This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Lexicographical ordering of hypergraphs via spectral moments

Hong Zhou Changjiang Bu [email protected] College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, PR China
Abstract

The lexicographical ordering of hypergraphs via spectral moments is called the SS-order of hypergraphs. In this paper, the SS-order of hypergraphs is investigated. We characterize the first and last hypergraphs in an SS-order of all uniform hypertrees and all linear unicyclic uniform hypergraphs with given girth, respectively. And we give the last hypergraph in an SS-order of all linear unicyclic uniform hypergraphs.

keywords:
hypergraph, spectral moment, adjacency tensor
AMS classification (2020): 05C65, 15A18

1 Introduction

Let GG be a simple undirected graph with nn vertices and AA be the adjacency matrix of GG. The ddth order spectral moment of GG is the sum of dd powers of all the eigenvalues of AA, denoted by Sd(G)\mathrm{S}_{d}(G) [1]. For two graphs G1,G2G_{1},G_{2} with nn vertices, if Si(G1)=Si(G2)\mathrm{S}_{i}(G_{1})=\mathrm{S}_{i}(G_{2}) for i=0,1,2,,n1i=0,1,2,\ldots,n-1, then adjacency matrices of G1G_{1} and G2G_{2} have the same spectrum. Therefore, Si(G1)=Si(G2)\mathrm{S}_{i}(G_{1})=\mathrm{S}_{i}(G_{2}) for i=0,1,2,i=0,1,2,\ldots. We write G1sG2G_{1}\prec_{s}G_{2} (G1G_{1} comes before G2G_{2} in an SS-order) if there exists a k{1,2,,n1}k\in\{1,2,\ldots,n-1\} such that Si(G1)=Si(G2)\mathrm{S}_{i}(G_{1})=\mathrm{S}_{i}(G_{2}) for i=0,1,2,,k1i=0,1,2,\ldots,k-1 and Sk(G1)<Sk(G2)\mathrm{S}_{k}(G_{1})<\mathrm{S}_{k}(G_{2}). We write G1=sG2G_{1}=_{s}G_{2}, if Si(G1)=Si(G2)\mathrm{S}_{i}(G_{1})=\mathrm{S}_{i}(G_{2}) for i=0,1,2,,n1i=0,1,2,\ldots,n-1.

In 1987, Cvetković and Rowlinson [2] characterized the first and last graphs in an SS-order of all trees and all unicyclic graphs with given girth, respectively. Other works on the SS-order of graphs can be referred to [3, 4, 5, 6, 7, 8]. The SS-order of graphs had been used in producing graph catalogues [9].

In this paper, the SS-order of hypergraphs is defined. We characterize the first and last hypergraphs in an SS-order of all uniform hypertrees and all linear unicyclic uniform hypergraphs with given girth, respectively. And we give the last hypergraph in an SS-order of all linear unicyclic uniform hypergraphs.

Next, we introduce some notations and concepts for tensors and hypergraphs. For a positive integer nn, let [n]={1,2,,n}[n]=\{1,2,\ldots,n\}. An mm-order nn-dimension complex tensor 𝒜=(ai1im)\mathcal{A}=\left({a_{i_{1}\cdots i_{m}}}\right) is a multidimensional array with nmn^{m} entries on complex number field \mathbb{C}, where ij[n],j=1,,mi_{j}\in[n],j=1,\ldots,m.

Let n\mathbb{C}^{n} be the set of nn-dimension complex vectors and [m,n]\mathbb{C}^{[m,n]} be the set of mm-order nn-dimension complex tensors. For x=(x1,,xn)Tnx=\left({x_{1},\ldots,x_{n}}\right)^{\mathrm{T}}\in\mathbb{C}^{n}, 𝒜xm1\mathcal{A}x^{m-1} is a vector in n\mathbb{C}^{n} whose iith component is

(𝒜xm1)i=i2,,im=1naii2imxi2xim.\displaystyle(\mathcal{A}x^{m-1})_{i}=\sum\limits_{i_{2},\ldots,i_{m}=1}^{n}a_{ii_{2}\cdots i_{m}}x_{i_{2}}\cdots x_{i_{m}}.

A number λ\lambda\in\mathbb{C} is called an eigenvalue of 𝒜\mathcal{A} if there exists a nonzero vector xnx\in\mathbb{C}^{n} such that

𝒜xm1=λx[m1],\mathcal{A}x^{m-1}=\lambda x^{[m-1]},

where x[m1]=(x1m1,,xnm1)Tx^{\left[{m-1}\right]}=\left({x_{1}^{m-1},\ldots,x_{n}^{m-1}}\right)^{\mathrm{T}}. The number of eigenvalues of 𝒜\mathcal{A} is n(m1)n1n(m-1)^{n-1} [10, 11].

A hypergraph =(V(),E())\mathcal{H}=(V(\mathcal{H}),E(\mathcal{H})) is called mm-uniform if |e|=m2|e|=m\geq 2 for all eE()e\in E(\mathcal{H}). For an mm-uniform hypergraph \mathcal{H} with nn vertices, its adjacency tensor is the order mm dimension nn tensor 𝒜=(ai1i2im)\mathcal{A}_{\mathcal{H}}=(a_{i_{1}i_{2}\cdots i_{m}}), where

ai1i2im={1(m1)!,if {i1,i2,,im}E(),0,otherwise.a_{i_{1}i_{2}\cdots i_{m}}=\begin{cases}\frac{1}{(m-1)!},&\text{if }\{i_{1},i_{2},\ldots,i_{m}\}\in E(\mathcal{H}),\\ 0,&\text{otherwise}.\end{cases}

Clearly, 𝒜\mathcal{A}_{\mathcal{H}} is the adjacency matrix of \mathcal{H} when \mathcal{H} is 22-uniform [12]. The degree of a vertex vv of \mathcal{H} is the number of edges containing the vertex, denoted by d(v)d_{\mathcal{H}}(v) or dvd_{v}. A vertex of \mathcal{H} is called a core vertex if it has degree one. An edge ee of \mathcal{H} is called a pendent edge if it contains |e|1|e|-1 core vertices. Sometimes a core vertex in a pendent edge is also called a pendent vertex. The girth of \mathcal{H} is the minimum length of the hypercycles of \mathcal{H}, denoted by g()g(\mathcal{H}). \mathcal{H} is called linear if any two different edges intersect into at most one vertex. The mm-power hypergraph G(m)G^{(m)} is the mm-uniform hypergraph which obtained by adding m2m-2 vertices with degree one to each edge of the graph GG.

In 2005, the concept of eigenvalues of tensors was proposed by Qi [10] and Lim [11], independently. The eigenvalues of tensors and related problems are important research topics of spectral hypergraph theories [13, 14, 15, 16], especially the trace of tensors [16, 17, 18, 19, 20].

Morozov and Shakirov gave an expression of the ddth order trace Trd(𝒜)\mathrm{Tr}_{d}(\mathcal{A}) of a tensor 𝒜\mathcal{A} [17]. Hu et al. proved that Trd(𝒜)\mathrm{Tr}_{d}(\mathcal{A}) is equal to the sum of dd powers of all eigenvalues of 𝒜\mathcal{A} [18]. For a uniform hypergraph \mathcal{H}, the sum of dd powers of all eigenvalues of 𝒜\mathcal{A}_{\mathcal{H}} is called the ddth order spectral moment of \mathcal{H}, denoted by Sd()\mathrm{S}_{d}(\mathcal{H}). Then Trd(𝒜)=Sd()\mathrm{Tr}_{d}(\mathcal{\mathcal{A}_{\mathcal{H}}})=\mathrm{S}_{d}(\mathcal{H}). Shao et al. established some formulas for the ddth order trace of tensors in terms of some graph parameters [19]. Clark and Cooper expressed the spectral moments of hypergraphs by the number of Veblen multi-hypergraphs and used this result to give the “Harary-Sachs” coefficient theorem for hypergraphs [16]. Chen et al. gave a formula for the spectral moment of a hypertree in terms of the number of some sub-hypertrees [20].

This paper is organized as follows. In Section 2, the SS-order of hypergraphs is defined. We introduce 44 operations of moving edges on hypergraphs and give changes of the Zagreb index after operations of moving edges. In Section 3, we give the first and last hypergraphs in an SS-order of all uniform hypertrees. In Section 4, the expressions of 2m2mth and 3m3mth order spectral moments of linear unicyclic mm-uniform hypergraphs are obtained in terms of the number of sub-hypergraphs. We characterize the first and last hypergraphs in an SS-order of all linear unicyclic uniform hypergraphs with given girth. And we give the last hypergraph in an SS-order of all linear unicyclic uniform hypergraphs.

2 Preliminaries

For two mm-uniform hypergaphs 1,2\mathcal{H}_{1},\mathcal{H}_{2} with nn vertices, if Si(1)=Si(2)\mathrm{S}_{i}(\mathcal{H}_{1})=\mathrm{S}_{i}(\mathcal{H}_{2}) for i=0,1,2,,n(m1)n11i=0,1,2,\ldots,n(m-1)^{n-1}-1, then adjacency tensors of 1\mathcal{H}_{1} and 2\mathcal{H}_{2} have the same spectrum. Therefore, Si(1)=Si(2)\mathrm{S}_{i}(\mathcal{H}_{1})=\mathrm{S}_{i}(\mathcal{H}_{2}) for i=0,1,2,i=0,1,2,\ldots. We write 1s2\mathcal{H}_{1}\prec_{s}\mathcal{H}_{2} (1\mathcal{H}_{1} comes before 2\mathcal{H}_{2} in an SS-order) if there exists a k{1,2,,n(m1)n11}k\in\{1,2,\ldots,n(m-1)^{n-1}-1\} such that Si(1)=Si(2)\mathrm{S}_{i}(\mathcal{H}_{1})=\mathrm{S}_{i}(\mathcal{H}_{2}) for i=0,1,2,,k1i=0,1,2,\ldots,k-1 and Sk(1)<Sk(2)\mathrm{S}_{k}(\mathcal{H}_{1})<\mathrm{S}_{k}(\mathcal{H}_{2}). We write 1=s2\mathcal{H}_{1}=_{s}\mathcal{H}_{2} if Si(1)=Si(2)\mathrm{S}_{i}(\mathcal{H}_{1})=\mathrm{S}_{i}(\mathcal{H}_{2}) for i=0,1,2,,n(m1)n11i=0,1,2,\ldots,n(m-1)^{n-1}-1. In this paper, Si()\mathrm{S}_{i}(\mathcal{H}) is also written Si,i=0,1,2,\mathrm{S}_{i},i=0,1,2,\ldots. Let H1\textbf{H}_{1} and H2\textbf{H}_{2} be two sets of hypergraphs. We write H1sH2\textbf{H}_{1}\prec_{s}\textbf{H}_{2} (H1\textbf{H}_{1} comes before H2\textbf{H}_{2} in an SS-order) if 1s2\mathcal{H}_{1}\prec_{s}\mathcal{H}_{2} for each 1H1\mathcal{H}_{1}\in\textbf{H}_{1} and each 2H2\mathcal{H}_{2}\in\textbf{H}_{2}.

For an mm-uniform hypergraph \mathcal{H} with nn vertices, let S0()=n(m1)n1.\mathrm{S}_{0}(\mathcal{H})=n(m-1)^{n-1}. In [12], the ddth order traces of the adjacency tensor of an mm-uniform hypergraph were given for d=1,2,,md=1,2,\ldots,m.

Lemma 2.1.

[12] Let \mathcal{H} be an mm-uniform hypergraph with nn vertices and qq edges. Then

(1) Trd(𝒜)=0\mathrm{Tr}_{d}(\mathcal{A}_{\mathcal{H}})=0 for d=1,2,,m1d=1,2,\ldots,m-1;

(2) Trm(𝒜)=qmm1(m1)nm\mathrm{Tr}_{m}(\mathcal{A}_{\mathcal{H}})=qm^{m-1}(m-1)^{n-m}.

Next, we introduce 44 operations of moving edges on hypergraphs and give changes of the Zagreb index after operations of moving edges. The sum of the squares of the degrees of all vertices of a hypergraph \mathcal{H} is called the Zagreb index of \mathcal{H}, denoted by M()M(\mathcal{H}) [21]. Let EE()E^{\prime}\subseteq E(\mathcal{H}), we denote by E\mathcal{H}-E^{\prime} the sub-hypergraph of \mathcal{H} obtained by deleting the edges of EE^{\prime}.

Transformation 1: Let e={u,v,v1,v2,,vm2}e=\{u,v,v_{1},v_{2},\ldots,v_{m-2}\} be an edge of an mm-uniform hypergraph \mathcal{H}, e1,e2,,ete_{1},e_{2},\ldots,e_{t} be the pendent edges incident with uu, where t1t\geq 1, d(u)=t+1d_{\mathcal{H}}(u)=t+1 and d(v)2d_{\mathcal{H}}(v)\geq 2. Write ei=(ei{u}){v}e_{i}^{{}^{\prime}}=(e_{i}\setminus\{u\})\bigcup\{v\}. Let ={e1,,et}+{e1,,et}\mathcal{H}^{{}^{\prime}}=\mathcal{H}-\{e_{1},\ldots,e_{t}\}+\{e^{\prime}_{1},\ldots,e^{\prime}_{t}\}.

Lemma 2.2.

Let \mathcal{H}^{\prime} be obtained from \mathcal{H} by transformation 1. Then M()>M()M(\mathcal{H}^{\prime})>M(\mathcal{H}).

Proof.

By the definition of the Zagreb index, we have

M()M()\displaystyle M(\mathcal{H}^{\prime})-M(\mathcal{H}) =d2(v)d2(v)+d2(u)d2(u)\displaystyle=d^{2}_{\mathcal{H}^{\prime}}(v)-d^{2}_{\mathcal{H}}(v)+d^{2}_{\mathcal{H}^{\prime}}(u)-d^{2}_{\mathcal{H}}(u)
=(d(v)+t)2d2(v)+1(t+1)2\displaystyle=(d_{\mathcal{H}}(v)+t)^{2}-d_{\mathcal{H}}^{2}(v)+1-(t+1)^{2}
=2t(d(v)1)>0.\displaystyle=2t(d_{\mathcal{H}}(v)-1)>0.

Transformation 2: Let uu and vv be two vertices in a uniform hypergraph \mathcal{H}, e1,e2,,ere_{1},e_{2},\ldots,e_{r} be the pendent edges incident with uu and er+1,er+2,,er+te_{r+1},e_{r+2},\ldots,e_{r+t} be the pendent edges incident with vv, where r1r\geq 1 and t1t\geq 1. Write ei=(ei{u}){v},i[r]e_{i}^{{}^{\prime}}=(e_{i}\setminus\{u\})\bigcup\{v\},i\in[r], ei=(ei{v}){u},i=r+1,,r+te_{i}^{{}^{\prime}}=(e_{i}\setminus\{v\})\bigcup\{u\},i=r+1,\ldots,r+t. If d(v)d(u)d_{\mathcal{H}}(v)\geq d_{\mathcal{H}}(u), let ={e1,,er}+{e1,,er}\mathcal{H}^{\prime}=\mathcal{H}-\{e_{1},\ldots,e_{r}\}+\{e^{\prime}_{1},\ldots,e^{\prime}_{r}\}. If d(v)<d(u)d_{\mathcal{H}}(v)<d_{\mathcal{H}}(u), let ={er+1,,er+t}+{er+1,,er+t}\mathcal{H}^{\prime}=\mathcal{H}-\{e_{r+1},\ldots,e_{r+t}\}+\{e^{\prime}_{r+1},\ldots,e^{\prime}_{r+t}\}.

Lemma 2.3.

Let \mathcal{H}^{\prime} be obtained from \mathcal{H} by transformation 2. Then M()>M()M(\mathcal{H}^{\prime})>M(\mathcal{H}).

Proof.

By the definition of the Zagreb index, if d(v)d(u)d_{\mathcal{H}}(v)\geq d_{\mathcal{H}}(u), we have

M()M()\displaystyle M(\mathcal{H}^{\prime})-M(\mathcal{H}) =d2(v)d2(v)+d2(u)d2(u)\displaystyle=d^{2}_{\mathcal{H}^{\prime}}(v)-d^{2}_{\mathcal{H}}(v)+d^{2}_{\mathcal{H}^{\prime}}(u)-d^{2}_{\mathcal{H}}(u)
=(d(v)+r)2d2(v)+(d(u)r)2d2(u)\displaystyle=(d_{\mathcal{H}}(v)+r)^{2}-d_{\mathcal{H}}^{2}(v)+(d_{\mathcal{H}}(u)-r)^{2}-d_{\mathcal{H}}^{2}(u)
=2r(r+d(v)d(u))>0.\displaystyle=2r(r+d_{\mathcal{H}}(v)-d_{\mathcal{H}}(u))>0.

If d(v)<d(u)d_{\mathcal{H}}(v)<d_{\mathcal{H}}(u), we have

M()M()\displaystyle M(\mathcal{H}^{\prime})-M(\mathcal{H}) =d2(v)d2(v)+d2(u)d2(u)\displaystyle=d^{2}_{\mathcal{H}^{\prime}}(v)-d^{2}_{\mathcal{H}}(v)+d^{2}_{\mathcal{H}^{\prime}}(u)-d^{2}_{\mathcal{H}}(u)
=(d(v)t)2d2(v)+(d(u)+t)2d2(u)\displaystyle=(d_{\mathcal{H}}(v)-t)^{2}-d_{\mathcal{H}}^{2}(v)+(d_{\mathcal{H}}(u)+t)^{2}-d_{\mathcal{H}}^{2}(u)
=2t(t+d(u)d(v))>0.\displaystyle=2t(t+d_{\mathcal{H}}(u)-d_{\mathcal{H}}(v))>0.

The mm-uniform hypertree with a maximum degree of less than or equal to 22 is called the binary mm-uniform hypertree. For two vertices u,vu,v of an mm-uniform hypergraph \mathcal{H}, the distance between uu and vv is the length of a shortest path from uu to vv, denoted by d(u,v)d_{\mathcal{H}}(u,v) [22]. Let d(u,u)=0d_{\mathcal{H}}(u,u)=0. Let 0,1,,p\mathcal{H}_{0},\mathcal{H}_{1},\ldots,\mathcal{H}_{p} be pairwise disjoint connected hypergraphs with v1,,vpV(0)v_{1},\ldots,v_{p}\in V(\mathcal{H}_{0}) and uiV(i)u_{i}\in V(\mathcal{H}_{i}) for each i[p]i\in[p], where p1p\geq 1. Denote by 0(v1,,vp)(1(u1),,p(up))\mathcal{H}_{0}(v_{1},\ldots,v_{p})\bigodot(\mathcal{H}_{1}(u_{1}),\ldots,\mathcal{H}_{p}(u_{p})) the hypergraph obtained from 0\mathcal{H}_{0} by attaching 1,,p\mathcal{H}_{1},\ldots,\mathcal{H}_{p} to 0\mathcal{H}_{0} with uiu_{i} identified with viv_{i} for each i[p]i\in[p] [23]. Let PqP_{q} be a path of length qq.

Transformation 3: Let P0(m)\mathcal{H}\neq P_{0}^{(m)} be an mm-uniform connected hypergraph with uV()u\in{V(\mathcal{H})}. Let 𝒯\mathcal{T} be a binary mm-uniform hypertree with vk,vn,u1,u2V(𝒯)v_{k},v_{n},u_{1},u_{2}\in V(\mathcal{T}) and ek,ek+1E(𝒯)e_{k},e_{k+1}\in E(\mathcal{T}) such that d𝒯(vk)=2d_{\mathcal{T}}(v_{k})=2, vk,u1ek,vk,u2ek+1v_{k},u_{1}\in e_{k},v_{k},u_{2}\in e_{k+1}, u1,u2vku_{1},u_{2}\neq v_{k}, vnv_{n} be a pendent vertex and d𝒯(u1,vn)>d𝒯(u2,vn)d_{\mathcal{T}}(u_{1},v_{n})>d_{\mathcal{T}}(u_{2},v_{n}). Let 1=(u)𝒯(vk)\mathcal{H}_{1}=\mathcal{H}(u)\bigodot\mathcal{T}(v_{k}). 2\mathcal{H}_{2} is obtained from 1\mathcal{H}_{1} by deleting eke_{k} and adding (ek{vk}){vn}(e_{k}\setminus\{v_{k}\})\bigcup\{v_{n}\}.

Lemma 2.4.

Let 2\mathcal{H}_{2} be obtained from 1\mathcal{H}_{1} by transformation 3. Then M(1)>M(2)M(\mathcal{H}_{1})>M(\mathcal{H}_{2}).

Proof.

By the definition of the Zagreb index, we have

M(1)M(2)\displaystyle M(\mathcal{H}_{1})-M(\mathcal{H}_{2}) =d12(vk)+d12(vn)d22(vk)d22(vn)\displaystyle=d^{2}_{\mathcal{H}_{1}}(v_{k})+d^{2}_{\mathcal{H}_{1}}(v_{n})-d^{2}_{\mathcal{H}_{2}}(v_{k})-d^{2}_{\mathcal{H}_{2}}(v_{n})
=(d(u)+2)2+1(d(u)+1)24\displaystyle=(d_{\mathcal{H}}(u)+2)^{2}+1-(d_{\mathcal{H}}(u)+1)^{2}-4
=2d(u)>0.\displaystyle=2d_{\mathcal{H}}(u)>0.

Transformation 4: Let \mathcal{H} be an mm-uniform connected hypergraph with u,vV()u,v\in{V(\mathcal{H})} such that uvu\neq v, d(u)>1d_{\mathcal{H}}(u)>1 and d(u)d(v)d_{\mathcal{H}}(u)\geq d_{\mathcal{H}}(v). Let 𝒯1,𝒯2\mathcal{T}_{1},\mathcal{T}_{2} be two binary mm-uniform hypertrees, where |E(𝒯1)|>0|E(\mathcal{T}_{1})|>0. 1\mathcal{H}_{1} denotes the hypergraph that results from identifying uu with the pendent vertex u0e0u_{0}\in e_{0} of 𝒯1\mathcal{T}_{1} and identifying vv with the pendent vertex v0v_{0} of 𝒯2\mathcal{T}_{2}. Suppose that vtV(𝒯2)v_{t}\in V(\mathcal{T}_{2}) is a pendent vertex of 1\mathcal{H}_{1}, let 2\mathcal{H}_{2} be obtained from 1\mathcal{H}_{1} by deleting e0e_{0} and adding (e0{u}){vt}(e_{0}\setminus\{u\})\bigcup\{v_{t}\}.

Lemma 2.5.

Let 2\mathcal{H}_{2} be obtained from 1\mathcal{H}_{1} by transformation 4.

(1). If |E(𝒯2)|>0|E(\mathcal{T}_{2})|>0, then M(1)>M(2)M(\mathcal{H}_{1})>M(\mathcal{H}_{2});

(2). If |E(𝒯2)|=0,d(u)>d(v)|E(\mathcal{T}_{2})|=0,d_{\mathcal{H}}(u)>d_{\mathcal{H}}(v), then M(1)>M(2)M(\mathcal{H}_{1})>M(\mathcal{H}_{2}).

Proof.

By the definition of the Zagreb index, if |E(𝒯2)|>0|E(\mathcal{T}_{2})|>0, we have

M(1)M(2)\displaystyle M(\mathcal{H}_{1})-M(\mathcal{H}_{2}) =d12(u)+d12(vt)d22(u)d22(vt)\displaystyle=d^{2}_{\mathcal{H}_{1}}(u)+d^{2}_{\mathcal{H}_{1}}(v_{t})-d^{2}_{\mathcal{H}_{2}}(u)-d^{2}_{\mathcal{H}_{2}}(v_{t})
=(d(u)+1)2+1d2(u)4\displaystyle=(d_{\mathcal{H}}(u)+1)^{2}+1-d_{\mathcal{H}}^{2}(u)-4
=2d(u)2>0.\displaystyle=2d_{\mathcal{H}}(u)-2>0.

If |E(𝒯2)|=0|E(\mathcal{T}_{2})|=0, d(u)>d(v)d_{\mathcal{H}}(u)>d_{\mathcal{H}}(v), we have

M(1)M(2)\displaystyle M(\mathcal{H}_{1})-M(\mathcal{H}_{2}) =d12(u)+d12(vt)d22(u)d22(vt)\displaystyle=d^{2}_{\mathcal{H}_{1}}(u)+d^{2}_{\mathcal{H}_{1}}(v_{t})-d^{2}_{\mathcal{H}_{2}}(u)-d^{2}_{\mathcal{H}_{2}}(v_{t})
=(d(u)+1)2+d2(v)d2(u)(d(v)+1)2\displaystyle=(d_{\mathcal{H}}(u)+1)^{2}+d_{\mathcal{H}}^{2}(v)-d_{\mathcal{H}}^{2}(u)-(d_{\mathcal{H}}(v)+1)^{2}
=2d(u)2d(v)>0.\displaystyle=2d_{\mathcal{H}}(u)-2d_{\mathcal{H}}(v)>0.

3 The SS-order in hypertrees

In this section, we give the first and last hypergraphs in an SS-order of all uniform hypertrees.

In [20], the first 3k3kth order spectral moments of uniform hypertrees were given. Let N(^)N_{\mathcal{H}}(\widehat{\mathcal{H}}) be the number of sub-hypergraphs of \mathcal{H} isomorphic to ^\widehat{\mathcal{H}} and SqS_{q} be a star with qq edges.

Lemma 3.6.

[20] Let 𝒯=(V(𝒯),E(𝒯))\mathcal{T}=(V(\mathcal{T}),E(\mathcal{T})) be an mm-uniform hypertree. Then

Sm(𝒯)\displaystyle{\mathrm{S}_{m}}(\mathcal{T}) =mm1(m1)(|E(𝒯)|1)(m1)N𝒯(P1(m)),\displaystyle={m^{m-1}}{(m-1)^{(|E(\mathcal{T})|-1)(m-1)}}{N_{\mathcal{T}}(P^{(m)}_{1})},
S2m(𝒯)\displaystyle\mathrm{S}_{2m}(\mathcal{T}) =mm1(m1)(|E(𝒯)|1)(m1)N𝒯(P1(m))+2m2m3(m1)(|E(𝒯)|2)(m1)N𝒯(P2(m)),\displaystyle=m^{m-1}(m-1)^{(|E(\mathcal{T})|-1)(m-1)}N_{\mathcal{T}}(P_{1}^{(m)})+2m^{2m-3}(m-1)^{(|E(\mathcal{T})|-2)(m-1)}N_{\mathcal{T}}(P_{2}^{(m)}),
S3m(𝒯)\displaystyle\mathrm{S}_{3m}(\mathcal{T}) =mm1(m1)(|E(𝒯)|1)(m1)N𝒯(P1(m))+6m2m3(m1)(|E(𝒯)|2)(m1)N𝒯(P2(m))\displaystyle=m^{m-1}(m-1)^{(|E(\mathcal{T})|-1)(m-1)}N_{\mathcal{T}}(P_{1}^{(m)})+6m^{2m-3}(m-1)^{(|E(\mathcal{T})|-2)(m-1)}N_{\mathcal{T}}(P_{2}^{(m)})
+3m3m5(m1)(|E(𝒯)|3)(m1)N𝒯(P3(m))+6m3m5(m1)(|E(𝒯)|3)(m1)N𝒯(S3(m)),\displaystyle+3m^{3m-5}(m-1)^{(|E(\mathcal{T})|-3)(m-1)}N_{\mathcal{T}}(P_{3}^{(m)})+6m^{3m-5}(m-1)^{(|E(\mathcal{T})|-3)(m-1)}N_{\mathcal{T}}(S_{3}^{(m)}),
Sd(𝒯)\displaystyle\mathrm{S}_{d}(\mathcal{T}) =0, for d=1,,m1,m+1,,2m1,2m+1,,3m1.\displaystyle=0,\text{~{}for~{}}d=1,\ldots,m-1,m+1,\ldots,2m-1,2m+1,\ldots,3m-1.

Let Tq\textbf{T}_{q} be the set of all mm-uniform hypertrees with qq edges. The following theorem gives the last hypergraph in an SS-order of all mm-uniform hypertrees.

Theorem 3.7.

In an SS-order of Tq\textbf{T}_{q}, the last hypergraph is the hyperstar Sq(m)S_{q}^{(m)}.

Proof.

Since in all mm-uniform hypertrees with qq edges the spectral moments S0,S1,,S2m1\mathrm{S}_{0},\mathrm{S}_{1},\\ \ldots,\mathrm{S}_{2m-1} are the same, the first significant spectral moment is the 2m2mth. By Lemma 3.6, S2m\mathrm{S}_{2m} is determined by the number of P2(m)P_{2}^{(m)}. The number of vertices of mm-uniform hypertrees with qq edges is qmq+1qm-q+1. For any hypertree 𝒯\mathcal{T} in Tq\textbf{T}_{q}, we have

N𝒯(P2(m))=i=1qmq+1(di2)=12i=1qmq+1di2qm2=12M(𝒯)qm2,N_{\mathcal{T}}(P_{2}^{(m)})=\sum\limits_{i=1}^{qm-q+1}{d_{i}\choose 2}=\frac{1}{2}\sum\limits_{i=1}^{qm-q+1}d_{i}^{2}-\frac{qm}{2}=\frac{1}{2}M(\mathcal{T})-\frac{qm}{2},

where d1+d2++dqmq+1=mqd_{1}+d_{2}+\cdots+d_{qm-q+1}=mq.

Repeating transformation 1, any mm-uniform hypertree with qq edges can changed into Sq(m)S_{q}^{(m)}. And by Lemma 2.2, each application of transformation 1 strictly increases the Zagreb index. Therefore, in an SS-order of Tq\textbf{T}_{q}, the last hypergraph is the hyperstar Sq(m)S_{q}^{(m)}. ∎

Let T be the set of all binary mm-uniform hypertrees with qq edges. We characterize the first few hypergraphs in the SS-order of all mm-uniform hypertrees.

Theorem 3.8.

TsTqT\textbf{T}\prec_{s}\textbf{T}_{q}\setminus\textbf{T}.

Proof.

As in the proof of Theorem 3.7 we pay attention to the Zagreb index. Repeating transformation 3, any mm-uniform hypertree with qq edges can changed into a binary mm-uniform hypertree with qq edges. And from Lemma 2.4, each application of transformation 3 strictly decreases the Zagreb index. Hence, TsTqT\textbf{T}\prec_{s}\textbf{T}_{q}\setminus\textbf{T}. ∎

Let P3()P_{3}(\mathcal{H}) be the set of all sub-hyperpaths length 33 of an mm-uniform hypergraph \mathcal{H}.

Lemma 3.9.

Let e={u,v,w1,,wm2}e=\{u,v,w_{1},\ldots,w_{m-2}\} be an edge and 1,,p\mathcal{H}_{1},\ldots,\mathcal{H}_{p} be pairwise disjoint connected mm-uniform hypergraphs with iP0(m)\mathcal{H}_{i}\neq P_{0}^{(m)} and w~iV(i)\widetilde{w}_{i}\in V(\mathcal{H}_{i}) for each i[p]i\in[p], where m3m\geq 3, 1pm21\leq p\leq m-2. Let =e(w1,,wp)(1(w~1),,p(w~p))\mathcal{H}=e(w_{1},\ldots,w_{p})\bigodot(\mathcal{H}_{1}(\widetilde{w}_{1}),\ldots,\mathcal{H}_{p}(\widetilde{w}_{p})). Let r,se=(u,v)(Pr(m)(u~),Ps(m)(v~))\mathcal{H}_{r,s}^{e}=\mathcal{H}(u,v)\bigodot(P_{r}^{(m)}(\widetilde{u}),P_{s}^{(m)}(\widetilde{v})), where u~,v~\widetilde{u},\widetilde{v} are respectively the pendent vertices of Pr(m)P_{r}^{(m)} and Ps(m)P_{s}^{(m)}. If rs1r\geq s\geq 1, then

Nr,se(P3(m))>Nr+s,0e(P3(m)).N_{\mathcal{H}_{r,s}^{e}}(P_{3}^{(m)})>N_{\mathcal{H}_{r+s,0}^{e}}(P_{3}^{(m)}).
Proof.

Since p1p\geq 1, let e1E(1)e_{1}\in E(\mathcal{H}_{1}) be an edge incident with w~1\widetilde{w}_{1}. Let e2E(Pr(m))e_{2}\in E(P_{r}^{(m)}) be an edge incident with u~\widetilde{u} and e3E(Ps(m))e_{3}\in E(P_{s}^{(m)}) be an edge incident with v~\widetilde{v}. We have P3(r,0e)P3(r,se)P_{3}(\mathcal{H}_{r,0}^{e})\subseteq P_{3}(\mathcal{H}_{r,s}^{e}) and P3(r,0e)P3(r+s,0e)P_{3}(\mathcal{H}_{r,0}^{e})\subseteq P_{3}(\mathcal{H}_{r+s,0}^{e}). For a hyperpath 𝒫1\mathcal{P}_{1} with E(𝒫1)={e,e,e′′}E(\mathcal{P}_{1})=\{e,e^{\prime},e^{\prime\prime}\}, 𝒫1\mathcal{P}_{1} is also written eee′′ee^{\prime}e^{\prime\prime} in this paper.

If s=1s=1, there are hyperpaths e2ee3,e3ee1e_{2}ee_{3},e_{3}ee_{1} in P3(r,1e)P_{3}(\mathcal{H}_{r,1}^{e}) and not in P3(r,0e)P_{3}(\mathcal{H}_{r,0}^{e}). Since p1p\geq 1, Nr,1e(P3(m))Nr,0e(P3(m))2.N_{\mathcal{H}_{r,1}^{e}}(P_{3}^{(m)})-N_{\mathcal{H}_{r,0}^{e}}(P_{3}^{(m)})\geq 2. There is only one hyperpath 𝒫\mathcal{P} in P3(r+1,0e)P_{3}(\mathcal{H}_{r+1,0}^{e}) and not in P3(r,0e)P_{3}(\mathcal{H}_{r,0}^{e}). And the edges of 𝒫\mathcal{P} are not in E(i),i=1,2,,pE(\mathcal{H}_{i}),i=1,2,\ldots,p. We have Nr+1,0e(P3(m))Nr,0e(P3(m))=1.N_{\mathcal{H}_{r+1,0}^{e}}(P_{3}^{(m)})-N_{\mathcal{H}_{r,0}^{e}}(P_{3}^{(m)})=1. So, Nr,1e(P3(m))>Nr+1,0e(P3(m))N_{\mathcal{H}_{r,1}^{e}}(P_{3}^{(m)})>N_{\mathcal{H}_{r+1,0}^{e}}(P_{3}^{(m)}).

If s=2s=2, let e4e3E(Ps(m))e_{4}\neq e_{3}\in E(P_{s}^{(m)}). There are hyperpaths e2ee3,e3ee1,ee3e4e_{2}ee_{3},e_{3}ee_{1},ee_{3}e_{4} in P3(r,2e)P_{3}(\mathcal{H}_{r,2}^{e}) and not in P3(r,0e)P_{3}(\mathcal{H}_{r,0}^{e}). Since p1p\geq 1, Nr,2e(P3(m))Nr,0e(P3(m))3.N_{\mathcal{H}_{r,2}^{e}}(P_{3}^{(m)})-N_{\mathcal{H}_{r,0}^{e}}(P_{3}^{(m)})\geq 3. There are only two hyperpaths 𝒫\mathcal{P}^{\prime}, 𝒫′′\mathcal{P}^{\prime\prime} in P3(r+2,0e)P_{3}(\mathcal{H}_{r+2,0}^{e}) and not in P3(r,0e)P_{3}(\mathcal{H}_{r,0}^{e}). And the edges of 𝒫\mathcal{P}^{\prime} and 𝒫′′\mathcal{P}^{\prime\prime} are not in E(i),i=1,2,,pE(\mathcal{H}_{i}),i=1,2,\ldots,p. We have Nr+2,0e(P3(m))Nr,0e(P3(m))=2.N_{\mathcal{H}_{r+2,0}^{e}}(P_{3}^{(m)})-N_{\mathcal{H}_{r,0}^{e}}(P_{3}^{(m)})=2. So, Nr,2e(P3(m))>Nr+2,0e(P3(m))N_{\mathcal{H}_{r,2}^{e}}(P_{3}^{(m)})>N_{\mathcal{H}_{r+2,0}^{e}}(P_{3}^{(m)}).

If s>2s>2, similar to s=2s=2, there are hyperpaths e2ee3,e3ee1,ee3e4e_{2}ee_{3},e_{3}ee_{1},ee_{3}e_{4} in P3(r,se)P_{3}(\mathcal{H}_{r,s}^{e}) and not in P3(r,0e)P_{3}(\mathcal{H}_{r,0}^{e}). For an mm-uniform hyperpath with q(q>2)q~{}(q>2) edges, the number of the sub-hyperpaths with 33 edges is q2q-2. Since p1p\geq 1,

Nr,se(P3(m))Nr,0e(P3(m))3+s2=s+1.N_{\mathcal{H}_{r,s}^{e}}(P_{3}^{(m)})-N_{\mathcal{H}_{r,0}^{e}}(P_{3}^{(m)})\geq 3+s-2=s+1.

Since rs>2r\geq s>2, there are only ss hyperpaths in P3(r+s,0e)P_{3}(\mathcal{H}_{r+s,0}^{e}) and not in P3(r,0e)P_{3}(\mathcal{H}_{r,0}^{e}). We have Nr+s,0e(P3(m))Nr,0e(P3(m))=s.N_{\mathcal{H}_{r+s,0}^{e}}(P_{3}^{(m)})-N_{\mathcal{H}_{r,0}^{e}}(P_{3}^{(m)})=s. So, if s>2s>2, Nr,se(P3(m))>Nr+s,0e(P3(m))N_{\mathcal{H}_{r,s}^{e}}(P_{3}^{(m)})>N_{\mathcal{H}_{r+s,0}^{e}}(P_{3}^{(m)}).

Therefore, if rs1r\geq s\geq 1, we have Nr,se(P3(m))>Nr+s,0e(P3(m)).N_{\mathcal{H}_{r,s}^{e}}(P_{3}^{(m)})>N_{\mathcal{H}_{r+s,0}^{e}}(P_{3}^{(m)}).

The following theorem gives the first hypergraph in an SS-order of all mm-uniform hypertrees.

Theorem 3.10.

In an SS-order of Tq\textbf{T}_{q}, the first hypergraph is the hyperpath Pq(m)P_{q}^{(m)}.

Proof.

In an SS-order of Tq\textbf{T}_{q}, by Theorem 3.8, the first hypergraph is in T. When m=2m=2, T={Pq}.\textbf{T}=\{P_{q}\}. Therefore, in an SS-order of Tq\textbf{T}_{q}, the first graph is the path PqP_{q}. When m>2m>2, since the spectral moments S0,S1,,S3m1\mathrm{S}_{0},\mathrm{S}_{1},\ldots,\mathrm{S}_{3m-1} are the same in T, the first significant spectral moment is the 3m3mth. By Lemma 3.6, S3m\mathrm{S}_{3m} is determined by the number of S3(m)S_{3}^{(m)} and P3(m)P_{3}^{(m)}.

For any hypertree 𝒯\mathcal{T} in T, N𝒯(S3(m))=0N_{\mathcal{T}}(S_{3}^{(m)})=0. Let e(𝒯)e(\mathcal{T}) denote the set of all edges of 𝒯\mathcal{T} that contain at least 3 vertices whose degree is equal to 2. Fix a vertex vv of degree 22 as a root. Let 𝒯1,𝒯2\mathcal{T}_{1},\mathcal{T}_{2} be the hypertrees attached at vv. We can repeatedly apply the transformation from Lemma 3.9 at any two vertices u1,u2ee(𝒯)u_{1},u_{2}\in e\in e(\mathcal{T}) with largest distance from the root in every hypertree 𝒯i\mathcal{T}_{i} and du1=du2=2d_{u_{1}}=d_{u_{2}}=2, as long as 𝒯i\mathcal{T}_{i} does not become a hyperpath. From Lemma 3.9, each application of this transformation strictly decreases the number of sub-hyperpaths with 33 edges. In the end of this process, we arrive at the hyperpath Pq(m)P_{q}^{(m)}. Therefore, in an SS-order of Tq\textbf{T}_{q}, the first hypergraph is the hyperpath Pq(m)P_{q}^{(m)}. ∎

4 The SS-order in unicyclic hypergraphs

In this section, the expressions of 2m2mth and 3m3mth order spectral moments of linear unicyclic mm-uniform hypergraphs are obtained in terms of the number of sub-hypergraphs. We characterize the first and last hypergraphs in an SS-order of all linear unicyclic mm-uniform hypergraphs with given girth. And we give the last hypergraph in an SS-order of all linear unicyclic mm-uniform hypergraphs.

Let (ω)\mathcal{H}(\omega) be a weighted uniform hypergraph, where ω:E()+\omega:E(\mathcal{H})\rightarrow\mathbb{Z}^{+}. Let ω()=eE()ω(e)\omega(\mathcal{H})=\sum_{e\in E(\mathcal{H})}\omega(e) and dv((ω))=eEv()ω(e)d_{v}(\mathcal{H}(\omega))=\sum_{e\in E_{v}(\mathcal{H})}\omega(e), where Ev():={eE()|ve}E_{v}(\mathcal{H}):=\{e\in E(\mathcal{H})|v\in e\}. Let CnC_{n} be a cycle with nn edges. In [24], the formula for the spectral moments of linear unicyclic mm-uniform hypergraphs was given.

Theorem 4.11.

[24] Let 𝒰\mathcal{U} be a linear unicyclic mm-uniform hypergraph with girth nn. If md(d0)m\mid d~{}(d\neq 0) , then

Sd(𝒰)=d(m1)|V(𝒰)|(𝒯^tree(𝒰)trd(𝒯^)+𝒢cycle(𝒰)trd(𝒢))\mathrm{S}_{d}(\mathcal{U})=d(m-1)^{|V(\mathcal{U})|}(\sum\limits_{\mathcal{\widehat{T}}\in\mathcal{B}_{tree}(\mathcal{U})}tr_{d}(\mathcal{\widehat{T}})+\sum\limits_{\mathcal{G}\in\mathcal{B}_{cycle}(\mathcal{U})}tr_{d}(\mathcal{G})) (4.1)

and

trd(𝒯^)=ω:ω(𝒯^)=d/m(m1)|V(𝒯^)|m(m2)|E(𝒯^)|vV(𝒯^)(dv(𝒯^(ω))1)!eE(𝒯^)ω(e)m1(ω(e)!)m,tr_{d}(\mathcal{\widehat{T}})=\sum\limits_{\omega:\omega(\mathcal{\widehat{T}})=d/m}(m-1)^{-|V(\mathcal{\widehat{T}})|}m^{(m-2)|E(\mathcal{\widehat{T}})|}\prod\limits_{v\in V(\mathcal{\widehat{T}})}(d_{v}(\mathcal{\widehat{T}}(\omega))-1)!\prod\limits_{e\in E(\mathcal{\widehat{T}})}\frac{\omega(e)^{m-1}}{(\omega(e)!)^{m}},
trd(𝒢)=ω:ω(𝒢)=d/m2(m1)|V(𝒢)|m(m2)|E(𝒢)|1vV(𝒢)(dv(𝒢(ω))1)!eE(𝒢)ω(e)m1(ω(e)!)mΩCn(m)(ω0),tr_{d}(\mathcal{G})=\sum\limits_{\omega:\omega(\mathcal{G})=d/m}2(m-1)^{-|V(\mathcal{G})|}m^{(m-2)|E(\mathcal{G})|-1}\prod\limits_{v\in V(\mathcal{G})}(d_{v}(\mathcal{G}(\omega))-1)!\prod\limits_{e\in E(\mathcal{G})}\frac{\omega(e)^{m-1}}{(\omega(e)!)^{m}}\Omega_{C_{n}^{(m)}(\omega^{0})},

where

ΩCn(m)(ω0)=x=02ωmin0i=1n(ωi0!)2(ωi10+ωmin0x)!(ωi0ωmin0+x)!l=0n1i=1l(ωi0+ωmin0x)i=l+2n(ωi0ωmin0+x),\Omega_{C_{n}^{(m)}(\omega^{0})}=\sum\limits_{x=0}^{2\omega_{min}^{0}}\prod\limits_{i=1}^{n}\frac{(\omega_{i}^{0}!)^{2}}{(\omega_{i-1}^{0}+\omega_{min}^{0}-x)!(\omega_{i}^{0}-\omega_{min}^{0}+x)!}\sum\limits_{l=0}^{n-1}\prod\limits_{i=1}^{l}(\omega_{i}^{0}+\omega_{min}^{0}-x)\prod\limits_{i=l+2}^{n}(\omega_{i}^{0}-\omega_{min}^{0}+x),

ωmin0=mininωi0\omega_{min}^{0}=\mathrm{min}_{i\in n}\omega_{i}^{0}, ωi0=ω0(ei),i[n]\omega_{i}^{0}=\omega^{0}(e_{i}),i\in[n], tree(𝒰)\mathcal{B}_{tree}(\mathcal{U}) denotes the set of connected sub-hypergraphs of 𝒰\mathcal{U} which are hypertrees, cycle(𝒰)\mathcal{B}_{cycle}(\mathcal{U}) denotes the set of connected sub-hypergraphs of 𝒰\mathcal{U} which contain the hypercycle.

If mdm\nmid d, then Sd(𝒰)=0\mathrm{S}_{d}(\mathcal{U})=0.

We give expressions of 2m2mth and 3m3mth order spectral moments of a linear unicyclic mm-uniform hypergraph in terms of the number of some sub-hypergraphs.

Corollary 4.12.

Let 𝒰\mathcal{U} be a linear unicyclic mm-uniform hypergraph. Then we have

S2m(𝒰)=m(m1)(m1)|V(𝒰)|mN𝒰(P1(m))+2m2m3(m1)|V(𝒰)|2m+1N𝒰(P2(m)).\mathrm{S}_{2m}(\mathcal{U})=m^{(m-1)}(m-1)^{|V(\mathcal{U})|-m}N_{\mathcal{U}}(P_{1}^{(m)})+2m^{2m-3}(m-1)^{|V(\mathcal{U})|-2m+1}N_{\mathcal{U}}(P_{2}^{(m)}).
Proof.

Since 2m/m<g(𝒰)2m/m<g(\mathcal{U}), the second summand in (4.1) does not appear. By Theorem 4.11, we have

S2m(𝒰)\displaystyle\mathrm{S}_{2m}(\mathcal{U}) =2m(m1)|V(𝒰)|𝒯^tree(𝒰)ω:ω(𝒯^)=2(m1)|V(𝒯^)|m(m2)|E(𝒯^)|\displaystyle=2m(m-1)^{|V(\mathcal{U})|}\sum\limits_{\mathcal{\widehat{T}}\in\mathcal{B}_{tree}(\mathcal{U})}\sum\limits_{\omega:\omega(\mathcal{\widehat{T}})=2}(m-1)^{-|V(\mathcal{\widehat{T}})|}m^{(m-2)|E(\mathcal{\widehat{T}})|}
vV(𝒯^)(dv(𝒯^(ω))1)!eE(𝒯^)ω(e)m1(ω(e)!)m.\displaystyle\prod\limits_{v\in V(\mathcal{\widehat{T}})}(d_{v}(\mathcal{\widehat{T}}(\omega))-1)!\prod\limits_{e\in E(\mathcal{\widehat{T}})}\frac{\omega(e)^{m-1}}{(\omega(e)!)^{m}}.

Since ω(𝒯^)=eE(𝒯^)ω(e)=2\omega(\mathcal{\widehat{T}})=\sum_{e\in E(\mathcal{\widehat{T}})}\omega(e)=2, T^\widehat{T} is an edge ee with ω(e)=2\omega(e)=2 or T^\widehat{T} is a hyperpath of length 22 with ω(ei)=1,i[2]\omega(e_{i})=1,i\in[2], where E(𝒯^)={e1,e2}E(\mathcal{\widehat{T}})=\{e_{1},e_{2}\}. So

S2m(𝒰)\displaystyle\mathrm{S}_{2m}(\mathcal{U}) =2m(m1)|V(𝒰)|((m1)mm(m2)2m12mN𝒰(P1(m))+(m1)12mm2(m2)N𝒰(P2(m)))\displaystyle=2m(m-1)^{|V(\mathcal{U})|}((m-1)^{-m}m^{(m-2)}\frac{2^{m-1}}{2^{m}}N_{\mathcal{U}}(P_{1}^{(m)})+(m-1)^{1-2m}m^{2(m-2)}N_{\mathcal{U}}(P_{2}^{(m)}))
=m(m1)(m1)|V(𝒰)|mN𝒰(P1(m))+2m2m3(m1)|V(𝒰)|2m+1N𝒰(P2(m)).\displaystyle=m^{(m-1)}(m-1)^{|V(\mathcal{U})|-m}N_{\mathcal{U}}(P_{1}^{(m)})+2m^{2m-3}(m-1)^{|V(\mathcal{U})|-2m+1}N_{\mathcal{U}}(P_{2}^{(m)}).

Corollary 4.13.

Let 𝒰\mathcal{U} be a linear unicyclic mm-uniform hypergraph with girth gg (g>3)(g>3). Then we have

S3m(𝒰)\displaystyle\mathrm{S}_{3m}(\mathcal{U}) =(m1)|V(𝒰)|mmm1N𝒰(P1(m))+6m2m3(m1)|V(𝒰)|+12mN𝒰(P2(m))\displaystyle=(m-1)^{|V(\mathcal{U})|-m}m^{m-1}N_{\mathcal{U}}(P_{1}^{(m)})+6m^{2m-3}(m-1)^{|V(\mathcal{U})|+1-2m}N_{\mathcal{U}}(P_{2}^{(m)})
+3m3m5(m1)|V(𝒰)|+23mN𝒰(P3(m))+6m3m5(m1)|V(𝒰)|+23mN𝒰(S3(m)).\displaystyle+3m^{3m-5}(m-1)^{|V(\mathcal{U})|+2-3m}N_{\mathcal{U}}(P_{3}^{(m)})+6m^{3m-5}(m-1)^{|V(\mathcal{U})|+2-3m}N_{\mathcal{U}}(S_{3}^{(m)}).

Let 𝒰\mathcal{U} be a linear unicyclic mm-uniform hypergraph with girth 33. Then we have

S3m(𝒰)\displaystyle\mathrm{S}_{3m}(\mathcal{U}) =(m1)|V(𝒰)|mmm1N𝒰(P1(m))+6m2m3(m1)|V(𝒰)|+12mN𝒰(P2(m))\displaystyle=(m-1)^{|V(\mathcal{U})|-m}m^{m-1}N_{\mathcal{U}}(P_{1}^{(m)})+6m^{2m-3}(m-1)^{|V(\mathcal{U})|+1-2m}N_{\mathcal{U}}(P_{2}^{(m)})
+3m3m5(m1)|V(𝒰)|+23mN𝒰(P3(m))+6m3m5(m1)|V(𝒰)|+23mN𝒰(S3(m))\displaystyle+3m^{3m-5}(m-1)^{|V(\mathcal{U})|+2-3m}N_{\mathcal{U}}(P_{3}^{(m)})+6m^{3m-5}(m-1)^{|V(\mathcal{U})|+2-3m}N_{\mathcal{U}}(S_{3}^{(m)})
+24m3m6(m1)|V(𝒰)|3m+3.\displaystyle+24m^{3m-6}(m-1)^{|V(\mathcal{U})|-3m+3}.
Proof.

When g>3g>3, since 3m/m<g3m/m<g, the second summand in (4.1) does not appear. By Theorem 4.11, we have

S3m(𝒰)\displaystyle\mathrm{S}_{3m}(\mathcal{U}) =3m(m1)|V(𝒰)|𝒯^tree(𝒰)ω:ω(𝒯^)=3(m1)|V(𝒯^)|m(m2)|E(𝒯^)|\displaystyle=3m(m-1)^{|V(\mathcal{U})|}\sum\limits_{\mathcal{\widehat{T}}\in\mathcal{B}_{tree}(\mathcal{U})}\sum\limits_{\omega:\omega(\mathcal{\widehat{T}})=3}(m-1)^{-|V(\mathcal{\widehat{T}})|}m^{(m-2)|E(\mathcal{\widehat{T}})|}
vV(𝒯^)(dv(𝒯^(ω))1)!eE(𝒯^)ω(e)m1(ω(e)!)m.\displaystyle\prod\limits_{v\in V(\mathcal{\widehat{T}})}(d_{v}(\mathcal{\widehat{T}}(\omega))-1)!\prod\limits_{e\in E(\mathcal{\widehat{T}})}\frac{\omega(e)^{m-1}}{(\omega(e)!)^{m}}.

Since ω(𝒯^)=eE(𝒯^)ω(e)=3\omega(\mathcal{\widehat{T}})=\sum_{e\in E(\mathcal{\widehat{T}})}\omega(e)=3, we have
(1). T^\widehat{T} is an edge ee with ω(e)=3\omega(e)=3;
(2). T^\widehat{T} is a hyperpath of length 22 with ω(e1)=1\omega(e_{1})=1, ω(e2)=2\omega(e_{2})=2 or ω(e1)=2\omega(e_{1})=2, ω(e2)=1\omega(e_{2})=1, where E(𝒯^)={e1,e2}E(\mathcal{\widehat{T}})=\{e_{1},e_{2}\};
(3). T^\widehat{T} is a hyperpath of length 33 with ω(ei)=1,i[3]\omega(e_{i})=1,i\in[3], where E(𝒯^)={e1,e2,e3}E(\mathcal{\widehat{T}})=\{e_{1},e_{2},e_{3}\};
(4). T^\widehat{T} is a hyperstar with 33 edges and ω(ei)=1,i[3]\omega(e_{i})=1,i\in[3], where E(𝒯^)={e1,e2,e3}E(\mathcal{\widehat{T}})=\{e_{1},e_{2},e_{3}\}.

Therefore,

S3m(𝒰)\displaystyle\mathrm{S}_{3m}(\mathcal{U}) =3m(m1)|V(𝒰)|((m1)mm(m2)(2!)m3m1(3!)mN𝒰(P1(m))\displaystyle=3m(m-1)^{|V(\mathcal{U})|}((m-1)^{-m}m^{(m-2)}(2!)^{m}\frac{3^{m-1}}{(3!)^{m}}N_{\mathcal{U}}(P_{1}^{(m)})
+(m1)12mm2(m2)2!2m1(2!)m2N𝒰(P2(m))\displaystyle+(m-1)^{1-2m}m^{2(m-2)}2!\frac{2^{m-1}}{(2!)^{m}}2N_{\mathcal{U}}(P_{2}^{(m)})
+(m1)23mm3(m2)N𝒰(P3(m))+(m1)23mm3(m2)2!N𝒰(S3(m)))\displaystyle+(m-1)^{2-3m}m^{3(m-2)}N_{\mathcal{U}}(P_{3}^{(m)})+(m-1)^{2-3m}m^{3(m-2)}2!N_{\mathcal{U}}(S_{3}^{(m)}))
=(m1)|V(𝒰)|mmm1N𝒰(P1(m))+6m2m3(m1)|V(𝒰)|+12mN𝒰(P2(m))\displaystyle=(m-1)^{|V(\mathcal{U})|-m}m^{m-1}N_{\mathcal{U}}(P_{1}^{(m)})+6m^{2m-3}(m-1)^{|V(\mathcal{U})|+1-2m}N_{\mathcal{U}}(P_{2}^{(m)})
+3m3m5(m1)|V(𝒰)|+23mN𝒰(P3(m))+6m3m5(m1)|V(𝒰)|+23mN𝒰(S3(m)).\displaystyle+3m^{3m-5}(m-1)^{|V(\mathcal{U})|+2-3m}N_{\mathcal{U}}(P_{3}^{(m)})+6m^{3m-5}(m-1)^{|V(\mathcal{U})|+2-3m}N_{\mathcal{U}}(S_{3}^{(m)}).

When g=3g=3, since ω(𝒯^)=eE(𝒯^)ω(e)=3\omega(\mathcal{\widehat{T}})=\sum_{e\in E(\mathcal{\widehat{T}})}\omega(e)=3 , we have
(1). T^\widehat{T} is an edge ee with ω(e)=3\omega(e)=3;
(2). T^\widehat{T} is a hyperpath of length 22 with ω(e1)=1\omega(e_{1})=1, ω(e2)=2\omega(e_{2})=2 or ω(e1)=2\omega(e_{1})=2, ω(e2)=1\omega(e_{2})=1, where E(𝒯^)={e1,e2}E(\mathcal{\widehat{T}})=\{e_{1},e_{2}\};
(3). T^\widehat{T} is a hyperpath of length 33 with ω(ei)=1,i[3]\omega(e_{i})=1,i\in[3], where E(𝒯^)={e1,e2,e3}E(\mathcal{\widehat{T}})=\{e_{1},e_{2},e_{3}\};
(4). T^\widehat{T} is a hyperstar with 33 edges and ω(ei)=1,i[3]\omega(e_{i})=1,i\in[3], where E(𝒯^)={e1,e2,e3}E(\mathcal{\widehat{T}})=\{e_{1},e_{2},e_{3}\}.

Since ω(𝒢)=eE(𝒢)ω(e)=3\omega(\mathcal{G})=\sum_{e\in E(\mathcal{G})}\omega(e)=3, 𝒢\mathcal{G} is a hypercycle with girth 33, ωi0=ω0(ei)=1,i[3]\omega_{i}^{0}=\omega^{0}(e_{i})=1,i\in[3] and ΩC3(m)(ω0)=4\Omega_{C_{3}^{(m)}(\omega^{0})}=4, where E(𝒢)={e1,e2,e3}E(\mathcal{G})=\{e_{1},e_{2},e_{3}\}. By Theorem 4.11, we have

S3m(𝒰)\displaystyle\mathrm{S}_{3m}(\mathcal{U}) =3m(m1)|V(𝒰)|((m1)mm(m2)(2!)m3m1(3!)mN𝒰(P1(m))\displaystyle=3m(m-1)^{|V(\mathcal{U})|}((m-1)^{-m}m^{(m-2)}(2!)^{m}\frac{3^{m-1}}{(3!)^{m}}N_{\mathcal{U}}(P_{1}^{(m)})
+(m1)12mm2(m2)2!2m1(2!)m2N𝒰(P2(m))+(m1)23mm3(m2)N𝒰(P3(m))\displaystyle+(m-1)^{1-2m}m^{2(m-2)}2!\frac{2^{m-1}}{(2!)^{m}}2N_{\mathcal{U}}(P_{2}^{(m)})+(m-1)^{2-3m}m^{3(m-2)}N_{\mathcal{U}}(P_{3}^{(m)})
+(m1)23mm3(m2)2!N𝒰(S3(m))+2(m1)3m+3m3(m2)14)\displaystyle+(m-1)^{2-3m}m^{3(m-2)}2!N_{\mathcal{U}}(S_{3}^{(m)})+2(m-1)^{-3m+3}m^{3(m-2)-1}4)
=(m1)|V(𝒰)|mmm1N𝒰(P1(m))+6m2m3(m1)|V(𝒰)|+12mN𝒰(P2(m))\displaystyle=(m-1)^{|V(\mathcal{U})|-m}m^{m-1}N_{\mathcal{U}}(P_{1}^{(m)})+6m^{2m-3}(m-1)^{|V(\mathcal{U})|+1-2m}N_{\mathcal{U}}(P_{2}^{(m)})
+3m3m5(m1)|V(𝒰)|+23mN𝒰(P3(m))+6m3m5(m1)|V(𝒰)|+23mN𝒰(S3(m))\displaystyle+3m^{3m-5}(m-1)^{|V(\mathcal{U})|+2-3m}N_{\mathcal{U}}(P_{3}^{(m)})+6m^{3m-5}(m-1)^{|V(\mathcal{U})|+2-3m}N_{\mathcal{U}}(S_{3}^{(m)})
+24m3m6(m1)|V(𝒰)|3m+3.\displaystyle+24m^{3m-6}(m-1)^{|V(\mathcal{U})|-3m+3}.

The set of all linear unicyclic mm-uniform hypergraphs with e+fe+f edges which contain a hypercycle Ce(m)C_{e}^{(m)} will be denoted by Uefm\textbf{U}^{m}_{ef}. Let Fef(m)F^{(m)}_{ef} be the linear unicyclic mm-uniform hypergraph obtained from the hypercycle Ce(m)C^{(m)}_{e} by attached ff pendant edges to one of non core vertices on Ce(m)C^{(m)}_{e}. The following theorem gives the last hypergraph in an SS-order of all linear unicyclic mm-uniform hypergraphs with given girth.

Theorem 4.14.

In an SS-order of Uefm\textbf{U}^{m}_{ef} the last hypergraph is Fef(m)F^{(m)}_{ef}.

Proof.

Since in Uefm\textbf{U}^{m}_{ef} the spectral moments S0,S1,,S2m1\mathrm{S}_{0},\mathrm{S}_{1},\ldots,\mathrm{S}_{2m-1} are the same, the first significant spectral moment is the 2m2mth. By Corollary 4.12, S2m\mathrm{S}_{2m} is determined by the number of P2(m)P_{2}^{(m)}. The number of vertices of linear unicyclic mm-uniform hypergraphs with e+fe+f edges is (e+f)(m1)(e+f)(m-1). For any 𝒰Uefm\mathcal{U}\in\textbf{U}^{m}_{ef}, we have

N𝒰(P2(m))=i=1em+fmef(di2)=12i=1em+fmefdi2em+fm2=12M(𝒰)em+fm2,N_{\mathcal{U}}(P_{2}^{(m)})=\sum\limits_{i=1}^{em+fm-e-f}{d_{i}\choose 2}=\frac{1}{2}\sum\limits_{i=1}^{em+fm-e-f}d_{i}^{2}-\frac{em+fm}{2}=\frac{1}{2}M(\mathcal{U})-\frac{em+fm}{2},

where d1+d2++dem+fmef=em+fmd_{1}+d_{2}+\cdots+d_{em+fm-e-f}=em+fm.

Repeating transformation 1, any linear unicyclic mm-uniform hypergraph in Uefm\textbf{U}^{m}_{ef} can be changed into a linear unicyclic mm-uniform hypergraph such that all the edges not on Ce(m)C^{(m)}_{e} are pendant edges and incident with non core vertices of Ce(m)C^{(m)}_{e}.

After repeating transformation 1, if we repeat transformation 2, any linear unicyclic mm-uniform hypergraph in Uefm\textbf{U}^{m}_{ef} can be changed into a linear unicyclic mm-uniform hypergraph obtained from the hypercycle Ce(m)C^{(m)}_{e} by attached ff pendant edges to one of non core vertices on Ce(m)C^{(m)}_{e}.

From Lemma 2.2 and Lemma 2.3, each application of transformation 1 or 2 strictly increases the Zagreb index. Hence, in an SS-order of Uefm\textbf{U}^{m}_{ef} the last hypergraph is Fef(m)F^{(m)}_{ef}.

The set of all linear unicyclic mm-uniform hypergraphs with qq edges will be denoted by Uq\textbf{U}_{q}. The following theorem gives the last hypergraph in an SS-order of all linear unicyclic mm-uniform hypergraphs.

Theorem 4.15.

In an SS-order of Uq\textbf{U}_{q} the last hypergraph is F3(q3)(m)F^{(m)}_{3(q-3)}.

Proof.

By Theorem 4.14, we get that in an SS-order of Ul(ql)m\textbf{U}^{m}_{l(q-l)} the last hypergraph is Fl(ql)(m)F^{(m)}_{l(q-l)}. By the definition of the Zagreb index, we have M(Fl(ql)(m))=(m2)l+(ql)(m1)+4(l1)+(ql+2)2=l2l2ql+qm+3q+q2,3lqM(F_{l(q-l)}^{(m)})=(m-2)l+(q-l)(m-1)+4(l-1)+(q-l+2)^{2}=l^{2}-l-2ql+qm+3q+q^{2},3\leq l\leq q. Since the derivative of M(Fl(ql)(m))M(F_{l(q-l)}^{(m)}) over ll is equal to 2l12q<02l-1-2q<0, M(Fl(ql)(m))M(F3(q3)(m))M(F_{l(q-l)}^{(m)})\leq M(F^{(m)}_{3(q-3)}) for 3lq3\leq l\leq q with the equality if and only if l=3l=3. Hence, in an SS-order of Uq\textbf{U}_{q} the last hypergraph is F3(q3)(m)F^{(m)}_{3(q-3)}. ∎

For m3,m\geq 3, let U be the set of all linear unicyclic mm-uniform hypergraphs with e+fe+f edges and girth ee such that the degree of all the vertices is less than or equal to 22. We characterize the first few hypergraphs in the SS-order of all linear unicyclic mm-uniform hypergraphs with given girth.

Theorem 4.16.

For m3,m\geq 3,

UsUefmU.\textbf{U}\prec_{s}\textbf{U}^{m}_{ef}\setminus\textbf{U}.
Proof.

As in the proof of Theorem 4.14 we pay attention to the Zagreb index. Repeating transformation 3, any mm-uniform hypertree attached to an mm-uniform hypergraph \mathcal{H} can be changed into a binary mm-uniform hypertree. After repeating transformation 3, if we repeat transformation 4, then any linear unicyclic mm-uniform hypergraph in Uefm\textbf{U}^{m}_{ef} can be changed into a linear unicyclic mm-uniform hypergraph in U. And from Lemma 2.4 and Lemma 2.5, the Zagreb indices decrease. Hence, we have UsUefmU.\textbf{U}\prec_{s}\textbf{U}^{m}_{ef}\setminus\textbf{U}.

We give a transformation which will decrease the number of sub-hyperpaths with 33 edges of hypergraphs as follows:

Transformation 5: Let 𝒫iP0(m)\mathcal{P}_{i}\neq P_{0}^{(m)} be an mm-uniform hyperpath, uiu_{i} be a pendent vertex of 𝒫i\mathcal{P}_{i} for each i[p]i\in[p] and v1,v2,,ve(m2)v_{1},v_{2},\ldots,v_{e(m-2)} be core vertices of a linear mm-uniform hypercycle Ce(m)C^{(m)}_{e}, where m3m\geq 3 and 2pe(m2)2\leq p\leq e(m-2). Let 1=Ce(m)(v1,,vp)(𝒫1(u1),,𝒫p(up))\mathcal{H}_{1}=C^{(m)}_{e}(v_{1},\ldots,v_{p})\bigodot(\mathcal{P}_{1}(u_{1}),\ldots,\mathcal{P}_{p}(u_{p})). Suppose that u1e1u_{1}\in e_{1} in 𝒫1\mathcal{P}_{1}, w1V(𝒫2)w_{1}\in V(\mathcal{P}_{2}) is a pendent vertex of 1\mathcal{H}_{1}, let 2\mathcal{H}_{2} be obtained from 1\mathcal{H}_{1} by deleting e1e_{1} and adding (e1{u1}){w1}(e_{1}\setminus\{u_{1}\})\bigcup\{w_{1}\}.

Lemma 4.17.

Let 2\mathcal{H}_{2} be obtained from 1\mathcal{H}_{1} by transformation 5. Then N2(P3(m))<N1(P3(m))N_{\mathcal{H}_{2}}(P_{3}^{(m)})<N_{\mathcal{H}_{1}}(P_{3}^{(m)}).

Proof.

Let 3=Ce(m)(v2,,vp)(𝒫2(u2),,𝒫p(up))\mathcal{H}_{3}=C^{(m)}_{e}(v_{2},\ldots,v_{p})\bigodot(\mathcal{P}_{2}(u_{2}),\ldots,\mathcal{P}_{p}(u_{p})) and 𝒫1=𝒫1e1+(e1{u1}){w1}\mathcal{P}_{1}^{\prime}=\mathcal{P}_{1}-e_{1}+(e_{1}\setminus\{u_{1}\})\bigcup\{w_{1}\}. So P3(1)=P3(3)+P3(𝒫1)+P1P_{3}(\mathcal{H}_{1})=P_{3}(\mathcal{H}_{3})+P_{3}(\mathcal{P}_{1})+P_{\mathcal{H}_{1}} and P3(2)=P3(3)+P3(𝒫1)+P2P_{3}(\mathcal{H}_{2})=P_{3}(\mathcal{H}_{3})+P_{3}(\mathcal{P}_{1}^{\prime})+P_{\mathcal{H}_{2}}, where P1(P2)P_{\mathcal{H}_{1}}~{}(P_{\mathcal{H}_{2}}) is the set of all the sub-hyperpaths with 33 edges of 1(2)\mathcal{H}_{1}(\mathcal{H}_{2}), each of them contains both at least one edge in E(3)E(\mathcal{H}_{3}) and at least one edge in E(𝒫1)(E(𝒫1)).E(\mathcal{P}_{1})~{}(E(\mathcal{P}_{1}^{\prime})). We have |E(𝒫1)|=|E(𝒫1)||E(\mathcal{P}_{1})|=|E(\mathcal{P}_{1}^{\prime})| and N𝒫1(P3(m))=N𝒫1(P3(m))N_{\mathcal{P}_{1}^{\prime}}(P_{3}^{(m)})=N_{\mathcal{P}_{1}}(P_{3}^{(m)}).

If |E(𝒫1)|=1|E(\mathcal{P}_{1})|=1, since p2p\geq 2, in P1P_{\mathcal{H}_{1}} there are 2 hyperpaths at least which contain e1e_{1} and two edges in E(3)E(\mathcal{H}_{3}). In P2P_{\mathcal{H}_{2}} there is a hyperpath which contain (e1{u1}){w1}(e_{1}\setminus\{u_{1}\})\bigcup\{w_{1}\} and two edges in E(3)E(\mathcal{H}_{3}). Therefore, we have |P1||P2|1|P_{\mathcal{H}_{1}}|-|P_{\mathcal{H}_{2}}|\geq 1. Hence, N1(P3(m))N2(P3(m))1N_{\mathcal{H}_{1}}(P_{3}^{(m)})-N_{\mathcal{H}_{2}}(P_{3}^{(m)})\geq 1. So, N2(P3(m))<N1(P3(m))N_{\mathcal{H}_{2}}(P_{3}^{(m)})<N_{\mathcal{H}_{1}}(P_{3}^{(m)}).

If |E(𝒫1)|2|E(\mathcal{P}_{1})|\geq 2, since p2p\geq 2, in P1P_{\mathcal{H}_{1}} there are 2 hyperpaths at least which contain e1e_{1} and two edges in E(3)E(\mathcal{H}_{3}) and there is a hyperpath which contain two edges in E(𝒫1)E(\mathcal{P}_{1}) and an edge in E(3)E(\mathcal{H}_{3}). In P2P_{\mathcal{H}_{2}} there is a hyperpath which contain (e1{u1}){w1}(e_{1}\setminus\{u_{1}\})\bigcup\{w_{1}\} and two edges in E(3)E(\mathcal{H}_{3}) and there is a hyperpath which contain two edges in E(𝒫1)E(\mathcal{P}_{1}^{\prime}) and an edge in E(3)E(\mathcal{H}_{3}). Therefore, we have |P1||P2|1|P_{\mathcal{H}_{1}}|-|P_{\mathcal{H}_{2}}|\geq 1. Hence, N1(P3(m))N2(P3(m))1N_{\mathcal{H}_{1}}(P_{3}^{(m)})-N_{\mathcal{H}_{2}}(P_{3}^{(m)})\geq 1. So, N2(P3(m))<N1(P3(m))N_{\mathcal{H}_{2}}(P_{3}^{(m)})<N_{\mathcal{H}_{1}}(P_{3}^{(m)}).

Let EefmE_{ef}^{m} be the linear unicyclic mm-uniform hypergraph obtained by the coalescence of Ce(m)C^{(m)}_{e} at one of its core vertices with Pf(m)P^{(m)}_{f} at one of its pendent vertices. The following theorem gives the first hypergraph in an SS-order of all linear unicyclic mm-uniform hypergraphs with given girth.

Theorem 4.18.

For m3m\geq 3, in an SS-order of Uefm\textbf{U}^{m}_{ef} the first hypergraph is EefmE_{ef}^{m}.

Proof.

In an SS-order of Uefm\textbf{U}^{m}_{ef}, by Theorem 4.16, the first hypergraph is in U. Since the spectral moments S0,S1,,S3m1\mathrm{S}_{0},\mathrm{S}_{1},\ldots,\mathrm{S}_{3m-1} are the same in U, the first significant spectral moment is the 3m3mth. By Corollary 4.13, S3m\mathrm{S}_{3m} is determined by the number of S3(m)S_{3}^{(m)} and P3(m)P_{3}^{(m)}. For any U\mathcal{H}\in\textbf{U}, N(S3(m))=0N_{\mathcal{H}}(S_{3}^{(m)})=0.

Let 𝒯1,,𝒯p\mathcal{T}_{1},\ldots,\mathcal{T}_{p} be pairwise disjoint binary mm-uniform hypertrees, uiu_{i} be a pendent vertex of 𝒯i\mathcal{T}_{i} for each i[p]i\in[p] and v1,,vpv_{1},\ldots,v_{p} be core vertices of Ce(m)C^{(m)}_{e}, where 1pe(m2)1\leq p\leq e(m-2) and i=1p|E(𝒯i)|=f\sum_{i=1}^{p}|E(\mathcal{T}_{i})|=f. For any =Ce(m)(v1,,vp)(𝒯1(u1),,𝒯p(up))U\mathcal{H}=C^{(m)}_{e}(v_{1},\ldots,v_{p})\bigodot(\mathcal{T}_{1}(u_{1}),\ldots,\mathcal{T}_{p}(u_{p}))\in\textbf{U}, let e()e(\mathcal{H}) denote the set of all edges of E(Ce(m))\mathcal{H}-E(C^{(m)}_{e}) that contain at least 3 vertices whose degree is equal to 2. Let the vertex uiu_{i} as a root in 𝒯i\mathcal{T}_{i}. We can repeatedly apply the transformation from Lemma 3.9 at any two vertices u,vee()u,v\in e\in e(\mathcal{H}) with largest distance from the root in every hypertree 𝒯i\mathcal{T}_{i} and du=dv=2d_{u}=d_{v}=2, as long as 𝒯i\mathcal{T}_{i} does not become a hyperpath. By Lemma 3.9, each application of this transformation strictly decreases the number of sub-hyperpaths with 33 edges.

When all hypertrees 𝒯1,,𝒯p\mathcal{T}_{1},\ldots,\mathcal{T}_{p} turn into hyperpaths, we can repeatedly apply the transformation 5, as long as there exist at least two hyperpaths of length at least one, By Lemma 4.17, each application of transformation 5 strictly decreases the number of sub-hyperpaths with 33 edges. In the end of this process, we arrive at the EefmE_{ef}^{m}. ∎

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 11801115, No. 12071097, No. 12042103 and No. 12242105), the Natural Science Foundation of the Heilongjiang Province (No. QC2018002) and the Fundamental Research Funds for the Central Universities.

References

References

  • [1] D. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Academic Press, 1980.
  • [2] D. Cvetković and P. Rowlinson. Spectra of unicyclic graphs. Graphs Comb., 3(1):7–23, 1987.
  • [3] Y. Wu and H. Liu. Lexicographical ordering by spectral moments of trees with a prescribed diameter. Linear Algebra Appl., 433(11):1707–1713, 2010.
  • [4] X. Pan, X. Hu, X. Liu, and H. Liu. The spectral moments of trees with given maximum degree. Appl. Math. Lett., 24(7):1265–1268, 2011.
  • [5] B. Cheng, B. Liu, and J. Liu. On the spectral moments of unicyclic graphs with fixed diameter. Linear Algebra Appl., 437(4):1123–1131, 2012.
  • [6] B. Cheng and B. Liu. Lexicographical ordering by spectral moments of trees with kk pendant vertices and integer partitions. Appl. Math. Lett., 25(5):858–861, 2012.
  • [7] S. Li, H. Zhang, and M. Zhang. On the spectral moment of graphs with kk cut edges. Electron. J. Linear Algebra, 26:718–731, 2013.
  • [8] S. Li and S. Hu. On the spectral moment of graphs with given clique number. Rocky Mountain J. Math., 46(1):261–282, 2016.
  • [9] D. Cvetković and M. Petrić. A table of connected graphs on six vertices. Discrete Math., 50:37–49, 1984.
  • [10] L. Qi. Eigenvalues of a real supersymmetric tensor. J. Symbolic Comput., 40(6):1302–1324, 2005.
  • [11] L. Lim. Singular values and eigenvalues of tensors: a variational approach. In Proceedings 1st IEEE International Workshop on Computational Advances of Multitensor Adaptive Processing, pages 129–132. IEEE, 2005.
  • [12] J. Cooper and A. Dutle. Spectra of uniform hypergraphs. Linear Algebra Appl., 436(9):3268–3292, 2012.
  • [13] Y. Fan, T. Huang, Y. Bao, C. Zhuan-Sun, and Y. Li. The spectral symmetry of weakly irreducible nonnegative tensors and connected hypergraphs. Trans. Amer. Math. Soc., 372(3):2213–2233, 2019.
  • [14] G. Gao, A. Chang, and Y. Hou. Spectral Radius on Linear rr-Graphs without Expanded Kr+1{K}_{r+1}. SIAM J. Discrete Math., 36(2):1000–1011, 2022.
  • [15] L. Qi and Z. Luo. Tensor Analysis: Spectral Theory and Special Tensors. SIAM, 2017.
  • [16] G. Clark and J. Cooper. A Harary-Sachs theorem for hypergraphs. J. Combin. Theory Ser. B, 149:1–15, 2021.
  • [17] A. Morozov and S. Shakirov. Analogue of the identity Log Det = Trace Log for resultants. J. Geom. Phys., 61(3):708–726, 2011.
  • [18] S. Hu, Z. Huang, C. Ling, and L. Qi. On determinants and eigenvalue theory of tensors. J. Symbolic Comput., 50:508–531, 2013.
  • [19] J. Shao, L. Qi, and S. Hu. Some new trace formulas of tensors with applications in spectral hypergraph theory. Linear Multilinear Algebra, 63(5):971–992, 2015.
  • [20] L. Chen, C. Bu, and J. Zhou. Spectral moments of hypertrees and their applications. Linear Multilinear Algebra, 70(21):6297–6311, 2022.
  • [21] K. Cardoso and V. Trevisan. Energies of hypergraphs. Electron. J. Linear Algebra, 36:293–308, 2020.
  • [22] H. Lin and B. Zhou. Distance spectral radius of uniform hypergraphs. Linear Algebra Appl., 506:564–578, 2016.
  • [23] Y. Fan, Y. Yang, C. She, J. Zheng, Y. Song, and H. Yang. The trace and estrada index of uniform hypergraphs with cut vertices. Linear Algebra Appl., 660:89–117, 2023.
  • [24] Y. Fan, J. Zheng, and Y. Yang. The trace of uniform hypergraphs with application to Estrada index. arXiv:2210.03311v1, 2022.