal{E}},(\ell_{k})_{k\geq 1}) and (,ρ,(k)k1)(\mathcal{E}^{\prime},\rho_{\mathcal{E}}^{\prime},(\ell_{k}^{\prime})_{k\geq 1}) be Lie \infty-algebroids. Let QQ_{\mathcal{E}} and QQ_{\mathcal{E}^{\prime}} be their square-zero co-derivations of S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) and S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}) respectively as in Proposition 1.20. Recall from [27] that Lie \infty-algebra morphisms from (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}),Q_{\mathcal{E}}) to (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}),Q_{\mathcal{E}^{\prime}}) are defined to be co-algebra morphisms Φ:S𝕂()S𝕂()\Phi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) such that

ΦQ=QΦ.\Phi\circ Q_{\mathcal{E}^{\prime}}=Q_{\mathcal{E}}\circ\Phi. (5)

We will need two additional assumptions to turn a Lie \infty-algebra morphism into a Lie \infty-algebroid morphism:

Definition 1.27.

A Lie \infty-algebroid morphism from a Lie \infty-algebroid (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}),Q_{\mathcal{E}^{\prime}}) to a Lie \infty-algebroid (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}),Q_{\mathcal{E}}), is a Lie \infty-morphism Φ:S𝕂()S𝕂()\Phi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) which is

  1. (1)

    𝒪\mathcal{O}-multilinear,

  2. (2)

    and satisfies ρΦ(0)=ρ\rho_{\mathcal{E}}\circ\Phi^{(0)}=\rho_{\mathcal{E}^{\prime}} on 1\mathcal{E}^{\prime}_{-1}.

Above, Φ(0):(,1)(,1)\Phi^{(0)}:(\mathcal{E}^{\prime},\ell^{\prime}_{1})\longrightarrow(\mathcal{E},\ell_{1}) is the chain map induced by Φ\Phi (i.e. the restriction of Φ:S𝕂()S𝕂()\Phi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) to \mathcal{E}^{\prime}\to\mathcal{E}).

When the Lie \infty-algebroids (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}),Q_{\mathcal{E}^{\prime}}) and (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}),Q_{\mathcal{E}}) terminate at a given Lie-Rinehart algebra (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A},[\cdot,\cdot]_{\mathcal{A}},\rho_{\mathcal{A}}), we define morphisms of Lie \infty-algebroids that terminate at 𝒜\mathcal{A} as being Lie \infty-algebroid morphisms that satisfy πΦ(0)=π\pi\circ\Phi^{(0)}=\pi^{\prime}, where π,π\pi,\pi^{\prime} are their respective hooks. This property implies the second condition in Definition 1.27.

Example 1.28.

An 𝒪\mathcal{O}-linear Lie algebroid morphism Φ:𝒜\Phi\colon\mathcal{A}\longrightarrow\mathcal{B} [31] is a Lie \infty-algebroid morphism: the corresponding co-algebra morphsism is a1anΦ(a1)Φ(an)a_{1}\cdot\cdots\cdot a_{n}\mapsto\Phi(a_{1})\cdot\cdots\cdot\Phi(a_{n}),  for all a1,,an𝒜a_{1},\ldots,a_{n}\in\mathcal{A}.

Let us now define homotopy of Lie \infty-algebroid morphisms. We start with a technical but important object:

Definition 1.29.

Let Φ:S𝕂()S𝕂()\Phi:S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\mapsto S^{\bullet}_{\mathbb{K}}(\mathcal{E}) be a graded co-algebra morphism. A Φ\Phi-co-derivation of degree kk on S()S^{\bullet}(\mathcal{E}^{\prime}) is a degree kk multilinear map :S𝕂()S𝕂()\mathcal{H}:S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\mapsto S^{\bullet}_{\mathbb{K}}(\mathcal{E}) which satisfies the (co)Leibniz identity:

Δ(v)=(Φ)Δ(v)+(Φ)Δ(v)for everyvS𝕂().\Delta\circ\mathcal{H}(v)=(\mathcal{H}\otimes\Phi)\circ\Delta^{\prime}(v)+(\Phi\otimes\mathcal{H})\circ\Delta^{\prime}(v)\quad\text{for every}\;\,v\in S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}). (6)

For a given co-algebra morphism Φ\Phi, \mathcal{H} is entirely determined by the Taylor coefficient

(n):S𝕂n+1(),\mathcal{H}^{(n)}\colon S^{n+1}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow\mathcal{E},

which are called its nn-th Taylor coefficients:

(x1,,xn)=k=0n1IJ1Jk={1n}ϵ(xI,xJ1,,xJk)(|I|)(xI)Φ(|J1|)(xJ1)Φ(|Jk|)(xJk)\mathcal{H}(x_{1},\dots,x_{n})=\sum_{k=0}^{n-1}\sum_{\tiny{\begin{array}[]{c}I\coprod J_{1}\coprod\dots\coprod J_{k}\\ =\{1...n\}\end{array}}}\epsilon(x_{I},x_{J_{1}},\dots,x_{J_{k}})\,\mathcal{H}^{(|I|)}(x_{I})\cdot\Phi^{(|J_{1}|)}(x_{J_{1}})\cdot\ldots\cdot\Phi^{(|J_{k}|)}(x_{J_{k}}) (7)

where for every subset J={j1<<jr}{1,,n}J=\{j_{1}<...<j_{r}\}\subset\{1,\cdots,n\}, xJx_{J} stands for the list xj1,,xjrx_{j_{1}},\dots,x_{j_{r}} and |J|=r|J|=r stands for the length of the list. This formula shows that the Taylor coefficients of \mathcal{H} are 𝒪\mathcal{O}-multilinear if and only if \mathcal{H} induces a Φ𝒪{\Phi^{\mathcal{O}}}-co-derivation111defined as in (6) with Φ𝒪{\Phi^{\mathcal{O}}} instead of Φ\Phi 𝒪:{\mathcal{H}}^{\mathcal{O}}\colon\bigodot^{\bullet}\mathcal{E}^{\prime}\longrightarrow\bigodot^{\bullet}\mathcal{E}.

Proposition 1.30.

Let Φ:S𝕂()S𝕂()\Phi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\rightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) be a Lie \infty-algebroid morphism. For :S𝕂()S𝕂()\mathcal{H}\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\rightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) a 𝒪\mathcal{O}-multilinear Φ\Phi-co-derivation of degree k1k\leq-1, Q(1)kQ\mathcal{H}\circ Q_{\mathcal{E}^{\prime}}-(-1)^{k}Q_{\mathcal{E}}\circ\mathcal{H} is a 𝒪\mathcal{O}-multilinear Φ\Phi-co-derivation of degree k+1k+1.

Proof.

We first check that Q(1)kQ\mathcal{H}\circ Q_{\mathcal{E}}-(-1)^{k}Q_{\mathcal{E}^{\prime}}\circ\mathcal{H} is a Φ\Phi-co-derivation:

ΔQ\displaystyle\Delta\circ\mathcal{H}\circ Q_{\mathcal{E}^{\prime}} =(Φ+Φ)ΔQ,by definition of \displaystyle=(\mathcal{H}\otimes\Phi+\Phi\otimes\mathcal{H})\circ\Delta^{\prime}\circ Q_{\mathcal{E}}^{\prime},\;\text{by definition of $\mathcal{H}$}
=(Φ+Φ)(Qid+idQ)Δ,by definition of Q\displaystyle=(\mathcal{H}\otimes\Phi+\Phi\otimes\mathcal{H})\circ(Q_{\mathcal{E}^{\prime}}\otimes\text{id}+\text{id}\otimes Q_{\mathcal{E}^{\prime}})\circ\Delta^{\prime},\;\text{by definition of $Q_{\mathcal{E}}^{\prime}$}
=(QΦ+(1)kΦQ+ΦQ+ΦQ)Δ\displaystyle=(\mathcal{H}\circ Q_{\mathcal{E}^{\prime}}\otimes\Phi+(-1)^{k}\Phi\circ Q_{\mathcal{E}^{\prime}}\otimes\mathcal{H}+\mathcal{H}\otimes\Phi\circ Q_{\mathcal{E}^{\prime}}+\Phi\otimes\mathcal{H}\circ Q_{\mathcal{E}^{\prime}})\circ\Delta^{\prime}

Subtracting a similar equation for (1)kΔQ(-1)^{k}\Delta\circ Q_{\mathcal{E}}\circ\mathcal{H} and using (5), one obtains the Φ\Phi-co-derivation property for Q(1)kQ\mathcal{H}\circ Q_{\mathcal{E}^{\prime}}-(-1)^{k}Q_{\mathcal{E}^{\prime}}\circ\mathcal{H}. We now check that Q(1)kQ\mathcal{H}\circ Q_{\mathcal{E}^{\prime}}-(-1)^{k}Q_{\mathcal{E}}\circ\mathcal{H} is 𝒪\mathcal{O}-multilinear, for which it suffices to check that its Taylor coefficients are 𝒪\mathcal{O}-multilinear by Lemma 1.26. Let x1,,xnx_{1},\ldots,x_{n}\in\mathcal{E}^{\prime} be homogeneous elements. Assume xi1x_{i}\in\mathcal{E}_{-1}^{\prime} (if we have more elements of degree 1-1 the same reasoning holds). To verify 𝒪\mathcal{O}-multilinearity it suffices to check that for all f𝒪f\in\mathcal{O}:

pr(Q(1)kQ)(x1,,\displaystyle\text{pr}\circ(\mathcal{H}\circ Q_{\mathcal{E}^{\prime}}-(-1)^{k}Q_{\mathcal{E}}\circ\mathcal{H})(x_{1},\ldots, xi,,fxj,xn)=\displaystyle x_{i},\ldots,fx_{j}\ldots,x_{n})= (8)
fpr(Q(1)kQ)(x1,,xi,,xj,xn).\displaystyle f\text{pr}\circ(\mathcal{H}\circ Q_{\mathcal{E}^{\prime}}-(-1)^{k}Q_{\mathcal{E}}\circ\mathcal{H})(x_{1},\ldots,x_{i},\ldots,x_{j}\ldots,x_{n}). (9)

Only the terms where the 22-ary bracket with a degree 1-1 element on one-side and ff on the other side may forbid ff to go in front. There are two such terms:

ϵ(xi,xj,xIij)(n1)(2(xi,fxj),xIij) and (1)kϵ(xi,xIi)2(Φ(0)(xi),f(n1)(xIi))\epsilon(x_{i},x_{j},x_{I^{ij}})\mathcal{H}^{(n-1)}(\ell_{2}^{\prime}(x_{i},fx_{j}),x_{I^{ij}})\hbox{ and }-(-1)^{k}\epsilon(x_{i},x_{I^{i}})\ell_{2}(\Phi^{(0)}(x_{i}),f\mathcal{H}^{(n-1)}(x_{I^{i}}))

where xIix_{I^{i}} and xIijx_{I^{ij}} stand for the list x1,,xnx_{1},\dots,x_{n} where xix_{i} and xi,xjx_{i},x_{j} are missing respectively, and (n1)\mathcal{H}^{(n-1)} is the (n1)(n-1)-th Taylor coefficient of \mathcal{H}. Since ρΦ(0)=ρ\rho_{\mathcal{E}}\circ\Phi^{(0)}=\rho_{\mathcal{E}^{\prime}}, in both terms ρ(ei)[f]\rho_{\mathcal{E}}(e_{i})[f] appears, and these two terms add up to zero. ∎

Remark 1.31.

If the degree of \mathcal{H} is non-negative, then Q(1)kQ\mathcal{H}\circ Q_{\mathcal{E}^{\prime}}-(-1)^{k}Q_{\mathcal{E}}\circ\mathcal{H} may not be 𝒪\mathcal{O}-multilinear any more, since there may exist extra terms where the anchor map appears, e.g. terms of the form 2((xIj),fΦ(0)(xj))\ell_{2}(\mathcal{H}(x_{I^{j}}),f\Phi^{(0)}(x_{j})).

We can now define homotopies between Lie \infty-algebroid morphisms, extending [28] from finite dimensional QQ-manifolds to arbitrary Lie \infty-algebroids.

Let VV be a vector space. Unless a topology on VV is chosen, the notion of VV-valued continuous or differentiable or smooth function on an interval I=[a,b]I=[a,b]\subset\mathbb{R} does not make sense. However, we can always define the notion of a piecewise rational function fIVf\subset I\longrightarrow V as follows: we choose a finite increasing sequence a=t0tn=ba=t_{0}\leq\dots\leq t_{n}=b of gluing points, and we require that for all i=0,,n1i=0,\dots,n-1 the restriction fif^{i} of ff to [ti,ti+1][t_{i},t_{i+1}] is a finite sum of functions of the form g(t)vg(t)v with vVv\in V and g(t)g(t) a real rational function on [ti,ti+1][t_{i},t_{i+1}] which has no pole on [ti,ti+1][t_{i},t_{i+1}]. If fif_{i} and fi+1f_{i+1} coincide at the gluing point ti+1t_{i+1}, we say that ff is continuous. When VV is a space of linear maps between the vector spaces SS and TT, we shall say that a VV-valued map ftf_{t} is a piecewise rational (continuous) if ft(s)f_{t}(s) is a piecewise rational (continuous) TT-valued function for all sSs\in S.

Here is an important feature of such functions.

Lemma 1.32.

The derivative of a piecewise rational continuous function is defined at every point which is not a gluing point and is piecewise rational. Conversely, every piecewise rational functions admits a piecewise rational continuous primitive, unique up to a constant.

A family (Φt)tI(\Phi_{t})_{t\in I} of co-algebra morphisms can now be defined to be piecewise rational continuous if its Taylor coefficients Φt(n)\Phi_{t}^{(n)} are piecewise rational continuous for all nn\in\mathbb{N}. For such a family (Φt)tI(\Phi_{t})_{t\in I}, a family (Ht)tI(H_{t})_{t\in I} made of Φt\Phi_{t}-co-derivations is said to be piecewise rational if all its Taylor coefficients are.

Remark 1.33.

In the above definitions, we do not assume the gluing points of the various Taylor coefficients Φt(n)\Phi_{t}^{(n)} or Ht(n)H^{(n)}_{t} to be the same for all n0n\in\mathbb{N}_{0}.

We now extend Definition 3.53 in [28] to the infinite rank case.

Definition 1.34.

Let Φ\Phi and Ψ\Psi be Lie \infty-algebroid morphisms from (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}),Q_{\mathcal{E}^{\prime}}) to (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}),Q_{\mathcal{E}}). A homotopy between Φ\Phi and Ψ\Psi is a pair (Φt,Ht)t[a,b](\Phi_{t},H_{t})_{t\in[a,b]} consisting of:

  1. (1)

    a piecewise rational continuous path tΦtt\mapsto\Phi_{t} valued in Lie \infty-algebroid morphisms between S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}) and S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) satisfying the boundary condition:

    Φa=ΦandΦb=Ψ,\Phi_{a}=\Phi\quad\text{and}\quad\Phi_{b}=\Psi,
  2. (2)

    a piecewise rational path tHtt\mapsto H_{t}, with HtH_{t} a Φt\Phi_{t}-co-derivations of degree 1-1 from S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}) to S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}), such that the following equation:

    dΦtdt=QHt+HtQ\frac{\mathrm{d}\Phi_{t}}{\mathrm{d}t}=Q_{\mathcal{E}}\circ H_{t}+H_{t}\circ Q_{\mathcal{E}^{\prime}} (10)

    holds for every t]a,b[t\in]a\,,b[ where it is defined (that is, not a gluing point for the Taylor coefficients). More precisely, for every vS𝕂n()v\in S^{\leq n}_{\mathbb{K}}(\mathcal{E}^{\prime}),

    dΦtdt(v)=QHt(v)+HtQ(v)\frac{\mathrm{d}\Phi_{t}}{\mathrm{d}t}(v)=Q_{\mathcal{E}}\circ H_{t}(v)+H_{t}\circ Q_{\mathcal{E}^{\prime}}(v) (11)

    for all tt which is not a gluing point of the Taylor coefficient of Φt(k),Ht(k)\Phi_{t}^{(k)},H_{t}^{(k)} for k=0,,nk=0,\ldots,n.

Definition 1.34 is justified by the following statement:

Proposition 1.35.

Let Φ\Phi be a Lie \infty-algebroid morphism from (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}),Q_{\mathcal{E}^{\prime}}) to (S𝕂(),Q)(S^{\bullet}_{\mathbb{K}}(\mathcal{E}),Q_{\mathcal{E}}). For all t[a,b]t\in[a\,,b], let Ht(n):S𝕂n+1()H_{t}^{(n)}\colon S^{n+1}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow~{}\mathcal{E} be a family 𝒪\mathcal{O}-multilinear piecewise rational maps indexed by n0n\in\mathbb{N}_{0}. Then,

  1. (1)

    There exists a unique piecewise rational continuous family of co-algebra morphisms Φt\Phi_{t} such that

    1. (a)

      Φa=Φ\Phi_{a}=\Phi

    2. (b)

      (Φt,Ht)(\Phi_{t},H_{t}) is a solution of the differential equation (10), where HtH_{t} is the Φt\Phi_{t}-co-derivation whose nn-th Taylor coefficient is Ht(n)H_{t}^{(n)} for all n0n\geq 0.

  2. (2)

    Moreover, for all t[a,b]t\in[a,b], (Φs,Hs)s[a,t](\Phi_{s},H_{s})_{s\in[a,t]} is a Lie \infty-algebroid homotopy between Φ\Phi and Φt\Phi_{t}.

Proof.

Let us show item (1). We claim that equation (10) is a differential equation that can be solved recursively. In arity zero, it reads,

dΦt(0)dt=Q(0)Ht(0)+Ht(0)Q(0)\frac{\mathrm{d}\Phi_{t}^{(0)}}{\mathrm{d}t}=Q_{\mathcal{E}}^{(0)}\circ H_{t}^{(0)}+H_{t}^{(0)}\circ Q_{\mathcal{E}^{\prime}}^{(0)} (12)

and

Φt(0)=Φ(0)+at(Q(0)Hs(0)+Hs(0)Q(0))ds\Phi_{t}^{(0)}=\Phi^{(0)}+\int_{a}^{t}\left(Q_{\mathcal{E}}^{(0)}\circ H_{s}^{(0)}+H_{s}^{(0)}\circ Q_{\mathcal{E}^{\prime}}^{(0)}\right)\mathrm{d}s (13)

is defined for all t[a,b]t\in[a,b]. Also, ddtΦt(n+1):S(n+2)()\frac{\mathrm{d}}{\mathrm{d}t}\Phi_{t}^{(n+1)}\colon S^{(n+2)}(\mathcal{E}^{\prime})\rightarrow\mathcal{E} is an algebraic expression of Q(0),,Q(n+1)Q_{\mathcal{E}}^{(0)},\ldots,Q_{\mathcal{E}}^{(n+1)}, Q(0),,Q(n+1)Q_{\mathcal{E}^{\prime}}^{(0)},\ldots,Q_{\mathcal{E}^{\prime}}^{(n+1)} Φt(0),,Φt(n),Ht(0),,Ht(n+1)\Phi_{t}^{(0)},\ldots,\Phi_{t}^{(n)},H_{t}^{(0)},\ldots,H_{t}^{(n+1)}. But Φt(n+1)\Phi_{t}^{(n+1)} does not appear in the (n+1)(n+1)-th Taylor coefficient of QHt+HtQQ_{\mathcal{E}}\circ H_{t}+H_{t}\circ Q_{\mathcal{E}^{\prime}} by Equation (7). By Lemma 1.32, there exists a unique piecewise rational continuous solution Φt(n+1)\Phi_{t}^{(n+1)} such that Φa(n+1)=Φ(n+1)\Phi_{a}^{(n+1)}=\Phi^{(n+1)}. The construction of the Taylor coefficients of the co-algebra morphisms Φt\Phi_{t} then goes by recursion. Recursion formulas also show that Φt\Phi_{t} is unique.

Let us show 2), i.e. that Φt\Phi_{t} is a a 𝒪\mathcal{O}-multilinear chain map for all t[a,b]t\in[a,b]. The function given by

Λk(t)=(QΦtΦtQ)(k)for allt[a,b],k0\Lambda_{k}(t)=(Q_{\mathcal{E}}\circ\Phi_{t}-\Phi_{t}\circ Q_{\mathcal{E}^{\prime}})^{(k)}\quad\text{for all}\quad t\in[a,b],\,k\in\mathbb{N}_{0}

are differentiable w.r.t tt at all points except for a finitely many t[a,b]t\in[a,b] and are piecewise rational continuous. The map dΦtdt\frac{\mathrm{d}\Phi_{t}}{\mathrm{d}t} is a Lie \infty-morphism because Q2=0Q_{\mathcal{E}}^{2}=0 and Q2=0Q_{\mathcal{E}^{\prime}}^{2}=0, hence Λ(t)=0\Lambda^{\prime}(t)=0. By continuity, Λk(t)\Lambda_{k}(t) is constant over the interval [a,b][a,b]. Since Φa=Φ\Phi_{a}=\Phi is a Lie \infty-algebroid morphism, we have Λk(a)=0\Lambda_{k}(a)=0. Thus, Λk(t)=0\Lambda_{k}(t)=0 and,

QΦt=ΦtQ,for allt[a,b].Q_{\mathcal{E}}\circ\Phi_{t}=\Phi_{t}\circ Q_{\mathcal{E}^{\prime}},\quad\text{for all}\;t\in[a,b].

Lemma 1.36.

Let (,(k)k1,ρ)(\mathcal{E}^{\prime},(\ell_{k}^{\prime})_{k\geq 1},\rho_{\mathcal{E}^{\prime}}) and (,(k)k1,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}}) be Lie \infty-Lie algebroids that terminate in 𝒜\mathcal{A} through hooks π\pi^{\prime} and π\pi. Let (Φt,Ht)t[a,b](\Phi_{t},H_{t})_{t\in[a,b]} be a homotopy. If Φa\Phi_{a} is Lie \infty-algebroid morphism that terminates at 𝒜\mathcal{A} (i.e. πΦ=π\pi\circ\Phi=\pi^{\prime}), then so is the \infty-algebroid morphism Φt\Phi_{t} for all t[a,b]t\in[a,b].

Proof.

This is a direct consequence of Equation (13), since Q(0)=1:21Q_{\mathcal{E}}^{(0)}=\ell_{1}:\mathcal{E}_{-2}\to\mathcal{E}_{-1} and Q(0)=1:21Q_{{\mathcal{E}}^{\prime}}^{(0)}=\ell_{1}^{\prime}:\mathcal{E}_{-2}^{\prime}\to\mathcal{E}_{-1}^{\prime} are valued in the kernels of π\pi and π\pi^{\prime} respectively.

Last, 𝒪\mathcal{O}-multilinearity of Φt\Phi_{t} follows from the 𝒪\mathcal{O}-multilinearity of QHt+HtQQ_{\mathcal{E}}\circ H_{t}+H_{t}\circ Q_{\mathcal{E}^{\prime}}, which is granted by Proposition 1.30. This completes the proof. ∎

Let us show that homotopy in the sense above defines an equivalence relation \mathtt{\sim} between Lie \infty-morphisms. We have the following lemma.

Lemma 1.37.

A pair (Φt,Ht)(\Phi_{t},H_{t}) is a homotopy between Lie \infty-algebroid morphisms Φa\Phi_{a} and Φb\Phi_{b} if and only if for all rational function, g:[a,b][c,d]g\colon[a,b]\rightarrow[c,d] without poles on [a,b][a,b], the pair (Φg(t),g(t)Hg(t))(\Phi_{g(t)},g^{\prime}(t)H_{g(t)}) is a homotopy between Φg(a)\Phi_{g(a)} and Φg(b)\Phi_{g(b)}.

Proof.

Let g:[a,b][c,d]g\colon[a,b]\rightarrow[c,d] be a rational function without poles on [a,b][a,b]. A straightforward computation gives:

dΦtdt=QHt+HtQ(by definition)dΦdt(g(t))=QHg(t)+Hg(t)Q(by replacing t by g(t))dΦg(t)dt=Q(g(t)Hg(t))+(g(t)Hg(t))Q(by multiplying by g(t)).\begin{array}[]{rrcll}&\dfrac{\mathrm{d}\Phi_{t}}{\mathrm{d}t}&=&Q_{\mathcal{E}}\circ H_{t}+H_{t}\circ Q_{\mathcal{E}^{\prime}}&\hskip 5.69046pt\hbox{(by definition})\\ \Rightarrow&\frac{\mathrm{d}\Phi}{\mathrm{d}t}(g(t))&=&Q_{\mathcal{E}}\circ H_{g(t)}+H_{g(t)}\circ Q_{\mathcal{E}^{\prime}}&\hskip 5.69046pt\hbox{(by replacing $t$ by $g(t)$)}\\ \Rightarrow&\frac{\mathrm{d}\Phi_{g(t)}}{\mathrm{d}t}&=&Q_{\mathcal{E}}\circ\left(g^{\prime}(t)H_{g(t)}\right)+\left(g^{\prime}(t)H_{g(t)}\right)\circ Q_{\mathcal{E}^{\prime}}&\hskip 5.69046pt\hbox{(by multiplying by $g^{\prime}(t)$)}.\end{array}

The last equation means that (Φg(t),g(t)Hg(t))(\Phi_{g(t)},g^{\prime}(t)H_{g(t)}) is a homotopy between Φg(a)\Phi_{g(a)} and Φg(b)\Phi_{g(b)}. The backward implication is obvious, it suffices to consider a=ca=c, b=db=d and g=idg={\mathrm{id}}. ∎

Proposition 1.38.

Homotopy between Lie \infty-morphisms is an equivalence relation. In addition, it is compatible with composition, that is, if Φ,Ψ:(S𝕂(),Q)(S𝕂(),Q)\Phi,\Psi\colon(S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}),Q_{\mathcal{E}^{\prime}})\rightarrow(S^{\bullet}_{\mathbb{K}}(\mathcal{E}),Q_{\mathcal{E}}) are homotopic Lie \infty-algebroid morphisms and Φ^,Ψ^:(S𝕂(),Q)(S𝕂(′′),Q′′)\hat{\Phi},\hat{\Psi}\colon(S^{\bullet}_{\mathbb{K}}(\mathcal{E}),Q_{\mathcal{E}})\rightarrow(S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime\prime}),Q_{\mathcal{E}^{\prime\prime}}) are homotopic Lie \infty-algebroid morphisms, then, so are their compositions Φ^Φ\hat{\Phi}\circ\Phi and Ψ^Ψ\hat{\Psi}\circ\Psi.

Proof.

We first show that this notion of homotopy is an equivalence relation. Let Φ,Ψ\Phi,\Psi and Ξ:S𝕂()S𝕂()\Xi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) be three Lie \infty-morphisms of algebroids.

  • \bullet

    Reflexivity: The pair (Φt=Φ,Ht=0)t[0,1](\Phi_{t}=\Phi,H_{t}=0)_{t\in[0,1]} defines a homotopy between Φ\Phi and Φ\Phi.

  • \bullet

    Symmetry: Let (Φt,Ht)t[0,1](\Phi_{t},H_{t})_{t\in[0,1]} be a homotopy between Φ\Phi to Ψ\Psi. By applying Lemma 1.37 with g(t)=1tg(t)=1-t, we obtain a homotopy between Ψ\Psi and Φ\Phi via the pair (Φ1t,H1t)t[0,1](\Phi_{1-t},-H_{1-t})_{t\in[0,1]}.

  • \bullet

    Transitivity: Assume ΦΨ\Phi\mathtt{\sim}\Psi and ΨΞ\Psi\mathtt{\sim}\Xi and let (Φt,H1,t)t[0,12](\Phi_{t},H_{1,t})_{t\in[0,\frac{1}{2}]} be homotopy between Φ\Phi and Ψ\Psi and let (Ψt,H2,t)t[12,1](\Psi_{t},H_{2,t})_{t\in[\frac{1}{2},1]} be a homotopy between Ψ\Psi and Ξ\Xi. By gluing Φt\Phi_{t} and Ψt\Psi_{t}, respectively H1tH_{1t} and H2,tH_{2,t} we obtain a homotopy (Θt,Ht)t[0,1](\Theta_{t},H_{t})_{t\in[0,1]} between Φ\Phi and Ξ\Xi.

We then show it is compatible with composition. Let us denote by (Φt,Ht)(\Phi_{t},H_{t}) the homotopy between Φ\Phi and Ψ\Psi, and (Φ^t,H^t)(\hat{\Phi}_{t},\hat{H}_{t}) the homotopy between Φ^\hat{\Phi} and Ψ^\hat{\Psi} . We obtain,

dΦ^tΦtdt\displaystyle\frac{\mathrm{d}\hat{\Phi}_{t}\circ\Phi_{t}}{\mathrm{d}t} =dΦ^tdtΦt+Φ^tdΦ^tdt\displaystyle=\frac{\mathrm{d}\hat{\Phi}_{t}}{\mathrm{d}t}\circ\Phi_{t}+\hat{\Phi}_{t}\circ\frac{\mathrm{d}\hat{\Phi}_{t}}{\mathrm{d}t}
=Q′′(H^tΦt+Φ^tHt)+(H^tΦt+Φ^tHt)Q.\displaystyle=Q_{\mathcal{E}^{\prime\prime}}\circ\left(\hat{H}_{t}\circ\Phi_{t}+\hat{\Phi}_{t}\circ H_{t}\right)+\left(\hat{H}_{t}\circ\Phi_{t}+\hat{\Phi}_{t}\circ H_{t}\right)\circ Q_{\mathcal{E}^{\prime}}.

Hence, Φ^Φ\hat{\Phi}\circ\Phi and Ψ^Ψ\hat{\Psi}\circ\Psi are homotopic via the pair (Φ^tΦt,H^tΦt+Φ^tHt)(\hat{\Phi}_{t}\circ\Phi_{t},\hat{H}_{t}\circ\Phi_{t}+\hat{\Phi}_{t}\circ H_{t}) which is easily checked to satisfy all axioms. This concludes the proof. ∎

We conclude this section with a lemma that will be useful in the sequel.

Lemma 1.39.

Let (Φt,Ht)t[c,+[(\Phi_{t},H_{t})_{t\in[c,+\infty[} be a homotopy such that for all n0n\in\mathbb{N}_{0} and for every tnt\geq n, Ht(n)=0H_{t}^{(n)}=0. Then the nn-th Taylor coefficient Φt(n)\Phi_{t}^{(n)} is constant on [n,+[[n,+\infty[ and the co-algebra morphism Φ\Phi_{\infty} whose nn-th Taylor coefficient is Φt(n)\Phi_{t}^{(n)} for any n0n\in\mathbb{N}_{0} and t[n,+[t\in[n,+\infty[ is a Lie \infty-algebroid morphism.

Moreover, for g:[a,b[[c,+[g:[a,b[\rightarrow[c,+\infty[ a rational function with no pole on [a,b[[a,b[ and such that limtbg(t)=+\displaystyle\lim_{t\to b}g(t)=+\infty, the pair (Φg(t),g(t)Hg(t))(\Phi_{g(t)},g^{\prime}(t)H_{g(t)}) is a homotopy between Φc\Phi_{c} and Φ\Phi_{\infty}.

Proof.

Since the nn-th Taylor coefficient of the Φt\Phi_{t}-co-derivation dΦt(n)dt=(QHt+HtQ)(n)\frac{\mathrm{d}\Phi_{t}^{(n)}}{\mathrm{d}t}=(Q_{\mathcal{E}}\circ H_{t}+H_{t}\circ Q_{\mathcal{E}^{\prime}})^{(n)} depends only on Ht(i)H_{t}^{(i)} for i=0,,n1i=0,\dots,n-1, we have by assumption dΦt(n)dt=0\frac{\mathrm{d}\Phi_{t}^{(n)}}{\mathrm{d}t}=0 for all tnt\geq n. As a consequence Φt(n)\Phi_{t}^{(n)} is constant on [n,+[[n,+\infty[. It follows from Proposition 1.35 that Φ\Phi_{\infty} is a Lie \infty-algebroid morphism since for every n0n\in\mathbb{N}_{0} and t[n,+[t\in[n,+\infty[

(QΦΦQ)(n)\displaystyle(Q_{\mathcal{E}}\circ\Phi_{\infty}-\Phi_{\infty}\circ Q_{\mathcal{E}^{\prime}})^{(n)} =i+j=n(Q(i)Φt(i)Φt(j)Q(j))\displaystyle=\sum_{i+j=n}(Q_{\mathcal{E}}^{(i)}\circ\Phi^{(i)}_{t}-\Phi_{t}^{(j)}\circ Q_{\mathcal{E}^{\prime}}^{(j)})
=0(since Φt is a Lie -algebroid morphism).\displaystyle=0\hskip 11.38092pt\hbox{(since $\Phi_{t}$ is a Lie $\infty$-algebroid morphism)}.

Let us prove the last part of the statement. By assumption, there exists abnba\leq b_{n}\leq b such that for all t[bn,b]t\in[b_{n},b], we have g(t)ng(t)\geq n, so that Φg(t)(n)=Φ(n)\Phi_{g(t)}^{(n)}=\Phi_{\infty}^{(n)} and g(t)Hg(t)(n)=0g^{\prime}(t)H_{g(t)}^{(n)}=0 on [bn,b][b_{n},b]. The function Φt(n)\Phi_{t}^{(n)} (resp. Ht(n)H_{t}^{(n)}) being piecewise rational continuous (resp. piecewise rational) on [c,n][c,n], the same holds for Φg(t)(n)\Phi_{g(t)}^{(n)} (resp. g(t)Hg(t)(n)g^{\prime}(t)H_{g(t)}^{(n)}) on [a,bn][a,b_{n}]. By gluing with a constant function Φ\Phi_{\infty} (resp. with 0), we see that all Taylor coefficients of Φg(t)\Phi_{g(t)} (resp. g(t)Hg(t)g^{\prime}(t)H_{g(t)}) are piecewise rational continuous (resp. piecewise rational) with finitely many gluing points. This completes the proof. ∎

Remark 1.40.

Lemma 1.39 explains how to glue infinitely many homotopies, at least when for a given nn, only finitely of them affects the nn-th Taylor coefficient.

2. Main results

2.1. The two main theorems about the universal Lie \infty-algebroids of a Lie-Rinehart algebras

Let us now extend the main results of [28] from locally real analytic finitely generated singular foliations to arbitrary Lie-Rinehart algebras.

2.1.1. Existence Theorem 2.1

Here is our first main result, which states that universal Lie \infty-algebroids over a given Lie-Rinehart algebra exist. We are convinced that it may be deduced using the methods of semi-models categories as in Theorem 4.2 in [14], but does not follow from a simple homotopy transfer argument. It extends Theorem 2.8 in [28].

Theorem 2.1.

Let 𝒪\mathcal{O} be an algebra and 𝒜\mathcal{A} be a Lie-Rinehart algebra over 𝒪\mathcal{O}. Any resolution of 𝒜\mathcal{A} by free 𝒪\mathcal{O}-modules

131211π𝒜\cdots\stackrel{{\scriptstyle\ell_{1}}}{{\longrightarrow}}\mathcal{E}_{-3}\stackrel{{\scriptstyle\ell_{1}}}{{\longrightarrow}}\mathcal{E}_{-2}\stackrel{{\scriptstyle\ell_{1}}}{{\longrightarrow}}\mathcal{E}_{-1}\stackrel{{\scriptstyle\pi}}{{\longrightarrow}}\mathcal{A} (14)

comes equipped with a Lie \infty-algebroid structure whose unary bracket is 1\ell_{1} and that terminates in 𝒜\mathcal{A} through the hook π\pi.

Since any module admits free resolutions, Theorem 2.1 implies that:

Corollary 2.2.

Any Lie-Rinehart algebra 𝒜\mathcal{A} admits a universal Lie \infty-algebroid.

While proving Theorem 2.1, we will see that if 1\mathcal{E}_{-1} can be equipped with a Lie algebroid bracket (i.e. a bracket whose Jacobiator is zero), then all kk-ary brackets of the universal Lie \infty-algebroid structure may be chosen to be zero on 1\mathcal{E}_{-1}:

Proposition 2.3.

Let (,1,π)(\mathcal{E},\ell_{1},\pi) be a free resolution of a Lie-Rinehart algebra 𝒜\mathcal{A}. If 1\mathcal{E}_{-1} admits a Lie algebroid bracket [,][\cdot,\cdot] such that π:1𝒜\pi:\mathcal{E}_{-1}\to\mathcal{A} is a Lie-Rinehart morphism, then there exists a structure of universal Lie \infty-algebroid (,(k)k1,ρ,π)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}},\pi) of 𝒜\mathcal{A} whose 22-ary bracket coincides with [,][\cdot,\cdot] on 1\mathcal{E}_{-1} and such that for every k3k\geq 3 the kk-ary bracket k\ell_{k} vanishes on k1\bigodot^{k}\mathcal{E}_{-1}.

2.1.2. Universality Theorem 2.4 and corollaries

Here is our second main result. It is related to Proposition 2.1.4 in [14] (but morphisms are not the same), and extends Theorem 2.9 in [28].

Theorem 2.4.

Let 𝒜\mathcal{A} be a Lie-Rinehart algebra over 𝒪\mathcal{O}. Given,

  1. a)

    a Lie \infty-algebroid (,(k)k1,ρ,π)(\mathcal{E}^{\prime},(\ell_{k}^{\prime})_{k\geq 1},\rho_{\mathcal{E}^{\prime}},\pi^{\prime}) that terminates in 𝒜\mathcal{A} through the hook π\pi^{\prime}, and

  2. b)

    any Lie \infty-algebroid (,(k)k1,ρ,π)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}},\pi) universal for 𝒜\mathcal{A} through the hook π\pi,

then

  1. (1)

    there exists a morphism of Lie \infty-algebroids from (,(k)k1,ρ,π)(\mathcal{E}^{\prime},(\ell^{\prime}_{k})_{k\geq 1},\rho_{\mathcal{E}^{\prime}},\pi^{\prime}) to (,(k)k1,ρ,π)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}},\pi) over 𝒜\mathcal{A} .

  2. (2)

    and any two such morphisms are homotopic.

Recall that a Lie \infty-algebroid morphism Φ\Phi as above is “a morphism of Lie \infty-algebroid that terminates in 𝒜\mathcal{A}” (or “over 𝒜\mathcal{A}” for short) if πΦ(0)=π\pi\circ\Phi^{(0)}=\pi^{\prime}, see Definition 1.27. Here is an immediate corollary of Theorem 2.4.

Corollary 2.5.

Any two universal Lie \infty-algebroids of a given Lie-Rinehart algebra are homotopy equivalent. This homotopy equivalence, moreover, is unique up to homotopy.

We will prove that the morphism that appears in Theorem 2.4 can be made trivial upon choosing a “big enough” universal Lie \infty-algebroid:

Proposition 2.6.

Let 𝒜\mathcal{A} be a Lie-Rinehart algebra over 𝒪\mathcal{O}. Given a Lie \infty-algebroid structure (,(k)k1,ρ,π)(\mathcal{E}^{\prime},(\ell_{k}^{\prime})_{k\geq 1},\rho_{\mathcal{E}^{\prime}},\pi^{\prime}) that terminates in 𝒜\mathcal{A} through a hook π\pi^{\prime}, then there exist a universal Lie \infty-algebroid (,(k)k1,ρ,π)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}},\pi) of 𝒜\mathcal{A} through a hook π\pi such that

  1. (1)

    \mathcal{E} contains \mathcal{E}^{\prime} as a subcomplex,

  2. (2)

    the Lie \infty-algebroid morphism from \mathcal{E}^{\prime} to \mathcal{E} announced in Theorem 2.4 can be chosen to be the inclusion map \mathcal{E}^{\prime}\hookrightarrow\mathcal{E} (i.e. a Lie \infty-morphism where the only non-vanishing Taylor coefficient is the inclusion \mathcal{E}^{\prime}\hookrightarrow\mathcal{E}).

The following Corollary follows immediately from Proposition 2.6:

Corollary 2.7.

Let 𝒜\mathcal{A} be a Lie-Rinehart algebra over 𝒪\mathcal{O} and \mathcal{B} be a Lie-Rinehart subalgebra of 𝒜\mathcal{A}. Any universal Lie \infty-algebroid of \mathcal{B} can be contained in a universal Lie \infty-algebroid of 𝒜\mathcal{A}.

2.1.3. Induced Lie \infty-algebroids structures on Tor𝒪(𝒜,𝒪/){\mathrm{Tor}}_{\mathcal{O}}(\mathcal{A},\mathcal{O}/\mathcal{I}).

Let 𝒜\mathcal{A} be a Lie-Rinehart algebra over 𝒪\mathcal{O} with anchor ρ𝒜\rho_{\mathcal{A}}. We say that an ideal 𝒪\mathcal{I}\subset\mathcal{O} is a Lie-Rinehart ideal if ρ𝒜(a)[]\rho_{\mathcal{A}}(a)[\mathcal{I}]\subset\mathcal{I} for all a𝒜a\in\mathcal{A}. Since this assumption implies [𝒜,𝒜]𝒜[\mathcal{I}\mathcal{A},\mathcal{A}]\subset\mathcal{I}\mathcal{A}, the quotient space 𝒜/\mathcal{A}/\mathcal{I} comes equipped with a natural Lie-Rinehart algebra structure over 𝒪/\mathcal{O}/\mathcal{I}.

For (,(k)k1,ρ,π)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}},\pi) an universal Lie \infty-algebroid of 𝒜\mathcal{A}, the quotient space /𝒪/𝒪\mathcal{E}_{\bullet}/\mathcal{I}\simeq\mathcal{O}/\mathcal{I}\otimes_{\mathcal{O}}\mathcal{E}_{\bullet} comes equipped with an induced Lie \infty-algebroid structure: the nn-ary brackets for n2n\neq 2 go to quotient by linearity, while for n=2n=2, the 22-ary bracket goes to the quotient in view of the relation ρ(1)[]\rho_{\mathcal{E}}(\mathcal{E}_{-1})[\mathcal{I}]\subset\mathcal{I}. Also, π\pi goes to the quotient to a Lie-Rinehart algebra morphism 1/𝒜/\mathcal{E}_{-1}/\mathcal{I}\to\mathcal{A}/\mathcal{I}.

Definition 2.8.

Let 𝒜\mathcal{A} be a Lie-Rinehart algebra over 𝒪\mathcal{O}. For every Lie-Rinehart ideal 𝒪\mathcal{I}\subset\mathcal{O}, we call Lie \infty-algebroid of \mathcal{I} the quotient Lie \infty-algebroid /\mathcal{E}_{\bullet}/\mathcal{I}, with (,(k)k1,ρ,π)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}},\pi) a universal Lie \infty-algebroid of 𝒜\mathcal{A}.

Remark 2.9.

The complexes on which the Lie \infty-algebroids of the ideal \mathcal{I} are defined compute Tor𝒪(𝒜,𝒪/){\mathrm{Tor}}_{\mathcal{O}}(\mathcal{A},\mathcal{O}/\mathcal{I}) by construction.

Moreover, for any two universal Lie \infty-algebroids for 𝒜\mathcal{A}, defined on ,\mathcal{E},\mathcal{E}^{\prime} the homotopy equivalences Φ:\Phi:\mathcal{E}\to\mathcal{E}^{\prime} and Ψ:\Psi:\mathcal{E}^{\prime}\to\mathcal{E}, whose existence is granted by Corollary 2.5, go to the quotient and induce an homotopy equivalences between 𝒪/𝒪/\mathcal{O}/\mathcal{I}\otimes_{\mathcal{O}}\mathcal{E}_{\bullet}\simeq\mathcal{E}_{\bullet}/\mathcal{I} and 𝒪/𝒪/\mathcal{O}/\mathcal{I}\otimes_{\mathcal{O}}\mathcal{E}_{\bullet}^{\prime}\simeq\mathcal{E}_{\bullet}^{\prime}/\mathcal{I}. The following corollary is then an obvious consequence of Theorem 2.4.

Corollary 2.10.

Let 𝒜\mathcal{A} be a Lie-Rinehart algebra over 𝒪\mathcal{O}. Let 𝒪\mathcal{I}\subset\mathcal{O} be a Lie-Rinehart ideal. Then any two Lie \infty-algebroids of \mathcal{I} are homotopy equivalent, and there is a distinguished class of homotopy equivalences between them.

Taking under account Remark 2.9, here is an alternative manner to restate this corollary.

Corollary 2.11.

Let 𝒜\mathcal{A} be a Lie-Rinehart algebra over 𝒪\mathcal{O}. Let 𝒪\mathcal{I}\subset\mathcal{O} be a Lie-Rinehart ideal. Then the complex computing Tor𝒪(𝒜,𝒪/){\mathrm{Tor}}_{\mathcal{O}}^{\bullet}(\mathcal{A},\mathcal{O}/\mathcal{I}) comes equipped with a natural Lie \infty-algebroid structure over 𝒪/\mathcal{O}/\mathcal{I}, and any two such structures are homotopy equivalent in a unique up to homotopy manner.

When, in addition to being a Lie-Rinehart ideal, \mathcal{I} is a maximal ideal, then 𝕂:=𝒪/\mathbb{K}:=\mathcal{O}/\mathcal{I} is a field and Lie \infty-algebroids of \mathcal{I} are a homotopy equivalence class of Lie \infty-algebras. In particular their common cohomologies, which is easily seen to be identified to Tor𝒪(𝒜,𝕂){\mathrm{Tor}}_{\mathcal{O}}^{\bullet}(\mathcal{A},\mathbb{K}) comes equipped with a graded Lie algebra structure. In particular, Tor𝒪1(𝒜,𝕂){\mathrm{Tor}}_{\mathcal{O}}^{-1}(\mathcal{A},\mathbb{K}) is a Lie algebra, Tor𝒪2(𝒜,𝕂){\mathrm{Tor}}_{\mathcal{O}}^{-2}(\mathcal{A},\mathbb{K}) is a representation of this algebra, and the 33-ary bracket defines a class in the third Chevalley-Eilenberg cohomology of Tor𝒪1(𝒜,𝕂){\mathrm{Tor}}_{\mathcal{O}}^{-1}(\mathcal{A},\mathbb{K}) valued in Tor𝒪2(𝒜,𝕂){\mathrm{Tor}}_{\mathcal{O}}^{-2}(\mathcal{A},\mathbb{K}). This class does not depend on any choice made in its construction by the previous corollaries and trivially extends the class called NMRLA-class in [28]. If it is not zero, then there is no Lie algebroid of rank rr equipped with a surjective Lie-Rinehart algebra morphism onto 𝒜\mathcal{A}, where rr is the rank of 𝒜\mathcal{A} as a module over 𝒪\mathcal{O}. All these considerations can be obtained by repeating verbatim Section 4.5.1 in [28] (where non-trivial examples are given).

2.1.4. Justification of the title

Let us give a categorical approach of Theorem 2.1 and Corollary 2.2.

Definition 2.12.

We denote by Lie-\infty-alg-oids/𝒪\mathcal{O} the category where:

  1. (1)

    objects are Lie \infty-algebroids over 𝒪\mathcal{O},

  2. (2)

    arrows are homotopy equivalence classes of morphisms of Lie \infty-algebroids over 𝒪\mathcal{O}.

Theorem 2.4 means that universal Lie \infty-algebroids over Lie-Rinehart algebra 𝒜\mathcal{A} are terminal objects in the subcategory of Lie-\infty-alg-oids/𝒪\mathcal{O} whose objects are Lie \infty-algebroids that terminate in 𝒜\mathcal{A}.

Let us re-state Corollary 2.5 differently. By associating to any Lie \infty-algebroid its basic Lie-Rinehart algebra (see Example 1.7 and 1.24), one obtains therefore a natural functor:

  • from the category Lie-\infty-alg-oids/𝒪\mathcal{O},

  • to the category of Lie-Rinehart algebras over 𝒪\mathcal{O}.

Theorem 2.1 gives a right inverse of this functor. In particular, this functor becomes an equivalence of categories when restricted to homotopy equivalence classes of acyclic Lie \infty-algebroids over 𝒪\mathcal{O}, i.e:

Corollary 2.13.

Let 𝒪\mathcal{O} be an unital commutative algebra. There is an equivalence of categories between:

  1. (i)

    Lie-Rinehart algebras over 𝒪\mathcal{O},

  2. (ii)

    acyclic Lie \infty-algebroids over 𝒪\mathcal{O}.

The corollary justifies the title of the article.

Remark 2.14.

In the language of categories, Corollary 2.10 means that there exists a functor from Lie-Rinehart ideals of a Lie-Rinehart algebra over 𝒪\mathcal{O}, to the category of Lie \infty-algebroids, mapping a Lie-Rinehart ideal \mathcal{I} to an equivalence class of Lie \infty-algebroids over 𝒪/\mathcal{O}/\mathcal{I}.

2.2. An important bi-complex: 𝔓𝔞𝔤𝔢(n)(,){\mathfrak{Page}}^{(n)}(\mathcal{E}^{\prime},\mathcal{E})

2.2.1. Description of 𝔓𝔞𝔤𝔢(n)(,){\mathfrak{Page}}^{(n)}(\mathcal{E}^{\prime},\mathcal{E})

Let 𝒜\mathcal{A} be an 𝒪\mathcal{O}-module, and let (,d,π)(\mathcal{E},\mathrm{d},\pi) and (,d,π)(\mathcal{E}^{\prime},\mathrm{d}^{\prime},\pi^{\prime}) be complexes of projective 𝒪\mathcal{O}-modules that terminates at 𝒜\mathcal{A}:

d2d1𝜋𝒜,d2d1π𝒜.\cdots\xrightarrow{\mathrm{d}}\mathcal{E}_{-2}\xrightarrow{\mathrm{d}}\mathcal{E}_{-1}\xrightarrow{\pi}\mathcal{A},\quad\cdots\xrightarrow{\mathrm{d}^{\prime}}\mathcal{E}^{\prime}_{-2}\xrightarrow{\mathrm{d}^{\prime}}\mathcal{E}^{\prime}_{-1}\xrightarrow{\pi^{\prime}}\mathcal{A}. (15)

For every k1k\geq 1, the (k+1)(k+1)-th graded symmetric power k+1\bigodot^{k+1}\mathcal{E}^{\prime} of \mathcal{E}^{\prime} over 𝒪\mathcal{O} is a projective 𝒪\mathcal{O}-module, and comes with a natural grading induced by the grading on \mathcal{E}^{\prime}.

Definition 2.15.

Let k0k\in\mathbb{N}_{0}. We call page number kk of (,d,π)(\mathcal{E},\mathrm{d},\pi) and (,d,π)(\mathcal{E},\mathrm{d}^{\prime},\pi^{\prime}) the bicomplex of 𝒪\mathcal{O}-modules on the upper left quadrant ×0\mathbb{Z}^{-}\times\mathbb{N}_{0} defined by:

Page(k)(,)j,m\displaystyle\text{Page}^{(k)}(\mathcal{E}^{\prime},\mathcal{E})_{j,m} :=Hom𝒪(k+1|km1,j),\displaystyle:=\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-m-1}}\,,\,\mathcal{E}_{j}\right), for m0m\geq 0 and j1j\leq-1 (16)
Page(k)(,)0,m\displaystyle\text{Page}^{(k)}(\mathcal{E}^{\prime},\mathcal{E})_{0,m} :=Hom𝒪(k+1|km1,𝒜),\displaystyle:=\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-m-1}}\,,\,\mathcal{A}\right), for m0m\geq 0, (17)

together with the vertical differential defined for Φ\Phi in any one of the two 𝒪\mathcal{O}-modules (16) or (17) by

δ(Φ)(x1,,xk+1):=Φd(x1xk+1),x1,,xk+1,\delta(\Phi)\,(x_{1},\ldots,x_{k+1}):=\Phi\circ\mathrm{d}^{\prime}\,(x_{1}\odot\ldots\odot x_{k+1}),\hskip 28.45274pt\forall\,x_{1},\dots,x_{k+1}\in\mathcal{E}^{\prime},

where d\mathrm{d}^{\prime} acts as an 𝒪\mathcal{O}-derivation on x1xk+1kx_{1}\odot\ldots\odot x_{k+1}\in\bigodot^{k}\mathcal{E}^{\prime} (and is 0 on 1\mathcal{E}_{-1}^{\prime}). The horizontal differential is given by

ΦdΦ or ΦπΦ\Phi\mapsto\mathrm{d}\circ\Phi\,\,\hbox{ or }\,\,\Phi\mapsto\pi\circ\Phi

depending on whether Φ\Phi is of type (16) with j2j\leq-2 or the type (16) with j=1j=-1. It is zero on elements of type (17). We denote by (𝔓𝔞𝔤𝔢(k)(,),D)\left(\mathfrak{Page}^{(k)}_{\bullet}(\mathcal{E}^{\prime},\mathcal{E}),D\right) its associated total complex. When =\mathcal{E}^{\prime}=\mathcal{E} we shall write 𝔓𝔞𝔤𝔢(k)()\mathfrak{Page}^{(k)}_{\bullet}(\mathcal{E}) instead of 𝔓𝔞𝔤𝔢(k)(,)\mathfrak{Page}^{(k)}_{\bullet}(\mathcal{E},\mathcal{E}).

The following diagram recapitulates the whole picture of 𝔓𝔞𝔤𝔢(k)(,)\mathfrak{Page}^{(k)}_{\bullet}(\mathcal{E}^{\prime},\mathcal{E}):

Hom𝒪(k+1|k3,2)dHom𝒪(k+1|k3,1)𝜋Hom𝒪(k+1|k3,𝒜)0δδδHom𝒪(k+1|k2,2)dHom𝒪(k+1|k2,1)𝜋Hom𝒪(k+1|k2,𝒜)0δδδHom𝒪(k+1|k1,2)dHom𝒪(k+1|k1,1)𝜋Hom𝒪(k+1|k1,𝒜)0000"-2 column""-1 column""last column"\begin{array}[]{ccccccccccc}&&\vdots&&\vdots&&\vdots&&\\ &&\uparrow&&\uparrow&&\uparrow&&\\ \cdots&\rightarrow&\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-3}},\mathcal{E}_{-2}\right)&\overset{\mathrm{d}}{\rightarrow}&\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-3}},\mathcal{E}_{-1}\right)&\overset{\pi}{\rightarrow}&\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-3}},\mathcal{A}\right)&\rightarrow&0\\ &&\delta\uparrow&&\delta\uparrow&&\delta\uparrow&&\\ \cdots&\rightarrow&\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-2}},\mathcal{E}_{-2}\right)&\overset{\mathrm{d}}{\rightarrow}&\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-2}},\mathcal{E}_{-1}\right)&\overset{\pi}{\rightarrow}&\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-2}},\mathcal{A}\right)&\rightarrow&0\\ &&\delta\uparrow&&\delta\uparrow&&\delta\uparrow&&\\ \cdots&\rightarrow&\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-1}},\mathcal{E}_{-2}\right)&\overset{\mathrm{d}}{\rightarrow}&\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-1}},\mathcal{E}_{-1}\right)&\overset{\pi}{\rightarrow}&\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-k-1}},\mathcal{A}\right)&\rightarrow&0\\ &&\uparrow&&\uparrow&&\uparrow&&\\ &&0&&0&&0&&\\ &&\hbox{\small{{"-$2$ column"}}}&&\hbox{\small{{"-$1$ column"}}}&&\hbox{\small{{"last column"}}}&&\end{array}

(18)

For later use, we spell out the meaning of being DD-closed.

Lemma 2.16.

An element P𝔓𝔞𝔤𝔢j(k)(,)P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{E}^{\prime},\mathcal{E}) in i1Hom𝒪(k+1|ji,i)\oplus_{i\geq 1}\emph{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-j-i}},\mathcal{E}_{-i}\right) is DD-closed if and only if:

  1. (1)

    the component P1:k+1|j11P_{-1}\colon\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-j-1}}\to\mathcal{E}_{-1} is valued in the kernel of π :1𝒜\pi \colon\mathcal{E}_{-1}\to\mathcal{A},

  2. (2)

    the following diagram commutes:

    k+1|ji\textstyle{\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-j-i}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(1)jd\scriptstyle{(-1)^{j}\mathrm{d}^{\prime}}Pi\scriptstyle{P_{-i}}k+1|ji+1\textstyle{\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-j-i+1}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Pi+1\scriptstyle{P_{-i+1}}i\textstyle{\mathcal{E}_{-i}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d\scriptstyle{\mathrm{d}}i+1\textstyle{\mathcal{E}_{-i+1}}

    with PiP_{-i} being the component of PP in Hom𝒪(k+1|ji,i)\emph{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-j-i}},\mathcal{E}_{-i}\right).

For (,d)=(,d)(\mathcal{E},\mathrm{d})=(\mathcal{E}^{\prime},\mathrm{d}^{\prime}), the second condition above also reads [P,d]RN=0[P,\mathrm{d}]_{\hbox{\tiny{\emph{RN}}}}=0. Here is now our main technical result.

Proposition 2.17.

Let (,d,π)(\mathcal{E},\mathrm{d},\pi) be a resolution of 𝒜\mathcal{A} in the category of 𝒪\mathcal{O}-modules. Then, for every k0k\geq 0,

  1. (1)

    the cohomology of the complex (𝔓𝔞𝔤𝔢(k)(),D)(\mathfrak{Page}^{(k)}_{\bullet}(\mathcal{E}),D) for the total differential D:=d(1)δD_{\bullet}:=\mathrm{d}-(-1)^{\bullet}\delta is zero in all degrees;

  2. (2)

    Moreover, a DD-closed element whose component on the “last column” of the diagram above is zero is the image through DD of some element whose two last components are also zero.

  3. (3)

    More generally, for all n1n\geq 1, for a DD-closed element P𝔓𝔞𝔤𝔢j(k)()P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{E}) of the form inHom𝒪(k+1|ji,i)\oplus_{i\geq n}\emph{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-j-i}},\mathcal{E}_{-i}\right), one has P=D(R)P=D(R) and R𝔓𝔞𝔤𝔢j1(k)()R\in\mathfrak{Page}^{(k)}_{j-1}(\mathcal{E}) can be chosen in in+1Hom𝒪(k+1|ji+1,i )\oplus_{i\geq n+1}\emph{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}^{\prime}\,_{|_{-j-i+1}},\mathcal{E}_{-i} \right).

Proof.

Since k|j+mk\bigodot^{k}\mathcal{E}^{\prime}|_{j+m-k} is a projective 𝒪\mathcal{O}-module for all (j,m)×0(j,m)\in\mathbb{Z^{-}}\times\mathbb{N}_{0}, and (,d,π)(\mathcal{E},\mathrm{d},\pi) is a resolution, all the lines of the above bicomplex are exact. This proves the first item. The second and the third are obtained by diagram chasing. ∎

We will need the consequence of the cone construction.

Lemma 2.18.

Let (,d,π)(\mathcal{R},\mathrm{d}^{\mathcal{R}},\pi^{\mathcal{R}}) be an arbitrary complex of projective 𝒪\mathcal{O}-module that terminates in a 𝒪\mathcal{O}-module 𝒜\mathcal{A}. There exists a projective resolution (,d,π)(\mathcal{E},\mathrm{d}^{\mathcal{E}},\pi^{\mathcal{E}}) of 𝒜\mathcal{A}, which contains (,d,π)(\mathcal{R},\mathrm{d}^{\mathcal{R}},\pi^{\mathcal{R}}) as a sub-complex. Moreover, we can assume that \mathcal{R} admits a projective sub-module in \mathcal{E} in direct sum.

Proof.

Resolutions of an 𝒪\mathcal{O}-modules 𝒜\mathcal{A} are universal objects in the category of complexes of projective 𝒪\mathcal{O}-modules. In particular, for every projective resolution (,d,π)(\mathcal{F},\mathrm{d}^{\mathcal{F}},\pi^{\mathcal{F}}) of 𝒜\mathcal{A}, there exist a (unique up to homotopy) chain map:

ϕ:(,d,π)(,d,π).\phi\colon(\mathcal{R},\mathrm{d}^{\mathcal{R}},\pi^{\mathcal{R}})\to(\mathcal{F},\mathrm{d}^{\mathcal{F}},\pi^{\mathcal{F}}).

We apply the cone construction (see, e.g. [9], Section 1.5) to:

  1. (1)

    the complex (,d,π)(\mathcal{R},\mathrm{d}^{\mathcal{R}},\pi^{\mathcal{R}})

  2. (2)

    the direct sum of the complexes (,d)(\mathcal{R},\mathrm{d}^{\mathcal{R}}) and (,d)(\mathcal{F},\mathrm{d}^{\mathcal{F}}) namely, (,dd,ππ)\left(\mathcal{R}\oplus\mathcal{F},\mathrm{d}^{\mathcal{R}}\oplus\mathrm{d}^{\mathcal{F}},\pi^{\mathcal{R}}\oplus\pi^{\mathcal{F}}\right)

  3. (3)

    the chain map obtained by mapping any xx\in\mathcal{R} to (x,ϕ(x))(x,\phi(x))\in\mathcal{R}\oplus\mathcal{F}.

The differential is given by

d(x,y,z)=(dx,dyx,dzφ(x))\displaystyle\mathrm{d}^{\mathcal{E}}(x,y,z)=(-\mathrm{d}^{\mathcal{R}}x,\mathrm{d}^{\mathcal{R}}y-x,\mathrm{d}^{\mathcal{F}}z-\varphi(x)) (19)

for all (x,y,z)i=i+1ii(x,y,z)\in\mathcal{E}_{-i}=\mathcal{R}_{-i+1}\oplus\mathcal{R}_{-i}\oplus\mathcal{F}_{-i}, i2i\geq 2. Since the chain given in item 3 is a quasi-isomorphism, its cone is an exact complex. We truncate the latter at degree 1-1 without destroying its exactness by replacing the cone differential at degree 1-1 as follows: π:11𝒜,(r,e)π(e)π(r)\pi^{\mathcal{E}}\colon\mathcal{R}_{-1}\oplus\mathcal{F}_{-1}\rightarrow\mathcal{A},\;(r,e)\mapsto\pi^{\mathcal{F}}(e)-\pi^{\mathcal{R}}(r). For a visual description, see Equation (20) below: the resolution of 𝒜\mathcal{A} described in Lemma 2.18 is defined by:

\textstyle{\cdots}3\textstyle{\mathcal{F}_{-3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d\scriptstyle{\mathrm{d}^{\mathcal{F}}}2\textstyle{\mathcal{F}_{-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d\scriptstyle{\mathrm{d}^{\mathcal{F}}}1\textstyle{\mathcal{F}_{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi^{\mathcal{F}}}𝒜\textstyle{\mathcal{A}}\textstyle{\cdots}3\textstyle{\mathcal{R}_{-3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d\scriptstyle{\mathrm{d}^{\mathcal{R}}}2\textstyle{\mathcal{R}_{-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d\scriptstyle{\mathrm{d}^{\mathcal{R}}}1\textstyle{\mathcal{R}_{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi^{\mathcal{R}}}\textstyle{\cdots}2\textstyle{\mathcal{R}_{-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}id\scriptstyle{\mathrm{id}}d\scriptstyle{\mathrm{d}^{\mathcal{R}}}ϕ\scriptstyle{\phi}1\textstyle{\mathcal{R}_{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}id\scriptstyle{\mathrm{id}}ϕ\scriptstyle{\phi} (20)

The proof of the exactness of this complex is left to the reader.

The henceforth defined complex (,d,π)(\mathcal{E},\mathrm{d}^{\mathcal{E}},\pi^{\mathcal{E}}) is a resolution of 𝒜\mathcal{A}, and obviously contains (,d,π)(\mathcal{R},\mathrm{d}^{\mathcal{R}},\pi^{\mathcal{R}}) as a sub-chain complex of 𝒪\mathcal{O}-modules. ∎

Let (,d,π)(\mathcal{E},\mathrm{d}^{\mathcal{E}},\pi^{\mathcal{E}}) be a free resolution of 𝒜\mathcal{A} and (,d,π)(\mathcal{R},\mathrm{d}^{\mathcal{R}},\pi^{\mathcal{R}}) a subcomplex of projective 𝒪\mathcal{O}-modules as in Lemma 2.18. We say that P𝔓𝔞𝔤𝔢j(k)()P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{E}) of the form inHom𝒪(k+1|ji,i)\oplus_{i\geq n}\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}\,_{|_{-j-i}},\mathcal{E}_{-i}\right) preserves \mathcal{R} if k+1|ji\bigodot^{k+1}\mathcal{R}\,_{|_{-j-i}} is mapped by PP to i\mathcal{R}_{-i} for all possible indices. In such case, it defines by restriction to \bigodot^{\bullet}\mathcal{R} an element ιP\iota^{*}_{\mathcal{R}}P in the graded 𝒪\mathcal{O}-module 𝔓𝔞𝔤𝔢j(k)():=inHom𝒪(k+1|ji,i)\mathfrak{Page}^{(k)}_{j}(\mathcal{R}):=\oplus_{i\geq n}\text{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{R}\,_{|_{-j-i}},\mathcal{R}_{-i}\right). For the sake of clarity, let us denote by DD^{\mathcal{E}} and DD^{\mathcal{R}} the respective differentials of the bi-complexes 𝔓𝔞𝔤𝔢j(k)()\mathfrak{Page}^{(k)}_{j}(\mathcal{E}) and 𝔓𝔞𝔤𝔢j(k)()\mathfrak{Page}^{(k)}_{j}(\mathcal{R}) and by DhD^{\mathcal{E}}_{h}, DhD^{\mathcal{R}}_{h} and DvD^{\mathcal{R}}_{v}, DvD^{\mathcal{R}}_{v} the horizontal differential resp. vertical differential, of their associated bi-complexes. Also, ιP\iota^{*}_{\mathcal{R}}P will stand for the restriction of P𝔓𝔞𝔤𝔢j(k)()P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{E}) to \bigodot^{\bullet}\mathcal{R} (a priori it is not valued in \mathcal{R} but in \mathcal{E}).

Lemma 2.19.

Let (,d,π)(\mathcal{E},\mathrm{d}^{\mathcal{E}},\pi^{\mathcal{E}}) be a free resolution of 𝒜\mathcal{A}. Let \mathcal{R}\subset\mathcal{E} be a subcomplex made of free sub-𝒪\mathcal{O}-modules such that there exists a graded free 𝒪\mathcal{O}-module 𝒱\mathcal{V} such that =𝒱\mathcal{E}=\mathcal{R}\oplus\mathcal{V}.

  1. (1)

    For every k0k\geq 0, a DD^{\mathcal{E}}-cocycle P𝔓𝔞𝔤𝔢j(k)()P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{E}) which preserves \mathcal{R} is the image through DD^{\mathcal{E}} of some element Q𝔓𝔞𝔤𝔢j1(k)()Q\in\mathfrak{Page}^{(k)}_{j-1}(\mathcal{E}) which preserves \mathcal{R} if and only if its restriction ιP𝔓𝔞𝔤𝔢j(k)()\iota^{*}_{\mathcal{R}}P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{R}) is a DD^{\mathcal{R}}-coboundary.

  2. (2)

    In particular, if the restriction of d\mathrm{d}^{\mathcal{E}} and π\pi^{\mathcal{E}} to \mathcal{R} makes it a resolution of π(1)𝒜\pi^{\mathcal{E}}(\mathcal{R}_{-1})\subset\mathcal{A}, then any DD^{\mathcal{E}}-cocycle P𝔓𝔞𝔤𝔢j(k)()P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{E}) which preserves \mathcal{R} is the image through DD^{\mathcal{E}} of some element Q𝔓𝔞𝔤𝔢j1(k)()Q\in\mathfrak{Page}^{(k)}_{j-1}(\mathcal{E}) which preserves \mathcal{R}.

Proof.

Let us decompose the element P𝔓𝔞𝔤𝔢j(k)()P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{E}) as P=i1PiP=\sum_{i\geq 1}P_{i} with, for all i1i\geq 1, PiP_{i} in Hom𝒪(k+1|ji,i)\mathrm{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}\,_{|_{-j-i}},\mathcal{E}_{-i}\right). Assume P𝔓𝔞𝔤𝔢j(k)()P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{E}) is a DD^{\mathcal{E}}-cocycle which preserves \mathcal{R}.

Let us prove one direction of item 1. If PP is the image through DD^{\mathcal{E}} of some element Q𝔓𝔞𝔤𝔢j1(k)()Q\in\mathfrak{Page}^{(k)}_{j-1}(\mathcal{E}) which preserves \mathcal{R}, then D (ιQ)=ιD(Q)=ιPD^{\mathcal{R}} (\iota^{*}_{\mathcal{R}}Q)=\iota^{*}_{\mathcal{R}}D^{\mathcal{E}}(Q)=\iota^{*}_{\mathcal{R}}P, with ιQ𝔓𝔞𝔤𝔢j1(k)()\iota^{*}_{\mathcal{R}}Q\in\mathfrak{Page}^{(k)}_{j-1}(\mathcal{R}). Thus, the restriction ιP𝔓𝔞𝔤𝔢j(k)()\iota^{*}_{\mathcal{R}}P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{R}) of PP is a DD^{\mathcal{R}}-coboundary.

Conversely, let us assume that ιP𝔓𝔞𝔤𝔢j(k)()\iota^{*}_{\mathcal{R}}P\in\mathfrak{Page}^{(k)}_{j}(\mathcal{R}) is a DD^{\mathcal{R}}-coboundary, i.e. ιP=DQ\iota^{*}_{\mathcal{R}}P=D^{\mathcal{R}}Q_{\mathcal{R}} for some Q𝔓𝔞𝔤𝔢j1(k)()Q_{\mathcal{R}}\in\mathfrak{Page}^{(k)}_{j-1}(\mathcal{R}). Take Q^𝔓𝔞𝔤𝔢j1(k)()\hat{Q}\in\mathfrak{Page}^{(k)}_{j-1}(\mathcal{E}) any extension of QQ_{\mathcal{R}} (e.g. define Q^\hat{Q} to be 0 as soon as one element in 𝒱\mathcal{V} is applied to it). Then PD(Q^):k+1P-D^{\mathcal{E}}(\hat{Q}):\bigodot^{k+1}\mathcal{E}\longrightarrow\mathcal{E} is zero on k+1\bigodot^{k+1}\mathcal{R}. We have to check that it is a DD^{\mathcal{E}}-coboundary of a map with the same property. Put κ=PD(Q^)\kappa=P-D^{\mathcal{E}}(\hat{Q}). By Proposition 2.17, item 1, there exists τ𝔓𝔞𝔤𝔢j1(k)()\tau\in\mathfrak{Page}^{(k)}_{j-1}(\mathcal{E}) such that D(τ)=κD^{\mathcal{E}}(\tau)=\kappa. The equation D(τ)=κD^{\mathcal{E}}(\tau)=\kappa is equivalent to the datum of a collection of equations

Dv(τi)+Dh(τi+1)=κi+1,i1,andDh(τ1)=κ1,\displaystyle D^{\mathcal{E}}_{v}(\tau_{i})+D^{\mathcal{E}}_{h}(\tau_{i+1})=\kappa_{i+1},i\geq 1,\quad\text{and}\quad D^{\mathcal{E}}_{h}(\tau_{1})=\kappa_{1}, (21)

with, τiHom𝒪(k+1|ji+1,i)\tau_{i}\in\mathrm{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}\,_{|_{-j-i+1}},\mathcal{E}_{-i}\right) and κiHom𝒪(k+1|ji,i)\kappa_{i}\in\mathrm{Hom}_{\mathcal{O}}\left(\bigodot^{k+1}\mathcal{E}\,_{|_{-j-i}},\mathcal{E}_{-i}\right) for every i1i\geq 1. Since ικ1=0\iota^{*}_{\mathcal{R}}\kappa_{1}=0, we have that Dh(ιτ1)=ι(Dh(τ1))=0D^{\mathcal{E}}_{h}(\iota^{*}_{\mathcal{R}}\tau_{1})=\iota^{*}_{\mathcal{R}}\left(D^{\mathcal{E}}_{h}(\tau_{1})\right)=0, (with the understanding that ιτ1|𝒱0\iota^{*}_{\mathcal{R}}{\tau_{1}}_{|_{\mathcal{V}}}\equiv 0). Using the exactness of the horizontal differential DhD^{\mathcal{E}}_{h}, there exists C1𝔓𝔞𝔤𝔢(k)()C_{1}\in\mathfrak{Page}^{(k)}(\mathcal{E}) such that Dh(C1)=ιτ1D^{\mathcal{E}}_{h}(C_{1})=\iota^{*}_{\mathcal{R}}\tau_{1}. We now change τ1\tau_{1} to τ1\tau_{1}^{\prime} and τ2\tau_{2} to τ2\tau^{\prime}_{2} by putting τ1:=τ1ιτ1\tau_{1}^{\prime}:=\tau_{1}-\iota^{*}_{\mathcal{R}}\tau_{1} and τ2:=τ2+Dv(C1)\tau_{2}^{\prime}:=\tau_{2}+D^{\mathcal{E}}_{v}(C_{1}). One can easily check that Equation (21) still holds under these changes, i.e.,

Dv(τ1)+Dh(τ2)=κ2andDh(τ2)+Dv(τ3)=κ3.D^{\mathcal{E}}_{v}(\tau^{\prime}_{1})+D^{\mathcal{E}}_{h}(\tau^{\prime}_{2})=\kappa_{2}\quad\text{and}\quad D^{\mathcal{E}}_{h}(\tau^{\prime}_{2})+D^{\mathcal{E}}_{v}(\tau_{3})=\kappa_{3}.

We can therefore choose τ\tau such that ιτ1=0\iota^{*}_{\mathcal{R}}\tau_{1}=0. We then iterate this procedure, which allows us to choose τ𝔓𝔞𝔤𝔢j1(k)()\tau\in\mathfrak{Page}^{(k)}_{j-1}(\mathcal{E}) such that ιτ=0\iota^{*}_{\mathcal{R}}\tau=0 and D(τ)=κD^{\mathcal{E}}(\tau)=\kappa. By construction, Q:=τ+Q^Q:=\tau+\hat{Q} preserves \mathcal{R}, while ιQ=Q\iota_{\mathcal{R}}^{*}Q=Q_{\mathcal{R}}, and D(Q)=PD^{\mathcal{E}}(Q)=P. The second item follows from the first one. ∎

2.2.2. Interpretation of 𝔓𝔞𝔤𝔢(n)(,){\mathfrak{Page}}^{(n)}(\mathcal{E}^{\prime},\mathcal{E})

Let ϕ:(,d)(,d)\phi\colon(\mathcal{E}^{\prime},\mathrm{d}^{\prime})\to(\mathcal{E},\mathrm{d}) be a chain map, and let Φ(0):\Phi^{(0)}:\bigodot^{\bullet}\mathcal{E}^{\prime}\to\bigodot^{\bullet}\mathcal{E} be its natural extension to a co-algebra morphism, namely:

Φ(0)(x1xn):=ϕ(x1)ϕ(xn).\Phi^{(0)}(x_{1}\cdot\dots\cdot x_{n}):=\phi(x_{1})\cdot\dots\cdot\phi(x_{n}).

We denote by Q(0)Q^{(0)}_{\mathcal{E}} and Q(0)Q_{\mathcal{E}^{\prime}}^{(0)} the differentials of arity 0 on \bigodot^{\bullet}\mathcal{E} and \bigodot^{\bullet}\mathcal{E}^{\prime} induced by d\mathrm{d} and d\mathrm{d}^{\prime}. As in Definition 1.29 and Proposition 1.30, Φ(0)\Phi^{(0)}-co-derivations of a given arity nn form a complex when equipped with

HQ(0)H+(1)|H|HQ(0).H\mapsto Q_{\mathcal{E}}^{(0)}\circ H+(-1)^{|H|}H\circ Q_{\mathcal{E}^{\prime}}^{(0)}.
Proposition 2.20.

For every k0k\in\mathbb{N}_{0}, and ϕ:(,d)(,d)\phi\colon(\mathcal{E}^{\prime},\mathrm{d}^{\prime})\to(\mathcal{E},\mathrm{d}) be a chain map as above. The complex of Φ(0)\Phi^{(0)}-co-derivations of arity kk is isomorphic to the complex 𝔓𝔞𝔤𝔢^(k)(,)\widehat{\mathfrak{Page}}^{(k)}(\mathcal{E}^{\prime},\mathcal{E}) obtained from 𝔓𝔞𝔤𝔢(k)(,)\mathfrak{Page}^{(k)}(\mathcal{E}^{\prime},\mathcal{E}) by crossing its “last column”, see diagram (18).

Proof.

The chain isomorphism consists in mapping a Φ(0)\Phi^{(0)}-co-derivation HH of arity kk and degree jj to its Taylor coefficient, which is an element of degree jj of 𝔓𝔞𝔤𝔢(k)(,){\mathfrak{Page}}^{(k)}(\mathcal{E}^{\prime},\mathcal{E}). It is routine to check that this map is a chain map. ∎

Here is an other type of interpretation for 𝔓𝔞𝔤𝔢^(,)\widehat{\mathfrak{Page}}^{\bullet}(\mathcal{E}^{\prime},\mathcal{E}) involving the Richardson-Nijenhuis bracket.

Proposition 2.21.

[15] For =\mathcal{E}=\mathcal{E}^{\prime}, 𝔓𝔞𝔤𝔢^(,)\widehat{\mathfrak{Page}}^{\bullet}(\mathcal{E}^{\prime},\mathcal{E}) is the the bi-graded complex of exterior forms on \mathcal{E} and the differential DD of 𝔓𝔞𝔤𝔢^(,)\widehat{\mathfrak{Page}}^{\bullet}(\mathcal{E}^{\prime},\mathcal{E}) is D()=[d,]RND(\cdot)=[\mathrm{d},\cdot]_{\hbox{\tiny{\emph{RN}}}}.

2.3. Existence: The Lie \infty-algebroid on a free 𝒪\mathcal{O}-resolution

2.3.1. Proof of Theorem 2.1

In this section, we prove Theorem 2.1.

Consider (,d=1,π)(\mathcal{E},\mathrm{d}=\ell_{1},\pi) a resolution of 𝒜\mathcal{A} by free 𝒪\mathcal{O}-modules: such resolutions always exist[9]. To start with, we define a binary bracket 2\ell_{2}. The pair (d,2)(\mathrm{d},\ell_{2}) will obey to the axioms of the object that we now introduce.

Definition 2.22.

[30] An almost differential graded Lie algebroid of a Lie-Rinehart algebra (𝒜,ρ𝒜,[,]𝒜)(\mathcal{A},\rho_{\mathcal{A}},[\cdot\,,\cdot]_{\mathcal{A}}) is a complex

d3d2d1π𝒜.\cdots\stackrel{{\scriptstyle\mathrm{d}}}{{\longrightarrow}}\mathcal{E}_{-3}\stackrel{{\scriptstyle\mathrm{d}}}{{\longrightarrow}}\mathcal{E}_{-2}\stackrel{{\scriptstyle\mathrm{d}}}{{\longrightarrow}}\mathcal{E}_{-1}\stackrel{{\scriptstyle\pi}}{{\longrightarrow}}\mathcal{A}.

of projective 𝒪\mathcal{O}-modules equipped with a graded symmetric degree +1+1 𝕂\mathbb{K}-bilinear bracket 2=[,]\ell_{2}=[\cdot\,,\cdot] such that:

  1. (1)

    2\ell_{2} satisfies the Leibniz identity with respect to the anchor ρ:=ρ𝒜π:1Der(𝒪)\rho_{\mathcal{E}}:=\rho_{\mathcal{A}}\circ\pi\colon\mathcal{E}_{-1}\longrightarrow{\mathrm{Der}}(\mathcal{O}),

  2. (2)

    d\mathrm{d} is degree +1+1-derivation of 2\ell_{2}, i.e. for all xi,yx\in\mathcal{E}_{i},y\in\mathcal{E}:

    d2(x,y)+2(dx,y)+(1)i2(x,dy)=0,\mathrm{d}\ell_{2}(x,y)+\ell_{2}(\mathrm{d}x,y)+(-1)^{i}\ell_{2}(x,\mathrm{d}y)=0,
  3. (3)

    π\pi is a morphism, i.e. for all x,y1x,y\in\mathcal{E}_{-1}

    π(2(x,y))=[π(x),π(y)]𝒜.\pi(\ell_{2}(x,y))=[\pi(x),\pi(y)]_{\mathcal{A}}.
Lemma 2.23.

Every free resolution (,d,π)(\mathcal{E},\mathrm{d},\pi) of a Lie-Rinehart algebra (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A},[\cdot\,,\cdot]_{\mathcal{A}},\rho_{\mathcal{A}}) comes equipped with a binary bracket 2\ell_{2} that makes it an almost differential graded Lie algebroid of 𝒜\mathcal{A}.

Proof.

For all k1k\geq 1, let us denote by (ei(k))iIk(e_{i}^{(-k)})_{i\in I_{k}} a family of generators of the free 𝒪\mathcal{O}-module k\mathcal{E}_{-k}. By construction {ai=π(ei(1))𝒜iI1}\{a_{i}=\pi(e_{i}^{(-1)})\in\mathcal{A}\mid i\in I_{1}\} is a set of generators of 𝒜\mathcal{A}. In particular, there exists elements uijk𝒪u^{k}_{ij}\in\mathcal{O}, such that for given indices i,ji,j, the coefficient uijku^{k}_{ij} is zero except for finitely many indices kk, and satisfying the skew-symmetry condition uijk=ujiku^{k}_{ij}=-u^{k}_{ji} together with

[ai,aj]𝒜=kIuijkaki,jI1\left[a_{i},a_{j}\right]_{\mathcal{A}}=\sum_{k\in I}u^{k}_{ij}a_{k}\hskip 14.22636pt\forall i,j\in I_{1} (22)

We now define:

  1. (1)

    an anchor map by ρ(ei(1))=ρ𝒜(ai\rho_{\mathcal{E}}(e_{i}^{(-1)})=\rho_{\mathcal{A}}(a_{i}) for all iIi\in I,

  2. (2)

    a degree +1+1 graded symmetric operation ~2\tilde{\ell}_{2} on \mathcal{E} as follows:

    1. (a)

      ~2(ei(1),ej(1))=kIuijkek(1)\tilde{\ell}_{2}\left(e_{i}^{(-1)},e_{j}^{(-1)}\right)=\sum_{k\in I}u^{k}_{ij}e_{k}^{(-1)} for all i,jI1i,j\in I_{-1}.

    2. (b)

      ~2(ei(k),ej(l))=0\tilde{\ell}_{2}\left(e_{i}^{(-k)},e_{j}^{(-l)}\right)=0 for all iIk,jIli\in I_{k},j\in I_{l} with k2k\geq 2 or l2l\geq 2.

    3. (c)

      we extend ~2\tilde{\ell}_{2} to \mathcal{E} using 𝒪\mathcal{O}-bilinearity and Leibniz identity with respect to the anchor ρ\rho_{\mathcal{E}}.

By construction, ~2\tilde{\ell}_{2} satisfies the Leibniz identity with respect to the anchor ρ\rho_{\mathcal{E}}. Also, ρd=0\rho_{\mathcal{E}}\circ\mathrm{d}=0 on 2\mathcal{E}_{-2}. The map defined for all homogeneous x,yx,y\in\mathcal{E} by

[d,~2]RN(x,y)=d~2(x,y)+~2(dx,y)+(1)|x|~2(x,dy),[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}}(x,y)=\mathrm{d}\circ\tilde{\ell}_{2}\left(x,y\right)+\tilde{\ell}_{2}\left(\mathrm{d}x,y\right)+(-1)^{\lvert x\rvert}\tilde{\ell}_{2}\left(x,\mathrm{d}y\right),

is a graded symmetric degree +2+2 operation ()+2(\mathcal{E}\otimes\mathcal{E})_{\bullet}\longrightarrow\mathcal{E}_{\bullet+2}, and [d,~2]RN|1=0[\mathrm{d},\tilde{\ell}_{2}]_{{\hbox{\tiny{RN}}}_{|_{\mathcal{E}_{-1}}}}=0. Let us check that it is 𝒪\mathcal{O}-bilinear, i.e. for all f𝒪,x,yf\in\mathcal{O},x,y\in\mathcal{E}:

[d,~2]RN(x,fy)f[d,~2]RN(x,y)=0.[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}}(x,fy)-f[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{\text{RN}}}}(x,y)=0.
  1. (1)

    if x1x\in\mathcal{E}_{-1}, this quantity is zero in view of

    [d,~2]RN(x,fy)\displaystyle[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}}(x,fy) =f[d,~2](x,y)+dρ(x)[f]yρ(x)[f]dy=0\displaystyle=f[\mathrm{d},\tilde{\ell}_{2}](x,y)+\underbrace{\mathrm{d}\rho_{\mathcal{E}}(x)[f]\,y-\rho_{\mathcal{E}}(x)[f]\,\mathrm{d}y}_{=0}
  2. (2)

    if x2x\in\mathcal{E}_{-2}, one has

    [d,~2]RN(x,fy)f[d,~2](x,y)=~2(dx,fy)f~2(dx,y)=ρ(dx)(f)y=0\displaystyle[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}}(x,fy)-f[\mathrm{d},\tilde{\ell}_{2}](x,y)=\tilde{\ell}_{2}(\mathrm{d}x,fy)-f\tilde{\ell}_{2}(\mathrm{d}x,y)=\rho_{\mathcal{E}}(\mathrm{d}x)(f)\,y=0

    since ρd=ρ𝒜πd=0\rho_{\mathcal{E}}\circ\mathrm{d}=\rho_{\mathcal{A}}\circ\pi\circ\mathrm{d}=0,

  3. (3)

    if xix\in\mathcal{E}_{-i} with i3i\geq 3, it is obvious by 𝒪\mathcal{O}-linearity of ~2\tilde{\ell}_{2} on the involved spaces.

As a consequence [d,~2]RN[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}} is a degree +2+2 element in the total complex 𝔓𝔞𝔤𝔢(1)()\mathfrak{Page}^{(1)}(\mathcal{E}). By construction [d,~2]RN[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}} has no component on the last column. Since π([d,~2]RN|1)=0\pi([\mathrm{d},\tilde{\ell}_{2}]_{{\hbox{\tiny{RN}}}_{|_{\mathcal{E}_{-1}}}})=0 and also [d,[d,~2]RN]RN|2=0[\mathrm{d},[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}}]_{{\hbox{\tiny{RN}}}_{|_{\mathcal{E}_{\leq-2}}}}=0, the 𝒪\mathcal{O}-bilinear operator [d,~2]RN[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}} is DD-closed in 𝔓𝔞𝔤𝔢(1)()\mathfrak{Page}^{(1)}(\mathcal{E}).

By virtue of the first item of Proposition 2.17, the operator [d,~2]RN[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}} is then a DD-coboundary so there exists τ2j2Hom𝒪(2j1,j)\tau_{2}\in\oplus_{j\geq 2}\text{Hom}_{\mathcal{O}}\left(\bigodot^{2}\mathcal{E}_{-j-1},\mathcal{E}_{-j}\right) such as D(τ2)=[d,~2]RN.D(\tau_{2})=-[\mathrm{d},\tilde{\ell}_{2}]_{\hbox{\tiny{RN}}}. Upon replacing ~2\tilde{\ell}_{2} by ~2+τ2\tilde{\ell}_{2}+\tau_{2} we obtain a 2-ary bracket 2\ell_{2} of degree +1 which satisfies all items of Definition 2.22. ∎

Proof (of Theorem 2.1).

Lemma 2.23 gives the existence of an almost differential graded Lie algebroid with differential 1=d\ell_{1}=\mathrm{d} and binary bracket 2\ell_{2}. We have to construct now the higher brackets k\ell_{k} for k3k\geq 3.

Step 1: Construction of the 3-ary bracket 3\ell_{3}. (Its construction being different from the one of the higher brackets, we put it apart). We first notice that the graded Jacobiator defined for all x,y,zx,y,z\in\mathcal{E} by

Jac(x,y,z):=2(2(x,y),z)+(1)|y||z|2(2(x,z),y)+(1)|x||y|+|x||z|2(2(y,z),x)\text{Jac}(x,y,z):=\ell_{2}(\ell_{2}(x,y),z)+(-1)^{\lvert y\rvert\lvert z\rvert}\ell_{2}(\ell_{2}(x,z),y)+(-1)^{\lvert x\rvert\lvert y\rvert+\lvert x\rvert\lvert z\rvert}\ell_{2}(\ell_{2}(y,z),x)

is 𝒪\mathcal{O}-linear in each variable, hence is a degree +2+2 element in j1Hom𝒪(3|j2,j)𝔓𝔞𝔤𝔢(2)()\bigoplus_{j\geq 1}\text{Hom}_{\mathcal{O}}(\bigodot^{3}\mathcal{E}\,_{|_{-j-2}},\mathcal{E}_{-j})\subset\mathfrak{Page}^{(2)}(\mathcal{E}). For degree reason, its component on the last column of diagram (18) is zero, i.e. it belongs to 𝔓𝔞𝔤𝔢^(1)()\widehat{\mathfrak{Page}}^{(1)}(\mathcal{E}).

Let us check that it is DD-closed: for this purpose we have to check that both conditions in Lemma 2.16 hold:

  1. (1)

    Since π\pi is a morphism from (1,2)(\mathcal{E}_{-1},\ell_{2}) to (𝒜,[,]𝒜)(\mathcal{A},[\cdot,\cdot]_{\mathcal{A}}), and since [,]𝒜[\cdot,\cdot]_{\mathcal{A}} satisfies the Jacobi identity, one has for all x,y,z1x,y,z\in\mathcal{E}_{-1}:

    Jac(x,y,z)kerπ.\text{Jac}(x,y,z)\in\ker\pi.
  2. (2)

    Furthermore, a direct computation of [Jac,d]RN[\text{Jac},\mathrm{d}]_{\hbox{\tiny{RN}}} gives in view of item 22 of Definition 2.22:

    dJac(x,y,z)=Jac(dx,y,z)+(1)|x|Jac(x,dy,z)+(1)|x|+|y|Jac(x,y,dz)\mathrm{d}\text{Jac}(x,y,z)=\text{Jac}(\mathrm{d}x,y,z)+(-1)^{\lvert x\rvert}\text{Jac}(x,\mathrm{d}y,z)+(-1)^{\lvert x\rvert+\lvert y\rvert}\text{Jac}(x,y,\mathrm{d}z)

    for allx,y,zx,y,z\in\mathcal{E}.

Thus, D(Jac)=0D(\text{Jac})=0. By Proposition 2.17, item 2, Jac is a DD-coboundary, and, more precisely, there exists an element 3=j23j𝔓𝔞𝔤𝔢^1(2)()\ell_{3}=\sum_{j\geqslant 2}\ell_{3}^{j}\in\widehat{\mathfrak{Page}}_{1}^{(2)}(\mathcal{E}) with 3jHom(3|j1,j)\ell_{3}^{j}\in\text{Hom}(\bigodot^{3}\mathcal{E}\,_{|_{-j-1}},\mathcal{E}_{-j}) such that

D(3)=Jaci.e,[d,3]RN=Jac.D(\ell_{3})=-\text{Jac}\quad\text{i.e,}\quad\left[\mathrm{d},\ell_{3}\right]_{\hbox{\tiny{RN}}}=-\text{Jac}. (23)

We choose the 33-ary bracket to be 3\ell_{3}.

Step 2: Recursive construction of the kk-ary brackets k\ell_{k} for k4k\geq 4. Let us recapitulate: 1=d\ell_{1}=\mathrm{d} , 2\ell_{2} and 3\ell_{3} are constructed and the lowest arity terms of [1+2+3,1+2+3]RN[\ell_{1}+\ell_{2}+\ell_{3},\ell_{1}+\ell_{2}+\ell_{3}]_{\hbox{\tiny{RN}}} satisfy

  1. (1)

    [1,1]RN=0[\ell_{1},\ell_{1}]_{\hbox{\tiny{RN}}}=0 (since d2=0\mathrm{d}^{2}=0),

  2. (2)

    [1,2]RN=0[\ell_{1},\ell_{2}]_{\hbox{\tiny{RN}}}=0 (since d=1\mathrm{d}=\ell_{1} and 2\ell_{2} define an almost Lie algebroid structure) .

  3. (3)

    [2,2]RN+2[3,1]RN=2(Jac+[3,1]RN)=0[\ell_{2},\ell_{2}]_{\hbox{\tiny{RN}}}+2[\ell_{3},\ell_{1}]_{\hbox{\tiny{RN}}}=2(\mathrm{Jac}+[\ell_{3},\ell_{1}]_{\hbox{\tiny{RN}}})=0 by definition of 3\ell_{3}, and because [2,2]RN=2Jac[\ell_{2},\ell_{2}]_{\hbox{\tiny{RN}}}=2\mathrm{Jac}.

However, the following term of degree +2+2 and arity 33 may not be equal to zero:

[3,2]RN Hom𝒪(4j+1,j)=𝔓𝔞𝔤𝔢^1(3)().[\ell_{3},\ell_{2}]_{\hbox{\tiny{RN}}} \in\bigoplus\text{Hom}_{\mathcal{O}}\left(\bigodot^{4}\mathcal{E}_{j+1},\mathcal{E}_{-j}\right)=\widehat{\mathfrak{Page}}_{1}^{(3)}(\mathcal{E}). (24)

Let us check that this term is indeed a 𝒪\mathcal{O}-multilinear map: For x11,x2,x3,x42x_{1}\in\mathcal{E}_{-1},x_{2},x_{3},x_{4}\in\mathcal{E}_{\leq-2} and f𝒪f\in\mathcal{O}, the only terms of (32+23)(x1,fx2,x3,x4)(\ell_{3}\circ\ell_{2}+\ell_{2}\circ\ell_{3})(x_{1},fx_{2},x_{3},x_{4}) where the anchor shows up are:

{3(2(x1,fx2),x3,x4)=ρ(x1)[f]3(x2,x3,x4)+f(3(2(x1,x2),x3,x4))(1)|x2|+|x3|+|x4|2(f3(x2,x3,x4),x1)=ρ(x1)[f]3(x2,x3,x4)+f((1)|x2|+|x3|+|x4|2(f3(x2,x3,x4),x1))\begin{cases}\ell_{3}(\ell_{2}(x_{1},fx_{2}),x_{3},x_{4})&=\rho_{\mathcal{E}}(x_{1})[f]\ell_{3}(x_{2},x_{3},x_{4})+f(\ell_{3}(\ell_{2}(x_{1},x_{2}),x_{3},x_{4}))\\ (-1)^{|x_{2}|+|x_{3}|+|x_{4}|}\ell_{2}(f\ell_{3}(x_{2},x_{3},x_{4}),x_{1})&=-\rho_{\mathcal{E}}(x_{1})[f]\ell_{3}(x_{2},x_{3},x_{4})\\ &+f((-1)^{|x_{2}|+|x_{3}|+|x_{4}|}\ell_{2}(f\ell_{3}(x_{2},x_{3},x_{4}),x_{1}))\end{cases}

The terms containing the anchor map add up to zero. When there is more elements in 1\mathcal{E}_{-1}, the computation follows the same line. Moreover, by graded Jacobi identity of the Richardson-Nijenhuis bracket:

[[1+2+3,1+2+3]RN,1+2+3]RN=0[[\ell_{1}+\ell_{2}+\ell_{3},\ell_{1}+\ell_{2}+\ell_{3}]_{\hbox{\tiny{RN}}},\ell_{1}+\ell_{2}+\ell_{3}]_{\hbox{\tiny{RN}}}=0

The term of arity 44 in the previous expression gives [[3,2]RN,1]RN=0[[\ell_{3},\ell_{2}]_{\hbox{\tiny{RN}}},\ell_{1}]_{\hbox{\tiny{RN}}}=0. Hence, by Proposition 2.21, [3,2]RN[\ell_{3},\ell_{2}]_{\hbox{\tiny{RN}}} is a DD-cocycle in the complex 𝔓𝔞𝔤𝔢(3)()\mathfrak{Page}^{(3)}(\mathcal{E}), whose components on the last column and the column 1-1 are zero. It is therefore a coboundary by Proposition 2.17 item 3: we can continue a step further and define 4j3Hom(4|j1,j)\ell_{4}\in\oplus_{j\geq 3}\text{Hom}\left(\bigodot^{4}\mathcal{E}_{|_{-j-1}},\mathcal{E}_{-j}\right) such that:

[2,3]RN=[1,4]RN=[d,4]RN.-\left[\ell_{2},\ell_{3}\right]_{\hbox{\tiny{RN}}}=\left[\ell_{1},\ell_{4}\right]_{\hbox{\tiny{RN}}}=\left[\mathrm{d},\ell_{4}\right]_{\hbox{\tiny{RN}}}. (25)

We choose the 44-ary bracket to be 4\ell_{4}. We now proceed by recursion. We assume that we have constructed all the kk-ary brackets k\ell_{k} such as :

[d,k]RN=iji+j=k+1[i,j]RN=12i,j1i+j=k+1[i,j]RN\left[\mathrm{d},\ell_{k}\right]_{\hbox{\tiny{RN}}}=-\sum_{\overset{i+j=k+1}{i\leq j}}\left[\ell_{i},\ell_{j}\right]_{\hbox{\tiny{RN}}}=-\frac{1}{2}\sum_{\overset{i+j=k+1}{i,j\geq 1}}\left[\ell_{i},\ell_{j}\right]_{\hbox{\tiny{RN}}} (26)

for every k=1,,nk=1,\ldots,n with n4n\geq 4. The (n+1n+1)-ary bracket is constructed as follows. First the operator i,j1i+j=k+1[i,j]RN\sum_{\overset{i+j=k+1}{i,j\geq 1}}\left[\ell_{i},\ell_{j}\right]_{\hbox{\tiny{RN}}} is checked to be 𝒪\mathcal{O}-linear as before. Now, we have

i,j1i+j=n+2[d,[i,j]RN]RN\displaystyle\sum_{\overset{i+j=n+2}{i,j\geq 1}}\left[\mathrm{d},\left[\ell_{i},\ell_{j}\right]_{\hbox{\tiny{RN}}}\right]_{\hbox{\tiny{RN}}} =2i,j1i+j=n+2[i,[d,j]RN]RN(by graded Jacobi identity).\displaystyle=-2\sum_{\overset{i+j=n+2}{i,j\geq 1}}\left[\ell_{i},\left[\mathrm{d},\ell_{j}\right]_{\hbox{\tiny{RN}}}\right]_{\hbox{\tiny{RN}}}\quad\text{(by graded Jacobi identity)}.

Since j\ell_{j} satisfies Equation (26) up to order nn, we obtain

i,j1i+j=n+2[d,[i,j]RN]RN=i,j,k1i+j+k=n+3[i,[j,k]RN]RN=0,\sum_{\overset{i+j=n+2}{i,j\geq 1}}\left[\mathrm{d},\left[\ell_{i},\ell_{j}\right]_{\hbox{\tiny{RN}}}\right]_{\hbox{\tiny{RN}}}=\sum_{\overset{i+j+k=n+3}{i,j,k\geq 1}}\left[\ell_{i},\left[\ell_{j},\ell_{k}\right]_{\hbox{\tiny{RN}}}\right]_{\hbox{\tiny{RN}}}=0,

where we used the graded Jacobi identity of the Nijenhuis-Richardson bracket in the last step. Therefore, i,j1i+j=n+2[i,j]RN\sum_{\overset{i+j=n+2}{i,j\geq 1}}\left[\ell_{i},\ell_{j}\right]_{\hbox{\tiny{RN}}}, seen as an element in 𝔓𝔞𝔤𝔢(i+j2)()\mathfrak{Page}^{(i+j-2)}(\mathcal{E}) by Remark 2.21, is a cocycle and for degree reason it has no element on the last column, and the columns 1,,3n-1,\ldots,3-n in 18. The third item of Proposition 2.17 gives the existence of an (n+1)(n+1)-ary bracket n+1\ell_{n+1} such as

[d,n+1]RN=iji+j=n+2[i,j]RN.\left[\mathrm{d},\ell_{n+1}\right]_{\hbox{\tiny{RN}}}=-\sum_{\overset{i+j=n+2}{i\leq j}}\left[\ell_{i},\ell_{j}\right]_{\hbox{\tiny{RN}}}.

This completes the proof. ∎

2.3.2. Proof of Proposition 2.3 and Proposition 2.6

Proof (of Proposition 2.3).

This is a consequence of Proposition 2.1 and the third item of the Proposition 2.17: If the component of Jac on the column 1-1 is zero, we can choose 3\ell_{3} with no component on the last column and in column 1-1 (see Proposition 2.17), i.e. the restriction of 3\ell_{3} to 31\bigodot^{3}\mathcal{E}_{-1} is zero. Then 3\ell_{3} has no component on the last column, the column 1-1 and the column 2-2. so [2,3]RN[\ell_{2},\ell_{3}]_{\hbox{\tiny{RN}}} has no component in the last column, 1-1 and 2-2 columns as well. Hence 4\ell_{4} can be chosen with no component on column 1-1, 2-2 and 3-3 by the third item of Proposition 2.17. The proof continues by recursion. ∎

We finish this section with a proof of Proposition 2.6.

Proof (of Proposition 2.6).

We prove this Proposition in two steps.

  1. (1)

    Lemma 2.18 guarantees the existence a free resolution (,d,π)(\mathcal{E},\mathrm{d},\pi) of the Lie-Rinehart algebra 𝒜\mathcal{A} such that \mathcal{E} contains \mathcal{E}^{\prime} and such that there exists a graded free module 𝒱\mathcal{V} with 𝒱=\mathcal{E}^{\prime}\oplus\mathcal{V}=\mathcal{E}.

  2. (2)

    Let DD^{\mathcal{E}} and DD^{\mathcal{E}^{\prime}} be as in the proof of Lemma 2.19. We construct the nn-ary brackets on \mathcal{E} by extending the ones of (,(k)k1,ρ,π)(\mathcal{E}^{\prime},(\ell_{k}^{\prime})_{k\geq 1},\rho_{\mathcal{E}^{\prime}},\pi^{\prime}) in the following way:

    1. (a)

      We first construct an almost Lie algebroid bracket 2~\tilde{\ell_{2}} on 1\mathcal{E}_{-1} that extends the 22-ary bracket of 1\mathcal{E}_{-1}^{\prime}. Since the 22-ary bracket is determined by its value on a basis, the existence of a free module 𝒱1\mathcal{V}_{-1} such that 1𝒱1=1\mathcal{E}_{-1}^{\prime}\oplus\mathcal{V}_{-1}=\mathcal{E}_{-1} allows to construct 2~\tilde{\ell_{2}} on \mathcal{E} such that its restriction to \mathcal{E}^{\prime} is 2\ell_{2}^{\prime} and such that it satisfies the Leibniz identity.

      As in the proof of Theorem 2.1 (to be more precise: Lemma 2.23), we see that [~2,d]RN[\tilde{\ell}_{2},\mathrm{d}^{\mathcal{E}}]_{\hbox{\tiny{RN}}} is 𝒪\mathcal{O}-linear, hence belongs to 𝔓𝔞𝔤𝔢2(2)(){\mathfrak{Page}}^{(2)}_{2}(\mathcal{E}) and is a DD^{\mathcal{E}}-cocycle. Since \mathcal{E}^{\prime} is a Lie \infty-algebroid, its restriction to 2\bigodot^{2}\mathcal{E}^{\prime} is zero. Lemma 2.19 allows to change ~2\tilde{\ell}_{2} to an 22-ary bracket 2:=~2+τ2\ell_{2}:=\tilde{\ell}_{2}+\tau_{2} with τ2=0\tau_{2}=0 on 2\bigodot^{2}\mathcal{E}^{\prime}. Hence 2\ell_{2} defines a graded almost Lie algebroid bracket, whose restriction to \mathcal{E}^{\prime} is still 2\ell_{2}^{\prime}.

    2. (b)

      Since 2\ell_{2} is an extension of 2\ell_{2}^{\prime}, its Jacobiator Jac𝔓𝔞𝔤𝔢2(2)()\text{Jac}\in\mathfrak{Page}^{(2)}_{2}(\mathcal{E}) of the 22-ary bracket 2\ell_{2} preserves \mathcal{E}^{\prime}. Also, its restriction ιJac𝔓𝔞𝔤𝔢2(2)()\iota^{*}_{\mathcal{E}^{\prime}}\text{Jac}\in\mathfrak{Page}^{(2)}_{2}({\mathcal{E}^{\prime}}) is the Jacobiator of 2\ell_{2}^{\prime}, and the latter is the DD^{\mathcal{E}^{\prime}}-coboundary of 3\ell_{3}^{\prime} in view of the higher Jacobi identity of \mathcal{E}^{\prime}. Since Jac𝔓𝔞𝔤𝔢2(2)()\text{Jac}\in\mathfrak{Page}^{(2)}_{2}(\mathcal{E}) is a DD^{\mathcal{E}}-cocycle, Lemma 2.19 assures that Jac is the image through DD^{\mathcal{E}} of some element 3𝔓𝔞𝔤𝔢1(2)()\ell_{3}\in\mathfrak{Page}^{(2)}_{1}(\mathcal{E}) which preserves \mathcal{E}^{\prime} and whose restriction to 3\bigodot^{3}\mathcal{E}^{\prime} is 3\ell_{3}^{\prime}. The proof continues by recursion: at the nn-th step, we use Lemma 2.19 to construct an nn-ary bracket for \mathcal{E} that extends the nn-ary bracket of \mathcal{E}^{\prime}.

By construction, the inclusion map ι:\iota\colon\mathcal{E}^{\prime}\hookrightarrow\mathcal{E} is a morphism for the nn-ary brackets for all n1n\geq 1. ∎

2.4. Universality: Proof of Theorem 2.4

Let 𝒜\mathcal{A} be a Lie-Rinehart algebra. We consider (,(k)k1,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}}) a universal Lie \infty-algebroid of 𝒜\mathcal{A}: its existence is granted by Theorem 2.1, proved in Section 2.3.1. Let (,(k)k1,π,ρ)(\mathcal{E}^{\prime},(\ell_{k}^{\prime})_{k\geq 1},\pi^{\prime},\rho_{\mathcal{E}^{\prime}}) be an arbitrary Lie \infty-algebroid that terminates in 𝒜\mathcal{A} through a hook π\pi^{\prime}. Let QQ_{\mathcal{E}} (resp. Q)Q_{\mathcal{E}^{\prime}}) be the co-derivations of S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) (resp. of S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})) associated to the Lie \infty-algebroid structures (,(k)k1,ρ,π)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}},\pi) (resp. (,ρ,(k)k1),π(\mathcal{E}^{\prime},\rho_{\mathcal{E}^{\prime}},(\ell_{k}^{\prime})_{k\geq 1}),\pi^{\prime}) that terminate in 𝒜\mathcal{A}.

Let us show that:

  1. (1)

    there is a Lie \infty-algebroid morphism from \mathcal{E}^{\prime} to \mathcal{E},

  2. (2)

    Any such two Lie \infty-morphisms are homotopic.

Altogether, these two points prove Theorem 2.4. The Taylor coefficients of the required Lie \infty-algebroid morphisms and homotopies will be constructed by induction. These inductions rely on Lemmas 2.24 and 2.26 below.

Lemma 2.24.

Let Φ:S𝕂()S𝕂()\Phi\colon S_{\mathbb{K}}^{\bullet}(\mathcal{E}^{\prime})\longrightarrow S_{\mathbb{K}}^{\bullet}(\mathcal{E}) be a co-algebra morphism such that

  1. (1)

    Φ\Phi is 𝒪\mathcal{O}-multilinear,

  2. (2)

    πΦ(0)=π\pi\circ\Phi^{(0)}=\pi^{\prime} on \mathcal{E}^{\prime},

For every n0n\in\mathbb{N}_{0} such that222ΦQQΦ\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi being a Φ\Phi-co-derivation, its component of arity ii is zero for 0in0\leq i\leq n if only if its ii-th Taylor coefficient is zero for i=1ni=1\leq\dots\leq n. (ΦQQΦ)(i)=0(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(i)}=0 for every 0in0\leq i\leq n, then the map S𝕂()S𝕂()S_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S_{\mathbb{K}}(\mathcal{E}) given by:

(ΦQQΦ)(n+1)(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(n+1)}
  1. (1)

    is a Φ(0)\Phi^{(0)}-co-derivation of degree +1+1,

  2. (2)

    is 𝒪\mathcal{O}-multilinear,

  3. (3)

    and the induced Φ(0)\Phi^{(0)}-co-derivation (,Q(0))(,Q(0))\left(\bigodot^{\bullet}\mathcal{E}^{\prime},Q_{\mathcal{E}^{\prime}}^{(0)}\right)\longrightarrow\left(\bigodot^{\bullet}\mathcal{E},Q_{\mathcal{E}}^{(0)}\right) satisfies:

    Q(0)(ΦQQΦ)(n+1)=(QΦΦQ)(n+1)Q(0).Q^{(0)}_{\mathcal{E}}\circ(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(n+1)}=(Q_{\mathcal{E}}\circ\Phi-\Phi\circ Q_{\mathcal{E}^{\prime}})^{(n+1)}\circ Q_{\mathcal{E}^{\prime}}^{(0)}.
Remark 2.25.

The following remark will be crucial. Under the assumptions of Lemma 2.16, (ΦQQΦ)(n+1)(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(n+1)} corresponds to a DD-closed element of degree +1+1 in the bi-complex 𝔓𝔞𝔤𝔢(n+1)(,)\mathfrak{Page}^{(n+1)}(\mathcal{E}^{\prime},\mathcal{E}) through the chain isomorphism described in Proposition 2.20. Here, ,\mathcal{E},\mathcal{E}^{\prime} are equipped with the differentials 1,1\ell_{1},\ell_{1}^{\prime} which are dual to the arity 0 components Q(0),Q(0)Q^{(0)}_{\mathcal{E}},Q^{(0)}_{\mathcal{E}^{\prime}}.

Proof.

A straightforward computation yields:

Δ(ΦQQΦ)\displaystyle\Delta(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi) =(ΦΦ)ΔQ(Qid+idQ)ΔΦ\displaystyle=(\Phi\otimes\Phi)\circ\Delta^{\prime}\circ Q_{\mathcal{E}^{\prime}}-(Q_{\mathcal{E}}\otimes\text{id}+\text{id}\otimes Q_{\mathcal{E}})\circ\Delta\circ\Phi
=((ΦQQΦ)Φ+Φ(ΦQQΦ))Δ.\displaystyle=\left((\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)\otimes\Phi+\Phi\otimes(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)\right)\circ\Delta^{\prime}.

Now, Δ\Delta preserves arity i.e. Δ:S𝕂n()i+j=nS𝕂i()S𝕂j()\Delta:S^{n}_{\mathbb{K}}(\mathcal{E})\longrightarrow\oplus_{i+j=n}S^{i}_{\mathbb{K}}(\mathcal{E})\otimes S^{j}_{\mathbb{K}}(\mathcal{E}) and so does Δ\Delta^{\prime}. Taking into account the assumption (ΦQQΦ)(i)=0(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(i)}=0 for every 0in0\leq i\leq n, we obtain:

Δ(ΦQQΦ)(n+1)\displaystyle\Delta\circ(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(n+1)}
=((ΦQQΦ)(n+1)Φ(0)+Φ(0)(ΦQQΦ)(n+1))Δ.\displaystyle=\left((\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(n+1)}\otimes\Phi^{(0)}+\Phi^{(0)}\otimes(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(n+1)}\right)\circ\Delta^{\prime}.

All the other terms disappear for arity reasons. Hence (ΦQQΦ)(n+1)(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(n+1)} is a Φ(0)\Phi^{(0)}-co-derivation.

Let us prove that it is 𝒪\mathcal{O}-linear. It suffices to check 𝒪\mathcal{O}-linearity of  TΦ:=ΦQQΦT_{\Phi}:=\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi. Let us choose homogeneous elements x1,,xNx_{1},\ldots,x_{N}\in\mathcal{E}^{\prime} and let us assume that xi1x_{i}\in\mathcal{E}^{\prime}_{-1} is the only term of degree 1-1: The proof in the case where there is more than one such an homogeneous element of degree 1-1 is identical. We choose jij\neq i and we compute TΦ(x1,,xi,,fxj,,xN)T_{\Phi}(x_{1},\ldots,x_{i},\ldots,fx_{j},\ldots,x_{N}) for some f𝒪f\in\mathcal{O}. The only terms in the previous expression which are maybe non-linear in ff are those for which the 22-ary brackets of a term containing fxjfx_{j} with xix_{i} or Φ(0)(xi)\Phi^{(0)}(x_{i}) appear (since Φ\Phi and all other brackets are 𝒪\mathcal{O}-linear). There are two such terms. The first one appears when we apply QQ_{\mathcal{E}^{\prime}} first, and then Φ\Phi: this forces Φ(2(xi,fxj),xIij)\Phi\left(\ell^{\prime}_{2}(x_{i},fx_{j}),x_{I^{ij}}\right) to appear, and the non-linear term is then:

ϵ(x,σi)ρ(xi)[f]Φ(xIi)\displaystyle\epsilon(x,\sigma_{i})\rho_{\mathcal{E}^{\prime}}(x_{i})[f]\,\Phi(x_{I^{i}}) (27)

with σi\sigma_{i} the permutation that let ii goes in front and leave the remaining terms unchanged. There is a second term that appears when one applies Φ\Phi first, then QQ_{\mathcal{E}}. Since it is a co-morphism, Φ(x1xi,fxjxN)\Phi(x_{1}\ldots x_{i}\ldots,fx_{j}\ldots x_{N}) is the product of several terms among which only one is of degree 1-1, namely the term

ϵ(x,σi)Φ(0)(xi)Φ(fxIi).\epsilon(x,\sigma_{i})\Phi^{(0)}(x_{i})\Phi(fx_{I^{i}}).

Applying QQ_{\mathcal{E}} to this term yields the non-linear term

ϵ(x,σi)ρ(Φ(0)(xi))[f]Φ(xIi),\displaystyle\epsilon(x,\sigma_{i})\rho_{\mathcal{E}}(\Phi^{(0)}(x_{i}))[f]\,\Phi(x_{I^{i}}), (28)

where IiI^{i} and IijI^{ij} are as in Proposition 1.30. Since ρΦ(0)=ρ\rho_{\mathcal{E}}\circ\Phi^{(0)}=\rho_{\mathcal{E}^{\prime}}, we see that the terms (27) and (28) containing an anchor add up to zero.

Let us check that (ΦQQΦ)(n+1)(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(n+1)} is a chain map, in the sense that it satisfies item 3). Considering again TΦ:=ΦQQΦT_{\Phi}:=\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi, we have that TΦ(k)=0T_{\Phi}^{(k)}=0, for all k=0,,nk=0,\ldots,n. Since TΦQ=QTΦT_{\Phi}\circ Q_{\mathcal{E}^{\prime}}=Q_{\mathcal{E}}\circ T_{\Phi}, one has

0=(TΦQ+QTΦ)(n+1)=TΦ(n+1)Q(0)+Q(0)TΦ(n+1)+i,j1i+j=n+1(TΦ(i)Q(j)+Q(j)TΦ(i))0\displaystyle 0=\left(T_{\Phi}\circ Q_{\mathcal{E}^{\prime}}+Q_{\mathcal{E}}\circ T_{\Phi}\right)^{(n+1)}=T_{\Phi}^{(n+1)}\circ Q_{\mathcal{E}^{\prime}}^{(0)}+Q_{\mathcal{E}}^{(0)}\circ T_{\Phi}^{(n+1)}+\sum_{\overset{i+j=n+1}{i,j\geq 1}}\underbrace{\left(T_{\Phi}^{(i)}\circ Q_{\mathcal{E}^{\prime}}^{(j)}+Q_{\mathcal{E}}^{(j)}\circ T_{\Phi}^{(i)}\right)}_{0}

By consequent, the 𝒪\mathcal{O}-linear map (ΦQQΦ)(n+1)(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi)^{(n+1)} satisfies item 3). ∎

Lemma 2.26.

Let Φ,Φ~:(S𝕂(),Q)(S𝕂(),Q)\Phi,\tilde{\Phi}:(S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}),Q_{\mathcal{E}^{\prime}})\longrightarrow(S^{\bullet}_{\mathbb{K}}(\mathcal{E}),Q_{\mathcal{E}}) be 𝒪\mathcal{O}-linear Lie \infty-algebroid morphisms and let n0n\in\mathbb{N}_{0}. If Φ~(i)=Φ(i)\tilde{\Phi}^{(i)}=\Phi^{(i)} for every 0in0\leq i\leq n, then (Φ~Φ)(n+1):S𝕂()S𝕂()(\tilde{\Phi}-\Phi)^{(n+1)}\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E})

  1. (1)

    is a Φ(0)\Phi^{(0)}-co-derivation

  2. (2)

    is 𝒪\mathcal{O}-multilinear

  3. (3)

    and the induced Φ(0)\Phi^{(0)}-co-derivation (,Q(0))(,Q(0))\left(\bigodot^{\bullet}\mathcal{E}^{\prime},Q_{\mathcal{E}^{\prime}}^{(0)}\right)\longrightarrow\left(\bigodot^{\bullet}\mathcal{E},Q_{\mathcal{E}}^{(0)}\right) satisfies:

    Q(0)(Φ~Φ)(n+1)=(Φ~Φ)(n+1)Q(0).Q^{(0)}_{\mathcal{E}}\circ(\tilde{\Phi}-\Phi)^{(n+1)}=(\tilde{\Phi}-\Phi)^{(n+1)}\circ Q_{\mathcal{E}^{\prime}}^{(0)}.
Remark 2.27.

Proposition 2.20 means that the map (Φ~Φ)(n+1)(\tilde{\Phi}-\Phi)^{(n+1)} as in Lemma 2.26 corresponds to a closed element in 𝔓𝔞𝔤𝔢(n+1)(,)\mathfrak{Page}^{(n+1)}(\mathcal{E}^{\prime},\mathcal{E}), equipped with differentials 1,1\ell_{1},\ell_{1}^{\prime}.

Proof.

For all x1,,xkx_{1},\ldots,x_{k}\in\mathcal{E}^{\prime}, one has:

Δ(Φ~Φ)(x1xk)\displaystyle\Delta(\tilde{\Phi}-\Phi)(x_{1}\odot\cdots\odot x_{k}) =j=1kσ𝔖j,kjϵ(x,σ)Φ~(xσ(1)xσ(j))Φ~)(xσ(j+1)xσ(k))\displaystyle=\sum^{k}_{j=1}\sum_{\sigma\in\mathfrak{S}_{j,k-j}}\epsilon(x,\sigma)\tilde{\Phi}(x_{\sigma(1)}\odot\cdots\odot x_{\sigma(j)})\otimes\tilde{\Phi})(x_{\sigma(j+1)}\odot\cdots\odot x_{\sigma(k)})
j=1kσ𝔖j,kjϵ(x,σ)(Φ(xσ(1)xσ(j))Φ(xσ(j+1)xσ(k))\displaystyle-\sum^{k}_{j=1}\sum_{\sigma\in\mathfrak{S}_{j,k-j}}\epsilon(x,\sigma)(\Phi(x_{\sigma(1)}\odot\cdots\odot x_{\sigma(j)})\otimes\Phi(x_{\sigma(j+1)}\odot\cdots\odot x_{\sigma(k)})
=((Φ~Φ)Φ+Φ~(Φ~Φ))Δ(x1xk).\displaystyle=\left((\tilde{\Phi}-\Phi)\otimes\Phi+\tilde{\Phi}\otimes(\tilde{\Phi}-\Phi)\right)\circ\Delta^{\prime}(x_{1}\odot\cdots\odot x_{k}).

Since Δ\Delta has arity 0 and (Φ~Φ)(i)=0(\tilde{\Phi}-\Phi)^{(i)}=0 for all 0in0\leq i\leq n, we obtain

Δ(Φ~Φ)(n+1)(x1xk)=((Φ~Φ)(n+1)Φ(0)+Φ(0)(Φ~Φ)(n+1))Δ(x1xk).\Delta(\tilde{\Phi}-\Phi)^{(n+1)}(x_{1}\odot\cdots\odot x_{k})=\left((\tilde{\Phi}-\Phi)^{(n+1)}\otimes\Phi^{(0)}+\Phi^{(0)}\otimes(\tilde{\Phi}-\Phi)^{(n+1)}\right)\circ\Delta^{\prime}(x_{1}\odot\cdots\odot x_{k}). (29)

This proves the first item. Since both Φ\Phi and Φ~\tilde{\Phi} are 𝒪\mathcal{O}-multilinear, (Φ~Φ)(n+1)(\tilde{\Phi}-\Phi)^{(n+1)} is 𝒪\mathcal{O}-multilinear. Which proves the second item. Since, Φ\Phi and Φ~\tilde{\Phi} are Lie {\infty}-morphisms:

(Φ~Φ)QQ(Φ~Φ)=0.(\tilde{\Phi}-\Phi)\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ(\tilde{\Phi}-\Phi)=0. (30)

By looking at the component of arity n+1n+1, one obtains, (Φ~Φ)(n+1)Q(0)Q(0)(Φ~Φ)(n+1)=0.(\tilde{\Phi}-\Phi)^{(n+1)}\circ Q_{\mathcal{E}^{\prime}}^{(0)}-Q_{\mathcal{E}}^{(0)}\circ(\tilde{\Phi}-\Phi)^{(n+1)}=0. This proves the third item. ∎

Lemma 2.28.

Under the assumptions of Lemma 2.26, there exists

  1. (1)

    a Lie \infty-morphism of algebroids Φ~1:S𝕂()S𝕂()\tilde{\Phi}_{1}\colon S_{\mathbb{K}}(\mathcal{E}^{\prime})\rightarrow S_{\mathbb{K}}(\mathcal{E})

  2. (2)

    and a homotopy (Φ~t,Ht)(\tilde{\Phi}_{t},H_{t}) joining Φ~1\tilde{\Phi}_{1} to Φ\Phi, compatible with the hooks,

such that

  1. (1)

    the components of arity less or equal to nn of HtH_{t} vanish,

  2. (2)

    Φ~1(i)=Φ~(i)\tilde{\Phi}_{1}^{(i)}=\tilde{\Phi}^{(i)} for every 0in+10\leq i\leq n+1.

Proof.

Let us consider (Φ~Φ)(n+1):(\tilde{\Phi}-\Phi)^{(n+1)}:\bigodot^{\bullet}\mathcal{E}^{\prime}\longrightarrow\bigodot^{\bullet}\mathcal{E}. By assumption, (Φ~Φ)(i)=0(\tilde{\Phi}-\Phi)^{(i)}=0 for all ini\leq n, so that in view of Lemma 2.26

  1. (1)

    (Φ~Φ)(n+1)(\tilde{\Phi}-\Phi)^{(n+1)} is a Φ(0)\Phi^{(0)}-co-derivation.

  2. (2)

    The restriction of (Φ~Φ)(n+1)(\tilde{\Phi}-\Phi)^{(n+1)} to n+2\bigodot^{n+2}\mathcal{E}^{\prime} corresponds to a closed element of degree 0 in 𝔓𝔞𝔤𝔢(n+1)(,){\mathfrak{Page}}^{(n+1)}(\mathcal{E}^{\prime},\mathcal{E}).

Proposition 2.17 implies that there exists a degree 1-1 𝒪\mathcal{O}-linear map Hn+1:n+2()H_{n+1}\colon\bigodot^{n+2}(\mathcal{E}^{\prime})\longrightarrow\mathcal{E}, of arity n+1n+1, hence an element in 𝔓𝔞𝔤𝔢(n+1)(,)\mathfrak{Page}^{(n+1)}(\mathcal{E}^{\prime},\mathcal{E}), such that,

(Φ~Φ)(n+1)=Q(0)Hn+1+Hn+1Q(0).(\tilde{\Phi}-\Phi)^{(n+1)}=Q^{(0)}_{\mathcal{E}}\circ H_{n+1}+H_{n+1}\circ Q_{\mathcal{E}^{\prime}}^{(0)}. (31)

We denote its extension to a Φ(0)\Phi^{(0)}-co-derivation of degree 1-1 by H(n+1)H^{(n+1)}. We now consider the following differential equation for t[0,1]t\in[0,1]:

dΦ~tdt=QHt+HtQ,andΦ~0=Φ,\frac{\mathrm{d}\tilde{\Phi}_{t}}{\mathrm{d}t}=Q_{\mathcal{E}}\circ H_{t}+H_{t}\circ Q_{\mathcal{E}^{\prime}},\quad\text{and}\quad\tilde{\Phi}_{0}=\Phi, (32)

where HtH_{t} is the unique Φ~t\tilde{\Phi}_{t}-co-derivation of degree 1-1 whose unique non zero Taylor coefficient is Hn+1H_{n+1}. The existence of a solution for the differential equation (32) is granted by Proposition 1.35. By considering the component of arity 1,,n,n+11,\dots,n,n+1 in Equation (32), we find

{dΦ~t(i)dt=0 for i=0,,n ,dΦ~t(n+1)dt=Q(0)H(n+1)+H(n+1)Q(0)=(Φ~Φ)(n+1)\left\{\begin{array}[]{rcl}\frac{\mathrm{d}\tilde{\Phi}_{t}^{(i)}}{\mathrm{d}t}&=&0\,\,\,\hbox{ for $i=0,\dots,n$ ,}\\ \frac{\mathrm{d}\tilde{\Phi}_{t}^{(n+1)}}{\mathrm{d}t}&=&Q_{\mathcal{E}}^{(0)}\circ H^{(n+1)}+H^{(n+1)}\circ Q_{\mathcal{E}^{\prime}}^{(0)}=(\tilde{\Phi}-\Phi)^{(n+1)}\end{array}\right.

Hence:

{Φ~t(i)=Φ(i) for i=0,,n ,Φ~t(n+1)=Φ(n+1)+t(Φ~Φ)(n+1).\displaystyle\left\{\begin{array}[]{rcl}{\tilde{\Phi}_{t}^{(i)}}&=&\Phi^{(i)}\,\,\,\hbox{ for $i=0,\dots,n$ ,}\\ \tilde{\Phi}_{t}^{(n+1)}&=&\Phi^{(n+1)}+t(\tilde{\Phi}-\Phi)^{(n+1)}.\end{array}\right.

Therefore, applying t=1t=1 to the previous relation, one finds

{Φ~t(i)=Φ(i) for i=0,,n ,Φ~1(n+1)=Φ(n+1)+(Φ~Φ)(n+1)=Φ~(n+1)\left\{\begin{array}[]{rcl}{\tilde{\Phi}_{t}^{(i)}}&=&\Phi^{(i)}\,\,\,\hbox{ for $i=0,\dots,n$ ,}\\ \tilde{\Phi}^{(n+1)}_{1}&=&\Phi^{(n+1)}+(\tilde{\Phi}-\Phi)^{(n+1)}=\tilde{\Phi}^{(n+1)}\end{array}\right.

This completes the proof. ∎

Proof (of Theorem 2.4).

Let us prove item 1. We construct the Taylor coefficients of the Lie \infty-algebroid Φ\Phi by recursion.

The Taylor coefficient of arity 0 is obtained out of classical properties of projective resolutions of 𝒪\mathcal{O}-modules. Given any complex (,ρ,1,π)(\mathcal{E}^{\prime},\rho_{\mathcal{E}^{\prime}},\ell^{\prime}_{1},\pi^{\prime}) which terminates in 𝒜\mathcal{A} through π\pi, for every free resolution (,ρ,1,π)(\mathcal{E},\rho_{\mathcal{E}},\ell_{1},\pi) of 𝒜\mathcal{A}, there exists a chain map Φ(0):(,1)(,1)\Phi^{(0)}\colon(\mathcal{E}^{\prime},\ell_{1}^{\prime})\to(\mathcal{E},\ell_{1}) as in Equation (15), and any two such chain maps are homotopic. We still denote by Φ(0)\Phi^{(0)} its extension to an arity 0 co-morphism \bigodot^{\bullet}\mathcal{E}^{\prime}\to\bigodot^{\bullet}\mathcal{E}.

To construct the second Taylor coefficient, let us consider the map:

S𝕂2()(x,y)Φ(0)2(x,y)2(Φ(0)(x),Φ(0)(y)).\begin{array}[]{rcl}S^{2}_{\mathbb{K}}(\mathcal{E}^{\prime})&\to&\mathcal{E}\\ (x,y)&\mapsto&\Phi^{(0)}\circ\ell_{2}^{\prime}(x,y)-\ell_{2}(\Phi^{(0)}(x),\Phi^{(0)}(y)).\end{array} (33)

This map is in fact 𝒪\mathcal{O}-bililinear, i.e. belongs to Hom𝒪(2,)\text{Hom}_{\mathcal{O}}(\bigodot^{2}\mathcal{E}^{\prime},\mathcal{E}), hence to 𝔓𝔞𝔤𝔢(1)(,){\mathfrak{Page}}^{(1)}(\mathcal{E}^{\prime},\mathcal{E}), see Equation (18). Let us check that it is a DD-cocycle:

  1. A.

    If either one of the homogeneous elements xx\in\mathcal{E}^{\prime} or yy\in\mathcal{E}^{\prime} is not of degree 1-1, a straightforward computation gives:

    1(Φ(0)2(x,y)2(Φ(0)(x),Φ(0)(y)))\displaystyle\ell_{1}\circ\left(\Phi^{(0)}\circ\ell^{\prime}_{2}(x,y)-\ell_{2}\left(\Phi^{(0)}(x),\Phi^{(0)}(y)\right)\right) =Φ(0)12(x,y)+2(Φ(0)1(x),Φ(0)(y))\displaystyle=\Phi^{(0)}\circ\ell_{1}^{\prime}\circ\ell^{\prime}_{2}(x,y)+\ell_{2}\left(\Phi^{(0)}\circ\ell_{1}^{\prime}(x),\Phi^{(0)}(y)\right)
    +(1)|x|2(Φ(0)(x),Φ(0)1(y))\displaystyle\hskip 59.75095pt+(-1)^{\lvert x\rvert}\ell_{2}\left(\Phi^{(0)}(x),\Phi^{(0)}\circ\ell_{1}^{\prime}(y)\right)
    =(Φ(0)22(Φ(0),Φ(0)))1(xy).\displaystyle=\left(\Phi^{(0)}\circ\ell^{\prime}_{2}-\ell_{2}\left(\Phi^{(0)},\Phi^{(0)}\right)\right)\circ\ell_{1}^{\prime}(x\odot y).
  2. B.

    If both x,yx,y\in\mathcal{E}^{\prime} are of degree 1-1:

    π(Φ(0)2(x,y)2(Φ(0)x,Φ(0)y))\displaystyle\pi\left(\Phi^{(0)}\ell^{\prime}_{2}(x,y)-\ell_{2}(\Phi^{(0)}x,\Phi^{(0)}y)\right) =\displaystyle= π2(x,y)π2(Φ(0)x,Φ(0)y)\displaystyle\pi^{\prime}\circ\ell_{2}^{\prime}(x,y)-\pi\circ\ell_{2}\left(\Phi^{(0)}x,\Phi^{(0)}y\right)
    =\displaystyle= [π(x),π(y)][π(Φ(0)x),π(Φ(0)x)]\displaystyle[\pi^{\prime}(x),\pi^{\prime}(y)]-\left[\pi\left(\Phi^{(0)}x\right),\pi\left(\Phi^{(0)}x\right)\right]
    =\displaystyle= [π(x),π(y)][π(x),π(y)]\displaystyle[\pi^{\prime}(x),\pi^{\prime}(y)]-[\pi^{\prime}(x),\pi^{\prime}(y)]
    =\displaystyle= 0.\displaystyle 0.

By Proposition 2.17 item 2), there exists Φ(1)Hom𝒪(2,)\Phi^{(1)}\in\text{Hom}_{\mathcal{O}}\left(\bigodot^{2}\mathcal{E}^{\prime},\mathcal{E}\right), of degree 0, so that

Φ(0)2(x,y)+Φ(1)1(xy)=1Φ(1)(x,y)+2(Φ(0)(x),Φ(0)(y))for all x,y.\Phi^{(0)}\circ\ell^{\prime}_{2}(x,y)+\Phi^{(1)}\circ\ell_{1}^{\prime}(x\odot y)=\ell_{1}\circ\Phi^{(1)}(x,y)+\ell_{2}(\Phi^{(0)}(x),\Phi^{(0)}(y))\hskip 28.45274pt\hbox{for all $x,y\in\mathcal{E}^{\prime}$.} (34)

Since, Φ(0)\Phi^{(0)} is a chain map, Relation (34) can be rewritten in terms of QQ_{\mathcal{E}} and QQ_{\mathcal{E}^{\prime}} as follows

{Q(0)Φ(0)=Φ(0)Q(0)Q(0)Φ(1)Φ(1)Q(0)=Φ(0)Q(1)Q(1)Φ(0)\displaystyle\left\{\begin{array}[]{rcl}Q^{(0)}_{\mathcal{E}}\circ\Phi^{(0)}&=&\Phi^{(0)}\circ Q^{(0)}_{\mathcal{E}^{\prime}}\\ Q^{(0)}_{\mathcal{E}}\circ\Phi^{(1)}-\Phi^{(1)}\circ Q^{(0)}_{\mathcal{E}^{\prime}}&=&\Phi^{(0)}\circ Q^{(1)}_{\mathcal{E}^{\prime}}-Q^{(1)}_{\mathcal{E}}\circ\Phi^{(0)}\end{array}\right. (37)

The construction of the morphism Φ\Phi announced in Theorem 2.4 is then done by recursion. The recursion assumption is that we have already defined a 𝒪\mathcal{O}-multilinear co-morphism Φ:S𝕂()S𝕂()\Phi:S_{\mathbb{K}}^{\bullet}(\mathcal{E}^{\prime})\rightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) with

(ΦQQΦ)(k)=0for all0kn.\left(\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi\right)^{(k)}=0\quad\text{for all}\quad 0\leq k\leq n.

The co-morphism Φ:S𝕂()S𝕂()\Phi:S_{\mathbb{K}}^{\bullet}(\mathcal{E}^{\prime})\rightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) with Taylor coefficients Φ(0)\Phi^{(0)} and Φ(1)\Phi^{(1)} satisfies the recursion assumption for n=1n=1.

Assume now that we have a co-morphism Φ\Phi that satisfies this assumption for some n0n\in\mathbb{N}_{0}, and consider the map TΦ:=ΦQQΦT_{\Phi}:=\Phi\circ Q_{\mathcal{E}^{\prime}}-Q_{\mathcal{E}}\circ\Phi. Lemma 2.24 implies that it is a 𝒪\mathcal{O}-multilinear Φ(0)\Phi^{(0)}-coderivation, and that it corresponds to a DD-closed element in 𝔓𝔞𝔤𝔢(n+1)(,)\mathfrak{Page}^{(n+1)}(\mathcal{E}^{\prime},\mathcal{E}). Since it has no component on the last column for degree reason, Proposition 2.17 implies that TΦ(n+1)T_{\Phi}^{(n+1)} is a coboundary: That is to say that there is a Φ(0)\Phi^{(0)}-co-derivation Θ𝔓𝔞𝔤𝔢(n+1)(,)\Theta\in\mathfrak{Page}^{(n+1)}(\mathcal{E}^{\prime},\mathcal{E}) (of arity n+1n+1 and degree 0) which can be seen as a map Θ:n+2()\Theta:\bigodot^{n+2}(\mathcal{E}^{\prime})\rightarrow\mathcal{E} such that:

TΦ(n+1)=Q(0)ΘΘQ(0).T_{\Phi}^{(n+1)}=Q^{(0)}_{\mathcal{E}}\circ\Theta-\Theta\circ Q_{\mathcal{E}^{\prime}}^{(0)}.

Consider now the co-morphism Φ~\tilde{\Phi} whose Taylor coefficients are those of Φ\Phi in arity 0,,n0,\dots,n and Φ(n+1)+Θ\Phi^{(n+1)}+\Theta in arity n+1n+1:

Φ~(i):={Φ(i)if 0in,Φ(n+1)+Θif i=n+1\tilde{\Phi}^{(i)}:=\begin{cases}\Phi^{(i)}&\text{if $0\leq i\leq n$,}\\ \Phi^{(n+1)}+\Theta&\text{if $i=n+1$}\end{cases} (38)

This is easily seen to satisfy the recursion relation for n+1n+1. This concludes the recursion. The Taylor coefficients obtained by recursion define a Lie \infty-algebroid Φ:S𝕂()S𝕂()\Phi\colon S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime})\longrightarrow S^{\bullet}_{\mathbb{K}}(\mathcal{E}) which is compatible by construction with the hooks π,π\pi,\pi^{\prime}.

By continuing this procedure we construct a Lie \infty-morphism from S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}) to S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}). This proves the first item of Theorem 2.4.

Let us prove the second item in Theorem 2.4. Notice that in the proof of the existence of the Lie \infty-morphism between S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}) and S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}) obtained in the first item, we made many choices, since we have chosen a coboundary at each step of the recursion.

Let Φ,Ψ\Phi,\Psi be two Lie \infty-morphisms between S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}^{\prime}) and S𝕂()S^{\bullet}_{\mathbb{K}}(\mathcal{E}). The arity 0 component of the co-morphisms Φ\Phi and Ψ\Psi restricted to \mathcal{E}^{\prime} are chain maps:

\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}2\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces\mathcal{E}_{-2}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}Φ(0)\scriptstyle{\Phi^{(0)}}Ψ(0)\scriptstyle{\Psi^{(0)}}1\textstyle{\mathcal{E}_{-1}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ(0)\scriptstyle{\Phi^{(0)}}Ψ(0)\scriptstyle{\Psi^{(0)}}h\scriptstyle{h}π\scriptstyle{\pi^{\prime}} \textstyle{ }𝒜\textstyle{\mathcal{A}} \textstyle{ \cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}2\textstyle{\mathcal{E}_{-2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{\mathcal{E}_{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}

which are homotopy equivalent in the usual sense because (,1)(\mathcal{E},\ell_{1}) is a projective resolution of 𝒜\mathcal{A}: said differently, there exists a degree 1-1 𝒪\mathcal{O}-linear map h:h\colon\mathcal{E}^{\prime}\to\mathcal{E} such that

Ψ(0)Φ(0)=1h+h1on.\Psi^{(0)}-\Phi^{(0)}=\ell_{1}\circ h+h\circ\ell_{1}^{\prime}\quad\text{on}\;\,\mathcal{E}^{\prime}. (39)

Let us consider the following differential equation:

{dΞtdt=QHt(Ξt)+Ht(Ξt)Q,for t[0,1]Ξ0=Φ.\begin{cases}\frac{\mathrm{d}\Xi_{t}}{\mathrm{d}t}=Q_{\mathcal{E}}\circ H_{t}(\Xi_{t})+H_{t}(\Xi_{t})\circ Q_{\mathcal{E}^{\prime}},&\text{for $t\in[0,1]$}\\ \\ \Xi_{0}=\Phi.\end{cases} (40)

with Ht(Ξt)H_{t}(\Xi_{t}) being a Ξt\Xi_{t}-co-derivation of degree 1-1 whose Taylor coefficient of arity 0 is hh. This equation does admit solutions in view of Proposition 1.35.

By looking at the the component arity 0 of Equation (40) on \mathcal{E}^{\prime}, one has:

dΞt(0)dt\displaystyle\frac{\mathrm{d}\Xi^{(0)}_{t}}{\mathrm{d}t} =1h+h1\displaystyle=\ell_{1}\circ h+h\circ\ell_{1}^{\prime}
=Ψ(0)Φ(0).\displaystyle=\Psi^{(0)}-\Phi^{(0)}.

Hence, Ξt(0)=Φ(0)+t(Ψ(0)Φ(0))\Xi^{(0)}_{t}=\Phi^{(0)}+t\left(\Psi^{(0)}-\Phi^{(0)}\right) is a solution such that Ξ1(0)=Ψ(0)\Xi^{(0)}_{1}=\Psi^{(0)}. By construction, Ξ1\Xi_{1} is homotopic to Φ\Phi via the pair (Ξt,Ht)\left(\Xi_{t},H_{t}\right) over [0,1][0,1], and its arity 0 Taylor coefficient coincides with the Taylor coefficient of Ψ\Psi.

From there, the construction goes by recursion using Lemma 2.28. Indeed, this lemma allows to construct recursively a sequence of Lie \infty-algebroids morphism (Ψn)n0(\Psi_{n})_{n\geq 0} and homotopies (Ξn,t,Hn,t)(\Xi_{n,t},H_{n,t}) (with t[n,n+1]t\in[n,n+1]) between Ψn\Psi_{n} and Ψn+1\Psi_{n+1} such that: Hn,t(i)H_{n,t}^{(i)} is zero for tnt\geq n and in+1i\neq n+1. By Lemma 2.28, all these homotopies are compatible with the hooks. These homotopies are glued in a homotopy (Ξt,Ht)[0,+[(\Xi_{t},H_{t})_{[0,+\infty[} such that for every n0n\in\mathbb{N}_{0}, the components of arity nn of the Lie \infty-algebroids morphism Ξt(n)\Xi_{t}^{(n)} are constant and equal to Ψ(n)\Psi^{(n)} for tnt\geq n. By Lemma 1.39, these homotopies can be glued to a homotopy on [0,1][0,1]. Explicitly, since tt1tt\mapsto\frac{t}{1-t} maps [0,1[[0,1[ to [0,+[[0,+\infty[ and by Lemma 1.39, the pair (Ξt1t,1(1t)2Hk,t1t)\left(\Xi_{\frac{t}{1-t}},\frac{1}{(1-t)^{2}}H_{k,\frac{t}{1-t}}\right) is a homotopy between Φ\Phi and Ψ\Psi. This proves the second item of the Theorem 2.4.

3. Examples of universal Lie \infty-algebroid structures of a Lie-Rinehart algebra

3.1. New constructions from old ones

In this section, we explain how to construct universal Lie \infty-algebroids of some Lie-Rinehart algebra which is derived from a second one through one of natural constructions as in Section 1.1 (localization, germification, restriction), when a universal Lie \infty-algebroid of the latter is already known.

3.1.1. Localization

Localisation is an useful algebraic tool. When 𝒪\mathcal{O} is an algebra of functions, it corresponds to study local properties of a space, or germs of functions.

Let (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A},\left[\cdot\,,\cdot\right]_{\mathcal{A}},\rho_{\mathcal{A}}) be a Lie-Rinehart algebra over a unital algebra 𝒪\mathcal{O}. Let S𝒪S\subset\mathcal{O} be a multiplicative closed subset containing no zero divisor. We recall from item 2, Remark 1.3 that the localization S1𝒜𝒜𝒪S1𝒪S^{-1}\mathcal{A}\cong\mathcal{A}\otimes_{\mathcal{O}}S^{-1}\mathcal{O} of 𝒜\mathcal{A} at SS comes equipped with a natural structure of Lie-Rinehart algebra over the localization algebra S1𝒪S^{-1}\mathcal{O}. Recall that for φ:𝒯\varphi\colon\mathcal{E}\longrightarrow\mathcal{T} a homomorphism of 𝒪\mathcal{O}-modules, there is a well-defined homomorphism of 𝒪\mathcal{O}-modules,

φid:𝒪S1𝒪𝒯𝒪S1𝒪,φid(xfs):=φ(x)fs\varphi\otimes\text{id}\colon\mathcal{E}\otimes_{\mathcal{O}}S^{-1}\mathcal{O}\longrightarrow\mathcal{T}\otimes_{\mathcal{O}}S^{-1}\mathcal{O},\hskip 5.69046pt\varphi\otimes\text{id}\,(x\otimes\frac{f}{s}):=\varphi(x)\otimes\frac{f}{s}

that can be considered as a S1𝒪S^{-1}\mathcal{O}-module homomorphism

S1φ:S1S1𝒯withS1φ(xs):=φ(x)s,x,(f,s)𝒪×S,S^{-1}\varphi\colon S^{-1}\mathcal{E}\longrightarrow S^{-1}\mathcal{T}\hskip 5.69046pt\hbox{with}\hskip 5.69046ptS^{-1}\varphi\left(\frac{x}{s}\right):=\frac{\varphi(x)}{s},\,\;x\in\mathcal{E},\,(f,s)\in\mathcal{O}\times S,

called the localization of φ\varphi.

Given a Lie \infty-algebroid structure (,(k)k1,π,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\pi,\rho_{\mathcal{E}}) of 𝒜\mathcal{A}. The triplet (,(k)k1,ρ,π)(\mathcal{E}^{\prime},(\ell_{k}^{\prime})_{k\geq 1},\rho_{\mathcal{E}^{\prime}},\pi^{\prime}) is a Lie \infty-algebroid structure that terminates at S1𝒜S^{-1}\mathcal{A} through the hook π\pi^{\prime} where

  1. (1)

    =S1\mathcal{E}^{\prime}=S^{-1}\mathcal{E};

  2. (2)

    The anchor map ρ\rho_{\mathcal{E}^{\prime}} is defined by

    ρ:S11Der(S1𝒪)xsρ(xs):S1𝒪S1𝒪fu1s(ρ(x)[f]ufρ(x)[u]u2)\displaystyle\begin{array}[]{rcrrcl}\rho_{\mathcal{E}^{\prime}}\colon S^{-1}\mathcal{E}_{-1}&\longrightarrow&\text{Der}(S^{-1}\mathcal{O})&&&\\ \frac{x}{s}&\longmapsto&\rho_{\mathcal{E}^{\prime}}\left(\frac{x}{s}\right):&S^{-1}\mathcal{O}&\longrightarrow&S^{-1}\mathcal{O}\\ &&&\frac{f}{u}&\longmapsto&\frac{1}{s}\cdot\left(\frac{\rho_{\mathcal{E}}(x)[f]u-f\rho_{\mathcal{E}}(x)[u]}{u^{2}}\right)\end{array}

    for x,f𝒪,(s,u)S×Sx\in\mathcal{E},f\in\mathcal{O},(s,u)\in S\times S;

  3. (3)

    k=S1k\ell^{\prime}_{k}=S^{-1}\ell_{k}, for all k{2}k\in\mathbb{N}\setminus\{2\};

  4. (4)

    The binary bracket is more complicated because of the anchor map: we set

    2(1s x,1uy)=1su2(x,y)ρ(x)[u]su2y+ρ(y)[s]s2ux\ell_{2}^{\prime}\left(\frac{1}{s} x,\frac{1}{u}y\right)=\frac{1}{su}\ell_{2}(x,y)-\frac{\rho_{\mathcal{E}}(x)[u]}{su^{2}}\,y+\frac{\rho_{\mathcal{E}}(y)[s]}{s^{2}u}\,x

    for x,y,(s,u)S2x,y\in\mathcal{E},(s,u)\in S^{2} (with the understanding that ρ0\rho_{\mathcal{E}}\equiv 0 on i\mathcal{E}_{-i} with i2i\geq 2);

  5. (5)

    π=S1π\pi^{\prime}=S^{-1}\pi.

One can check that these operations above are well-defined and for all zS11z\in S^{-1}\mathcal{E}_{-1} the map ρ(z)\rho_{\mathcal{E}^{\prime}}(z) is indeed a derivation on S1𝒪S^{-1}\mathcal{O}. The previously defined structure is also a Lie \infty-algebroid that we call localization of the Lie \infty-algebroid (,(k)k1,π,ρ)(\mathcal{E},(\ell_{k})_{k\geq 1},\pi,\rho_{\mathcal{E}}) with respect to SS.

Proposition 3.1.

Let 𝒪\mathcal{O} be a unital algebra and S𝒪S\subset\mathcal{O} a multiplicative subset containing no zero divisor. The localization of a universal Lie \infty-algebroid of a Lie-Rinehart algebra 𝒜\mathcal{A} is a universal Lie \infty-algebroid of S1𝒜S^{-1}\mathcal{A}.

Proof.

The object (,(k)k1,ρ,π)(\mathcal{E}^{\prime},(\ell_{k}^{\prime})_{k\geq 1},\rho_{\mathcal{E}^{\prime}},\pi^{\prime}) described above is also a Lie \infty-algebroid terminating in S1𝒜S^{-1}\mathcal{A}. It is universal because localization preserves exact sequences [1]. ∎

3.1.2. Restriction

When 𝒪Y\mathcal{O}_{Y} is the ring of functions of an affine variety YY, to every subvariety XYX\subset Y corresponds its zero locus, which is an ideal X𝒪Y\mathcal{I}_{X}\subset\mathcal{O}_{Y}. A Lie \infty-algebroid or a Lie-Rinehart algebra over 𝒪Y\mathcal{O}_{Y} may not restrict to a Lie-Rinehart algebra over 𝒪X\mathcal{O}_{X}: it only does so when one can quotient all brackets by X\mathcal{I}_{X}, which geometrically means that the anchor map takes values in vector fields tangent to XX. We can then “restrict”, i.e. replace 𝒪Y\mathcal{O}_{Y} by 𝒪Y/X\mathcal{O}_{Y}/\mathcal{I}_{X}. This operation has already been defined in Section 2.1.3, and here is an immediate consequence of Corollary 2.11:

Proposition 3.2.

Let 𝒪\mathcal{I}\subset\mathcal{O} be Lie-Rinehart ideal, i.e. an ideal such that ρ𝒜(𝒜)[]\rho_{\mathcal{A}}(\mathcal{A})[\mathcal{I}]\subset\mathcal{I}. The quotient of a universal Lie \infty-algebroid of 𝒜\mathcal{A} with respect to an ideal \mathcal{I} is a Lie \infty-algebroid that terminates in 𝒜/𝒜\mathcal{A}/\mathcal{I}\mathcal{A}. It is universal if and only if ((ii)i1,1¯,π¯)((\frac{\mathcal{E}_{-i}}{\mathcal{I}\mathcal{E}_{-i}})_{i\geq 1},\bar{\ell_{1}},\overline{\pi}) is exact, i.e. if Tor𝒪(𝒜,𝒪/)=0{\mathrm{Tor}}_{\mathcal{O}}^{\bullet}(\mathcal{A},\mathcal{O}/\mathcal{I})=0.

3.1.3. Germification

Let WNW\subseteq\mathbb{C}^{N} be an affine variety and 𝒪W\mathcal{O}_{W} its coordinates ring. Denote by 𝒪W,x0\mathcal{O}_{W,x_{0}} the germs of regular functions at x0x_{0}. Since 𝒪W,x0\mathcal{O}_{W,x_{0}} is a local ring, and since 𝒪W,x0(𝒪W)𝔪x0\mathcal{O}_{W,x_{0}}\simeq(\mathcal{O}_{W})_{\mathfrak{m}_{x_{0}}} [16], where 𝔪x0={f𝒪Wf(x0)=0}\mathfrak{m}_{x_{0}}=\{f\in\mathcal{O}_{W}\mid f(x_{0})=0\} and (𝒪W)𝔪x0(\mathcal{O}_{W})_{\mathfrak{m}_{x_{0}}} is the localization w.r.t the complement of 𝔪x0\mathfrak{m}_{x_{0}}, Proposition 3.1 implies the following statement:

Proposition 3.3.

Let WW be an affine variety with functions 𝒪W\mathcal{O}_{W}. For every point x0Wx_{0}\in W and any Lie-Rinehart algebra 𝒜\mathcal{A} over 𝒪W\mathcal{O}_{W}, the germ at x0x_{0} of the universal Lie \infty-algebroid of 𝒜\mathcal{A} is the universal Lie \infty-algebroid of the germ of 𝒜\mathcal{A} at x0x_{0}.

Here, the germ at x0x_{0} of a Lie-Rinehart algebra or a Lie \infty-algebroid is its localization w.r.t the complement of 𝔪x0\mathfrak{m}_{x_{0}}.

3.1.4. Sections vanishing on a codimension 11 subvariety

Let (𝒜,[,],ρ)(\mathcal{A},\left[\cdot\,,\cdot\right],\rho) be an arbitrary Lie-Rinehart algebra over 𝒪\mathcal{O}. For any ideal 𝒪\mathcal{I}\subset\mathcal{O}, 𝒜\mathcal{I}\mathcal{A} is also a Lie-Rinehart algebra (see Example 1.5). When 𝒪\mathcal{O} are functions on a variety MM, \mathcal{I} are functions vanishing on a subvariety XX and 𝒜\mathcal{A} is a 𝒪\mathcal{O}-module of sections over MM, 𝒜\mathcal{I}\mathcal{A} corresponds geometrically to sections vanishing along XX. It is not an easy task. In codimension 11, i.e. when \mathcal{I} is generated by one element, the construction can be done by hand.

Proposition 3.4.

Let (𝒜,[,]𝒜,ρ𝒜)(\mathcal{A},\left[\cdot\,,\cdot\right]_{\mathcal{A}},\rho_{\mathcal{A}}) be a Lie-Rinehart algebra over a commutative algebra 𝒪\mathcal{O}. Let (,k={}k1,ρ)(\mathcal{E},\ell_{k}=\{\cdots\}_{k\geq 1},\rho_{\mathcal{E}}) be a Lie \infty-algebroid that terminates in 𝒜\mathcal{A} through a hook π\pi. For any element χ𝒪\chi\in\mathcal{O}, the 𝒪\mathcal{O}-module 𝒜=χ𝒜𝒜\mathcal{A}^{\prime}=\chi\mathcal{A}\subseteq\mathcal{A} is closed under the Lie bracket, so the triple (χ𝒜,[,]𝒜,ρ𝒜)(\chi\mathcal{A},[\cdot,\cdot]_{\mathcal{A}},\rho_{\mathcal{A}}) is a Lie-Rinehart algebra over 𝒪\mathcal{O}. A Lie \infty-algebroid (=,k={}k1,ρ)(\mathcal{E}^{\prime}=\mathcal{E},\ell_{k}^{\prime}=\{\cdots\}_{k\geq 1}^{\prime},\rho_{\mathcal{E}}^{\prime}) hooked in χ𝒜\chi\mathcal{A} through π\pi^{\prime} can be defined as follows:

  1. (1)

    The brackets are given by

    1. (a)

      {}1={}1\{\cdot\}_{1}^{\prime}=\{\cdot\}_{1},

    2. (b)

      the 22-ary bracket:

      {x,y}2:=χ{x,y}2+ρ(x)[χ]y+(1)|x||y|ρ(y)[χ]x,\{x,y\}^{\prime}_{2}:=\chi\{x,y\}_{2}+\rho_{\mathcal{E}}(x)[\chi]\,y+(-1)^{|x||y|}\rho_{\mathcal{E}}(y)[\chi]\,x, (41)

      for all x,yx,y\in\mathcal{E}_{\bullet}, with the understanding that ρ=0\rho_{\mathcal{E}}=0 on 2\mathcal{E}_{\leq-2},

    3. (c)

      {}k=χk1{}k\{\cdots\}_{k}^{\prime}=\chi^{k-1}\{\cdots\}_{k} for all k2k\geq 2,

  2. (2)

    ρ=χρ\rho_{\mathcal{E}^{\prime}}=\chi\rho_{\mathcal{E}},

  3. (3)

    π=χπ\pi^{\prime}=\chi\pi.

Proof.

We leave it to the reader. ∎

Proposition 3.5.

If χ\chi is not a zero-divisor in 𝒪\mathcal{O}, and (,{}k1,ρ,π)(\mathcal{E},\{\cdots\}_{k\geq 1},\rho_{\mathcal{E}},\pi) is a universal Lie \infty-algebroid of 𝒜\mathcal{A}, then the Lie \infty-structure described in the four items of 3.1 is the universal Lie \infty-algebroid of χ𝒜\chi\mathcal{A}.

Proof.

If χ\chi is not a zero-divisor in 𝒜\mathcal{A} (i.e if aχaa\mapsto\chi a is an injective endomorphism of 𝒜\mathcal{A}), then the kernel of π\pi^{\prime} coincides with the kernel of π\pi, i.e. with the image of {}1={}1\{\cdot\}_{1}=\{\cdot\}_{1}, so that (,1,χπ)(\mathcal{E},\ell_{1},\chi\pi) is a resolution of χ𝒜\chi\mathcal{A}. ∎

3.1.5. Algebra extension and blow-up

Recall that for 𝒪\mathcal{O} a unital algebra with no zero divisor, derivations of 𝒪\mathcal{O} induce derivations of its field of fractions 𝕆\mathbb{O}.

Proposition 3.6.

Let 𝒪\mathcal{O} be an unital algebra with no zero divisor, 𝕆\mathbb{O} its field of fractions, and 𝒪~\tilde{\mathcal{O}} an algebra with 𝒪𝒪~𝕆\mathcal{O}\subset\tilde{\mathcal{O}}\subset\mathbb{O}. For every Lie-Rinehart algebra 𝒜\mathcal{A} over 𝒪\mathcal{O} whose anchor map takes values in derivations of 𝒪\mathcal{O} preserving 𝒪~\tilde{\mathcal{O}}, then

  1. (1)

    any Lie \infty-algebroid structure (,(k)k1,ρ,π)(\mathcal{E},(\ell_{k})_{k\geq 1},\rho_{\mathcal{E}},\pi) that terminates at 𝒜\mathcal{A} extends for all i=0,,ni=0,\dots,n to a Lie \infty-algebroid structure on 𝒪~𝒪\tilde{\mathcal{O}}\otimes_{{\mathcal{O}}}\mathcal{E},

  2. (2)

    and this extension 𝒪~𝒪\tilde{\mathcal{O}}\otimes_{\mathcal{O}}\mathcal{E} is a Lie \infty-algebroid that terminates at the Lie-Rinehart algebra 𝒪~𝒪𝒜\tilde{\mathcal{O}}\otimes_{\mathcal{O}}\mathcal{A}.

Proof.

Since they are 𝒪\mathcal{O}-linear, the hook π\pi, the anchor ρ\rho_{\mathcal{E}}, and the brackets k\ell_{k} for k2k\neq 2 are extended to 𝕆~\tilde{\mathbb{O}}-linear maps. Since the image of ρ\rho_{\mathcal{E}} is the image of ρ𝒜\rho_{\mathcal{A}}, it is made of derivations preserving 𝕆\mathbb{O}, which is easily seen to allow an extension of 2\ell_{2} to 𝒪~𝒪\tilde{\mathcal{O}}\otimes_{\mathcal{O}}\mathcal{E} using the Leibniz identity. ∎

Remark 3.7.

Of course, the Lie \infty-algebroid structure obtained on 𝒪~𝒪\tilde{\mathcal{O}}\otimes_{\mathcal{O}}\mathcal{E} is not in general the universal Lie \infty-algebroid of 𝒪~𝒪𝒜\tilde{\mathcal{O}}\otimes_{\mathcal{O}}\mathcal{A}, because the complex (𝒪~𝒪,1,π)(\tilde{\mathcal{O}}\otimes_{\mathcal{O}}\mathcal{E},\ell_{1},\pi) may not be a resolution of 𝒪~𝒪𝒜\tilde{\mathcal{O}}\otimes_{\mathcal{O}}\mathcal{A} (see Example 3.10).

Remark 3.8.

Since any module over a field is projective, any Lie-Rinehart algebra over a field is a Lie algebroid. If we choose 𝒪~=𝕆\tilde{\mathcal{O}}=\mathbb{O} therefore, the Lie-Rinehart algebra 𝕆𝒪𝒜{\mathbb{O}}\otimes_{\mathcal{O}}\mathcal{A} is a Lie algebroid, so is homotopy equivalent to any of its universal Lie \infty-algebroid. Unless 𝒜\mathcal{A} is a Lie algebroid itself, the Lie \infty-algebroid in Proposition 3.6 will not be homotopy equivalent to a Lie \infty-algebroid whose underlying complex is of length one, and is therefore not a universal Lie \infty-algebroid of 𝕆𝒪𝒜{\mathbb{O}}\otimes_{\mathcal{O}}\mathcal{A}.

Example 3.9.

For 𝒪=[z0,,zN]\mathcal{O}=\mathbb{C}[z_{0},\ldots,z_{N}] the coordinate ring of N+1\mathbb{C}^{N+1}, the blow-up of N+1\mathbb{C}^{N+1} at the origin is covered by affine charts: in the ii-th affine chart UiU_{i}, the coordinate ring is

𝒪Ui=[z0/zi,,zi,,zN/zi].\mathcal{O}_{U_{i}}=\mathbb{C}[z_{0}/z_{i},\dots,z_{i},\dots,z_{N}/z_{i}].

By Remark 1.3, and Proposition 3.6 for any Lie-Rinehart algebra 𝒜\mathcal{A} whose anchor map takes values in vector fields vanishing at 0N+10\in\mathbb{C}^{N+1}, we obtain a Lie \infty-algebroid of 𝒪Ui𝒪𝒜\mathcal{O}_{U_{i}}\otimes_{\mathcal{O}}\mathcal{A} that we call blow-up of at 0 in the chart UiU_{i}. Proposition 3.6 then says that the blow-up at 0 of the universal Lie \infty-algebroid of 𝒜\mathcal{A}, in each chart, is a Lie \infty-algebroid that terminates in the blow-up of 𝒜\mathcal{A} (as defined in remark 1.3). It may not be the universal one, see Example 3.10.

Example 3.10 (Universal Lie-\infty-algebroids and blow-up: a counter example).

Consider the polynomial function in N+1N+1 variables φ=i=0Nzi3\varphi=\sum_{i=0}^{N}z_{i}^{3}. Let us consider the singular foliation φ\mathcal{F}_{\varphi} as in Example 3.2.1. Its generators are Δij:=zi2zjzj2zi\Delta_{ij}:=z_{i}^{2}\tfrac{\partial}{\partial z_{j}}-z_{j}^{2}\tfrac{\partial}{\partial z_{i}}, for 0i<jN0\leq i<j\leq N.

Let us consider its blow-up in the chart UNU_{N}. Geometrically speaking, φ~=𝒪UN𝒪φ\widetilde{\mathcal{F}_{\varphi}}=\mathcal{O}_{U_{N}}\otimes_{\mathcal{O}}\mathcal{F}_{\varphi} is the 𝒪UN\mathcal{O}_{U_{N}}-module generated by the blown-up vector fields Δ~ij=zN(zi2zjzj2zi),jN\widetilde{\Delta}_{ij}=z_{N}\left(z^{2}_{i}\frac{\partial}{\partial z_{j}}-z_{j}^{2}\frac{\partial}{\partial z_{i}}\right),\,j\neq N, and Δ~iN=zN(zNzi2zNzizi2j=0N1zjzj)\widetilde{\Delta}_{iN}=z_{N}\left(z_{N}z^{2}_{i}\frac{\partial}{\partial z_{N}}-\frac{\partial}{\partial z_{i}}-z^{2}_{i}\sum_{j=0}^{N-1}z_{j}\frac{\partial}{\partial z_{j}}\right). The vector fields Δ~ij,jN\widetilde{\Delta}_{ij},\,j\neq N, belong to the 𝒪UN\mathcal{O}_{U_{N}}-module generated by the vector fields Δ~iN\widetilde{\Delta}_{iN}. Since they are independent, the singular foliation φ~\widetilde{\mathcal{F}_{\varphi}} is a free 𝒪UN\mathcal{O}_{U_{N}}-module. Its universal Lie \infty-algebroid can be concentrated in degree 1-1, it is then a Lie algebroid.

On the other hand, the blow-up of the universal Lie \infty-algebroid of φ\mathcal{F}_{\varphi} is not homotopy equivalent to a Lie algebroid. Indeed, the pull-back Lie \infty-algebroid (E~,(~k)k1,ρ~,π~)(\tilde{E},(\tilde{\ell}_{k})_{k\geq 1},\tilde{\rho},\tilde{\pi}) verifies by construction that E~i0\tilde{E}_{-i}\neq 0 for i=1,,Ni=1,\dots,N and that ~1|x=0\tilde{\ell}_{1}|_{x}=0 for every xx in the inverse image of zero, and such a complex can not be homotopy equivalent333We are in fact proving that 𝒪Ui𝒪\mathcal{O}_{U_{i}}\otimes_{\mathcal{O}}\cdot is not an exact functor in this case. to a complex of length 11.

This example tells us that the blow-up of the universal Lie \infty-algebroid of a Lie-Rinehart algebra may not be the universal Lie \infty-algebroid of its blow-up.

3.2. Universal Lie \infty-algebroids of some singular foliations

3.2.1. Vector fields annihilating a Koszul function φ\varphi

This universal Lie \infty-algebroid was already described in Section 3.7 of [28], where the brackets were simply checked to satisfy the higher Jacobi identities - with many computations left to the reader. Here, we give a theoretical explanation of the construction presented in [28].

Let 𝒪\mathcal{O} be the algebra of all polynomials on V:=dV:=\mathbb{C}^{d}. A function φ𝒪\varphi\in\mathcal{O} is said to be a Koszul polynomial, if the Koszul complex

ιdφ𝔛3(V)ιdφ𝔛2(V)ιdφ𝔛(V)ιdφ𝒪0\ldots\xrightarrow{\iota_{\text{d}\varphi}}\mathfrak{X}^{3}(V)\xrightarrow{\iota_{\text{d}\varphi}}\mathfrak{X}^{2}(V)\xrightarrow{\iota_{\text{d}\varphi}}\mathfrak{X}(V)\xrightarrow{\iota_{\text{d}\varphi}}\mathcal{O}\longrightarrow 0 (42)

is exact in all degree, except in degree 0. By virtue of a theorem of Koszul [13], see [17] Theorem 16.5 (i)(i), φ\varphi is Koszul if (φx1,,φxd)\left(\frac{\partial\varphi}{\partial x_{1}},\cdots,\frac{\partial\varphi}{\partial x_{d}}\right) is a regular sequence.

From now on, we choose φ\varphi a Koszul function, and consider the singular foliation

φ:={X𝔛(V):X[φ]=0}=Ker(ιdφ):𝔛(V)ιdφ𝒪.\mathcal{F}_{\varphi}:=\{X\in\mathfrak{X}(V):X[\varphi]=0\}={\mathrm{Ker}}(\iota_{\text{d}\varphi})\colon\mathfrak{X}(V)\xrightarrow{\iota_{\text{d}\varphi}}\mathcal{O}. (43)

The Koszul complex (42) truncated of its degree 0 term gives a free resolution (,d,ρ)(\mathcal{E},\text{d},\rho) of φ\mathcal{F}_{\varphi}, with i:=𝔛i+1(V)\mathcal{E}_{-i}:=\mathfrak{X}^{i+1}(V), d:=ιdφ\mathrm{d}:=\iota_{\text{d}\varphi}, and ρ:=ιdφ\rho:=-\iota_{\text{d}\varphi}.

Remark 3.11.

Exactness of the Koszul complex implies in particular that φ\mathcal{F}_{\varphi} is generated by the vector fields:

{φxixjφxjφxi,1i<jd}.\left\{\frac{\partial\varphi}{\partial x_{i}}\frac{\partial}{\partial x_{j}}-\frac{\partial\varphi}{\partial x_{j}}\frac{\partial\varphi}{\partial x_{i}},\mid 1\leq i<j\leq d\right\}. (44)

In [28], this resolution is equipped with a Lie \infty-algebroid structure, whose brackets we now recall.

Proposition 3.12.

A universal Lie \infty-algebroid of φ𝔛(V)\mathcal{F}_{\varphi}\subset\mathfrak{X}(V) is given on the free resolution (=𝔛+1(V),d=ιdφ,ρ=ιdφ)\left(\mathcal{E}_{-\bullet}=\mathfrak{X}^{\bullet+1}(V),\text{\emph{d}}=\iota_{\mathrm{d}\varphi},\rho=-\iota_{\mathrm{d}\varphi}\right) by defining the following nn-ary brackets:

{I1,,In}n:=i1I1,,inInϵ(i1,,in)φi1inI1i1Inin;\left\{\partial_{I_{1}},\cdots,\partial_{I_{n}}\right\}_{n}:=\sum_{i_{1}\in I_{1},\ldots,i_{n}\in I_{n}}\epsilon(i_{1},\ldots,i_{n})\varphi_{i_{1}\cdots i_{n}}\partial_{I_{1}^{i_{1}}\bullet\cdots\bullet I_{n}^{i_{n}}}; (45)

and the anchor map given for all i,j{1,,n}i,j\in\{1,\dots,n\} by

ρ(xixj):=φxjxiφxixj.\rho\left(\frac{\partial}{\partial x_{i}}\wedge\frac{\partial}{\partial x_{j}}\right):=\frac{\partial\varphi}{\partial x_{j}}\frac{\partial}{\partial x_{i}}-\frac{\partial\varphi}{\partial x_{i}}\frac{\partial}{\partial x_{j}}. (46)

Above, for every multi-index J={j1,,jn}{1,,d}J=\left\{j_{1},\ldots,j_{n}\right\}\subseteq\left\{1,\ldots,d\right\} of length nn, J\partial_{J} stands for the nn-vector field xj1xjn\frac{\partial}{\partial x_{j_{1}}}\wedge\cdots\wedge\frac{\partial}{\partial x_{j_{n}}} and φj1jn:=nφxj1xjn\varphi_{j_{1}\cdots j_{n}}:=\frac{\partial^{n}\varphi}{\partial x_{j_{1}}\cdots\partial x_{j_{n}}} . Also, I1InI_{1}\bullet\cdots\bullet I_{n} is a multi-index obtained by concatenation of nn multi-indices I1,,InI_{1},\ldots,I_{n}. For every i1I1,,inIni_{1}\in I_{1},\ldots,i_{n}\in I_{n}, ϵ(i1,,in)\epsilon(i_{1},\ldots,i_{n}) is the signature of the permutation which brings i1,,ini_{1},\ldots,i_{n} to the first nn slots of I1InI_{1}\bullet\cdots\bullet I_{n}. Last, for isIsi_{s}\in I_{s}, we define Isis:=Is\isI_{s}^{i_{s}}:=I_{s}\backslash i_{s}.

To understand this structure, let us first define a sequence of degree +1+1 graded symmetric polyderivations on 𝔛(V)\mathfrak{X}^{\bullet}(V) (by convention, ii-vector fields are of degree i+1-i+1) by:

{i1,,ik}k:=kφxi1xik.\left\{\partial_{i_{1}},\ldots,\partial_{i_{k}}\right\}_{k}^{\prime}:=\frac{\partial^{k}\varphi}{\partial x_{i_{1}}\cdots\partial x_{i_{k}}}. (47)

We extend them to a graded poly-derivation of 𝔛(V)\mathfrak{X}^{\bullet}(V).

Lemma 3.13.

The poly-derivations ({}k)k1(\left\{\cdots\right\}_{k}^{\prime})_{k\geq 1} are 𝒪\mathcal{O}-multilinear and equip 𝔛(V)\mathfrak{X}^{\bullet}(V) with a (graded symmetric) Poisson \infty-algebra structure. Also, {}1=ιdφ\{\cdot\}_{1}^{\prime}=\iota_{\mathrm{d}\varphi}.

Proof.

For degree reason, {F,X1,,Xk1}k=0\left\{F,X_{1},\dots,X_{k-1}\right\}_{k}^{\prime}=0 for all X1,,Xk1𝔛(V)X_{1},\dots,X_{k-1}\in\mathfrak{X}^{\bullet}(V) and all F𝔛0(V)=𝒪F\in\mathfrak{X}^{0}(V)=\mathcal{O}. This implies the required 𝒪\mathcal{O}-multilinearity. It is clear that the higher Jacobi identities hold since brackets of generators {δi1,,δin}\{\delta_{i_{1}},\cdots,\delta_{i_{n}}\}^{\prime} are elements in 𝒪\mathcal{O}, and all brackets are zero when applied an element in 𝒪\mathcal{O}. ∎

Proof (of Proposition 3.12).

The brackets introduced in Proposition 3.12 are modifications of the Poisson {\infty}-algebra described in Lemma 3.13. By construction, {}n={}n\left\{\cdots\right\}^{{}^{\prime}}_{n}=\left\{\cdots\right\}_{n} when all arguments are generators of the form I\partial_{I} for some I{1,n}I\subset\{1\dots,n\} of cardinal 2\geq 2. By 𝒪\mathcal{O}-multilinearity, this implies {}n={}n\left\{\cdots\right\}^{{}^{\prime}}_{n}=\left\{\cdots\right\}_{n} when n3n\geq 3, or when n=2n=2 and no argument is a bivector-field, or when n=1n=1 and the argument is not a bivector field. As a consequence, all higher Jacobi identities hold when applied to nn-vector fields with n3n\geq 3.

Let us see what happens when one of the arguments is a bivector field, i.e. in the case where we deal with at least an element of degree 1-1. Let us assume that there is one such element, i.e. Q1=ij,Q2=I2,,Qn=InQ_{1}=\partial_{i}\wedge\partial_{j},\,Q_{2}=\partial_{I_{2}},\,\ldots,Q_{n}=\partial_{I_{n}} with |Ij|3,j=2,,n\lvert I_{j}\rvert\geq 3,\;j=2,\ldots,n. Then, in view of the higher Jacobi identity for the Poisson \infty-brackets ({}k)k1(\{\cdots\}_{k}^{\prime})_{k\geq 1} gives:

0=2kn2\displaystyle 0=\sum_{2\leq k\leq n-2} σSk,nkϵ(σ){{Qσ(1),,Qσ(k)}k,Qσ(k+1),,Qσ(n)}nk+1\displaystyle\sum_{\sigma\in S_{k,n-k}}\epsilon(\sigma)\left\{\left\{Q_{\sigma(1)},\ldots,Q_{\sigma(k)}\right\}_{k}^{\prime},Q_{\sigma(k+1)},\ldots,Q_{\sigma(n)}\right\}_{n-k+1}^{\prime} (48)
+σSn1,1,σ(n)1ϵ(σ){{Qσ(1),,Qσ(n1)}n1,Qσ(n)}2\displaystyle+\sum_{\sigma\in S_{n-1,1},\sigma(n)\neq 1}\epsilon(\sigma)\left\{\left\{Q_{\sigma(1)},\ldots,Q_{\sigma(n-1)}\right\}_{n-1}^{\prime},Q_{\sigma(n)}\right\}_{2}^{\prime} (49)
+σS1,n1,σ(1)1ϵ(σ){{Qσ(1)}1,Qσ(2),Qσ(n)}n\displaystyle+\sum_{\sigma\in S_{1,n-1},\sigma(1)\neq 1}\epsilon(\sigma)\left\{\left\{Q_{\sigma(1)}\right\}_{1}^{\prime},Q_{\sigma(2)}\ldots,Q_{\sigma(n)}\right\}_{n}^{\prime} (50)
+(1)k=2n|Ik|{{Q2,,Qn}n1,Q1}2\displaystyle+(-1)^{\sum_{k=2}^{n}\lvert\partial_{I_{k}}\rvert}\left\{\left\{Q_{2},\ldots,Q_{n}\right\}_{n-1}^{\prime},Q_{1}\right\}_{2}^{\prime} (51)
+{{Q1}1,Qσ(2),Qσ(n)}n.\displaystyle+\left\{\left\{Q_{1}\right\}_{1}^{\prime},Q_{\sigma(2)}\ldots,Q_{\sigma(n)}\right\}_{n}^{\prime}. (52)

In lines (48)-(49)-(50) above, we have {}={}\{\cdots\}^{\prime}=\{\cdots\} for all the terms involved. This is not the case for (51)-(52). Indeed:

{{I2,,In}n1,ij}2\displaystyle\left\{\left\{\partial_{I_{2}},\cdots,\partial_{I_{n}}\right\}^{{}^{\prime}}_{n-1},\partial_{i}\wedge\partial_{j}\right\}^{{}^{\prime}}_{2} ={{I2,,In}n1,ij}2\displaystyle=\left\{\left\{\partial_{I_{2}},\cdots,\partial_{I_{n}}\right\}_{n-1},\partial_{i}\wedge\partial_{j}\right\}_{2}
i2I2,,inInϵ(i2,,in)ρ(ij)[φi2in]I2i2Inin\displaystyle-\sum_{i_{2}\in I_{2},\ldots,i_{n}\in I_{n}}\epsilon(i_{2},\ldots,i_{n})\rho(\partial_{i}\wedge\partial_{j})[\varphi_{i_{2}\cdots i_{n}}]\,\partial_{I_{2}^{i_{2}}\bullet\cdots\bullet I_{n}^{i_{n}}}

and

{{ij}1,I2,In}n\displaystyle\left\{\left\{\partial_{i}\wedge\partial_{j}\right\}_{1}^{\prime},\partial_{I_{2}}\ldots,\partial_{I_{n}}\right\}_{n}^{\prime} =(1)k=2n|Ik|+1(φi{j,I2,In}nφj{i,I2,In}n)\displaystyle=(-1)^{\sum_{k=2}^{n}\lvert\partial_{I_{k}}\rvert+1}\left(\varphi_{i}\left\{\partial_{j},\partial_{I_{2}}\ldots,\partial_{I_{n}}\right\}_{n}^{\prime}-\varphi_{j}\left\{\partial_{i},\partial_{I_{2}}\ldots,\partial_{I_{n}}\right\}_{n}^{\prime}\right)
=(1)k=2n|Ik|i2I2,,inInϵ(i2,,in)ιdφ(ij)[φi2in]I2i2Inin\displaystyle=-(-1)^{\sum_{k=2}^{n}\lvert\partial_{I_{k}}\rvert}\sum_{i_{2}\in I_{2},\ldots,i_{n}\in I_{n}}\epsilon(i_{2},\ldots,i_{n})\iota_{\mathrm{d}\varphi}(\partial_{i}\wedge\partial_{j})[\varphi_{i_{2}\cdots i_{n}}]\,\partial_{I_{2}^{i_{2}}\bullet\cdots\bullet I_{n}^{i_{n}}}
=(1)k=2n|Ik|i2I2,,inInϵ(i2,,in)ρ(ij)[φi2in]I2i2Inin\displaystyle=(-1)^{\sum_{k=2}^{n}\lvert\partial_{I_{k}}\rvert}\sum_{i_{2}\in I_{2},\ldots,i_{n}\in I_{n}}\epsilon(i_{2},\ldots,i_{n})\rho(\partial_{i}\wedge\partial_{j})[\varphi_{i_{2}\cdots i_{n}}]\,\partial_{I_{2}^{i_{2}}\bullet\cdots\bullet I_{n}^{i_{n}}}

since ρ=ιdφ\rho=-\iota_{\mathrm{d}\varphi}. Hence the quantities in lines (52) and (51) add up, when we re-write them in term of the new brackets {}k\left\{\cdots\right\}_{k}, to yield precisely the higher Jacobi identity for this new bracket. It is then not difficult to see this is still the case if there is more than one bivector field, by using many times the same computations. ∎

3.2.2. Restriction to φ=0\varphi=0 of vector fields annihilating φ\varphi

We keep the convention and notations of the previous section. Let us consider the restriction 𝔦Wφ\mathfrak{i}_{W}^{*}\mathcal{F}_{\varphi} of the Lie-Rinehart algebra φ\mathcal{F}_{\varphi} to the zero-locus WW of a Koszul polynomial φ\varphi. Since all vector fields in φ\mathcal{F}_{\varphi} are tangent to WW, this restriction is now a Lie-Rinehart algebra over 𝒪W=𝒪𝒪φ\mathcal{O}_{W}=\tfrac{\mathcal{O}}{\mathcal{O}\varphi} (see Example 1.1).

Proposition 3.14.

Let φ\varphi be a Koszul Polynomial. The restriction of the universal Lie \infty-algebroid of Proposition 3.12 to the zero-locus WW of φ\varphi is a universal Lie \infty-algebroid of the Lie-Rinehart algebra 𝔦Wφ\mathfrak{i}_{W}^{*}\mathcal{F}_{\varphi}.

Since the image of its anchor map are vector fields tangent to WW, it is clear that the universal Lie \infty-algebroid of Proposition 3.12 restricts to WW. To prove Proposition 3.14, it suffices to check that the restriction 𝔦W𝔛(V)\mathfrak{i}_{W}^{*}\mathfrak{X}(V) to WW of the Koszul complex is still exact, except in degree 0. This is a simple lemma, whose proof is left to the reader.

Lemma 3.15.

The restriction to the zero locus WW of φ\varphi of the Koszul complex (42), namely the complex

ιdφ𝔦W𝔛3(V)ιdφ𝔦W𝔛2(V)ιdφ𝔦W\ldots\xrightarrow{\iota_{\text{d}\varphi}}\mathfrak{i}_{W}^{*}\mathfrak{X}^{3}(V)\xrightarrow{\iota_{\text{d}\varphi}}\mathfrak{i}_{W}^{*}\mathfrak{X}^{2}(V)\xrightarrow{\iota_{\text{d}\varphi}}\mathfrak{i}_{W}^{*}\mathcal{F}

is a free resolution of 𝔦W\mathfrak{i}_{W}^{*}\mathcal{F} in the category of 𝒪W\mathcal{O}_{W}-modules.

3.2.3. Vector fields vanishing on subsets of a vector space

Let 𝒪\mathcal{O} be the algebra of smooth or holomorphic or polynomial or formal functions on 𝕂d\mathbb{K}^{d}, and 𝒪\mathcal{I}\subset\mathcal{O} be an ideal. Then Der(𝒪)\mathcal{I}{\mathrm{Der}}(\mathcal{O}), i.e. vector fields of the form: i=1dfixi\sum_{i=1}^{d}f_{i}\frac{\partial}{\partial x_{i}}, with f1,,fdf_{1},\dots,f_{d}\in\mathcal{I}, is a Lie-Rinehart algebra.

Remark 3.16.

Geometrically, when \mathcal{I} corresponds to functions vanishing on a sub-variety N𝕂nN\subset\mathbb{K}^{n}, Der(𝒪)\mathcal{I}{\mathrm{Der}}(\mathcal{O}) must be interpreted as vector fields vanishing along NN.

Let us describe a Lie \infty-algebroid that terminates at Der(𝒪)\mathcal{I}{\mathrm{Der}}(\mathcal{O}), then discuss when it is universal. Let (φi)iI(\varphi_{i})_{i\in I} be generators of \mathcal{I}. Consider the free graded algebra 𝒦=𝒪[(μi)iI]\mathcal{K}=\mathcal{O}[(\mu_{i})_{i\in I}] generated by variables (μi)iI(\mu_{i})_{i\in I} of degree 1-1. The degree 1-1 derivation :=iIφiμi\partial:=\sum_{i\in I}\varphi_{i}\frac{\partial}{\partial\mu_{i}} squares to zero. The 𝒪\mathcal{O}-module 𝒦j\mathcal{K}_{-j} of elements degree jj in 𝒦\mathcal{K}_{\bullet} is made of all sums i1,,ijIfi1ijμi1μij\sum_{i_{1},\dots,i_{j}\in I}f_{i_{1}\dots i_{j}}\mu_{i_{1}}\cdots\mu_{i_{j}} with fi1ij𝒪f_{i_{1}\dots i_{j}}\in\mathcal{O}. Consider the complex of free 𝒪\mathcal{O}-modules

𝒪id𝒦2𝒪Der(𝒪)𝒪id𝒦1𝒪Der(𝒪)\cdots\stackrel{{\scriptstyle\partial\otimes_{\mathcal{O}}\text{id}}}{{\longrightarrow}}\mathcal{K}_{-2}\otimes_{\mathcal{O}}{\mathrm{Der}}(\mathcal{O})\stackrel{{\scriptstyle\partial\otimes_{\mathcal{O}}\text{id}}}{{\longrightarrow}}\mathcal{K}_{-1}\otimes_{\mathcal{O}}{\mathrm{Der}}(\mathcal{O}) (53)
Proposition 3.17.

The complex (53) comes equipped with a Lie \infty-algebroid structure that terminates in Der(𝒪)\mathcal{I}{\mathrm{Der}}(\mathcal{O}) through the anchor map given by μixjφixj\mu_{i}\frac{\partial}{\partial x_{j}}\mapsto\varphi_{i}\frac{\partial}{\partial x_{j}} for all iIi\in I, and j1,,dj\in 1,\dots,d.

Proof.

First, one defines a 𝒪\mathcal{O}-linear Poisson-\infty-algebra structure on the free algebra generated by (μi)iI(\mu_{i})_{i\in I} (in degree 1-1) and (xj)j=1d\left(\frac{\partial}{\partial x_{j}}\right)_{j=1}^{d} (in degree 0) and 11 by:

{μi,xj1,,xjr}r+1:=rφixi1xir  \left\{\mu_{i},{\frac{\partial}{\partial x_{j_{1}}}},\ldots,\frac{\partial}{\partial x_{j_{r}}}\right\}_{r+1}^{\prime}:=\frac{\partial^{r}\varphi_{i}}{\partial x_{i_{1}}\dots\partial x_{i_{r}} }  (54)

all other brackets of generators being equal to 0. Since the brackets of generators take values in 𝒪\mathcal{O}, and since an nn-ary bracket where an element of 𝒪\mathcal{O} appears is zero, this is easily seen to be a Poisson \infty-structure. The general formula is

{μI1𝒪xa1,,μIn𝒪xan}n:=j=1,,nijIjϵn1φijxa1x^ajxanμI1μIjijμIn𝒪xaj,\left\{\mu_{I_{1}}\otimes_{\mathcal{O}}\partial_{x_{a_{1}}},\ldots,\mu_{I_{n}}\otimes_{\mathcal{O}}\partial_{x_{a_{n}}}\right\}_{n}^{\prime}:=\sum_{\hbox{\scalebox{0.5}{$\begin{array}[]{c}j=1,\dots,n\\ i_{j}\in I_{j}\end{array}$}}}\epsilon\frac{\partial^{n-1}\varphi_{i_{j}}}{\partial x_{a_{1}}\cdots\widehat{\partial x}_{a_{j}}\cdots\partial x_{a_{n}}}\mu_{I_{1}}\cdots\mu_{I_{j}}^{i_{j}}\cdots\mu_{I_{n}\otimes_{\mathcal{O}}\partial_{x_{a_{j}}}}, (55)

where μJ=μj1μjs\mu_{J}=\mu_{j_{1}}\dots\mu_{j_{s}} for every list J={j1,,js}J=\{j_{1},\dots,j_{s}\}, where ϵ\epsilon is the Koszul sign, and where for a list JJ containing jj, JjJ^{j} stands for the list JJ from which the element jj is crossed out, as in Equation (45).

The 𝒪\mathcal{O}-module generated by μi1μik𝒪xa\mu_{i_{1}}\cdots\mu_{i_{k}}\otimes_{\mathcal{O}}\partial_{x_{a}} , i.e. the complex (53) is easily seen to be stable under the brackets {}k\{\cdots\}_{k}^{\prime} for all k1k\geq 1, so that we can define on 𝒦𝒪Der(𝒪)\mathcal{K}\otimes_{\mathcal{O}}{\mathrm{Der}}(\mathcal{O}) a sequence of brackets (k={}k)k1(\ell_{k}=\{\cdots\}_{k})_{k\geq 1} by letting them coincide with the previous brackets on the generators, i.e. {}n\{\cdots\}_{n} is given by Equation (55) for all n1n\geq 1. The brackets are then extended by derivation, 𝒪\mathcal{O}-linearity or Leibniz identity with respect to the given anchor map, depending on the degree. In particular, {}k={}k\{\cdots\}^{\prime}_{k}=\{\cdots\}_{k} for k2k\geq 2. For k=1k=1, {}1={}1\{\cdots\}^{\prime}_{1}=\{\cdots\}_{1} on i2𝒦i𝒪Der(𝒪)\oplus_{i\geq 2}\mathcal{K}_{-i}\otimes_{\mathcal{O}}{\mathrm{Der}}(\mathcal{O}). For k=2k=2, we still have {}2={}2\{\cdots\}^{\prime}_{2}=\{\cdots\}_{2} on i,j2𝒦i𝒦j𝒪Der(𝒪)\oplus_{i,j\geq 2}\mathcal{K}_{-i}\odot\mathcal{K}_{-j}\otimes_{\mathcal{O}}{\mathrm{Der}}(\mathcal{O}).

Let us verify that all required axioms are satisfied. For n=2n=2, Equation (55) specializes to:

2(μi𝒪xa,μj𝒪xb)=φjxaμi𝒪xbφixbμj𝒪xa\displaystyle\ell_{2}(\mu_{i}\otimes_{\mathcal{O}}\partial_{x_{a}},\mu_{j}\otimes_{\mathcal{O}}\partial_{x_{b}})=\frac{\partial\varphi_{j}}{\partial x_{a}}\,\mu_{i}\otimes_{\mathcal{O}}\partial_{x_{b}}-\frac{\partial\varphi_{i}}{\partial x_{b}}\,\mu_{j}\otimes_{\mathcal{O}}\partial_{x_{a}}

which proves that the anchor map is a morphism when compared with the relation:

[φixa,φjxb]=φjxaφixbφixbφjxa.\left[\varphi_{i}\partial_{x_{a}}\,,\,\varphi_{j}\partial_{x_{b}}\right]=\frac{\partial\varphi_{j}}{\partial x_{a}}\,\varphi_{i}\,\partial_{x_{b}}-\frac{\partial\varphi_{i}}{\partial x_{b}}\,\varphi_{j}\,\partial_{x_{a}}.

The higher Jacobi identities are checked on generators as follows:

  1. (1)

    When there are no degree 1-1 generators, it follows from the higher Jacobi identities of the Poisson \infty-structure (54) and the 𝒪\mathcal{O}-multilinearity of all Lie \infty-algebroid brackets involved.

  2. (2)

    When generators of degree 1-1 are involved, the higher Jacobi identities are obtained by doing the same procedure as in the proof of Proposition 3.13, that is, we first consider the higher Jacobi identities for the Poisson \infty-structure (54), and we put aside the terms where {}1\{\cdot\}_{1} is applied to these degree 1-1 generators. We then check that the latter terms are exactly the terms coming from an anchor map when the 22-ary bracket is applied to generators of degree 1-1 and the (n1)(n-1)-ary brackets of the remaining generators.

Proposition 3.18.

When 𝒪=[x1,,xn]\mathcal{O}=\mathbb{C}[x_{1},\dots,x_{n}], and when NnN\subset\mathbb{C}^{n} is an affine variety defined by a regular sequence φ1,,φk\varphi_{1},\dots,\varphi_{k}, then the Lie \infty-algebroid described in Proposition 3.17 is the universal Lie \infty-algebroid of the singular foliation of vector fields vanishing along NN.

Proof.

For a regular sequence φ1,,φk\varphi_{1},\dots,\varphi_{k}, 𝒦\mathcal{K}_{\bullet} equipped with the derivation =i=1kφiμk\partial=\sum_{i=1}^{k}\varphi_{i}\frac{\partial}{\partial\mu_{k}} is a free 𝒪\mathcal{O}-resolution of the ideal N\mathcal{I}_{N} of functions vanishing along NN. Since Der(𝒪){\mathrm{Der}}(\mathcal{O}) is a flat 𝒪\mathcal{O}-module, the sequence

\textstyle{\cdots\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪id\scriptstyle{\partial\otimes_{\mathcal{O}}\text{id}}𝒦2𝒪Der(𝒪)\textstyle{\mathcal{K}_{-2}\otimes_{\mathcal{O}}{\mathrm{Der}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪id\scriptstyle{\partial\otimes_{\mathcal{O}}\text{id}}𝒦1𝒪Der(𝒪)\textstyle{\mathcal{K}_{-1}\otimes_{\mathcal{O}}{\mathrm{Der}}(\mathcal{O})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒪id\scriptstyle{\partial\otimes_{\mathcal{O}}\text{id}}NDer(𝒪).\textstyle{\mathcal{I}_{N}{\mathrm{Der}}(\mathcal{O}).} (56)

is a free 𝒪\mathcal{O}-resolution of the singular foliation NDer(𝒪)\mathcal{I}_{N}{\mathrm{Der}}(\mathcal{O}). The Lie \infty-algebroid structure of Proposition 3.17 is therefore universal. ∎

Example 3.19.

As a special case of the Proposition 3.18, let us consider a complete intersection defined by one function, i.e. an affine variety WW whose ideal φ\langle\varphi\rangle is generated by a regular polynomial φ[X1,,Xd]\varphi\in\mathbb{C}[X_{1},\ldots,X_{d}]. One has a free resolution of the space of vector fields vanishing on WW given as follows:

0𝒪μ𝒪𝔛(d)φμ𝒪idIW𝔛d,\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 5.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathcal{O}\mu\otimes_{\mathcal{O}}\mathfrak{X}(\mathbb{C}^{d})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 93.47682pt\raise 6.95833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.73611pt\hbox{$\scriptstyle{\varphi\frac{\partial}{\partial\mu}\otimes_{\mathcal{O}}\text{id}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 143.07358pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 113.07358pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 143.07358pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{I_{W}\mathfrak{X}_{\mathbb{C}^{d}}}$}}}}}}}\ignorespaces}}}}\ignorespaces,

where μ\mu is a degree 1-1 variable, so that μ2=0\mu^{2}=0. The universal Lie \infty-algebroid structure over that resolution is given on the set of generators by :

{μ𝒪xa,μ𝒪xb}2:=φxaμ𝒪xbφxbμ𝒪xa\{\mu\otimes_{\mathcal{O}}\partial_{x_{a}},\mu\otimes_{\mathcal{O}}\partial_{x_{b}}\}_{2}:=\frac{\partial\varphi}{\partial x_{a}}\mu\otimes_{\mathcal{O}}\partial_{x_{b}}-\frac{\partial\varphi}{\partial x_{b}}\mu\otimes_{\mathcal{O}}\partial_{x_{a}}

and {}k:=0\{\cdots\}_{k}:=0 for every k3k\geq 3. It is a Lie algebroid structure. Notice that this construction could be also be recovered using Section 3.1.4.

3.3. Universal Lie \infty-algebroids associated to an affine variety WW

This section is mainly programmatic. It explains how we can attach the purely algebraic objects “universal Lie \infty-algebroids” to the geometric objects “affine varieties”. Their relations will be studied in a future article. For any affine variety WW over \mathbb{C}, with ring of function 𝒪W\mathcal{O}_{W}, derivations of WW (i.e. vector fields on WW) are a Lie-Rinehart algebra over 𝒪W\mathcal{O}_{W} denoted 𝔛W\mathfrak{X}_{W}. Its universal Lie-\infty-algebroid can therefore be constructed.

Definition 3.20.

We call universal Lie \infty-algebroid of an affine variety WW any Lie-\infty-algebroid associated to its Lie-Rinehart algebra 𝔛W\mathfrak{X}_{W} of vector fields on WW.

Let us state a few results about the universal Lie \infty-algebroid of an affine variety WW. For every point x0Wx_{0}\in W, let 𝒪W,x0\mathcal{O}_{W,x_{0}} be the algebra of germs of functions at x0x_{0}. The germ at x0x_{0} of the Lie-Rinehart algebra of vector fields on WW is easily checked to coincide with the Lie-Rinehart algebra of derivations of 𝒪W,x0\mathcal{O}_{W,x_{0}}.

Here is an immediate consequence of Proposition 3.3.

Proposition 3.21.

Let WW be an affine variety. For every x0Wx_{0}\in W, the germ at x0x_{0} of the universal Lie \infty-algebroid of WW is the universal Lie \infty-algebroid of Der(𝒪W,x0){\mathrm{Der}}(\mathcal{O}_{W,x_{0}}).

Let us choose x0Wx_{0}\in W. As stated in Section 3.1.2, the Lie \infty-algebroid structure of WW over x0x_{0} restricts at x0x_{0} (i.e. goes to the quotient with respect to the ideal 𝔪x0\mathfrak{m}_{x_{0}}) if and only if ρ(1)[𝔪x0]𝔪x0\rho_{\mathcal{E}}(\mathcal{E}_{-1})[\mathfrak{m}_{x_{0}}]\subseteq\mathfrak{m}_{x_{0}}, (i.e 𝔪x0\mathfrak{m}_{x_{0}} is a Lie-Rinehart ideal). This is the case, in particular, if x0x_{0} is an isolated singular point. In that case, we obtain a Lie \infty-algebroid over 𝒪W/𝔪x0\mathcal{O}_{W}/\mathfrak{m}_{x_{0}}. Since this quotient is the base field 𝕂\mathbb{K}, we obtain in fact a Lie \infty-algebra. By Section 3.1.2 again, it is a Lie \infty-algebra on Tor𝒪W(𝔛W,){\mathrm{Tor}}_{\mathcal{O}_{W}}(\mathfrak{X}_{W},\mathbb{C}). We call it the Lie \infty-algebra of the isolated singular point x0x_{0}. To describe this structure, let us start with the following Lemma.

Lemma 3.22.

Let x0x_{0} be a point of an affine variety WW. The universal Lie \infty-algebroid of Der(𝒪W,x0){\mathrm{Der}}(\mathcal{O}_{W,x_{0}}) can be constructed on a resolution ((ix0)i1,1,π)((\mathcal{E}_{-i}^{x_{0}})_{i\geq 1},\ell_{1},\pi), with ix0\mathcal{E}_{-i}^{x_{0}} free 𝒪W,x0\mathcal{O}_{W,x_{0}}-modules of finite rank for all i1i\geq 1, which is minimal in the sense that 1(i1)𝔪x0i\ell_{1}(\mathcal{E}_{-i-1})\subset\mathfrak{m}_{x_{0}}\mathcal{E}_{-i} for all i1i\geq 1.

Proof.

Since Noetherian property is stable by passage to localization, the ring 𝒪W,x0\mathcal{O}_{W,x_{0}} is a Noetherian local ring. Proposition 8.2 in [32] assures that 𝒪W,x0𝒪WDer(𝒪W)\mathcal{O}_{W,x_{0}}\otimes_{\mathcal{O}_{W}}\text{Der}(\mathcal{O}_{W}) admits a free minimal resolution by free finitely generated 𝒪W,x0\mathcal{O}_{W,x_{0}}-modules. Since 𝒪W,x0\mathcal{O}_{W,x_{0}} is a local ring with maximal idea 𝔪x0\mathfrak{m}_{x_{0}}, we can assume that this resolution is minimal. In view of Theorem 2.1, there exists a Lie \infty-algebroid structure over this resolution, and the latter is universal for Der(𝒪W,x0){\mathrm{Der}}(\mathcal{O}_{W,x_{0}}). ∎

By Theorem 2.1, a resolution of Der(𝒪W,x0){\mathrm{Der}}(\mathcal{O}_{W,x_{0}}) as in Lemma 3.22 comes equipped with a universal Lie \infty-algebroid structure for Der(𝒪W,x0){\mathrm{Der}}(\mathcal{O}_{W,x_{0}}). The quotient with respect to 𝔪x0\mathfrak{m}_{x_{0}} is a Lie \infty-algebra of the isolated singular point x0x_{0} with trivial 11-ary bracket. Using Corollary 2.11 and its subsequent discussion, we can prove the next statement.

Proposition 3.23.

For any universal Lie \infty-algebroid structure on a resolution of Der(𝒪W,x0){\mathrm{Der}}(\mathcal{O}_{W,x_{0}}) as in Lemma 3.22, the quotient with respect to the ideal 𝔪x0\mathfrak{m}_{x_{0}} is a representative of the Lie \infty-algebra of the isolated singular point x0x_{0}, with trivial 11-ary bracket, on a graded vector space canonically isomorphic to Tor𝒪W(𝔛W,){\mathrm{Tor}}_{\mathcal{O}_{W}}(\mathfrak{X}_{W},\mathbb{C}) (\mathbb{C} being a 𝒪W\mathcal{O}_{W}-module through evaluation at x0x_{0}).

In particular, its 22-ary bracket is a graded Lie bracket on Tor𝒪W(𝔛W,){\mathrm{Tor}}_{\mathcal{O}_{W}}(\mathfrak{X}_{W},\mathbb{C}) which does not depend on any choice made in the construction, and its 33-ary bracket is a Chevalley-Eilenberg cocycle whose class is also canonical.

This discussion leads to the natural question:

Question. How is the geometry of an affine variety related to its universal Lie \infty-algebroid?

This will be the topic of a forthcoming article.

References

  • [1] Gathmann Andreas. Commutative Algebra. Class Notes TU Kaiserslautern 2013/14.
  • [2] Iakovos Androulidakis and Marco Zambon. Smoothness of holonomy covers for singular foliations and essential isotropy. Mathematische Zeitschrift, 275(3):921–951, 2013.
  • [3] Iakovos Androulidakis and Marco Zambon. Integration of Singular Algebroids, https://arxiv.org/abs/2008.07976. arXiv, 2018.
  • [4] Giuseppe Bonavolontà and Norbert Poncin. On the category of Lie nn-algebroids. J. Geom. Phys., 73:70–90, 2013.
  • [5] Ricardo Campos. BV formality. Adv. Math., 306:807–851, 2017.
  • [6] Ricardo Campos. Homotopy equivalence of shifted cotangent bundles. J. Lie Theory, 29(3):629–646, 2019.
  • [7] Alberto S. Cattaneo and Giovanni Felder. Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model. Lett. Math. Phys., 69:157–175, 2004.
  • [8] Dominique Cerveau. Distributions involutives singulières. Ann. Inst. Fourier (Grenoble), 29(3):xii, 261–294, 1979.
  • [9] Weibel Charles. An introduction to homological algebra / Charles A. Weibel. Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge New York (N. Y.) Melbourne, 2014.
  • [10] Zhuo Chen, Mathieu Stiénon, and Ping Xu. From Atiyah classes to homotopy Leibniz algebras. Comm. Math. Phys., 341(1):309–349, 2016.
  • [11] Pierre Dazord. Feuilletages à singularités. Indag. Math., 47:21–39, 1985.
  • [12] Claire Debord. Holonomy Groupoids of Singular Foliations. J. Differential Geom., 58(3):467–500, 07 2001.
  • [13] David Eisenbud. Commutative algebra. With a view toward algebraic geometry, volume 150. Berlin: Springer-Verlag, 1995.
  • [14] Yaël Frégier and Rigel A. Juarez-Ojeda. Homotopy theory of singular foliations. arXiv 1811.03078, 2018.
  • [15] Alfred Frölicher and Albert Nijenhuis. Theory of vector-valued differential forms. I: Derivations in the graded ring of differential forms. Nederl. Akad. Wet., Proc., Ser. A, 59:338–350, 351–359, 1956.
  • [16] Robin Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer New York, New York, NY, 1st ed. 1977. edition, 1977.
  • [17] Matsumura Hideyuki. Commutative ring theory / Hideyuki Matsumura,… ; translated by M. Reid. Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge, [edition with corrections] edition, 1989.
  • [18] Johannes Huebschmann. Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras. Ann. Inst. Fourier (Grenoble), 48(2):425–440, 1998.
  • [19] Johannes Huebschmann. Lie-Rinehart algebras, descent, and quantization, volume 43 of Fields Inst. Commun. Amer. Math. Soc., Providence, RI, 2004.
  • [20] Maxim Kapranov. Rozansky-Witten invariants via Atiyah classes. Compositio Math., 115(1):71–113, 1999.
  • [21] Christian Kassel. Quantum Groups, volume 155 of Graduate Texts in Mathematics. Springer, 2012.
  • [22] Lars Kjeseth. A homotopy lie-rinehart resolution and classical brst cohomology. Homology, Homotopy and Applications, 3(8):165–192, 2001.
  • [23] Lars Kjeseth. Homotopy rinehart cohomology of homotopy lie-rinehart pairs. Homology, Homotopy and Applications, 3(7):139–163, 2001.
  • [24] Ivan Kolář, Peter W. Michor, and Jan Slovák. Natural operations in differential geometry. Springer-Verlag, Berlin, 1993.
  • [25] Maxim Kontsevich. Deformation quantization of Poisson manifolds. Lett. Math. Phys., 66(3):157–216, 2003.
  • [26] Yvette Kosmann-Schwarzbach. Derived Brackets. Letters in mathematical physics, 69(1):61–87, 2004.
  • [27] Tom Lada and Jim Stasheff. Introduction to SH Lie algebras for physicists. International journal of theoretical physics, 32(7):1087–1103, 1993.
  • [28] Camille Laurent-Gengoux, Sylvain Lavau, and Thomas Strobl. The universal Lie \infty-algebroid of a singular foliation. Doc. Math., 25:1571–1652, 2020.
  • [29] Camille Laurent-Gengoux, Mathieu Stiénon, and Ping Xu. Poincaré-Birkhoff-Witt isomorphisms and Kapranov dg-manioflds. Advances in Mathematics, 2021.
  • [30] Sylvain Lavau. Lie \infty-algebroids and singular foliations. Ph-D 2017.
  • [31] Kirill C. H. Mackenzie. General theory of Lie groupoids and Lie algebroids, volume 213 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2005.
  • [32] Jon Peter May. Cohen-Macauley and regular local rings. On-line 06-2021, https://www.math.uchicago.edu/ ~\tilde{}may/MISC/RegularLocal.pdf.
  • [33] Hisham Sati, Urs Schreiber, and Jim Stasheff. Twisted differential string and fivebrane structures. Comm. Math. Phys., 315(1):169–213, 2012.
  • [34] Hsian-Hua Tseng and Chenchang Zhu. Integrating Lie algebroids via stacks. Compos. Math., 142(1):251–270, 2006.
  • [35] Joel Villatoro. On sheaves of Lie-Rinehart algebras. Arxiv.org/pdf/2010.15463, 2020.
  • [36] Luca Vitagliano. On the strong homotopy associative algebra of a foliation. Commun. Cont. Math., 2015.
  • [37] Luca Vitagliano. Representations of homotopy Lie-Rinehart algebras. Math. Proc. Camb. Phil. Soc., 158:155–191, 2015.
  • [38] Theodore Voronov. Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra, 202(1-3):133–153, 2005.
  • [39] Theodore Voronov. QQ-manifolds and higher analogs of Lie algebroids. In XXIX Workshop on Geometric Methods in Physics, volume 1307 of AIP Conf. Proc., pages 191–202. Amer. Inst. Phys., Melville, NY, 2010.
  • [40] Pavol Ševera and Michal Širaň. Integration of differential graded manifolds. Int. Math. Res. Not. IMRN, (20):6769–6814, 2020.
  • [41] Marco Zambon. Holonomy transformations for Lie subalgebroids, arxiv/2103.10409. arXiv, 2018.
  • [42] Marco Zambon and Iakovos Androulidakis. Singular subalgebroids, arxiv/1805.02480.pdf. arXiv, 2018.
  • [43] Pavol Ševera. Some title containing the words “homotopy” and “symplectic”, e.g. this one, arxiv:0105080. arXiv, 2001.